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Chapter 1

Introduction

In this work we give lower bounds for the size of the maximum independent set
and the maximum edge-cut in cubic graphs with large girth. We prove that there
exists an integer g such that every n-vertex cubic graph with girth at least g con-
tains an edge-cut of size at least 1.33008n and an independent set of size at least
0.4352n. These bounds also translates to asymptotic lower bounds for the size
of the maximum edge-cut and the maximum independent set in random cubic
graphs. We also show that every cubic graph with girth at least g has the frac-
tional chromatic number at most 2.2978 and the fractional cut covering number
at most 1.12776. The methods we present here can also be generalized to r-regular
graphs for r ≥ 4 by considering more complicated arguments.

This work extends my bachelor thesis defended in 2010 at Charles University
in Prague and the results presented here are also a part of my joint papers with
Frantǐsek Kardoš and Daniel Kral’ [13, 14].

1.1 Preliminaries

The reader is referred to the book of Bondy and Murty [2] for the basic notation
from graph theory and to the book of Alon and Spencer [1] for that from proba-
bility theory. All graphs considered in this work are without loops and multiple
edges.

An independent set is a subset of vertices such that no two of them are ad-
jacent. The independence number α(G) of a graph G is the size of the largest
independent set in G. An edge-cut or simply a cut in a graph G = (V, E) defined
by X ⊆ V is the set of edges with exactly one end vertex in X (and exactly one
end vertex in V \ X) and maximum (edge-)cut is simply the cut with the maxi-
mum number of edges. The girth of a graph G is the length of the shortest cycle
of G.

1.2 Fractional colorings and cut coverings

A fractional coloring of a graph G is an assignment of non-negative weights to in-
dependent sets in G such that for each vertex v of G the sum of weights of the sets
containing v is at least one. The fractional chromatic number cf(G) of G is
the minimum sum of weights of independent sets forming a fractional coloring.
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A parameter analogous to a fractional coloring is a fractional cut covering
of a graph G. It was first introduced by Šámal [20] (under the name cubical
colorings). He also related this parameter to graph homomorphisms. The aim
now is to assign non-negative weights to edge-cuts in G such that for each edge e
of G the sum of weights of the cuts containing e is at least one. The fractional
cut covering number is the minimum sum of weights of cuts forming a fractional
cut covering.

1.3 Random cubic graphs

A random n-vertex cubic graph is a graph on the vertex set [n] = {1, 2, . . . , n}
uniformly chosen among all cubic graphs on [n]. A detailed description and basic
properties of this model can be found for example in [12].

Many properties of random cubic graphs (and more generally random regular
graphs) and cubic (regular) graphs with large girth are closely related. On one
hand, Wormald showed in [21] that a random cubic graph asymptotically almost
surely (a.a.s.) contains only o(n) cycles shorter than a fixed integer g. Therefore,
a.a.s. we can remove a small number (this means o(n)) of vertices to obtain
a subgraph with large girth and only o(n) vertices of degree less than three.
This idea could be applied for translating lower bounds on the size of maximum
independent set or maximum cut as well as for translating bounds on many other
graph parameters.

On the other hand, Hoppen and Wormald [11] have recently developed a tech-
nique for translating many results for random r-regular graphs to r-regular graphs
with sufficiently large girth. In particular, they are able to translate bounds ob-
tained by analyzing the performance of so called locally greedy algorithms for
a random regular graphs. These algorithms and their analysis provide the cur-
rently best known asymptotic bounds to many parameters of random regular
graphs, for example an upper bound on the size of the smallest dominating set [4].
The main tool for the analysis of such algorithms as well as for analysis of many
other random processes is the differential equation method developed by Wormald.
An overview of the method and some of its applications can be found in [23].
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Chapter 2

Edge-cuts

In this chapter, we present our results on edge-cuts and fractional cut coverings
in cubic graphs with large girth and edge-cuts in random cubic graphs. We
improve the best known lower bound on the size of the maximum cut in a cubic
graph with sufficiently large girth as well as the best known asymptotic lower
bound on the size of the maximum cut in a random cubic graph.

Previously the best known lower bound for the size of the maximum cut
in cubic graphs with large girth is 9n/7 − o(n) = 1.28571n − o(n) given by
Zýka [24]. The lower bound for that in random cubic graphs is 1.32595n given
by Dı́az, Do, Serna and Wormald [3]. On the other hand, the best known upper
bound is 0.9351m = 1.4026n which applies to both cases. The upper bound was
first announced by McKay [16]; the proof can be found in [9].

The main result of this chapter is the following.

Theorem 2.1. If G is a cubic graph with girth at least 16 353 933, then there
exists a probability distribution such that each edge of G is contained in an edge-
cut drawn according to this distribution with probability at least 0.88672.

Before we start with the proof of Theorem 2.1, we state three corollaries of
this theorem.

By considering the expected size of a cut drawn according to the distribution
from Theorem 2.1, we get the following.

Corollary 2.2. Every n-vertex cubic graph with girth at least 16 353 933 contains
an edge-cut of size at least 1.33008n.

Since a random cubic graph asymptotically almost surely contains only o(n)
cycles shorter than a fixed integer g [21], the lower bound on the size of an edge-
cut also translates to random cubic graphs.

Corollary 2.3. A random n-vertex cubic graph asymptotically almost surely con-
tains an edge-cut of size at least 1.33008n.

Proof. Let G be a randomly chosen n-vertex cubic graph. The results of [21]
imply then we can a.a.s. remove o(n) vertices and obtain a subcubic subgraph
G′ with girth at least 16 353 933. Let n1 and n2 be the numbers of vertices of G′

with degree one and two, respectively. Observe that n1 + n2 = o(n).
Let R be a (2n1 + n2)-regular graph with girth at least 16 353 933. Replace

each vertex of R with a copy of G′ in such a way that the edges of R are incident
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with vertices of degree one and two in the copies of G′ and the resulting graph is
cubic. Observe that the obtained graph H has girth at least 16 353 933. Applying
Corollary 2.2 to H yields an edge-cut C of size at least 1.33008N where N is
the number of vertices of H . Observe that the number of the edges corresponding
to those of R among all the edges of H is o(N). Therefore, at least one copy of
G′ in H contains at least 1.33008n − o(n) edges of C.

The last corollary relates Theorem 2.1 to the problem of fractional cover-
ings the edges with edge-cuts. We show how to construct from the probability
distribution given by Theorem 2.1 a fractional cut covering.

Corollary 2.4. Every n-vertex cubic graph G with girth at least 16 353 933 has
the fractional cut covering number at most 1.12776.

Proof. Consider the probability distribution given by Theorem 2.1 for G. If
the probability of a cut C to be drawn in this distribution is p(C), assign C weight
p(C)/0.88672. It is straightforward to verify that we have obtained a fractional
cut covering of weight 1/0.88672 = 1.12776.

2.1 Structure of the proof

Our proof is inspired by the method which was developed by Hoppen in [10]
for obtaining lower bounds on independent sets and induced forests. In or-
der to prove Theorem 2.1, we design a randomized procedure for obtaining
an edge-cut (of large size). The key tool for our analysis is the independence lem-
ma (Lemma 2.6) which is given in Section 2.3. This lemma is used for to simplify
the recurrence relations appearing in the analysis. The recurrences describing
the behavior of the randomized procedure are derived in Section 2.4. The actual
performance of the procedure is based on setting up the parameters of the pro-
cedure and solving the recurrences numerically. This is discussed in Section 2.5.

The sought probabilistic distribution is obtained by processing a cubic graph
G = (V, E) by the procedure which produces an edge-cut of it. The graph is
processed in a fixed number of rounds K. The required assumption on the girth
of G will depend only on the number K. We will iteratively construct two disjoint
subsets R ⊆ V and B ⊆ V ; the vertices contained in R are referred to as red
vertices and those in B as blue ones. The aim of the procedure is to maximize
the number of red-blue edges. The vertices that are not red nor blue will be called
white.

All vertices are initially white. In every round, each white vertex is recolored
to red or blue with a certain probability depending on the number of its red and
blue neighbors, as well as on the number of current round. Once a vertex is colored
red or blue, its color stays the same in all the remaining rounds of the procedure.

2.2 Detailed description

We now describe the randomized procedure in more detail. We first introduce
some notation. Let Ij := {(r, b) : r ∈ N0, b ∈ N0, r + b ≤ j}, i.e., the set Ij con-
tains all pairs r and b of non-negative integers such that r + b ≤ j. For ex-
ample, I2 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (0, 2)}. Note that |Ij | =

(
j+2
2

)
. Let
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G = (V, E) be a cubic graph and v a vertex of G. Throughout the analysis, r(v)
will refer to the number of red neighbors of v and b(v) to the number of its blue
neighbors. Therefore, 3 − r(v) − b(v) is the number of the white neighbors of v.
If the vertex v is clear from the context, we just use r and b instead of r(v) and
b(v).

Our randomized procedure is parametrized by the following parameters:� an integer K,� probabilities P r,b
k (W ) for all k ∈ [K] and (r, b) ∈ I3 ,� probabilities P r,b
k (R) for all k ∈ [K] and (r, b) ∈ I3 and� probabilities P r,b
k (B) for all k ∈ [K] and (r, b) ∈ I3 .

We require that it holds that P r,b
k (W ) + P r,b

k (R) + P r,b
k (B) = 1 for all k ∈ [K] and

(r, b) ∈ I3.

The integer K ∈ N0 denotes the number of rounds that are performed.
Throughout the procedure, vertices of the input graph G have one of the three
colors: white (W), red (R) and blue (B). Let Wk ⊆ V (G) denotes the set of white
vertices after the k-th round. Analogously, we define Rk and Bk as the sets of red
vertices and blue vertices, respectively. As we have already mentioned, at the be-
ginning of the process W0 := V, R0 := ∅ and B0 := ∅. For (r, b) ∈ I3 we define
W r,b

k ⊆ Wk to be the set of white vertices with exactly r red neighbors and b blue

neighbors. Hence the sets W r,b
k forms a partition of Wk for every k. Note that

W 0,0
0 = V and W r,b

0 = ∅ for all (0, 0) 6= (r, b) ∈ I3.
Consider the coloring of G obtained after the k-th round. The (k+1)-th round

of the procedure is performed as follows. Let v be a vertex from W r,b
k . With

the probability P r,b
k+1(R) we change the color of v to red, with the probability

P r,b
k+1(B) we recolor it to blue and with the probability P r,b

k+1(W ) it remains white.
If v is after the k-th round colored red or blue, it will not change its color during
the (k + 1)-th round.

Before we can proceed further, we have to introduce some additional notation.
For a vertex v ∈ V (G) let T d

v denote the subgraph of G induced by vertices at
the distance from v at most d. Observe that if the girth of G is larger than 2d+1,
then the subgraph T d

v is a tree.
Now we show that if the girth of G is sufficiently large, then the probabilities

that after the k-th round a vertex v has white, red or blue color, respectively, do
not depend on the choice of v. We start with the following proposition.

Proposition 2.5. Let G be a cubic graph with girth at least 2K and v a vertex
of G. For every k ∈ [K] the probability that the subgraph T K−k

v has after the k-th
round a certain coloring is determined by the coloring of TK−k+1

v after the (k−1)-
th round.

Proof. The color of a vertex u ∈ TK−k
v after the k-th round depends only on

the colors of u and its neighbors after the (k−1)-th round. Since all the neighbors
of u are contained in TK−k+1

v , the proposition follows.
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Suppose that the girth of G is at least 2K. Since for any k ∈ [K] the structure
of a subgraph TK−k

v does not depend on the choice of v, i.e., it is always a tree
with all inner vertices of degree three, using a simple inductive argument together
with Proposition 2.5 we conclude that the following probabilities do not depend
on the choice of v:

wk := P
[
v ∈ Wk

]
, rk := P

[
v ∈ Rk

]
, bk := P

[
v ∈ Bk

]
.

Analogously, for any k ∈ [K−1] and (r, b) ∈ I3 the probability that after the k-th
round a vertex v is white and has r red neighbors and b blue neighbors does not
depend on the choice of v as well. Therefore, we can define

wr,b
k := P

[
v ∈ W r,b

k

∣∣ v ∈ Wk

]
.

Also observe that if the girth of G is larger than 2d+2, then for every edge uv ∈
E(G) the subgraph of G induced by vertices x satisfying min {d(x, u), d(x, v)} ≤ d
is a tree. If the girth of G is at least 2K + 1, the same reasoning as before yields
the following. The probability that for an edge uv ∈ E(G) either u is red and v
is blue after the k-th round, or v is red and u is blue after the k-th round does
not depend on the choice of uv. This probability will be denoted by

pk := P
[
(u ∈ Rk ∧ v ∈ Bk) ∨ (u ∈ Bk ∧ v ∈ Rk)

∣∣ uv ∈ E(G)
]

.

2.3 Independence lemma

In this section we present a key tool which we use in the analysis of the randomized
procedure. Our analysis follows the approach used in [10].

We start with a definition. If G is a cubic graph with girth at least 2K+1, uv is
an edge of G and d is an integer between 0 and K−1, T d

v,u denotes the component
of T d

v − u containing the vertex v. We refer to v as to the root of T d
v,u. From the

assumption on the girth it follows that all the subgraphs T d
v,u are isomorphic to

the same rooted binary tree T d of depth d.
Let k ∈ [K]. For a set V ′ ⊆ V (G) let ck(V ′) denote the coloring of vertices

V ′ after the k-th round. The set of all colorings of T K−k such that the root of
the tree is white is denoted by Ck. Observe that by the girth assumption for any
γ ∈ Ck the probability P

[
ck

(
TK−k

v,u

)
= γ

]
does not depend on the edge uv.

We are ready to prove the main lemma of this section.

Lemma 2.6 (Independence lemma). Consider the randomized procedure with
parameters K and P r,b

i (C), where i ∈ [K], (r, b) ∈ I3 and C ∈ {W, R, B}. Let G
be a cubic graph with girth at least 2K + 1, uv an edge of G, k an integer smaller
than K and γu and γv two colorings from Ck. Conditioned by the event uv ∈ Wk,
the events ck

(
TK−k

v,u

)
= γv and ck

(
TK−k

v,u

)
= γu are independent. In other words,

the probabilities
P
[
ck

(
TK−k

v,u

)
= γv

∣∣ uv ⊆ Wk

]
(2.1)

and
P
[
ck

(
TK−k

v,u

)
= γv

∣∣ v ∈ Wk ∧ ck

(
TK−k

u,v

)
= γu

]
(2.2)

are equal.
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Proof. The proof proceeds by induction on k. After the first round each vertex has
a color C with the probability P 0,0

1 (C) independently on other vertices. Hence,
the claim holds for k = 1.

Assume now that k > 1. By the definition of the conditional probability and
the fact that the event uv ⊆ Wk immediately implies that the event uv ⊆ Wk−1

occurs, (2.1) is equal to

P
[
ck

(
TK−k

v,u

)
= γv ∧ u ∈ Wk

∣∣ uv ⊆ Wk−1

]

P
[
uv ⊆ Wk

∣∣ uv ⊆ Wk−1

] . (2.3)

Analogously, (2.2) is equal to

P
[
ck

(
TK−k

v,u

)
= γv ∧ ck

(
TK−k

u,v

)
= γu

∣∣ uv ⊆ Wk−1

]

P
[
v ∈ Wk ∧ ck

(
TK−k

u,v

)
= γu

∣∣ uv ⊆ Wk−1

] . (2.4)

Now we expand the numerator of (2.3).

∑

γ′
u∈Ck−1

∑

γ′
v∈Ck−1

P
[
ck−1

(
TK−k+1

u,v

)
= γ′

u

∣∣ uv ⊆ Wk−1

]

× P
[
ck−1

(
TK−k+1

v,u

)
= γ′

v

∣∣ v ∈ Wk−1 ∧ ck−1

(
TK−k+1

u,v

)
= γ′

u

]

× P
[
u ∈ Wk

∣∣ ck−1

(
TK−k+1

u,v

)
= γ′

u ∧ ck−1

(
TK−k+1

v,u

)
= γ′

v

]

× P
[
ck

(
TK−k

v,u

)
= γv

∣∣ ck−1

(
TK−k+1

u,v

)
= γ′

u ∧ ck−1

(
TK−k+1

v,u

)
= γ′

v ∧ u ∈ Wk

]
.

By the induction hypothesis, for any two colorings γ′
u, γ

′
v ∈ Ck−1 the probabilities

P
[
ck−1

(
TK−k+1

v,u

)
= γ′

v

∣∣ v ∈ Wk−1 ∧ ck−1

(
TK−k+1

u,v

)
= γ′

u

]

and
P
[
ck−1

(
TK−k+1

v,u

)
= γ′

v

∣∣ uv ⊆ Wk−1

]

are equal.
Since the new color of u is determined only by the colors of the neighbors of

u, it follows that the probabilities

P
[
u ∈ Wk

∣∣ ck−1

(
TK−k+1

u,v

)
= γ′

u ∧ ck−1

(
TK−k+1

v,u

)
= γ′

v

]

and
P
[
u ∈ Wk

∣∣ ck−1

(
TK−k+1

u,v

)
= γ′

u ∧ v ∈ Wk−1

]

are also equal.
Analogously, for any vertex w ∈ TK−k

v,u \{v} the new color of w does not depend
on γ′

u at all. Applying the same reasoning for v yields that the probabilities

P
[
ck

(
TK−k

v,u

)
= γv

∣∣ ck−1

(
TK−k+1

u,v

)
= γ′

u ∧ ck−1

(
TK−k+1

v,u

)
= γ′

v ∧ u ∈ Wk

]

and
P
[
ck

(
TK−k

v,u

)
= γv

∣∣ ck−1

(
TK−k+1

v,u

)
= γ′

v ∧ u ∈ Wk−1

]

are equal as well. Note that in the last equality we have also used that the ran-
dom choices of new colors for arbitrary two vertices in the (k + 1)-th round are
independent.
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By changing the order of summation, we conclude that the nominator of (2.3)
is equal to

(
∑

γ′
u∈Ck−1

P
[
ck−1

(
TK−k+1

u,v

)
= γ′

u

∣∣ uv ⊆ Wk−1

]

× P
[
u ∈ Wk

∣∣ ck−1

(
TK−k+1

u,v

)
= γ′

u ∧ v ∈ Wk−1

]
)

×

(
∑

γ′
v∈Ck−1

P
[
ck−1

(
TK−k+1

v,u

)
= γ′

v

∣∣ uv ⊆ Wk−1

]

× P
[
ck

(
TK−k

v,u

)
= γv

∣∣ ck−1

(
TK−k+1

v,u

)
= γ′

v ∧ u ∈ Wk−1

]
)

.

Along the same lines, the denominator of (2.3) is equal to

(
∑

γ′
u∈Ck−1

P
[
ck−1

(
TK−k+1

u,v

)
= γ′

u

∣∣ uv ⊆ Wk−1

]

× P
[
u ∈ Wk

∣∣ ck−1

(
TK−k+1

u,v

)
= γ′

u ∧ v ∈ Wk−1

]
)

×

(
∑

γ′
v∈Ck−1

P
[
ck−1

(
TK−k+1

v,u

)
= γ′

v

∣∣ uv ⊆ Wk−1

]

× P
[
v ∈ Wk

∣∣ ck−1

(
TK−k+1

v,u

)
= γ′

v ∧ u ∈ Wk−1

]
)

.

Canceling out the sum over γ′
u which is the same in both numerator and

denominator of (2.3), we derive that (2.1) is equal to

X

γ′
v∈Ck−1

P
ˆ

ck−1

“

T
K−k+1
v,u

”

= γ
′

v

˛

˛ uv ⊆ Wk−1

˜

× P
ˆ

ck

“

T
K−k
v,u

”

= γv

˛

˛ ck−1

“

T
K−k+1
v,u

”

= γ
′

v ∧ u ∈ Wk−1

˜

X

γ′
v∈Ck−1

P
ˆ

ck−1

“

T
K−k+1
v,u

”

= γ
′

v

˛

˛ uv ⊆ Wk−1

˜

× P
ˆ

v ∈ Wk

˛

˛ ck−1

“

T
K−k+1
v,u

”

= γ
′

v ∧ u ∈ Wk−1

˜

. (2.5)

We apply the same trimming to the numerator and denominator of (2.4).
The numerator is first expanded to

(
∑

γ′
u∈Ck−1

P
[
ck−1

(
TK−k+1

u,v

)
= γ′

u

∣∣ uv ⊆ Wk−1

]

× P
[
ck

(
TK−k

u,v

)
= γu

∣∣ ck−1

(
TK−k+1

u,v

)
= γ′

u ∧ v ∈ Wk−1

]
)

×

(
∑

γ′
v∈Ck−1

P
[
ck−1

(
TK−k+1

v,u

)
= γ′

v

∣∣ uv ⊆ Wk−1

]

× P
[
ck

(
TK−k

v,u

)
= γv

∣∣ ck−1

(
TK−k+1

v,u

)
= γ′

v ∧ u ∈ Wk−1

]
)
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and the denominator is then expanded to

(
∑

γ′
u∈Ck−1

P
[
ck−1

(
TK−k+1

u,v

)
= γ′

u

∣∣ uv ⊆ Wk−1

]

× P
[
ck

(
TK−k

u,v

)
= γu

∣∣ ck−1

(
TK−k+1

u,v

)
= γ′

u ∧ v ∈ Wk−1

]
)

×

(
∑

γ′
v∈Ck−1

P
[
ck−1

(
TK−k+1

v,u

)
= γ′

v

∣∣ uv ⊆ Wk−1

]

× P
[
v ∈ Wk

∣∣ ck−1

(
TK−k+1

v,u

)
= γ′

v ∧ u ∈ Wk−1

]
)

.

By canceling out the sum over γ′
u, we obtain (2.5). Therefore the expressions

(2.1) and (2.2) are equal.

2.4 Recurrence relations

In this section we derive recurrence relations for the probabilities describing
the behavior of the randomized procedure.

Fix parameters K and P r,b
k (C), k ∈ [K], (r, b) ∈ I3 and C ∈ {W, R, B}. We

will inductively show that the probabilities describing the state of the proce-
dure after the (k + 1)-th round can be computed using only the probabilities
describing the state after the k-th round. This yields the recurrence relations for
the probabilities which is the main goal of this section.

We start with determining the probabilities after the initialization round. It
is easy to see that the probabilities r1, b1, w1, p1 and wr,b

1 are

r1 = P 0,0
1 (R) ,

b1 = P 0,0
1 (B) ,

w1 = 1 − r1 − b1 ,

p1 = 2 · P 0,0
1 (R) · P 0,0

1 (B) and

wr,k
1 =

(
3

r

)(
3 − r

b

)
·
(
P 0,0

1 (R)
)r

·
(
P 0,0

1 (B)
)b

·
(
1 − P 0,0

1 (R) − P 0,0
1 (B)

)3−r−b

for (r, b) ∈ I3 .

Now we show how to compute the probabilities rk+1, bk+1 and wk+1 from
rk, bk, wk and wr,b

k . We start with the formula for rk+1. If a vertex v is colored red
after the (k + 1)-th round, then it was after the k-th round either already colored
red, or it was white, had r red neighbors, b blue neighbors and it was recolored to
red. The latter happened with probability P r,b

k+1(R). The probability of the first

event is rk and that of the second event is wk · w
r,b
k · P r,b

k+1(R). This yields that

rk+1 = rk + wk ·
∑

(r,b)∈I3

wr,b
k · P r,b

k+1(R) .

10



Analogously, we can compute

bk+1 = bk + wk ·
∑

(r,b)∈I3

wr,b
k · P r,b

k+1(B) ,

and finally wk+1 is given by

wk+1 = 1 − rk+1 − bk+1 .

Before we proceed with the recurrences for pk+1 and wr,b
k+1, let us introduce

some auxiliary notation. All of the following quantities are fully determined
by wr,b

k , but this notation will help to make the formulas simpler. We start
with the probability that a vertex v has white color after the (k + 1)-th round
conditioned by the event it had white color after the k-th round. This quantity
will be denoted by w→k+1. It is straightforward to check that

w→k+1 := P
[
v ∈ Wk+1

∣∣ v ∈ Wk

]
=
∑

(r,b)∈I3

wr,b
k · P r,b

k+1(W ) .

Next, we consider the probability that the vertex u is white after the k-th round
conditioned by the event that a fixed neighbor v of u is white. This will be
denoted by qW−W

k . Again it is easy to check that

qW−W
k := P

[
uv ⊆ Wk

∣∣ v ∈ Wk

]
=
∑

(r,b)∈I2

3 − r − b

3
· wr,b

k .

Finally, for a color C ∈ {W, R, B} and an edge e = uv, q
(C)
→k+1 denotes the proba-

bility that u has the color C after the (k + 1)-th round conditioned by the event
that both u and v were white after the k-th round. We infer from the definition
of the conditional probability that

q
(R)
→k+1 := P

[
u ∈ Rk+1

∣∣ uv ⊆ Wk

]
=

∑

(r,b)∈I2

w
r,b
k · (3 − r − b) · P r,b

k+1(R)

3 · qW−W
k

,

q
(B)
→k+1 := P

[
u ∈ Bk+1

∣∣ uv ⊆ Wk

]
=

∑

(r,b)∈I2

w
r,b
k · (3 − r − b) · P r,b

k+1(B)

3 · qW−W
k

,

q
(W )
→k+1 := P

[
u ∈ Wk+1

∣∣ uv ⊆ Wk

]
=

∑

(r,b)∈I2

w
r,b
k · (3 − r − b) · P r,b

k+1(W )

3 · qW−W
k

.

Now we are ready to present the remaining recurrences. We start with pk+1,
i.e., the probability than an edge e = uv is red-blue after the (k + 1)-th round.
Note that once we color a vertex x with either red or blue color, the color of x in
the future rounds will stay the same. Therefore, we can split the contribution to
pk+1 to the following four types.

1. e∩Wk = ∅ : This event happens with the probability pk and the colors stay
the same.

2. e ∩ Wk = {v} : Suppose first that u is blue. The probability that we have
such configuration after k-th round is wk ·

∑
(r,b)∈I3

wr,b
k · b/3. In this case,

the edge e become red-blue after the (k + 1)-th round with the probability
P r,b

k+1(R). Analogously, if u is red, the contribution of this case is wk ·∑
(r,b)∈I3

wr,b
k · P r,b

k+1(B) · r/3 .
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3. e ∩ Wk = {u} : This case is symmetric to the previous one.

4. e ⊆ Wk : The probability that v has white color is wk. With the probability
wr,b

k · (3 − r − b)/3, v has r red neighbors, b blue neighbors and u is white.

The probability that v becomes red is P r,b
k+1(R), and using the independence

lemma (Lemma 2.6) the neighborhood of u does not depend on the colors
of the other neighbors of v. Therefore, the probability that u becomes blue
is q

(B)
→k+1. On the other hand, the probability that v becomes red and u

becomes blue is P r,b
k+1(B) · q

(R)
→k+1.

The just presented analysis yields that

pk+1 = pk +
wk

3
·
∑

(r,b)∈I3

wr,b
k · P r,b

k+1(R) ·
(

2b + (3 − r − b) · q
(B)
→k+1

)

+
wk

3
·
∑

(r,b)∈I3

wr,b
k · P r,b

k+1(B) ·
(

2r + (3 − r − b) · q
(R)
→k+1

)
.

We finish this section with the recurrence relations for the probabilities wr,b
k+1.

Observe that

wr,b
k+1 =

P
[
v ∈ W r,b

k+1

]

P
[
v ∈ Wk+1

] =
P
[
v ∈ W r,b

k+1

∣∣ v ∈ Wk

]

P
[
v ∈ Wk+1

∣∣ v ∈ Wk

] . (2.6)

The second equality holds because each of the events v ∈ Wk+1 and v ∈ W r,b
k+1

immediately implies that the event v ∈ Wk occurs. The denominator of (2.6) is
equal to w→k+1, so it remains to derive the formula for the nominator.

Let NW
k (v) denote the set of white neighbors of v after the k-th round. Using

the same argument as for deriving the formula for pk+1, the color after the (k +
1)-th round of a white neighbor u ∈ NW

k (v) will be red with the probability

q
(R)
→k+1. Analogously, it will be blue with the probability q

(B)
→k+1 and white with

the probability q
(W )
→k+1. Finally, by Lemma 2.6 and the fact that in all rounds we

recolor each white vertex independently of the others, the new color of a neighbor
u1 ∈ NW

k (v) does not depend on the new color of another neighbor u2 ∈ NW
k (v).

Therefore, it holds for each(r, b) ∈ I3 that

w
r,b
k+1 =

∑

r≤r

b≤b

w
r,b
k · P r,b

k+1(W ) ·
(
3−r−b

r−r

)(3−r−b

b−b

)
·
(
q
(R)
→k+1

)r−r

·
(
q
(B)
→k+1

)b−b

·
(
q
(W )
→k+1

)3−r−b

w→k+1
.

2.5 Setting up the parameters

In this section we set up the parameters in the randomized procedure. In the first
round, we pick a vertex with a small probability p0 and color it either red or blue.
The next rounds of the procedure are split into two phases, which consist of K1

and K2 rounds, respectively. Therefore, the total number of rounds K is equal
to K1 + K2 + 1.

In the rounds of the first phase, with probability pB (pR), where pR ≪ pB,
we color a vertex with exactly one red (blue) neighbor by blue (red). If a vertex
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has at least two neighbors of the same color, we color it with the other color with
probability one. In all the other cases we do nothing.

With one exception, the rounds of the second phase are performed identically
to the rounds of the first phase. The exception is that a white vertex with one
red, one blue and one white neighbor is colored red with probability pRB/2 or
blue with probability pRB/2. The choice of pRB is such that pRB ≪ pR.

Specifically, we set:� K := K1 + K2 + 1,� P 0,0
1 (R) := p0/2 , P 0,0

1 (B) := p0/2 ,� P r,b
k (R) := 1 for (r, b) ∈ I3 ∩ {(r, b) : b ≥ 2} for k ∈ [2, . . . , K] ,� P r,b
k (W ) := 1 for (r, b) ∈ I3 ∩ {(r, b) : r ≥ 2} for k ∈ [2, . . . , K] ,� P 0,1
k (R) := pR , P 1,0

k (B) := pB for k ∈ [2, . . . , K] ,� P 1,1
k (R) := pRB/2 , P 1,1

k (B) := pRB/2 for k ∈ [K1 + 2, . . . , K] ,� P r,b
k (R) := 0 for all the other choices of r and b,� P r,b
k (B) := 0 for all the other choices of r and b and� P r,b
k (W ) := 1 − P r,b

k (R) − P r,b
k (B) for (r, b) ∈ I3.

The recurrences presented in this chapter were solved numerically using the C
program provided in the Appendix A. The particular choice of parameters used
in the program was p0 = 10−5, pB = 1/10, pR = 10−5, pRB = 10−6, K1 = 1 672 413
and K2 = 6 504 552.

The choice of K1 was made in such a way that at the end of the first phase, i.e.
after the (K1 +1)-th round, the probability that a vertex is white and has exactly
one non-white neighbor is less than 10−7. Analogously, the choice of K2 was made
in a way that at the end of the process, i.e. after the K-th round, the probability
that a vertex is white is less than 10−7. We also estimated the precision of our
calculations based on the representation of float numbers to avoid rounding errors
effecting the presented bound on significant digits. Solving the recurrences for
the above choice of parameters we have obtained that pK > 0.88672.
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Chapter 3

Independent sets

In this chapter, we present our results about independent sets and fractional col-
orings in cubic graphs with large girth and about independent sets in random
cubic graphs. Analogously to the case of edge-cuts, our results improve the pre-
viously best known lower bound on the size of maximum independent set and
the upper bound on the fractional chromatic number in a cubic graph with suffi-
ciently large girth as well as the best known asymptotic lower bound on the size
of maximum independent set in a random cubic graph. The structure of the proof
is very similar to the structure presented in Chapter 2, however some details of
the analysis are more complicated.

3.1 Motivation and results

Let us start with surveying previous results. Inspired by Nešetřil’s Pentagon
Conjecture [19] on circular colorings of cubic graphs with large girth, Hatami
and Zhu [7] showed that every subcubic graph with sufficiently large girth has
fractional chromatic number at most 8/3 + ε for any ε > 0. We provide a simple
proof of this statement in Section 3.9 (under a weaker assumption of having large
odd girth). They also showed that a triangle-free subcubic graph has fractional
chromatic number at most 3 − 3/64. Lu and Peng [15] improved the bound to
3− 3/43. On the other hand, there are triangle-free cubic graphs with fractional
chromatic number 14/5; Heckman and Thomas [8] conjectured that this value is
also the upper bound on the fractional chromatic number for any triangle-free
subcubic graph.

For the independence number, Hoppen [10] showed that every n-vertex cubic
graph with sufficiently large girth has the independence number at least 0.4328n;
this bound matches an earlier bound of Wormald [22], independently proven by
Frieze and Suen [6], for random cubic graphs. The lower bound for random cubic
graphs was further improved by Duckworth and Zito [5] to 0.4347n. The best
known asymptotic upper bound for the size of maximum independent set in a ran-
dom cubic graph is 0.45537n derived by McKay [17] and this bound also applies to
the independence number of cubic graphs with large girth. In [17], McKay men-
tions that experimental evidence suggests that almost all n-vertex cubic graphs
contain independent sets of size 0.439n; his more recent experiments [18] suggest
that the best possible lower bound might be even as large as 0.447n.

The main result of this chapter is the following.
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Theorem 3.1. There exists g > 0 such that for every cubic graph G with girth
at least g, there is a probability distribution such that each vertex is contained in
an independent set drawn according to this distribution with probability at least
0.4352.

Analogously to Theorem 2.1, Theorem 3.1 has the following three corollaries.

Corollary 3.2. There exists g > 0 such that every n-vertex subcubic graph with
girth at least g contains an independent set of size at least 0.4352n.

Corollary 3.3. There exists g > 0 such that every cubic graph with girth at least
g has the fractional chromatic number at most 2.2978.

Corollary 3.4. A random n-vertex cubic graph asymptotically almost surely con-
tains an independent set of size at least 0.4352n.

3.2 Structure of the proof

Analogously as in Chapter 2, we design a randomized procedure for obtaining
an independent set (of large size). First we describe a procedure RAND-INDEP
for obtaining a random independent set in infinite cubic trees and analyze its
behavior in Section 3.5. The core of our analysis is again the independence
lemma (Lemma 3.6) which is analogous to the independence lemma from Chap-
ter 2 (Lemma 2.6) but it becomes more complicated because of a more complex
nature of the randomized procedure. We then show that the procedure RAND-
INDEP can be modified for cubic graphs with sufficiently large girth while keeping
its performance. The modified procedure will be called RAND-INDEP-CUBIC.
The actual performance of the procedure is based on solving the derived recur-
rences numerically.

3.3 Randomized procedure RAND-INDEP

The procedure RAND-INDEP is parametrized by three numbers: the number K
of its rounds and probabilities p1 and p2.

Throughout the procedure, vertices of the input graph have one of the three
colors: white, blue and red. At the beginning, all vertices are white. In each
round, some of the white vertices are recolored in such a way that red vertices
always form an independent set and all vertices adjacent to red vertices as well as
some of other vertices (see details below) are blue. All other vertices of the input
graph are white. Red and blue vertices are never again recolored during the pro-
cedure. When we talk of a degree of a vertex, we mean the number of its white
neighbors. Observe that the neighbors of a white vertex that are not white must
be blue.

The first round of the procedure is special and differs from the other rounds.
As we have already said, at the very beginning, all vertices of the input graph
are white. In the first round, we randomly and independently with probability p1

mark some vertices as active. Active vertices with no active neighbor become red
and vertices with at least one active neighbor become blue. In particular, if two
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adjacent vertices are active, they both become blue (as well as their neighbors).
At this point, we should note that the probability p1 will be very small.

In the second and the remaining rounds, we first color all white vertices of
degree zero by red. We then consider all paths formed by white vertices with end
vertices of degree one or three and with all inner vertices of degree two. Based on
the degrees of their end vertices, we refer to these paths as paths of type 1↔1,
1↔3 or 3↔3. Edges joining two vertices of degree one or three are considered
as such paths of length one. Finally, each vertex of degree two is now activated
with probability p2 independently of all other vertices.

For each path of type 1↔3, we color the end vertex of degree one with red and
we then color all the inner vertices with red and blue in the alternating way. If
the neighbor of the end vertex of degree three becomes red, we also color the end
vertex of degree three with blue. In other words, we color the end vertex of degree
three by blue if the path has an odd length. For a path of type 1↔1, we choose
randomly one of its end vertices, color it red and color all the remaining vertices
of the path with red and blue in the alternating way. We refer to the chosen
end vertex as the beginning of this path. Note that whether and which vertices
of degree two on the paths of type 1↔1 or 1↔3 are activated do not influence
the above procedure.

Paths of type 3↔3 are processed as follows. A path of type 3↔3 becomes
active if at least one of its inner vertices is activated, i.e., a path of length ℓ is
active with probability 1 − (1 − p2)

ℓ−1. Note that paths with no inner vertices,
i.e., edges between two vertices of degree three, are never active. For each active
path, flip the fair coin to select one of its end vertices of degree three, color this
vertex by blue and its neighbor on the path by red. The remaining inner vertices
of the path are colored with red and blue in the alternating way. Again we refer
to the choosen end vertex as the beginning of this path. The other end vertex
of degree three is colored blue if its neighbor on the path becomes red, i.e., if
the path has an even length.

Note that a vertex that has degree three at the beginning of the round cannot
become red during the round but it can become blue because of several different
paths ending at it.

3.4 Analysis of RAND-INDEP

Let us start with introducing some notation used in the analysis. For any edge
uv of a cubic graph G, Tu,v is the component of G−v containing the vertex u; we
sometimes refer to u as to the root of Tu,v. If G is the infinite cubic tree, then it
is a union of Tu,v, Tv,u and the edge uv. The subgraph of Tu,v induced by vertices
at distance at most d from u is denoted by T d

u,v. Observe that if the girth of G is
larger than 2d + 1, all the subgraphs T d

u,v are isomorphic to the same rooted tree
T d of depth d. The infinite rooted tree with the root of degree two and all inner
vertices of degree three will be denoted as T∞.

Since any automorphism of the infinite cubic tree yields an automorphism
of the probability space of the vertex colorings constructed by our procedure,
the probability that a vertex u has a fixed color after the k-th round does not
depend on the choice of u. Hence, we can use wk, bk and rk to denote a probability
that a fixed vertex of the infinite cubic tree is white, blue and red, respectively,
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after the k-th round. Similarly, w
(i)
k denotes the probability that a fixed vertex

has degree i after the k-th round conditioned by the event that it is white after
the k-th round, i.e., the probability that a fixed vertex is white and has degree
two after the k-th round is wk · w

(2)
k .

The sets of white, blue and red vertices after the k-th round of the randomized
procedure described in Section 3.3 will be denoted by Wk, Bk and Rk, respectively.
Similarly, W

(i)
k denotes the set of white vertices with degree i after the k-th round,

i.e., Wk = W
(0)
k ∪W

(1)
k ∪W

(2)
k ∪W

(3)
k . Finally, ck (Tu,v) denotes the coloring of Tu,v

and ck

(
T d

u,v

)
the coloring of T d

u,v after the k-th round. The set Cd
k will consist of

all possible colorings γ of T d such that the probability of ck

(
T d

u,v

)
= γ is non-zero

in the infinite cubic tree (note that this probability does not depend on the edge
uv) and such that the root of T d is colored white. We extend this notation and
use C∞

k to denote all such colorings of T ∞.
Since the infinite cubic tree is strongly edge-transitive, we conclude that

the probability that Tu,v has a given coloring from C∞
k after the k-th round does

not depend on the choice of uv. Similarly, the probability that both u and v are
white after the k-th round does not depend on the choice of the edge uv. To
simplify our notation, this event is denoted by uv ⊆ Wk. Finally, the probability
that u has degree i ∈ {1, 2, 3} after the k-th round conditioned by uv ⊆ Wk does

also not depend on the choice of the edge uv. This probability is denoted by q
(i)
k .

We now show that the probability that both end-vertices of an edge uv are
white after the k-th round can be computed as a product of two probabilities.
This will be crucial in the proof of the Independence Lemma. To be able to state
the next lemma, we need to introduce additional notation. For γ ∈ C∞

k−1, define

Pk(u, v, γ) := P
[
u stays white regarding Tu,v

∣∣ ck−1 (Tu,v) = γ ∧ v ∈ Wk−1

]

where the phrase “u stays white regarding Tu,v” means� if k = 1, that neither u nor a neighbor of it in Tu,v is active, and� if k > 1, that neither

– u has degree one after the (k − 1) round,

– u has degree two after the (k − 1) round and the path from u formed
by vertices of degree two in Tu,v ends at a vertex of degree one,

– u has degree two after the (k − 1) round, the path from u formed by
vertices of degree two in Tu,v ends at a vertex of degree three and at
least one of the vertices of degree two on this path is activated, nor

– u has degree three after the (k−1)-th round and is colored blue because
of a path of type 1↔3 or 3↔3 fully contained in Tu,v.

Informally, this phrase represents that there is no reason for u not to stay white
based on the coloring of Tu,v and vertices in Tu,v activated in the k-th round.

Lemma 3.5. Consider the randomized procedure for the infinite cubic tree. Let
k be an integer, uv an edge of the tree and γu and γv two colorings from C∞

k−1.
The probability

P
[
uv ⊆ Wk

∣∣ ck−1 (Tu,v) = γu ∧ ck−1 (Tv,u) = γv

]
, (3.1)
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i.e., the probability that both u and v are white after the k-th round conditioned
by ck−1 (Tu,v) = γu and ck−1 (Tv,u) = γv, is equal to

Pk(u, v, γu) · Pk(v, u, γv) .

Proof. We distinguish the cases k = 1 and k > 1. If k = 1, C∞
0 contains

a single coloring γ0 where all vertices are white. Hence, the probability (3.1) is
P
[
uv ⊆ W1

∣∣ ck−1 (Tu,v) = γ0 ∧ ck−1 (Tv,u) = γ0

]
and it is equal to P

[
uv ⊆ W1

]
=

(1−p1)6. On the other hand, P1(u, v, γ0) = P1(v, u, γ0) = (1−p1)
3. The assertion

of the lemma follows.
Suppose that k > 1. Note that there is a unique coloring of the infinite cubic

tree that coincides with γu on Tu,v and with γv on Tv,u. If u has degree one after
the (k−1)-th round, then (3.1) is zero as well as Pk(u, v, γu) = 0. If u has degree
two and lie on a path of type 1↔1 or 1↔3, then (3.1) is zero and Pk(u, v, γu) = 0
or Pk(v, u, γv) = 0 depending which of the trees Tu,v and Tv,u contains the vertex
of degree one. If u has degree two and lie on a path of type 3↔3 of length ℓ, then
(3.1) is equal to (1−p2)ℓ−1. Let ℓ1 and ℓ2 be the number of vertices of degree two
on this path in Tu,v and Tv,u, respectively. Observe that ℓ1 + ℓ2 = ℓ − 1. Since
Pk(u, v, γu) = (1 − p2)ℓ1 and Pk(v, u, γv) = (1 − p2)ℓ2, the claimed equality holds.

Hence, we can now assume that the degree of u is three. By symmetry,
the degree of v is also three. Note that u can only become blue and only because
of an active path of type 3↔3 ending at u. This happens with probability 1 −
Pk(u, v, γu). Similarly, v becomes blue with probability 1 − Pk(v, u, γv). Since
the event that u becomes blue and v becomes blue conditioned by ck−1 (Tu,v) =
γu and ck−1 (Tv,u) = γv are independent, it follows that (3.1) is also equal to
Pk(u, v, γu) · Pk(v, u, γv) in this case.

Lemma 3.5 plays a crucial role in the Independence Lemma, which we now
prove. Its proof enlights how we designed our randomized procedure.

Lemma 3.6 (Independence Lemma). Consider the randomized procedure for
the infinite cubic tree. Let k be an integer, uv an edge of the tree and Γu and Γv

two measurable subsets of C∞
k−1. Conditioned by the event uv ⊆ Wk, the events

that ck (Tu,v) ∈ Γu and ck (Tv,u) ∈ Γv are independent. In other words,

P
[
ck (Tu,v) ∈ Γu

∣∣ uv ⊆ Wk

]
= P

[
ck (Tu,v) ∈ Γu

∣∣ uv ⊆ Wk ∧ ck (Tv,u) ∈ Γv

]
.

Proof. The proof proceeds by induction on k. If k = 1, the event uv ⊆ W1

implies that neither u, v nor their neighbors is active during the first round.
Conditioned by this, the other vertices of the infinite cubic tree are marked active
with probability p1 randomly and independently. The result of the marking in
Tu,v fully determine the coloring of the vertices of Tu,v and is independent of
the marking and coloring of Tv,u. Hence, the claim follows.

Assume that k > 1. Fix subsets Γu and Γv. We aim at showing that the prob-
abilities

P
[
ck (Tu,v) ∈ Γu

∣∣ uv ⊆ Wk

]
(3.2)

and
P
[
ck (Tu,v) ∈ Γu

∣∣ u ∈ Wk ∧ ck (Tv,u) ∈ Γv

]
(3.3)

are equal.
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The definition of the conditional probability and the fact that the probability
P
[
uv ⊆ Wk−1|uv ⊆ Wk

]
is one yield that (3.2) is equal to

P
[
ck (Tu,v) ∈ Γu ∧ v ∈ Wk

∣∣ uv ⊆ Wk−1

]

P
[
uv ⊆ Wk

∣∣ uv ⊆ Wk−1

] . (3.4)

By the induction hypothesis, for any two subsets Γ′
u and Γ′

v of C∞
k−1, the proba-

bilities
P
[
ck−1 (Tv,u) ∈ Γ′

v

∣∣ u ∈ Wk−1 ∧ ck−1 (Tu,v) ∈ Γ′
u

]

and
P
[
ck−1 (Tv,u) ∈ Γ′

v

∣∣ uv ⊆ Wk−1

]

are equal. Hence, the numerator of (3.4) is equal to the following:
∫

γ′
u,γ′

v∈C∞
k−1

P
[
uv ⊆ Wk

∣∣ ck−1 (Tu,v) = γ′
u ∧ ck−1 (Tv,u) = γ′

v

]
×

P
[
ck (Tu,v) ∈ Γu

∣∣ uv ⊆ Wk ∧ ck−1 (Tu,v) = γ′
u ∧ ck−1 (Tv,u) = γ′

v

]

dP
[
ck−1 (Tu,v) = γ′

u

∣∣ uv ⊆ Wk−1

]
dP
[
ck−1 (Tv,u) = γ′

v

∣∣ uv ⊆ Wk−1

]
.

Observe that when conditioning by uv ⊆ Wk, the event ck (Tu,v) ∈ Γu is indepen-
dent of ck−1 (Tv,u) = γ′

v. Hence, the double integral can be rewritten to
∫

γ′
u,γ′

v∈C∞
k−1

P
[
uv ⊆ Wk

∣∣ ck−1 (Tu,v) = γ′
u ∧ ck−1 (Tv,u) = γ′

v

]
×

P
[
ck (Tu,v) ∈ Γu

∣∣ uv ⊆ Wk ∧ ck−1 (Tu,v) = γ′
u

]

dP
[
ck−1 (Tu,v) = γ′

u

∣∣ uv ⊆ Wk−1

]
dP
[
ck−1 (Tv,u) = γ′

v

∣∣ uv ⊆ Wk−1

]
.

An application of Lemma 3.5 then yields that the double integral is equal to
∫

γ′
u,γ′

v∈C∞
k−1

Pk(u, v, γ′
u) · Pk(v, u, γ′

v) ·P
[
ck (Tu,v) ∈ Γu

∣∣ uv ⊆ Wk ∧ ck−1 (Tu,v) = γ′
u

]

dP
[
ck−1 (Tu,v) = γ′

u

∣∣ uv ⊆ Wk−1

]
dP
[
ck−1 (Tv,u) = γ′

v

∣∣ uv ⊆ Wk−1

]
.

Regrouping the terms containing γ′
u only and γ′

v only, we obtain that the numer-
ator of (3.4) is equal to

(∫

γ′
u∈C∞

k−1

Pk(u, v, γ′
u) × P

[
ck (Tu,v) ∈ Γu

∣∣ uv ⊆ Wk ∧ ck−1 (Tu,v) = γ′
u

]

dP
[
ck−1 (Tu,v) = γ′

u

∣∣ uv ⊆ Wk−1

])
×

(∫

γ′
v∈C∞

k−1

Pk(v, u, γ′
v)dP

[
ck−1 (Tv,u) = γ′

v

∣∣ uv ⊆ Wk−1

])
.

Along the same lines, the denominator of (3.4) can be expressed as
(∫

γ′
u∈C∞

k−1

Pk(u, v, γ′
u)dP

[
ck−1 (Tu,v) = γ′

u

∣∣ uv ⊆ Wk−1

])
×

(∫

γ′
v∈C∞

k−1

Pk(v, u, γ′
v)dP

[
ck−1 (Tv,u) = γ′

v

∣∣ uv ⊆ Wk−1

])
.
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Cancelling out the integral over γ′
v which is the same in the numerator and the de-

nominator of (3.4), we obtain that (3.2) is equal to

R

γ′
u∈C∞

k−1

Pk(u, v, γ′
u)P

ˆ

ck (Tu,v) ∈ Γu

˛

˛ uv ⊆ Wk ∧ ck−1 (Tu,v) = γ′
u

˜

dP
ˆ

ck−1 (Tu,v) = γ′
u

˛

˛ uv ⊆ Wk−1

˜

R

γ′
u∈C∞

k−1

Pk(u, v, γ′
u)dP

ˆ

ck−1 (Tu,v) = γ′
u

˛

˛ uv ⊆ Wk−1

˜ .

(3.5)

The same trimming is applied to (3.3). First, the probability (3.3) is expressed
as

P
[
ck (Tu,v) ∈ Γu ∧ ck (Tv,u) ∈ Γv

∣∣ uv ⊆ Wk−1

]

P
[
u ∈ Wk ∧ ck (Tv,u) ∈ Γv

∣∣ uv ⊆ Wk−1

] . (3.6)

The numerator of (3.6) is then expanded to

(∫

γ′
u∈C∞

k−1

Pk(u, v, γ′
u)P

[
ck (Tu,v) ∈ Γu

∣∣ uv ⊆ Wk ∧ ck−1 (Tu,v) = γ′
u

]

dP
[
ck−1 (Tu,v) = γ′

u

∣∣ uv ⊆ Wk−1

])
×

(∫

γ′
v∈C∞

k−1

P
[
ck (Tv,u) ∈ Γv

∣∣ uv ⊆ Wk ∧ ck−1 (Tv,u) = γ′
v · Pk(v, u, γ′

v)
]

dP
[
ck−1 (Tv,u) = γ′

v

∣∣ uv ⊆ Wk−1

])

and the denominator of (3.3) is expanded to

(∫

γ′
u∈C∞

k−1

Pk(u, v, γ′
u)dP

[
ck−1 (Tu,v) = γ′

u

∣∣ uv ⊆ Wk−1

])
×

(∫

γ′
v∈C∞

k−1

P
[
ck (Tv,u) ∈ Γv

∣∣ uv ⊆ Wk ∧ ck−1 (Tv,u) = γ′
v · Pk(v, u, γ′

v)
]

dP
[
ck−1 (Tv,u) = γ′

v

∣∣ uv ⊆ Wk−1

])
.

We obtain (3.5) by cancelling out the integrals over γ′
v. The proof is now finished.

3.5 Recurrence relations

We now derive recurrence relations for the probabilities describing the behav-
ior of the randomized procedure. Analogously as in Section 2.4, we will in-
ductively show that the probabilities describing the state of the procedure after
the (k + 1)-th round can be computed using only the probabilities describing
the state after the k-th round.

Recall that w
(i)
k is the probability that a fixed vertex u has degree i after the k-

th round conditioned by the event that u is white after the k-th round. Also recall
that q

(i)
k is the probability that a fixed vertex u with a fixed neighbor v has degree

i after the k-th round conditioned by the event that both u and v are white after
the k-th round, i.e., uv ⊆ Wk. Finally, wk, rk and bk are the probabilities that
a fixed vertex is white, red and blue, respectively, after the k-th round.
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If u is white, the white subtree of Tu,v is the maximal subtree containing u and
white vertices only. We claim that the probability that the white subtree of Tu,v

is isomorphic to a tree in a given subset T0 after the k-th round, conditioned by
the event that both u and v are white after the k-th round, can be computed from
the values of q

(i)
k . Indeed, if T0 ∈ T0, the probability that u has degree i as in T0 is

q
(i)
k . Now, if the degree of u is i as in T0 and z is a neighbor of u, the values of q

(i)
k

again determine the probability that the degree of z is as in T0. By Lemma 3.6,
the probabilities that u and z have certain degrees, conditioned by the event that
they are both white, are independent. Inductively, we can proceed with other
vertices of T0. Applying standard probability arguments, we see that the values
of q

(i)
k fully determine the probability that the white subtree of Tu,v after the k-th

round is isomorphic to a tree in T0.
After the first round, the probabilities wk, rk, bk and q

(i)
k , i ∈ {0, 1, 2, 3}, are

the following.

b1 = 1 − (1 − p1)
3 q

(1)
1 =

(
1 − (1 − p1)2)2

r1 = p1 (1 − b1) = p1 (1 − p1)
3 w

(3)
1 = (1 − p1)

6

w1 = 1 − b1 − r1 w
(2)
1 =3 · (1 − p1)

4 (1 − (1 − p1)
2)

q
(3)
1 = (1 − p1)

4 w
(1)
1 =3 · (1 − p1)

2 (1 − (1 − p1)
2)2

q
(2)
1 = 2 · (1 − p1)2 (1 − (1 − p1)

2) w
(0)
1 =

(
1 − (1 − p1)2)3

A vertex becomes blue if at least one of its neighbors is active and it becomes red
if it is active and none of its neighbors is also active. Otherwise, a vertex stays
white. This leads to the formulas above.

To derive formulas for the probabilities wk, rk, bk and q
(i)
k for k ≥ 2, we

introduce additional notation. The recurrence relations can be expressed using
q
(i)
k only, but additional notation will help us to simplify expressions appearing in

our analysis. For a given edge uv of the infinite tree, let P→1
k be the probability

that the white subtree of Tu,v contains a path from u to a vertex of degree one
with all inner vertices of degree two after the k-th round conditioned by the event
uv ⊆ Wk. Note that such a path may have length zero ending at u (this happens
if the degree of u is one). Quantities P E→1

k and P O→1
k are probabilities that

the length of such a path is even or odd, respectively. Analogously, P→3
k , P E→3

k

and P O→3
k are probabilities that the white subtree of Tu,v contains a path, an even

path and an odd path, respectively, from u to a vertex of degree three with
all inner vertices of degree two after the k-th round conditioned by the event
uv ⊆ Wk.

Using Lemma 3.6, we conclude that the values of the just defined probabilities
can be computed as follows.

P→1
k =q

(1)
k ·

∑
ℓ≥0

(
q
(2)
k

)ℓ

=
q
(1)
k

1−q
(2)
k

P→3
k = q

(3)
k ·

∑
ℓ≥0

(
q
(2)
k

)ℓ

=
q
(3)
k

1−q
(2)
k

P O→1
k =q

(1)
k ·

∑
ℓ≥0

(
q
(2)
k

)2ℓ

=
q
(1)
k

1−
“

q
(2)
k

”2 P O→3
k = q

(3)
k ·

∑
ℓ≥0

(
q
(2)
k

)2ℓ

=
q
(3)
k

1−
“

q
(2)
k

”2

P E→1
k =P→1

k − P O→1
k = q

(2)
k · P O→1

k P E→3
k = P→3

k − P O→3
k = q

(2)
k · P O→3

k

Observe that P→1
k + P→3

k = 1.
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The formulas for the above probabilities can be easily altered to express
the probabilities that a path exists and one of its inner vertices is active; simply,
instead of multiplying by q

(2)
k , we multiply by p2q

(2)
k . Now, P̂→3

k is the probability
that the white subtree of Tuv contains a path from u to a vertex of degree three
with all inner vertices of degree two after the k-th round and none of them become
active, conditioned by uv ⊆ Wk. Analogously to the previous paragraph, we use
P̂ O→3 and P̂ E→3. The probabilities P̂→3

k , P̂ O→3 and P̂ E→3 can be computed in
the following way.

P̂→3
k =q

(3)
k ·

∑
ℓ≥0

(
q
(2)
k · (1 − p2)

)ℓ
=

q
(3)
k

1−q
(2)
k

·(1−p2)

P̂ O→3
k =q

(3)
k ·

∑
ℓ≥1

(
q
(2)
k · (1 − p2)

)2ℓ
=

q
(3)
k

1−
“

q
(2)
k

”2
·(1−p2)2

P̂ E→3
k =P̂→1

k − P̂ O→3
k = q

(2)
k · (1 − p2) · P̂

O→3
k

The probabilities P̃ O→3
k and P̃ E→3 are the probabilities that such an odd/even

path exists and at least one of its inner vertices become active. Note that P O→3
k =

P̂ O→3
k + P̃ O→3

k . The value of P̃ O→3
k is given by the equation

P̃ O→3
k =

(
q
(2)
k

)2

·
(

(1 − p2)
2 · P̃ O→3

k +
(
1 − (1 − p2)2) · P O→3

k

)
,

which can be manipulated to

P̃ O→3
k =

(
q
(2)
k

)2

·
(
1 − (1 − p2)

2) · P O→3
k

1 −
(
q
(2)
k

)2

· (1 − p2)
2

.

Using the expression for P̃ O→3
k , we derive that P̃ E→3

k is equal to the following.

P̃ E→3
k = q

(2)
k ·

(
p2 · P

O→3
k + (1 − p2) · P̃ O→3

k

)

We now show how to compute the probabilities wk+1, bk+1 and rk+1. Since blue
and red vertices keep their colors once assigned, we have to focus on the proba-
bility that a white vertex changes a color. We distinguish vertices based on their
degrees.

A vertex of degree zero. Such a vertex is always recolored to red.

A vertex of degree one. Such a vertex is always recolored. Its new color is
blue only if lies on an odd path to another vertex of degree one and the other
end is chosen to be the beginning of the path. This leads to the following
equalities.

P
[
u ∈ Rk+1

∣∣ u ∈ W
(1)
k

]
=

1

2
P O→1

k + P E→1
k + P→3

k ,

and

P
[
u ∈ Bk+1

∣∣ u ∈ W
(1)
k

]
=

1

2
P O→1

k .
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A vertex of degree two. Since we have already computed the probabilities
that the paths of white vertices with degree two leading in the two directions
from the vertex end at a vertex of degree one/three, have odd/even length
and contain an active vertex, we can easily determine the probability that
the vertex stays white or becomes red or blue. Note that for odd paths with
type 1↔1 and 3↔3, in addition, the random choice of the start of the path
comes in the play. It is then straightforward to derive the following.

P
ˆ

u ∈ Rk+1

˛

˛ u ∈ W
(2)
k

˜

=
“

P E→1
k

”2
+

2

2
P O→1

k P E→1
k + 2P E→1

k P→3
k

+ (1 − p2) ·

„

“

eP O→3
k

”2
+ 2 eP O→3

k
bP O→3
k +

2

2
eP O→3
k

eP E→3
k +

2

2
bP O→3
k

eP E→3
k +

2

2
eP O→3
k

bP E→3
k

«

+ p2 ·

„

“

P O→3
k

”2
+

2

2
P E→3

k P O→3
k

«

P
ˆ

u ∈ Bk+1

˛

˛ u ∈ W
(2)
k

˜

=
“

P O→1
k

”2
+

2

2
P O→1

k P E→1
k + 2P O→1

k P→3
k

+ (1 − p2) ·

„

“

eP E→3
k

”2
+ 2 eP E→3

k
bP E→3
k +

2

2
eP O→3
k

eP E→3
k +

2

2
bP O→3
k

eP E→3
k +

2

2
eP O→3
k

bP E→3
k

«

+ p2 ·

„

“

P E→3
k

”2
+

2

2
P E→3

k P O→3
k

«

A vertex of degree three. The vertex either stays white or is recolored to
blue. It stays white if (and only if) all the three paths with inner ver-
tices being white and with degree two are among the following: even paths
to a vertex of degree one, non-activated paths to a vertex of degree three, or
activated odd paths to a vertex of degree three that was chosen as the be-
ginning (and thus recolored with blue). Hence we obtain that

P
[
u ∈ Bk+1

∣∣ u ∈ W
(3)
k

]
= 1 −

(
P E→1

k + P̂→3
k +

1

2
P̃ O→3

k

)3

. (3.7)

Plugging all the probabilities from the above analysis together yields that

rk+1 =rk + wk ·

(
2∑

i=0

w
(i)
k · P

[
u ∈ Rk+1

∣∣ u ∈ W
(i)
k

]
)

bk+1 =bk + wk ·

(
3∑

i=1

w
(i)
k · P

[
u ∈ Bk+1

∣∣ u ∈ W
(i)
k

]
)

wk+1 =1 − rk+1 − bk+1 .

The crucial for the whole analysis is computing the values of w
(i)
k+1. Sup-

pose that u is a white vertex after the k-th round. The values of w
(i)
k determine

the probability that u has degree i and the values of q
(i)
k determine the probabili-

ties that white neighbors of u have certain degrees. In particular, the probability
that u has degree i and its neighbors have degrees j1, . . . , ji after the k-th round
conditioned by u being white after the k-th round is equal to

w
(i)
k ·

∏

j∈{j1,...,ji}

q
(j)
k .

In what follows, the vector of degrees j1, . . . , ji will be denoted by
−→
J .
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Let R
(i)
k+1(

−→
J ) be the probability that u is white after the (k + 1)-th round

conditioned by the event that u is white, has degree i and its white neighbors

have degrees
−→
J after the k-th round. Note that the value of R

(i)
k+1(

−→
J ) is the same

for all permutation of entries/degrees of the vector
−→
J .

If u has degree three and all its neighbors also have degree three after the k-
th round, the probability R

(3)
k+1(3, 3, 3) is equal to one: no vertex of degree three

can be colored by red and thus the color of u stays white. On the other hand,
if u or any of its neighbor has degree one, u does definitely not stay white and

the corresponding probability R
(i)
k+1(

−→
J ) is equal to zero.

We now analyze the value of R
(i)
k+1(

−→
J ) for the remaining combinations of i and

−→
J . If i = 2, then u stays white only if it lies on a non-active path of degree-two
vertices between two vertices of degree three. Consequently, it holds that

R
(2)
k+1(2, 2) = (1 − p2)

3 ·
(
P̂→3

k

)2

R
(2)
k+1(3, 2) = (1 − p2)

2 · P̂→3
k

R
(2)
k+1(3, 3) = (1 − p2)

If i = 3, then u stays white if and only if for every neighbor v of degree two of u,
the path of degree-two vertices from v to u is� an odd path to a vertex of degree one,� a non-activated path to a vertex of degree three,� an activated even path to vertex of degree three and u is not chosen as

the beginning.

Based on this, we obtain that the values of R
(3)
k+1(

−→
J ) for the remaining choices of

−→
J are the as follows.

R
(3)
k+1(2, 2, 2) =

(
P O→1

k + (1 − p2) ·

(
P̂→3

k +
1

2
P̃ E→3

k

)
+ p2 ·

1

2
P E→3

k

)3

R
(3)
k+1(2, 2, 3) =

(
P O→1

k + (1 − p2) ·

(
P̂→3

k +
1

2
P̃ E→3

k

)
+ p2 ·

1

2
P E→3

k

)2

R
(3)
k+1(2, 3, 3) =P O→1

k + (1 − p2) ·

(
P̂→3

k +
1

2
P̃ E→3

k

)
+ p2 ·

1

2
P E→3

k

We now focus on computing the probabilities R
(i→i′)
k+1 (

−→
J ) that a vertex u is

a white vertex of degree i′ after the (k + 1)-th round conditioned by the event

that u is a white vertex with degree i with neighbors of degrees in
−→
J after

the k-th round and u is also white after the (k + 1)-th round. For example,

R
(2→i′)
k+1 (2, 2) is equal to one for i′ = 2 and to zero for i′ 6= 2. To derive formulas

for the probabilities R
(i→i′)
k+1 , we have to introduce some additional notation: S

(i,j)
k+1

for (i, j) ∈ {(2, 2), (2, 3), (3, 2), (3, 3)} will denote the probability that a vertex v
is white after the (k + 1)-th round conditioned by the event that v is a white
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vertex of degree j after the k-th round and a fixed (white) neighbor u of v has
degree i after the k-th round and u is white after the (k + 1)-th round. It is easy

to see that S
(2,2)
k+1 = 1. If j = 3, the event we condition by guarantees that one of

the neighbors of v is white after the (k + 1)-th round. Hence, we derive that

S
(2,3)
k+1 = S

(3,3)
k+1 =

(
P E→1

k + P̂→3
k +

1

2
P̃ O→3

k

)2

.

Using the probabilities S
(i,j)
k+1 , we can easily express some of the probabilities

R
(i→i′)
k+1 (

−→
J ).

R
(2→2)
k+1 (2, 3) =S

(2,3)
k+1 R

(2→2)
k+1 (3, 3) =

(
S

(2,3)
k+1

)2

R
(2→1)
k+1 (2, 3) =1 − S

(2,3)
k+1 R

(2→1)
k+1 (3, 3) =2 · S

(2,3)
k+1

(
1 − S

(2,3)
k+1

)

R
(2→0)
k+1 (2, 3) =0 R

(2→0)
k+1 (3, 3) =

(
1 − S

(2,3)
k+1

)2

R
(3→3)
k+1 (3, 3, 3) =

(
S

(3,3)
k+1

)3

R
(3→1)
k+1 (3, 3, 3) =3 · S

(3,3)
k+1

(
1 − S

(3,3)
k+1

)2

R
(3→2)
k+1 (3, 3, 3) =3 ·

(
S

(3,3)
k+1

)2 (
1 − S

(3,3)
k+1

)
R

(3→0)
k+1 (3, 3, 3) =

(
1 − S

(3,3)
k+1

)3

We now determine S
(3,2)
k+1 , i.e., the probability that a vertex v is white after

the (k+1)-th round conditioned by the event that v has degree two after the k-th
round and a fixed white neighbor u of u that has degree three after the k-th round
is white after the (k + 1)-th round. Observe that v is white after the (k + 1)-th
round only if v is contained in a non-active 3↔3 path. Since we condition by
the event that u is white after the (k + 1)-th round, v cannot be contained in
an active 3↔3 path of even length or an active 3↔3 odd path with u being chosen
as the beginning of this path. Hence, the value of S

(3,2)
k+1 is the following.

S
(3,2)
k+1 =

(1 − p2) · P̂
→3
k

P O→1
k + (1 − p2) ·

(
P̂→3

k + 1
2
P̃ E→3

k

)
+ p2 ·

1
2
P E→3

k

.
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Using S
(3,2)
k+1 , the remaining values of R

(i→i′)
k+1 (

−→
J ) can be expressed as follows.

R
(3→3)
k+1 (3, 3, 2) =

(
S

(3,3)
k+1

)2

· S
(3,2)
k+1

R
(3→2)
k+1 (3, 3, 2) =

(
S

(3,3)
k+1

)2 (
1 − S

(3,2)
k+1

)
+ 2 ·

(
1 − S

(3,3)
k+1

)
S

(3,3)
k+1 · S

(3,2)
k+1

R
(3→1)
k+1 (3, 3, 2) =

(
1 − S

(3,3)
k+1

)2

S
(3,2)
k+1 + 2 · S

(3,3)
k+1

(
1 − S

(3,3)
k+1

)(
1 − S

(3,2)
k+1

)

R
(3→0)
k+1 (3, 3, 2) =

(
1 − S

(3,3)
k+1

)2 (
1 − S

(3,2)
k+1

)

R
(3→3)
k+1 (2, 2, 3) =

(
S

(3,2)
k+1

)2

· S
(3,3)
k+1

R
(3→2)
k+1 (2, 2, 3) =

(
S

(3,2)
k+1

)2 (
1 − S

(3,3)
k+1

)
+ 2 ·

(
1 − S

(3,2)
k+1

)
S

(3,2)
k+1 · S

(3,3)
k+1

R
(3→1)
k+1 (2, 2, 3) =

(
1 − S

(3,2)
k+1

)2

S
(3,3)
k+1 + 2 · S

(3,2)
k+1

(
1 − S

(3,2)
k+1

)(
1 − S

(3,3)
k+1

)

R
(3→0)
k+1 (2, 2, 3) =

(
1 − S

(3,2)
k+1

)2 (
1 − S

(3,3)
k+1

)

R
(3→3)
k+1 (2, 2, 2) =

(
S

(3,2)
k+1

)3

R
(3→2)
k+1 (2, 2, 2) =3 ·

(
S

(3,2)
k+1

)2 (
1 − S

(3,2)
k+1

)

R
(3→1)
k+1 (2, 2, 2) =3 · S

(3,2)
k+1

(
1 − S

(3,2)
k+1

)2

R
(3→0)
k+1 (2, 2, 2) =

(
1 − S

(3,2)
k+1

)3

Using R
(i→i′)
k+1 (

−→
J ), we can compute w

(i′)
k+1, i′ ∈ {0, 1, 2, 3}. In the formula below,

Ji denotes the set of all possible vectors
−→
J with i entries and all entries either

two or three. The denominator of the formula is the probability that the vertex u
is white after the (k + 1)-th round conditioned by the event that u is white after
the k-th round; the nominator is the probability that u is white and has degree i′

after the (k + 1)-th round conditioned by the event that u is white after the k-th
round.

w
(i′)
k+1 =

∑

i≥2
i≥i′

∑

−→
J ∈Ji

w
(i)
k ·

∏

j∈
−→
J

q
(j)
k · R

(i)
k+1

(−→
J
)
· R

(i→i′)
k+1

(−→
J
)

∑

i≥2

∑

−→
J ∈Ji

w
(i)
k ·

∏

j∈
−→
J

q
(j)
k · R

(i)
k+1

(−→
J
)

It remains to exhibit the recurrence relations for the values of q
(i)
k+1. Let uv

be an edge of the tree, i ≥ 1 and
−→
J ∈ Ji. Observe that the probability that u

has degree i and its neighbors have degrees
−→
J after the k-th round conditioned

by the event uv ⊆ Wk is exactly

q
(i)
k ·

∏

j∈
−→
J

q
(j)
k .

In what follows, we will assume that the first coordinate j1 of
−→
J corresponds to

the vector v.
The probabilities Q

(i)
k+1 are defined analogically to R

(i)
k+1 with an additional

requirement that v is also white after the (k + 1)-th round. Formally, Q
(i)
k+1

(−→
J
)
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is the probability that a vertex u and its fixed neighbor v are both white after
the (k+1)-th round conditioned by the event that uv ⊆ Wk, u has degree i and its

white neighbors have degrees
−→
J after the k-th round. Observe that the following

holds.

Q
(2)
k+1(2, 2) = R

(2)
k+1(2, 2) Q

(2)
k+1(3, 2) =R

(2)
k+1(3, 2) · S

(2,3)
k+1

Q
(2)
k+1(2, 3) = R

(2)
k+1(2, 3) = R

(2)
k+1(3, 2) Q

(2)
k+1(3, 3) =R

(2)
k+1(3, 3) · S

(2,3)
k+1

Q
(3)
k+1(j1, j2, j3) = R

(3)
k+1(j1, j2, j3) · S

(3,j1)
k+1

Similarly, Q
(i→i′)
k+1 is the probability that a vertex u is a white vertex of degree

i′ ≥ 1 and its fixed neighbor v is white after the (k + 1)-th round conditioned
by the event that u is a white vertex with degree i with neighbors of degrees

in
−→
J after the k-th round and uv ⊆ Wk+1. Using the arguments analogous to

those to derive the formulas for R
(i→i′)
k+1 (

−→
J ), we obtain the following formulas for

Q
(i→i′)
k+1 . We provide the list of recurrences to compute the values of Q

(i→i′)
k+1 and

leave the actual derivation to the reader.

Q
(2→2)
k+1 (2, 2) = Q

(2→2)
k+1 (3, 2) = 1 Q

(2→2)
k+1 (2, 3) = Q

(2→2)
k+1 (3, 3) = S

(2,3)
k+1

Q
(2→1)
k+1 (2, 2) = Q

(2→1)
k+1 (3, 2) = 0 Q

(2→1)
k+1 (2, 3) = Q

(2→1)
k+1 (3, 3) = 1 − S

(2,3)
k+1

Q
(3→3)
k+1 (3, 3, 3) =

“

S
(3,3)
k+1

”2
Q

(3→3)
k+1 (3, 2, 2) =

“

S
(3,2)
k+1

”2

Q
(3→2)
k+1 (3, 3, 3) = 2 · S

(3,3)
k+1

“

1 − S
(3,3)
k+1

”

Q
(3→2)
k+1 (3, 2, 2) =2 ·

“

1 − S
(3,2)
k+1

”

S
(3,2)
k+1

Q
(3→1)
k+1 (3, 3, 3) =

“

1 − S
(3,3)
k+1

”2
Q

(3→1)
k+1 (3, 2, 2) =

“

1 − S
(3,2)
k+1

”2

Q
(3→3)
k+1 (3, 3, 2) = S

(3,3)
k+1 · S

(3,2)
k+1 Q

(3→3)
k+1 (2, 3, 3) =

“

S
(3,3)
k+1

”2

Q
(3→2)
k+1 (3, 3, 2) = S

(3,3)
k+1

“

1 − S
(3,2)
k+1

”

+
“

1 − S
(3,3)
k+1

”

S
(3,2)
k+1 Q

(3→2)
k+1 (2, 3, 3) =2 ·

“

1 − S
(3,3)
k+1

”

S
(3,3)
k+1

Q
(3→1)
k+1 (3, 3, 2) =

“

1 − S
(3,3)
k+1

” “

1 − S
(3,2)
k+1

”

Q
(3→1)
k+1 (2, 3, 3) =

“

1 − S
(3,3)
k+1

”2

Q
(3→3)
k+1 (2, 2, 3) = S

(3,2)
k+1 · S

(3,3)
k+1 Q

(3→3)
k+1 (2, 2, 2) =

“

S
(3,2)
k+1

”2

Q
(3→2)
k+1 (2, 2, 3) =

“

1 − S
(3,2)
k+1

”

S
(3,3)
k+1 + S

(3,2)
k+1

“

1 − S
(3,3)
k+1

”

Q
(3→2)
k+1 (2, 2, 2) =2 ·

“

1 − S
(3,2)
k+1

”

S
(3,2)
k+1

Q
(3→1)
k+1 (2, 2, 3) =

“

1 − S
(3,2)
k+1

” “

1 − S
(3,3)
k+1

”

Q
(3→1)
k+1 (2, 2, 2) =

“

1 − S
(3,2)
k+1

”2

Using the values of Q
(i)
k+1 and Q

(i→i′)
k+1 , we can compute the values of q

(i′)
k+1 for

i′ ∈ {1, 2, 3}. The denominator of the formula is the probability that the vertices
u and v are white after the (k + 1)-th round conditioned by the event that u and
v are white after the k-th round; the nominator is the probability that u are v
are white and u has degree i′ after the (k + 1)-th round conditioned by the event
that u and v are white after the k-th round.

q
(i′)
k+1 =

∑

i≥2
i≥i′

∑

−→
J ∈Ji

q
(i)
k ·

∏

j∈
−→
J

q
(j)
k · Q

(i)
k+1

(−→
J
)
· Q

(i→i′)
k+1

(−→
J
)

∑

i≥2

∑

−→
J ∈Ji

q
(i)
k ·

∏

j∈
−→
J

q
(j)
k · Q

(i)
k+1

(−→
J
)
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3.6 Setting up the parameters

The recurrences presented in the previous section were solved numerically using
the Python program provided in the Appendix B. The particular choice of pa-
rameters used in the program was p1 = p2 = 10−5 and K = 307449. The choice
of K was made in such a way that wK ≤ 10−6. We also estimated the precision of
our calculations based on the representation of float numbers to avoid rounding
errors effecting the presented bound on significant digits. Solving the recurrences
for the above choice of parameters we obtain that rK > 0.4352.

3.7 Procedure RAND-INDEP-CUBIC

In this section, we show how to modify the procedure RAND-INDEP so that it can
be applied to cubic graphs with large girth. In order to use the analysis presented
in the previous sections, we have to cope with the dependence of some of the events
caused by the presence of cycles in the graph. To do so, we introduce an additional
parameter L which will control the length of paths causing the dependencies.
Then, we will be able to guarantee that the probability that a fixed vertex of
a given cubic graph is red is at least rK − o(1) assuming the girth of the graph
is at least 8KL + 2. In particular, if L tends to infinity, we approach the same
probability as for the infinite cubic tree.

We now describe how the randomized procedure is altered. Let G be the giv-
en cubic graph. We produce a sequence G0, G1, G1, . . . , GK , GK of vertex-colored
subcubic graphs; the only vertices in these graphs that have less than three neigh-
bors will always be assigned a new color—black. The graphs can also contain some
additional vertices which do not correspond to the vertices of G; such vertices
will be called virtual. The graph G0 is the cubic graph G with all vertices colored
white. Assume that Gk−1 is already defined. Let Gk be the graph and its vertex
coloring obtained from Gk−1 using the randomized procedure for the k-th round
exactly as described for the infinite tree.

Before we describe how the graph Gk is obtained from Gk, we need to introduce
additional notation. Let y0, y1, . . . , y2L be a fixed path in the infinite cubic tree.
Now consider restrictions to Ty1,y0 of colorings of the tree after the k-th round
that satisfy that

1. the vertices y0, y1, . . . , y2L are white after the k-th round and

2. the vertices y1, . . . , y2L−1 have degree two.

Let Dk be the probability distribution on these restrictions such that the proba-
bility of each restriction is proportional to the probability of the original coloring
after the k-th round. In other words, we discard the colorings that do not satisfy
the two constraints, restrict them to Ty1,y0 and normalize the probabilities.

All graphs Gk will satisfy that all paths joining non-virtual vertices contain
non-virtual vertices only. The graph Gk is obtained from Gk by performing
the following operation on every path P of type 1↔1, 1↔3 or 3↔3 between
vertices a and b that has length at least 2L and contains at least one non-virtual
inner vertex. Let xu be the non-virtual inner vertex of P that is the closest to a
and xv the one closest to b. Let Px be the subpath between xu and xv (inclusively)
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in Gk. Let u be the neighbor of xu on P towards a, and v the neighbor of xv on
P towards b. Observe that, since no path between non-virtual vertices contains
a virtual vertex, if a is non-virtual, then xu is the neighbor of a on P and u = a.
Similarly, if b is non-virtual, then v is b.

We now modify the graph Gk as follows. Color the vertices of Px black and
remove the edges xuu and xvv from the graph. Then attach to u and v rooted trees
Tu and Tv, all of them fully comprised of virtual vertices, such that the colorings
of Tu and Tv are randomly sampled according to the distribution Dk. The roots
of the trees will become adjacent to u or v, respectively. These trees are later
referred to as virtual trees. Observe that we have created no path between two
non-virtual vertices containing a virtual vertex.

After the K-th round, the vertices of G receive colors of their counterparts
in GK . In this way, the vertices of G are colored white, blue, red and black and
the red vertices form an independent set.

3.8 Refining the analysis

We argue that the analysis for the infinite cubic trees presented in Section 3.5
also applies to cubic graphs with large girth. We start with some additional
definitions. Let u and v be two vertices of Gk. The vertex v is reachable from u if
both u and v are white and there exists a path in Gk between u and v comprised
of white vertices with all inner vertices having degree two. Clearly, the relation of
being reachable is symmetric. The vertex v is near to u if both u and v are white
and either v is reachable from u or v is a neighbor of a white vertex reachable from
u. Note that the relation of being near is not symmetric in general. For a subset
X ⊆ V (Gk) of white vertices, Nk(X) ⊆ V (Gk) is the set of white vertices that
are near to a vertex of X in Gk.

We now prove the following theorem.

Theorem 3.7. Let K be an integer, p1 and p2 positive reals, G a cubic graph and
v a vertex of G. For every ε > 0 there exists an integer L such that if G has girth
at least 8KL+2, then the probability that the vertex v will be red in G at the end of
the randomized procedure is at least rK −ε where rK is the probability that a fixed
vertex of the infinite cubic tree is red after the K-th round of the randomized
procedure RAND-INDEP with parameters p1 and p2.

Proof. We keep the notation introduced in the description of the randomized
procedure. As the first step in the proof, we establish the following two claims.

Claim 1. Let k be a non-negative integer, u a vertex of Gk, c one of the colors,
γ1 and γ2 two colorings of vertices of Gk such that u is white in both γ1 and γ2. If
the set of vertices near to u in γ1 and γ2 induce isomorphic trees rooted at u, then
the probability that u has the color c in Gk+1 conditioned by the event that Gk is
colored as in γ1, and the probability that u has the color c in Gk+1 conditioned by
the event that Gk is colored as in γ2, are the same.

Indeed, the color of u in Gk+1 is influenced only by the length and the types of
the white paths in Gk containing u. All the vertices of these paths are near to u as
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well as the white neighbors of the other end-vertices of these paths (which are nec-
essary to determine the types of the paths). By the assumption on the colorings
γ1 and γ2, the two probabilities from the statement of the claim are the same.

We now introduce yet another definition. For a subcubic graph H with vertices
colored white, red, blue or black, a vertex v ∈ H is said to be d-close to a white
vertex u ∈ H if v is white and there exists a path P from u to v comprised of
white vertices such that� the length of P is at most d, or� P contains a vertex w such that w is at distance at most d from u on P

and each of the first (2L− 1) vertices following w (if they exist) has degree
two.

Finally, a d-close tree of u is the subgraph comprised of all vertices d-close to u
(for our choice of d, this subgraph will always be tree) that is rooted at u. By
the definition, the d-close tree of u contains white vertices only.

Observe that if v is d-close to u, then it is also d′-close to u for every d′ > d.
Also observe that if a vertex v of a virtual subtree is d-close to a non-virtual vertex
u, then all the white vertices lying in the same white component of the virtual
subtree are also d-close to u: indeed, consider a path P witnessing that v is d-close
to u and let P0 be its subpath from u to the root of the virtual tree. The path
P0 witnesses that the root is d-close to u and P0 can be prolonged by the path
comprised of 2L − 1 degree-two virtual vertices to a path to any white vertex v′

of the same white component as v. The new path now witnesses that v′ is also
d-close to u.

Let us look at d-close sets in the infinite cubic trees.

Claim 2. Let d be a non-negative integer, T an infinite cubic tree with vertices
colored red, blue and white, and u a white vertex of T . If a vertex v is d-close to
u in T , then every vertex v′ that is near to v is (d + 2L)-close to u.

Let P be a path from u to v that witnesses that v is d-close to u. Assume
first that the length of P is at most d. If v′ lies on P or is a neighbor of a vertex
of P , then v′ is (d + 1)-close to u. Otherwise, consider the path P ′ from u to
v′; observe that P is a subpath of P ′ and all the vertices following v on P with
a possible exception of v′ and the vertex immediately preceding it have degree
two. If the length of P ′ is at most d+2L, then v′ is (d+2L)-close to u. Otherwise,
v is followed by at least 2L−1 vertices of degree two and v′ is again (d+2L)-close
to u.

Assume now that the length of P is larger than d. Then, P contains a vertex
w at distance at most d from u such that the first 2L− 1 vertices following w (if
they exist) have degree two. If v′ lies on P or is adjacent to a vertex of P , then
v′ lies on P after w or is adjacent to w. In both cases, v′ is (d + 1)-close to u.
In the remaining case, we again consider the path P ′ from u to v′ which must
be an extension of P (otherwise, v′ would lie on P or it would be adjacent to
a vertex on P ). If there are at least 2L − 1 vertices following w on P , then v′ is
d-close to u. Otherwise, either P ′ contains 2L−1 vertices of degree two following
w or the length of P ′ is at most d + 2L. In both cases, v′ is (d + 2L)-close to u.

We are ready to prove our main claim.
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Claim 3. Let k ≤ K − 1 be a positive integer, T a rooted subcubic tree such that
its root is not contained in a path of degree-two vertices of length at least 2L, u
a vertex of the infinite cubic tree and v a non-virtual vertex of Gk. The probability
that u is white and the 4(K−k)L-close tree of u in the infinite tree is isomorphic to
T after the k-th round is the same as the probability that v is white and the 4(K−
k)L-close tree of v in Gk is isomorphic to T after the k-th round.

The proof proceeds by induction on k. For k = 0, both in the infinite tree
and in G0, the probability is equal to one if T is the full rooted cubic tree of
depth 4KL and it is zero, otherwise. Here, we use the girth assumption to derive
that the subgraph of G induced by 4KL-close vertices to u is a tree (otherwise,
G would contain a cycle of length at most 8KL + 1).

Suppose k > 0. Let T̃ be the 4(K − k + 1)L-close tree of v in Gk−1 and W
the set of the vertices that are (4(K − k)L + 2L)-close to v in Gk−1. The degree
and the color of each vertex in Gk is determined by vertices that are near to it in
Gk−1 by Claim 1. In particular, the degrees and the colors of the vertices of W are
determined by T̃ by Claim 2. The induction assumption implies that every vertex
of W is white and has a given degree i in Gk with the same probability as its
counterpart in the infinite cubic tree (assuming that the vertex u of the infinite
tree does not lie on a path of degree-two vertices of length at least 2L after
the (k − 1)-th round). If v lies on a path with at least 2L− 1 degree-two vertices
in Gk, it becomes black.

The set W contains all vertices that are 4(K−k)L-close to v in Gk with the ex-
ception of the new virtual vertices that are 4(K −k)L-close to v. Since the color-
ings of newly added virtual trees have been sampled according to the distribution
Dk, Lemma 3.6 implies that the probability that v is white and the 4(K − k)L-
close tree of v is equal to T is the same as the corresponding probability for u in
the infinite cubic tree (conditioned by not being contained in a path of degree-two
vertices of length at least 2L).

Claim 4. Let k be a non-negative integer and u a vertex of the infinite cubic tree.
The probability that u is white and lies on a white path of length at least 2L after

the k-th round is at most 2 ·
(
q
(2)
k

)L−1

.

If u lies on such a path, its degree must be two and the length of the path from
u in one of the two directions is at least L−1. The probability that this happens

for each of the two possible directions from u is at most
(
q
(2)
k

)L−1

. The claim

now follows.

Let p0 =
∑K

k=1 2
(
q
(2)
k

)L−1

. Observe that q
(2)
k < 1. Indeed, if a vertex u of

the infinite tree and all the vertices at distance at most 2K from u are white
after the first round, then u and its three neighbors must have degree three after
the K-th round (all vertices at distance at most 2(K + 1 − k) from u are white

after the k-th round). Since this happens with non-zero probability, q
(3)
k > 0 and

thus q
(2)
k < 1. This implies that p0 tends to 0 with L approaching the infinity.

Fix a vertex v of G. By Claim 1, the probability that v is colored red in
the k-th round is fully determined by the vertices that are near to v in Gk−1.
All such vertices are also 2L-close to v by Claim 2. Consider a rooted subcubic
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tree T . If the root of T does not lie on a path with inner vertices of degree
two with length at least 2L, then the probability that v is white and the 2L-
close tree of v is isomorphic to T is the same as the analogous probability for
a vertex of the infinite tree by Claim 3. Since the probability that v is white
and it lies on a path of length at least 2L in its 2L-close tree at some point
during the randomized procedure is at most p0 by Claim 4, the probability that
v is colored red in GK is at least rK − p0. Since p0 < ε for L sufficiently large,
the statement of the theorem follows.

3.9 Graphs with large odd girth

We conclude with a remark related to Corollary 3.3 whether the fractional chro-
matic number of cubic graphs is bounded away from 3 under a weaker assumption
that the odd girth (the length of the shortest odd cycle) is large. This is indeed
the case as we now show.

Theorem 3.8. Let g ≥ 5 be an odd integer. The fractional chromatic number of
every subcubic graph G with odd girth at least g is at most 8

3−6/(g+1)
.

Proof. Clearly, we can assume that G is bridgeless. If G contains two or more
vertices of degree two, then we include G in a large cubic bridgeless graph with
the same odd girth. Hence, we can assume that G contains at most one vertex
of degree two. Consequently, G has a 2-factor F .

We now construct a probability distribution on the independent sets such that
each vertex is included in the independent set chosen according to this distribution
with probability at least 3(1−2/(g+1))/8. This implies the claim of the theorem.

Number the vertices of each cycle of F from 1 to ℓ where ℓ is the length of
the cycle. Choose randomly a number k between 1 and (g + 1)/2 and let W be
the set of all vertices with indices equal to k modulo (g+1)/2. Hence, each vertex
is not in W with probability 1 − 2/(g + 1).

Let V1, . . . , Vm be the sets formed by the paths of F \ W . Since each set
Vi, i = 1, . . . , m, contains at most g − 1 vertices, the subgraph G[Vi] induced
by Vi is bipartite. Choose randomly (and independently of the other subgraphs)
one of its two color classes and color its vertices red. Observe that if an edge
has both its end-points colored red, then it must be an edge of the matching M
complementary to F . If this happens, choose randomly one vertex of this edge
and uncolor it.

The resulting set of red vertices is independent. We estimate the probability
that a vertex v is red conditioned by v 6∈ W . With probability 1/2, v is initially
colored red. However, with probability at most 1/2 its neighbor through an edge
of M is also colored red (it can happen that this neighbor is in W ). If this
is the case, then the vertex v is uncolored with probability 1/2. Consequently,
the probability that v is red is at least 1/2 · (1 − 1/4) = 3/8. Multiplying by
the probability that v 6∈ W , which is 1 − 2/(g + 1), we obtain that the vertex v
is included in the independent set with probability at least 3(1− 2/(g + 1))/8 as
claimed earlier.
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Appendix A

Program for edge-cuts

#include <stdio .h>

#include <stdlib .h>

#include <math.h>

#define THRESHOLD 0.0000001

#define Pinit 0.00001/2 //p_0

#define Pred 0.00001 //p_r

#define Prb 0.000001 //p_rb

#define Pblue 0.1 //p_b

double prob_r [4][4]; //P_k^{r,b}(R)

double prob_b [4][4]; //P_k^{r,b}(B)

double prob_w [4][4]; //P_k^{r,b}(W)

int k;

double p_r ,p_b ,p_w; //r_k , b_k , w_k

double cut; //p_k^c

double p[4][4]; //p_k^{r,b}

double qr ,qb ,qw; //q_k ->k+1^{R/B/W}

int binom(int n, int k) {

int i;

int r = 1;

if (n < k) return 0;

for (i=1; i<=k; i++) {

r*=n;

r/=i;

n--;

}

return r;

}

void init() {

int r,b,i;

k=1;

p_r = Pinit;

p_b = Pinit;

p_w = 1 - 2* Pinit;

cut = 2* Pinit *Pinit ;

for (r=0; r <4; r++) for (b=0; b<4-r; b++) {

p[r][b] = binom (3,r) * binom (3-r,b);

for (i=0;i<r+b;i++) p[r][b]*= Pinit ;

for (i=0;i<3-r-b;i++) p[r][b]*=1 -2* Pinit ;

}

}
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void comp_trans () {

int r,b;

double pe = 0; //p_k^WW

for (r=0; r <3; r++) for (b=0; b<3-r; b++)

pe += p[r][b]*(3-r-b)/3;

qr = qb = qw = 0;

for (r=0; r <3; r++) for (b=0; b<3-r; b++) {

qr += p[r][b]* prob_r [r][b]*(3-r-b)/3;

qb += p[r][b]* prob_b [r][b]*(3-r-b)/3;

qw += p[r][b]* prob_w [r][b]*(3-r-b)/3;

}

qr /= pe; qb /= pe; qw /= pe;

}

void step() {

int r,b,r_ ,b_ , i;

double x;

double pw; // p_k^W

double p_new [4][4];

k++;

comp_trans ();

x = 0;

for (r=0; r <4; r++) for (b=0; b<4-r; b++) {

x+=p[r][b] * ( prob_r [r][b]*( b+.5*(3 - r-b)*qb)

+ prob_b [r][b]*( r+.5*(3 - r-b)*qr) );

}

cut +=2* p_w *x/3;

x = 0;

for (r=0; r <4; r++) for (b=0; b<4-r; b++)

x+= p[r][b]* prob_r [r][b];

p_r += p_w *x;

x = 0;

for (r=0; r <4; r++) for (b=0; b<4-r; b++)

x+= p[r][b]* prob_b [r][b];

p_b += p_w *x;

p_w = 1-p_b -p_r;

pw = 0;

for (r=0; r <4; r++) for (b=0; b<4-r;b++)

pw += p[r][b]* prob_w [r][b];

for (r=0; r <4; r++) for (b=0; b<4-r; b++) {

p_new[r][b]=0;

for (r_ =0; r_ <=r; r_++) for (b_=0; b_ <=b; b_++) {

x = p[r_][b_] * prob_w [r_][b_] * binom (3-r_ -b_ ,r-r_)

* binom (3-r-b_,b-b_);

for (i=0; i<r-r_; i++) x*=qr;

for (i=0; i<b-b_; i++) x*=qb;

for (i=0; i<3-r-b; i++) x*=qw;

p_new [r][b] += x;

}

p_new[r][b] /= pw;

}

for (r=0; r <4; r++) for (b=0; b<4-r;b++)

p[r][b] = p_new [r][b];

}
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int main () {

int r,b;

for (r=0; r <4; r++) for (b=0; b<4-r; b++) {

prob_r [r][b] = prob_b [r][b] = 0;

if (r+b==0) { prob_w [r][b] = 1; continue ; }

if (r>=2) { prob_b [r][b] = 1; continue ; }

if (b>=2) { prob_r [r][b] = 1; continue ; }

if (r+b==2) { prob_w [r][b] = 1; continue ; }

if (r) {

prob_b [r][b] = Pblue ; prob_w [r][b] = 1-Pblue;

continue ;

}

if (b) {

prob_r [r][b] = Pred; prob_w [r][b] = 1 - Pred;

continue ;

}

}

init ();

while (p_w *(p[1][0] + p[0][1]) > THRESHOLD ) {

step ();

}

prob_r [1][1]= Prb /2;

prob_b [1][1]= Prb /2;

prob_w [1][1]=1 - Prb;

while (p_w > THRESHOLD ) {

step ();

}

printf ("%d rounds (girth => %d), prob. %.7 lf (r=%.7 lf b=%.7 lf)\n",

k ,2*k+1,cut ,p_r ,p_b );

return 0;

}
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Appendix B

Program for independent sets

W_THOLD = 1.0/1000000

p_1 = 0.00001

p_2 = 0.00001

def state():

print ("%d: r=%f b=%f w=%f q3=%f q2=%f q1=%f w3=%f w2=%f w1=%f w0=%f"

% (k, p_r , p_b , p_w , q[3], q[2], q[1], w[3], w[2], w[1], w[0]))

def gen_C():

S= {1: q[1], 2: q[2], 3: q[3]}

for u in (1,2,3):

A=(1,2,3)

B=S if (u>1) else {"-":1}

C=S if (u>2) else {"-":1}

for a in A:

for b in B:

for c in C:

C3[(u,a,b,c)] = w[u]*q[a]*B[b]*C[c]

C2[(u,a,b,c)] = q[u]*q[a]*B[b]*C[c]

def init():

global p_r , p_w , p_b

t = (1-p_1)**2

w[3] = t**3

w[2] = 3*(t**2)*(1-t)

w[1] = 3*t*(1-t)**2

w[0] = (1-t)**3

q[3] = t**2

q[2] = 2*t*(1-t)

q[1] = (1-t)**2

p_b = 1-(1-p_1 )**3

p_r = p_1*(1-p_b)

p_w = 1 - p_r - p_b

k=0

p_w = 1

p_b = p_r = 0

w = [0,0,0,3]

q = [0,0,0,1]

C3 = {}

C2 = {}

while (p_w > W_THOLD ):

k+=1

if (k==1):

init()

state ()

continue
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o1 = q[1]/(1-q[2]**2)

e1 = q[2]*o1

p1 = o1 + e1

o3 = q[3]/(1-q[2]**2)

e3 = q[2]*o3

p3 = o3 + e3

p3_n = q[3]/(1-q[2]*(1-p_2))

o3_n = q[3]/(1-q[2]**2 * (1-p_2)**2)

e3_n = q[2]*(1-p_2)*o3_n

o3_y = (q[2]**2 *(1-(1-p_2)**2)*o3)/(1-q[2]**2 *(1-p_2)**2)

e3_y = q[2]*(p_2*o3 + (1-p_2)*o3_y)

Pr = [1,0,0,0]

Pb = [0,0,0,0]

Pr[1] = (e1 + o1*.5) + p3

Pb[1] = o1*.5

Pr[2] = e1**2 + e1*o1 + 2*e1*p3

Pr[2]+= (1-p_2 )*(o3_y**2 +2*o3_y*o3_n+o3_y*e3_y+o3_n*e3_y+o3_y*e3_n)

Pr[2]+= p_2 *(o3**2 + o3*e3)

Pb[2] = o1**2 + e1*o1 + 2*o1*p3

Pb[2]+= (1-p_2 )*(e3_y**2 +2*e3_y*e3_n+o3_y*e3_y+o3_n*e3_y+o3_y*e3_n)

Pb[2]+= p_2 *(e3**2+o3*e3)

Pb[3] = 1-(p3_n+e1+o3_y/2)**3

p_r+= p_w*(w[0]+w[1]*Pr[1]+w[2]*Pr[2])

p_b+= p_w*(w[1]*Pb[1]+w[2]*Pb[2]+w[3]*Pb[3])

p_w = 1-p_r -p_b

r32 = o1+(1-p_2)*(p3_n+.5*e3_y)+p_2*(.5*e3)

s33 = (p3_n+e1+o3_y/2)**2

s32 = (1-p_2)*p3_n / r32

gen_C ()

T = [0,0,0,0]

sum = 0

for C in C3:

deg1=False

for x in C:

if x==1:

deg1=True

break

if deg1: continue

N={}

C_p = C3[C]

if (C[0]==2):

N[3] = {0:1}

C_p*=1-p_2

for i in (1,2):

if (C[i]==3):

N[i] = {0: s33 }

N[i][1] = 1-N[i][0]

elif (C[i]==2):

C_p *= (1-p_2)*p3_n

N[i] = {0: 1}

elif (C[0]==3):

for i in (1,2,3):

if (C[i]==3):

N[i] = {0: s33 }

elif (C[i]==2):
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C_p *= r32

N[i] = {0: s32 }

N[i][1] = 1-N[i][0]

sum += C_p

for a in N[1]:

for b in N[2]:

for c in N[3]:

T[C[0]-a-b-c] += C_p*N[1][a]*N[2][b]*N[3][c]

for i in (0,1,2,3): w[i] = T[i]/sum

T = [0,0,0,0]

sum = 0

for C in C2:

deg1=False

for x in C:

if x==1:

deg1=True

break

if deg1: continue

N={}

C_p = C2[C]

if (C[1]==3):

C_p *= s33

elif (C[1]==2):

C_p *= (1-p_2)*p3_n

if (C[0]==2):

N[3] = {0:1}

C_p*=1-p_2

if (C[2]==3):

N[2] = {0: s33 }

N[2][1] = 1-N[2][0]

elif (C[2]==2):

C_p *= (1-p_2)*p3_n

N[2] = {0: 1}

elif (C[0]==3):

for i in (2,3):

if (C[i]==3):

N[i] = {0: s33 }

elif (C[i]==2):

C_p *= r32

N[i] = {0: s32 }

N[i][1] = 1-N[i][0]

sum += C_p

for b in N[2]:

for c in N[3]:

T[C[0]-b-c] += C_p*N[2][b]*N[3][c]

for i in (1,2,3): q[i] = T[i]/sum

state ()
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