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pro angiografii na CT datech. Dále je v práci navrhnut, implementován a otestován systém 

který umožňuje jak poloautomatickou, tak automatickou segmentaci cév a jejich visualizaci. 

Pro segmentaci a trasování cév byl použit algoritmus narůstání oblastí vylepšen o několik 

heuristik a spojen s detekcí středu cévy. Potom byl tenhle algoritmus automatizován pomocí 

automatického generování počátečných bodů pro segmentaci. Visualizace je 

implementována jako adaptace známé metody straightened CPR, která byla rozšířena na 

visualizaci celého průřezu cévy, nikoliv jen jedné čáry na průřezu. Jako další vylepšení byla 

použita Bishopova soustava souřadnic pro minimalizaci krutu cévy při sledování její 

průřezu. 
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Abstract: 

In this thesis we researched some of the blood vessed segmentation and visualization 

techniques currently available for angiography on CT data. We then designed, implemented 

and tested a system that allows both semi-automatic and automatic vessel segmentation and 

visualization. For vessel segmantation and tracking we used a region-growing algorithm that 

we overhauled with several heuristics and combined with centerline detection.  We then 

automated this algorithm by automatic seed generation. The visualization part is 

accomplished with an adaptation of the well-known straightened CPR method that we 
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Introduction 

 

Computed tomography, often abbreviated as CT or CAT scan, is a fairly routine medical 

examination these days. A three-dimensional image of the scanned subject is generated by 

measuring the attenuation of X-ray radiation passing through the subject. Even a simple scan 

yields massive amounts of data that must be efficiently processed and transformed to 

something that is humanly readable and understandable. To that end we need software that 

can work with such data. 

 

Probably the simplest way of analyzing this three-dimensional (3D) volumetric data is by 

examining the individual slices. This approach is still preferred by many physicians, 

however proper diagnosis might be increasingly difficult in the case of veins. The cause of 

this problem is mainly that veins (even when injected with contrast agents) appear as very 

small circular or elongated objects, depending on their orientation, and it is therefore 

difficult to make a statement as to the physical dimensions or the general spatial location of 

the vessel based only on one visible slice. Computer graphics methods may, however, 

alleviate this problem considerably. 

 

There has been some work done in these areas. The results include automatic or semi-

automatic segmentation of these organs with respect to aggravating factors such as noise in 

captured images. Furthermore, there are visualization techniques that will effectively display 

the vessel as it would appear laid on a straight plane or even stretched to a linear shape. In 

this thesis we will design and implement algorithms for such segmentation and visualization, 

trying to improve on existing methods. We will then compare our results to some of the 

existing visualization methods. 
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1 Computed Tomography 

 

The first laboratory CT scanner has been built in 1967 by Godfrey N. Hounsfield at the 

Central Research Laboratories of EMI Ltd. The specimen was scanned from 360 uniformly 

distributed directions. The data acquisition took whole 9 days, because of the low intensity 

of the used gamma radiation source. After that, the 3D image had to be reconstructed. This 

took about 150 minutes on a period computer. (1)  

 

Since then, significant improvements have been made resulting in the first clinically 

available device, installed at Atkinson-Morley Hospital in September 1971. Image 

acquisition time was about 4.5 minutes, which is rather lengthy by today’s standards, 

however significantly faster than Hounsfield’s prototype. The first patient was scanned by 

this device on October 4th, 1971. (1) 

 

Independently of Hounsfield, Allan M. Cormack derived the mathematical theory for image 

reconstruction and did other significant work in the area. Their efforts were recognized in 

1979 with a Nobel Prize in Medicine. (2) 

 

1.1 Basic Principles 

CT uses an X-ray beam that passes through a thin axial section of the scanned subject. The 

X-ray tube rotates around the patient irradiating them with a collimated fan-shaped beam. 

After passing through the subject, the beam hits the detector array. While the 1970s scanners 

used one or a few detectors, the current devices use a whole array of detectors arranged in a 

full ring (4th generation) or an arc (older 3rd generation) around the patient. (3) This allows 

for a much shorter scan time (up to 300 seconds for the 1
st
 generation, and up to 5 seconds 

for the 4
th
 generation) and strain on the patient, not to mention less exposure to radiation. 

 

 

Figure 1: Schematic of a fourth generation CT scanning (cross-section) (picture from (4)) 
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Further attempts to speed up the imaging process include the spiral CT, electron beam CT or 

the multi-slice CT.  

 

1.1.1 Image Reconstruction 

The output the detectors provide are basically the signal attenuations along the paths from 

the X-ray tube (from many positions around the subject), through the patient to the detector 

array. This data, after various corrections made to compensate for some hardware-specific 

errors (like inhomogenities of the detector assembly) is called the CT raw data (3). 

 

We, however, want to reconstruct the attenuation of the scanned material in uniformly 

distributed points on the slice from the total attenuations observed from the side. A solution 

was first developed in 1917 when Radon solved the problem of reconstructing a function 

from its line integrals. (1) 

 

Let us assume that the X-ray photons are all of the same energy, the intensities of the ray 

entering and leaving a uniform material conform to the Beer-Lambert’s law: 

 

           ,  (1) 

 

Where    is the intensity of the entering ray,   is the intensity of the ray as it leaves the 

material,    is the thickness of that material and   is its linear attenuation coefficient. (1) 

 

As the scanned object is non-uniform, we will assume that it is made up of a finite number 

of equally large, homogenous parts. We may then rewrite the attenuation equation to: 

 

                                       ∑   
 
    (2) 

  

Where    are the individual attenuation coefficients for each of the homogenous parts. It is 

then advantageous to divide both sides of the equation by    and take a logarithm of them. 

We will then have a quantity that is a sum of those attenuation coefficients. 

 

     (
 

  
)     ∑  

 

   

 (3) 

 

This alone inspires a naïve solution to the problem of extracting the individual attenuation 

coefficients. Supposing we want to extract a 2x2 grid of such coefficients from their 

projections as shown in Figure 2, we need to solve a system of linear equations. 
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Figure 2: Sample attenuation coefficients and their projections (picture from (1)) 

 

This presents us with several problems, not the least of which is that errors in the raw data 

may throw the calculations off. Furthermore, when the number of measurements exceeds the 

number of unknowns, a straightforward solution may not be available (1).  

 

The actual method uses a filtered back-projection formula that involves 2D Fourier 

transforms. The derivation of this formula is beyond the scope of this thesis; however Hsieh 

(1) gives a solid mathematical background for CT image reconstruction. 

 

1.1.2 The Hounsfield Unit 

The output of a CT scanner is the local density in a set of spatial points. Medial scanners are 

calibrated to the Hounsfield Unit (HU) scale. Each medical CT will give the same value for 

the same kind of tissue. The densities on that scale range from -1024 to 3071 HU (4). Some 

of the typical materials and their densities are listed in Table 1. 

 

Material Typical density (in HU) 

Air -1000 

Water 0 

Fat -120 

Muscle 40 

Blood 30 to 45 

Contrast agent 130 

Bone 800 to 1200 

 

Table 1: Typical Hounfield densities of some select materials (5) 

 

The HU value of a particular material can be calculated using its linear attenuation 

coefficient, and such coefficients of air and water. The formula is simple: 

 

         
         

           
 (4) 

 

Where   ,        and      are the linear attenuation coefficients of the unknown material, 

water and air, respectively. 
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1.1.3 Processing the Data 

One series of data from the scanner contains a great deal of information. Typically, 

examining such data is more complicated than the more straight-forward look at an X-ray 

image. Medical examinations involving such data can be assisted with appropriate data 

processing. Typically, the necessary tasks can be broken down into the following groups: 

 

 Registration is mapping two or more images onto each other, so that they are 

matched somehow. Spatial matching is the most common. It means that each 

corresponding pair of points on both images represents the same scanned location. 

 Segmentation splits the image into semantically corresponding areas, like finding the 

areas which capture the vessel and those that capture anything but a vessel. 

Segmentation is probably the most commonly performed task, as it often constitutes 

the first step of more complex methods. 

 Classification decides whether a segmented area in an image is likely to be of some 

defined kind. 

 Reconstruction generates the geometric representation of captured objects. 

 

1.2 Angiography with CT 

Conventional angiography is the medical examination method which involves injecting 

iodine-based contrast agent directly into the examined blood vessel and scanning with an X-

ray scanner. An enhanced image can be obtained by digitally subtracting the mask obtained 

before the application of contrast agent from the images with contrast. This reduces the 

amount of irrelevant information in the image and makes the method widely accepted and 

used. The advantage of this conventional angiography is the possibility of immediate 

medical intervention when needed. On the other hand, it is rather invasive and 

uncomfortable for the patient (2). 

 

Angiography is the medical examination of veins. CT angiography (CTA) has provided 

many improvements in vascular imaging. The main advantages over conventional arterial 

angiography include significantly lower invasiveness, less radiation exposure, lower cost and 

better patient response. From a medical point of view, CTA provides better diagnostic 

options, including viewing the vascular anatomy from multiple angles or simultaneous 

visualization of vessel wall and lumen. (3) CTA can be combined with several visualization 

techniques. 
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Figure 3: A CT-scanned cross-section of human head. Left - without contrast, Right - with 

contrast (note the visible opacity-enhanced veins) 

 

As it can be seen in Table 1, the density of blood is very close to the density of muscle 

tissue. For this and other reasons, it is important to inject the patient with a contrast agent. 

Generally, small veins require more opacification. Less of an enhancement is required for 

large vessels (e.g. the thoracic aorta) and vessels that are perpendicular to scanning planes 

(e.g. carotid artery) (3). Typically, iodine and barium are used for CT (6). 
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2 Vessel Segmentation 

 

Segmentation is an important part of medical volumetric data analysis. There is a host of 

various algorithms for different organs and scanning modalities. Unfortunately, there is no 

single algorithm that can extract vasculature from every image modality (7). Various 

algorithms that use either intensity-based pattern recognition or vessel contours have been 

designed.   

 

In addition to that, there has been some work done in segmentation techniques based on 

artificial intelligence and neural networks (7). They are used to simulate biological learning 

processes mostly for classification. We will, however not include them in our overview as 

they are of less relevance for our application.  

 

This chapter explains some of the challenges faced by vessel segmentation algorithms and 

then gives an overview of existing approaches based on both pattern recognition and model-

based techniques. 

 

2.1 Challenges 

There are many caveats in designing a viable vessel extraction algorithm. This subchapter 

gives an overview of the most severe ones. 

 

Volume data from both CT and magnetic resonance imaging (MRI) is plagued by noise. The 

amount and type of noise differs between various scans and modalities. Moreover, in CT 

there are artifacts caused by very dense materials, such as metals or even teeth. Dental 

fillings or metallic joint replacements can cause visible streaks, otherwise known as beam 

hardening (4). Motion blur is inevitable since the scan can take a few seconds, which is 

more than enough time for effects such as heart motion or patient movement to disrupt data 

reconstruction. 

 

A CT scanner has a finite resolution. The organ boundaries, namely their different densities 

captured within a single voxel cause the averaging effects, known as partial voluming (4). 

This may be especially problematic for vessel segmentation, as vein calcifications have a 

density very similar to bones. Therefore if such a vein is in a close proximity to a bone, the 

boundary between the vein and the bone may be virtually indistinguishable. (2) 

 

Last, but hardly the least, there is a large variability in the captured data. This is caused by 

natural physical variances in the patients; shape of segmented organs or even by different 

scanning set-ups (e.g. the patient tilting his head on the scanner gantry, scanner 

configuration). CT angiography makes use of contrast enhancing agents. Even their 
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distribution in the visualized vessels may differ, causing potential difficulties for 

segmentation algorithms.  

 

A good segmentation method should, of course, be able to deal with all those challenges. 

However, to author’s knowledge, there are no such algorithms at present.  

 

2.2 Pattern Recognition Methods 

Pattern recognition (PR) methods implement automatic detection of objects or features. 

Humans do this very well; even some of the methods are adaptations of human-style PR on a 

computer. The methods described in this section include the region growing algorithms that 

focus on extracting the center line of the vessel and on approaches exploiting mathematical 

morphology. Furthermore, rationale for performing segmentation in multiple scaled versions 

of the source image is given. 

 

2.2.1 Multi-Scale Approaches 

As the subsection caption may hint, multi-scale methods perform segmentation at varying 

image resolutions. As the segmentation may be slow due to the sheer size of the data, 

processing it at a lower resolution can be helpful in optimizing speed. Dealing with the large 

structures at low resolutions while processing the smaller objects at a higher resolution 

potentially increases algorithm robustness. The image may also contain substantial amounts 

of noise. If that noise is mostly of high frequency, scaling the image down may increase the 

algorithm’s resistance to such noise. One important consideration with multi-scale 

techniques is the proper choice of scales in which the algorithm will work. 

 

A typical multi-scale approach application is demonstrated by Sarwal and Dhawan (8). They 

reconstruct 3D coronary arteries from three views by matching image features, vessel branch 

points in their work. For increased robustness, their matching process is performed at three 

different resolutions. Larger vessel tree branches are processed at lower resolution, while the 

thin ones are extracted at a finer scale. 

 

2.2.2 Centerline Detection Algorithms 

These methods, otherwise known as skeleton-based extract the center of blood vessels. Then 

a vessel tree is created by connecting these centerlines. Many different methods are used to 

calculate the vein centerline.  

 

For instance, Sorantin at al (9) use a sort of 3D skeletonalization method for assessing 

tracheal stenoses on spiral CT data. Their method consists of several steps, including seed-

initialized segmentation of laryngo-tracheal tract (LTT), followed by conversion of the 

segmented object into isotropic cubic voxels and 3D thinning. The medial axis is then 

extracted using a shortest-path searching algorithm and low-pass filtered to achieve a 
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smoother curve. After that, cross-section profiles are calculated along that centerline. That 

technique is reported as very accurate and precise on their phantom studies. (7) 

 

2.2.3 Region Growing Algorithms 

The region growing algorithms segment objects by incrementally adding new points to the 

region. Operating under the assumption that points with similar intensity that are close 

together belong to the same object, the seed region is appended with new points in its 

proximity as long as they meet the homogeneity criteria.  

 

Noisy data can be a problem for region growing algorithms as it may result in holes or over-

segmentation. Therefore, some post-processing is definitely called for, even though there is 

an enhancement called adaptive region growing, presented by Yi and Ra (10) which is more 

resilient to those problems. This method basically performs locally adaptive segmentation 

within small local cubes. The faces of the local cubes have vessels entering and leaving 

through them. Region growing is performed only within the cubes that are then connected to 

one another depending on whether a vessel passes through the adjacent faces of two cubes. 

This way, a vessel tree can be created. Their method works on both CT and MRA (magnetic 

resonance angiography) data. 

 

2.2.4 Vessel Tracking by Calculating Minimal Path 

Minimal path algorithms like Dijksta or Floyd-Warshall can be used to track vessels if we 

convert the volume data into a graph. Such conversion is not difficult; each voxel of the 

volumetric data is considered a vertex of the graph and is connected to its six immediate 

neighbors (four, if we work in 2D) by edges. 

 

One example of algorithms utilizing calculating the minimal path in a graph is the live wire 

introduced by Falcao in (11). His method estimates the vessel boundary, which is assumed 

to be a closed, contiguous curve consisting of directed edges with weights, which are named 

bels (boundary elements). The method can operate in 2D as well as 3D. The weight of each 

bel is calculated from some of its other properties, for instance the intensity gradient of 

voxels adjacent to that bel. After the graph is constructed, the path between two user-

selected points is found by Dijkstra’s algorithm.  

 

Significant speed enhancements to this method have been presented by (12) and (13). The 

latter describes the intelligent scissors, a method that can significantly confine the volume in 

which the minimal path is sought, providing a considerable speed boost. 

 

2.2.5 Mathematical Morphology 

Morphology can be understood as the study of shapes. Morphological operators (MO) apply 

transformations to images using structuring elements (SE). These methods are typically 
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applied to binary images, however extensions to grey-level images are normally available. 

The two main MO are erosion and dilation. Erosion shrinks objects by a SE, while dilation 

expands them and does other work like filling holes or merging disjoint regions. The most 

interesting mathematical morphology-related algorithms that are applicable in segmentation 

are the top-hat and watershed transformations. 

 

The watershed algorithm is indeed well named. Its basic principle can be explained on the 

analogy of pouring water into a landscape or a topological surface defined by the input 

image. The image corresponds to a height-map of the surface. The water accumulates in 

basins, generally forming a growing region around the low points, avoiding the high points. 

A watershed algorithm on grey scale images with applications in angiograph segmentation is 

proposed by Couprie and Bertrand in (14). 

 

2.3 Model-based Approaches 

The model-based approaches attempt to match a predefined model to the image. In this 

section we will give an overview of deformable models and template matching. 

 

2.3.1 Deformable Models 

One of the most well-known methods belonging to the deformable models class are the 

active contours, also called snakes. It is basically an optimization of a closed curve defined 

by its points (snaxels). Several kinds of forces deform the curve. First, the curve is held 

together and smooth by internal forces. Second, external forces try to match the curve to the 

shape we are trying to segment (often defined as gradients of image values). Additional 

forces that make the curve obey some other constraints may also be defined. Speaking 

formally, fitting a snake to the desired shape is equivalent to finding the parametric curve 

     that minimizes (15): 

      
     ∫      (    )    

 

 

  (5) 

 

Where        is the energy of the snake for a particular curve, which is basically the sum of 

the internal forces     , external forces        and constraint-enforcing forces     . 

 

                            (6) 

 

Optimizing a snake can be done by various methods as well. An ingenious method was 

proposed by Geiger et al (16) that detects tracks and matches deformable models using a 

dynamic programming approach, but unlike most other methods is non-iterative and 

guaranteed to find the minimum snake. A detection algorithm is used to generate a list of 

uncertainty points for each seed. After that a search window is created from two consecutive 
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lists. The optimal contour passing through the two lists is calculated using a dynamic 

programming-based algorithm that considers all possible contours and their deformations. 

Dynamic programming is inherently slow and memory-consuming, therefore multiscaling is 

used to balance speed and curve optimality. When contour tracking finishes on one frame, 

the same contour is used to seed the contour matching on the next frame. 

 

A comprehensive review of active contours and their enhancements is presented by Krajíček 

in his mater thesis (15). 

 

2.3.2 Template Matching 

These methods work by recognizing a structure model (template) in the processed image. 

For the purposes of vessel segmentation, the arterial tree template is normally represented by 

a series of nodes connected in segments. That template is then deformed to match the 

structures in the scene. 

 

One of the simpler template matching methods applicable in angiography is the ellipse 

fitting (17). Intuitively, the algorithm tries to find the best way to match an ellipse to the 

image. From those parameters the center of ellipse is calculated and used as a point on a 

vessel walk path. 

 

First, the image is processed with Canny edge detection filter to find the set  . Then, the 

algorithm searches for the optimal conic section      {          } to fit the set  . 

Simply put, we want such a vector   for which all the points of   lie in     . A cone section 

is defined by the equation 

 

           
   (7) 

 

Where    [  
         

         ]. Solutions to this problem are given by Fitzgibbon and 

Fisher (17) and by Halíř and Flusser in (18). The former gives a direct approach to finding 

the parameters of the optimal ellipse with least-square fitting method. The latter work even 

provides a numerically stable, non-iterative method for finding an optimal  . Both methods 

are fast and have a good resistance to noise. 
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Figure 4: Left - part of head CT cross-section; Right - same image with Canny filter applied

1
 

 

The obvious problem with ellipse fitting is the Canny filter. It is necessary to use the filter 

properly, so that it finds points on the circumference of the vein cross-section only. As 

illustrated by Figure 4, the filter, as it is, does find edges, but not solely of veins. Therefore 

using this method on real-life data may be problematic due to limited robustness. 

 

 

 

  

                                                      
1
 Filtering performed online with http://matlabserver.cs.rug.nl/cgi-bin/matweb.exe 
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3 Vessel Visualization 

 

As this thesis is mainly oriented on segmentation, we will only give an overview of the 

Curved Planar Reformation (CPR) and three of its flavors as introduced by Kanitsar at al in 

(19). This method has been developed for visualizing veins and duct-like objects; therefore 

we will use it to visualize our results of segmentation in the next chapter, albeit in a slightly 

extended form. The CPR algorithm family basically displays the vessel within its small 

neighborhood. This dramatically reduces clutter and thus enhances the diagnostic 

possibilities. 

 

3.1 Curved Planar Reformation 

Visualizing vasculature in volumetric data obtained from CT scanners can be difficult, 

considering there is a lot of data of less interest. The typical rendering techniques like ray 

casting or maximum intensity projection (MIP) would be impractical due to extensive 

configuration requirements needed for proper visualization of veins. CPR has been 

developed precisely for that purpose (19). This method visualizes the whole length of the 

tubular structure in a single image. In this section, we will examine the three variants of this 

method. Each of them has different properties, like length preservation or spatial perception 

level. All of them, however, share a common prerequisite - the knowledge of vein centerline. 

A discretized representation as a list of points, preferably at sub-voxel resolution, will 

suffice.  

 

The methods visualize the surface that contains the vein centerline. In order to precisely 

define the surface, we need a vector of interest. A line-of-interest is defined by a point on the 

vessel centerline and the vector-of interest. The voxels intersected by that line are taken to 

form the visualization. 

 

3.1.1 Projected CPR 

The projected CPR is basically a projection of the data set, taking into account only the thin 

slice of voxels that are intersected by riding the line-of-interest along the vessel centerline. 

 

Without loss of generality, let us assume the vector-of-interest is collinear with the y-axis. 

Then projected CPR will do a parallel projection of the free-form surface along the x-axis. It 

may, of course, happen that the path of the centerline defines will make the line-of-interest 

pass one point in the projection space several times (e.g. a longer part of the vessel running 

along the x-axis or making a U-turn). In this case, the values are not simply overwritten, as 

this would cause some information loss. Instead, pixels are composited using a maximum 

intensity projection or averaging. These two methods are perhaps the most widely used 

visualization techniques for medical volumetric data. We will give a short peek into how 

they work in the fifth chapter. 
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Figure 5: Projected CPR: Left - vessel in  3D with the line-of-interest and the sampling plane 

described by those lines; Right - the visualization generated by projected CPR 

 

As a result of the parallel projection, spatial relations are still preserved in this projection. 

On the other hand, sections of higher intensity (bone) may occlude other lower-intensity 

sections (blood vessels), rendering them invisible. In addition to that, isometry is not 

preserved, which means that the real length of the vessel will appear distorted, especially if 

the vessel ever travelled perpendicularly to the projection plane. In addition to that, the 

vessel may be rendered incompletely, producing an image that very much resembles a 

stenosis, even in areas where the vessel is dilated due to the presence of an aneurism. 

 

3.1.2 Stretched CPR 

The surface defined by the lines-of-interest is curved in one dimension and planar in the 

other. Stretching that curved dimension into a plane will show the tubular structure without 

any overlapping. This is the main difference between projected CPR and stretched CPR. 

 

The curvature of the vessel is still mostly maintained. This method has another advantage as 

compared to projected CPR, and that is maintained isometry. The visualized vessel will 

appear curved, but despite that the actual length of the vessel can be estimated from this 

projection. However, just like with the previous member of the CPR family, smaller 

calcifications are likely to be hidden as a result of visualizing only one line-of-interest. 

Another undesirable feature that is shared with projected CPR is the possible incompleteness 

of vessel projection, which may mimic stenosis even in the areas where the vessel is 

widened. 
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3.1.3 Straightened CPR 

This type of CPR completely straightens the vessel and generates a linear representation 

with a varying diameter. As opposed to the other two methods, the line of interest is no 

longer necessarily parallel to axial slices. At each point, the tangent vector    of the curve is 

calculated. Local coordinate system at a point on the curve is defined by two perpendicular 

vectors    and   , (vessel normal and binormal, respectively) such that       and both 

        . The vector-of-interest lies in the plane defined by    and    and can be 

expressed as 

 

                    (8) 

 

Where   is the parameter of this projection. The local coordinate system is also illustrated in 

Figure 6. 

 

Figure 6: Local coordinate system on the walk along a vessel, showing the line-of-interest 

 

The most obvious disadvantage of this projection is the loss of spatial orientation which may 

occur due to complete straightening of the vessel. However, straightened CPR preserves 

isometry. Another serious edge this method has is the clear visualization of the vessel’s 

diameter. This allows for simpler detection of stenosis and the assessment of the vein’s 

cross-section size. 
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Figure 7: Straightened CPR: Right - the linearized curve 

 

The CPR as presented by (19), however, gives no information as to calculation of the vectors 

   and   . This is a problem that must be solved before using this method. A viable solution 

may involve using either the Frenet-Serret coordinates or the Bishop frame (20), further 

analyzed and used later in the thesis. 
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4 Designing Automatic Segmentation 

 

In this chapter we design a semi-automatic vessel segmentation algorithm and then expand it 

to a fully automated method. Furthermore, we will derive a visualization method based on 

existing CPR algorithms that will provide a potentially more precise visualization of the 

segmented blood vessels. Some details of the implementation including the interfaces 

required to extend our program with new segmentation or visualization algorithms are given 

in Appendix A. Additionally, Appendix B contains a brief overview of the program’s 

functions. 

 

4.1 Semi-Automatic Segmentation 

In this section we will design a semi-automatic segmentation method for contrast-agent-

enhanced blood vessels from CT data. This method will require seed points to start from. 

Basically we will use a region-growing algorithm on the individual slices and merge the 

results into a contiguous vessel sub-tree after processing each slice.  

 

Speaking more formally, the input of this part is the actual volume data and seed point 

coordinates. The algorithm outputs a vessel sub-tree composed of connected vessel 

centerlines. 

 

4.1.1 Region Growing Algorithm 

First, the region is initialized to a one-point set containing only the seed. We then use region 

growing only on the individual slices. A modified four-way single pixel recursive flood fill 

is utilized. The modification was necessary in order for the algorithm to cope with noisy data 

and involves allowing the flood fill to fill pixels whose value falls within some small interval 

centered at the seed point’s value.  

 

We also use two heuristics to prevent over-segmentation. Before even starting the region 

growing, we sample the seed point’s value. If it does not fall within the expected radio 

density interval that would indicate a blood vessel with a contrast agent, we search a small 3-

pixel neighborhood of that pixel. If none of the checked pixels comply with our criteria, the 

seed is rejected. As a result, the seed does not even need to be very precise, which may be 

useful for the automated seed generation, described later in the thesis. 

 

Obviously, we are trying to satisfy two mutually-exclusive conditions here. We want to 

prevent over-segmentation, yet we want our algorithm to reliably find the vessel. By 

constraining the threshold for vessel detection we can prevent the region growing algorithm 

from filling a greater area than it should, but with increasing noise the algorithm will provide 

more and more discontinuous regions. To take care of that problem, we left the vessel 

intensity interval rather narrow and implemented a hole-filling algorithm that will eliminate 
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spurious holes in the segmentation results on data with higher noise levels. The hole-filling 

algorithm simply finds the first and last positively detected pixel in each row and column 

and fills a solid line between these two points. Having a solid mask of the segmented region 

also helps the center detection algorithm in the next paragraph. 

 

4.1.2 New Seed Extraction 

Once we are done segmenting a slice we need to extract the point that represents this vessel 

cross section. We chose that point to be the center of mass, which can be calculated very 

quickly and has proven to match the vessel’s actual center well: 

 

  
 

   
 ∑ 

   

  (9) 

 

Where   is the set of points that the former segmentation step marked as belonging to the 

vessel. This center point is stored. As the next step we need to come up with the seed points 

for the segmentation on the next slice. We use the center, top center, bottom center, left 

center and right center points, in this order, as shown by Figure 8. All these seeds are passed 

to the region growing algorithm.  

 

 

Figure 8: Extracting seeds for the new slice 

 

Those seeds whose value (on the next slice) falls outside the expected interval for contrast-

enhanced blood vessels are discarded. If the flood-fill yields different masks for different 

seeds, the vessel is assumed to have split into as many branches as there were unique masks. 

If none of the seeds’ values indicate a blood vessel, the path is terminated at this point.  
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Figure 9: Vessel split detected 

 

For the very first slice we have segmented, we have no information in which direction to 

continue the segmentation. For that slice, we attempt segmentation on both previous and the 

next slice (if applicable) – simply put, we assume the vessel to go both ways. With the next 

slices, we proceed only in their respective directions as they are known at this point. 

 

4.2 Extending to a Fully Automated Mode 

At this point, we have a viable method to extract a part of the vessel tree given a point 

contained within the vessel. However, we want to detect all the vessels within our dataset. 

One option to accomplish this is to have the user select appropriate seed points for us. This 

task is indeed tedious as it involves more than just clicking on vessels, not that clicking on 

several dozen vessels would not be impractical enough. The user must also configure 

appropriate transfer function or HU window in order to see the veins. Here, we would like to 

present a method that reduces the process to one click and waiting a few seconds. 

 

The way we are going to do this is by combining the semi-automatic segmentation method 

described in section 4.1 with an algorithm that sweeps the volume data and generates good 

seed points for the segmentation engine. Processing speed is also a consideration; therefore 

we want our seed generator to be simple enough, yet able to reliably detect vein cross 

sections in the volume data slices. 

 

4.2.1 Filtering and Multiscaling Overview 

Even though obvious, it is important to note that our seed generator is run before the semi-

automatic segmentation algorithm, therefore it is dealing with raw non-segmented 

volumetric data. The seed generator parses the volume data in slices, in fact every sixth slice 

is processed. We justify this optimization by the fact that if a seed point indeed causes the 

segmentator to find a vessel, it is typically significantly longer than 6 slices. 
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The pipeline is relatively simple. In a nutshell, we first apply a Gaussian blur and an edge 

enhancing filer, namely Sobel. Exploiting the fact that vein cross-sections will appear mostly 

as circular or elliptic objects, we apply a Hough filter for circles. Following that phase, we 

have the ―neighborhood circleness‖ of every point in the slice. We then find the points that 

satisfy the minimal ―circleness‖ and cull away the clusters of points by means of local 

maximum-detecting algorithm that rejects points in close proximity to one another.  

 

Because the Hough transformation searches for circles of a particular diameter, it may have 

a lower and less localized response for circles that are of a different diameter. We therefore 

use the input slice in three scales (original size, 2x shrunk and 4x shrunk). This should give 

us a more adequate response for vessel sizes ranging from small (a few voxels in diameter) 

to large ones. The seeds from all three pipelines are then combined and duplicate values are 

removed. 

 

4.2.2 Edge Detection 

For edge detection we use a Sobel filter preceded by a Gaussian kernel filtering. Gaussian 

blurring is simply a convolution (21) of the original image with the appropriate kernel, for 

our purposes we use the following kernel: 
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Figure 10: The Gaussian kernel impulse response used for blurring 

 

The Sobel operator (22) is used next. Its output is the approximation of the image gradient at 

each point. We need only the magnitude of that gradient. To that end we estimate the 

horizontal    and vertical    derivative of the image values: 
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Where   is the matrix of original image values. We then combine these two derivative 

estimates to acquire the gradient magnitude estimate  , for all     indices of rows and 

columns of the image. 

 

        √  
         

        (11) 

 

4.2.3 Hough Transform for Circles 

After we are done enhancing the edges of the image, we run the well-known feature 

extraction method, the Hough transform, specifically its modification for finding circles. The 

Hough transform uses an accumulator array; its dimension is equal to the number of 

unknowns. In our case, we are interested in the position (x and y coordinates) of the circles 

of a particular diameter in the image. To that end a voting procedure is run. There are many 

papers on available, for instance (23) presents a voting scheme for efficient detection of lines 

and extends that on ellipses as well or (24) designs a method for recognizing circles of 

various radii. 

 

The algorithm normally processes the image space and updates the voting array 

appropriately when an edge (from previous edge detection) is hit. We do practically the 

same process, optimized by discretizing the searched circle. Every time our implementation 

hits a potential feature (edge) we update the cells of the voting array defined by the offsets in 

the pre-computed circle array. 

 

Even though the Hough transform for circles can be easily extended to detect circles of 

various diameters, due to robustness and performance reasons we have opted to detect 

circles of only one diameter, but on three down-sampled versions of the image. 

 

4.2.4 Seed Extraction 

The seed extraction algorithm operates in scan-line mode and uses one seed time-to-live 

(TTL) buffer for rejecting swarms of closely-packed positive detections. The idea is simple: 

For every line find the local maxima of image values and consider them potential seeds. To 

get rid of spurious false positives, we also apply a quick thresholding. Points that are local 

maxima, but the Hough transformation response at them was too low are ignored.  

 

Now, we try adding these seed candidates to the definitive seed list one by one, marking a 

small neighborhood (seedRadius pixels on either side) of that point as inhabited in the TTL 

buffer (for seedTTL next lines). When attempting to make a seed definitive, check the 
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appropriate cell of the TTL buffer. If it is already inhabited, discard that seed. After each 

line, decrement every cell of the TTL buffer by 1 (and clamp to zero). For details, see the 

pseudo-code in Figure 11. 

 

function ExtractSeeds(ref List<Point> finalSeeds) 

InitializeArray(ttl, 0) 

 

for y = 0 to imageHeight 

   for x = 1 to (imageWidth – 1) 

      if imageValue(x-1,y) < imageValue(x,y) >= imageValue(x+1,y) && 

         imageValue(x,y) > threshold then 

          

         if ttl[x] == 0 then 

            finalSeeds.Add(x,y) 

         end if 

          

         for i = (x – seedRadius) to (x + seedRadius)  

            ttl[i] = seedTTL 

         end for 

          

      end if 

   end for 

 

   for x = 0 to (imageWidth – 1) 

      ttl[x] = max(0, ttl[x] – 1) 

   end for 

end for   

  

end function 

Figure 11: The seed extractor pseudo-code 

 

In our application, the best balance between reliable positive detection and rejecting false 

positives was obtained by setting both seedTTL and seedRadius to 5 pixels. The TTL buffer 

values at all scanning lines when processing a sample input can be seen in Figure 14. Notice 

the algorithm rejecting a vast portion of the skull while recognizing most of the vessels. 

 

4.2.5 Summary 

To recapitulate the algorithm of our automated seed extraction, we extract the edges from 

the image at multiple scale ratios, apply a Hough transformation to find circular objects and 

extract seeds from the image. These seeds are then fed to the semi-automatic segmentation 

engine described in section 4.1. The seed generator, however, has no memory of seeds 

produced in its previous passes or of the vessel trees created by the semi-automatic 

segmentator. Therefore it may re-detect vessels that have already been processed. 
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To deal with this problem, we use a 3D search structure (in our case a uniform 3D grid) to 

store the locations of already segmented areas. Let us consider the vessel tree resulting from 

the segmentation. Its points could be considered small cylinders, whose axes lie on the 

vessel center line. We store them into our grid after every segmentation pass. So, when 

trying to extract seeds from the next slice, we check all the candidate seeds against that grid. 

If there is a collision, we assume that the vessel indicated by the candidate seed has already 

been processed and that seed is not passed to the segmentation stage. In Figure 14, these 

accepted and rejected seeds can be observed. The same seed culling procedure is applied on 

data from other scales using the same instance of the grid. 

 

 

Figure 12: Left - original slice; Right - Gauss-filtered slice 

 

Figure 13: Left - response of the Sobel edge detection filter; Right - output of the Hough 

transform 
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Figure 14: Left - output of Hough transform with recognized seed points (green - accepted, 

red - rejected); Right - TTL buffer of the seed extraction algorithm at each line with 

recognized seed points 

 

4.3 Visualization 

Now that we can segment a path or a tree of a vessel given a seed and also automatically 

generate such seeds, we need to properly visualize the user-selected part of that tree. We will 

use a modification of straightened CPR described in the previous chapter. Our version of 

CPR will, not unlike the other versions, ride the centerline of the vessel and generate cross-

section snapshots of that vessel at regular intervals. This is the difference from straightened 

CPR that only extracts one line-of-interest from these vessel cross-sections. We then take 

these extracted cross-sections and stack them onto one another creating a new volumetric 

image that we will visualize by an appropriate method.  

 

Furthermore, (19) was somewhat unclear as to calculating the   and   vectors that would 

define our cross-section plane. We will use the Bishop frame to calculate these so that our 

visualized vessel is subjected to as little twist as possible, which should further improve the 

visualization. 

 

4.3.1 Curve-Local Coordinate System 

In order to provide optimal   and   vectors for our CPR variation (Figure 15), we need to 

construct a local coordinate frame on every point on the vessel centerline as we traverse it. 

There are several known methods to construct a local coordinate frame on a space curve. 

These include the Frenet frame and the Bishop frame. 
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Figure 15: The local frame on the curve 

 

Both the Frenet and Bishop frames generate the first derivative of the tangent  , normal   

and binormal    vectors using the parameters of the curve. The Frenet frame is defined (20) 

as: 
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Where   is the local curvature of the curve, otherwise defined (25) as the reciprocal of the 

osculating circle radius and   is the curve torsion. Curve torsion (26), in the simplest of 

terms, can be understood as the amount by which the curve’s osculating plane changes. The 

Frenet frame, however,  imposes further restrictions on our space curve  . It requires that 

     and that   be non-degenerate, in other words, the curve’s derivatives    and     be 

linearly independent. 

 

The other approach we are considering is the Bishop frame, otherwise known as the parallel 

transport frame. It is defined by the equation: 
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Where    and    are coefficients for whom: 
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And 

 

         (15) 
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Where 

           
  

  
  (16) 

 

Effectively,    and    are the Cartesian coordinate equivalents for the polar coordinates    . 

There is another feature of the Bishop frame that makes it more appealing to us, that is 

requires only   -continuity for our space curve and the non-zero first derivative of the 

curve,   . 

 

We obviously need to calculate the    and    coefficients. We do this by simply projecting 

the vessel tangent vector of the next sampling onto the current   and  , as is illustrated by: 

 

               

                
 (17) 

 

         being the vessel tangent, normal and binormal vectors, respectively at the position 

 . And of course, all of these vectors are normalized. 

 

In our implementation we may need to walk the curve with a greater resolution than the 

segmatation yielded. To achieve sufficiently smooth results, we calculate the cutting plane 

vectors at two successive centerline points       and linearly interpolate the normal and 

binormal vectors. 

 

 

Figure 16: Set-up for interpolating  the u and v vectors with sub-slice precision 

 

So, in our implementation when starting the visualization, we know the seed point and the 

curve tangent at that point. As the frame transport provides only first derivatives of the   

and   vectors, we need to calculate their initial values. We do this simply by determining 

which axis vector is at the greatest angle to the vessel tangent. This vector is then projected 

to the first vessel cutting plane and normalized to a unit-vector.  

 

Then the other vector is calculated as the cross product of the tangent and our previously-

calculated vector      . This makes it perpendicular to both vectors, which exactly fits 

the bill. 
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4.3.2 Extracting Cross-Section Images 

At this point, we have the local coordinate system at each point of the curve defined. The 

next step would be to calculate the cross-section rectangle     . We define the necessary 

points as 

 

          

          

          

          

 

 (18) 

Where   is the parameter that defines how large the sampled vessel cross-section will be. 

Now that the corner locations for the cross-section rectangle are known, we sample every 

point in that rectangle (      points for the sake of completeness). Smooth sampling is 

accomplished by using trilinear interpolation.  

 

4.3.3 Visualizing the Cross-Section 

After the individual vessel cross-sections have been sampled and stacked one onto another, 

we need some way of visualizing this volume data. We implemented two methods, the 

maximum intensity projection (MIP) and a modification that calculates the average value of 

the ray-bounding box intersection path, which we will simply call averaging (AVG). Both 

are well known and simple enough to implement efficiently. Due to the proportions of the 

volume box we need to visualize, particularly its large width and small height and depth, we 

chose to render it without perspective. Therefore we use a perpendicular projection. 

 

Maximum intensity projection is a simple method that basically shoots a ray from the 

camera through the visualized volume. If the volume is not intersected, the corresponding 

pixel is left black (or at the background color). A more interesting case occurs when the ray 

does hit the volume. A ray can be defined using the parametric expression: 

 

        (19) 

 

Where   is the ray origin and   is its direction. Using an analytical expression of the 

volume’s bounding box we will get the parameters,    and   , of the places where the ray 

will enter and leave the volume bounding box as depicted in Figure 17.  
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Figure 17: Ray intersecting a box 

 

When these parameters are known, the MIP in that pixel can be expressed as: 

 

       {                     } 

 
 (20) 

The quantity      is the value of voxel at the position  . In essence, as it name may hint, it 

is the maximum image value along the ray’s path (27). The other projection, AVG does not 

differ much. It is calculated as the average value along the ray’s path, instead of maximum. 

The equation then becomes: 

 

    
 

     
 ∫           

  

  

  (21) 

 

As we are dealing with voxel grid, the equations 20 and 21 can be discretized and simplified 

to nothing more than a maximum or an average of voxel values along the corresponding row 

or column of the straightened vessel image. This simplification proves useful in optimizing 

the implementation. 

 

As the speed tests in the next chapter will show, this method is slower than normal 

straightened CPR as a result of extracting the whole vessel cross-section square, rather than 

just one line-of-interest. This speed degradation can be alleviated by a more coarse 

quantization of the   parameter in Equations 20 and 21. We have implemented such 

subsampling by reducing the number of depth samples in the cross-section extraction stage. 

This subsampling ratio is configurable and provides a good way to balance speed and 

rendering quality. The speed gains are measured in the next chapter. 
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5 Results 

 

In this chapter we will examine the results given by our segmentation and visualization 

methods. We will test the stability and precision of the segmented path on two synthetic 

datasets with varying amount of added noise. Next, comparisons between straightened CPR 

(as shown in (19)) and our enhanced CPR will be given. Finally, the speed of seeded 

segmentation, automated segmentation and visualization will be compared on a mainstream 

desktop PC. 

 

5.1 Results on Synthetic Data 

We generated two sets of synthetic data to use for testing the methods proposed in this 

thesis. Both sets were volume images, 256x256x256 voxels large. The first one contained a 

straight vertical vessel with its background filled with varying levels of white noise. The 

other set contained a single helix, again, with varying amounts of noise. We tested the 

precision of the detected vessel path compared to the path our generator created. The second 

test concerned the visualization. Our synthetic data has been generated by a little utility we 

designed for this purpose. Further details are in Appendix C. 

 

5.1.1 Testing Segmentation Stability 

For the purposes of testing the stability and precision of our semi-automatic segmentation 

algorithm we generated two sets of synthetic data. This test examined how precise the 

segmented path is with respect to the level of additive white noise. We compared the 

segmented path node by node to the intended path (used by the generator). The Euclidean 

distance between the intended and detected positions was our error metric. 

 

 

Figure 18: Synthetic testing data, both with no noise added: Left - straight tube; Right - 

single helix 
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The noise in our test images is a spectrally unfiltered noise sampled from a random number 

generator (we assume the generator’s output values are uniformly distributed) and scaled to 

the desired amplitude. 

 

 

Figure 19: Segmentation error in detecting the centerline of the straight line data 

 

 

Figure 20: Segmentation error in detecting the centerline of the helix data 

 

As indicated by the results in Figures 19 and 20, the semi-automatic segmentation copes 

well with noise in the synthetic datasets as long as the noise stays out of the region growing 

algorithm’s tolerance. However, even with the white noise strong enough to reach well into 

the threshold interval of the region growing (noise levels 252 and 254), the vessel centerline 

is misdetected only by less than half of a voxel. 
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5.1.2 Visualization Test 

The visualization test on synthetic data consisted of running the visualization on a part of the 

segmented synthetic vessel and looking for any visible artifacts. Figure 22 shows the same 

segment of an artifical vessel with three different noise levels traced and visualized. Note the 

vessel in the bottom part of Figure 22 is barely distinguishable by the human eye, however 

the segmentation engine managed to calculate its path with very little error. Figure 21 shows 

that same vessel segment in 3D space. 

 

 

Figure 21: The helix, its visualized part is highlighted with a thick line along its center 

 

There are also no serious visible artifacts from the vessel path sampling, path miscalculation 

or local curve frame discontinuity. The jagged edges visible in noiseless image are caused by 

the fact that the synthetic vessel data itself was not antialiased. Thus, the visualization 

appears to be performing within the expected parameters. 
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Figure 22: A visualized segment of a vessel (MIP projection), Top - no noise, Center - noise 

level at 128, Bottom - noise level at 252 

 

As stated in previous chapters, spatial orientation can be somewhat difficult with 

straightened CPR (19). Because our MIP-CPR and straightened CPR are closely related, it 

would stand to reason that our visualization method inherit the same problem. A closer 

inspection of the results, however, shows these effects somewhat mitigated. Figure 23 

contains two renderings of the same vessel segment with two different methods configured 

with the same values.  

 

The comparison clearly shows the straightened CPR with considerably less clutter. The line 

of interest, obviously, did not intersect any other significant features. In contrast to that, our 

method extracts a whole rectangle-of-interest capturing more of the vessel’s surroundings 

which are visible in the MIP rendering. Vessel bifurcations are clearly visible, giving more 

clues to the vessel’s spatial orientation. However, only experience may show if the increased 

computational demands of this method are sufficiently justified by these visual 

enhancements.  

 

 

Figure 23: A blood vessel segment Left - visualized with MIP-CPR, Right - visualized with 

conventional straightened CPR 

 

5.2 Results on Real Data 

As our real-life datasets, we used a CT scan of a human head with a contrast agent applied. 

This is a rather complex dataset with vessels ranging from moderately large to small, 

running perpendicular to the slices or almost parallel. The data contains some noise and 

many of the vessels are embedded in the brain or running close to the cranium. There is also 

considerable branching and curvature of the vessels. 
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Figure 24: The section of human head that we used as the real-world data, angio1 

 

We used the dataset in Figure 23 for testing the automatic segmentation. 

 

 

Figure 25: The vessel tree detected by our segmentation methods in the human head cross 

section (inverted colors) 

 

5.3 Speed Tests 

We ran our speed tests on a desktop computer. It features an Intel Core i7-920 processor 

with 3x 1GB DDR3-1066 and runs an x86-64 version of Microsoft Windows 7. Our speed 

tests included semi-automatic segmentation of short vessels, automated segmentation of two 

models and visualization in three different modes.  
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5.3.1 Semi-Automatic Segmentation 

For this test, we used a simple setup. On the loaded model angio1 we manually induced 

segmentation on several spots that contained vessel cross-sections. We then measured the 

time it took to finish segmentation of that vessel subtree. We also recorded the count of 

nodes produced by the segmentation procedure so that we can calculate time per one node. 

 

Our test sample included chains of 32 to 77 nodes. The shortest took 11 milliseconds to 

segment, producing a speed of 1727 nodes per second, further referred to as nps. The longest 

chain took 40 ms, resulting in a speed of 1925 nps. These faster processing speeds with 

longer chains are probably the result of one-shot memory management overhead amortized 

over a longer real processing time. 

 

5.3.2 Automatic Segmentation 

In this test, we examined the processing speed of automated segmentation. The test consisted 

of measuring the time taken by the full automatic segmentation of both angio1 and angio2. 

We also counted the total number of vessel nodes produced in the segmentation. The results 

are given in Table 2. 

 

 nodes time speed 

angio1 1489 4.78 s 311.5 nps 

angio2 4072 15.42 s 264 nps 

Table 2: Fully automatic segmentation speed results 

 

As the results indicate, the vessel node generation speeds appear almost an order of 

magnitude slower than those of semi-automatic segmentation even with short strands. It 

must, however, be kept in mind that the automatic segmentation does considerable image 

processing and seed extraction before the semi-automatic segmentation part can be executed. 

Using the estimates of semi-automatic node generation speed and the automatic speed, we 

can estimate how much time is consumed with preprocessing and how long the actual 

segmentation takes. For this estimation we will assume a processing speed in the middle of 

the interval produced by testing in the previous section, 1825 nps. 
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Figure 26: The estimated fractions of time spent on segmentation and image filtering 

 

For the smaller image, angio1 we estimated that segmentation ran only 0.82 seconds out of 

the total 4.78 seconds. This indicates filtering taking the vast majority of processing time, 

almost 83%. This difference is even more pronounced in the other sample, angio2. The total 

filtering time reached above 85.5%. This could be explained by the fact that the farther the 

automatic seed generation proceeds, the more of the vasculature has already been processed. 

This results in higher seed rejection ratio, however the same amount of time must be taken to 

generate these seeds in the first place. Consequently, more time is spent doing filtering.  

 

In any event, the filtering is a bottleneck in this case. Fortunately, seed generation can be 

made to run parallel as the individual slices on which the filtering is done are in no way 

interdependent. Further acceleration can be achieved by running filtering and seed extraction 

on GPGPU, whose massive parallelism is well suited for such tasks. These enhancements 

will be left for future improvements. 

  

5.3.3 Visualization 

This test examines the speed of our visualization methods. Again, we measured the time 

necessary to visualize a vessel segment given the appropriate vessel tree and a starting node. 

We compared the two methods proposed in this thesis, MIP-CPR and AVG-CPR. To put 

these results in context, we also implemented and tested standard straightened CPR as 

introduced by (19). The test itself was run on all three methods with the same vessel segment 

and other parameters (e.g. line-of-interest size, tracking step, initial normal rotation). 

 

The tests were run on all three methods with equal parameters. The square-of-interest was 

48x48 pixels large; in the case of straightened CPR the line-of-interest was set to 48 pixels 

length. The initial rotation of the Bishop frame was set to 0 degrees in all three cases. The 

vessel was tracked in length increments of 0.1. In total, 414 slices of the vessel were 
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extracted by each method. The Table 3 shows the average times taken to visualize the 

common vessel segment. 

 

 MIP-CPR AVG-CPR Straightened CPR 

Average time 330 ms 340 ms 19 ms 

Slices per second 1254 1217 21783 

Table 3: Visualization speed test results 

 

The results show the Straightened CPR is more than an order of magnitude faster than our 

new methods, MIP-CPR and AVG-CPR. This is, however, not surprising considering the 

fact that these methods sample the volume data in      points as opposed to the 

straightened CPR’s     points, where   is visualized path length and   is the square-of-

interest edge size or the line-of-interest size, respectively. These processing times are still 

not exceedingly long and these methods can be safely called interactive. The speed issue is 

further mitigated by the fact that our enhanced CPR produces images with more spatial 

context, simplifying orientation. 

 

 

Figure 27: MIP-CPR calculation time depending on depth subsampling level 

  

Furthermore, the speed and visualization quality can be balanced by reducing the number of 

depth samples for the projection. To enable such balancing, we implemented such 

subsampling and tested in the same conditions as the previous part of this test. Our results 

show that even 6x or 8x subsampling produce images of acceptable visual quality and come 

much closer to straightened CPR execution time. The same vessel segment took 19 

milliseconds to visualize with straightened CPR and 57 ms with 8x subsampled MIP-CPR. 

The image rendered with subsampled MIP-CPR kept most of the features of the fully-
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sampled one, yet took only about one seventh of the time to calculate. Albeit still several 

times slower than straightened CPR, the method is obviously fast enough, potentially 

producing about 18 frames per second of visualized data on our testing computer. Further 

speed improvements can be made by implementing the visualization in parallel or on a 

GPGPU. 
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Conclusion  

 

This thesis provides an overview of the segmentation and visualization methods used in 

medical applications, especially in angiography. We have also designed and tested a system 

for blood vessel segmentation and visualization on CT data with contrast agent applied. We 

divided that system into three distinct parts: semi-automatic vessel segmentation, automated 

seed generation and visualization. 

 

We used a region growing algorithm to determine the vessel cross section in a particular 

volume data slice. Several enhancements and heuristics were used to improve the 

performance of this method, most notably an over-segmentation prevention heuristic and a 

hole-filling algorithm to improve the algorithm’s stability on noisy data. The results of 

segmentation on individual slices are converted on-the-fly into a vessel graph, allowing for 

branching. A centerline detection algorithm based on center of mass calculation has proven 

sufficiently precise on both synthetic and real-life data. 

 

The automatic seed generation part of our system consists mainly of image filtering. First, 

we extracted the edges with a Sobel filter preceded by a Gaussian blur. Exploiting the fact 

that blood vessels will mostly appear as small circular objects (unless their path is almost 

parallel to the slice plane) we used a Hough transform for circles to find the blood vessel 

candidates. This is done in multiple scales to enable detection of vessels of different sizes. 

We then designed a simple algorithm for extracting seeds from images processed with the 

above-mentioned chain of transformations that immediately rejects false positives created 

mostly by large objects that are not vessels and generates but one seed for a detected vessel. 

This list of vessel candidates or seeds is fed to the semi-automatic segmentation engine. To 

avoid running the segmentation repeatedly on already processed vessels, and consequently 

improve processing speed, we used a uniform grid structure for storage and fast detection of 

previously segmented areas. After the automated segmentation is done, a fast sweep 

eliminates very short disjoint vessel paths, which were probably falsely detected and 

attempts to join the existing vessel paths into larger structures. 

 

For visualization, we modified the well-known straightened CPR to display not only a single 

line-of-interest, but to construct a vessel projection from its whole cross-section. The method 

has proven slower than original straightened CPR; however we believe that while very small 

vessel calcifications, especially on larger vessels may not be reliably captured by 

straightened CPR, our method should show them. By capturing the whole surroundings of 

the vessel, our method provides potentially better spatial orientation based on the output 

image. For balancing the visualization speed and quality, we use depth subsampling that 

reduces the number of columns calculated in the cross-section sampling stage and 

significantly improves processing time. We also used a Bishop frame to slide the cutting 
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plane along the vessel’s path in a manner that would produce minimal twist to further 

improve the visualization. 

 

Despite the encouraging results on synthetic data and our real-life data, there is still room for 

improvements in the areas of processing speed and possibly noise resilience. To that end, 

automatic seed generation can be made to run in parallel by processing several slices 

simultaneously. Noise resilience may be improved by modifying our region-growing 

algorithm with additional heuristics or replacing it entirely. Semi-automatic segmentation 

can be run in parallel as well, the only difficulty being synchronization of the grid structure 

that prevents re-segmentation of already processed vessel segments. Our visualization 

method, MIP-CPR is sufficiently fast even with little Z-subsampling, albeit slower than 

conventional stratightened CPR. If required, speed improvements could be gained by 

running the cross-section extraction in parallel or on a GPGPU.  
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A Programmer’s Guide 

 

The VesselVisualizer solution consists of two projects. The first one, VesselVisualizer 

is the project that implements all the segmentation and visualization techniques we designed 

in Chapter 4 and the UI for displaying the results. The second project is the VL library 

designed and implemented by Hlaváček in (28) and modified to use the OpenTK library 

instead of Tao for interfacing OpenGL in .NET environment. Therefore we will discuss only 

the first project, VesselVisualizer. 

 

In order to add new segmentation or visualization methods, the programmer should be aware 

of two interfaces – IVesselVisualization and IVesselSegmentation. Complete 

programmer’s reference can be found on the attached CD. 

 

A.1  IVesselSegmentation interface 

This interface must be implemented by all semi-automatic methods. Its methods provide for 

seeded segmentation of a vessel in a volume data slice, extracting the seed from a previously 

segmented mask and for extracting the vessel subtree indicated by a seed. 

 

bool SegmentMask(IVolume vol, Point seed, int slice, ref BitMask2D mask); 

This method starts segmentation at the position indicated by arguments seed and slice in 

the volume data vol. The segmented parts are returned in the mask output argument by 

setting the cells that correspond to vessel location to MASK_TRUE. Method returns true if 

segmentation succeeded and false if segmentation failed for any reason. 

 
bool ExtractSeed(BitMask2D mask, out PointF seed); 

The method extracts the seed for the segmented vessel defined by the mask argument and 

returns it in the seed output parameter. true is returned if the seed has been extracted and 

false if the extraction failed for any reason (like empty mask). 

 
bool CreateVesselTree(IVolume vol, Point seed, int seedSlice, out 

VesselTreeNode root); 

This method is called by the framework to extract maximum possible portion of the vessel 

graph starting at the seed point on the slice seedSlice. The vessel subgraph is returned in 

the root argument. The method is to return true if the operation succeeded and false 

otherwise. 

 

A.2  IVesselVisualization interface 

The IVvesselVisualization interface must be implemented by all vessel visualization 

algorithms. Its methods provide for configuring input and output parameters and for two-

stage rendering. The rendering part is deliberately split into preprocessing and rendering 
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itself. This enables greater efficiency in dealing with repeated visualization of the same 

vessel segment but with different parameters (like viewing angle). 

 

bool SetVolume(IVolume vol); 

This method sets the volume data to be further used by the visualizer. The call ends with 

true if the volume data is valid and with false if the data cannot be used or an unexpected 

error has occured. 

 
bool SetOutputParams(int sliceCount, int crossSectionSize, float 
crossSectionSpacing, float rotation); 

The SetOutputParams method configures the visualization. Upon the next rendering, the 

visualizer will attempt to render sliceCount vessel cross sections, crossSectionSize 

pixels large. The vessel will be cut and sampled in crossSectionSpacing voxels increment. 

The rotation argument sets the initial roation of the transport frame along the vessel path, 

in degrees. A successful call returns true, while false is returned when the parameters are 

invalid. 

 
bool Preprocess(VesselTreeNode start, out List<Point3F> path); 

Preprocessing is initialized with this method. The parameter start indicates at which vessel 

graph node to start visualizaion, the output argument path will hold the list of points along 

the vessel center line traversed when visualizing the vessel. The method returns true if the 

preprocessing succeeded and Render can be called, false otherwise. 

 
bool Render(Bitmap bmp); 

This method converts the preprocessed data into a System.Drawing.Bitmap object bmp that 

can be instantly dipslayed. When all succeeds, true is returned, false indicates failure and 

in that case the bitmap will contain invalid data. Please note that the bmp argument contains 

an already created and initialized bitmap. 
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B User Documentation 

 

The user interface (UI) of the application has been designed to provide fast and intuitive 

access to its functions. In this appendix we will give a brief overview of the main window 

and the functions it provides. 

 

B.1  User Interface 

The main window consists of four main elements, as shown: 

1. Volume cross-sections view 

2. Direct volume rendering of the volume data, with segmented mask and vessel tree 

3. Vessel visualization window 

4. Configuration side-bar 

 

 

Figure 28: The main window of VesselVisualizer 

 

Now, let us  briefly list the functions of the main window’s respective parts. Part 1 gives a 

view of three cross-sections of the loaded volume: coronal, saggital and transversal. The 

planes defining the cross-section can be shifted along their normals by the scroll bars in the 

bottom part of this window element. The view of all three cross-sections automatically 

updates as any of the scroll bars is shifted. Furthermore, this window is used for seeding the 

semi-automatic segmentation. After the user clicks on the desired point in any of the three 

cross-section visualizations a point appears both in 2D and 3D visualization to simplify 

ascertaining its position. When the user is satisfied with the seed’s position, clicking the 

Seeded button in element 4 starts the segmentation. 
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Element 2 is the direct volume rendering of the loaded volume data. A file can be loaded by 

using the File>Open… menu item. Supported files include RAW volume files and DICOM. 

Processing is, however, enabled only on 8-bit RAW files. The volume rendering transfer 

function can be adjusted in the side-bar. Model can be rotated by holding down the middle 

mouse button and dragging. The field of view and incidentally zoom can be altered with the 

mouse wheel. This window also visualizes the mask of the segmented vessels in red and the 

vessel tree if configured to do so in the side-bar. Clicking a vessel in this window causes the 

visualization to be calculated starting at the selected point. Then the visualization is 

displayed in element 3. When this is done, the visualized segment is highlighted with a thick 

line in the volume rendering to ease the orientation in both images. 

 

The configuration side-bar provides controls for three separate parts of the program: volume 

visualization, segmentation and vessel visualization. Let us go through them one by one. 

 

 

Figure 29: The configuration side-bar 

 

The volume rendering part allows for volume rendering transfer function modification even 

for individual color channels. The Quality slider adjusts the number of samples taken when 

sampling the volume data per ray. A higher value gives better rendering quality, but the 

rendering performance may deteriorate. Next, the checkboxes set whether or not to visualize 

the vessel tree produced by the segmentation and the specific part of it used for vessel 

visualization. 

 

The next part is rather Spartan, this was however the intent. The Seeded button starts the 

semi-automatic segmentation given a seed in the 2D cross-section view. The Automatic 

button starts the automatic segmentation whose progress is shown in the status bar and 

intermediate segmentation results are shown in the 3D volume view as it proceeds. The 

checkbox enables showing debugging outputs for the automated segmentation. After each 

pass, a window is shown containing the responses of all the filters used and the positions of 

the generated seeds. 

 

The final part of the side-bar facilitates the configuration of our visualization methods. From 

top to bottom, Projection type selects the vessel visualization mode. The following modes 

are supported: 
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 Maximum Intensity (MIP-CPR) 

 Averaging (AVG-CPR) 

 Straightened CPR 

 

W-O-I size sets the visualization radius. The line-of-interest will be twice the length of W-O-

I size and the square-of-interest for our methods will be twice the W-O-I size in both height 

and width. Tracking step sets in how large increments the vessel will be tracked. Initial 

rotation specifies the angle by which the vessel normal will be rotated around its tangent the 

first time it is calculated. Basically it rotates the line-of-interest around the tangent for 

straightened CPR and sets the camera’s position for rendering the generated volume of the 

vessel in the other two methods. The control’s range is full 360 degrees. Z subsampling sets 

by what ratio the depth of the generated vessel volume will be subsampled. Setting higher 

values increases calculation speed but reduces the rendering quality. Finally, the Update 

view button applies the configuration changes and re-visualizes the previously selected 

vessel segment. 

 

B.2 Hardware and Software Requirements 

The application was built with the Microsoft .NET 3.5 framework and thus requires these 

files to run. An installation package
2
 is included on the thesis CD. 

 

The hardware requirements are dictated mostly by the VL library. A graphics adapter with 

Shader Model 3 or higher is required. This includes NVidia GeForce 6xxx series or later and 

ATI X1xxx series or later (28). Testing has shown that the program runs on Intel HD 

Graphics as well, however this is not recommended due to maximum volume texture size 

limitations
3
 of that graphics adapter. 

 

  

                                                      
2
 Downloadable from https://www.microsoft.com/download/en/details.aspx?id=21 

3
 Maximum 3D texture size limited to 256x256x256, insufficient for CT data 
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C Synthetic Data Generator Utility 

 

In this thesis we relied in part on synthetic volume data, specifically the straight vertical 

vessel and a single-round helix with varying amounts of noise. To reliably generate such 

data we implemented a simple utility. Two patterns both of which we used in this thesis can 

be generated. Additive white noise level can also be configured. The size of the volume is 

hard-coded to 256x256x256 to allow for testing on less capable graphics hardware. 

 

 

Figure 30: The main window of testing data generator utility 

 

Three files are generated in one session: 

 The raw volume data itself 

 A header describing the size and bit depth of the data conforming to what our testing 

program uses 

 A comma-separated-values sheet containing the point coordinates along the 

centerline of the artificially generated vessel for segmentation path stability testing 

 

This utility is written in Microsoft Visual C++ 2008 SP1 and thus requires the appropriate 

runtime libraries
4
. An installation package for these libraries, the program itself and its 

source codes are, of course, included on the attached CD. 

 

  

                                                      
4
 Installation package also downloadable from 

https://www.microsoft.com/download/en/details.aspx?id=5582 
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