
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Ján Dupej

Vessel segmentation

Department of Software and Computer Science Education

Supervisor of the master thesis: RNDr. Josef Pelikán

Study programme: Informatics

Specialization: Software Systems

Prague 2011

2

I would like to express my gratitude to my consultant, RNDr. Josef Pelikán for the valuable

advice and assistance he has provided.

3

I declare that I carried out this master thesis independently, and only with the cited sources,

literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No. 121/2000

Coll., the Copyright Act, as amended, in particular the fact that the Charles University in

Prague has the right to conclude a license agreement on the use of this work as a school

work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague, August 4th, 2011 Ján Dupej

4

Název práce: Segmentace cév

Autor: Ján Dupej

Katedra / Ústav: Katedra software a výuky informatiky

Vedoucí diplomové práce: RNDr. Josef Pelikán, KSVI

Abstrakt:

V téhle práci je podán přehled některých dostupných segmentačních a visualizačních technik

pro angiografii na CT datech. Dále je v práci navrhnut, implementován a otestován systém

který umožňuje jak poloautomatickou, tak automatickou segmentaci cév a jejich visualizaci.

Pro segmentaci a trasování cév byl použit algoritmus narůstání oblastí vylepšen o několik

heuristik a spojen s detekcí středu cévy. Potom byl tenhle algoritmus automatizován pomocí

automatického generování počátečných bodů pro segmentaci. Visualizace je

implementována jako adaptace známé metody straightened CPR, která byla rozšířena na

visualizaci celého průřezu cévy, nikoliv jen jedné čáry na průřezu. Jako další vylepšení byla

použita Bishopova soustava souřadnic pro minimalizaci krutu cévy při sledování její

průřezu.

Klíčová slova: segmentace cév, analýza medicinských dat, objemová data

Title: Vessel segmentation

Author: Ján Dupej

Department / Institute: Department of Software and Computer Science Education

Supervisor of the master thesis: RNDr. Josef Pelikán, KSVI

Abstract:

In this thesis we researched some of the blood vessed segmentation and visualization

techniques currently available for angiography on CT data. We then designed, implemented

and tested a system that allows both semi-automatic and automatic vessel segmentation and

visualization. For vessel segmantation and tracking we used a region-growing algorithm that

we overhauled with several heuristics and combined with centerline detection. We then

automated this algorithm by automatic seed generation. The visualization part is

accomplished with an adaptation of the well-known straightened CPR method that we

enhanced so that it visualizes the whole cross-section of the blood vessel, instead of just one

line of it. Furthermore, we used the Bishop frame to maintain minimal twist of the curve-

local coordinate system along the whole vessel.

Keywords: vessel segmentation, medical data analysis, volume data

5

Contents

Contents .. 5

Introduction .. 7

1 Computed Tomography .. 8

1.1 Basic Principles .. 8

1.1.1 Image Reconstruction .. 9

1.1.2 The Hounsfield Unit... 10

1.1.3 Processing the Data .. 11

1.2 Angiography with CT .. 11

2 Vessel Segmentation ... 13

2.1 Challenges .. 13

2.2 Pattern Recognition Methods ... 14

2.2.1 Multi-Scale Approaches ... 14

2.2.2 Centerline Detection Algorithms ... 14

2.2.3 Region Growing Algorithms .. 15

2.2.4 Vessel Tracking by Calculating Minimal Path .. 15

2.2.5 Mathematical Morphology ... 15

2.3 Model-based Approaches ... 16

2.3.1 Deformable Models.. 16

2.3.2 Template Matching .. 17

3 Vessel Visualization ... 19

3.1 Curved Planar Reformation ... 19

3.1.1 Projected CPR .. 19

3.1.2 Stretched CPR .. 20

3.1.3 Straightened CPR ... 21

4 Designing Automatic Segmentation ... 23

4.1 Semi-Automatic Segmentation .. 23

4.1.1 Region Growing Algorithm ... 23

4.1.2 New Seed Extraction .. 24

4.2 Extending to a Fully Automated Mode .. 25

4.2.1 Filtering and Multiscaling Overview ... 25

6

4.2.2 Edge Detection ... 26

4.2.3 Hough Transform for Circles ... 27

4.2.4 Seed Extraction .. 27

4.2.5 Summary .. 28

4.3 Visualization .. 30

4.3.1 Curve-Local Coordinate System .. 30

4.3.2 Extracting Cross-Section Images ... 33

4.3.3 Visualizing the Cross-Section .. 33

5 Results ... 35

5.1 Results on Synthetic Data .. 35

5.1.1 Testing Segmentation Stability .. 35

5.1.2 Visualization Test .. 37

5.2 Results on Real Data .. 38

5.3 Speed Tests .. 39

5.3.1 Semi-Automatic Segmentation .. 40

5.3.2 Automatic Segmentation .. 40

5.3.3 Visualization .. 41

Conclusion .. 44

A Programmer’s Guide ... 46

A.1 IVesselSegmentation interface .. 46

A.2 IVesselVisualization interface.. 46

B User Documentation .. 48

B.1 User Interface ... 48

B.2 Hardware and Software Requirements... 50

C Synthetic Data Generator Utility .. 51

Bibliography ... 52

7

Introduction

Computed tomography, often abbreviated as CT or CAT scan, is a fairly routine medical

examination these days. A three-dimensional image of the scanned subject is generated by

measuring the attenuation of X-ray radiation passing through the subject. Even a simple scan

yields massive amounts of data that must be efficiently processed and transformed to

something that is humanly readable and understandable. To that end we need software that

can work with such data.

Probably the simplest way of analyzing this three-dimensional (3D) volumetric data is by

examining the individual slices. This approach is still preferred by many physicians,

however proper diagnosis might be increasingly difficult in the case of veins. The cause of

this problem is mainly that veins (even when injected with contrast agents) appear as very

small circular or elongated objects, depending on their orientation, and it is therefore

difficult to make a statement as to the physical dimensions or the general spatial location of

the vessel based only on one visible slice. Computer graphics methods may, however,

alleviate this problem considerably.

There has been some work done in these areas. The results include automatic or semi-

automatic segmentation of these organs with respect to aggravating factors such as noise in

captured images. Furthermore, there are visualization techniques that will effectively display

the vessel as it would appear laid on a straight plane or even stretched to a linear shape. In

this thesis we will design and implement algorithms for such segmentation and visualization,

trying to improve on existing methods. We will then compare our results to some of the

existing visualization methods.

8

1 Computed Tomography

The first laboratory CT scanner has been built in 1967 by Godfrey N. Hounsfield at the

Central Research Laboratories of EMI Ltd. The specimen was scanned from 360 uniformly

distributed directions. The data acquisition took whole 9 days, because of the low intensity

of the used gamma radiation source. After that, the 3D image had to be reconstructed. This

took about 150 minutes on a period computer. (1)

Since then, significant improvements have been made resulting in the first clinically

available device, installed at Atkinson-Morley Hospital in September 1971. Image

acquisition time was about 4.5 minutes, which is rather lengthy by today’s standards,

however significantly faster than Hounsfield’s prototype. The first patient was scanned by

this device on October 4th, 1971. (1)

Independently of Hounsfield, Allan M. Cormack derived the mathematical theory for image

reconstruction and did other significant work in the area. Their efforts were recognized in

1979 with a Nobel Prize in Medicine. (2)

1.1 Basic Principles

CT uses an X-ray beam that passes through a thin axial section of the scanned subject. The

X-ray tube rotates around the patient irradiating them with a collimated fan-shaped beam.

After passing through the subject, the beam hits the detector array. While the 1970s scanners

used one or a few detectors, the current devices use a whole array of detectors arranged in a

full ring (4th generation) or an arc (older 3rd generation) around the patient. (3) This allows

for a much shorter scan time (up to 300 seconds for the 1
st
 generation, and up to 5 seconds

for the 4
th
 generation) and strain on the patient, not to mention less exposure to radiation.

Figure 1: Schematic of a fourth generation CT scanning (cross-section) (picture from (4))

9

Further attempts to speed up the imaging process include the spiral CT, electron beam CT or

the multi-slice CT.

1.1.1 Image Reconstruction

The output the detectors provide are basically the signal attenuations along the paths from

the X-ray tube (from many positions around the subject), through the patient to the detector

array. This data, after various corrections made to compensate for some hardware-specific

errors (like inhomogenities of the detector assembly) is called the CT raw data (3).

We, however, want to reconstruct the attenuation of the scanned material in uniformly

distributed points on the slice from the total attenuations observed from the side. A solution

was first developed in 1917 when Radon solved the problem of reconstructing a function

from its line integrals. (1)

Let us assume that the X-ray photons are all of the same energy, the intensities of the ray

entering and leaving a uniform material conform to the Beer-Lambert’s law:

 , (1)

Where is the intensity of the entering ray, is the intensity of the ray as it leaves the

material, is the thickness of that material and is its linear attenuation coefficient. (1)

As the scanned object is non-uniform, we will assume that it is made up of a finite number

of equally large, homogenous parts. We may then rewrite the attenuation equation to:

 ∑

 (2)

Where are the individual attenuation coefficients for each of the homogenous parts. It is

then advantageous to divide both sides of the equation by and take a logarithm of them.

We will then have a quantity that is a sum of those attenuation coefficients.

 (

) ∑

 (3)

This alone inspires a naïve solution to the problem of extracting the individual attenuation

coefficients. Supposing we want to extract a 2x2 grid of such coefficients from their

projections as shown in Figure 2, we need to solve a system of linear equations.

10

Figure 2: Sample attenuation coefficients and their projections (picture from (1))

This presents us with several problems, not the least of which is that errors in the raw data

may throw the calculations off. Furthermore, when the number of measurements exceeds the

number of unknowns, a straightforward solution may not be available (1).

The actual method uses a filtered back-projection formula that involves 2D Fourier

transforms. The derivation of this formula is beyond the scope of this thesis; however Hsieh

(1) gives a solid mathematical background for CT image reconstruction.

1.1.2 The Hounsfield Unit

The output of a CT scanner is the local density in a set of spatial points. Medial scanners are

calibrated to the Hounsfield Unit (HU) scale. Each medical CT will give the same value for

the same kind of tissue. The densities on that scale range from -1024 to 3071 HU (4). Some

of the typical materials and their densities are listed in Table 1.

Material Typical density (in HU)

Air -1000

Water 0

Fat -120

Muscle 40

Blood 30 to 45

Contrast agent 130

Bone 800 to 1200

Table 1: Typical Hounfield densities of some select materials (5)

The HU value of a particular material can be calculated using its linear attenuation

coefficient, and such coefficients of air and water. The formula is simple:

 (4)

Where , and are the linear attenuation coefficients of the unknown material,

water and air, respectively.

11

1.1.3 Processing the Data

One series of data from the scanner contains a great deal of information. Typically,

examining such data is more complicated than the more straight-forward look at an X-ray

image. Medical examinations involving such data can be assisted with appropriate data

processing. Typically, the necessary tasks can be broken down into the following groups:

 Registration is mapping two or more images onto each other, so that they are

matched somehow. Spatial matching is the most common. It means that each

corresponding pair of points on both images represents the same scanned location.

 Segmentation splits the image into semantically corresponding areas, like finding the

areas which capture the vessel and those that capture anything but a vessel.

Segmentation is probably the most commonly performed task, as it often constitutes

the first step of more complex methods.

 Classification decides whether a segmented area in an image is likely to be of some

defined kind.

 Reconstruction generates the geometric representation of captured objects.

1.2 Angiography with CT

Conventional angiography is the medical examination method which involves injecting

iodine-based contrast agent directly into the examined blood vessel and scanning with an X-

ray scanner. An enhanced image can be obtained by digitally subtracting the mask obtained

before the application of contrast agent from the images with contrast. This reduces the

amount of irrelevant information in the image and makes the method widely accepted and

used. The advantage of this conventional angiography is the possibility of immediate

medical intervention when needed. On the other hand, it is rather invasive and

uncomfortable for the patient (2).

Angiography is the medical examination of veins. CT angiography (CTA) has provided

many improvements in vascular imaging. The main advantages over conventional arterial

angiography include significantly lower invasiveness, less radiation exposure, lower cost and

better patient response. From a medical point of view, CTA provides better diagnostic

options, including viewing the vascular anatomy from multiple angles or simultaneous

visualization of vessel wall and lumen. (3) CTA can be combined with several visualization

techniques.

12

Figure 3: A CT-scanned cross-section of human head. Left - without contrast, Right - with

contrast (note the visible opacity-enhanced veins)

As it can be seen in Table 1, the density of blood is very close to the density of muscle

tissue. For this and other reasons, it is important to inject the patient with a contrast agent.

Generally, small veins require more opacification. Less of an enhancement is required for

large vessels (e.g. the thoracic aorta) and vessels that are perpendicular to scanning planes

(e.g. carotid artery) (3). Typically, iodine and barium are used for CT (6).

13

2 Vessel Segmentation

Segmentation is an important part of medical volumetric data analysis. There is a host of

various algorithms for different organs and scanning modalities. Unfortunately, there is no

single algorithm that can extract vasculature from every image modality (7). Various

algorithms that use either intensity-based pattern recognition or vessel contours have been

designed.

In addition to that, there has been some work done in segmentation techniques based on

artificial intelligence and neural networks (7). They are used to simulate biological learning

processes mostly for classification. We will, however not include them in our overview as

they are of less relevance for our application.

This chapter explains some of the challenges faced by vessel segmentation algorithms and

then gives an overview of existing approaches based on both pattern recognition and model-

based techniques.

2.1 Challenges

There are many caveats in designing a viable vessel extraction algorithm. This subchapter

gives an overview of the most severe ones.

Volume data from both CT and magnetic resonance imaging (MRI) is plagued by noise. The

amount and type of noise differs between various scans and modalities. Moreover, in CT

there are artifacts caused by very dense materials, such as metals or even teeth. Dental

fillings or metallic joint replacements can cause visible streaks, otherwise known as beam

hardening (4). Motion blur is inevitable since the scan can take a few seconds, which is

more than enough time for effects such as heart motion or patient movement to disrupt data

reconstruction.

A CT scanner has a finite resolution. The organ boundaries, namely their different densities

captured within a single voxel cause the averaging effects, known as partial voluming (4).

This may be especially problematic for vessel segmentation, as vein calcifications have a

density very similar to bones. Therefore if such a vein is in a close proximity to a bone, the

boundary between the vein and the bone may be virtually indistinguishable. (2)

Last, but hardly the least, there is a large variability in the captured data. This is caused by

natural physical variances in the patients; shape of segmented organs or even by different

scanning set-ups (e.g. the patient tilting his head on the scanner gantry, scanner

configuration). CT angiography makes use of contrast enhancing agents. Even their

14

distribution in the visualized vessels may differ, causing potential difficulties for

segmentation algorithms.

A good segmentation method should, of course, be able to deal with all those challenges.

However, to author’s knowledge, there are no such algorithms at present.

2.2 Pattern Recognition Methods

Pattern recognition (PR) methods implement automatic detection of objects or features.

Humans do this very well; even some of the methods are adaptations of human-style PR on a

computer. The methods described in this section include the region growing algorithms that

focus on extracting the center line of the vessel and on approaches exploiting mathematical

morphology. Furthermore, rationale for performing segmentation in multiple scaled versions

of the source image is given.

2.2.1 Multi-Scale Approaches

As the subsection caption may hint, multi-scale methods perform segmentation at varying

image resolutions. As the segmentation may be slow due to the sheer size of the data,

processing it at a lower resolution can be helpful in optimizing speed. Dealing with the large

structures at low resolutions while processing the smaller objects at a higher resolution

potentially increases algorithm robustness. The image may also contain substantial amounts

of noise. If that noise is mostly of high frequency, scaling the image down may increase the

algorithm’s resistance to such noise. One important consideration with multi-scale

techniques is the proper choice of scales in which the algorithm will work.

A typical multi-scale approach application is demonstrated by Sarwal and Dhawan (8). They

reconstruct 3D coronary arteries from three views by matching image features, vessel branch

points in their work. For increased robustness, their matching process is performed at three

different resolutions. Larger vessel tree branches are processed at lower resolution, while the

thin ones are extracted at a finer scale.

2.2.2 Centerline Detection Algorithms

These methods, otherwise known as skeleton-based extract the center of blood vessels. Then

a vessel tree is created by connecting these centerlines. Many different methods are used to

calculate the vein centerline.

For instance, Sorantin at al (9) use a sort of 3D skeletonalization method for assessing

tracheal stenoses on spiral CT data. Their method consists of several steps, including seed-

initialized segmentation of laryngo-tracheal tract (LTT), followed by conversion of the

segmented object into isotropic cubic voxels and 3D thinning. The medial axis is then

extracted using a shortest-path searching algorithm and low-pass filtered to achieve a

15

smoother curve. After that, cross-section profiles are calculated along that centerline. That

technique is reported as very accurate and precise on their phantom studies. (7)

2.2.3 Region Growing Algorithms

The region growing algorithms segment objects by incrementally adding new points to the

region. Operating under the assumption that points with similar intensity that are close

together belong to the same object, the seed region is appended with new points in its

proximity as long as they meet the homogeneity criteria.

Noisy data can be a problem for region growing algorithms as it may result in holes or over-

segmentation. Therefore, some post-processing is definitely called for, even though there is

an enhancement called adaptive region growing, presented by Yi and Ra (10) which is more

resilient to those problems. This method basically performs locally adaptive segmentation

within small local cubes. The faces of the local cubes have vessels entering and leaving

through them. Region growing is performed only within the cubes that are then connected to

one another depending on whether a vessel passes through the adjacent faces of two cubes.

This way, a vessel tree can be created. Their method works on both CT and MRA (magnetic

resonance angiography) data.

2.2.4 Vessel Tracking by Calculating Minimal Path

Minimal path algorithms like Dijksta or Floyd-Warshall can be used to track vessels if we

convert the volume data into a graph. Such conversion is not difficult; each voxel of the

volumetric data is considered a vertex of the graph and is connected to its six immediate

neighbors (four, if we work in 2D) by edges.

One example of algorithms utilizing calculating the minimal path in a graph is the live wire

introduced by Falcao in (11). His method estimates the vessel boundary, which is assumed

to be a closed, contiguous curve consisting of directed edges with weights, which are named

bels (boundary elements). The method can operate in 2D as well as 3D. The weight of each

bel is calculated from some of its other properties, for instance the intensity gradient of

voxels adjacent to that bel. After the graph is constructed, the path between two user-

selected points is found by Dijkstra’s algorithm.

Significant speed enhancements to this method have been presented by (12) and (13). The

latter describes the intelligent scissors, a method that can significantly confine the volume in

which the minimal path is sought, providing a considerable speed boost.

2.2.5 Mathematical Morphology

Morphology can be understood as the study of shapes. Morphological operators (MO) apply

transformations to images using structuring elements (SE). These methods are typically

16

applied to binary images, however extensions to grey-level images are normally available.

The two main MO are erosion and dilation. Erosion shrinks objects by a SE, while dilation

expands them and does other work like filling holes or merging disjoint regions. The most

interesting mathematical morphology-related algorithms that are applicable in segmentation

are the top-hat and watershed transformations.

The watershed algorithm is indeed well named. Its basic principle can be explained on the

analogy of pouring water into a landscape or a topological surface defined by the input

image. The image corresponds to a height-map of the surface. The water accumulates in

basins, generally forming a growing region around the low points, avoiding the high points.

A watershed algorithm on grey scale images with applications in angiograph segmentation is

proposed by Couprie and Bertrand in (14).

2.3 Model-based Approaches

The model-based approaches attempt to match a predefined model to the image. In this

section we will give an overview of deformable models and template matching.

2.3.1 Deformable Models

One of the most well-known methods belonging to the deformable models class are the

active contours, also called snakes. It is basically an optimization of a closed curve defined

by its points (snaxels). Several kinds of forces deform the curve. First, the curve is held

together and smooth by internal forces. Second, external forces try to match the curve to the

shape we are trying to segment (often defined as gradients of image values). Additional

forces that make the curve obey some other constraints may also be defined. Speaking

formally, fitting a snake to the desired shape is equivalent to finding the parametric curve

 that minimizes (15):

 ∫ ()

 (5)

Where is the energy of the snake for a particular curve, which is basically the sum of

the internal forces , external forces and constraint-enforcing forces .

 (6)

Optimizing a snake can be done by various methods as well. An ingenious method was

proposed by Geiger et al (16) that detects tracks and matches deformable models using a

dynamic programming approach, but unlike most other methods is non-iterative and

guaranteed to find the minimum snake. A detection algorithm is used to generate a list of

uncertainty points for each seed. After that a search window is created from two consecutive

17

lists. The optimal contour passing through the two lists is calculated using a dynamic

programming-based algorithm that considers all possible contours and their deformations.

Dynamic programming is inherently slow and memory-consuming, therefore multiscaling is

used to balance speed and curve optimality. When contour tracking finishes on one frame,

the same contour is used to seed the contour matching on the next frame.

A comprehensive review of active contours and their enhancements is presented by Krajíček

in his mater thesis (15).

2.3.2 Template Matching

These methods work by recognizing a structure model (template) in the processed image.

For the purposes of vessel segmentation, the arterial tree template is normally represented by

a series of nodes connected in segments. That template is then deformed to match the

structures in the scene.

One of the simpler template matching methods applicable in angiography is the ellipse

fitting (17). Intuitively, the algorithm tries to find the best way to match an ellipse to the

image. From those parameters the center of ellipse is calculated and used as a point on a

vessel walk path.

First, the image is processed with Canny edge detection filter to find the set . Then, the

algorithm searches for the optimal conic section { } to fit the set .

Simply put, we want such a vector for which all the points of lie in . A cone section

is defined by the equation

 (7)

Where [

]. Solutions to this problem are given by Fitzgibbon and

Fisher (17) and by Halíř and Flusser in (18). The former gives a direct approach to finding

the parameters of the optimal ellipse with least-square fitting method. The latter work even

provides a numerically stable, non-iterative method for finding an optimal . Both methods

are fast and have a good resistance to noise.

18

Figure 4: Left - part of head CT cross-section; Right - same image with Canny filter applied

1

The obvious problem with ellipse fitting is the Canny filter. It is necessary to use the filter

properly, so that it finds points on the circumference of the vein cross-section only. As

illustrated by Figure 4, the filter, as it is, does find edges, but not solely of veins. Therefore

using this method on real-life data may be problematic due to limited robustness.

1
 Filtering performed online with http://matlabserver.cs.rug.nl/cgi-bin/matweb.exe

19

3 Vessel Visualization

As this thesis is mainly oriented on segmentation, we will only give an overview of the

Curved Planar Reformation (CPR) and three of its flavors as introduced by Kanitsar at al in

(19). This method has been developed for visualizing veins and duct-like objects; therefore

we will use it to visualize our results of segmentation in the next chapter, albeit in a slightly

extended form. The CPR algorithm family basically displays the vessel within its small

neighborhood. This dramatically reduces clutter and thus enhances the diagnostic

possibilities.

3.1 Curved Planar Reformation

Visualizing vasculature in volumetric data obtained from CT scanners can be difficult,

considering there is a lot of data of less interest. The typical rendering techniques like ray

casting or maximum intensity projection (MIP) would be impractical due to extensive

configuration requirements needed for proper visualization of veins. CPR has been

developed precisely for that purpose (19). This method visualizes the whole length of the

tubular structure in a single image. In this section, we will examine the three variants of this

method. Each of them has different properties, like length preservation or spatial perception

level. All of them, however, share a common prerequisite - the knowledge of vein centerline.

A discretized representation as a list of points, preferably at sub-voxel resolution, will

suffice.

The methods visualize the surface that contains the vein centerline. In order to precisely

define the surface, we need a vector of interest. A line-of-interest is defined by a point on the

vessel centerline and the vector-of interest. The voxels intersected by that line are taken to

form the visualization.

3.1.1 Projected CPR

The projected CPR is basically a projection of the data set, taking into account only the thin

slice of voxels that are intersected by riding the line-of-interest along the vessel centerline.

Without loss of generality, let us assume the vector-of-interest is collinear with the y-axis.

Then projected CPR will do a parallel projection of the free-form surface along the x-axis. It

may, of course, happen that the path of the centerline defines will make the line-of-interest

pass one point in the projection space several times (e.g. a longer part of the vessel running

along the x-axis or making a U-turn). In this case, the values are not simply overwritten, as

this would cause some information loss. Instead, pixels are composited using a maximum

intensity projection or averaging. These two methods are perhaps the most widely used

visualization techniques for medical volumetric data. We will give a short peek into how

they work in the fifth chapter.

20

Figure 5: Projected CPR: Left - vessel in 3D with the line-of-interest and the sampling plane

described by those lines; Right - the visualization generated by projected CPR

As a result of the parallel projection, spatial relations are still preserved in this projection.

On the other hand, sections of higher intensity (bone) may occlude other lower-intensity

sections (blood vessels), rendering them invisible. In addition to that, isometry is not

preserved, which means that the real length of the vessel will appear distorted, especially if

the vessel ever travelled perpendicularly to the projection plane. In addition to that, the

vessel may be rendered incompletely, producing an image that very much resembles a

stenosis, even in areas where the vessel is dilated due to the presence of an aneurism.

3.1.2 Stretched CPR

The surface defined by the lines-of-interest is curved in one dimension and planar in the

other. Stretching that curved dimension into a plane will show the tubular structure without

any overlapping. This is the main difference between projected CPR and stretched CPR.

The curvature of the vessel is still mostly maintained. This method has another advantage as

compared to projected CPR, and that is maintained isometry. The visualized vessel will

appear curved, but despite that the actual length of the vessel can be estimated from this

projection. However, just like with the previous member of the CPR family, smaller

calcifications are likely to be hidden as a result of visualizing only one line-of-interest.

Another undesirable feature that is shared with projected CPR is the possible incompleteness

of vessel projection, which may mimic stenosis even in the areas where the vessel is

widened.

21

3.1.3 Straightened CPR

This type of CPR completely straightens the vessel and generates a linear representation

with a varying diameter. As opposed to the other two methods, the line of interest is no

longer necessarily parallel to axial slices. At each point, the tangent vector of the curve is

calculated. Local coordinate system at a point on the curve is defined by two perpendicular

vectors and , (vessel normal and binormal, respectively) such that and both

 . The vector-of-interest lies in the plane defined by and and can be

expressed as

 (8)

Where is the parameter of this projection. The local coordinate system is also illustrated in

Figure 6.

Figure 6: Local coordinate system on the walk along a vessel, showing the line-of-interest

The most obvious disadvantage of this projection is the loss of spatial orientation which may

occur due to complete straightening of the vessel. However, straightened CPR preserves

isometry. Another serious edge this method has is the clear visualization of the vessel’s

diameter. This allows for simpler detection of stenosis and the assessment of the vein’s

cross-section size.

22

Figure 7: Straightened CPR: Right - the linearized curve

The CPR as presented by (19), however, gives no information as to calculation of the vectors

 and . This is a problem that must be solved before using this method. A viable solution

may involve using either the Frenet-Serret coordinates or the Bishop frame (20), further

analyzed and used later in the thesis.

23

4 Designing Automatic Segmentation

In this chapter we design a semi-automatic vessel segmentation algorithm and then expand it

to a fully automated method. Furthermore, we will derive a visualization method based on

existing CPR algorithms that will provide a potentially more precise visualization of the

segmented blood vessels. Some details of the implementation including the interfaces

required to extend our program with new segmentation or visualization algorithms are given

in Appendix A. Additionally, Appendix B contains a brief overview of the program’s

functions.

4.1 Semi-Automatic Segmentation

In this section we will design a semi-automatic segmentation method for contrast-agent-

enhanced blood vessels from CT data. This method will require seed points to start from.

Basically we will use a region-growing algorithm on the individual slices and merge the

results into a contiguous vessel sub-tree after processing each slice.

Speaking more formally, the input of this part is the actual volume data and seed point

coordinates. The algorithm outputs a vessel sub-tree composed of connected vessel

centerlines.

4.1.1 Region Growing Algorithm

First, the region is initialized to a one-point set containing only the seed. We then use region

growing only on the individual slices. A modified four-way single pixel recursive flood fill

is utilized. The modification was necessary in order for the algorithm to cope with noisy data

and involves allowing the flood fill to fill pixels whose value falls within some small interval

centered at the seed point’s value.

We also use two heuristics to prevent over-segmentation. Before even starting the region

growing, we sample the seed point’s value. If it does not fall within the expected radio

density interval that would indicate a blood vessel with a contrast agent, we search a small 3-

pixel neighborhood of that pixel. If none of the checked pixels comply with our criteria, the

seed is rejected. As a result, the seed does not even need to be very precise, which may be

useful for the automated seed generation, described later in the thesis.

Obviously, we are trying to satisfy two mutually-exclusive conditions here. We want to

prevent over-segmentation, yet we want our algorithm to reliably find the vessel. By

constraining the threshold for vessel detection we can prevent the region growing algorithm

from filling a greater area than it should, but with increasing noise the algorithm will provide

more and more discontinuous regions. To take care of that problem, we left the vessel

intensity interval rather narrow and implemented a hole-filling algorithm that will eliminate

24

spurious holes in the segmentation results on data with higher noise levels. The hole-filling

algorithm simply finds the first and last positively detected pixel in each row and column

and fills a solid line between these two points. Having a solid mask of the segmented region

also helps the center detection algorithm in the next paragraph.

4.1.2 New Seed Extraction

Once we are done segmenting a slice we need to extract the point that represents this vessel

cross section. We chose that point to be the center of mass, which can be calculated very

quickly and has proven to match the vessel’s actual center well:

 ∑

 (9)

Where is the set of points that the former segmentation step marked as belonging to the

vessel. This center point is stored. As the next step we need to come up with the seed points

for the segmentation on the next slice. We use the center, top center, bottom center, left

center and right center points, in this order, as shown by Figure 8. All these seeds are passed

to the region growing algorithm.

Figure 8: Extracting seeds for the new slice

Those seeds whose value (on the next slice) falls outside the expected interval for contrast-

enhanced blood vessels are discarded. If the flood-fill yields different masks for different

seeds, the vessel is assumed to have split into as many branches as there were unique masks.

If none of the seeds’ values indicate a blood vessel, the path is terminated at this point.

25

Figure 9: Vessel split detected

For the very first slice we have segmented, we have no information in which direction to

continue the segmentation. For that slice, we attempt segmentation on both previous and the

next slice (if applicable) – simply put, we assume the vessel to go both ways. With the next

slices, we proceed only in their respective directions as they are known at this point.

4.2 Extending to a Fully Automated Mode

At this point, we have a viable method to extract a part of the vessel tree given a point

contained within the vessel. However, we want to detect all the vessels within our dataset.

One option to accomplish this is to have the user select appropriate seed points for us. This

task is indeed tedious as it involves more than just clicking on vessels, not that clicking on

several dozen vessels would not be impractical enough. The user must also configure

appropriate transfer function or HU window in order to see the veins. Here, we would like to

present a method that reduces the process to one click and waiting a few seconds.

The way we are going to do this is by combining the semi-automatic segmentation method

described in section 4.1 with an algorithm that sweeps the volume data and generates good

seed points for the segmentation engine. Processing speed is also a consideration; therefore

we want our seed generator to be simple enough, yet able to reliably detect vein cross

sections in the volume data slices.

4.2.1 Filtering and Multiscaling Overview

Even though obvious, it is important to note that our seed generator is run before the semi-

automatic segmentation algorithm, therefore it is dealing with raw non-segmented

volumetric data. The seed generator parses the volume data in slices, in fact every sixth slice

is processed. We justify this optimization by the fact that if a seed point indeed causes the

segmentator to find a vessel, it is typically significantly longer than 6 slices.

26

The pipeline is relatively simple. In a nutshell, we first apply a Gaussian blur and an edge

enhancing filer, namely Sobel. Exploiting the fact that vein cross-sections will appear mostly

as circular or elliptic objects, we apply a Hough filter for circles. Following that phase, we

have the ―neighborhood circleness‖ of every point in the slice. We then find the points that

satisfy the minimal ―circleness‖ and cull away the clusters of points by means of local

maximum-detecting algorithm that rejects points in close proximity to one another.

Because the Hough transformation searches for circles of a particular diameter, it may have

a lower and less localized response for circles that are of a different diameter. We therefore

use the input slice in three scales (original size, 2x shrunk and 4x shrunk). This should give

us a more adequate response for vessel sizes ranging from small (a few voxels in diameter)

to large ones. The seeds from all three pipelines are then combined and duplicate values are

removed.

4.2.2 Edge Detection

For edge detection we use a Sobel filter preceded by a Gaussian kernel filtering. Gaussian

blurring is simply a convolution (21) of the original image with the appropriate kernel, for

our purposes we use the following kernel:

(

)

Figure 10: The Gaussian kernel impulse response used for blurring

The Sobel operator (22) is used next. Its output is the approximation of the image gradient at

each point. We need only the magnitude of that gradient. To that end we estimate the

horizontal and vertical derivative of the image values:

-2
-1

0
1

2

0

0.05

0.1

-2
-1

0
1

2

i

G(i,j)

j

27

 (

) (

) (10)

Where is the matrix of original image values. We then combine these two derivative

estimates to acquire the gradient magnitude estimate , for all indices of rows and

columns of the image.

 √

 (11)

4.2.3 Hough Transform for Circles

After we are done enhancing the edges of the image, we run the well-known feature

extraction method, the Hough transform, specifically its modification for finding circles. The

Hough transform uses an accumulator array; its dimension is equal to the number of

unknowns. In our case, we are interested in the position (x and y coordinates) of the circles

of a particular diameter in the image. To that end a voting procedure is run. There are many

papers on available, for instance (23) presents a voting scheme for efficient detection of lines

and extends that on ellipses as well or (24) designs a method for recognizing circles of

various radii.

The algorithm normally processes the image space and updates the voting array

appropriately when an edge (from previous edge detection) is hit. We do practically the

same process, optimized by discretizing the searched circle. Every time our implementation

hits a potential feature (edge) we update the cells of the voting array defined by the offsets in

the pre-computed circle array.

Even though the Hough transform for circles can be easily extended to detect circles of

various diameters, due to robustness and performance reasons we have opted to detect

circles of only one diameter, but on three down-sampled versions of the image.

4.2.4 Seed Extraction

The seed extraction algorithm operates in scan-line mode and uses one seed time-to-live

(TTL) buffer for rejecting swarms of closely-packed positive detections. The idea is simple:

For every line find the local maxima of image values and consider them potential seeds. To

get rid of spurious false positives, we also apply a quick thresholding. Points that are local

maxima, but the Hough transformation response at them was too low are ignored.

Now, we try adding these seed candidates to the definitive seed list one by one, marking a

small neighborhood (seedRadius pixels on either side) of that point as inhabited in the TTL

buffer (for seedTTL next lines). When attempting to make a seed definitive, check the

28

appropriate cell of the TTL buffer. If it is already inhabited, discard that seed. After each

line, decrement every cell of the TTL buffer by 1 (and clamp to zero). For details, see the

pseudo-code in Figure 11.

function ExtractSeeds(ref List<Point> finalSeeds)

InitializeArray(ttl, 0)

for y = 0 to imageHeight

 for x = 1 to (imageWidth – 1)

 if imageValue(x-1,y) < imageValue(x,y) >= imageValue(x+1,y) &&

 imageValue(x,y) > threshold then

 if ttl[x] == 0 then

 finalSeeds.Add(x,y)

 end if

 for i = (x – seedRadius) to (x + seedRadius)

 ttl[i] = seedTTL

 end for

 end if

 end for

 for x = 0 to (imageWidth – 1)

 ttl[x] = max(0, ttl[x] – 1)

 end for

end for

end function

Figure 11: The seed extractor pseudo-code

In our application, the best balance between reliable positive detection and rejecting false

positives was obtained by setting both seedTTL and seedRadius to 5 pixels. The TTL buffer

values at all scanning lines when processing a sample input can be seen in Figure 14. Notice

the algorithm rejecting a vast portion of the skull while recognizing most of the vessels.

4.2.5 Summary

To recapitulate the algorithm of our automated seed extraction, we extract the edges from

the image at multiple scale ratios, apply a Hough transformation to find circular objects and

extract seeds from the image. These seeds are then fed to the semi-automatic segmentation

engine described in section 4.1. The seed generator, however, has no memory of seeds

produced in its previous passes or of the vessel trees created by the semi-automatic

segmentator. Therefore it may re-detect vessels that have already been processed.

29

To deal with this problem, we use a 3D search structure (in our case a uniform 3D grid) to

store the locations of already segmented areas. Let us consider the vessel tree resulting from

the segmentation. Its points could be considered small cylinders, whose axes lie on the

vessel center line. We store them into our grid after every segmentation pass. So, when

trying to extract seeds from the next slice, we check all the candidate seeds against that grid.

If there is a collision, we assume that the vessel indicated by the candidate seed has already

been processed and that seed is not passed to the segmentation stage. In Figure 14, these

accepted and rejected seeds can be observed. The same seed culling procedure is applied on

data from other scales using the same instance of the grid.

Figure 12: Left - original slice; Right - Gauss-filtered slice

Figure 13: Left - response of the Sobel edge detection filter; Right - output of the Hough

transform

30

Figure 14: Left - output of Hough transform with recognized seed points (green - accepted,

red - rejected); Right - TTL buffer of the seed extraction algorithm at each line with

recognized seed points

4.3 Visualization

Now that we can segment a path or a tree of a vessel given a seed and also automatically

generate such seeds, we need to properly visualize the user-selected part of that tree. We will

use a modification of straightened CPR described in the previous chapter. Our version of

CPR will, not unlike the other versions, ride the centerline of the vessel and generate cross-

section snapshots of that vessel at regular intervals. This is the difference from straightened

CPR that only extracts one line-of-interest from these vessel cross-sections. We then take

these extracted cross-sections and stack them onto one another creating a new volumetric

image that we will visualize by an appropriate method.

Furthermore, (19) was somewhat unclear as to calculating the and vectors that would

define our cross-section plane. We will use the Bishop frame to calculate these so that our

visualized vessel is subjected to as little twist as possible, which should further improve the

visualization.

4.3.1 Curve-Local Coordinate System

In order to provide optimal and vectors for our CPR variation (Figure 15), we need to

construct a local coordinate frame on every point on the vessel centerline as we traverse it.

There are several known methods to construct a local coordinate frame on a space curve.

These include the Frenet frame and the Bishop frame.

31

Figure 15: The local frame on the curve

Both the Frenet and Bishop frames generate the first derivative of the tangent , normal

and binormal vectors using the parameters of the curve. The Frenet frame is defined (20)

as:

(

) (

)(

) (12)

Where is the local curvature of the curve, otherwise defined (25) as the reciprocal of the

osculating circle radius and is the curve torsion. Curve torsion (26), in the simplest of

terms, can be understood as the amount by which the curve’s osculating plane changes. The

Frenet frame, however, imposes further restrictions on our space curve . It requires that

 and that be non-degenerate, in other words, the curve’s derivatives and be

linearly independent.

The other approach we are considering is the Bishop frame, otherwise known as the parallel

transport frame. It is defined by the equation:

(

) (

)(

) (13)

Where and are coefficients for whom:

 √

 (14)

And

 (15)

32

Where

 (16)

Effectively, and are the Cartesian coordinate equivalents for the polar coordinates .

There is another feature of the Bishop frame that makes it more appealing to us, that is

requires only -continuity for our space curve and the non-zero first derivative of the

curve, .

We obviously need to calculate the and coefficients. We do this by simply projecting

the vessel tangent vector of the next sampling onto the current and , as is illustrated by:

 (17)

 being the vessel tangent, normal and binormal vectors, respectively at the position

 . And of course, all of these vectors are normalized.

In our implementation we may need to walk the curve with a greater resolution than the

segmatation yielded. To achieve sufficiently smooth results, we calculate the cutting plane

vectors at two successive centerline points and linearly interpolate the normal and

binormal vectors.

Figure 16: Set-up for interpolating the u and v vectors with sub-slice precision

So, in our implementation when starting the visualization, we know the seed point and the

curve tangent at that point. As the frame transport provides only first derivatives of the

and vectors, we need to calculate their initial values. We do this simply by determining

which axis vector is at the greatest angle to the vessel tangent. This vector is then projected

to the first vessel cutting plane and normalized to a unit-vector.

Then the other vector is calculated as the cross product of the tangent and our previously-

calculated vector . This makes it perpendicular to both vectors, which exactly fits

the bill.

33

4.3.2 Extracting Cross-Section Images

At this point, we have the local coordinate system at each point of the curve defined. The

next step would be to calculate the cross-section rectangle . We define the necessary

points as

 (18)

Where is the parameter that defines how large the sampled vessel cross-section will be.

Now that the corner locations for the cross-section rectangle are known, we sample every

point in that rectangle (points for the sake of completeness). Smooth sampling is

accomplished by using trilinear interpolation.

4.3.3 Visualizing the Cross-Section

After the individual vessel cross-sections have been sampled and stacked one onto another,

we need some way of visualizing this volume data. We implemented two methods, the

maximum intensity projection (MIP) and a modification that calculates the average value of

the ray-bounding box intersection path, which we will simply call averaging (AVG). Both

are well known and simple enough to implement efficiently. Due to the proportions of the

volume box we need to visualize, particularly its large width and small height and depth, we

chose to render it without perspective. Therefore we use a perpendicular projection.

Maximum intensity projection is a simple method that basically shoots a ray from the

camera through the visualized volume. If the volume is not intersected, the corresponding

pixel is left black (or at the background color). A more interesting case occurs when the ray

does hit the volume. A ray can be defined using the parametric expression:

 (19)

Where is the ray origin and is its direction. Using an analytical expression of the

volume’s bounding box we will get the parameters, and , of the places where the ray

will enter and leave the volume bounding box as depicted in Figure 17.

34

Figure 17: Ray intersecting a box

When these parameters are known, the MIP in that pixel can be expressed as:

 { }

 (20)

The quantity is the value of voxel at the position . In essence, as it name may hint, it

is the maximum image value along the ray’s path (27). The other projection, AVG does not

differ much. It is calculated as the average value along the ray’s path, instead of maximum.

The equation then becomes:

 ∫

 (21)

As we are dealing with voxel grid, the equations 20 and 21 can be discretized and simplified

to nothing more than a maximum or an average of voxel values along the corresponding row

or column of the straightened vessel image. This simplification proves useful in optimizing

the implementation.

As the speed tests in the next chapter will show, this method is slower than normal

straightened CPR as a result of extracting the whole vessel cross-section square, rather than

just one line-of-interest. This speed degradation can be alleviated by a more coarse

quantization of the parameter in Equations 20 and 21. We have implemented such

subsampling by reducing the number of depth samples in the cross-section extraction stage.

This subsampling ratio is configurable and provides a good way to balance speed and

rendering quality. The speed gains are measured in the next chapter.

35

5 Results

In this chapter we will examine the results given by our segmentation and visualization

methods. We will test the stability and precision of the segmented path on two synthetic

datasets with varying amount of added noise. Next, comparisons between straightened CPR

(as shown in (19)) and our enhanced CPR will be given. Finally, the speed of seeded

segmentation, automated segmentation and visualization will be compared on a mainstream

desktop PC.

5.1 Results on Synthetic Data

We generated two sets of synthetic data to use for testing the methods proposed in this

thesis. Both sets were volume images, 256x256x256 voxels large. The first one contained a

straight vertical vessel with its background filled with varying levels of white noise. The

other set contained a single helix, again, with varying amounts of noise. We tested the

precision of the detected vessel path compared to the path our generator created. The second

test concerned the visualization. Our synthetic data has been generated by a little utility we

designed for this purpose. Further details are in Appendix C.

5.1.1 Testing Segmentation Stability

For the purposes of testing the stability and precision of our semi-automatic segmentation

algorithm we generated two sets of synthetic data. This test examined how precise the

segmented path is with respect to the level of additive white noise. We compared the

segmented path node by node to the intended path (used by the generator). The Euclidean

distance between the intended and detected positions was our error metric.

Figure 18: Synthetic testing data, both with no noise added: Left - straight tube; Right -

single helix

36

The noise in our test images is a spectrally unfiltered noise sampled from a random number

generator (we assume the generator’s output values are uniformly distributed) and scaled to

the desired amplitude.

Figure 19: Segmentation error in detecting the centerline of the straight line data

Figure 20: Segmentation error in detecting the centerline of the helix data

As indicated by the results in Figures 19 and 20, the semi-automatic segmentation copes

well with noise in the synthetic datasets as long as the noise stays out of the region growing

algorithm’s tolerance. However, even with the white noise strong enough to reach well into

the threshold interval of the region growing (noise levels 252 and 254), the vessel centerline

is misdetected only by less than half of a voxel.

0

0.1

0.2

0.3

0.4

0.5

0 64 128 192 224 240 252 254

D
et

ec
te

d
 c

e
n

te
r

er
ro

r

Noise level

Average

Maximum

Minimum

0

0.1

0.2

0.3

0.4

0.5

0 64 128 192 224 240 252 254

D
et

ec
te

d
 c

e
n

te
r

er
ro

r

Noise level

Average

Maximum

Minimum

37

5.1.2 Visualization Test

The visualization test on synthetic data consisted of running the visualization on a part of the

segmented synthetic vessel and looking for any visible artifacts. Figure 22 shows the same

segment of an artifical vessel with three different noise levels traced and visualized. Note the

vessel in the bottom part of Figure 22 is barely distinguishable by the human eye, however

the segmentation engine managed to calculate its path with very little error. Figure 21 shows

that same vessel segment in 3D space.

Figure 21: The helix, its visualized part is highlighted with a thick line along its center

There are also no serious visible artifacts from the vessel path sampling, path miscalculation

or local curve frame discontinuity. The jagged edges visible in noiseless image are caused by

the fact that the synthetic vessel data itself was not antialiased. Thus, the visualization

appears to be performing within the expected parameters.

38

Figure 22: A visualized segment of a vessel (MIP projection), Top - no noise, Center - noise

level at 128, Bottom - noise level at 252

As stated in previous chapters, spatial orientation can be somewhat difficult with

straightened CPR (19). Because our MIP-CPR and straightened CPR are closely related, it

would stand to reason that our visualization method inherit the same problem. A closer

inspection of the results, however, shows these effects somewhat mitigated. Figure 23

contains two renderings of the same vessel segment with two different methods configured

with the same values.

The comparison clearly shows the straightened CPR with considerably less clutter. The line

of interest, obviously, did not intersect any other significant features. In contrast to that, our

method extracts a whole rectangle-of-interest capturing more of the vessel’s surroundings

which are visible in the MIP rendering. Vessel bifurcations are clearly visible, giving more

clues to the vessel’s spatial orientation. However, only experience may show if the increased

computational demands of this method are sufficiently justified by these visual

enhancements.

Figure 23: A blood vessel segment Left - visualized with MIP-CPR, Right - visualized with

conventional straightened CPR

5.2 Results on Real Data

As our real-life datasets, we used a CT scan of a human head with a contrast agent applied.

This is a rather complex dataset with vessels ranging from moderately large to small,

running perpendicular to the slices or almost parallel. The data contains some noise and

many of the vessels are embedded in the brain or running close to the cranium. There is also

considerable branching and curvature of the vessels.

39

Figure 24: The section of human head that we used as the real-world data, angio1

We used the dataset in Figure 23 for testing the automatic segmentation.

Figure 25: The vessel tree detected by our segmentation methods in the human head cross

section (inverted colors)

5.3 Speed Tests

We ran our speed tests on a desktop computer. It features an Intel Core i7-920 processor

with 3x 1GB DDR3-1066 and runs an x86-64 version of Microsoft Windows 7. Our speed

tests included semi-automatic segmentation of short vessels, automated segmentation of two

models and visualization in three different modes.

40

5.3.1 Semi-Automatic Segmentation

For this test, we used a simple setup. On the loaded model angio1 we manually induced

segmentation on several spots that contained vessel cross-sections. We then measured the

time it took to finish segmentation of that vessel subtree. We also recorded the count of

nodes produced by the segmentation procedure so that we can calculate time per one node.

Our test sample included chains of 32 to 77 nodes. The shortest took 11 milliseconds to

segment, producing a speed of 1727 nodes per second, further referred to as nps. The longest

chain took 40 ms, resulting in a speed of 1925 nps. These faster processing speeds with

longer chains are probably the result of one-shot memory management overhead amortized

over a longer real processing time.

5.3.2 Automatic Segmentation

In this test, we examined the processing speed of automated segmentation. The test consisted

of measuring the time taken by the full automatic segmentation of both angio1 and angio2.

We also counted the total number of vessel nodes produced in the segmentation. The results

are given in Table 2.

 nodes time speed

angio1 1489 4.78 s 311.5 nps

angio2 4072 15.42 s 264 nps

Table 2: Fully automatic segmentation speed results

As the results indicate, the vessel node generation speeds appear almost an order of

magnitude slower than those of semi-automatic segmentation even with short strands. It

must, however, be kept in mind that the automatic segmentation does considerable image

processing and seed extraction before the semi-automatic segmentation part can be executed.

Using the estimates of semi-automatic node generation speed and the automatic speed, we

can estimate how much time is consumed with preprocessing and how long the actual

segmentation takes. For this estimation we will assume a processing speed in the middle of

the interval produced by testing in the previous section, 1825 nps.

41

Figure 26: The estimated fractions of time spent on segmentation and image filtering

For the smaller image, angio1 we estimated that segmentation ran only 0.82 seconds out of

the total 4.78 seconds. This indicates filtering taking the vast majority of processing time,

almost 83%. This difference is even more pronounced in the other sample, angio2. The total

filtering time reached above 85.5%. This could be explained by the fact that the farther the

automatic seed generation proceeds, the more of the vasculature has already been processed.

This results in higher seed rejection ratio, however the same amount of time must be taken to

generate these seeds in the first place. Consequently, more time is spent doing filtering.

In any event, the filtering is a bottleneck in this case. Fortunately, seed generation can be

made to run parallel as the individual slices on which the filtering is done are in no way

interdependent. Further acceleration can be achieved by running filtering and seed extraction

on GPGPU, whose massive parallelism is well suited for such tasks. These enhancements

will be left for future improvements.

5.3.3 Visualization

This test examines the speed of our visualization methods. Again, we measured the time

necessary to visualize a vessel segment given the appropriate vessel tree and a starting node.

We compared the two methods proposed in this thesis, MIP-CPR and AVG-CPR. To put

these results in context, we also implemented and tested standard straightened CPR as

introduced by (19). The test itself was run on all three methods with the same vessel segment

and other parameters (e.g. line-of-interest size, tracking step, initial normal rotation).

The tests were run on all three methods with equal parameters. The square-of-interest was

48x48 pixels large; in the case of straightened CPR the line-of-interest was set to 48 pixels

length. The initial rotation of the Bishop frame was set to 0 degrees in all three cases. The

vessel was tracked in length increments of 0.1. In total, 414 slices of the vessel were

17 %

83 %

Segmentation

Filtering

42

extracted by each method. The Table 3 shows the average times taken to visualize the

common vessel segment.

 MIP-CPR AVG-CPR Straightened CPR

Average time 330 ms 340 ms 19 ms

Slices per second 1254 1217 21783

Table 3: Visualization speed test results

The results show the Straightened CPR is more than an order of magnitude faster than our

new methods, MIP-CPR and AVG-CPR. This is, however, not surprising considering the

fact that these methods sample the volume data in points as opposed to the

straightened CPR’s points, where is visualized path length and is the square-of-

interest edge size or the line-of-interest size, respectively. These processing times are still

not exceedingly long and these methods can be safely called interactive. The speed issue is

further mitigated by the fact that our enhanced CPR produces images with more spatial

context, simplifying orientation.

Figure 27: MIP-CPR calculation time depending on depth subsampling level

Furthermore, the speed and visualization quality can be balanced by reducing the number of

depth samples for the projection. To enable such balancing, we implemented such

subsampling and tested in the same conditions as the previous part of this test. Our results

show that even 6x or 8x subsampling produce images of acceptable visual quality and come

much closer to straightened CPR execution time. The same vessel segment took 19

milliseconds to visualize with straightened CPR and 57 ms with 8x subsampled MIP-CPR.

The image rendered with subsampled MIP-CPR kept most of the features of the fully-

0

100

200

300

400

0 4 8 12 16

C
a

lc
u

la
ti

o
n

 T
im

e
(m

s)

Depth Sub-sampling Level MIP-CPR

Straightened CPR

43

sampled one, yet took only about one seventh of the time to calculate. Albeit still several

times slower than straightened CPR, the method is obviously fast enough, potentially

producing about 18 frames per second of visualized data on our testing computer. Further

speed improvements can be made by implementing the visualization in parallel or on a

GPGPU.

44

Conclusion

This thesis provides an overview of the segmentation and visualization methods used in

medical applications, especially in angiography. We have also designed and tested a system

for blood vessel segmentation and visualization on CT data with contrast agent applied. We

divided that system into three distinct parts: semi-automatic vessel segmentation, automated

seed generation and visualization.

We used a region growing algorithm to determine the vessel cross section in a particular

volume data slice. Several enhancements and heuristics were used to improve the

performance of this method, most notably an over-segmentation prevention heuristic and a

hole-filling algorithm to improve the algorithm’s stability on noisy data. The results of

segmentation on individual slices are converted on-the-fly into a vessel graph, allowing for

branching. A centerline detection algorithm based on center of mass calculation has proven

sufficiently precise on both synthetic and real-life data.

The automatic seed generation part of our system consists mainly of image filtering. First,

we extracted the edges with a Sobel filter preceded by a Gaussian blur. Exploiting the fact

that blood vessels will mostly appear as small circular objects (unless their path is almost

parallel to the slice plane) we used a Hough transform for circles to find the blood vessel

candidates. This is done in multiple scales to enable detection of vessels of different sizes.

We then designed a simple algorithm for extracting seeds from images processed with the

above-mentioned chain of transformations that immediately rejects false positives created

mostly by large objects that are not vessels and generates but one seed for a detected vessel.

This list of vessel candidates or seeds is fed to the semi-automatic segmentation engine. To

avoid running the segmentation repeatedly on already processed vessels, and consequently

improve processing speed, we used a uniform grid structure for storage and fast detection of

previously segmented areas. After the automated segmentation is done, a fast sweep

eliminates very short disjoint vessel paths, which were probably falsely detected and

attempts to join the existing vessel paths into larger structures.

For visualization, we modified the well-known straightened CPR to display not only a single

line-of-interest, but to construct a vessel projection from its whole cross-section. The method

has proven slower than original straightened CPR; however we believe that while very small

vessel calcifications, especially on larger vessels may not be reliably captured by

straightened CPR, our method should show them. By capturing the whole surroundings of

the vessel, our method provides potentially better spatial orientation based on the output

image. For balancing the visualization speed and quality, we use depth subsampling that

reduces the number of columns calculated in the cross-section sampling stage and

significantly improves processing time. We also used a Bishop frame to slide the cutting

45

plane along the vessel’s path in a manner that would produce minimal twist to further

improve the visualization.

Despite the encouraging results on synthetic data and our real-life data, there is still room for

improvements in the areas of processing speed and possibly noise resilience. To that end,

automatic seed generation can be made to run in parallel by processing several slices

simultaneously. Noise resilience may be improved by modifying our region-growing

algorithm with additional heuristics or replacing it entirely. Semi-automatic segmentation

can be run in parallel as well, the only difficulty being synchronization of the grid structure

that prevents re-segmentation of already processed vessel segments. Our visualization

method, MIP-CPR is sufficiently fast even with little Z-subsampling, albeit slower than

conventional stratightened CPR. If required, speed improvements could be gained by

running the cross-section extraction in parallel or on a GPGPU.

46

A Programmer’s Guide

The VesselVisualizer solution consists of two projects. The first one, VesselVisualizer

is the project that implements all the segmentation and visualization techniques we designed

in Chapter 4 and the UI for displaying the results. The second project is the VL library

designed and implemented by Hlaváček in (28) and modified to use the OpenTK library

instead of Tao for interfacing OpenGL in .NET environment. Therefore we will discuss only

the first project, VesselVisualizer.

In order to add new segmentation or visualization methods, the programmer should be aware

of two interfaces – IVesselVisualization and IVesselSegmentation. Complete

programmer’s reference can be found on the attached CD.

A.1 IVesselSegmentation interface

This interface must be implemented by all semi-automatic methods. Its methods provide for

seeded segmentation of a vessel in a volume data slice, extracting the seed from a previously

segmented mask and for extracting the vessel subtree indicated by a seed.

bool SegmentMask(IVolume vol, Point seed, int slice, ref BitMask2D mask);

This method starts segmentation at the position indicated by arguments seed and slice in

the volume data vol. The segmented parts are returned in the mask output argument by

setting the cells that correspond to vessel location to MASK_TRUE. Method returns true if

segmentation succeeded and false if segmentation failed for any reason.

bool ExtractSeed(BitMask2D mask, out PointF seed);

The method extracts the seed for the segmented vessel defined by the mask argument and

returns it in the seed output parameter. true is returned if the seed has been extracted and

false if the extraction failed for any reason (like empty mask).

bool CreateVesselTree(IVolume vol, Point seed, int seedSlice, out

VesselTreeNode root);

This method is called by the framework to extract maximum possible portion of the vessel

graph starting at the seed point on the slice seedSlice. The vessel subgraph is returned in

the root argument. The method is to return true if the operation succeeded and false

otherwise.

A.2 IVesselVisualization interface

The IVvesselVisualization interface must be implemented by all vessel visualization

algorithms. Its methods provide for configuring input and output parameters and for two-

stage rendering. The rendering part is deliberately split into preprocessing and rendering

47

itself. This enables greater efficiency in dealing with repeated visualization of the same

vessel segment but with different parameters (like viewing angle).

bool SetVolume(IVolume vol);

This method sets the volume data to be further used by the visualizer. The call ends with

true if the volume data is valid and with false if the data cannot be used or an unexpected

error has occured.

bool SetOutputParams(int sliceCount, int crossSectionSize, float
crossSectionSpacing, float rotation);

The SetOutputParams method configures the visualization. Upon the next rendering, the

visualizer will attempt to render sliceCount vessel cross sections, crossSectionSize

pixels large. The vessel will be cut and sampled in crossSectionSpacing voxels increment.

The rotation argument sets the initial roation of the transport frame along the vessel path,

in degrees. A successful call returns true, while false is returned when the parameters are

invalid.

bool Preprocess(VesselTreeNode start, out List<Point3F> path);

Preprocessing is initialized with this method. The parameter start indicates at which vessel

graph node to start visualizaion, the output argument path will hold the list of points along

the vessel center line traversed when visualizing the vessel. The method returns true if the

preprocessing succeeded and Render can be called, false otherwise.

bool Render(Bitmap bmp);

This method converts the preprocessed data into a System.Drawing.Bitmap object bmp that

can be instantly dipslayed. When all succeeds, true is returned, false indicates failure and

in that case the bitmap will contain invalid data. Please note that the bmp argument contains

an already created and initialized bitmap.

48

B User Documentation

The user interface (UI) of the application has been designed to provide fast and intuitive

access to its functions. In this appendix we will give a brief overview of the main window

and the functions it provides.

B.1 User Interface

The main window consists of four main elements, as shown:

1. Volume cross-sections view

2. Direct volume rendering of the volume data, with segmented mask and vessel tree

3. Vessel visualization window

4. Configuration side-bar

Figure 28: The main window of VesselVisualizer

Now, let us briefly list the functions of the main window’s respective parts. Part 1 gives a

view of three cross-sections of the loaded volume: coronal, saggital and transversal. The

planes defining the cross-section can be shifted along their normals by the scroll bars in the

bottom part of this window element. The view of all three cross-sections automatically

updates as any of the scroll bars is shifted. Furthermore, this window is used for seeding the

semi-automatic segmentation. After the user clicks on the desired point in any of the three

cross-section visualizations a point appears both in 2D and 3D visualization to simplify

ascertaining its position. When the user is satisfied with the seed’s position, clicking the

Seeded button in element 4 starts the segmentation.

49

Element 2 is the direct volume rendering of the loaded volume data. A file can be loaded by

using the File>Open… menu item. Supported files include RAW volume files and DICOM.

Processing is, however, enabled only on 8-bit RAW files. The volume rendering transfer

function can be adjusted in the side-bar. Model can be rotated by holding down the middle

mouse button and dragging. The field of view and incidentally zoom can be altered with the

mouse wheel. This window also visualizes the mask of the segmented vessels in red and the

vessel tree if configured to do so in the side-bar. Clicking a vessel in this window causes the

visualization to be calculated starting at the selected point. Then the visualization is

displayed in element 3. When this is done, the visualized segment is highlighted with a thick

line in the volume rendering to ease the orientation in both images.

The configuration side-bar provides controls for three separate parts of the program: volume

visualization, segmentation and vessel visualization. Let us go through them one by one.

Figure 29: The configuration side-bar

The volume rendering part allows for volume rendering transfer function modification even

for individual color channels. The Quality slider adjusts the number of samples taken when

sampling the volume data per ray. A higher value gives better rendering quality, but the

rendering performance may deteriorate. Next, the checkboxes set whether or not to visualize

the vessel tree produced by the segmentation and the specific part of it used for vessel

visualization.

The next part is rather Spartan, this was however the intent. The Seeded button starts the

semi-automatic segmentation given a seed in the 2D cross-section view. The Automatic

button starts the automatic segmentation whose progress is shown in the status bar and

intermediate segmentation results are shown in the 3D volume view as it proceeds. The

checkbox enables showing debugging outputs for the automated segmentation. After each

pass, a window is shown containing the responses of all the filters used and the positions of

the generated seeds.

The final part of the side-bar facilitates the configuration of our visualization methods. From

top to bottom, Projection type selects the vessel visualization mode. The following modes

are supported:

50

 Maximum Intensity (MIP-CPR)

 Averaging (AVG-CPR)

 Straightened CPR

W-O-I size sets the visualization radius. The line-of-interest will be twice the length of W-O-

I size and the square-of-interest for our methods will be twice the W-O-I size in both height

and width. Tracking step sets in how large increments the vessel will be tracked. Initial

rotation specifies the angle by which the vessel normal will be rotated around its tangent the

first time it is calculated. Basically it rotates the line-of-interest around the tangent for

straightened CPR and sets the camera’s position for rendering the generated volume of the

vessel in the other two methods. The control’s range is full 360 degrees. Z subsampling sets

by what ratio the depth of the generated vessel volume will be subsampled. Setting higher

values increases calculation speed but reduces the rendering quality. Finally, the Update

view button applies the configuration changes and re-visualizes the previously selected

vessel segment.

B.2 Hardware and Software Requirements

The application was built with the Microsoft .NET 3.5 framework and thus requires these

files to run. An installation package
2
 is included on the thesis CD.

The hardware requirements are dictated mostly by the VL library. A graphics adapter with

Shader Model 3 or higher is required. This includes NVidia GeForce 6xxx series or later and

ATI X1xxx series or later (28). Testing has shown that the program runs on Intel HD

Graphics as well, however this is not recommended due to maximum volume texture size

limitations
3
 of that graphics adapter.

2
 Downloadable from https://www.microsoft.com/download/en/details.aspx?id=21

3
 Maximum 3D texture size limited to 256x256x256, insufficient for CT data

51

C Synthetic Data Generator Utility

In this thesis we relied in part on synthetic volume data, specifically the straight vertical

vessel and a single-round helix with varying amounts of noise. To reliably generate such

data we implemented a simple utility. Two patterns both of which we used in this thesis can

be generated. Additive white noise level can also be configured. The size of the volume is

hard-coded to 256x256x256 to allow for testing on less capable graphics hardware.

Figure 30: The main window of testing data generator utility

Three files are generated in one session:

 The raw volume data itself

 A header describing the size and bit depth of the data conforming to what our testing

program uses

 A comma-separated-values sheet containing the point coordinates along the

centerline of the artificially generated vessel for segmentation path stability testing

This utility is written in Microsoft Visual C++ 2008 SP1 and thus requires the appropriate

runtime libraries
4
. An installation package for these libraries, the program itself and its

source codes are, of course, included on the attached CD.

4
 Installation package also downloadable from

https://www.microsoft.com/download/en/details.aspx?id=5582

52

Bibliography

1. Hsieh, Jiang. Computed Tomography: Principles, Design, Artifacts and Recent

Advances. s.l. : SPIE Press, 2003. ISBN 0-8194-4425-1.

2. Doubek, Miloš. Sledování arteriálního řečiště na CT datech. s.l. : Master thesis, MFF UK,

2008.

3. Mathias Prokop, Michael Galanski, Cornelia Schaefer-Prokop. Spiral and multislice

computed tomography of the body. Stuttgart : Georg Thieme Verlag, 2003. ISBN 3-13-

116481-6.

4. Introduction to CT physics. [Online] [Cited: July 24, 2011.]

http://web.archive.org/web/20070926231241/http://www.intl.elsevierhealth.com/e-

books/pdf/940.pdf.

5. Hounsfield scale - Wikipedia. [Online] [Cited: July 24, 2011.]

http://en.wikipedia.org/wiki/Hounsfield_scale.

6. Contrast Medium - Wikipedia. [Online] [Cited: July 24, 2011.]

http://en.wikipedia.org/wiki/Contrast_agent.

7. Cemil Kirbas, Francis Quek. A Review of Vessel Extraction Techniques and

Algorithms. [Online] January 2003.

http://www.ee.siue.edu/~sumbaug/RetinalProjectPapers/Review%20of%20Blood%20Vessel

%20Extraction%20Techniques%20and%20Algorithms.pdf.

8. A. Sarwal, A.P. Dhawan. 3-d reconstruction of coronary arteries. IEEE Conf. Eng. in

Medicine and Biology. 1994, Vol. 1.

9. E. Sorantin, C. Halmai, B. Erdohelyi, K. Palagyi, L. Nyul, K. Olle, B. Geiger, F.

Lindbichler, G. Friedrich, K. Kiesler. Spiral-CT-based assessment of tracheal stenoses

using 3-D-skeletonization. IEEE Trans. on Medical Imaging. 2002, Vol. 21.

10. A locally adaptive region growing algorithm for vascular segmentation. Jaeyoun Yi,

Jong Beom Ra. 13, June 2003, International Journal of Imaging Systems and Technology,

pp. 208-214.

11. Falcao, A. X. Paradigmas de Segmentacao de Imagens Guiada pelo Usuario: Live

Wire, Live-Lane e 3D-Live Wire. s.l. : University of Campinas - UNICAMP, PhD thesis,

1997.

12. A. X. Falcao, J. K. Udupa, F. K. Miyazawa. An ultra-fast user-steered image

segmentation paradigm: Live wire on the fly. IEEE Transaction on Medical Imaging.

January 2000.

13. Bartoli, A. Vilanova i. Interactive segmentation of medical images based on intelligent

scissors. s.l. : TU Wien, 1997.

14. M. Couprie, Gilles Bertrand. Topological Greyscale Watershed Transformation. SPIE

Vision Geometry VI Proceedings. 1997, Vol. 3168.

15. Krajíček, Václav. Měření objemu v 3D datech. s.l. : MFF UK, Master thesis, 2007.

16. D. Geiger, A. Gupta, L. A. Costa, J. Vlontzos. Dynamic programming for detecting,

tracking and matching deformable contours. PAMI. 1995, Vol. 17.

53

17. Andrew Fitzgibbon, Robert Fisher. A Buyer's Guide ro Conic Fitting. [Online] 1995.

http://www.bmva.org/bmvc/1995/bmvc-95-050.pdf.

18. Radim Halíř, Jan Flusser. Numerically Stable Direct Least Squares Fitting of Ellipses.

[Online] 1998. http://autotrace.sourceforge.net/WSCG98.pdf.

19. Armin Kanitsar, Dominik Fleischmann, Rainer Wegenkittl, Petr Felkel, Meister

Eduard Gröller. CPR - Curved Planar Reformation. VIS 2002, IEEE Volume. 2002, Vol. 1,

1.

20. McCreary, Paul Robert. Visualizing Riemann Surfaces, Teichmueller Spaces, and

Transformation Groups in Hyperbolic Manifolds Using Real-Time Interactive Computer

Animator (RTICA) Graphics. Urbana-Champaign : University of Illinois, PhD thesis, 1998.

21. Bourne, R. Fundamentals of Digital Imaging in Medicine. s.l. : Springer, 2009. ISBN

9781848820869.

22. M.S., Nixon. Feature extraction and image processing. s.l. : Aguado A.S., 2008. ISBN

9780123725387.

23. Leandro A. F. Fernandes, Manuel M. Oliveira. Real-time line detection through an

improved Hough transform voting scheme. s.l. : ScienceDirect, 2006.

24. Dimitrios Ioannou, Walter Huda, Andrew F. Laine. Circle recognition through a 2D

Hough Transform and radius histogramming. s.l. : Image and vision computing, 1997.

25. Weisstein, Eric W. Curvature. MathWorld--A Wolfram Web Resource. [Online] [Cited:

August 3, 2011.] http://mathworld.wolfram.com/Curvature.html.

26. —. Torsion. MathWorld--A Wolfram Web Resource. [Online] [Cited: August 3, 2011.]

http://mathworld.wolfram.com/Torsion.html.

27. Elliot K. Fishman, Derek R. Ney, David G. Heath, et al. Volume rendering versus

maximum intensity projection in CT angiography: What works best, when, and why.

RADIOGRAPHICS. 2006, Vol. 26, 3.

28. Hlaváček, Jakub. Zpracování medicínských dat na GPU. s.l. : MFF UK, Master thesis,

2008.

