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E-mail vedoućıho: tomas.bures@d3s.mff.cuni.cz
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Abstract: SOFA 2 is a component system employing hierarchically composed
components. It provides ADL-based design, behavior specification using behavior
protocols, dynamic reconfiguration of the components, and modeling of the com-
ponent communication by software connectors. This allows seamless and trans-
parent distribution of component applications. The connectors can be automa-
tically generated, SOFA 2 contains Java connector generator allowing to connect
components with Java interfaces. The aim of this thesis is to implement C code
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Chapter 1

Introduction and motivation

Various computer systems have become an inherent part of our everyday lives.
Hardware engineers are trying to make all these systems, ranging from microwave
owens to desktop computers, run faster, which enables them to perform very so-
phisticated computations and operations on the software level. This triggered
the evolution of the software runnable on these machines from very simple compu-
tations (e.g. a calculator) to very complex programs like todays operating systems
or vector graphics applications. The more complex software we have, the harder
it is to maintain it. This led to a need for discovering methods of developing
both scalable and maintainable software, and emergence of a separate engineer-
ing discipline focused on software design and the process of its development, we
call it software engineering. One of the paradigms that the software engineer-
ing proposed is called component-based software engineering (CBSE). This fast
evolving approach allows us to create large-scale software systems from smaller
pieces called components. Each component has exactly specified functionality
and the most important fact is that its communication with other components is
restricted to well defined interfaces. This makes the components independent of
each other and it also allows one component to be easily reused in several soft-
ware applications or several places within the same application. The reusability
of components allows for faster development of highly scalable applications and
the strict separation of concerns between the components leads to more robust
and error-free applications.

Tools that help the developers create applications consisting of components
are called component systems. Many big companies have developed their own
proprietary component systems both for their internal use and for the outside
world, which enables the developers to create applications interacting with the
companies’ systems more easily. For example, Microsoft has a series of compo-
nent systems starting from COM, which was extended for the use in distributed
environments to DCOM [6] and finally it was deprecated by the introduction of
.NET Framework [15]. Oracle offers the Enterprise JavaBeans (EJB [10]) compo-
nent system developed by Sun Microsystems. Object Management Group used
their CORBA middleware [5] as a base for CORBA Component model (CCM [7]).
Each of these systems provide a wide set of development and runtime tools, but
at the same time they lack some advanced features like hierarchical components
or the ability to choose between various communication styles for the connections
between the components. This provides space for another group of component

11



systems, mainly developed on the academic soil. For example SOFA 2 [22] and
Fractal [11] component systems belong to this group.

All the component systems agree on seeing a component as a unit which
only includes pure business logic. It should not care about other things like
the communication with other components. This part is handled by the com-
ponent system. And the handling of the communication is the process where
the component systems vary significantly. The proprietary systems usually sup-
port only one predefined middleware, e.g. MSRPC [13] in DCOM, Java RMI
or RMI-IIOP [12] in EJB or .NET Remoting [16] in .NET. On the other hand,
the academic models usually define a new first-class entity called software con-
nector, which stands on the same level as component. The connectors mediate
all the communication between the components and the application designer is
provided with the possibility to modify the parameters for each of the connectors.
Mainly, he is allowed to choose from several communication styles (method in-
vocation, messaging, streaming) and to define desired communication properties
(logging, security, measurement) for each component interconnection. Figure 1.1
shows an example of connector as a mediator of communication between two
components.

Figure 1.1: Modelling communication between components by a connector

The main purpose of the connectors is the separation of concerns, they take
care of the communication logic of the application and the components only need
to deal with the business logic. If the developer of a component application had
to write the connectors by hand, then the component system would not save
much work for him. This idea, and the fact that the code for connectors for one
communication style usually varies only a little, gave rise to connector genera-
tors. Some component systems deploy only a simple stub/skeleton generators
and the developer is then required to fill in the gaps in the generated code to call
the component’s code. Other component systems, like SOFA 2, contain a full
connector generator, which takes a description of the connection (the interface
used for the connection and other properties, e.g. the desired communication
style) and produces a full connector code which implements the communication
functionality (possible marshalling of data on the client end, sending the data
to the server end, demarshalling the data and calling the appropriate code of
the component).

There are several known and widely used approaches for code generation. The
first and the most obvious one is direct generation of the target code by the gen-
erator. This method allows us to produce any text very easily, but the generated
code has no structure, so we cannot be sure that it will be syntactically correct.
One of the examples is generating HTML from PHP using echo or print commands.
Another approach is to use a template in the target language with extension points
denoted by special marks, the code for these special marks is then generated by

12



the generator and inserted into the template. This approach was used in the early
version [37] of the connector generator for SOFA 2. This methods advantage is,
that the template is kept completely separate from the generating code, so it is
easier to maintain it and see its complete structure. Another approach to code
generation uses templates consisting of a mixture of target language code and
a DSL (Domain Specific Language) used for scripting. This template then goes
through a transformation which removes all the scripting parts and we end up
with the target code only. This method allows the most control about the target
code, and with use of proper transformation tool (like Stratego/XT [25]) it
can ensure that the syntax of the target code is correct. This method has been
proposed for a newer version of the connector generator for SOFA 2 [47].

The main goal of this thesis is to design a C code generator suitable for
generation of C connectors. The connector generator does not only consist of
the code generator, it also has to deal with handling of the input arguments,
running the code generator on the correct templates, preparing correct arguments
for the generator including the business interfaces and providing a way to produce
binaries from the generated code, so a second part of this thesis will focus on
updating the current SOFA 2 connector generator to support the new C code
generator. Finally, several sample code templates will be created so that the use
of the generator can be shown and a sample application will be developed to show
that this approach is feasible for larger use and that the generated code can be
easily used by external code (e.g. later by components written in C).

1.1 Objectives

1. Choose fitting way for C code generation.

2. Design C code generator suitable for connector generation.

3. Modify the SOFA 2 connector generator so that it can use the newly pro-
posed C code generator.

4. Create sample C templates that will allow generation of connectors for some
of the communication styles.

5. Sample component application utilizing the connectors generated by the code
generator will be created as a proof-of-usability.

1.2 Structure of the text

Chapter 2 describes SOFA 2 component system and the connector generator used
in SOFA 2. Overview of Stratego/XT , the tool chosen for the code generation,
follows in Chapter 3. After these introductory chapters, the tasks that need to be
done are analysed and the goals of the thesis are reformulated to be more precise
in Chapter 4.

Chapter 5 describes the created C grammar, which is used as a basis for tem-
plate parsing and transformation. The problems of ambiguity of the C grammar
are also discussed in that chapter. Proposed interface and structure of connec-
tor elements are introduced in Chapter 6 along with the DSL template scripting
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language enhancements to support C code and target language specific trans-
formations. The necessary modifications of the SOFA 2 connector generator to
support both Java and C code generators are discussed in Chapter 7. This chapter
also describes the connector generator parts dealing with C language structures
(e.g. type information). Chapter 8 describes the created sample code templates
and the choice of a suitable middleware for C language.

Then, a sample distributed application using the C connectors generated by
the modified connector generator is presented, and the feasibility of the proposed
solution is evaluated in Chapter 9. This chapter also contains overview of other
code generation and transformation tools that were considered during the selec-
tion process. Finally, related work in area of C code generation is discussed in
Chapter 10, and the work done on the solution of the C code generation problem
is concluded in Chapter 11 along with the proposal of possible future work on
that project.

14



Chapter 2

SOFA 2 component system

2.1 Component system overview

The core part of each component system is the component model it uses. SOFA 2
offers a hierarchical one, which distinguishes two types of components. Primi-
tive components contain business logic implementation in some programming
language (currently only Java is supported), whereas composite components are
composed of other components (either primitive or composite ones). Each com-
ponent has well-defined communication interfaces for communication with other
components, of which we have two types - provided interfaces for the functional-
ity that the component offers to other components, and required interfaces that
the component uses for requesting service offered by other components, only bind-
ings between the same types of interfaces are allowed. Each component also has
a controller interface through which the component system communicates with
the component (e.g. instantiates, starts, stops or configures it).

We can look at a component by two different views. The black-box view
shows us the component’s frame, which contains the definition of all the busi-
ness interfaces that the component has, all the communication with other com-
ponents goes through the interfaces in the component’s frame. The gray-box
view looks on the inner architecture of the component, it provides information
about the contents of the component - which can either be a code implement-
ing the business logic in case of primitive component, or definitions of frames
of direct sub-components and their interconnections for a composite component.
In the latter case also the bindings between the parent component’s interfaces
and the sub-components’ interfaces are defined - these are called subsumption for
(parent provided-child provided) binding and delegation for (child required-parent
required) binding. The whole application is also described by a component, which
has frame without any interface. Figure 2.1 shows an example of a simple com-
ponent application.

The resulting component application does not need to run only on a single
machine, it can be distributed to several computers, in SOFA 2 the computers
capable of running the components are called docks, SOFA 2 node is a collection
of docks. Each primitive component runs in one dock (one computer), but sub-
components of a composite component can be spread over several docks. This
brings a new need to SOFA - to provide bindings for both local and remote com-
munication. SOFA 2 uses the concept of software connectors as first-class entities
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Figure 2.1: Sample component application architecture with all kinds of bindings

handling all the communication between components. Each binding between two
components is represented by one instance of a connector. Component application
designer is allowed to define properties of the bindings (desired communication
style and other non-functional properties like logging or security). At application
deployment time (when all the component architectures are known, and the pro-
grammer decided on which dock to run each of the components) the connectors
can be generated, because at this time we know everything we need - whether to
create local call connector or whether we need to employ some middleware, which
communication style is required, and which interface is going to be communicated
via the connector.

2.2 Connector generator

Adaptation of connectors in component systems has two reasons, firstly, they
provide a way to model high-level requirements for component interactions (like
communication style and other non-functional properties). Secondly, connectors
are used to implement the prescribed interaction, they usually employ some mid-
dleware for remote communication and encapsulate it, so the communication is
transparent to the component (the component does not have to deal directly with
the middleware). Without automatical generation of the connector implementa-
tion they would only bring extra work into application development, which would
lower their benefits (the biggest one being the separation of concerns). Thus there
is a need to generate the connectors.

2.2.1 Connector model

One connector is usually spread over several address spaces (the communicating
components might be placed on different deployment docks, thus on different
computers) as seen on Figure 2.2, so it is necessary to be able to split it to
smaller parts, connector units, which are capable of living in separate address
spaces.
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Figure 2.2: Remote binding between components realized by connector

2.2.2 Connector specification

The input of the connector generator comes from the parameters specified by
the application designer, and additional requirements are set during deployment
time (e.g. the location of the components or other restrictions given by the run-
time environment). All these requirements are put together into a so-called high-
level connector specification, a sample one is shown on Listing 2.1.

Listing 2.1: Sample high-level connector specification

< s p e c i f i c a t i o n>
<u n i t name=” c l i e n t u n i t ” dock=”dockA”>

<nfp−r equ i r emen t p r e d i c a t e=”nfp mapping ( Unit , ’
c ommun i ca t i on s t y l e ’ , ’ me thod i nvo ca t i on ’ ) ”/>

<nfp−r equ i r emen t p r e d i c a t e=”nfp mapping ( Unit , ’ l o gg i ng ’ , ) ”/>
<po r t name=” c a l l ” type=” p ro v i d e d ” s i g n a t u r e=” j a v a i f a c e ( ’ MyIface

’ ) ”/>
</ u n i t>

<u n i t name=” s e r v e r u n i t ” dock=”dockB”>
<nfp−r equ i r emen t p r e d i c a t e=”nfp mapping ( Unit , ’

c ommun i ca t i on s t y l e ’ , ’ me thod i nvo ca t i on ’ ) ”/>
<nfp−r equ i r emen t p r e d i c a t e=”nfp mapping ( Unit , ’ l o gg i ng ’ , ) ”/>
<po r t name=” c a l l ” type=” r e q u i r e d ” s i g n a t u r e=” j a v a i f a c e ( ’ MyIface

’ ) ”/>
</ u n i t>

</ s p e c i f i c a t i o n>

However, this high-level specification is not directly used for generation of
the connector source code because there is a huge semantic gap [39] between the
high-level specification and the executable code. Thus low-level connector con-
figuration, which is something close enough to both ends, is introduced. It views
a connector in a component based fashion as a composition of primitive connector
elements directly implementing some functionality, and composite elements which
are composed of several sub-elements and describe their bindings. The low-level
configuration thus sees each connector as a tree of elements where all leaves are
primitive. The elements located in the first level of nesting are called connector
units and each of them can be loaded in a different deployment dock.
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Connector elements communicate only via designated ports, there are three
types of ports in SOFA 2, provided where the element acts as a server, required
where the element acts as a client, and remote ports which are used for modelling
connections to other elements. Each element port has associated its actual signa-
ture (description of the interface used). The low-level specification contains also
description of bindings, which are of two types. Local bindings are used between
elements inside one connector unit and in communication with components and
are always from required to provided or from provided to required port. The sec-
ond type of bindings are remote ones, which are used for connecting different
elements of one connector residing in different address spaces (different connector
units), so they usually employ some kind of middleware. It is important to note,
that a signature on two elements’ ports can differ which provides the possibility
to adapt the information transferred.

Sample low-level connector configuration for the high-level specification can
be seen on Figure 2.3. We can see, that the connector has been split among two
top-level composite elements (client and server unit) and four primitive elements
(two loggers, rmi stub and rmi skeleton elements).

Figure 2.3: Sample low-level connector configuration

2.2.3 Architecture resolver

Architecture resolver transforms the high-level into the low-level connector speci-
fication. It has a database of all available element architectures (Listings 2.2 and
2.3 show sample element architectures) and tries to create a correct configuration
of the whole connector from these elements so that it suits all the requirements in
the high-level specification. If multiple possible configurations are found, the one
with the lowest total cost is chosen and low-level connector configuration is cre-
ated from it. The architecture resolver implements the resolving part in a Prolog
program, which recursively searches through the space of possible connector ar-
chitectures and locates the best one among them.
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Listing 2.2: Element architecture of a composite element with two subelements

<e l ement name=” c l i e n t u n i t ” type=” r p c c l i e n t u n i t ” impl−c l a s s=”
C l i e n tUn i t ”>

<a r c h i t e c t u r e c o s t=”0”>
< i n s t name=” stub ” type=” stub ”/>
<b i n d i n g po r t1=” c a l l ” e l ement2=” stub ” po r t2=” c a l l ”/>
<b i n d i n g e l ement1=” stub ” po r t1=” l i n e ” po r t2=” l i n e ”/>

</ a r c h i t e c t u r e>

<nfp−d e c l a r a t i o n s>
<nfp−mapping name=” commun i c a t i on s t y l e ”

v a l u e=”method i nvo ca t i on ”/>
</nfp−d e c l a r a t i o n s>
. . .

</ e l ement>

Listing 2.3: Primitive element architecture for RMI Stub

<e l ement name=” rm i s t u b ” type=” stub ” impl−c l a s s=”RMIStub”>
<a r c h i t e c t u r e c o s t=”5”>

<po r t name=” c a l l ” s i g n a t u r e=” I ”/>
<po r t name=” l i n e ”>

<s i g n a t u r e−e n t r y r e f−name=” rmi ” type=” c l i e n t ”
s i g n a t u r e=” rmi ( I ) ”/>

</ po r t>
</ a r c h i t e c t u r e>
. . .

</ e l ement>

2.2.4 Element generator

Having the low-level specification of the connector resolved, the identified ele-
ments can be created one after another. The input configuration specifies the sub-
elements, signatures of their ports, and bindings among them, but it does not
include the connector code - this part needs to be generated. For that pur-
pose a new Domain Specific Language, ElLang, was designed and templates with
a mixture of this scripting language and the target language code are created for
each element type. In the process of code generation these templates are adapted
to correspond to the configuration of the element (e.g. to reflect the interfaces on
the element ports), and the code of the elements in the target language is created.

The element generator does not only generate the source code of the elements,
but it is also used to adapt the communication interfaces if needed, to compile
the generated code and to perform some other things that might be template
specific - e.g. run a middleware stub generator. These tasks depend on the type
of the element, so each element architecture descriptor contains a script with a list
of actions to perform.

Modularity of the generator

Example action script can be seen on Listing 2.4, each of the commands actually
invokes a corresponding Java class, which implement ActionInterface . The most
important action is StrategoJGenerator which generates the code of the element
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from its template, javac command compiles the generated source code, and delete

action deletes the source code files (which are not necessary because they have
already been compiled).

Listing 2.4: Sample action script associated to ServerUnit element

<e l ement name=” s e r v e r u n i t ” type=” r p c s e r v e r u n i t ”
impl−c l a s s=” Se r v e rUn i t ”>

. . .
< s c r i p t>

<command a c t i o n=” S t r a t e g o JGen e r a t o r”>
<param name=” c l a s s ” v a l u e=” Se r v e rUn i t ”/>
<param name=” temp l a t e ”

v a l u e=” e l l a n g / compound de fau l t . e l l a n g ” />
</command>
<command a c t i o n=” j a v a c ”>

<param name=” c l a s s ” v a l u e=” Se r v e rUn i t ”/>
</command>
<command a c t i o n=” d e l e t e ”>

<param name=” sou rc e ” va l u e=” Se r v e rUn i t ”/>
</command>

</ s c r i p t>
. . .
</ e l ement>

The actual code generation is based on transformation of file with code tem-
plate to pure Java, the transformation is implemented in Stratego/XT frame-
work, which will be introduced later in Chapter 3. The main goal of the action
StrategoJGenerator is to prepare the connector element prerequisities, create an in-
put XML file with element description (along with path to the template) and
start the Stratego transformation.

ElLang language overview

The purpose of the template DSL is to enable scripting in the code generation.
ElLang achieves this goal by introducing basic meta-statements (if, foreach, set),
meta-variables (for numbers, strings and arrays of these) and some special con-
structs specific for the purpose of connector element generation. The transforma-
tion evaluates the template and gradually replaces the meta-statements in several
stages until only code in the target language is left.

All the meta-variables can be referenced by their names in the scope of El-
Lang and by ${var} construct in the target language scope. Among the user defined
meta-variables there are also predefined read-only meta-variables called queries,
which provide access to the values in the input XML file and to a special dy-
namically created context information (e.g. function parameter types and names
during generation of code for the given interface). The configuration stored in
the XML file is hierarchical, thus the queries copy its structure and a dot symbol
is used to navigate to lower levels. The queries offer also a counting operator
${ports .port#count}, which returns the number of subelements of a defined type in
the parent element, here it would return the number of ports. Conditional queries
are also allowed to perform a choice of an element, for example ${ports .port(name

=call)} returns the subelement port under top-level element ports with sub-node
name equal to call .
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The assignment of a value to a meta-variable is the simplest meta-statement
performed with a set command, e.g. $set cnt = elements.element#count$. Two basic
control flow statements if and foreach, which work the same as in standard pro-
gramming languages, are accompanied by a recursive version of foreach, which
allows generation of nested structures, like series of Java-if commands in the fol-
lowing example:

$ r f o r e a c h (PORT i n ${ po r t s . po r t ( type=REMOTE) }) $
i f ( ”${PORT. name}” . e qu a l s ( portName ) ) {

/∗ some code ∗/
} e l s e $ r e c po i n t $

$ f i n a l $
/∗ Code f o r the ca s e when no
∗ PORT. name matches the portName . ∗/

$end$

The recpoint statement is replaced by the contents generated by the next loop
of the rforeach, this proceeds until the last element of the array is processed
and after that the remaining recpoint is replaced by the code in the final section.
ElLang also allows splitting the template among several files (and thus have
some generic parts in a single file) and including other templates by using $import

(”included template path . ellang”)$ meta-statement.
Among those generic constructs, special meta-statements designed for pur-

poses of element generation are provided. The basic functionality that an el-
ement needs to perform is the mediation of the interface: for each method of
the interface it needs to pack all the arguments and transfer them using the se-
lected middleware in case of a stub element, or receive the packed parameters
from the middleware and call some interface function in case of a skeleton ele-
ment. This step usually involves implementation of interface-wrapper methods,
and for this purpose a method template construct was created, its use is shown
on Listing 2.5.

Listing 2.5: Using method template to implement an interface

implements i n t e r f a c e ${ po r t s . po r t ( name=c a l l ) . s i g n a t u r e } {
method t emp l a t e {

${method . d e c l a r eR e t u r nVa r}
/∗ g e n e r i c s t u f f ∗/
$ i f (method . r e t u r nVa r ) $

${method . r e t u r nVa r } =
t h i s . t a r g e t . ${method . name}( ${method . v a r i a b l e s }) ;

$ e l s e $
t h i s . t a r g e t . ${method . name}( ${method . v a r i a b l e s }) ;

$end$
${method . re tu rnStm}

}
}

ElLang also offers the possibility to create an element hierarchy, where simple
elements implement just a basic functionality, and more complex elements can
extend these simpler ones in specially marked extension points. Listing 2.6 shows
both the code of a base element with definition of a single extension point and
a more complex class extending the functionality of the basic one and redefining
the extension point.
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Listing 2.6: Extending basic elements in ElLang

e l ement b a s i c e l em e n t {
pub l i c void ${ c l a s sname ) ( ) {}
pub l i c void p r i n t I n f o ( ) {

System . p r i n t l n ( ” I n f o f o r ${ c l a s sname } : ” ) ;

$ e x tPo i n t ( e P r i n t I n f o ) $ (
System . p r i n t l n ( ” De f a u l t imp lement ion . ” ) ;

) $end$
}

}

e l ement comp lex e l ement extends b a s i c e l em e n t {
$de fEx tPo i n t ( e P r i n t I n f o ) $

System . p r i n t l n ( ” Ov e r r i d i n g f u n c t i o n a l i t y . ” ) ;
$end$

}

Stratego transformation

The flow of the Stratego transformation is depicted on Figure 2.4, which was
based on work [48]. The element generator transformation, originally proposed
by [47], first preprocesses the input XML element descriptor. At this stage,
the ports and bindings are enhanced by the information about the elements on
the other ends of the connections. The hierarchy of the created XML then denotes
the hierarchy of the query meta-variables created for the element templates.

After this preprocessing stage, the template file of the element that is being
generated is located and parsed.

The parsed template file is then evaluated in several steps:

1. Extends and import ElLang statements are evaluated. These statements
might cause template expansion (the template of the extended element is
also parsed and combined with the current one).

2. The extension points are replaced by their actual implementation (if a child
template redefines an extension point of its parent template, then the new
implementation is used and the old one is forgotten).

3. All the query meta-variables are evaluated and replaced by the values of
the corresponding elements from the processed element descriptor.

4. All the interface definitions are evaluated and the template methods de-
fined inside them are expanded to the implementions of the corresponding
business interface methods.

5. All the ElLang statements in the whole template are evaluated.

6. The rest of the ElLang nodes in the abstract syntax tree is processed and
replaced by the target language nodes. Here the evaluation module also
gets rid of the leftover parts from parsing (e.g. the constructors of rules for
mixing ElLang and the target language).

Finally, the resulting abstract syntax tree is pretty-printed to a file denoted
by the input XML element descriptor.
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Figure 2.4: Workflow of Stratego element code generator

2.2.5 Type system

Connector generator used in SOFA introduced by [39] is designed to be as generic
as possible, e.g. to support different component models and definition of inter-
faces in different formats. Thus a type system framework was introduced to shield
the rest of the connector generator from the interfaces and to allow interface adap-
tation. The type system is used for specifying both generic types accessible by
the rest of connector generator (e.g. Type, InterfaceDef or PrimitiveDefType) and spe-
cific interfaces (e.g. CORBA IDL, Java interface, C header file) and types native
to particular programming languages, component systems and middlewares.

The main responsibilities of the type system are creation of a type descrip-
tion from different interface definitions (e.g. by reflection in Java), mapping such
a type to a different type system (e.g. CDL interface to Java interface), modifica-
tion of an interface (e.g. adding a parameter or an exception to all functions in it)
and finally generating a source file containing the built interface for use in exter-
nal tools and connector code (e.g. by Java compiler, CORBA IDL compiler). All
the programming languages, middleware and component system specific features
are brought into the type system in a form of plugins which deliver type factories.

The input description of a type is called symbolic type specifier and it is used
to describe the desired interface type (e.g., rmi iface ( java iface (”TestIface”))), this
description is represented as a tree with functor name used as a name of a node
and values as its subtrees. Type factories are then responsible for building types
based on this symbolic description from bottom to top of the tree (thus always
operating on resolved types), correct type factory for resolving the given subtree
is chosen by the name of the root node of the subtree (the type factories know
which types of nodes they support). Adaptation of the interface is also defined
using a symbolic type specifier, type factory implementing the adaptation will
then be used to adapt the type description (e.g. JavaTypeFactory also implements
add param(itf , type) specifier).

Interfaces are written back to files using type system specific interface writers,
the type system also allows to define a compiler for the generated type (e.g. in
Java we have rmi and javac compilers).

23



24



Chapter 3

Stratego/XT

3.1 Overview of Stratego/XT

Stratego/XT [25] is a framework that allows its users to define a grammar,
parse a text according to the grammar, performs transformations on the parsed
abstract syntax tree and pretty-printing the result back to a textual form. While
XT is the set of transformation tools, Stratego is the name of the language
for definition of the transformations. In Stratego/XT the grammar is defined
in Syntax Definition Formalism format (SDF [29]), a parser takes a text (e.g. in
a file) as an input and produces an Abstract Syntax Tree in ATerm format [23],
this format is then used both as input and output of the Stratego transformations
and the result can be finally pretty-printed to a textual form by a pretty-printer
with use of output tables defined in Box format [45].

Stratego/XT delivers a collection of tools each dealing with a separate part
of the above mentioned process, and there are also other support tools which help
the developers use the framework effectively (e.g. grammar table generator, trans-
formation compiler, pretty-print table generator). Each of them is implemented
as a separate executable and their inputs and outputs are compatible, allowing
for creation of a pipeline of a transformation system. Listing 3.1 presents an ex-
ample of such a pipeline. Most of the tools also have their implementation in
the Stratego language, so they can be easily used as transformations from user
programs. Figure 3.1 shows a sketch of a typical Stratego/XT transformation
process.

Listing 3.1: Example of pipelining of Stratego programs

$ s t r c − i my t ran s fo rmat i on . s t r − l a s t r a t e g o− l i b −m main
$ ca t myprogram . t x t | s g l r i −p mygrammar . t b l | . / myt ran s fo rmat i on |

a s t 2 t e x t −p mypptab le . pp

User defined transformations can be compiled to C or Java code using strc

and strj tools respectively. These programs can then be compiled into cor-
responding binaries and used in the transformation pipeline. This feature also
allows for using of the generated code from external tools (e.g. to call the Stratego
transformations directly from Java applications).
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Figure 3.1: Pipeline of Stratego software transformation system

3.2 Syntax Definition Formalism

SDF is a declarative language for definition of a syntax of languages, a grammar
for any context-free language can be defined in it. This grammar is then used
as a basis for generation of a parse table, pretty print table and other definitions
used later in the transformations (so that the transformation converts a valid
AST to another valid AST). The parse table is then used for parsing of an input
text by Scannerless Generalized Left-to-Right parser (SGLR [49]).

3.2.1 SGLR parser

SGLR parser is capable of parsing any context-free language (it is not restricted to
any subset fo them like other parsers - e.g. to LALR or LL). Conventional parsers
use lexical scanners to combine input letters into lexical tokens, these tokens are
then passed to the syntactical parser. A scannerless parser on the other hand does
not use a separate scanner, instead the lexical analysis is integrated in the context
free analysis of the input string, which allows better interplay between these
two parts. The Left-to-Right part indicates that the parser works in a bottom-
up fashion, where it considers the consecutive input lexical tokens (characters)
and tries to combine them into higher level notions defined by the grammar.
However, this method only works when there is exactly one way to combine
the tokens, a generalized parser solves this problem by starting new instances
of itself whenever it encounters a collision (more possible ways of combining
the input tokens). Some of the concurrently running parser instances then might
stop in dead-ends, which means that this choice does not lead to a correct parse
tree. Other instances might find a possible way to parse the rest of the input
tokens1, so we might end up with a parse tree with several possible choices for
the ambigous nodes (and when the ambiguity is in the top level we have a parse
forest).

There are several advantages of using such a powerfull parser, firstly we are

1The concurrently running parsers are actually merged back to a single one when they are
on the same position in the input text and have the same non-terminal produced. This is well
described in [49].
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allowed to write any context-free grammar (even ambiguous one), secondly we can
keep the lexical syntax along with the context-free one, which might be easier for
reading and maintaining it, and the fact that a combination of two context-free
grammars is another context-free grammar allows us to define modular grammars
(bigger grammar based on several smaller ones).

The SDF language itself adds several useful features, including modularity
of the files for a grammar and possibility to define disambiguation constructs
(priorities of the rules, restrictions for the following tokens and rejections of pro-
ductions).

3.2.2 SDF language basics

A SDF grammar consists of syntax rules, both lexical and context-free ones.
It can be spread to several modules, which can import other modules and use
the symbols exported by them.

Each syntax rule consists of symbols, which are similar to terminals and non-
terminals in other grammars (e.g. Backus-Naur Form, BNF, used in several
popular tools like ANTLR [2] or Yacc [32]). There are three elementary sym-
bols, sorts in BNF called non-terminals (e.g. Expression), literals corresponding
to terminals (e.g. ”==”) and character classes used to define several matching
characters (e.g. [0−9]). We can construct compound symbols from other symbols
by applying operators to them: ?, + and ∗ are used for optional occurence, repe-
tition and optional repetition respectively. Symbols can be grouped to sequences
by parentheses, and choice operator | can then be applied to denote alternatives2.

Syntax rules (also called productions or functions) are then written in a form
S1 S2 ... Sn −> S, denoting that symbols S1 to Sn can be rewritten (reduced) to
symbol S (as opposed to derivation rules in BNF, which are written in exactly
opposite order and the start symbol is only allowed to be non-terminal). See
simple grammar sample on Listing 3.2. The target symbol can be followed by
additional attributes enclosed in curly braces, these are used for setting the names
of the nodes in the resulting abstract syntax tree (the {cons(”Sum”)} attribute) and
for disambiguation, which is mentioned later in this chapter in Section 3.2.5.

Listing 3.2: SDF definition of expression module

module E xp r e s s i o n s

exports

so r t s Exp r e s s i o n

l e x i c a l syntax

”0” −> Number
”−”? [1−9][0−9]∗ −> Number

context−f r ee syntax

Number −> Exp r e s s i o n {cons ( ”Number” )}
Exp r e s s i o n ”+” Exp r e s s i o n −> Exp r e s s i o n {cons ( ”Sum” ) }
Exp r e s s i o n ”−” Exp r e s s i o n −> Exp r e s s i o n {cons ( ”Sub” ) }
” ( ” E xp r e s s i o n ” ) ” −> Exp r e s s i o n {cons ( ”Par” ) }

2There are more available operators described in the SDF documentation [29]
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l e x i c a l r e s t r i c t i o n s

Number −/− [0−9]

3.2.3 Lexical and context-free syntax

The above described form of production rules is used for the definition of both
lexical and context-free syntax. However, the defined symbols are in different
namespaces (LEX and CF), every user defined lexical symbol L is converted to
namespaced symbol <L−LEX> and every context-free symbol C is converted to
<C−CF>. And, for every lexical symbol L SDF automatically generates one rule
in a form <L−LEX> −> <L−CF>, so we can easily use the lexical sorts within
the context-free rules, and lexical and context-free rules with the same right-
hand-side are automatically linked together as seen on Listing 3.3.

Listing 3.3: Lexical and context-free syntax defining the same sort

%% Grammar d e f i n e d by the u s e r
l e x i c a l syntax

”a” −> A
context−f r ee syntax

”b” −> A

%% Ru l e s a u t oma t i c a l l y g ene ra t ed from the grammar
”a” −> <A−LEX>
<A−LEX> −> <A−CF>
”b” −> <A−CF>

In the rules we can use both the symbolic names without namespaces and
the fully qualified symbol names. Finally, SDF puts all the defined rules together
into a combined syntax while preprocessing all the context-free rules. The prepro-
cessing inserts special LAYOUT? symbol between each two symbols on the left side
of the rules, this then serves for automatical parsing of the layout. This symbol
is in the hands of the grammar developer, who is supposed to create lexical rules
to define it.

SDF uses concept of start symbols to define the symbols that can be in the root
of the parsed AST when the input string is processed. If there are no start symbols
then no input string is accepted. There can be both lexical and context-free start
symbols, the latter ones are preprocessed and allow LAYOUT in the beginning and
at the end of the input string.

3.2.4 Combined syntax

As mentioned earlier, a combined syntax is generated after the preprocessing
phase. Sometimes it is necessary to use context-free symbols, but it is desired
to have fine-grained control of the layout (e.g. when a specific construct ends in
the end of line which is otherwise allowed in the layout), so the grammar author
is also allowed to write directly this combined syntax (where he needs to use
the fully-qualified symbol names), as can be seen on the Listing 3.4.

Listing 3.4: Lexical and context-free syntax defining the same sort

module Macros
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imports L i t e r a l s
I d e n t i f i e r s

exports

l e x i c a l syntax

[\ \ t ]+ −> WS
[\ \ t ]∗ [\ n ] −> LineEnd

syntax

<”#d e f i n e ”−LEX> <WS−LEX> < I d e n t i f i e r −CF> <WS−LEX> <L i t e r a l −CF> <

LineEnd−LEX> −> Macro

3.2.5 Grammar disambiguation

When we parse an input string, we try to find the derivation tree that produces
exactly that string. In many cases there is more than one derivation tree for
the same string, such a situation is called ambiguity. It is quite common that
other parsers do some disambiguation steps on their own (e.g. ANTLR applies
the rule of the longest match when scanning for lexical tokens). But this is
not the situation with SGLR, which offers the developer means to disambiguate
the grammar himself according to his needs. There are several disambiguation
constructs provided to the user, Listing 3.5 shows their usage in grammar for
expressions.

Listing 3.5: Expression grammar with disambiguation constructs

1 %% f i l e L i t e r a l s . s d f
2 module L i t e r a l s
3 exports

4 so r t s I d Number Keyword
5

6 l e x i c a l syntax

7 [ a−zA−Z ] [ a−zA−Z0−9]∗ −> I d
8 ” beg i n ” | ”end” −> Keyword
9 Keyword −> I d { r e j e c t }

10 ”0” −> Number
11 [1−9][0−9]∗ −> Number
12 [\ \ t \n]+ −> LAYOUT
13

14 l e x i c a l r e s t r i c t i o n s

15 I d −/− [ a−zA−Z0−9]
16 Number −/− [0−9]
17 LAYOUT −/− [\ \ t \n ]

18 %% f i l e E x p r e s s i o n s . s d f
19 module E xp r e s s i o n s
20 imports L i t e r a l s
21 exports

22 so r t s Expr Stm Code
23

24 context−f r ee start−symbols Code
25

26 context−f r ee syntax

27 I d −> Expr {cons ( ”Var ” ) }
28 Number −> Expr {cons ( ”Number” ) }
29 Expr ”+” Expr −> Expr { l e f t , cons ( ”Sum” )}
30 Expr ”/” Expr −> Expr { l e f t , cons ( ”Div ” )}
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31 Expr ”ˆ” Expr −> Expr { r ight , cons ( ”Pow” ) }
32 ” ( ” Expr ” ) ” −> Expr {cons ( ”Par” ) }
33 I d −> Stm {cons ( ”Dec l ” ) }
34 Expr −> Stm {avoid , cons ( ”Expr ” ) }
35 I d ”=” Expr −> Stm {cons ( ” As s i gn ” ) }
36 ” beg i n ” (Stm ” ; ” )+ ”end” −> Code {cons ( ”Code” ) }
37

38 context−f r ee p r i o r i t i e s

39 Expr ”ˆ” Expr −> Expr >

40 Expr ”/” Expr −> Expr >

41 Expr ”+” Expr −> Expr

The grammar defined on the Listing 3.5 shows basic usage of the SDF disam-
biguation constructs. These are:

• Priorities work as parse forest filters removing certain trees, if A > B priority
rule is defined, it means that production A binds stronger than production
B, and thus a B node cannot be a direct child of an A node. The priorities are
mostly used to define relative priorities between operators, which is shown
on lines 38-41.

• Associativity attributes define another set of filters for the parse forest.
The available associativity attributes { left}, {right} and {non−assoc} suggest
that a production cannot be a direct right-most, left-most or any child of
itself in that order. Example on lines 29-31 defines addition and division as
left-associative operators (we evaluate them from left to right) and power
as operator applied from right to left.

• Reject attribute mechanism is used when we want to forbid certain produc-
tion, which is a subproduction of another one. This mechanism was designed
to be used for lexical syntax, for example to forbid rewriting keywords to
identifiers as seen on the listing on lines 8-9. Usage of reject attributes in
context-free production rules is not fully implemented by SDF, if it was,
it would effectively define the difference operator between two context-free
languages, which would result in possibility to parse non context-free lan-
guages like AnBnCn [30].

• Preference attributes serve for the choice of a direct child in case of mul-
tiple possibilities, production rules with {prefer} attribute get precedence
over ones with no attribute, which get precedence over rules with {avoid}

attribute. This mechanism can be used to prevent some unnecessarily long
rewrites as seen on lines 33-34 which both allow to rewrite Id to Stm, but
we prefer to go directly than having a production path through Expr.

• Restrictions are mainly used to solve ambiguity on the lexical level, where
we do not want some symbol to be followed by a set of characters (or
even a sequence of characters). It is most commonly used as on lines 14-
17 to define the longest match rule, but it can be used in the context-free
meaning too, for example to define that an ”else” word cannot follow the last
statement in an ”if-then” statement.

Figure 3.2 shows a sample input string in the grammar defined on Listing 3.5
and its corresponding abstract syntax tree constructed by SGLR parser.
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Figure 3.2: Abstract Syntax Tree constructed by SGLR parser

3.2.6 Grammar mixing

As mentioned before, SDF supports separation of a large grammar into several
files. This feature can be extended to grammar mixing, we can define separate
grammars for two or more languages and then create a new SDF module, which
imports all these grammar definitions and define rules for mixing the grammars
(e.g. that expression in one language can be used on a place for expression of
the other language). When mixing grammars we need to make sure that symbols
defined by the separate grammars do not collide, they might both provide Stm

sort which would lead to definition of just one sort with all the rules from the two
languages put together and will automatically allow us to use statements of one
language in place of the other one, which might not be wanted. The imported
grammars might not be fully under our control, so SDF allows mechanism of sort
renaming as seen on Listing 3.6. Both the module and imports statements can be
parametrized by a variable, the sorts exported by the grammar being imported
can then be easily renamed by the OldName => NewName construct.

Listing 3.6: Renaming sorts using parameter

module CMixture [ Context ]
imports l a nguage s /C

[
E xp r e s s i o n => Exp r e s s i o n [ [ Context ] ]
I d e n t i f i e r => I d e n t i f i e r [ [ Context ] ]
Statement => Statement [ [ Context ] ]
L i t e r a l => L i t e r a l [ [ Context ] ]
CUnit => CUnit [ [ Context ] ]

]

module TemplateMixture [ Context ]
imports Template/Main

[
E xp r e s s i o n => Exp r e s s i o n [ [ Context ] ]
I d e n t i f i e r => I d e n t i f i e r [ [ Context ] ]
Statement => Statement [ [ Context ] ]

]

module TemplatedC
imports TemplateMixture [ Template ]

CMixture [C ]
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exports

context−f r ee start−symbols CUnit [ [ C ] ]

context−f r ee syntax

Statement [ [ Template ] ] −> Statement [ [ C ] ] { cons ( ”TemplateStatement” ) }
Exp r e s s i o n [ [ Template ] ] −> L i t e r a l [ [ C ] ] { cons ( ” T emp l a t e L i t e r a l ” ) }

By definition of separate grammars with renamed symbols we avoid the prob-
lems with automatical unification of rules with same sorts from different gram-
mars and we can decide on our own which symbols can be rewritten. For example
in the listing we allow usage of a statement defined by the template language in
the place where C statement is expected and also use of a template language ex-
pression instead of C literal. The method for integration of two languages (usually
a Domain Specific Language into a bigger host language) is called MetaBorg
method and is described in [35] and [34].

3.3 Stratego programming language

Stratego is a programming language for transformation of abstract syntax trees
in ATerm format. AST in ATerm format is produced from SGLR parser according
to grammar in SDF form. Stratego is based on the concept of term rewriting
with programmable rewrite rules and strategies. There are two general types of
operations: strategies are used for locating the correct subtree within the AST
and rewrite rules are applied to these subtrees to transform them (or their parts).

3.3.1 Terms and term patterns

In Stratego we refer to a subtree of AST as a term, the name of a term comes
from the {cons(”Name”)} attribute of the syntax rule which produced that node
and the parameters of the term are the subtrees for the left part of the syntax rule.
For example when considering the grammar on Listing 3.5 we can have simple
terms like Number(”4”) or complex terms like Sum(Id(”a”), Number(”2”)). A term does
not have to have all the parameters fully specified, there can be meta-variables
instead of some of them, in that case we call it a term pattern, e.g. Number(x).

To not spoil the structure of the AST while transforming it, each Stratego
program needs to know the possible structure of the terms within the AST, to
ensure that only rewrite rules converting a valid term to another valid term are
allowed. Program section called signatures is used to define the available sorts
and the constructors of the terms. Names of the terms in the AST correspond to
the {cons(”Name”)} attributes of the SDF grammar rules and the sorts in the con-
structor rules define the types of the subtrees of the nodes. These signatures can
be automatically generated from the SDF definition of the grammar and then
imported into the program file.

Stratego has a concept of current term. All the strategies and rules are
applied to the current term, and there is no possibility to escape out of the current
subtree (to get to a parent of the current node in the AST), strategies can only
descend into subtrees of the current tree.
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3.3.2 Strategies

Strategies are used for locating the correct position for application of rewrite
rules. They are defined in a program section started by strategies keyword. Each
strategy has the following form:

name = t r a n s f o rma t i o n s

where name is the name of the strategy and transformations is a combination of
transformations. The whole program tranformation starts in main strategy, its
name is specified at the time of Stratego program compilation.

The simplest transformation is an application of a strategy or rule, which
is performed by writing its name. There are also several predefined strategies,
which can be combined to produce more complex transformations. The basic ones
are the identity strategy id which succeeds without changing the current term,
failure strategy fail which fails and also does not change the current term, term
creation strategy !term which replaces the current term with the term, and term
matching strategy ?term−pattern which potentially binds all the free meta-variables
in the pattern and only succeeds if the current term has the same name and
number of parameters as the term−pattern, and all the parameter terms also match.
There is no possibility to rebind a variable to a different value within the same
scope (by default the currently executing strategy), but smaller scopes can be
created by the following construct: { localVar1 , ..., localVarN: scoped−strategies }.

All these basic strategies can be combined into more complex ones by three
operators

• s1 ; s2 - sequential composition operator first performs strategy s1 and if
that succeeds it performs s2. It fails if any of the two strategies fail.

• s1 <+ s2 - deterministic choice operator tries to apply strategy s1, strategy
s2 is only applied if s1 fails. The whole operation fails only if both strategies
fail.

• s1 < s2 + s3 - guarded choice operator works like if (s1) then s2 else s3 state-
ment in standard programming languages. It performs strategy s1, if it
succeeds the program flow continues with s2, otherwise s3 is applied. This
combined strategy succeeds if both s1 and s2 succeed or s1 fails and s3 suc-
ceeds.

Apart from these strategy operators, Stratego also allows to define a block of
strategies by enclosing them into parentheses, e.g. ( s1; s2; s3 ), this block can
then be used in a position where a single strategy is expected.

Strategies can also be parametrized by other strategies and terms:

s t r a t e g y ( s1 , . . . , sm | t1 , . . . , tn ) = t r a n s f o rma t i o n s

where s1, ..., sm are strategies and t1, ..., tn are terms. The parametrized strat-
egy can then use its parameters in the transformation it defines:

not ( s ) = s < f a i l + i d

The defined not strategy succeeds when the strategy passed to it as a parameter
fails and fails otherwise.
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3.3.3 Rewrite rules

Rules define a transformation of one term pattern to a term (it can be a pattern
but needs to have all the variables bound). The rewrite rules are defined in rules

section of a Stratego program and have the following form:

RuleName : s ou r c e −> t a r g e t

where RuleName is the name of the rule, and source and target are term patterns. It
tries to match the current term to source and replace it with target term. The rule
is not applied if source does not match the current term.

It might seem that rules are only a syntactic sugar for the following strategy
( ?source ; ! target ), however, rules have another useful feature - there can be
multiple rules with the same name and the first one (in the order of occurence in
the source files) which matches the current term is applied.

Rewrite rules can also be made conditional by the following construct:

RuleName : s ou r c e −> t a r g e t where c o n d i t i o n

The rule is only applied when condition succeeds. The code in condition contains
transformations as defined before. This condition can be used to perform some
additional computation on the matched meta-variables and bind the variables
used in the target term.

Lambda rules can be created anywhere in the code where a rule name is ex-
pected, their definition lacks the rule name and is enclosed in backslash characters
\ x −> y \.

Stratego also offers the possibility to create rules at runtime while trans-
forming the AST, which allows for a dynamic behavior of the program. A dynamic
rule can be created in the following way:

r u l e s (DynamicName : s ou r c e −> t a r g e t where c o n d i t i o n )

It can then be used as all the standard, statically defined, rules in the whole
program until it is undefined by the call to rules(DynamicName:−). Dynamic rules
are used for transferring the context of different parts of the abstract syntax tree
to the transformation of another part of the tree, the most common uses are
constant folding or function code inlining.

The programmer is allowed to create local scopes for dynamic rules by the fol-
lowing construct:

{ | LocalName1 , . . . , LocalNameN: scoped−s t r a t e g i e s | }

where LocalName1 through LocalNameN are names of dynamic rules only defined for
the scoped−strategies.

3.3.4 Term traversal

Strategies and rewrite rules allow to descend through the AST based on the knowl-
edge of its structure and to apply the rules where wanted. Sometimes we know,
that we want to apply a rule to every term with constructor XYZ, but these nodes
might be deep in the AST. In such cases it is useful to define traversal strate-
gies that will be able to go through any AST. For this purpose Stratego offers
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several basic traversal operators which can be combined to form more complex
traversal strategies.

The generic one-step descent operators are:

• all(s) applies the strategy s to all direct subterms of the current term and
succeeds only when the application to all the subterms succeeded.

• some(s) tries to apply the strategy s to all direct subterms and succeeds
when the strategy succeded on at least one of them.

• one(s) tries to apply the strategy s to the direct subterms from left to right
and succeeds after the first successful application, fails if the strategy failed
on all direct subterms.

These generic operators are then used for definition of standard traversal
strategies and other traversal strategies can be defined by the programmer. List-
ing 3.7 shows the definitions of the most common traversal strategies, we are
using the fact that we can define the strategies recursively.

Listing 3.7: Standard traversal strategies

%% v i s i t i n g a l l subte rms
bottomup ( s ) = a l l ( bottomup ( s ) ) ; s
topdown ( s ) = s ; a l l ( topdown ( s ) )
i nne rmos t ( s ) = bottomup ( t r y ( s ; i nne rmos t ( s ) ) )

%% v i s i t i n g some subte rms
sometd ( s ) = s <+ some ( sometd ( s ) )
somebu ( s ) = some ( sometd ( s ) ) <+ s

%% p a r t i a l t r a v e r s a l s
oncetd ( s ) = s <+ one ( oncetd ( s ) )
oncebu ( s ) = one ( oncetd ( s ) ) <+ s
a l l t d ( s ) = s <+ a l l ( a l l t d ( s ) )

%% and many more . . .

There is a special kind of term which is called a list (it is just an array of
values). Lists are created by the repetition occurrence symbols (A∗ and A+) in
SDF. It is possible to apply a strategy to all the items of the list by the map rule,
for example:

map(\ x −> <mul> ( x , 2) \)

multiplies each item of the list by two. On this example we can see, that it is
possible to use a strategy on a different term than the current term by enclosing
the strategy name into angle brackets and passing the term after that:

<s t r a t e g y> term

3.4 Pretty printing

After completing transformation of the AST by a Stratego program we usually
want to convert the tree back to the textual form of the language. This requires
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a process opposite to parsing which is called pretty printing (even if the result is
ugly). For this process we need to have another set of rules, which can reintro-
duce layout and print the fixed strings not needed in the AST. Stratego/XT
contains tools for automatical creation of pretty print tables and it also offers
a tool which takes this pretty print table and transforms an AST to a text ac-
cording to it. The pretty print table has to contain information how to print all
the different terms that can occur in the AST. The terms are identified by their
constructors, so the pretty print table is responsible for defining a way to print
every rule with a constructor back to text. Box Text Formatting Language is
used for the description of these tables.

3.4.1 Box text format

Box language is used to describe the intended layout of the text. It formats input
data into boxes according to the specified operators. Listing 3.8 shows a pretty-
print table for a part of a grammar. The H[data] operator aligns given data
parameters into horizontal boxes and allows us to specify the horizontal space
size, whereas the V[data] operator aligns the data parameters below each other
and we can specify both the indentation size and the vertical distance between
the boxes.

Listing 3.8: Renaming sorts using parameter

%% SimpleLang . s d f
module SimpleLang
imports Layout
exports

so r t s Sta t Expr I d Number
context−f r ee start−symbols Sta t
l e x i c a l syntax

[ a−z ] −> I d
[0−9] −> Number

context−f r ee syntax

” i f ” Expr ” then ” Sta t ( ” e l s e ” S ta t ) ? ” f i ” −> Sta t {cons ( ” I f ” ) }
”{” { Sta t ” ; ”}+ ”}” −> Sta t {cons ( ”Block ” ) }
I d ”=” Expr −> Sta t {cons ( ” As s i gn ” ) }
Number −> Expr {cons ( ”Num” ) }
I d −> Expr {cons ( ” I d ” ) }

%% SimpleLang . pp
%% the p r e t t y−p r i n t t a b l e f o r the code above
[

I f −− V[V i s =2[H hs=1[KW[ ” i f ” ] 1
KW[ ” then ” ] ] 2 ] 3 KW[ ” f i ” ] ] ,

I f . 3 : opt −− 1 ,
I f . 3 : opt . 1 : seq −− V i s =2[KW[ ” e l s e ” ] 1 ] ,
Block −− V[V i s =2[KW[ ”{” ] 1 ] KW[ ”}” ] ] ,
Block . 1 : i t e r −sep −− H hs=0[ 1 KW[ ” ; ” ] ] ,
As s i gn −− H hs=1[ 1 KW[ ”=” ] 2 ] ,
Num −− 1 ,
I d −− 1

]
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Using this grammar and pretty-print table we can get ugly text formatted just
by parsing it by sglri tool and printing it back by ast2text tool. This input
source code:

i f 1 then {a=1; b=2 } e l s e a=0 f i

results into the following pretty-printed code:

i f 1 then
{

a = 1 ;
b = 2

}
e l s e

a = 0
f i

More available operators, like the one for tabular formatting or horizontal-
vertical formatting taking into account the line width, are described in [45].

3.5 Using XT from Stratego

Stratego/XT has most of its core tools implemented in its libraries, which
can be imported to user programs. It also offers the strategies in the Stratego
language, which call these library functions, so it is possible to write Stratego
programs which can perform all the necessary steps starting from parsing, then
transforming the parsed AST and finally pretty-printing the resulting AST back
to a file, without the need to call any external tool or program.

Parsing transformations are available after importing library libstratego −sglr.
It includes strategies like open−parse−table which opens the parse table referenced
by the current, term and strategies parse−file−pt and parse−string−pt with variable
number of parameters (ex. desired start symbol, path and failure strategies), for
parsing text from a file or an input string into a parse tree. This tree then needs to
be converted to ATerm format by implode−asfix. Listing 3.9 presents an example of
parsing and pretty-printing a text in the SimpleLang grammar (as defined before)
from Stratego.

The libstratego −gpp library offers access to several pretty-printing strategies.
The parse−pp−table−file strategy parses a pretty-print table in the given file, ast2abox
converts the current AST to box format according to the passed pretty-print table
and box2text−string prints a box expression into a string with given line-width.

Listing 3.9: Parsing and pretty-printing from Stratego

module Pa r s eP r i n t S imp l e
imports

SimpleLang %% con t a i n s the s i g n a t u r e s
l i b s t r a t e g o − l i b
l i b s t r a t e g o −gpp
l i b s t r a t e g o −s g l r
l i b s t r a t e g o −x t c

s t r a t eg i e s

main = pa r s e ; p r e t t y−p r i n t
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pa r s e =
import−term ( SimpleLang . t b l )

; open−parse−t a b l e => parse−t a b l e
; ! ” i n pu t . t x t ”
; pa rse− f i l e −pt(<echo> ”Cannot open” , <echo> ” Parse e r r o r ”

| parse−t a b l e )
; implode−a s f i x

p r e t t y−p r i n t =
where (<parse−pptab l e− f i l e > ”SimpleLang . pp” => pp−t a b l e )

; a s t2abox ( | [ pp−t a b l e ] )
; box2 text−s t r i n g ( | 8 0 )
; p r i n t−to %% p r i n t the s t r i n g to a tempora ry f i l e
; rename−to ( ! ” output . t x t ” )
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Chapter 4

Analysis

As stated in the introduction, this thesis aims to create a C code generator and
incorporate it into the current SOFA 2 connector generator, so that connectors for
C language can be generated. This chapter contains an overview of the connector
generator, and an analysis of steps that need to be performed to achieve the goal
of the thesis.

4.1 Connector generation overview

Figure 4.1 shows a general overview of the connector generator as proposed by
[37]. First, the architecture of the connector (consisting of elements) is resolved.
Then each element is generated.

Figure 4.1: General connector generator workflow

Each connector element has an action script associated with it, which describes
the steps necessary for the element generation. Figure 4.2 depicts the usual
process of element generation.

Figure 4.2: Typical element generator workflow
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The element code generator is responsible for generation of all the code of
the element. The first step involves preparation of the communication (business)
interfaces, which may include adaptation for the selected middleware (e.g. adding
parameter with middleware context to all of the methods). Afterwards the code
of the element is generated by transformation of a template. The work [47]
identified Stratego/XT as the best tool for these transformations. The script
may also contain actions for running middleware specific tasks (e.g. an IDL
compiler). Finally, the generated code is compiled to be usable in the application,
and unnecessary unnecessary files are removed.

4.2 Proposed changes for C support

We want to create C connector generator in a way that would allow it to easily
coexist with the current Java generator (so that the interface for using these two
is the same). The connector generator is independent of the target language, all
the target language specific tasks are concentrated in the element generators. We
will retain the proposed action-oriented element generator architecture, and in
the next sections we will analyse which parts of the element generator need to be
modified for C code generation.

4.2.1 What cannot be reused

In general, the element generator consists of actions displayed on Figure 4.2.
The first thing that needs to be done is generation of interfaces. The input of

this action is a symbolic type specifier describing the interface (where is the in-
terface stored, and how should the generator modify it), the specifier is resolved
by a type factory specifically created for Java (JavaTypeFactory). This factory uses
Java introspection for getting information about the Java interface (by Class .

forName()), all the modifications are performed on this object, and the interface
code is then directly written to desired interface file. In C, we encounter several
problems. First of all, there is no language structure designed for representation
of an interface, this needs to be created. Secondly, we cannot use Java introspec-
tion for C code, thus we need to find a way to parse an interface code, modify
the parsed information and print it back to a file. So we need to create a type
factory specific for C which will develop its own approach to interface parsing,
modification and printing, and it will understand the specific needs of C (e.g.
the need of protection of type declarations in header files by #ifdef macros, so
that the types declarations do not conflict).

We also cannot use the current template transformation module written in
Stratego, because this module is directly tied to Java, so it can only parse and
transform templates containing the mixture of Java and ElLang code. There are
two possible ways of solving the actual code generation for C. Either we could cre-
ate a completely new way of code generation (using either Stratego or another
transformation language like XText [31]), or we can base the C transformation
module on the current one and rewrite only the target language specific transfor-
mations. The second approach has been chosen, since the main parts of the ele-
ment generator introduced by [47] are independent of the target language, thus
these can be used for C code generation too. This element generator is built on
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top of Stratego/XT framework, which is the leading language transformation
tool, so we will be extending it also using this framework.

To support C templates, we will need to design a C language grammar (this
grammar is used both for parsing of the template and ensuring that the Strat-
ego transformations produce valid abstract syntax trees), identify the target lan-
guage specific transformations in the current element code generator and rewrite
them for C, and create several sample C templates. For this task, the thesis will
analyse the possible ways of interaction of connector element code with the ap-
plication code and use the most appropriate one in the element templates.

Another distinguishing factor between C and Java are separate header and
code files in C. To be able to export the functionality implemented in the code file,
we will need to be able to generate header files. This could be done automatically
from the code file by moving all the non-static declarations into a header file. This
approach would require creation of quite complex transformations and might put
unwanted declarations in the header files. Another possible approach would be
to also support templates for header files, which allows for greater scalability
(the template designer puts exactly what he wants into the header file) and is also
easier to implement (since headers are written in the same language as standard
code files). Taking the above mentioned factors into consideration it was decided
that the second approach will be taken.

The Stratego template transformation needs to be called from the Java ac-
tion (the element generator action). For this task we will follow the approach sug-
gested by [48], and compile the transformation by strj tool into a JAR archive,
then directly call the transformation from the element generator action.

The middleware specific actions, like calling rpcgen, shall be created sepa-
rately for each middleware. These are usually tied to the middleware, thus con-
tain very little things in common, so it does not make sense to create a framework
for them.

The current actions for Java code compilation just find out the path to the gen-
erated file, construct a classpath and use javax . tools .JavaCompiler class to compile
the generated sources. We cannot use this approach for C code, because this class
can only compile Java code. This means that we need to determine a different
way of compiling the generated code (and also of creating correct paths to direc-
tories to include - for example when compiling a composite element, its template
may include the headers generated by its subelements). For this task, we will
present one new action for generation of a Makefile for the element and another
one for running the make program in the correct directory.

For the cleanup, the Java element generator only removed a single source
file (since it only generated a single file), for C we may generate more than one
source file (e.g. header and source). This information is available at the time
of generation of the makefile, thus we can enhance the makefile by a target for
deletion of the sources and intermediate object files.

4.2.2 Coexistence of Java and C element generators

The created C element generator can be inserted into the current infrastructure
using various approaches, the most suitable and easy-to-use one should be cho-
sen. There are two general approaches that can be taken: either new connector
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generator supporting only C can be cloned from the existing one (org.objectweb.
dsrg .congen.Generator), or this generator could be enhanced to support both Java
and C. The second approach minimizes the amount of duplicated code and also
allows to perform tasks that two coexisting generators would not allow, for ex-
ample creation of adapter connectors from Java to C or the other way around
(e.g. by using common middleware like CORBA).

To support connectors for both languages we need to allow the user to choose
which connectors he wants to generate. The high-level specification is used for
the definition of the input, so it is the right place for the choice of language
(which is also an input parameter). For this selection, new NFP requirement
language will be introduced. Its sample use in the high-level specification is shown
on Listing 4.1. Specification of this NFP property on a unit granularity allows
the possibility of already mentioned adapter connectors, where one unit could be
possibly generated for C and the other one for Java.

Listing 4.1: Choice of language in the high-level specification

< s p e c i f i c a t i o n >

<u n i t name=” c l i e n t u n i t ” dock=”dockA”>
<nfp−r equ i r emen t p r e d i c a t e=” nfp mapping ( Unit , ’ l anguage ’ , ’ c ’ ) ”/>
<nfp−r equ i r emen t p r e d i c a t e=” nfp mapping ( Unit ,

’ c ommun i c a t i o n s t y l e ’ , ’ me thod i nvo ca t i on ’ ) ”/>
<po r t name=” c a l l ” type=” p ro v i d e d”

s i g n a t u r e=” c i n t e r f a c e ( ’ t e s t m y i f a c e ’ ) ”/>
</un i t>
. . .

</ s p e c i f i c a t i o n >

To support this feature, the configurations of already existing top-level unit
elements will be modified to reflect this NFP. To ensure that the child elements of
the top-level units will be created for the same language, separate element types
will be defined for all languages (e.g. c stub for a C stub and stub for Java stub).

4.2.3 Using the proposed element generator

This section covers the changes that have been brought to the users (both end-
users and element developers) of the proposed C element generator in comparison
to the Java element generator.

Connector generator user

The proposed element generator for C templates is usable in the same way as
the original Java element code generator, these two can even coexist in the same
connector generator. It is up to the user of the connector generator to pick, which
generator should be used. This choice is made in the high-level specification of
the connector by NFP requirement called language, where value ’c’ denotes C code
and ’ java ’ denotes Java code. The architecture resolver then creates the low-level
configuration (as shown on Figure 4.1) which either contains Java elements or
C elements depending on the choice of the mentioned property. These elements
are then generated by performing all the actions in their action scripts in their
architecture definition files.
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The output of the C connector generator is a set of object files (for each con-
nector element there is one object file created) and corresponding header files
with exported function definitions. Composite elements automatically create ob-
ject archives composed of object files generated by its subelements. The usage
of these object files or object archives is up to the user of the connector (which
is the same as in case of Java connector generator, which creates compiled Java
files).

Element designer

The major task in designing a new connector is the creation of the connector
units architectures (along with the action scripts) and the definition of the corre-
sponding template files. In case of C elements, the user is allowed to create two
templates for each element (one for the code and the other one for the header file),
which are then processed within one generator action, paths to both templates
need to be specified in the action script of the element (so that the generator
knows that two templates should be processed for the element).

The element designer can extend the current C type factory or create his own
type factory if the middleware needs more complex modifications of the business
interfaces. For middlewares requiring other files than just the interface to be pre-
pared (or if the interface needs to have specific format), special element generator
actions shall be created and inserted into the element action script.

4.2.4 Proposed element generator workflow

The main element generator task, the generation of code, will be implemented in
a new action, StrategoCGenerator, which will first either generate the subelements (in
case of composite element) or prepare the code of business interfaces with the use
of new C type manager. The business interfaces can be modified by use of several
predefined simple actions implemented in the C type factory, or more complex
actions can be created in new type factories specifically tied to some middleware.

After these prerequisities are fulfilled, the element descriptor is prepared and
a Stratego transformation specifically created for C code templates is started
(the element descriptor is passed to it). The transformation proceeds as previ-
ously described in Section 2.2.4 and depicted on Figure 2.4. It first preprocesses
the input element description, then it loads the main code template (and pos-
sibly the templates that this code template extends) and evaluates them (e.g.
evaluates all the ElLang statements along with expanding template method bod-
ies for the business interfaces) while creating C statements in places where Java
statements were created in the previous template transformer. After the main
template is processed, the Stratego transformation performs the same evalua-
tion steps for the header template if the input element descriptor contains path
to it.

The Makefile for the element is created after that, and make program is started
in the correct directory to compile the generated files.
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4.3 Goals revisited

4.3.1 Create C grammar for Stratego

The previous chapter explained that we need a full SDF grammar definition
for the target language which we are generating. This grammar is used both
for parsing of the templates and for the transformations, so that a valid target
language code is generated. The java-front project [27] delivers Java grammar
written in SDF, however, there is no project for C language of such a high quality.
Several C grammars exist but they are usually too ambiguous, or they support
only a limited subset of the language. For this reason a new C grammar will be
created, based on one of the existing grammars.

There is also a need to support C macros in the grammar so that we can
generate code with macros. A grammar for the C macros should also be created
and combined with the C grammar, this mixed grammar will then be used as
the target language grammar.

4.3.2 Enhancements of the code generator

The current Stratego code generator only supports Java. New version of
the code generator should be created and adopted to support C as the target
language. All the target language specific transformations should be identified
and rewritten to successfully work with C templates.

A way of representing an interface in C language shall to be chosen. Con-
venient method for interaction of the generated code with external code (e.g.
a component) should be found out, and proper transformations should be cre-
ated to support this interoperability (e.g. declaration of the generated methods
in a header file).

4.3.3 Modifications of the element generator

Support for calling of the C code generator should be added to the current SOFA 2
connector generator. New action for the action script which will invoke the C code
generator should be created. This generator action will need to prepare input file
for the Stratego code generator with information specific for C, e.g. it should
name both the header and the code files that need to be generated.

Type system for the C language should be created in order to support scripted
interface modifications and C version of language tools should be created so
that the rest of the generator can easily find out the path to the generated inter-
face header files.

Suitable way of automatical compilation of the generated C code should be
developed and it should be incorporated into the connector generator.

4.3.4 Creation of sample C templates

Every template is directly bound to some middleware, so the template mainly
deals with interaction with the chosen middleware technology. Unfortunately,
there are not as many possibilities of opensource middleware technologies for C
as there are for Java. The biggest difference between these two languages from
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the middleware point of view is that no equivalent of the Java serialize() method
exists in C. So every possible C middleware needs to perform the data encoding
and decoding itself, and it needs to know the types of parameters of the methods
in advance in order to generate the stubs and skeletons, which can then be used
from the code template. Another problem is that there is no standard way of
defining an interface in C, so each middleware technology uses its own description
of the communication for the generation of stubs/skeletons. There are generally
three possibilities for choice of middleware:

• Find a middleware which would take our description interfaces as input IDL
and will generate easily usable stubs/skeletons.

• Choose a middleware taking a different form of IDL as input. This ap-
proach will require additional effort in form of creation of interface descrip-
tion to the input IDL transformation, which will need to take place before
the stub/skeleton generation. The generated stubs will then need to be
adapted to be easily called from client element code, and the skeletons’
functions would need to be redefined to call the server elements’ functions.

• Create a simple middleware from scrach to fulfill the requirements, e.g.
taking our interface description as an input and generating an easy-to-use
code. This approach requires the most effort, but allows us to adjust it to
the special needs we might have in the future (e.g. so that it is usable in
realtime environment).

The choices made will be discussed in Chapter 8.

4.3.5 Creation of sample application

Finally, a sample distributed application using the connectors generated by the new
connector generator will be created to demonstrate the usage of the generated
code from outside and to show the feasibility of the chosen interfaces of the gen-
erated elements.
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Chapter 5

C language grammar

5.1 Differences between C and Java

It is important to realize that there are significant differences between Java and
C when considering code generation, interface definition and availability of tools
for these languages (middleware technologies specifically). These differences are
shortly discussed at the beginning of the chapters affected by them.

The first problem is, that C language is ambiguous, which is not the case
with Java. First of all, C supports pointers which makes the parsing harder (e.g.
the same operator is used for pointer declaration, dereference and multiplication).
Then in C we are coping with two grammars mixed together - there are macros,
which might make the file look syntactically incorrect (e.g. macros containing
semi-colon statement).

For Java the java-front project [27] delivers a well tested SDF grammar with
many tools around it (tool implementing the parser with disambiguation, pretty-
printer, many Stratego transformations for Java and concrete syntax definition,
which makes the creation of transformations easier). There is no project of such
extent for C, the available grammars usually support only some subset of C and
never support macros inlined in the C code, which is something that we want to
be able to use (see Section 5.3 for details).

5.1.1 Complex notation for declarations

C language contains much more complex type system than Java, we have point-
ers here and the way that variables, pointers and functions are declared requires
higher complexity grammar to parse it. In Java, every declaration has the fol-
lowing form (potentially followed by an initializer):

TypeSpec varName ;

whereas in C the type specification and variable name are somewhat mixed and
declarations look like this:

Typ e Sp e c i f i e r De c l a r a t o r ;

where declarator can contain additional important type information, like pointer
declaration or array declaration. This brings problems when we want to compare
types, decide what to do based on the type and during other actions.
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5.2 C syntax

5.2.1 Base for the grammar

The C grammar is based on a grammar provided within the SDF Library dis-
tributed in sdf2-bundle project [28], this grammar in comparison to other available
SDF grammars (e.g. CTools [24]) uses at least some disambiguation constructs
(e.g. preferences for expressions) and is partially based on the ANSI-C standard.
However, it accepts more type-incorrect C code than the standard (especially in
case of type definitions and expressions) and it lacks support for several impor-
tant C constructs like function pointer declarations. The biggest problem of this
grammar is that it is not used in any tool, thus not well tested, which leads to
several bugs that need to be coped with.

5.2.2 Enhancing the grammar

The selected base grammar was enhanced to suit the needs of the connector
generator, so that the upgraded grammar can describe any construct that is
needed in templates and it is easily mixable with our scripting DSL, ElLang.

The first thing that had to be done was the introduction of constructor at-
tributes to all of the production rules since the base grammar did not have them
defined. Then declarations were redefined to be more restrictive. The original
grammar had them defined in a way shown on Listing 5.1, which allowed meaning-
less constructs like struct a typedef int x;, the specifiers were separated into smaller
groups as depicted on Listing 5.2. This new approach allows us to avoid parsing of
non-declarations as declarations and also distinguishes declaration of new types,
function declarations and function pointer declarations from standard variable
declarations. This distinction is then used in template transformations.

Listing 5.1: Old loose grammar for declarations

S p e c i f i e r+ { I n i t D e c l a r a t o r ” , ”}+ ” ; ” −> De c l a r a t i o n
S p e c i f i e r+ ” ; ” −> De c l a r a t i o n {avoid }

Listing 5.2: New restrictive grammar for declarations

S t o r a g e S p e c i f i e r s Qual i f i edTypeName { I n i t D e c l a r a t o r ” , ”}+ −>
Va rDe c l a r a t i o n {cons ( ” Va rDe c l a r a t i o n ” ) }

S t o r a g e S p e c i f i e r s FullTypeName I d e n t i f i e r ” ( ” Paramete r s ” ) ” −>
FuncDec l a ra t i on {cons ( ” FuncDec l a ra t i on ” ) }

StructKW I d e n t i f i e r ”{” S t r u c tD e c l a r a t i o n+ ”}” −>
NewTypeName {cons ( ” S t r u c tD e c l a r a t i o n ” ) }

NewTypeName −> TypeDec l a ra t i on {cons ( ” TypeDec l a ra t i on ” ) }

TypeDec l a ra t i on −> De c l a r a t i o n
Va rDe c l a r a t i o n −> De c l a r a t i o n
FuncDec l a ra t i on −> De c l a r a t i o n

Rules for definition of pointers were also restricted from the generic rule:

( ”∗” S p e c i f i e r ∗)+ −> Po i n t e r

48



to more restrictive ones:

”∗” T yp eQu a l i f i e r s −> Po i n t e r S i n g l e {cons ( ” Pt r ” )}
Typ eQu a l i f i e r s P o i n t e r S i n g l e+ −> Po i n t e r {cons ( ” Po i n t e rSpec ” ) }

5.3 C macros support

There are several ways of coping with C macros, first one is complete elimination
of macros by working with templates already processed by C preprocessor, but
this would lead to huge code expansion (include directives are also macros) and
a need to know the macro values before template processing (to perform the pre-
processing). Another possibility is to create completely separated grammar for
the macros (with definition of all the symbols from scratch), this would allow
the best control over the grammars but would lead to unnecessary duplication of
some grammar rules (e.g. for expressions) and would not be easily mixable with
the DSL grammar later. The last way is to create macro grammar based on some
subparts of the C grammar (expressions, identifiers and constants), which solves
all the problems of previously mentioned methods. This approach was selected
for the implemtation. Thus a special grammar for C macros is created and it
is mixed with the C grammar, this combined grammar then supports parsing of
C code with macro definitions and applications.

5.3.1 Macro limitations

We do not support all the possible C macros in all the places they are allowed to
be by the standard. Mostly we do not allow macro usage in a way the code would
not look syntactically correct as in the Listing 5.3. Each macro application needs
to look like a valid function call or variable name and the code around needs to
be parsable as a statement, which needs to end with the ; character.

Listing 5.3: Invalid use of macro in C code

#def ine DPR( t e x t ) p r i n t f ( ”%s : %s\n” , FUNCTION , ( t e x t ) ) ;

i n t compute ( i n t x , i n t y )
{

i n t r e s ;
DPR( ” s t a r t i n g computat ion ” )
r e s = x + y ;
DPR( ” f i n i s h e d computat ion ” )
return ( r e s ) ;

}

5.3.2 Using combined syntax for macros

In the grammar for macros we need to be able to parse the end-of-line as a symbol
denoting an end of a macro definition, otherwise we could not tell the difference
between an empty macro definition followed by an expression-like statement on
the next line, and macro definition equal to the value of the expression (Listing 5.4
shows this ambiguity). The problem here is, that in the rest of the grammar we
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want to allow the end-of-line character as a layout symbol, thus we need fine
grained control of the layout while defining the macro grammar, which can be
achieved by using combined syntax as introduced in Section 3.2.4.

Listing 5.4: Empty macro definition and a variable declaration?

#def ine FORGET( a , b )
a ∗b ;

Example productions for definition of macros is shown on Listing 5.5.

Listing 5.5: Production rules for define macros

l e x i c a l syntax

[\ \ t ]+ −> WS
[\ \ t ]∗ [\ n ] −> LineEnd

syntax

<”#d e f i n e ”−LEX> <WS−LEX> < I d e n t i f i e r −CF> <WS−LEX> <Exp re s s i on−CF>
<LineEnd−LEX> −> <StatementMacro−CF> {cons ( ”CMDefine” ) }

<”#d e f i n e ”−LEX> <WS−LEX> < I d e n t i f i e r −CF> <LineEnd−LEX> −>
<StatementMacro−CF> {cons ( ”CMDefineId” ) }

<”#unde f ”−LEX> <WS−LEX> < I d e n t i f i e r −CF> <LineEnd−LEX> −>
<StatementMacro−CF> {cons ( ”CMUndef” ) }

This method on one hand allows expansion of C expression within the macros,
however, it also allows parsing of syntactically incorrect code (imagine a new-line
inside the expression), but this is not a big problem for us - we generally want to
allow parsing of more rather than less.

5.4 Solving grammar ambiguity

C code is ambiguous by design, most of the ambiguities are caused by the lack
of full type information while parsing the input. Let us consider the input file on
Listing 5.6.

Listing 5.6: Ambiguous C grammar - expression or variable declaration?

#inc lude ”my header . h”

i n t main ( i n t c , char ∗∗ argv )
{

a ∗b ;
return (0 ) ;

}

From that code we cannot tell whether the a is a typedef or a type macro de-
fined in the included header and the line should be parsed as a variable declaration
or perhaps both a and b are expressions (either variables or some macros) and
the line is only a multiplication expression and we do not care about the result.

This problem could be solved by having all the system types predefined in
the grammar and either doing the work of a preprocessor and including all header
files or parsing C-preprocessed code (which we do not want to do as explained
above). This process of creating the full type information has several problems.
We would need to know in advance from where should we include the headers
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(both the system paths and user include paths) and the values of externally de-
fined macros, and processing of such files (with the #include directives expanded)
would take considerably more time than processing the files without including
the headers. And because we cannot create dynamic rules while parsing, we
would need to do the processing of the type information in the transformation
part of code processing.

Because of these problems it is not desired to include the headers and we want
to retain the macros also in the generated code so the preprocessor approach
cannot be taken.

5.4.1 Grammar ambiguity approach

We need to be able to parse any valid C code and not to end up with parse error
because of a known ambiguity, so we want to have the grammar ambiguous.

We also allow mixing of declarations and statements within code blocks (as op-
posed to the standard which only allows declarations on the beginning of blocks),
this leads to smaller ambiguous parts in the resulting tree, which is better in
general and allows for easier integration with the DSL later.

5.4.2 Disambiguation in a transformation

After the parsing phase we may end up with an ambiguous parse tree (or a forest).
If there are any ambiguities that need to be solved in a special way (where we
prefer some possible trees over the others), then these should be solved in a special
transformation, disamb−known. Currently, there is no known problem with that so
it is just an identity transformation.

There are ambiguities which may remain in the parse tree even after the initial
processing. It would not make sense to perform all the following transformations
on the ambiguous subtrees in parallel (we need to end up with fully unambiguous
tree before pretty printing it, so we would be making transformations on subtrees
that we would finally throw away). Thus a unifying transformation picktree is
created and applied after each parsing. We have a fully unambiguous parse tree
after this transformation is applied on it.

Listing 5.7: Disambiguation in a transformation

s ignature

const ructors

amb : L i s t ( Statement CCX ) −> Statement CCX

r u l e s

Uni fyAmbLis t : amb( L i s t ) −> amb(<nub> L i s t )
E l im i n a t eS i n g l eAmbL i s t : amb ( [ Node ] ) −> Node
P i c k F i r s t T r e e : amb ( [ Head | Rest ] ) −> Head

s t r a t eg i e s

d i samb iguate−c = log−debug ( | ” S t a r t i n g d i s amb i g u a t i o n” ) ;
disamb−known ; log−debug ( | ”Di samb iguated known amb i g u e t i e s” ) ;
un i f y− l i s t s ; log−debug ( | ” Un i f i e d same ambiguous s u b t r e e s ” ) ;
p i ck−t r e e ; log−debug ( | ” Picked f i r s t nodes i n a l l amb( l i s t )

s u b t r e e s ” )
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/∗ Try to get r i d o f known amb i g u i t i e s − c u r r e n t l y no ∗/
disamb−known = i d

/∗ Un i f y i t ems o f amb node w i th same con t e n t s ∗/
un i f y− l i s t s = bottomup ( t r y ( Uni fyAmbLis t ; E l im i n a t eS i n g l eAmbL i s t ) )

/∗ D e t e rm i n i s t i c a l l y p i c k the f i r s t node i n a l l the amb( l i s t )
∗ nodes i n the who le t r e e , thus f u l l y e l i m i n a t e the amb igu i t y . ∗/

p i ck−t r e e = topdown ( t r y ( P i c k F i r s t T r e e ) )

5.5 Mixing C grammar with ElLang

ElLang is a DSL designed for the code generation, the templates contain a mixture
of ElLang and target language. To be able to parse these templates, a mixed
grammar for the two languages needs to be defined. We will proceed the same
way as the original paper [47] that proposed ElLang did it, it means in a so-called
MetaBorg method [35].

To achieve this we define a new module where we rename all the sorts exported
by C grammar with macros, so that a context (CCX) part is incorporated into
their names (by rules in a form Expression => Expression[[Ctx0]]). This way we avoid
unwanted unification of equally named sorts from C and ElLang. Then we create
a new grammar module for mixture of the two languages, called ElLang-C, we
import both renamed grammars (with sorts with contexts) and define production
rules for the allowed rewrites of symbols from one language to the other one
(Listing 5.8 shows an example of that approach).

Listing 5.8: Part of the mixture of ElLang and C grammars

Stm [ [ ECX ] ] −> Statement [ [ CCX ] ] {avoid , cons ( ”FromTL” ) }
Statement [ [ CCX ] ] −> Stm [ [ ECX ] ] {cons ( ”ToTL” ) }
Exp r e s s i o n [ [ CCX ] ] −> TargetLanguageExpr [ [ ECX ] ] { pre fe r }

To enable parsing and thus expansion of ElLang variables inside C string
literals (e.g. for logging purposes to allow printing of the template method name)
we need to define a way to compose C string literals from smaller parts. We want
the string literals to capture all the layout, but we also need to use context-free
symbols to define the parts allowed within a string (ElLang variable reference
is defined this way). Therefore we define the string parts and the whole string
literal in the combined syntax (we did the same with the C macros) as depicted
on Listing 5.9.

Listing 5.9: C string literals composed from smaller parts

E S t r i n g L i t e r a l −> <S t r i n gCon s t a n t [ [ CCX]]−CF> { pre fe r }
”\”” ES t r i n gPa r t∗ ”\”” −> E S t r i n g L i t e r a l {cons ( ” S t r i n gCon s t” ) }
ESt r i ngCha r s −> ES t r i n gPa r t {cons ( ” S t r i n gCha r s ” ) }
<VarRefL−CF> −> ES t r i n gPa r t {cons ( ” IdFromTL” ) }
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5.6 Pretty printing

Pretty print table for printing an AST parsed by the C grammar with added
support of macros is also created. It does not include definitions for printing of
any of the ElLang terms, because these are not supposed to be in the AST at
the time of printing. If these were included it would mean that the transformation
phase failed and left some of the DSL parts untransformed. The pretty-print table
uses the Box format to produce easily readable code.

Besides the pretty-print table two Stratego transformations were created,
pp−c−string uses the table to convert the current term into string with C code, and
a wrapper transformation disamb−and−pp−c(|fileName) that disambiguates the cur-
rent term, pretty prints it into a string and then outputs this string into file with
the given name.
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Chapter 6

Generating C code

6.1 C language issues

6.1.1 Separate source and headers files

The first thing that is more problematic in C are separated header and source files.
The code generator thus needs to generate two types of files which are usually
bound in pairs and contain interlinked information (headers contain function
and type declarations, whereas source files define these functions - with the same
signatures). Headers could be generated automatically from the resulting element
code and contain declarations of all the non-static functions, variables and all
the types defined by the corresponding source file, but this would lead to lack of
control. This is solved by introducing header template files which are processed
by Stratego transformations after the source file has been processed. Choice
of the header template(s) for the source template is performed in the build script
for the connector element as seen on Listing 6.1.

Listing 6.1: Script for generating header files

< s c r i p t>
<command a c t i o n=” St ra t egoCGene ra to r ”>

<param name=” c l a s s ” v a l u e=”TcpStub”/>
<param name=” temp l a t e ” v a l u e=” e l l a n g c / t c p s t u b . e l c ” />
<param name=” heade r t emp l a t e ”

v a l u e=” e l l a n g c / e l emen t heade r . e l c ” />
</command>
. . .

</ s c r i p t>

6.1.2 Introducing interfaces into C

C programming language does not have any designated type for interface defi-
nition (as opposed to Java), so a convenient way of interface description needs
to be established. The two possibilities which are easy to use from C code are
C header file with function declarations and C struct containing function point-
ers. The latter one is chosen, because it is easier to handle by the parser and
allows for definition of several interfaces in one header file (or directly in source
file if this was needed). It also allows us to hold a pointer to an interface.
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6.1.3 Interaction of components and connector elements

The hand-written component code needs to be able to communicate with the au-
tomatically generated connectors. The components have interfaces (required and
provided) which represent the communication lines. A client component using
functionality of a server component has a required interface and can call func-
tions of that interface. The server component on the other hand implements
some functionality and exposes it via a provided interface. The interfaces are
thus the extension points where we would like to fit the generated connectors.
The components would not need to know about the connectors in between, thus
the communication logic would be transparent for them which is exactly what we
want to achieve.

In Java where connector elements are classes implementing the component’s
business interface this approach is natural. There an element method can access
element-specific data defined within the element class. In C we need to find
a way to cope with the lack of object-orientation, so we workaround this feature
by combining structs and function pointers, which is the way proposed by [44]. As
mentioned before, an interface is just a structure with function pointers. We need
to be able to call the interface function and pass the context to it (either some
element-specific data or component-specific data). Thus each business interface
method is obliged to contain void ∗ parameter as the first parameter (in addition
to the business parameters that follow). This parameter is then used for passing
the context.

To make the code of the components look cleaner and simpler, it would be
nice if the components did not need to store these connector contexts as special
parameters next to the interfaces they use. Therefore it is required to somehow
store the context within the predefined business interface. This can be achieved
even without modification of the interface struct by a simple trick - each compo-
nent (and element) has its context data stored in a structure, when any of them
provides an interface, then it contains the interface as a member of its context
structure (not a pointer). Pointer to this interface is then passed to elements and
components using this provided interface and is passed as a first argument of all
interface functions. When a function gets a pointer to a provided interface, it can
apply a bit of a pointer-magic to it and get to the context structure containing
it, as displayed on Listings 6.2 and 6.3.

Listing 6.2: Common connector macros providing pointer arithetics

/∗ f o r e a s i e r use o f the i n t e r f a c e i n component ’ s code ∗/
#def ine CALL( i t f , func , a r g s . . . ) ( i t f )−>func ( ( i t f ) , ##a rg s )

/∗ c a s t the p t r ( vo i d ∗) to the g i v e n type ∗/
#def ine DECLARE SELF( pt r , type ) \

type ∗ s e l f a t t r i b u t e ( ( unused ) ) = ( type ∗) ( p t r )

/∗ a r i t hm e t i c s − get from member p t r to 0 th member i n type ∗/
#def ine INTERFACE ENTRY( pt r , type , member ) \

( ( type ∗) ( ( char ∗) ( p t r ) − ( unsigned long ) (&(( type ∗) 0)−>member ) ) )

/∗ s h o r t c u t f o r d e c l a r i n g s e l f v a r i a b l e from a member p o i n t e r ∗/
#def ine GET SELF( pt r , type , member ) \

DECLARE SELF(INTERFACE ENTRY( pt r , type , member ) , type )
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Listing 6.3: Code passing context to interface function

s t ruc t b u s i n e s s i t f {
void (∗ s e t ) ( void ∗ i t f , i n t x ) ;
i n t (∗ get ) ( void ∗ i t f ) ;

} ;

/∗ B component d e f i n i t i o n ∗/
s t ruc t B component {

i n t v a l u e ;
s t ruc t b u s i n e s s i t f p r o v i d e d ;

} ;

void B se t ( void ∗ i t f , i n t x )
{

GET SELF( i t f , s t ruc t B component , p r o v i d e d ) ;
s e l f −>v a l u e = x ;

}

i n t B get ( void ∗ i t f )
{

GET SELF( i t f , s t ruc t B component , p r o v i d e d ) ;
return ( s e l f −>v a l u e ) ;

}

s t ruc t B component compB = {
. v a l u e = −1,
. p r o v i d e d = {

. s e t = B set ,

. ge t = B get
}

} ;

/∗ A component d e f i n i t i o n ∗/
s t ruc t A component {

s t ruc t b u s i n e s s i t f ∗ r e q u i r e d ;
} ;

s t ruc t A component compA = {
. r e q u i r e d = &(compB . p r o v i d e d )

} ;

/∗ sample code ∗/
i n t main ( )
{

i n t x = 0 ;
CALL(compA . r e qu i r e d , s e t , 1) ;
x = CALL(compA . r e qu i r e d , ge t ) ;
return ( x == 1 ? 0 : 1) ;

}

The interfaces for instantiation of connector elements, getting a required in-
terface pointer from an element and setting a provided interface pointer to an el-
ement are discussed later in this work in Section 8.1.2.
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6.2 Target language specific transformations

One of the supporting goals of this thesis is to identify the target language specific
constructs used in the template transformations and separate them from the rest
of the transformations, so that support for additional target languages can be
brought more easily into the system. Most of these transformations have already
been identified in the previous works and put into ElLang−J/src/java/ directory:

• components.str contains filename specific operations (resolution of class-
name to filename).

• eval-iface.str evaluates implementation of interface with expansion of method
templates. It needs to define functions and their contents in the target lan-
guage, thus it needs to be created separately for each target language.

• generator.str assimilates all the remaining DSL constructs into target lan-
guage.

• pp.str contains transformations for pretty printing of the resulting AST to
a file.

The following modules are identified by this thesis as target-language specific
in addition to the above ones:

• parser.str contains transformations for parsing the mixture of ElLang and
the target language.

• disambiguate.str contains target-language specific disambiguation transfor-
mations.

• prepare-xml-interface.str contains target-language specific transformations
for the query module, this will be explained further in Section 6.6.1.

• tls-rules.str contains various target-language specific transformations deal-
ing directly with code generation (e.g. generation of assign statement). This
module is responsible for the creation of dynamic rules, which are then used
from the evaluation modules common to all target languages.

All these Java-specific transformations were duplicated into src/C/ directory
and modified to work with C code. The biggest problems arose with type infor-
mation because, as we said in the previous chapter, it is stored both in the type
specifiers and the declarator. Solution to this problem is discussed later in Sec-
tion 6.5.

6.3 Parser and pretty printer

The parser and pretty print transformations use Stratego library functions in
a way similar to the one shown on Listing 3.9 in Chapter 3. While the pretty
printer transformations only allows printing of C code to a file or string, the pars-
ing transformations allows parsing of both ElLang-C and pure C files (and strings).
The pure C parser is used later for adaptation of C interfaces as described in Sec-
tion 7.3.
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While for Java the java−front project defines pp−java−string strategy for pretty-
printing Java code into a string, we need to create our own strategy for C (with
help of library functions), which is shown on Listing 6.4. This strategy uses C.pp

pretty-print table, which was created by hand in the Box language introduced
earlier in Section 3.4.1.

Listing 6.4: Strategy for pretty printing C code

pp−c−s t r i n g =
where ( ! ”C . pp” => ppTemplateName ) ;
i f i s− f i l e −e x i s t ( | ppTemplateName ) then

log−debug ( | ” P r e t t y p r i n t i n g C code u s i n g ” , ppTemplateName )
e l s e

f a i l −r epo r t−e x i t ( | [ ” F i l e ” , ppTemplateName ,
” does not e x i s t ” ] )

end
; a s t2abox ( | [ < parse−pptab l e− f i l e > ppTemplateName ] )
; box2text−s t r i n g ( | 8 0 )

6.4 Interface evaluation

One of the most important parts of every template is the creation of the code
specific to the business interface. ElLang construct implements interface SIGNATURE

{ /∗interface code ∗/}, which allows definition of a single template method code to be
expanded to all methods in the interface, is used for this purpose. This template
code is then transformed by the eval−iface transformation, which is responsible
for parsing of the interface definition and calling transformation that generates
the implementations of interface methods from the template method(s). This
transformation dynamically creates additional meta-variables containing interface
specific information, these variables can be used from the template code.

Four new meta-variables are created for the whole interface, ${ interface .name}

references the name of the interface, ${ interface . definition } contains the definition
of the interface structure type. New function for initialization of an interface
structure is created for each template method defined within the interface imple-
mentation, ${ interface . init . declarations } contains the declarations of these structure
initializing functions and ${ interface . init . definitions } variable expands to their im-
plementations. The automatically created initialization methods can then be
used from the template interface code, the names of the initialization methods
start with the name of the interface, followed by index of the method template
and init string. For example the first template method for interface struct myiface

would have the following signature static void myiface0 init (struct myiface ∗ itf ) ;.

6.4.1 Template methods

Current status

All the business interface methods are defined during method template evalua-
tion, their implementation comes from the generic template method body which
is adapted for the arguments of the methods. Most of the meta-variables available
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inside the template method body are self-explanatory: ${method.name}, ${method.

returnType}, ${method.declareReturnValue}, ${method.returnVar}. The return statement (if
the method returns a value) is contained in the ${method.returnStm} meta-variable,
the ${method.variables} contains a list of the names of all method arguments which
can be used as a parameter list when calling other functions with the same argu-
ments.

The work [48] created one more meta-variable ${method.args}, which is actually
an array of structures and is modifiable from the template code. For each argu-
ment, its type is accessible and type. isPrimitive evaluates to true when the type of
the argument is a Java primitive. This array can be then imploded into a comma
separated list (for use as parameter list) by $implode(method.args)$ ElLang state-
ment. There is also an expression bound to each of the variables, which is used
for the implosion, by default it is set to the name of the variable, but it can be
updated by $apply( expression for ARG in method.args where condition)$ statement. Addi-
tionally push, pop and peek statements can be used to append additional parameter,
remove the last one or peek at its value.

Template method evaluation enhancements

First of all, the transformations producing the contents of all the meta-variables
were redefined for C target language. Also the Stratego rules that are used
to generate the declarations and definitions of expanded methods were redefined
to generate C abstract syntax nodes, and a way of calling these methods was
implemented as described before.

Secondly, for the purposes of C code generation, where we need to pass the con-
text to functions (and we have chosen the first argument for that), we need to
be able to also operate on the first argument of the arguments array. To enable
this, new ElLang statements (and corresponding transformations) are defined:

”$” ” p e e k f i r s t ” ” ( ” VarRe fPart ” ) ” ”$” −>
ArrayPeek {cons ( ” A r r a yPe e kF i r s t ” ) }

”$” ” p o p f i r s t ” ” ( ” VarRe fPart ” ) ” ”$” −>
Stm {cons ( ” A r r a yPopF i r s t ” ) }

”$” ” prepend ” ” ( ” VarRe fPart ” , ” TargetLanguageExpr ” ) ” ”$” −>
Stm {cons ( ” ArrayPrepend” ) }

6.5 C type information

The type information in C declarations is spread between the type specifier and
the declarator. More problems arise when considering parameter declarations,
where the name of the parameter does not have to be defined, and function
return types, where the name is not defined at all.

The C type is thus represented within the Stratego transformations as
a tuple (TypeName, PointerDeclarator), and all the transformations dealing with types
operate on this representation. Simple rules, get−return−type and get−param−pointer

−part, were created for getting this representation from return type name and
parameter declarator, where it might be a bit obfuscated. A sample rule dealing
with types is shown on Listing 6.5, it transforms a type to a format string usable
by the C printf (3) function.
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Listing 6.5: Part of the rule resolving C type to a format string

/∗ The on l y suppo r t ed p o i n t e r i s cha r ∗ ∗/
get−type−f o rma t t e r : ( IntTypeName ( constSpec , CharType ( ) ) ,

Po i n t e rSpec ( , [ Pt r ( [ ] ) ] ) ) −> ”’%s ’ ”
/∗ I n o t h e r c a s e s j u s t p r i n t the p o i n t e r a dd r e s s ∗/
get−type−f o rma t t e r : ( , Po i n t e rSpec ( , ) ) −> ”%p”

get−type−f o rma t t e r : ( IntTypeName (None ( ) , In tType ( ) ) , ) −> ”%d”
/∗ <sn ip> o t h e r f o rma t t e r s ∗/

6.6 Other template language enhancements

6.6.1 Queries for interfaces

The template code can use special meta-variables, called queries, to get infor-
mation about the input (information about the current element, its ports and
bindings). The query module takes the information from the processed element
descriptor which has XML format. The processing of the input element descrip-
tor is performed as the first task of the element code generator. As of now,
the query contains detailed information about the subelements for a composite
element (their location within the repository, the names of the generated objects,
etc.), the ports of the element and the signatures (names) of the interfaces.

For C we would like to have more details (like the names of the methods, names
and types of their parameters) about the interfaces in the query module to be
able to print element information or to use this data within template methods
- as seen later in Section 8.6. Therefore we present a new module, C/prepare−xml

−interface.str, which preparses the business interfaces and adds their description
to the corresponding ports in the element descriptor. The description contains
the names of all the interface methods, and for each of them it also contains
the names and types of the parameters and the type of the return value.

6.6.2 Array creation

In addition to introduction of new operators that allow access to the first element
of an array (thus converting a stack structure to a double-ended queue), new
statement for custom array creation was added:

”$” ” newar ray” ” ( ” VarRe fPart ” ) ” ”$” −> Stm {cons ( ” Ar rayCrea t e ” ) }

This allows for the creation of user defined lists, these can be populated in
foreach statements from the queries (for example from the preparsed interfaces),
and finally imploded into parameter lists for function calls.

6.6.3 Identifier concatenation

During creation of sample templates it turned out that there is a need for dynam-
ical creation of new identifier names (variables, types or function names) based
on the meta-variables (from the queries). For this, a new ElLang statement was
defined:
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%% v a r r e f concat
I d −> I dCat
VarRef −> I dCat
”$” ” concat ” ” ( ” { I dCat ” , ”}+ ” ) ” ”$” −> VarRef {cons ( ” St rCat ” ) }

This statement accepts any combination of variable references (meta-variables)
and literal identifiers, and can be used in any place where identifier is expected.
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Chapter 7

Modifications of SOFA 2 element
generator

7.1 Running C code generator from connector

generator

Section 2.2.4 presented the use of an action script for the generation of an element.
For the purpose of element code generation, this thesis creates a new action,
StrategoCGenerator, which maps to a Java class with the same name. This action
is responsible for the generation of prerequisities of the element, preparation of
element input descriptor, and starting the Stratego transformations defined in
the previous Chapter.

7.1.1 Element generation prerequisities

Several tasks need to be performed before the element code generator can be
started. Primitive elements need to have the business interface code prepared in
the connector repository before they can be generated (the evaluation of inter-
faces in the templates starts with parsing of the interface definition). Composite
elements need to have their subelements prepared in the repository, so that they
know which header files to include and which methods to execute to instantiate
the subelements.

After the template repository is filled in with the required code (either the in-
terfaces or the subelements), the element descriptor, which contains location of
the element template, the subelements, definition of element ports and the sig-
nature of the interfaces, can be constructed.

Primitive elements

Primitive elements need to have the source code of all the interfaces prepared
before the element template transformation starts, because the template usually
adapts the code to the interface and it needs its code for this task. Thus the inter-
face needs to be fully resolved from symbolic type specifiers (which are our input
now) to a type representation, and the code of the interface needs to be generated
as explained further in the text in Section 7.3.2. All the elements defined so far
have two interfaces, one on the input side where the element acts as a server and
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one on the output side where the element acts as a client, thus code for both
these interfaces is defined as shown on a simplified Listing 7.1.

Listing 7.1: Simplified code preparing interfaces for a primitive element

protected void p r e p a r e I f a c e s ( ) throws Act i onExcep t i on {
f i n a l P r im i t i v e E l em e n tP o r t s I n f o p r imE lPo r t I n f o =

new P r im i t i v e E l em e n tP o r t s I n f o ( t h i s . e l emen tDe s c r i p t o r ) ;
f i n a l TypeFactory t ypeFac to ry =

t h i s . e l emen tGene ra to r . ge tTypeFacto ry ( ) ;
f i n a l LanguageToo ls l anguageToo l s =

t h i s . e l emen tGene ra to r . ge tLanguageToo l s ( ) ;

/∗ S im p l i f i e d g e n e r a t i o n o f i n t e r f a c e f o r s e r v e r po r t .
∗ Not c o n s i d e r i n g remote i n t e r f a c e s . ∗/

Reso l vedE lementPor t s e r v e rP o r t = t h i s . a d a p t a t i o nD e s c r i p t o r .
r e i . g e tPo r t ( p r imE lPo r t I n f o . c l i en tPortName ) ;

S ymbo l i cT yp eSp e c i f i e r s e r v e rP o r t S i g = s e r v e rP o r t . s i g n a t u r e ;

C I n t e r f a c eDe f s e r v e r C I f a c e =
( C I n t e r f a c eDe f ) t ypeFac to ry . getType ( s e r v e rP o r t S i g ) ;

S t r i n g serverPackageName =
languageToo l s . g e n e r a t e I n t e r f a c e ( s e r v e r C I f a c e ) ;

/∗ S im p l i f i e d g e n e r a t i o n o f i n t e r f a c e f o r c l i e n t po r t .
∗ Not c o n s i d e r i n g remote i n t e r f a c e s . ∗/

Reso l vedE lementPor t c l i e n t P o r t = t h i s . a d a p t a t i o nD e s c r i p t o r . r e i .
g e tPo r t ( p r imE lPo r t I n f o . c l i en tPortName ) ;

S ymbo l i cT yp eSp e c i f i e r c l i e n t P o r t S i g = c l i e n t P o r t . s i g n a t u r e ;

C I n t e r f a c eDe f c l i e n t C I f a c e =
( C I n t e r f a c eDe f ) t ypeFac to ry . getType ( c l i e n t P o r t S i g ) ;

S t r i n g c l i entPackageName =
languageToo l s . g e n e r a t e I n t e r f a c e ( c l i e n t C I f a c e ) ;

/∗ <sn ip> save the i n f o rma t i o n about the g ene ra t ed i n t e r f a c e s ∗/
}

The concept of a type factory for resolving symbolic type specifier to a type
description and language tools used for generation of interface code is explained
later in this Chapter in Section 7.3.

Composite elements

Composite elements on the other hand do not directly mediate any communica-
tion, instead they are built up from subelements (that can be either primitive or
composite). Thus, the composite element does not need to generate any interface
code (this will be handled by the subelements), but it needs to generate these
subelements.

Listing 7.2: Simplified code generating subelements for a composite element

protected void p repa r eSube l emen t s ( ) throws Act i onExcep t i on {
f o r ( f i n a l Re s o l v e dE l emen t I n s t a nc e i n s t :
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t h i s . a d a p t a t i o nD e s c r i p t o r . r e i . s ubE l emen t I n s t ) {

PackageDes c r i p to r i n s tPd = t h i s . e l emen tGene ra to r . g e n e r a t e (
new Adap t a t i o nDe s c r i p t o r ( t h i s . a d ap t a t i o nDe s c r i p t o r , i n s t ) ) ;

t h i s . p a c k a g eDe s c r i p t o r . runDependsOnPackage . add ( i n s tPd .
packageName) ;

/∗ <sn ip> save the i n f o rma t i o n about the g ene ra t ed sube l ement ∗/
}

}

The elementGenerator.generate() consecutively executes the whole action script
for each of the subelements of the current element, thus the subelements are fully
built before we proceed with the generation of the code for the composite element.
This code usually includes the header files generated by the direct subelements
and instantiates the subelements.

7.1.2 Element input descriptor

The low-level connector specification and the parameters of the StrategoCGenerator

action, which are input for the element code generation, are converted to a for-
mat suitable for Stratego transformations, which was identified by work [47]
to be XML. The information from which we generate this XML descriptor is
gathered during the element preparation (e.g. the location of code of interfaces
or subelements) and put together with other previously known data (template
file location, destination folder, file name, etc.).

The element input descriptor contains the specification of all the ports of
the element (including the signature and location of the business interfaces), and
the connections between the ports. This information is used in the early stage of
the transformation for construction of data for the query module.

7.1.3 Running Stratego transformations

The Stratego transformations introduced in the previous Chapter are compiled
into a Java code and bundled into a Java JAR archive along with the element
templates and other files necessary for ElLang template evaluation (e.g. a pretty
print table), as was proposed by [48]. The main strategy from the archive can then
be easily called by package name.Main.mainNoExit(args); and command line arguments
can be passed to it. This call is wrapped by the NativeStrategoCGeneratorBridge class.

The StrategoCGenerator only needs to pass the generated XML input descriptor
to this class and ask it to generate the element code.

7.2 Compilation of C code

The purpose of the connector generator is not only to generate the source code
of the elements, but also to produce binaries that will be usable from the rest
of the component application (so that the component designer does not have to
compile the connectors himself). This is achieved by introducing two new actions
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into the element action script, one is responsible for generation of a Makefile and
the second one for running the make program in the correct directory.

7.2.1 Makefile generation

Makefiles are created by the same action as the code files (StrategoCGenerator) be-
cause we need to perform similar kinds of tasks before the generation (we need to
identify all the included headers, determine the directory for the sources, names
of the generated files, list of the subelements). Action parameter with name
makefile and value set to true is used to generate the Makefile instead of gen-
erating the code. We generate the Makefile directly from Java by printing its
contents into a file once we have all the input information determined as shown
by Listing 7.3.

Listing 7.3: Generation of makefiles by StrategoCGenerator

protected void g en e r a t e ( ) throws Act i onExcep t i on {
t h i s . i sCompos i t eE l ement = ! t h i s . a d a p t a t i o nD e s c r i p t o r . r e i .

s ubE l emen t I n s t . i sEmpty ( ) ;

/∗ p r e p a r e I f a c e s ( ) f o r p r i m i t i v e e l ement
∗ p repa r eSube l emen t s ( ) f o r compos i t e e l ement ∗/
p r e p a r eE l emen tC l a s s I n f o ( ) ;

i f ( ac t i onType ( ) == ACTION TYPE .MAKEFILE)
g en e r a t eMak e f i l e ( ) ;

e l s e

gene ra teCode ( ) ;
}

7.2.2 Running make

One new action, make, was presented for running the make program, it first deter-
mines the path to the previously generated Makefile from the AdaptationDescriptor

associated with the action script and then runs the command make -C DIR.

7.2.3 Packaging the objects in archives

The goal of the compilation step is to make the usage of the generated binaries as
easy as possible to the external code (e.g. a component application). When some
external application uses a composite connector element, it does not only need
to link against its object file, but also all the object files of all the subcompo-
nents. This fact would make the deployment of applications using the connectors
unnecessarily complex, and these applications would need to know the internal
structure of the generated connectors to link with all the proper object files. This
is not desired.

This thesis solves this problem by creation of object archives that contain all
the object files of all the subcomponents for the composite component. Each
element’s Makefile thus contains a task for the generation of an object archive
by the ar program. Primitive elements only put the single generated object file
into the archive, while composite elements need to create an object archive that
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contains the object file generated by the composite element and all the object
files of all the subelements (which can also be composite). This is solved in two
steps, the first step gathers all the object archives of all the subelements into
a subdirectory and extracts all the archives, the second step constructs a new
object archive with all the previously extracted object files and the object file of
the composite element 1.

This approach allows the external application to be linked with the object
archives created for the top-level connector units, thus only the top-level unit
name is needed to be known for the generation of these applications.

7.3 C Type manager

The code generator needs to at least partially understand the business interfaces
and to be able to adapt them to needs of a specific middleware, as was explained
in Section 2.2.5.

This thesis introduces new type system for C language into the current type
manager framework. Newly created type factory, CTypeFactory, supports two types:
C interface and a parameter. In addition it supports several actions for modifi-
cation of C interfaces (e.g. renaming interface or appending a parameter to all
interface functions).

7.3.1 Understanding C code in Java

While for Java we use Class .forName() to parse an interface and to be able to work
with it, there is no such thing as Java reflection for C code. Therefore we need to
introduce a way to parse a C interface, possibly perform some modifications on it
and print it back to a file. This kind of work is suitable for the Stratego/XT
framework. We take advantage of having a C language grammar, a pretty print
table and the corresponding Stratego transformations already defined, so we
only need to bundle those in a way usable directly from Java.

For this purpose, a new Stratego module typemgr−c.str is defined. The trans-
formations exported by this module are then compiled into Java and bundled into
a Java JAR archive 2. The compiled transformations are then directly usable from
the Java code [26]. New Java class CStrategoTerm is introduced as a wrapper for
calling the generated transformation functions (these have complex names and
require parameteres wrapped into Stratego internal data structures). This
class is then used as a Java representation of both C interfaces and parameters
(and any other C type introduced in the C framework can be represented by this
class).

1Object archive cannot contain two files with the same name, so the object files that we
are generating always have names based on their location in the connector repository which is
unique (e.g. repository /connectors/A00000004/A00000004 ServerUnit.o).

2The STRJ compiler puts into the JAR archive only the transformations used (directly or
indirectly) by the main strategy, but we want to have all the strategies defined by the typemgr−c
module in there, so we create an artificial main strategy called all−transformations− list , which
just calls all the exported strategies in a sequence (separated by semicolon).
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7.3.2 C type system overview

C type system contains two types, CInterface and CParam, the class hierarchy is
shown on Figure 7.1.

Figure 7.1: C type system class hierarchy

C interface

CInterface Java class represents a C interface. When it is being realized 3, it just
creates a new CStrategoTerm and instructs it to parse an interface file as seen on
Listing 7.4.

Listing 7.4: Parsing C interface by CStrategoTerm

pub l i c c l a s s C I n t e r f a c e extends CTypeBase implements I n t e r f a c eD e f {
. . .

pub l i c void r e a l i z e ( ) throws UnsupportedTypeExcept ion {
TypeFactory roo tTypeFac to ry =

getTypeFacto ry ( ) . ge tRootTypeFactory ( ) ;
t r y {

i faceName = typeSpec . a r g s [ 0 ] . t o S t r i n g ( ) ;
S t r i n g c I facePathName = System . g e tP r o p e r t y ( ” u s e r . d i r ” ) +

F i l e . s e p a r a t o rCha r + i faceName + ” . h” ;

/∗ pa r s e the C i n t e r f a c e to S t r a t e g o Aterm fo rmat ∗/
cTerm = new CStrategoTerm ( ) ;
cTerm . l o adFromF i l e ( c I facePathName ) ;

} catch ( CPa r s e rExcep t i on e ) {
throw new UnsupportedTypeExcept ion ( typeSpec , e ) ;

}
}

. . .
}

3Realization of an interface means conversion of partial symbolic type specifier into a fully
resolved type, which is understood by the type manager framework.
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The CStrategoTerm class also implements a complementary function writeToFile (

String fileName) that writes the current term representing the interface into a file,
and function toCType() that constructs a FileNames Java class describing the name
and the location of the code of the interface (further explained in Section 7.3.4).

For the support of actions implemented by C type factories, the interface can
be cloned, renamed by renameInterface(), and parameters can be appended to all
the functions by appendParam() function.

C parameter

The parameter is represented by a CParam Java class. It also uses a CStrategoTerm

for parsing of a parameter from a string, storing its representation in ATerm
format and printing it back to a string.

7.3.3 Interface adaptation

The CTypeFactory type factory implements actions for parsing of both C interface
and C parameter, and it also supports three actions for adaptation of the inter-
face. It is required that all the parameters of all the functions have assigned
names for the purposes of template evaluation. The first adaptation action,
c name params is used for this task. The other two interface operators, c rename itf

and c param append, are used for renaming of an interface and for appending
a parameter to all functions declared in the interface respectively. All these ba-
sic actions first clone the interface and then apply the desired modification to
the cloned representation of the interface, as seen on the Listing 7.5. This ap-
proach is necessary to have correct type specifiers associated with correct interface
objects.

Listing 7.5: CTypeFactory implementation of interface renaming

pub l i c Type getTypeDepthOne ( Symbo l i cT yp eSp e c i f i e r typeSpec )
throws UnsupportedTypeExcept ion {

i f ( ” c r e n ame i t f ” . e q u a l s ( typeSpec . funName ) ) {
TypeFactory . checkTypeSpecArgs ( typeSpec , ARGS RENAME ITF) ;
C I n t e r f a c e i f a c e = new C I n t e r f a c e ( ( C I n t e r f a c e ) typeSpec . a r g s [ 0 ] ,

t ypeSpec ) ;
S t r i n g nameSuf f i x = typeSpec . a r g s [ 1 ] . t o S t r i n g ( ) ;
t r y {

i f a c e . r e n ame I n t e r f a c e ( i f a c e . i faceName + nameSuf f i x ) ;
} catch ( CPa r s e rExcep t i on e ) {

throw new UnsupportedTypeExcept ion ( ”Cannot rename ” +
” i n t e r f a c e ! ” , e ) ;

}
return i f a c e ;

}
/∗ <sn ip> o t h e r a c t i o n s suppo r t ed by the f a c t o r y ∗/

}

Use of these actions from a middleware is illustrated in an artificial type
factory CAddIntTypeFactory, which implements an action append int by converting it
to basic actions supported in the CTypeFactory, as depicted on Figure 7.2.
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Figure 7.2: Expansion of symbolic type specifier by CAddIntTypeFactory

Symbolic type specifier evaluation

The symbolic type specifier is evaluated from the leaves to the root node. Let us
have the following symbolic type specifier on the input:

app end i n t ( c i n t e r f a c e ( my i t f ) )

At first, the interface type specifier ( c interface (iface name)) is evaluated. This
leads to expansion to c name params( c parse interface ( iface ) , ”param”, ”false”), because
we want to enforce that all the parameters have assigned names. This modified
specifier is then again evaluated from the leaves, c parse interface ( iface ) creates
a corresponding CInterface object is and instructs it to load the interface with
myitf name when being realized. Then the operator for assigning names to all
parameters is evaluated by CTypeFactory, this clones the CInterface object and calls
its nameParams() function to assign names to all the method parameters.

Then the append int operator is processed by the CAddIntTypeFactory and ex-
panded to the specifier on the Figure 7.2. The evaluation then proceeds by
creating a CParam object from the int last string, the modified CInterface object is
once again cloned, and the parameter is appended to this interface. This is then
cloned for one more time, and the interface in the newest clone is renamed by
appending ” with last ” string to its original name. And this is the final resolved
type.

7.3.4 C language tools

The language tools concentrate target language specific tasks. Until now, only one
class JavaTools has been used within the connector generator, this thesis introduces
a new abstract generic class LanguageTools, which is extended by the tools specific
for each language (e.g. JavaTools and CTools).

The tools are used for the generation of interface code from its description
(the resolved type introduced above), and the Java tools are also used for the
compilation of generated Java code and running RMI compiler on the code.
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7.3.5 Interface file names

JavaNames class has been used for the transfer of information about a Java inter-
face (it contained read-only attributes pointing to specific parts of its name, like
packageName, className, fileName or relativeDirName).

This has been replaced by a generic abstract class FileNames, which provides
the naming information about any source file in a generic way, and is subclassed
by the target language specific name classes that set the initial values of these
attributes (like the original JavaNames for Java and a newly created class CNames).

This allows the usage of the generic class in most cases in the whole connector
generator, the specific classes are used only when new file name information needs
to be created.
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Chapter 8

Sample C connectors

One of the major goals of the thesis was to propose an interface for integration
of the connectors with the whole component application and to create sample
connectors, that could be used in component applications 1.

8.1 Integration of connector units

8.1.1 Intercomponent communication

The introduction of connectors that are mediating the communication is trans-
parent to the components. In Section 6.1.2 we explained the represantation of
the interfaces as C structs and we proposed the usage of additional void ∗ parame-
ter (used for transfer of the context) prepended to argument list of every business
method.

8.1.2 Connector units interfaces

Binding the ports

Each connector element is required to implement the interface depicted on List-
ing 8.1. By this we mean that each element implements two methods, lookupPort()
which returns a port descriptor used for the communication on the element’s port
with the given portName, and setTarget () method which is used to initialize the bind-
ing of a port with name portName. The ports that are exposed to the components
are always described by the business interface structure pointer, the representa-
tion of the ports for inter-element bindings fully depends on the element type
(e.g. interface struct pointers for local calls, TCP address and port number for
remote TCP connections). The type member of the interface identifies the type
of the element, this field contains any combination of the following flags: local
client, local server, remote client and remote server.

1Please note that the creation of runtime support for connectors (dynamic connector cre-
ation, automatic interconnection of the connector units, and creation of bindings between com-
ponents and connector units) does not belong among the goals of this thesis. To be able to
perform this task, we would need to have working support of C code from SOFA 2 docks, global
connector manager and dock connector managers. This support would need to be usable from
C code, so that the connectors can be dynamically created during runtime of the C applica-
tion. None of the mentioned prerequisities is currently implemented, so the runtime connector
support is left up to future works.
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Listing 8.1: Public element interface

typedef s t ruc t c o nn e c t o r e l emen t {
void ∗(∗ l o o kupPo r t ) ( void ∗ e lement , const char ∗portName ) ;
i n t (∗ s e tTa r g e t ) ( void ∗ e lement , const char ∗portName ,

void ∗ t a r g e t ) ;
i n t type ;

} c o nn e c t o r e l emen t t ;

Element creation and deletion

Each connector element also implements two functions with generated unique
names, that are used for element creation and deletion. These methods are sup-
posed to be exported by the header file generated for the element. The names of
these methods are derived from the path of the element code in the repository
and element unit name, for example element stored in A00000002 directory with
name TcpStub would define the following two methods:

c o nn e c t o r e l emen t t ∗ new element A00000002 TcpStub ( void ) ;
void de l e te e l ement A00000002 TcpStub ( c o nn e c t o r e l emen t t ∗ e l ) ;

The first one creates a new element, initializes it and returns a pointer to its
element interface. The second one can be used for stopping the service provided
by the element and deallocating all the associated structures.

This approach has been chosen, because the names of these two methods can
be easily found out from the element descriptor which is generated alongside
the element code. In the future it should be possible to invoke these methods
from some connector manager if the connector units are compiled as dynamic
libraries.

Example use of the connector interfaces is illustrated in the case study in
Section 9.1.

8.2 Local call

The simplest connector is the one for local method invocations. It does not
employ any middleware for the communication.

8.2.1 Connector architecture

Local method call connector consists of two composite elements, ClientUnit which
is on the side of the component with required interface, and ServerUnit which is on
the side of the component providing the functionality. These two elements are
independent of their subelements, so they can be used with different middleware
technologies that work in a stub-skeleton fashion (e.g. with RPC as explained in
the Section 8.5). The client unit requires a subelement that behaves as a stub, for
local calls it is LocalStub. The server unit on the other hand supports subelements
of skeleton type, thus local calls are handled by LocalSkeleton. The architecture of
the local call connector is shown on Figure 8.1.
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Figure 8.1: Local call connector architecture

8.2.2 Element templates

Compound default

compound default.elc ElLang-C template is used for the generation of code for com-
posite elements with any number of subelements. The template is written in
a way that composite element initialization creates all its subelements and es-
tablishes bindings among them (binding description is one part of the query, so
the code for connecting the ports is automatically created at the time of template
processing). The element interface methods for port lookup and setting target
are defined to delegate the call to the subelement that is providing the given port
or requiring it in case of setting a target.

This template is used for the generation of both ClientUnit and ServerUnit code.

Local stub

For the client communication part of a local call connector, the local stub . elc

ElLang-C template is used. Listing 8.2 shows the definition of the context
structure type used by this element.

Listing 8.2: Context structure for local stub element

#def ine MYITFTYPE $concat ( l o c a l s t u b i t f , ${ i n t e r f a c e . name}) $

typedef s t ruc t {
c o nn e c t o r e l emen t t e l em e n t i n f o ;
s t ruc t ${ i n t e r f a c e . name} ∗ t a r g e t ;
s t ruc t ${ i n t e r f a c e . name} s e l f ;

} MYITFTYPE;

The element info member contains the element’s interface, the self member con-
tains the provided interface (the element implementation of the interface business
methods), and the target pointer is supposed to be set by setTarget () method to
point to the interface provided by the local skeleton.
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A template method is used for the generation of code for the business interface
methods, these are all defined as a simple delegation of the call to the target ’s
methods (if the return value of the function is not void, the value returned by
the target’s function is returned) as shown on Listing 8.3.

Listing 8.3: Template method definition of local stub element

e l ement l o c a l s t u b {
imp l ements i n t e r f a c e ${ po r t s . po r t ( name=c a l l ) . s i g n a t u r e } {

/∗ <sn ip> i n i t i a l i z a t i o n and e l ement methods l e f t out ∗/

method t emp l a t e {
${method . d e c l a r eR e t u r nVa l u e } ;
GET SELF( $ p e e k f i r s t ( method . a r g s ) $ , MYITFTYPE, s e l f ) ;

i f ( s e l f −>t a r g e t != NULL) {
$ p o p f i r s t (method . a r g s ) $
$prepend (method . a rg s , s e l f −>t a r g e t ) $

$ s e tRe tu rnVa l u e s e l f −>t a r g e t−>${method . name}(
$ imp lode (method . a r g s ) $ ) $ ;

} e l s e {
$ s e tRe tu rnVa l u e 0$ ;

}

${method . re tu rnStm } ;
}

}
}

Local skeleton

The server counterpart for the stub is defined in ElLang-C template local skeleton .

elc . This template looks almost the same as the local stub one, the only functional
difference is in the type of the element stored in the element info .type field, the lo-
cal skeleton uses ELEMENT TYPE LOCAL CLIENT | ELEMENT TYPE REMOTE SERVER,
which means that it acts locally as a client in its relationship to the compo-
nent and as a server in its remote connection with the local stub. The stub
uses ELEMENT TYPE LOCAL SERVER | ELEMENT TYPE REMOTE CLIENT combination,
denoting that it is a local server for the component (waiting for its calls) and in
the communication with the skeleton it behaves as a client.

8.3 Problems with C middlewares

The situation with remotely communicating elements is unfortunately a bit more
problematic in C than in Java. Java has extensive support for remote communica-
tion built into the language itself (Serializable types, Remote interfaces) and a lot
of support services (e.g. rmiregistry). In C on the other hand the developer
needs to write all those features from scratch.

Another thing that is much harder in C, is context handling. In Java the ob-
jects transparently take care of context transfer, whereas in C we need to make
huge effort to achieve that. Here we are mostly speaking about finding out
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the context at the server (skeleton) side when new query arrives, the server appli-
cation may provide many interfaces, i.e. services (even using the same middleware
technology), so the context needs to be somehow provided by the middleware
technology.

Due to the issues listed above we find out that some of the obvious middleware
solutions turn out not to be easily usable in our scenario. Another problem is
that there are not many middleware technologies for pure C, a lot of these are
written in C++. It is possible to call C++ code from C, but we are creating
generator of pure C code, thus we do not want to spoil it by introducing C++
middleware.

Almost every C middleware needs to generate some code, its input is some
description of the communication interface, which is usually in different format
for different technologies. The connector generator has an interface description
in a form of C struct with function pointers, and both communication ends can
easily generate functions with the same signature as those in the business inter-
face (this is the role of the template method). So employment of a middleware
usually brings the need to translate this interface description into some form of
middleware-specific IDL (interface definition language) and to write some mar-
shalling and demarshalling code in the element templates.

Another thing that needs to be considered when employing a middleware is
whether it is self-contained or it needs other services running. The preferred
option is the first one, because the entire application is independent and does not
need to control some external service.

8.3.1 Existing middleware possibilities

In this section we will mention some of the possible C middlewares and explain,
why they are not convenient for use in our scenario.

Sun RPC

The ONC RPC [18] (also known as Sun RPC) was considered as the first option
because of its simplicity, but it has several problems.

First of all it requires running portmap application on the server to register
the service provided (and to lookup the service required by the client).

Then in uses its own format for the definition of the communication, XDR
which distantly resembles C. Utility rpcgen then generates a stub, a skeleton,
a header and marshalling code, however, all the generated functions have modified
return value type (it is a pointer to the returned value). And the function names
on the servers have mangled names, they are not called the same as in the XDR,
but the version of the interface is appended to each of them.

Finally, the RPC does not take care of the context at all.
To be able to employ this middleware, we would need to:

• Create generator of XDR files from interface structure definition, so that
we have the interface representation in a format suitable for RPC and can
generate the RPC stubs and skeletons from it.

• Create action for adaptation of the interface used for the server port, so
that the function names are changed to the ones required by RPC and
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the return types are the pointers to the original ones. This needs to be
done, because the current template method implementation does not allow
method renaming or modification of argument types.

• Find a way to transport context (or to somehow make it up on the server
side), it cannot be in a global (or static global) variable, because an element
code can be reused on the same dock for different purposes.

• The docks running the components would need to be able to run the portmap
application.

Protocol Buffers

Protocol Buffers [19] is a Google project which offers a way of encoding structured
data. It consist of a description of data interchange format, and a library that
provides basic functions for construction of a buffer with a message from a struc-
ture holding the data according to a message descriptor. The opposite function
constructs a data structure from a text buffer according to a message descriptor.
The message descriptors and the structures for holding the data are automati-
cally generated from message definition .proto files, which were specially designed
to allow backwards compatibility when modifying the message format. There are
three language mappings of Protocol Buffers for C++, Java and Python officially
supported by Google, implementations for many other programming languages
are provided by other groups.

The project interesting for us is the C implementation of Protocol Buffers [20].
C structures are used as a storage of the unpacked messages, their definitions,
message descriptors and also functions for packing the data into a char ∗ buffer and
unpacking it from the buffer are automatically generated by proto-c generator
from the . proto message definition file.

The Protocol Buffers for C project also implements RPC functionality, where
a service can be defined to provide several RPC functions. Each function accepts
one message and it may also return a message. The communication is asyn-
chronous, the client sends a request and specifies a callback to be called when
the result message is received. The implementations of the service functions on
the server side receive a pointer to the service (this could be used for context
transfer), the decoded message structure, a callback function to be called when
the return value is known and an argument to be passed to the callback.

To be able to employ this middleware, we would need to:

• Create generator of . proto files from interface structure definitions.

• Generate our own service routines for the server side which would call the el-
ement’s implementation of the business functions with the arguments con-
tained in the message structure, wait for the output and construct the return
message.

• Cope with the generated names of the message structure types, macros
and functions. These names have a common scheme, but the code using
the code generated by the proto-c needs to understand the way these
names are created and be able to generate the same names for the same
things.
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• On the client side we would also need to be able to construct a Protocol
Buffer message from the parameters of a function, and call the appropriate
generated service routine.

• To implement a method invocation connector which is synchronous, we
would need to use some synchronization primitive (probably a semaphore)
on the client side to turn the asynchronous response delivery into a syn-
chronous method calls.

8.4 TCP RPC middleware

After discovering the troubles with existing middleware solutions, a decision was
made to try to design simple middleware from scratch that would suit the needs of
the connectors and that would be easily extendable or modifiable to fit additional
criteria (e.g. to be used in real-time scenarios).

8.4.1 Design overview

The TCP middleware is designed as a very simple TCP service, that allows cre-
ation of a message, encoding several simple types into it, sending of a message
and its reception on the other side, and finally decoding of the parameters from
the message (based on the knowledge of the transported data types).

A server can be registered to listen on a defined port and wait for messages of
a defined type, upon successful message reception a registered callback is called,
the received message and an extra parameter used for context transfer are passed
to it. There can be more servers registered within a single application.

A client allows to connect to a server. Messages can be sent in both directions,
a special function for waiting for reception of single message allows the client to
wait for an expected response from the server.

The middleware itself does not offer any code generator and it does not require
any external service to be running on any of the hosts. The network communi-
cation is implemented in the Berkeley sockets API, thus it needs a UNIX-like
system to run.

8.4.2 TCP server registry

In each application using the TCP middleware there is one global TCP registry
that allows registration of TCP server services. This registry is not accessible
from the application code, and it takes care of the following things:

• Server registration - server creation routine tcp server create () automatically
registers the created server in the registry. The registry either creates a new
TCP socket for accepting client connections or ties the server to an already
existing one (if there are more servers listening on the same port).

• Accepting clients - the registry listens on all the accepting sockets, and in
case new connection is established (new client socket is accepted) it registers
the new socket for data reception.
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• Message reception and delivery - the registry monitors all the data reception
sockets and reads the data from them to internal buffers. When it reads
a full message, it delivers it to the server tied to the socket. This binding
is established according to the message type at the time of reception of
the first message on the data socket. The message delivery is performed
by calling the callback function registered on the server with the context
parameter and the received message.

• Server deregistration - when a server is destroyed by tcp server destroy () all
the information about it is removed from the registry, this includes de-
creasing the reference count on the accepting sockets and also removing all
the data reception sockets tied to the server.

The message type mentioned above, which is used for routing the data to
the correct server, is a simple uint16 t value, which is encoded in the message
header. The client and server communicating together need to agree on using
the same message type.

The only registry routine, that is accessible from the application with some
TCP servers registered, is tcp service poll ( int mstimeout, int repeat). This function
is used for handling all the data and new connections on all the registered sock-
ets. For waiting for the data, the TCP registry uses a standard UNIX poll (2)

function, the mstimeout parameter is used as a maximum waiting time of that
function. The repeat parameter denotes how many times should we execute the
poll (2) functions, a non-positive number is considered as infinite number of loops.

The fact that the registry allows to specify the maximum processing time
makes the middleware usable even in single-threaded applications, this is not
true about the Sun RPC middleware, where the svc run () function never returns.

8.4.3 TCP message

The tcp message t, whose definition is shown on Listing 8.4, is the type for the only
unit of information that is being transported by the middleware. An empty mes-
sage is constructed by tcp message create () function, tcp message init () is used for its
initialization, then encoding functions are used to encode values into the message,
and a tcp message send() function sends the message to a file descriptor (a socket).
The receiver of the message then uses the decoding functions to decode the in-
formation contained by it, finally, tcp message destroy() call destroys the message,
or it can be reinitialized by tcp message init ().

Currently the middleware supports the following types: char , int16 t , int32 t ,

int64 t , uin16 t , uint32 t , uint64 t , float , double and char ∗ for zero-delimited string,
but the application is allowed to define its own encoding functions to encode
different types into the message.

The encoding functions always need to make sure, that the data can fit to
the buffer (that there is enough space between buf pos and buf size ), then they can
encode the data and move the buf pos by the size of the encoded value. Finally,
they return 0 in case of success and a negative value in case of failure. The de-
coding counterparts proceed exactly in opposite fashion, they return the decoded
values and set the error code in the err parameter (if it was not NULL).

80



Listing 8.4: TCP Message structure definition and sample codec functions

typedef s t ruc t t cp message {
char ∗ buf ; /∗ Bu f f e r c o n t a i n i n g the data ∗/
u i n t 3 2 t bu f po s ; /∗ Length o f the v a l i d data ∗/
u i n t 3 2 t b u f s i z e ; /∗ S i z e o f the b u f f e r ∗/

/∗ F i e l d s f o r i n t e r n a l use : ∗/
u i n t 3 2 t msg l en ; /∗ Expected message l e n g t h ∗/
u i n t 1 6 t msg type ; /∗ Type o f the message ∗/

} t c p me s s a g e t ;

/∗ Sample encod ing f u n c t i o n s ∗/
enum A l l o c a t i o nA c t i o n { NoAl l o ca t i on , A l l o c a t eE xac t ,

A l l o c a t eE x t r a , A l l o c a t eMu l t i p l y } ;
i n t t c p e n c o d e i n t 3 2 ( i n t 3 2 t va lue , t c p me s s a g e t ∗msg ,

enum A l l o c a t i o nA c t i o n a l l o c a t e ) ;
i n t t c p e n c o d e s t r i n g ( const char ∗ va lue , t c p me s s a g e t ∗msg ,

enum A l l o c a t i o nA c t i o n a l l o c a t e ) ;

/∗ Sample decod ing f u n c t i o n s ∗/
i n t 3 2 t t c p d e c o d e i n t 3 2 ( t c p me s s a g e t ∗msg , i n t ∗ e r r ) ;
char ∗ t c p d e c o d e s t r i n g ( t c p me s s a g e t ∗msg , i n t ∗ e r r ) ;

/∗ Wait f o r r e c e p t i o n o f a s i n g l e message ∗/
i n t t c p me s s a g e r e c e i v e ( t c p me s s a g e t ∗msg , i n t fd ) ;

The message header, consisting of the message type and message length, is
automatically encoded into the beginning of the message when tcp send message()

function is invoked.
The tcp message receive () function can be used for waiting for reception of a sin-

gle message on a socket.

8.4.4 TCP client

TCP client is used on the client side to establish a connection to a server.
The basic client structure, tcp client t shown on Listing 8.5, can be created
by tcp client create () function call, which initializes the message associated with
the client, tcp client connect () then connects the client to a server with specified
address. tcp client disconnect () and tcp client destroy () functions can be used to
close the connection and deallocate the client structure.

Listing 8.5: TCP Client structure definition

typedef s t ruc t t c p c l i e n t {
t c p me s s a g e t ∗msg ; /∗ Message a s s o c i a t e d w i th the c l i e n t ∗/
i n t fd ; /∗ TCP so c k e t o f connected to the s e r v e r ∗/

} t c p c l i e n t t ;

8.4.5 TCP server

The server has already been partially described before, server creation automati-
cally registers it within the registry, whereas destroying of the server also removes
it from the registry. When a message is received by the registry, the callback func-
tion for the server associated to the data socket is called. The first parameter of

81



the callback function is defined by the creator of the server, this can be used for
context transfer.

Listing 8.6: TCP Server structure definition

/∗ Ca l l b a c k f u n c t i o n c a l l e d by the ˜ s e r v e r upon message r e c e p t i o n . ∗/
typedef void (∗ t c p c a l l b a c k ) ( void ∗param , t c p me s s a g e t ∗message ,

u i n t 3 2 t l en , i n t fd ) ;

typedef s t ruc t t c p s e r v e r {
t c p c a l l b a c k c a l l b a c k ; /∗ The c a l l b a c k f u n c t i o n ∗/
void ∗param ; /∗ F i r s t pa ramete r o f the c a l l b a c k ∗/
u i n t 1 6 t msg type ; /∗ Supported message type ∗/
s t ruc t t c p s e r v e r ∗ next ; /∗ Po i n t e r to the next s e r v e r ∗/

} t c p s e r v e r t ;

8.4.6 Sample application

The Listings 8.7 and 8.8 show a part of an application using the middleware.
Please note, that the destroy functions are written in a way, that they can be
called even on a NULL pointer (to simplify the surrounding code).

Listing 8.7: Sample server code

#inc lude < t c p s e r v e r . h>

i n t my data = 12345 ;

void my ca l l b a ck ( void ∗param , t c p me s s a g e t ∗message ,
u i n t 3 2 t l en , i n t fd )

{
i n t e r r ;
i n t x = t c p d e c o d e i n t 3 2 ( message , &e r r ) ;
char ∗ t e x t = t c p d e c o d e s t r i n g ( message , &e r r ) ;

i f ( e r r == 0)
p r i n t f ( ” Rece i v ed va l u e x=%d , t e x t=’%s ’\n” , x , t e x t ) ;

e l s e

p r i n t f ( ” Rece i v ed c o r r u p t e d message : %d !\n” , e r r ) ;
}

#def ine PORT 1234
#def ine MSG TYPE 5678

void r u n s e r v e r ( )
{

t c p a d d r e s s t a dd r e s s ;
t c p s e r v e r t ∗ s e r v e r ;
t c p a d d r e s s i n i t (& addres s , IPv4 , ”” , PORT) ;

s e r v e r = t c p s e r v e r c r e a t e (&addres s , MSG TYPE,
my ca l l b a ck , ( void ∗)(&my data ) ) ;

/∗ run f o r e v e r ∗/
t c p s e r v i c e p o l l (100 , 0) ;

}
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Listing 8.8: Part of a sample client code

#inc lude < t c p c l i e n t . h>

#def ine ADDR ” 1 2 7 . 0 . 0 . 1 ”
#def ine PORT 1234
#def ine MSG TYPE 5678
#def ine BUF LEN 128

#def ine VALUE 1000
#def ine TEXT ”TCP RPC Middleware t e s t message”

i n t c o n n e c t s e n d a n d c l o s e ( )
{

t c p a d d r e s s t s r v a d d r ;
t c p c l i e n t t ∗ c l i e n t ;
i n t e r r ;

t c p a d d r e s s i n i t (& s r v a dd r , IPv4 , ADDR, PORT) ;
c l i e n t = t c p c l i e n t c r e a t e (MSG TYPE, BUF LEN) ;
i f ( ! c l i e n t | | t c p c l i e n t c o n n e c t ( c l i e n t , &s r v a dd r , 0) != 0) {

t c p c l i e n t d e s t r o y ( c l i e n t ) ;
return (−1) ;

}

e r r += t c p e n c o d e i n t 3 2 (VALUE, c l i e n t −>msg , A l l o c a t e E x t r a ) ;
e r r += t c p e n c o d e s t r i n g (TEXT, c l i e n t −>msg , A l l o c a t e E x t r a ) ;

i f ( e r r != 0) {
t c p c l i e n t d e s t r o y ( c l i e n t ) ;
return (−1) ;

}

i f ( e r r = tcp mes sag e s end ( c l i e n t −>msg , c l i e n t −>fd ) == 0)
p r i n t f ( ” S u c c e s s f u l l y s e n t the message !\n” ) ;

e l s e

p r i n t f ( ” F a i l e d to send the message !\n” ) ;

t c p c l i e n t d e s t r o y ( c l i e n t ) ;
return ( e r r ) ;

}

8.5 Remote Procedure Call connector

For distributed calls we employ the middleware described above, which was de-
signed to suit our needs.

8.5.1 Connector architecture

The architecture of the RPC middleware connector is very similar to the one for
local calls that is displayed on Figure 8.1. Only the communicating primitive
elements are changed to the ones specifically created for the middleware.
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8.5.2 Middleware embedding

To enable easy use of the proposed middleware communication, we create a new
action for the element’s build script, TcpMwCodeGenerator. This action is used for
the generation of the middleware stub and skeleton (depending on the value of
a part parameter) from the interface description, this generated middleware code
is then included by the element templates and used for the communication.

For the generation of TCP middleware stubs/skeletons we use Stratego
transformations that are exported by the typemgr−c module (introduced in Sec-
tion 7.3) and made accessible by CStrategoTerm Java class. The transformations
convert an interface struct definition into several methods depending on the gen-
erated part, the use of the transformations is shown on Listing 8.9.

Listing 8.9: TCP Middleware stub and skeleton generator action

pub l i c c l a s s TcpMwCodeGenerator implements Ac t i o n I n t e r f a c e {
/∗ <sn ip> c o n s t r u c t o r and members ∗/

pub l i c void per fo rm ( E l emen tDe s c r i p t o r e l emen tDe s c r i p t o r ,
Adap t a t i o nDe s c r i p t o r a d ap t a t i o nDe s c r i p t o r ,
C o l l e c t i o n<Proper ty> ac t i onPa ramete r s , PackageDes c r i p to r pd )
throws Act i onExcep t i on {

S t r i n g g en e r a t ePa r t = Prope r t y . f i n d F i r s t ( a c t i onPa ramete r s ,
” p a r t ” ) ;

F i l eNames i faceName = f i nd I f a c eName ( e l emen tDe s c r i p t o r ,
a d ap t a t i o nDe s c r i p t o r , g e n e r a t ePa r t . e q u a l s ( ” s tub ” ) ) ;

CStrategoTerm cTerm = new CStrategoTerm ( ) ;
cTerm . l o adFromF i l e ( i faceName . ab so l u t eF i l eName ) ;

i f ( g e n e r a t ePa r t . e q u a l s ( ” s k e l e t o n ” ) )
cTerm . g ene ra t eTcpSke l e t on ( i faceName . packageName + ”/” ,

i faceName . c lassName ) ;
e l s e

cTerm . gene ra teTcpStub ( i faceName . packageName + ”/” ,
i faceName . c lassName ) ;

S t r i n g d e s t F o l d e r = t h i s . e l emen tGene ra to r .
g e tConnec to rAr t i f a c tManage r ( ) .
g e tPackageD i r e c to r y ( pd . packageName) .
g e tAbso l u t ePa th ( ) + ”/” ;

cTerm . s a v eToF i l e ( d e s t F o l d e r + F i l e . s e p a r a t o r + ” t c p ” +
gen e r a t ePa r t + ” ” + ifaceName . c lassName + ” . c” ) ;

}

/∗ <sn ip> o t h e r f u n c t i o n s ∗/
}

Middleware stub

The generated middleware stub contains definitions of all the interface methods,
where each method constructs a TCP message, encodes the function identifier
(the position of the function within the interface) and all the function parameters
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into the message and sends the message using the tcp client t that is supposed to
be passed to the stub function as the first argument (the one where we expect
the context).

If the function has non-void return value, it instructs the client to wait for
a response, decodes the return value from the received message and returns it.
In case of no return value, the function just ends.

Interface structure variable with well-defined name (derived from the interface
name) is also generated, it contains pointers to the generated functions and is
supposed to be used from the stub element template. See Section A.1.2 for
the example of the generated middleware stub code.

Middleware skeleton

The generated middleware skeleton defines a single callback function that is called
by a TCP server when a new message is received. It first decodes the func-
tion identifier, according to that it proceeds with decoding of the parameters
for the called function. The first parameter of the callback function contains
user-defined parameter, in this case it contains pointer to the interface structure
defined by the skeleton element. When all the parameters are decoded, corre-
sponding function from the interface is called.

If the function has no return value, we are finished, otherwise a response mes-
sage is constructed with encoded return value, sent back through the same socket
and finally the response message is destroyed. See Section A.1.4 for the example
of the generated middleware skeleton code.

8.5.3 Limited argument types

The middleware can only encode and decode scalar types and a zero-encoded
strings, so these are the limitations for the parameter types of interfaces commu-
nicated via this connector.

8.5.4 Element templates

TCP stub

The TCP stub element template, tcp stub . elc , includes the generated middleware
stub code so that it can use the generated encoding functions. The generated
element expects description of the TCP server (address and port number) when
setTarget () is called for the remote port. At this time a TCP client is constructed,
and a connection to the server (socket connected to the skeleton) is established.

The template method is defined in a way that it just calls the functions gen-
erated by the middleware stub generator, pointer to the TCP client is passed
as the first argument. Section A.1.3 shows the generated code for a TCP stub
element along with the interaction with the generated middleware stub code.

TCP skeleton

The TCP skeleton element template is very similar to the local skeleton tem-
plate with several simple differences. TCP server is created when setTarget () is
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called for the remote port with the address and port description, the callback
for the server is set to the function generated by the middleware skeleton gen-
erator and a pointer to the interface implemented by the skeleton element is set
to be the argument of the callback function. After that, the lookupPort() function
for the remote port returns server address description (this can then be used for
initialization of the stub binding). The generated callback takes care of calling
the right business interface function implemented by the skeleton element, so
the template method looks exactly the same as for local skeleton.

8.6 Logging connectors

8.6.1 Connector architecture

When logging is required, it suffices to use different client unit and server unit
composite elements, the communicating elements can stay the same as described
above. The only two things that need to be done are to add logging subelement
to the composite elements’ architectures and to define a template for logging
(delegating the call and printing the names of the methods and the values of
arguments passed through). The new architecture of a logged client unit is shown
on Figure 8.2.

Figure 8.2: Architecture of logged client unit composite element

8.6.2 Element templates

Client and server units

The compound default template defined before suits the needs of the logged
composite elements, so it is used for both of them. A sample code generated for
a logged server unit composite element is shown in Section A.2.1.
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Logger element

The logger template is very similar to the local stub template, the only difference
is that before the delegation of the call it needs to log the name of the method and
the values of its parameters. Here we use the query data provided by preparsing
the interfaces (as described earlier in Section 6.6.1). The query contains descrip-
tions of all the methods including the names and types of the parameters (and
a formatter for use in the printf (3) function). The logger’s template method def-
inition is shown on Listing 8.10 2, which also shows a use of connector element
inheritance. See Section A.2.2 for a sample code generated by this template.

Listing 8.10: Logging element template

e l ement l o g g e r c o n s o l e e x t end s ” p r i m i t i v e d e f a u l t . e l c ” {
$de fEx tPo i n t ( p r im i t i veMethodTempla te ) $

${method . d e c l a r eR e t u r nVa l u e } ;
GET SELF( $ p e e k f i r s t (method . a r g s )$ , MYITFTYPE, s e l f ) ;

i f ( s e l f −>t a r g e t != NULL) {
p r i n t f ( ”LOGGER: Ca l l e d method ${method . name} wi th a r g s \n ( ” ) ;

$ p o p f i r s t ( method . a r g s ) $
$prepend (method . a rg s , s e l f −>t a r g e t ) $

$ f o r e a c h (DM in ${ po r t s . po r t ( name=i n ) . d e s c r i p t i o n . method}) $
$ i f (DM. name == method . name) $

$ f o r e a c h (DPARAM in ${DM. params . param }) $
p r i n t f ( ”${DPARAM. name} = ${DPARAM. f o rma t t e r } ” ,

${DPARAM. name}) ;
$end$

$end$
$end$
p r i n t f ( ” ) \n” ) ;

$ s e tRe tu rnVa l u e s e l f −>t a r g e t−>${method . name}(
$ imp lode (method . a r g s ) $ ) $ ;

$ i f ( method . r e t u r nVa r ) $
p r i n t f ( ”LOGGER: r e s = ${method . re tu rnType . f o rma t t e r }\n” ,

${method . r e t u r nVa r }) ;
$ e l s e $

p r i n t f ( ”LOGGER: no r e t u r n v a l u e \n” , ${method . r e t u r nVa r }) ;
$end$

} e l s e {
p r i n t f ( ” ! : NULL t a r g e t −> no a c t i o n \n” ) ;
$ s e tRe tu rnVa l u e 0$ ;

}
${method . re tu rnStm } ;

$end$
}

2It might seem that much easier implementation of this functionality would be by extending
the information provided by the method.args array. But this approach could not be used for
this task because it is not possible to iterate through this array by ElLang foreach command.
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Chapter 9

Evaluation

9.1 Case study - bank application

A simple component application was created to show, how the designed connector
generator can be used by external applications. The application and the inter-
face between the generated code and the hand-written code are described in
this section, the sources of the application are attached on the enclosed CD in
src/codegen/case_study directory.

9.1.1 Application design

The created component application simulates the tasks that could be performed in
a bank. Our bank consists of a single central database, several cashpoints (ATMs)
and a single branch with one accountant. The database is logging requests from
ATMs to an external log, whereas all the communication between the database
and the branch is logged automatically on the communication line. Thus we have
four types of components in the system, bank representing the database, atm for
the cashpoints, branch for the branch with the accountant and atm log for the log
into which the database is logging the ATM requests.

Figure 9.1 depicts the architecture of the bank application along with the de-
sired distribution of the application.

9.1.2 Business interfaces

Creation of the communication interfaces is the first thing that needs to be done
after designing the architecture of the application. These interfaces represent
the service required by the client components and provided by the server ones.
There are three communication interfaces in the application, one for each binding
type, their definitions are shown on the Listings in this section. All the interfaces
are represented by C structures, each saved in the file named same as the struc-
tures, and each of the functions contains an additional void ∗ argument as the first
parameter. This parameter is used for context transfer, as was explained in Sec-
tion 6.1.2.

The ATM can connect to the bank and obtain an account handle, this can then
be used for querying the account balance or withdrawing money from the account.
In such scenario the bank is informed about the withdrawal request, verifies it,
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Figure 9.1: Architecture of the sample bank application

and in case of success subtracts the amount of money from the account and
the ATM can then disburse the money.

Listing 9.1: ATM to bank interface

#i fnde f ATM H
#def ine ATM H
s t ruc t atm {

i n t (∗ l o g i n ) ( void ∗ i t f , unsigned long account ,
unsigned in t p i n ) ;

unsigned in t (∗ r ema in i ng ) ( void ∗ i t f , i n t hand l e ) ;
i n t (∗ withdraw ) ( void ∗ i t f , i n t handle , unsigned in t amount ) ;
void (∗ l o g o u t ) ( void ∗ i t f , i n t hand l e ) ;

} ;
#end i f

The branch is controlled by an accountant, thus the communication interface
allows more complex operations like account creation, money deposit or transfer
of money between accounts.

Listing 9.2: Branch to bank interface

#i fnde f BRANCH H
#def ine BRANCH H
s t ruc t branch {

i n t (∗ choose ) ( void ∗ i t f , char ∗name) ;
unsigned long (∗ number ) ( void ∗ i t f , i n t hand l e ) ;
char ∗(∗ ma i l ) ( void ∗ i t f , i n t hand l e ) ;
unsigned in t (∗ r ema in i ng ) ( void ∗ i t f , i n t hand l e ) ;
i n t (∗ c r e a t e ) ( void ∗ i t f , char ∗name) ;
i n t (∗ s e tP i n ) ( void ∗ i t f , i n t handle , unsigned in t p i n ) ;
i n t (∗ s e tMa i l ) ( void ∗ i t f , i n t handle , char ∗ma i l ) ;
i n t (∗ t r a n s f e r ) ( void ∗ i t f , i n t handle , unsigned in t amount ,

unsigned long t a r g e t ) ;
i n t (∗ d e p o s i t ) ( void ∗ i t f , i n t handle , unsigned in t amount ) ;

} ;
#end i f
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The interface for logging ATM requests by the bank database is very simple,
it only contains a single method with message severity and message text as pa-
rameters. The example interface intentionally does not contain the names of all
the arguments, so that we can show the automatic parameter name assignment
functionality of the connector generator.

Listing 9.3: ATM requests logging interface

#i fnde f ATM LOG H
#def ine ATM LOG H
enum LogSe v e r i t y { LOG INFO = 0 , LOG WARN, LOG ERROR } ;
s t ruc t atm log {

void (∗ l o g ) ( void ∗ , enum LogSe v e r i t y s e v e r i t y , char ∗) ;
} ;
#end i f

The code of all the business interfaces can be found in the ifaces subdirectory
of the case study directory.

9.1.3 Creation of components

Two of the components, atm and branch are interactive components, awaiting user
input (either from clients at the cashpoints or from the accountant at the branch),
the bank and atm log components wait for events from the previously named com-
ponents.

Each component needs to be able to do four things: handle the storage of
component data, return its provided interfaces, set its required interfaces and
perform the business logic functionality. The specific interface for the first three
tasks should be in the future designed by C connector runtime. Without it,
the thesis proposes two types of functions:

void COMPONENT init (REQUIRED INTERFACE POINTERS) ;
PROVIDED INTERFACE ∗ COMPONENT get itf NAME ( ) ;

The first one is used for the initialization of the component’s required interfaces,
and the second one should return the pointer to the provided interface structure
of the given name. Each of the designed components is supposed to exist only
once in each application, so they use a static global variable for storing their data.
Each component implements all the business interface methods.

Listing 9.4: Bank component storage and interface initialization methods

/∗ s t o r a g e f o r the component data ∗/
s t ruc t BANK {

s t ruc t account ∗ accoun t s ; /∗ L i s t o f a c coun t s ∗/
s t ruc t atm machines ; /∗ ATM pro v i d e d i n t e r f a c e ∗/
s t ruc t branch b ranche s ; /∗ Branch p r o v i d e d i n t e r f a c e ∗/
s t ruc t atm log ∗ l o g ; /∗ ATM log r e q u i r e d i n t e r f a c e ∗/
i n t ba s e h and l e ; /∗ I n t e r n a l imp l emen ta t i on f i e l d ∗/

} ;

s t a t i c s t ruc t BANK mybank ;

/∗ Component r e q u i r e d f u n c t i o n s i n i t i a l i z a t i o n ∗/
void b a n k i n i t ( s t ruc t atm log ∗ l o g )
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{
/∗ I n i t i a l i z e the r e q u i r e d i n t e r f a c e ∗/
mybank . l o g = l o g ;
/∗ I n i t i a l i z e the p r o v i d e d i n t e r f a c e s ∗/
mybank . machines . l o g i n = bank a tm log i n ;
mybank . machines . r ema in i ng = bank atm rema in ing ;
mybank . machines . wi thdraw = bank atm withdraw ;
mybank . machines . l o g o u t = bank a tm logou t ;
/∗ . . . and b ranche s i n t e r f a c e . . . and o t h e r data ∗/

}

/∗ Return the p o i n t e r s to the p r o v i d e d i n t e r f a c e s ∗/
s t ruc t atm ∗ b a n k g e t i t f a tm ( )
{

return (&mybank . machines ) ;
}
s t ruc t branch ∗ b a n k g e t i t f b r a n c h ( )
{

return (&mybank . b ranche s ) ;
}

Then the components need to implement all the business methods of their
provided interfaces, a sample implementation of bank’s method for money with-
drawal from ATM is shown on the Listing 9.5. It shows both how to get the com-
ponent data structure from the context passed in the first argument and how to
call a different component’s provided method.

Listing 9.5: Implementation of business method by bank component

i n t bank atm withdraw ( void ∗ i t f , i n t handle , unsigned in t amount )
{

GET SELF( i t f , s t ruc t BANK, machines ) ;
s t ruc t account ∗ acc = f i n d a c c o u n t ( s e l f , handle , 1) ;
i f ( acc == NULL)

return (−2) ;
i f ( acc−>ba l ance >= amount ) {

acc−>ba l ance −= amount ;
s n p r i n t f ( buf , BUFLEN, ”Withdraw from %lu %u un i t s , l e f t ”

” %u u n i t s ” , acc−>number , amount , acc−>ba l ance ) ;
CALL( s e l f −>l og , log , LOG INFO , bu f ) ;
return (0 ) ;

} e l s e {
s n p r i n t f ( buf , BUFLEN, ”Cannot withdraw %u u n i t s from %lu , ”

” l e f t %u u n i t s ” , amount , acc−>number , acc−>ba l ance ) ;
CALL( s e l f −>l og , log , LOG WARN, bu f ) ;
return (−1) ;

}
}

The GET SELF and CALL macros are defined in the connector common.h header de-
livered by the C connector generator project. The implementation of all the com-
ponents is saved in the components subdirectory in the case study directory.

9.1.4 Generation of connectors

The generation of connectors is independent of the implementation of the com-
ponents. These two steps can be done separately, even by different developers.
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The connection points of components and connectors are the business interfaces.

Connector high-level specifications

The input of the connector generator is the high-level specification of the connec-
tor, which was previously described in Section 2.2.2, and the definition of the busi-
ness interfaces. The specification defines the communication units and the docks
on which they will be located, the interface used and other non-functional prop-
erties (like language of the generated code or required communication style).
The sample high-level specification of the connector used for connecting branch
to a bank, where each resides in a different address space, is shown on Listing 9.6.
Here we also specify that we want the server unit to log all the communication.
This then results in a bit more complicated server connector unit architecture
described previously in Section 8.6.

Listing 9.6: Branch to bank connector specification

<!−− Branch to bank connec to r −−>
< s p e c i f i c a t i o n>

<u n i t name=” c l i e n t u n i t ” dock=”dockA”>
<nfp−r equ i r emen t p r e d i c a t e=”nfp mapping ( Unit , ’ language ’ , ’ c ’ ) ”/>
<nfp−r equ i r emen t p r e d i c a t e=”nfp mapping ( Unit ,

’ c ommun i ca t i on s t y l e ’ , ’ me thod i nvo ca t i on ’ ) ”/>
<po r t name=” c a l l ” type=” p ro v i d e d ”

s i g n a t u r e=” c i n t e r f a c e ( ’ branch ’ ) ”/>
</ u n i t>

<u n i t name=” s e r v e r u n i t ” dock=”dockB”>
<nfp−r equ i r emen t p r e d i c a t e=”nfp mapping ( Unit , ’ language ’ , ’ c ’ ) ”/>
<nfp−r equ i r emen t p r e d i c a t e=”nfp mapping ( Unit ,

’ c ommun i ca t i on s t y l e ’ , ’ me thod i nvo ca t i on ’ ) ”/>
<nfp−r equ i r emen t p r e d i c a t e=”nfp mapping ( Unit , ’ l o gg i ng ’ , ) ”/>
<po r t name=” c a l l ” type=” r e q u i r e d ”

s i g n a t u r e=” c i n t e r f a c e ( ’ branch ’ ) ”/>
</ u n i t>

</ s p e c i f i c a t i o n>

Generating connectors

The connector generator needs to be invoked and provided with the high-level
connector specification, it then performs the tasks described in Section 4.1.

Since starting the connector generator is not a straightforward task, an Ant
build.xml script is created in the case study directory. The tasks implemented in
the build script are capable of running the connector generator from the JAR in
which it is distributed, and constructing the correct CLASSPATH and arguments
for it.

In fact, generating the connectors by the generate-connectors Ant target is
the only supported way for the sample application, because there is no C connec-
tor runtime, so the hand-written application using the connectors needs to have
hard-coded paths to the generated connector units (and generating the connectors
in different order would result in different unit names).
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Generated code

Invoking the ant generate-connectors command starts the connector genera-
tor for all three connector specifications. This generates the connector elements’
code in the connector repository, compiles it and packages it in object archives as
previously described in Section 7.2, the list of generated object archives is shown
on Listing 9.7.

Listing 9.7: Generated object archives in connector repository

c a s e s t u d y$ f i n d r e p o s i t o r y / c o nn e c t o r s / −name ’∗ . a ’ | s o r t
r e p o s i t o r y / c o nn e c t o r s /A00000001/ C l i e n tUn i t . a
r e p o s i t o r y / c o nn e c t o r s /A00000002/TcpStub . a
r e p o s i t o r y / c o nn e c t o r s /A00000004/ Se r v e rUn i t . a
r e p o s i t o r y / c o nn e c t o r s /A00000005/TcpSke l e ton . a
r e p o s i t o r y / c o nn e c t o r s /A00000006/ C l i e n tUn i t . a
r e p o s i t o r y / c o nn e c t o r s /A00000007/TcpStub . a
r e p o s i t o r y / c o nn e c t o r s /A00000009/ LoggedSe rve rUn i t . a
r e p o s i t o r y / c o nn e c t o r s /A0000000A/ LoggerConso l e . a
r e p o s i t o r y / c o nn e c t o r s /A0000000B/TcpSke l e ton . a
r e p o s i t o r y / c o nn e c t o r s /A0000000C/ C l i e n tUn i t . a
r e p o s i t o r y / c o nn e c t o r s /A0000000D/ Loca lStub . a
r e p o s i t o r y / c o nn e c t o r s /A0000000F/ Se r v e rUn i t . a
r e p o s i t o r y / c o nn e c t o r s /A0000000G/ Lo c a l S k e l e t o n . a

The directories also contain the generated source and header files of the ele-
ments and special entries in the repository also represent the generated business
interfaces. For example, the atm log generated interface is shown on the List-
ing 9.8, where we can see that the first and the third arguments already have
assigned names (the interface definition given by the user previously shown on
Listing 9.3 did not have these names set).

Listing 9.8: Generated ATM request logging interface

#i fnde f ATM LOG H
#def ine ATM LOG H
enum LogSe v e r i t y { LOG INFO = 0 , LOG WARN, LOG ERROR } ;
s t ruc t atm log
{

void (∗ l o g ) ( void ∗ param1 , enum LogSe v e r i t y s e v e r i t y ,
char ∗ param3 ) ;

} ;
#end i f

The connector generator task does not only generate the connector code (and
objects), but it also saves the information about the architecture of the elements
created for each high-level specification. There are two files created for every con-
nector, a text file containing description of the selected architecture of the con-
nector (with subelements, their ports, the interfaces used and the bindings), and
a XML file describing only the top-level connector units, the connections between
these two units and the directory where the connector unit code was generated.
Both these file types are saved along the input high-level specifications in the spec
directories. A sample XML file with connector description is shown on Listing 9.9.
These files are used by the Java connector runtime for instantiation of the con-
nectors and linking their ports, and they could also be used for a future project
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delivering C connector runtime.

Listing 9.9: XML description of generated connector for branch to bank binding

<?xml ver s ion=” 1 .0 ” encod ing=”UTF−8”?>
<output−d e s c r i p t o r>

<u n i t package=”A00000006”>
<exec−param name=” imp lC l a s s ” v a l u e=” C l i e n tUn i t ” />

</ u n i t>
<u n i t package=”A00000009”>

<exec−param name=” imp lC l a s s ” v a l u e=” LoggedSe rve rUn i t” />
</ u n i t>
<rbm>

<a r c h i t e c t u r e connectorArchName=”method i nvo ca t i on ”>
<b i n d i n g>

<po r t unitName=” s e r v e r u n i t ” portName=” l i n e ” />
<po r t unitName=” c l i e n t u n i t ” portName=” l i n e ” />

</ b i n d i n g>
</ a r c h i t e c t u r e>

</rbm>
</ output−d e s c r i p t o r>

9.1.5 Creation of applications

The hand-written components that were presented in this Chapter are not runnable
binaries, they only contain the business logic implementation. To be able to test
the connectors and the components, we need to create runnable applications using
them.

There is no C connector runtime, which would ease the incorporation of
the generated connector units within the application and would be able to create
the connections between the connector units automatically.

So the applications using the components need to instantiate the correspond-
ing connector units and connect them by hand. For the case study, three appli-
cations were created, one for the ATM, second for the branch and the third one
for the bank (this also contains the logger for the ATM requests). Section 8.1.2
presented the interface for communication with the connector units from external
applications. The declarations of the functions exported by the units are saved
in the generated header files.

The relevant parts of code dealing with connector creation and establishing
of bindings between the connector units and the component for the branch ap-
plication are shown on Listing 9.10.

Listing 9.10: Creating and binding connector units for the branch application

#inc lude <connector common . h> /∗ the common connec to r d e c l a r a t i o n s
∗/

#inc lude ” . . / i f a c e s /atm . h” /∗ the b u s i n e s s i n t e r f a c e d e c l a r a t i o n ∗/
#inc lude ” . . / components/atm . h” /∗ the component d e c l a r a t i o n s ∗/

/∗ I n c l u d e the g ene ra t ed heade r f i l e s o f the connec to r u n i t . ∗/
#inc lude ” . . / r e p o s i t o r y / c o nn e c t o r s /A00000006/ C l i e n tUn i t . h”
c o nn e c t o r e l emen t t ∗ c l i e n t c o n n e c t o r ;
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i n t c r e a t e c o n n e c t o r s ( char ∗ s r v a d d r )
{

/∗ Crea t e the c l i e n t connec to r − the sube l emen t s a r e c r e a t e d
∗ a u t oma t i c a l l y . ∗/
c l i e n t c o n n e c t o r = new e l emen t A00000006 C l i en tUn i t ( ) ;

/∗ I n i t i a l i z e the ” l i n e ” po r t o f the connec to r by the
∗ g i v e n connec t i on s t r i n g . Th i s po r t s e r v e s f o r communicat ion
∗ wi th the s e r v e r connec to r u n i t . ∗/

return ( c l i e n t c o n n e c t o r −>s e tTa r g e t ( c l i e n t c o n n e c t o r , ” l i n e ” ,
( void ∗) s r v a d d r ) ) ;

}

i n t main ( i n t argc , char ∗∗ argv )
{

i f ( a rg c < 2) {
return (1 ) ;

}

/∗ We expec t to have the connec t i on s t r i n g f o r i n i t i a l i z a t i o n o f
∗ the b i n d i n g o f the TCP c l i e n t u n i t i n the f i r s t argument . ∗/
i f ( c r e a t e c o n n e c t o r s ( a rgv [ 1 ] ) != 0) {

p r i n t f ( ” F a i l e d to connect to s e r v e r : %s !\n” , a rgv [ 1 ] ) ;
return (1 ) ;

}

/∗ I n i t i a l i z e the branch component ’ s r e q u i r e d i n t e r f a c e . Th i s
∗ i n t e r f a c e i s p r o v i d e d by a component beh ind the connec to r .
∗ ” c a l l ” i s the name o f the po r t o f the connec to r exposed to
∗ the l o c a l component . ∗/
b r a n c h i n i t ( ( s t ruc t branch ∗) c l i e n t c o n n e c t o r −>l o o kupPo r t (

c l i e n t c o n n e c t o r , ” c a l l ” ) ) ;

/∗ Run the i n t e r a c t i v e component . ∗/
b ranch run ( ) ;

/∗ Cleanup the connec to r data . ∗/
d e l e t e e l emen t A00000 0 0 6 C l i e n tUn i t ( c l i e n t c o n n e c t o r ) ;
return (0 ) ;

}

The code sample shows how to instantiate a connector unit, query it for
a pointer to an interface, set its port and finally delete the element. For example
of creation of other types of bindings (e.g. from a connector to another connector
or from a connector to a component) please see the apps/bank_app.c file in
the case study directory containing the code of the bank application.

9.1.6 Compiling and running the applications

Prerequisities for running connector generator

The case study application requires the connector generator to be fully built and
it also needs the C library for the connector generator to be compiled. These
steps can be done by copying the contents of the enclosed CD 1 to a writable

1The explanation of the directory structure of the attached CD can be found in Chapter B.
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disk and following the README file in the root directory of the copied structure.
The steps that need to be done are:

1. Installation of Stratego/XT binaries and configuration of the path to
the installed binaries in the connector generator configuration files.

2. Running ant in the directory of the connector generator. This automatically
performs the following steps:

(a) Generation of Java sources from the Stratego sources dealing with
code transformation. This is followed by compilation of the generated
sources and bundling the objects into a JAR archive.

(b) Compilation of the Java sources of the connector generator.

(c) Compilation of the common C connector code along with the TCP
middleware code.

Compiling the case study applications

To compile the case study application, just enter the case study directory and
execute ant program. The script performs the following actions:

1. Generation of the connectors from the high-level specifications.

2. Compilation of the code of the hand-written components.

3. Compilation of the code of the sample applications and linking it with
the generated connector object archives.

Running the applications

After successful compilation of the sample applications, three binaries are created
in the apps directory, bank_app representing the bank application, atm_app as
interactive application for the cashpoints and branch_app as the application to
be used at the branch.

The bank application needs to be started first, as it creates the servers, after
that the atm and branch applications can be started. The information for estab-
lishing the connections from the client applications to the bank application needs
to be passed from the bank. For this purpose, the bank prints two strings contain-
ing encoding of the connection parameters as displayed on Listing 9.11. The first
connection string is supposed to be given to the atm_app as the first parameter
on the command line, the second one is intended for the branch application, as
shown on Listings 9.12 and 9.13.

Listing 9.11: Running the bank application

c a s e s t u d y$ apps / bank app 1 2 7 . 0 . 0 . 1
ATM c l i e n t s connec t i on s t r i n g : ’ 4 30390462127 .0 . 0 .1 ’
BRANCH c l i e n t connec t i on s t r i n g : ’ 430390d10127 . 0 . 0 . 1 ’
L i s t o f pre−c r e a t e d accoun t s :
Account 123456 , name John Doe , ma i l john@doe . com , hand l e 1383 ,

p i n 1111 , ba l ance 10000
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Listing 9.12: Running the ATM application

c a s e s t u d y$ apps /atm app 430390462127 .0 . 0 . 1
P ick your a c t i o n ( [ L ] og in , [Q] u i t ) :

Listing 9.13: Running the branch application

c a s e s t u d y$ apps / branch app 430390d10127 . 0 . 0 . 1
P ick your a c t i o n ( [ S ] e l e c t account , [C ] r e a t e , [Q] u i t ) :

Users can interact with the two client applications, all the requests made
locally are sent to the bank (the branch and atm components use required in-
terfaces for using the functionality provided by the bank). As specified during
the connector specification, all the function calls from branch to bank are logged
on the bank application console. The bank logger component logs all the ATM
requests into the apps/atm_log_output.txt file.

9.2 Lessons learned

Writing of the example application showed, that the proposed connector code
generator is easily usable. The generated code and its structure is quite convenient
for the use in hand-written application. However, this should be further improved
by a separate project introducing C connector runtime. The important thing
is, that from the component point of view, the communication via local call
connector looks exactly the same as communication via remote call connector.

9.2.1 Middleware

Design of a custom middleware, which was previously described in Section 8.4,
brought both advantages and disadvantages to the project.

Most of the good things were based on the fact, that the requirements for
the use of the middleware were known in advance. Thus the important parts like
construction of a message, data encoding and sending are easy to use. Then we
knew that the server might be used in an application where other active compo-
nents are running, so the function waiting for data on server sockets allows spec-
ification of parameters saying whether it can block forever or whether it should
return after some time (so that other processing can be done). The environment
where this middleware is being run also does not depend on any external tool (like
portmap), which is a good thing. Designing a custom middleware also allowed
us to design the stub and skeleton generator and their input and output formats.
This way, we can use C structures for the input of the generator, and the gener-
ated methods are easily usable from connector elements. The stub and skeleton
generator is based on some parts of the element code generator (the C grammar,
parser, disambiguation, and some C specific transformations), thus the rest of
the code generator does not depend on any external code generator tool, which
would need to be delivered with it (e.g. rpcgen).

However, on the other hand we had to resolve all the problems that are already
solved in other middleware technologies. This was done both within the middle-
ware code and in the stub and skeleton generator. To name a few, we needed to
implement the marshalling and unmarshalling code (considering both big-endian
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and little-endian architectures), all the code for handling the work with TCP
sockets (mainly registering several servers within one application), and the whole
stub and skeleton generator.

9.2.2 Stratego/XT

Stratego/XT proved to be a powerful tool that solves all the pieces of pro-
gram transformation process, starting from parsing, creation of transformation
rules, up to printing the resulting code back to files. Due to its modularity, it
was possible to reuse some parts from the previous SOFA 2 Java connector gen-
erator, mainly the ElLang grammar for the scripting language and the common
transformations did not need to be touched at all. For the introduction of a new
language only its SDF grammar needed to be created and the target language
specific transformations (e.g. evaluation of interfaces) had to be rewritten.

Downsides of using Stratego

Extending the work of [48], which among others switched the implementation
of the Stratego transformations from C code to Java, brought additional obsta-
cles to debugging and development of the transformations, while making the re-
sulting generator more easily deployable. The majority of the problems result
from the long time that it takes to the strj compiler to create Java files from
the Stratego transformations, and the Java compiler to compile these files.
In addition the generated Java code is quite slow. Considering all these neces-
sary steps together, it takes about three minutes to test even a simple change in
the transformation. This makes the debugging and testing very problematic and
lengthy.

Much bigger problems are caused by the differences between the quality of
Java and C Stratego standard libraries. The biggest problems were encoun-
tered with the parsing SGLR library, where the older Java libraries did not parse
all the tokens correctly (the ElLang variable references within strings looking like
#include ”${ports.port(name=call).signature}.h” were not recognized), and the newer
ones parsing these tokens correctly took unreasonably long time - tens of seconds
in comparison to less than a second that it takes to the sglri binary to parse
the same file with the same parse table. We have chosen to use the newer library,
which is the main reason of the slowness of the connector generation. It is im-
portant to bear in mind, that the Stratego/XT toolset is still in development
and that it sometimes contains problematic bugs.

Although the disambiguation techniques for SDF are quite good, they unfortu-
nately do not provide any means of generating dynamic disambiguation rules (e.g.
when the parser encounters variable declaration, it immediately loses the informa-
tion about the variable being declared - so we cannot use it further in the parsing).
To not cope with ambiguous parse trees, we created quite restrictive grammar
and presented a very simple disambiguation transformation to get rid of the rest
of the ambiguities. This problem can be solved differently, for example the C-
Transformers project [33] uses the SDF annotations (each reduction rule can be
annotated) for generation of attributes for the tree nodes. They developed their
own simple Attribute Grammar for this purpose and their C grammar does not

99



have any of the SDF disambigaution constructs. After the SGLR parser pro-
duces fully ambiguous parse tree, their disambiguation transformation is applied
and it processes all the attributes of all the nodes. This is already performed in
a transformation, so they can create dynamic rules and thus understand the dis-
ambiguated code much more deeply. However, their approach is not usable for us,
because they need to preprocess all the macros and include all the headers, thus
the generated code cannot be platform independent, and it is quite big and un-
readable. By not having any disambiguation constructs directly in the grammar,
it also happens that the SGLR parser hits its hard limit for maximum number
of ambiguous nodes and stops working. They are working around this problem
by providing the parser with smaller code pieces and then merging the resulting
parse forests.

9.2.3 Connector generator framework

After putting together the connector architectures for C and for Java, the gener-
ation of the connectors started to be very slow. It was discovered that the major
slowdown was caused by the architecture resolver, which is trying to generate ev-
ery single possible combination of elements to fulfill the requirements in the high-
level specification and choose the best one among them.

We did not want to make the generation of the connectors even slower, so
a new command line argument ”congen.language” for the connector generator was
created to choose the subset of allowed connector architectures, its values can be
”C”, ”Java” or ”Both”.

9.3 Different code transformation tools

9.3.1 Naive code generation techniques

One of the options for code generation is to use a general purpose scripting
language like Python [21]. For many of these scripting languages there already
exist extensions for easier integration with the text being generated, for example
Mako project [14] for Python. The advantage of using these frameworks is having
a scripting part which is usually well designed and thoroughly tested for free. But
all of these frameworks have one major disadvantage, which makes them unusable
for our purpose. They do not allow to control the grammar of the generated code
(usually text or HTML code), thus syntactically incorrect code can be produced
without any warning from the tools. The error is discovered at the time of usage
of the generated code, which is very late.

The same problems with no control over the syntax of the produced code arise
when using other template engines, like Apache Velocity [3] engine for processing
of templates from Java.

9.3.2 Tools generating syntactically correct code

Beside the above mentioned tools, there exists quite a lot of frameworks for code
generation or transformation that respect the grammar of the generated code.
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XText [31] was the first framework considered when starting with the C code
generator. It is a framework tightly integrated with the Eclipse Modeling Frame-
work (EMF [9]) for the development of domain-specific languages. Its grammar
is easily readable, it produces ECore models, that can be further processed and
transformed by various Eclipse tools (ATL, Declarative and Procedural QVT),
and then pretty-printed source code can be produced from these models by XTend
or XPand tools. The biggest problem of this tool is its design, it is meant for
small and simple DSL languages and generators of code for real languages (C,
Java, C++) from definition of these simple languages (e.g. automatical gener-
ation of configuration parser from configuration language description), so it is
not intended for parsing of large and complex languages, like C. It is based on
ANTLR3 [2] LL(*) parser, the XText grammar does not allow left recursion in
the production rules, it also does not allow handling of whitespace, and the gram-
mar cannot be ambiguous. Due to these problems it turned out, that this tool is
not usable for our purposes.

There are also tools that are specifically created for transformations of C pro-
grams like CIL (C Intermediate Language [4]), they usually contain their own
parser and their own representation of syntax trees. Their biggest common prob-
lem is that they are not easily (or even at all) extensible, there is no way of defining
a broader grammar which would allow us to mix some scripting language with
the C code. This would result in a need of implementing all the templates for
element codes as transformations in the programming language used by the re-
spective tools (e.g. in Ocaml for CIL). This is not convenient for our purposes,
where we want to have easily extensible set of connector elements.

All of the systems mentioned so far are either University research projects or
tools developed by open community, they are all meant for free use and further
research. There are also several commercial applications aimed at code optimal-
ization, transformation and generation. One of the most advanced is the DMS
(Design Maintenance System, [8]). It is very similar to Stratego/XT frame-
work but it provides much more advanced tools and features designed for better
understanding of the source code. It also uses a GLR parser, thus supports all
the context-free languages and also their combinations. A huge set of front-ends
for parsing is shipped with the tool, each front-end is capable of performing tasks
specific for the language. For example the C front-end allows parsing of included
files, handling preprocessor macros, constructing symbol tables for defined types
and symbol names, call graph and data flow analysis are automatically created
and accessible from transformations. These features allow faster generation of
user defined transformations and deeper analysis and understanding the parsed
code. But this toolset is unusable for our project, because it is commercial and
not open-source.
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Chapter 10

Related work

Generation of C code is not a new topic. There is quite a lot of existing projects
dealing with C code generation even in the component system field. This chapter
looks at the approaches to code generation used by some of these projects.

10.1 Ocarina and PolyORB-HI

Ocarina [17] is a toolsuite for AADL (Architecture Analysis and Design Lan-
guage [1]) model manipulation, syntactic/semantic analysis, scheduling analysis,
verification and code generation. It is designed as a compiler with a front-end
used for parsing and analysis of the AADL model, it is modular and allows several
code generation backends (currently Ada, C and AADL).

AADL has been designed by SAE (Society of Automotive Engineers), it allows
to describe architecture of systems (both hardware and software) and, among
others, it is being used for description of distributed real-time embedded systems.
Developing the code of these systems by hand tends to be very tedious and error-
prone, thus Ocarina aims at generation of the code of these systems from their
AADL description and thus ensures that the code complies with the standards
and other strong requirements (e.g. low memory footprint).

AADL is an extensible modelling language, which defines several components,
each of them represents a hardware or software entity. Hardware components are
a processor, a memory, a bus and a device. Software components can be a process,
a thread, a subprogram and data. The components can contain subcomponents
(e.g. process contains several threads, which contain subprograms). AADL com-
ponents can declare features, which are their interfaces for communication with
other components (connections between features are used to model the commu-
nication).

Ocarina is fully written in Ada, this means that also all the code generating
the target language code from the AADL model is written by hand in Ada.
The code generation has several steps, Ocarina first parses the AADL model
and creates an abstract syntax tree from it. Then it expands it, so that the AST is
closer to the structure of the generated code (e.g. the tree is separated into smaller
ones according to the target node - application). At this time, the backend applies
language translation transformation to the forest of AADL ASTs, and several
new ASTs with target language code are generated in several steps (first the trees
representing the common header files and common functions are generated, after
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that the trees with code specific for the nodes are generated). Finally, these
ASTs are traversed by a code generator and text files are produced. To compile
the code, Makefiles for the code of each node are generated (they contain target
architecture specific instructions) and a single Makefile for the whole application
is created and the build process started.

The rules for mapping the AADL to C are introduced in [41]. These try to
respect the High Integrity of the generated application by generating Ravenscar-
like [36] code, which means that there is no dynamic allocation in the whole
application, every possible initialization is performed statically at the time of
code generation, the rest of them are performed in early initialization phase
called before the application is fully started. Also every remote binding (to a re-
mote node) is defined statically within the generated code. The generated code
can be platform independent because of use of PolyORB-HI middleware very
closely bound to the Ocarina project (in fact these are distributed together),
this middleware shades the platform specifics. To reduce the memory footprint
of the generated binaries, only small part of the middleware is always linked to
the application, the other parts (like marshalling code) are automatically gener-
ated during the code generation phase (here only the parts actually needed by
the application are generated).

10.2 THINK ConGen

THINK [42] is C implementation of Fractal component system, it allows to design
component applications in ADL (Architecture Description Language), the com-
munication interfaces in IDL (Interface Description language) and the implemen-
tation of the components in C with special annotations in comments (this modi-
fied C is called NuptC). Fractal is based on a hierarchical component model, and
serves both for designing of component applications and as the runtime environ-
ment and supports advanced component features like dynamic reconfiguration.

Thanks to the full specification of the components, their bindings and deploy-
ment in ADL, and the NuptC annotations in the implementation code, the code
generator is able to generate and build code for the whole application, which is
specially optimized for the current deployment (e.g. local calls for bindings that
are not supposed to be dynamically reconfigured can be inlined).

The annotations in NuptC specify the mapping between C symbol names
and the architectural entities described in the ADL (e.g. mapping of function
names to interface functions or variables to component attributes).

The code generator [46] is implemented in Java and works in two steps, first
it loads and expands an AST and then it builds the code from the tree. Both
these phases are implemented as component applications, thus can be easily ex-
tended by the developer by modifying the architecture of the loader or the builder
composite components.

The loader is responsible for the generation of the abstract syntax tree from
the input information. Each of the inputs (application architecture in ADL,
interface description in IDL, and component implementation in NuptC) is han-
dled by different sub-component, where each of them adds some information to
the produced AST (e.g. the component implementation) or transforms it (e.g.
by adding stub components between client and server components). This tree
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contains a mixture of ADL and C, and as it is being expanded it starts to contain
nodes with C abstract syntax trees.

After the tree is fully prepared, it is passed to the builder component applica-
tion, which is responsible for the generation of the code of the whole application
and its compilation. The whole generation is done in two phases, first an orga-
nizer identifies the tasks that need to be perfomed (by walking the AST) and
constructs a task graph, after that the tasks are executed. Each task starts
a specific builder for the given task type. The builder’s input arguments are ei-
ther parts of the input AST or outputs of other builders, the builder’s output can
be a source code, file or AST in the target language. This way, the generation
of component definition file can be decomposed to generation of the component’s
source code, which consists of generation of server interfaces and generation of
client interfaces.

This approach allows the builders to make decisions, ex. whether to optimize
or not, independently of other builders. For example, a client interface builder
could create a direct server interface function implementation function call in
place of client interface function call, or even inline the function implementation.
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Chapter 11

Conclusion and future work

11.1 Conclusion

The thesis fulfilled its main goal, which was the creation of C code generator
suitable for generation of connectors. The work was based on the existing Java
element code generator written in Stratego/XT toolset, that is based on tem-
plate transformation. To achieve this task, several things had to be done.

First of all, a SDF grammar suitable for parsing of C code was created. This
grammar was then mixed with the already existing ElLang template language
grammar, and a combined ElLang-C grammar was created. It is used for parsing
of C element template files, and also as the basis for the definition of the trans-
formations (in order to ensure that correct abstract syntax tree is produced).
C pretty-print table, which is a parse table counterpart for generation of textual
version of code from its abstract syntax tree definition, was also created.

Before the transformation generating the C code from the template could be
created, several issues brought by differences between Java and C needed to be
solved. C structure with function pointers was identified as a suitable way of
representation of C interfaces for connector generation. The problem of context
transfer in non-objective C code was solved by a mandatory void ∗ parameter for
all the business interface functions. Then basic structures for the representation
of C connector elements were designed, as well as a simple library, with code
common to composite elements and definitions making the use of connectors
easier for applications, was created.

In the next spet the target language specific Stratego transformations were
identified and rewritten to generate C code. During this phase, the ElLang tem-
plate language was extended a bit (for example we needed to be able to both
prepend and append parameters to the parameter list). The generated input
XML used for queries was extended by more detailed information about the busi-
ness interfaces (these were preparsed and information about the methods and
their parameters was saved in the XML). This data can be used in the templates
for creation of informative outputs about the elements as well as for gathering
more information about the arguments of current method (or even other methods)
in the template method evaluation.

The existing code generator, which uses the Stratego element generator,
was extended to support generation of both Java and C connectors. A type
system for representation and modification of C interfaces was created and incor-
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porated into the type system framework. A way of compilation of the generated
element C code by first generation of Makefiles for each generated connector el-
ement and then executing make in the correct directories was established and
implemented. The composite elements create object archives consisting of object
files of their subelements. This allows easier integration of the connectors within
target applications.

Then several simple C connector architectures were designed and templates for
their elements were created. During this phase, a new simple TCP middleware for
C language was introduced, and a stub and skeleton code generator was created as
a Stratego transformation module based on the grammar and transformations
used for C element generation.

Finally, a sample application demonstrating the use of the generated connec-
tors within a distributed component application was presented.

11.2 Future work

11.2.1 Creation of C connector runtime

The usage of the generated code (which is represented by header files and object
archives within the connector repository) in external applications (e.g. a compo-
nent application) is quite problematic, because the paths and names of the con-
nectors units cannot be anticipated before the generation.

This interaction between the components and the connectors should be solved
by a project introducing C connector runtime that would work similarily to
the Java runtime introduced by [39]. The connector generator already generates
a XML output descriptor of the connector (example is shown on Listing 9.9),
which contains the location and names of the top-level units (that are the only
ones that need to dealt with from the application) and the information about
their connections. The C connector runtime could parse this file and generate
the code of the main applications from these descriptions. Another possibility
would be to parse this information from the component applications and dynam-
ically load the connectors (this would mean that the connectors would need to
be compiled into dynamically linked libraries).

11.2.2 Extending the template repository

One of the obvious future tasks is the extension of the current set of templates
by introduction of templates for other communication styles (e.g. messaging) or
elements providing other non-functional properties (e.g. encryption of the com-
munication for ensuring greater security on the communication channel).

11.2.3 Concrete syntax for C and ElLang

Stratego/XT toolset allows to extend a SDF grammar by definition of special
production rules, that then allow the usage of concrete syntax for transforma-
tions. This Stratego feature allows the use of parts of the target language code
in the transformation rules instead of pure abstract syntax trees that are some-
times hard to visualize and map to the code. This usually results in simpler and
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more readable transformations, thus extending the C and ElLang grammars to
support concrete syntax would allow to simplify the current quite complex and
nasty transformation rules (mainly those in the evaluation of the interfaces or
the generation of stubs and skeletons of the TCP middleware).
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Appendix A

Additional resources and
examples

This Chapter contains listings with source files generated by the proposed C code
generator. The role of the presented connector elements was explained earlier in
Chapter 8.

A.1 Generated code for TCP middleware con-

nector

A.1.1 Business interface

Listing A.1: Business interface used in this sample

/∗ A00000003/ s amp l e i f a c e . h f i l e ∗/
#i fnde f SAMPLE IFACE
#def ine SAMPLE IFACE

s t ruc t s amp l e i f a c e {
long (∗max) ( void ∗ i f a c e , short x , i n t y , long z ) ;
char ∗(∗ r e p e a t ) ( void ∗ i f a c e , char ∗ i nput , unsigned in t count ) ;
void (∗ s t o r e ) ( void ∗ i f a c e , unsigned long ) ;

} ;

#end i f

A.1.2 TCP middleware stub

Listing A.2: Generated stub code for the TCP middleware

/∗ A00000002/ t c p s t u b s amp l e i f a c e . c f i l e ∗/
#inc lude <tcp comm . h>
#inc lude < t c p c l i e n t . h>
#inc lude < s t r i n g s . h>

#inc lude ”A00000003/ s amp l e i f a c e . h”
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s t a t i c long marsha l l max ( void ∗ param 1 , short param 2 , i n t

param 3 , long param 4 )
{

long r e s ;
i n t e r r = 0 ;
t c p c l i e n t t ∗ c l i e n t = ( t c p c l i e n t t ∗ ) param 1 ;
t c p m e s s a g e i n i t ( c l i e n t −>msg) ;
e r r = t c p e n c o d e i n t 1 6 (1 , c l i e n t −>msg , A l l o c a t e E x t r a ) ;
e r r += t c p e n c o d e i n t 1 6 ( param 2 , c l i e n t −>msg , A l l o c a t e E x t r a ) ;
e r r += t c p e n c o d e i n t 3 2 ( param 3 , c l i e n t −>msg , A l l o c a t e E x t r a ) ;
e r r += t c p e n c o d e i n t 6 4 ( param 4 , c l i e n t −>msg , A l l o c a t e E x t r a ) ;
i f ( e r r == 0)

{
e r r = tcp mes sag e s end ( c l i e n t −>msg , c l i e n t −>fd ) ;
i f ( e r r != 0)

p r i n t f ( ”TCP message cou l d not be s e n t − f u n c t i o n %s , e r r o r %
d !\n” , ”max” , e r r ) ;

}
e l s e

p r i n t f ( ”Params f o r f u n c t i o n %s cou l d not be encoded − %d !\n” ,
”max” , e r r ) ;

i f ( e r r == 0)
{

e r r = t c p me s s a g e r e c e i v e ( c l i e n t −>msg , c l i e n t −>fd ) ;
r e s = t c p d e c o d e i n t 6 4 ( c l i e n t −>msg , &e r r ) ;
i f ( e r r != 0)

p r i n t f ( ”TCP f a i l e d to read the r e t u r n v a l u e f o r f u n c t i o n %s
from the s o c k e t\n” , ”max” ) ;

}
e l s e

bze ro (& res , s i z eo f ( r e s ) ) ;
return ( r e s ) ;

}
s t a t i c char ∗ ma r s h a l l r e p e a t ( void ∗ param 1 , char ∗ param 2 ,

unsigned in t param 3 )
{

char ∗ r e s ;
i n t e r r = 0 ;
t c p c l i e n t t ∗ c l i e n t = ( t c p c l i e n t t ∗ ) param 1 ;
t c p m e s s a g e i n i t ( c l i e n t −>msg) ;
e r r = t c p e n c o d e i n t 1 6 (2 , c l i e n t −>msg , A l l o c a t e E x t r a ) ;
e r r += t c p e n c o d e s t r i n g ( param 2 , c l i e n t −>msg , A l l o c a t e E x t r a ) ;
e r r += t cp en c o d e u i n t 3 2 ( param 3 , c l i e n t −>msg , A l l o c a t e E x t r a ) ;
i f ( e r r == 0)

{
e r r = tcp mes sag e s end ( c l i e n t −>msg , c l i e n t −>fd ) ;
i f ( e r r != 0)

p r i n t f ( ”TCP message cou l d not be s e n t − f u n c t i o n %s , e r r o r %
d !\n” , ” r e p e a t ” , e r r ) ;

}
e l s e

p r i n t f ( ”Params f o r f u n c t i o n %s cou l d not be encoded − %d !\n” ,
” r e p e a t ” , e r r ) ;

i f ( e r r == 0)
{

e r r = t c p me s s a g e r e c e i v e ( c l i e n t −>msg , c l i e n t −>fd ) ;
r e s = t c p d e c o d e s t r i n g ( c l i e n t −>msg , &e r r ) ;
i f ( e r r != 0)
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p r i n t f ( ”TCP f a i l e d to read the r e t u r n v a l u e f o r f u n c t i o n %s
from the s o c k e t\n” , ” r e p e a t ” ) ;

}
e l s e

bze ro (& res , s i z eo f ( r e s ) ) ;
return ( r e s ) ;

}
s t a t i c void ma r s h a l l s t o r e ( void ∗ param 1 , unsigned long param 2 )
{

i n t e r r = 0 ;
t c p c l i e n t t ∗ c l i e n t = ( t c p c l i e n t t ∗ ) param 1 ;
t c p m e s s a g e i n i t ( c l i e n t −>msg) ;
e r r = t c p e n c o d e i n t 1 6 (3 , c l i e n t −>msg , A l l o c a t e E x t r a ) ;
e r r += t cp en c o d e u i n t 6 4 ( param 2 , c l i e n t −>msg , A l l o c a t e E x t r a ) ;
i f ( e r r == 0)

{
e r r = tcp mes sag e s end ( c l i e n t −>msg , c l i e n t −>fd ) ;
i f ( e r r != 0)

p r i n t f ( ”TCP message cou l d not be s e n t − f u n c t i o n %s , e r r o r %
d !\n” , ” s t o r e ” , e r r ) ;

}
e l s e

p r i n t f ( ”Params f o r f u n c t i o n %s cou l d not be encoded − %d !\n” ,
” s t o r e ” , e r r ) ;

}
s t ruc t s amp l e i f a c e t c p s t u b i t f s a m p l e i f a c e = {

marsha l l max ,
ma r s h a l l r e p e a t ,
m a r s h a l l s t o r e

} ;

A.1.3 TCP element stub

Listing A.3: Generated code for the stub element using the middleware code

/∗ A00000002/TcpStub f i l e ∗/
#inc lude <s t d i o . h>
#inc lude < s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <connector common . h>
#inc lude < t c p c l i e n t . h>

#inc lude ”A00000002/TcpStub . h”
#inc lude ”A00000003/ s amp l e i f a c e . h”
#inc lude ”A00000002/ t c p s t u b s amp l e i f a c e . c”
#def ine MYITFTYPE t c p s t u b i t f t y p e s am p l e i f a c e

typedef s t ruc t

{
c o nn e c t o r e l emen t t e l em e n t i n f o ;
s t ruc t s amp l e i f a c e s e l f ;
t c p c l i e n t t ∗ c l i e n t ;
i n t myint ;

} MYITFTYPE;
s t a t i c void s am p l e i f a c e 0 i n i t ( s t ruc t s amp l e i f a c e ∗ i t f ) ; ;
s t a t i c void ∗ l o o kupPo r t ( void ∗ e lement , const char ∗ portName )
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{
DECLARE SELF(INTERFACE ENTRY( e lement , MYITFTYPE, e l em e n t i n f o ) ,

MYITFTYPE) ;
i f ( st rcmp ( ” c a l l ” , portName ) == 0)

return (& s e l f −> s e l f ) ;
e l s e

return (NULL) ;
}
s t a t i c i n t s e tTa r g e t ( void ∗ e lement , const char ∗ portName , void ∗

t a r g e t )
{

DECLARE SELF(INTERFACE ENTRY( e lement , MYITFTYPE, e l em e n t i n f o ) ,
MYITFTYPE) ;

i f ( st rcmp ( ” l i n e ” , portName ) == 0)
{

t c p a d d r e s s t a dd r e s s ;
t c p add r e s s d e c o d e (&addres s , ( char ∗ ) t a r g e t ) ;
t c p c l i e n t d e s t r o y ( s e l f −>c l i e n t ) ;
s e l f −>c l i e n t = t c p c l i e n t c r e a t e (64) ;
i f ( s e l f −>c l i e n t == NULL | | t c p c l i e n t c o n n e c t ( s e l f −>c l i e n t , &

addres s , 0) != 0)
{

p r i n t f ( ”TCP Stub E r r o r occured wh i l e connec t i ng to %s :%u\n
” , a dd r e s s . addre s s , a dd r e s s . po r t ) ;

t c p c l i e n t d e s t r o y ( s e l f −>c l i e n t ) ;
return (−1) ;

}
return (0 ) ;

}
e l s e

return (−1) ;
}
s t a t i c long s amp l e i f a c e0 max ( void ∗ i f a c e , short x , i n t y , long

z )
{

long b 0 ;
DECLARE SELF(INTERFACE ENTRY( i f a c e , MYITFTYPE, s e l f ) , MYITFTYPE) ;
p r i n t f ( ” C : c a l l e d TcpStub 0x%p method %s \n” , s e l f , ”max” ) ;
i f ( s e l f −>c l i e n t != NULL)

{
b 0 = t c p s t u b i t f s a m p l e i f a c e . max( s e l f −>c l i e n t , x , y , z ) ;

}
e l s e

{
p r i n t f ( ” ! : NULL t a r g e t −> no a c t i o n \n” ) ;
b 0 = 0 ;

}
return ( b 0 ) ;

}
s t a t i c char ∗ s am p l e i f a c e 0 r e p e a t ( void ∗ i f a c e , char ∗ i nput ,

unsigned in t count )
{

char ∗ d 0 ;
DECLARE SELF(INTERFACE ENTRY( i f a c e , MYITFTYPE, s e l f ) , MYITFTYPE) ;
p r i n t f ( ” C : c a l l e d TcpStub 0x%p method %s \n” , s e l f , ” r e p e a t ” ) ;
i f ( s e l f −>c l i e n t != NULL)

{
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d 0 = t c p s t u b i t f s a m p l e i f a c e . r e p e a t ( s e l f −>c l i e n t , i nput ,
count ) ;

}
e l s e

{
p r i n t f ( ” ! : NULL t a r g e t −> no a c t i o n \n” ) ;
d 0 = 0 ;

}
return ( d 0 ) ;

}
s t a t i c void s am p l e i f a c e 0 s t o r e ( void ∗ i f a c e , unsigned long param2 )
{

DECLARE SELF(INTERFACE ENTRY( i f a c e , MYITFTYPE, s e l f ) , MYITFTYPE) ;
p r i n t f ( ” C : c a l l e d TcpStub 0x%p method %s\n” , s e l f , ” s t o r e ” ) ;
i f ( s e l f −>c l i e n t != NULL)

{
t c p s t u b i t f s a m p l e i f a c e . s t o r e ( s e l f −>c l i e n t , param2 ) ;

}
e l s e

{
p r i n t f ( ” ! : NULL t a r g e t −> no a c t i o n \n” ) ;
0 ;

}

}
s t a t i c void s am p l e i f a c e 0 i n i t ( s t ruc t s amp l e i f a c e ∗ i t f )
{

i t f −>max = samp l e i f a c e0 max ;
i t f −>r e p e a t = s amp l e i f a c e 0 r e p e a t ;
i t f −>s t o r e = s amp l e i f a c e 0 s t o r e ;

} ;
s t a t i c unsigned in t e l em cn t = 0 ;
c o nn e c t o r e l emen t t ∗ new element A00000002 TcpStub ( void )
{

MYITFTYPE ∗ new elem = (MYITFTYPE ∗ ) ma l l o c ( s i z eo f (MYITFTYPE) ) ;
i f ( new elem == NULL)

return (NULL) ;
s am p l e i f a c e 0 i n i t (&new elem−>s e l f ) ;
new elem−>myint = 100 + (++e l em cn t ) ;
new elem−>c l i e n t = NULL ;
new elem−>e l em e n t i n f o . type = ELEMENT TYPE LOCAL SERVER |

ELEMENT TYPE REMOTE CLIENT ;
c o n n e c t o r e l em e n t i n i t (&new elem−>e l emen t i n f o , l ookupPort ,

s e tTa r g e t ) ;
return (&new elem−>e l em e n t i n f o ) ;

}
void de l e te e l ement A00000002 TcpStub ( c o nn e c t o r e l emen t t ∗ e l ement )
{

i f ( e l ement != NULL)
{

DECLARE SELF(INTERFACE ENTRY( e lement , MYITFTYPE, e l em e n t i n f o )
, MYITFTYPE) ;

t c p c l i e n t d e s t r o y ( s e l f −>c l i e n t ) ;
f r e e ( s e l f ) ;

}
}
#undef MYITFTYPE
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A.1.4 TCP middleware skeleton

Listing A.4: Generated skeleton code for the TCP middleware

/∗ A00000006/ t c p s k e l e t o n s amp l e i f a c e . c f i l e ∗/
#inc lude <tcp comm . h>

#inc lude ”A00000003/ s amp l e i f a c e . h”

s t a t i c void t c p s k e l e t o n c a l l b a c k s am p l e i f a c e ( void ∗ param ,
t c p me s s a g e t ∗ message , u i n t 3 2 t l en , i n t fd )

{
i n t e r r = 0 ;
i n t 1 6 t f u n c t yp e = t c p d e c o d e i n t 1 6 ( message , &e r r ) ;
s t ruc t s amp l e i f a c e ∗ i t f = ( s t ruc t s amp l e i f a c e ∗ ) param ;
i f ( e r r != 0)

return ;
switch ( f u n c t yp e )

{
case

1 :
{

i n t 1 6 t param 1 = t c p d e c o d e i n t 1 6 ( message , &e r r ) ;
i n t 3 2 t param 2 = t c p d e c o d e i n t 3 2 ( message , &e r r ) ;
i n t 6 4 t param 3 = t c p d e c o d e i n t 6 4 ( message , &e r r ) ;
i f ( e r r == 0)

{
long r e s = i t f −>max( i t f , param 1 , param 2 , param 3 ) ;
t c p me s s a g e t ∗ msg re t = t cp me s s a g e c r e a t e (8 ) ;
t c p m e s s a g e i n i t ( msg re t ) ;
t c p e n c o d e i n t 6 4 ( re s , msg ret , A l l o c a t eE xa c t ) ;
e r r = tcp mes sag e s end ( msg ret , fd ) ;
t c p me s s a g e d e s t r o y ( msg re t ) ;
i f ( e r r != 0)

p r i n t f ( ”TCP f a i l e d to send back the r e t u r n v a l u e f o r
f u n c t i o n %s \n” , ”max” ) ;

}
e l s e

{
p r i n t f ( ”Params f o r f u n c t i o n %s r e c e i v e d i n c o r r e c t l y −

%d !\n” , ”max” , e r r ) ;
t c p me s s a g e d i s c a r d ( message ) ;

}
break ;

}
case

2 :
{

char ∗ param 1 = t c p d e c o d e s t r i n g ( message , &e r r ) ;
u i n t 3 2 t param 2 = t cp d e c o d e u i n t 3 2 ( message , &e r r ) ;
i f ( e r r == 0)

{
char ∗ r e s = i t f −>r e p e a t ( i t f , param 1 , param 2 ) ;
t c p me s s a g e t ∗ msg re t = t cp me s s a g e c r e a t e (8 ) ;
t c p m e s s a g e i n i t ( msg re t ) ;
t c p e n c o d e s t r i n g ( re s , msg ret , A l l o c a t eE xa c t ) ;
e r r = tcp mes sag e s end ( msg ret , fd ) ;
t c p me s s a g e d e s t r o y ( msg re t ) ;
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i f ( e r r != 0)
p r i n t f ( ”TCP f a i l e d to send back the r e t u r n v a l u e f o r

f u n c t i o n %s \n” , ” r e p e a t ” ) ;
}

e l s e

{
p r i n t f ( ”Params f o r f u n c t i o n %s r e c e i v e d i n c o r r e c t l y −

%d !\n” , ” r e p e a t ” , e r r ) ;
t c p me s s a g e d i s c a r d ( message ) ;

}
break ;

}
case

3 :
{

u i n t 6 4 t param 1 = t cp d e c o d e u i n t 6 4 ( message , &e r r ) ;
i f ( e r r == 0)

{
i t f −>s t o r e ( i t f , param 1 ) ;

}
e l s e

{
p r i n t f ( ”Params f o r f u n c t i o n %s r e c e i v e d i n c o r r e c t l y −

%d !\n” , ” s t o r e ” , e r r ) ;
t c p me s s a g e d i s c a r d ( message ) ;

}
break ;

}
}

}

A.1.5 TCP element skeleton

The skeleton code is similar to the stub code so it is not shown here.

A.2 Generated code for logged server unit

A.2.1 Composite server unit element

Listing A.5: Generated code of logged server unit composite element

/∗ A00000004/ LoggedSe rve rUn i t . c f i l e ∗/
#inc lude <s t r i n g . h>
#inc lude <s t d i o . h>
#inc lude <connector common . h>

#inc lude ”A00000004/ LoggedSe rve rUn i t . h”
#inc lude ”A00000005/ LoggerConso l e . h”
#inc lude ”A00000006/TcpSke l e ton . h”

s t a t i c void ∗ compoundLookupPort ( void ∗ e lement , const char ∗
portName ) ;

s t a t i c i n t compoundSetTarget ( void ∗ e lement , const char ∗ portName ,
void ∗ t a r g e t ) ;

c o nn e c t o r e l emen t t ∗ new e l ement A00000004 LoggedServe rUn i t ( void )
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{
compound e lement t ∗ s e l f = new compound element (2 ) ;
c o n n e c t o r e l em e n t i n i t (& s e l f −>e lement , compoundLookupPort ,

compoundSetTarget ) ;
s e l f −>subE lements [ 0 ] = new e l ement A00000005 LoggerConso l e ( ) ;
s e l f −>subE lements [ 1 ] = new e l ement A00000006 TcpSke l e ton ( ) ;
s e l f −>subE lements [1]−> s e tTa r g e t ( s e l f −>subE lements [ 1 ] , ” c a l l ” , s e l f

−>subE lements [0]−> l o o kupPo r t ( s e l f −>subE lements [ 0 ] , ” i n ” ) ) ;
return (& s e l f −>e l ement ) ;

}
void de l e t e e l emen t A00000004 LoggedSe rve rUn i t ( c o nn e c t o r e l emen t t ∗

e l ement )
{

i f ( e l ement != NULL)
{

DECLARE SELF(INTERFACE ENTRY( e lement , compound e lement t ,
e l ement ) , compound e lement t ) ;

d e l e t e e l emen t A00000005 Logge rConso l e ( s e l f −>subE lements [ 0 ] ) ;
d e l e t e e l emen t A00000006 TcpSke l e t on ( s e l f −>subE lements [ 1 ] ) ;
d e l e t e compound e l emen t ( s e l f ) ;

}
}
i n t g e t e l emen t A00000 0 0 4 Logg edSe r v e rUn i t i n f o ( char ∗ buf , s i z e t

pos , s i z e t s i z e , s i z e t i n d e n t )
{

const char ∗ i n f o = ” Imp l emen ta t i on : c l o g g e d s e r v e r u n i t \n” ;
s i z e t mylen = s t r l e n ( i n f o ) + i nd en t ;
s i z e t myindent ;
i f ( mylen >= ( s i z e − pos ) )

return (−1) ;
f o r ( myindent = 0 ; myindent < i n d e n t ; ++myindent )

{
buf [ pos + myindent ] = ’ ’ ;

}
s t r n c p y ( bu f + pos + indent , i n f o , s i z e − pos − myindent ) ;
pos += mylen ;
++i nd en t ;
i n f o = ”Sub−e l ement : l o g g e r c c o n s o l e l o g \n” ;
mylen = s t r l e n ( i n f o ) + i nd en t ;
i f ( mylen >= ( s i z e − pos ) )

return (−1) ;
f o r ( myindent = 0 ; myindent < i n d e n t ; ++myindent )

{
buf [ pos + myindent ] = ’ ’ ;

}
s t r n c p y ( bu f + pos + indent , i n f o , s i z e − pos − myindent ) ;
pos += mylen ;
i n f o = ”Sub−e l ement : s k e l e t o n c t c p s k e l e t o n \n” ;
mylen = s t r l e n ( i n f o ) + i nd en t ;
i f ( mylen >= ( s i z e − pos ) )

return (−1) ;
f o r ( myindent = 0 ; myindent < i n d e n t ; ++myindent )

{
buf [ pos + myindent ] = ’ ’ ;

}
s t r n c p y ( bu f + pos + indent , i n f o , s i z e − pos − myindent ) ;
pos += mylen ;
bu f [ pos ] = 0 ;
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return ( pos ) ;
}
s t a t i c void ∗ compoundLookupPort ( void ∗ e lement , const char ∗

portName )
{

DECLARE SELF(INTERFACE ENTRY( e lement , compound e lement t , e l ement )
, compound e lement t ) ;

i f ( st rcmp ( ” l i n e ” , portName ) == 0)
{

return ( s e l f −>subE lements [1]−> l o o kupPo r t ( s e l f −>subE lements [ 1 ] ,
” l i n e ” ) ) ;

}
e l s e

return (0 ) ;
return (0 ) ;

}
s t a t i c i n t compoundSetTarget ( void ∗ e lement , const char ∗ portName ,

void ∗ t a r g e t )
{

DECLARE SELF(INTERFACE ENTRY( e lement , compound e lement t , e l ement )
, compound e lement t ) ;

i f ( st rcmp ( ” c a l l ” , portName ) == 0)
{

return ( s e l f −>subE lements [0]−> s e tTa r g e t ( s e l f −>subE lements [ 0 ] ,
” out ” , t a r g e t ) ) ;

}
e l s e

i f ( st rcmp ( ” l i n e ” , portName ) == 0)
{

return ( s e l f −>subE lements [1]−> s e tTa r g e t ( s e l f −>subE lements
[ 1 ] , ” l i n e ” , t a r g e t ) ) ;

}
e l s e

return (−1) ;
return (−1) ;

}

A.2.2 Logger element generated code

Listing A.6: Generated code of logged server unit composite element

/∗ A00000005/ LoggerConso l e . c f i l e ∗/
#inc lude <s t d i o . h>
#inc lude < s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <connector common . h>

#inc lude ”A00000005/ LoggerConso l e . h”
#inc lude ”A00000003/ s amp l e i f a c e . h”

#def ine MYITFTYPE l o c a l s t u b i t f s a m p l e i f a c e

typedef s t ruc t

{
c o nn e c t o r e l emen t t e l em e n t i n f o ;
s t ruc t s amp l e i f a c e ∗ t a r g e t ;
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s t ruc t s amp l e i f a c e s e l f ;
} MYITFTYPE;

s t a t i c void s am p l e i f a c e 0 i n i t ( s t ruc t s amp l e i f a c e ∗ i t f ) ; ;
s t a t i c void ∗ l o o kupPo r t ( void ∗ e lement , const char ∗ portName )
{

DECLARE SELF(INTERFACE ENTRY( e lement , MYITFTYPE, e l em e n t i n f o ) ,
MYITFTYPE) ;

i f ( st rcmp ( ” i n ” , portName ) == 0)
return (& s e l f −> s e l f ) ;

e l s e

return (NULL) ;
}
s t a t i c i n t s e tTa r g e t ( void ∗ e lement , const char ∗ portName , void ∗

t a r g e t )
{

DECLARE SELF(INTERFACE ENTRY( e lement , MYITFTYPE, e l em e n t i n f o ) ,
MYITFTYPE) ;

i f ( st rcmp ( ” out ” , portName ) == 0)
{

s e l f −>t a r g e t = ( s t ruc t s amp l e i f a c e ∗ ) t a r g e t ;
return (0 ) ;

}
e l s e

return (−1) ;
}
s t a t i c long s amp l e i f a c e0 max ( void ∗ i f a c e , short x , i n t y , long

z )
{

long g 0 ;
DECLARE SELF(INTERFACE ENTRY( i f a c e , MYITFTYPE, s e l f ) , MYITFTYPE) ;
p r i n t f ( ”LOGGER: Ca l l e d method max wi th params \n ( ” ) ;
i f ( s e l f −>t a r g e t != NULL)

{
p r i n t f ( ” i f a c e = %p ” , i f a c e ) ;
p r i n t f ( ”x = %d ” , x ) ;
p r i n t f ( ”y = %d ” , y ) ;
p r i n t f ( ”z = %ld ” , z ) ;
p r i n t f ( ” ) \n” ) ;
g 0 = s e l f −>t a r g e t−>max( s e l f −>t a r g e t , x , y , z ) ;

p r i n t f ( ”LOGGER: r e s = %ld \n” , g 0 ) ;
}

e l s e

{
p r i n t f ( ” ! : NULL t a r g e t −> no a c t i o n \n” ) ;
g 0 = 0 ;

}
return ( g 0 ) ;

}
s t a t i c char ∗ s am p l e i f a c e 0 r e p e a t ( void ∗ i f a c e , char ∗ i nput ,

unsigned in t count )
{

char ∗ i 0 ;
DECLARE SELF(INTERFACE ENTRY( i f a c e , MYITFTYPE, s e l f ) , MYITFTYPE) ;
p r i n t f ( ”LOGGER: Ca l l e d method r e p e a t w i th params \n ( ” ) ;
i f ( s e l f −>t a r g e t != NULL)

{
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p r i n t f ( ” i f a c e = %p ” , i f a c e ) ;
p r i n t f ( ” i n pu t = ’%s ’ ” , i n pu t ) ;
p r i n t f ( ” count = %u ” , count ) ;
p r i n t f ( ” ) \n” ) ;
i 0 = s e l f −>t a r g e t−>r e p e a t ( s e l f −>t a r g e t , i nput , count ) ;

p r i n t f ( ”LOGGER: r e s = ’%s ’\n” , i 0 ) ;
}

e l s e

{
p r i n t f ( ” ! : NULL t a r g e t −> no a c t i o n \n” ) ;
i 0 = 0 ;

}
return ( i 0 ) ;

}
s t a t i c void s am p l e i f a c e 0 s t o r e ( void ∗ i f a c e , unsigned long param2 )
{

DECLARE SELF(INTERFACE ENTRY( i f a c e , MYITFTYPE, s e l f ) , MYITFTYPE) ;
p r i n t f ( ”LOGGER: Ca l l e d method s t o r e w i th params \n ( ” ) ;
i f ( s e l f −>t a r g e t != NULL)

{
p r i n t f ( ” i f a c e = %p ” , i f a c e ) ;
p r i n t f ( ”param2 = %lu ” , param2 ) ;
p r i n t f ( ” ) \n” ) ;
s e l f −>t a r g e t−>s t o r e ( s e l f −>t a r g e t , param2 ) ;

p r i n t f ( ”LOGGER: no r e t u r n v a l u e \n” , 0) ;
}

e l s e

{
p r i n t f ( ” ! : NULL t a r g e t −> no a c t i o n \n” ) ;
0 ;

}

}
s t a t i c void s am p l e i f a c e 0 i n i t ( s t ruc t s amp l e i f a c e ∗ i t f )
{

i t f −>max = samp l e i f a c e0 max ;
i t f −>r e p e a t = s amp l e i f a c e 0 r e p e a t ;
i t f −>s t o r e = s amp l e i f a c e 0 s t o r e ;

} ;
c o nn e c t o r e l emen t t ∗ new e l ement A00000005 LoggerConso l e ( void )
{

MYITFTYPE ∗ new elem = (MYITFTYPE ∗ ) ma l l o c ( s i z eo f (MYITFTYPE) ) ;
i f ( new elem == NULL)

return (NULL) ;
s am p l e i f a c e 0 i n i t (&new elem−>s e l f ) ;
new elem−>e l em e n t i n f o . type = ELEMENT TYPE LOCAL SERVER |

ELEMENT TYPE REMOTE CLIENT ;
c o n n e c t o r e l em e n t i n i t (&new elem−>e l emen t i n f o , l ookupPort ,

s e tTa r g e t ) ;
return (&new elem−>e l em e n t i n f o ) ;

}
void de l e t e e l emen t A00000005 Logge rConso l e ( c o nn e c t o r e l emen t t ∗

e l ement )
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{
i f ( e l ement != NULL)

{
DECLARE SELF(INTERFACE ENTRY( e lement , MYITFTYPE, e l em e n t i n f o )

, MYITFTYPE) ;
f r e e ( s e l f ) ;

}
}
#undef MYITFTYPE
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Appendix B

Contents of the attached CD

This thesis is accompanied by a CD-ROM which contains the implementation of
the connector generator discussed in this thesis and other relevant files. The CD-
ROM has the following structure:

/prerequisities/
Required software packages for successful compilation of the connector gen-
erator.

/implementation.zip
Zip file with the implementation, this was created to preserve deep directory
hierarchy and file permissions. The zip file has the following structure:

/build/
Part of the SOFA 2 infrastructure necessary for the compilation of
the connector generator.

/src/case study/
Source code of the case study application described in Section 9.1.

/src/congen/
Source code of the SOFA 2 connector generator.

/src/congen/tests/
Several testing high-level connector specification files and a build script
for generating the connectors from these specifications.

/README
Brief description of the contents of the CD-ROM and the steps necessary
for the compilation of the connector generator from its sources.

/thesis.pdf
Electronic version of this thesis.
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