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Chapter 1

Introduction

Nowadays, one of the most largely used standards for information representation

and data exchange on the Internet is the eXtensible Markup Language (XML) [1].

While XML as a markup language provides syntactic flexibility, the structure of

an XML document is described with a so-called XML schema language. The two

most popular XML schema languages proposed by W3C1 are Document Type

Definition (DTD) [1] and XML Schema Definition (XSD) [2, 3, 4]. They support

some kind of semantic content (e.g., keys and foreign keys), but for improvement

of semantic expressiveness integrity constraints for XML [5] have been defined.

However, similarly to the problem of schemas, also the problem of detection

of integrity constrains has two distinct aspects. First, if integrity constraints are

not explicitly expressed, they need to be detected from the given set of data. Sec-

ond, if integrity constraints are expressed, XML document may not be consistent

with respect to them and this needs to be detected (checking the satisfaction of

integrity constraint in an XML document). Moreover, the detected XML data

inconsistency needs to be repaired. In this thesis we choose the latter aspect of

detection of integrity constraints along with the repair of the inconsistent XML

document. Since several different classes of integrity constraints have been de-

fined for XML, we choose so-called functional dependency (FD) [6] which is the

most common semantic constraint used in relational databases.

The problem of checking the satisfaction of functional dependencies in an

1The World Wide Web Consorcium, http://www.w3.org
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XML document is studied in [7]. Also algorithms computing a repair applied to

an XML document such that functional dependencies will be satisfied again have

been proposed [8, 9, 10].

1.1 Aim of the Thesis

The aim of this thesis is to propose an algorithm repairing XML functional depen-

dency violations for a given XML document and a set of functional dependencies.

It analyses recent approaches and discusses their advantages and disadvantages.

The focus of the thesis is to incorporate a weight model, to involve the user the

process of finding and applying the repair and to find out how this interaction

helps. An important part of the thesis is an experimental implementation of the

proposed algorithm and its experimental evaluation.

1.2 Structure of the Thesis

Chapter 2 introduces basic definitions which are necessary for further chapters.

Chapter 3 presents recent approaches of repairing XML functional dependency

violations. In Chapter 4 the main algorithm is proposed. Chapter 5 contains

details of the experimental implementation. Experimental result are presented in

Chapter 6. Finally, Chapter 7 contains a conclusion and several suggestions for

future work.
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Chapter 2

Basic Definitions

In this chapter basic definitions necessary in the following chapters are placed.

The definitions are taken from [8, 9, 10].

2.1 XML Trees and DTDs

Definition 2.1 (Tree). Being given an alphabet of nodes N and an alphabet of

node labels Σ, a tree T over N and Σ is a tuple (rT , NT , ET , λT ), where NT ⊆ N

is the set of nodes, λT : NT → Σ is a node labelling function, rT ∈ NT is the

distinguished root of T , and ET ⊆ NT × NT is a set of edges such that starting

from any node ni ∈ NT it is possible to reach any other node nj ∈ NT , walking

through a sequence of edges e1, . . . , ek which are connected and acyclic.

Let us also denote the set of leaf nodes as Leaves(T ) and the set of trees defined

over an alphabet of node labels Σ as TΣ.

Definition 2.2 (XML Tree). XML tree is a pair XT = 〈T, δ〉, where:

i) T = (r,N,E, λ) is a tree from Tτ∪α∪{S}, where τ is a tag alphabet, α is

an attribute name alphabet and S is a symbol not belonging to τ ∪ α

(representing #PCDATA content of elements);

ii) given a node n of T , λ(n) ∈ α ∪ {S} ⇔ n ∈ Leaves(T );

3



iii) δ : Leaves(T ) → Str where Str is a string alphabet is a function associating

a (string) value to every leaf of T .

Example 1. Consider the following XML document representing a collection of

books. Its graphical representation as an XML tree is in Fig. 2.1.

<bib>

<book>

<written_by>

<author ano="A1">

<name>John Writer</name>

</author>

<author ano="A1">

<name>Eric Seller</name>

</author>

</written_by>

<title>Some title</title>

</book>

<book>

<written_by>

<author ano="A2">

<name>Adam Publisher</name>

</author>

</written_by>

<title>Some title 2</title>

</book>

</bib>

The nodes of an XML tree have a label denoting the tag name of the element

and unique element identifier in brackets. Leaf nodes are either an attribute or

the textual content of an element. The label of a textual node contains string con-

tained inside of element and unique element identifier. The label of an attribute

node contains in addition to textual node the name of the attribute.

4



<bib> (v1)

<book> (v2) <book> (v14)

<written_by> (v3) <title> (v12) <written_by> (v15)
<title> (v20)

<author> (v4) <author> (v8) <author> (v16)"Some title" (v13) "Some title 2" (v21)

@ano "A1" (v5)

name (v6) @ano "A1" (v9)
name (v10)

@ano "A1" (v17)
name (v18)

"John Writer" (v7) "Eric Seller" (v11) "Adam Publisher" (v19)

Figure 2.1: An XML Tree

Definition 2.3 (DTD). DTD is a tuple D = (τ, α, P, R, rt) where:

i) τ and α are of the same definition as in the XML tree

ii) P is the set of element type definitions

iii) R is the set of attribute lists

iv) rt ∈ τ is the tag of the document root element.

Definition 2.4 (Path Expression). A path expression is an expression of the form

p = (′/′|′//′)s1 . . . (′/′|′//′)sm where s1, . . . , sm−1 ∈ τ , and sm ∈ τ ∪ α ∪ {S}.

Definition 2.5 (Path). Path p on a DTD D = (τ, α, P, R, rt) is a sequence

p = s1, . . . , sm of symbols in τ ∪ α ∪ {S} such that:

i) s1 = rt;

ii) for each i in 2..m− 1, si ∈ τ and si appears in the element type definition

of si−1;

iii) sm ∈ α ⇒ sm appears in the attribute list of sm−1;

iv) sm ∈ τ ∪ {S} ⇒ sm appears in the element type definition of sm−1.
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As we have defined a path on a DTD D, let us denote paths(D) as the set of

all paths which can be defined on a DTD D. Also, another important notion is

p(XT ) (or {[[p]]}), which is the set of nodes from XML tree XT conforming to

DTD D, which can be reached by the path p ∈ paths(D), starting from the root

of XT . The set of nodes reachable from a node v following path p is denoted as

{v[[p]]}. When there is only one node in {v[[p]]}, we use v[[p]] to denote this node.

Moreover, let XT.p denote the answer of the path p applied on XT that is:

• if p ∈ EPath(D), where EPath(D) denotes the set of the paths whose last

symbol denotes an element, then XT.p = p(XT )

• if p ∈ StrPath(D), where StrPath(D) denotes the set of paths whose last

symbol denotes either the textual content of an element or an attribute,

then XT.p = {δT (x)|x ∈ p(XT )}.

Example 2. Consider the XML tree XT from Example 1 conforming the DTD

D defined below, which is representing a collection of books.

<!ELEMENT bib (book+)>

<!ELEMENT book (written_by, title)>

<!ELEMENT written_by (author+)>

<!ELEMENT author (name)>

<!ATTLIST author ano CDATA>

<!ELEMENT name PCDATA>

<!ELEMENT title PCDATA>

The set paths(D) contains the following paths:

paths(D) = {/bib, /bib/book, /bib/book/written_by,

/bib/book/written_by/author,

/bib/book/written_by/author/name,

/bib/book/written_by/author/name/S,

/bib/book/written_by/author/@ano,

/bib/book/title, /bib/book/title/S}

6



2.2 Integrity Constraints

Before defining of the XML integrity constraint, let us introduce some notation

used in the definition. A path atom is an expression of the form [x1]p[x2], where

p is a path expression, x1 and x2 are terms, and x1 6∈ Str.

A conjunction of path and built-in atoms C = [X1]p1[Y1] ∩ · · · ∩ [Xn]pn[Yn] ∩

U1θ1V1 ∩ · · · ∩ UkθkVk is said to be safe if all variables in C are range restricted,

i.e. if

• for every [Xi]pi[Yi], either Xi is a constant (node identifier of a string), or

there is some [Xj ]pj [Yj] in C where Xj is range restricted;

• for every built-in term UiθiVi occurring in C, if θi is equal to ” = ” then

at least one of the two terms is range restricted; otherwise both Ui and Vi

must be range restricted.

A rootless tree formula is an expression of the form p(Φ1∧· · ·∧Φk) where Φi is

a rootless path formula (expression of the form p[y] where p is a path expression

and y is a term) or a rootless tree formula and p is a path expression. A tree

atom is an expression of the form [x]T where T is a rootless tree formula and x

is a term.

Definition 2.6 (XML Integrity Constraint). An XML constraint is a formula of

the form:

(∀X)[Φ(X) ⊃ (∃Y1)Ψ1(X, Y1) ∨ · · · ∨ (∃Yk)(X, Yk)]

where X, Y1, . . . , Yk denote distinct sets of universally and existentially quantified

variables, Φ(X) and Φ(X)∧Ψi(X, Yi)(∀i ∈ [1..k]) are safe conjunctions of built-in

and tree atoms.

Example 3. Consider the XML tree XT from Example 1. Thereafter the in-

tegrity constraint that there must exist at least two books differents titles is

expressed as

∀(X)[[root]/bib[X ] ⊃

∃(Z1, Z2)([X ]/book/title/S[Z1] ∧ [X ]/book/title/S[Z2] ∧ Z1 6= Z2)]
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2.3 Functional Dependencies

Since different approaches uses slightly different representation of an XML doc-

ument, also the definition of functional dependencies differs, too. This is the

reason why we introduce two different definitions in this section.

2.3.1 Functional Dependency 1

In a relational database, a correspondence between values A and B in the tuple

of D models the functional dependency denoted as A → B. Since in XML there

is no such standard tuple concept, the concept of XML tree tuples is introduced,

corresponding to the concept of tuples in relational databases.

Definition 2.7 (Tree Tuple). Being given an XML tree XT conforming to DTD

D, a tree tuple t of XT is a maximal sub-tree of XT such that for every path

p ∈ paths(D), t.p contains at most one element.

Example 4. Consider the XML tree XT in Fig. 2.1. The subtrees of XT shown

in Fig. 2.2 are tree tuples, and the subrees in Fig. 2.3 are not.

<bib> (v1)

<book> (v2)

<bib> (v1)

<book> (v2)

<written_by> (v3) <title> (v12) <written_by> (v3) <title> (v12)

<author> (v4) <author> (v8)"Some title" (v13) "Some title" (v13)

@ano "A1" (v5)

name (v6)
@ano "A1" (v9)

name (v10)

"John Writer" (v7) "Eric Seller" (v11)

Figure 2.2: Two tree tuples of the XML tree in Fig. 2.1
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<bib> (v1)

<book> (v2)

<written_by> (v3) <title> (v12)

<author> (v4) <author> (v8) "Some title" (v13)

@ano "A1" (v5)

name (v6) @ano "A1" (v9)
name (v10)

"John Writer" (v7) "Eric Seller" (v11)

(a)

<bib> (v1)

<book> (v2)

<written_by> (v3)

<title> (v12)

"Some title" (v13)

(b)

Figure 2.3: Two subtrees of the XML tree in Fig. 2.1 which are not tree tuples

In Fig. 2.3a, the subtree is not a tree tuple, because the answer of the path

/bib/book/written_by/author contains two distinct nodes (i.e. v4 and v8). The

subtree in the Fig. 2.3b is not a tree tuple, because it is not a maximal subtree

(it is a subtree of a tuple from Fig. 2.2).

Definition 2.8 (Functional Dependency). Being given a DTD D, a functional

dependency on D is an expression of the form S → p, where S is a finite non

empty subset of paths(D) and p ∈ paths(D).

Example 5. Consider the XML tree in Fig 2.1. The following functional depen-

dency expresses the constraint that two distinct authors of the same book cannot

have the same value of attribute ano:

{/bib/book, /bib/book/written_by/author/@ano} → /bib/book/written_by/author

2.3.2 Functional Dependency 2

Definition 2.9 (Functional Dependency). With a given DTD D, a functional

dependency is of the form σ = (P, P ′, (P1, . . . , Pn → Pn+1)). Here P is a root

path (path where the first element is a root element of an XML document), or

9



P = ǫ (empty path). Each Pi(i ∈ [1, n]) is a singleton leaf path, and there is a

no non-empty common prefix for P1, . . . , Pn+1. Being given an XML document

T conforming to D, we say T satisfies σ:iff ∀v ∈ {[[P ]]}, ∀v1, v2 ∈ {v[[P ′]]}, if

v1[[Pi]] ≡ v2[[Pi]] for all i ∈ [1, n], then v1[[Pn+1]] ≡ v2[[pn+1]].

The main difference between two definitions of the functional dependency is

that the former definition can use any path from paths(D), whereas the latter

considers that each Pi(i ∈ [1, n]) is from StrPaths(D). That means the constraint

from Example 5 cannot be expressed by functional dependency defined in 2.9,

because of /bib/book/written_by/author path. Nevertheless, modified constraint

from Example 5 expressed by FD defined in 2.9 is shown in Example 6.

Example 6. Consider the constraint C saying that two distinct authors with

different names of the same book cannot have the same value of attribute ano.

The functional dependency expressing C is defined as follows:

(bib/book, written_by/author, (@ano → name))

10



Chapter 3

Analysis of Recent Approaches

This chapter introduces the description and categorization of recent approaches

to repairing XML documents that violate functional dependencies defined in these

documents.

All approaches dealing with the problem of finding optimal repair can be

divided into categories according to the usage of elementary repair primitives.

This repair primitives are: inserting node, deleting node, updating node and

marking node as unreliable in XML document.

3.1 Repairs and Consistent Answers for XML Data

with Functional Dependencies

A technique for computing repairs which solves the problem of XML data incon-

sistency with respect to a set of functional dependencies was proposed in [8]. In

this approach, the authors are trying to find a minimal set of update operations

which makes XML data consistent. These update operations can be divided into

two categories i) replacing a value associated with an element or an attribute,

and ii) marking a particular node information as unreliable.

11



3.1.1 XML Tree and Functional Dependency

To be able to resolve the problem of functional dependency violations in XML

document, the authors try to introduce the concept of functional dependencies

based on those defined for relational databases. The concept of a tree tuple and

functional dependency was introduced in Definition 2.7 and 2.8.

Being given an XML tree XT conforming a DTD D and a functional depen-

dency F : S1 → S2 , we say that XT satisfies F (XT |= F ) if for each pair of tree

tuples t1, t2 of XT ,

t1.S1 = t2.S1 ∧ t1.S1 = ∅ ⇒ t1.S2 = t2.S2

Being given a set of functional dependencies FD = {F1, . . . , Fn} over D, we say

that XT satisfies FD if it satisfies Fi for every i ∈ 1..n.

3.1.2 Repairing inconsistent XML data

The authors of this approach choose two kinds of actions to repair inconsistent

XML data with regard to functional dependencies. The first action is updating

the value of an attribute or the content of an element. As the second action the

authors choose marking inconsistent element as “unreliable" rather than deleting

it, because removing elements from an XML document leads to some undesired

drawbacks: it does not always suffice to remove inconsistency and deleting a node

can lead to a new document not valid against the original schema.

Depending on XML data and defined functional dependencies, each incon-

sistency could have many possible strategies to repair it. From all the possible

repair strategies the authors prefer those for which smaller changes are made to

the original document.

Example 7. Consider the XML tree XT conforming the DTD D from Example

2, which is representing a collection of books and the following functional depen-

dency:

{bib.book, bib.book.written_by.author.@ano} → bib.book.written_by.author (@

denotes the attribute of an element).

12



The functional dependency defined above requires that for each book there

is only one element author having a given @ano value. Therefore XT does not

satisfy the given functional dependency, because two author elements of the same

book have the same value of attribute @ano. To resolve this data inconsistency,

we can use two different repair strategies: 1) changing one of the value of attribute

@ano; 2) marking one of the elements author as unreliable. Since the first strategy

changes only attribute @ano, it is preferred to the second strategy, which changes

a larger portion of document, since it marks a whole author element as unreliable.

3.1.3 Repair Algorithm

Before introducing the algorithm to repair an inconsistent XML document, let us

define the notion of reliability of elements in an XML tree:

Definition 3.1 (R-XML Tree). A R-XML tree is a triplet RXT = 〈T, δ, ̺〉,

where 〈T, δ〉 is an XML tree and ̺ is a reliability function from NT to {true,

false}, such that for each pair of nodes n1, n2 ∈ NT with n2 descendant of n1,

it holds that ̺(n1) = false ⇒ ̺(n2) = false.

To be able to create a repair, R-XML Tree must not satisfy FD according to

definition of weak satisfiability:

Definition 3.2 (Weak satisfiability). Let RXT = 〈T, δ, ̺〉 be an R-XML tree

conforming a DTD D, and f : S → p be a functional dependency. We say that

RXT weakly satisfies f (RXT |=w f) if one of the following conditions holds:

1. 〈T, δ〉 |= f ;

2. for each pair of tuples t1, t2 of RXT one of the following holds:

(a) there exists a path pi ∈ S such that:

(̺(pi(t1)) = false) ∨ (̺(pi(t2)) = false);

(b) (̺(p(t1)) = false) ∨ (̺(p(t2)) = false).

13



The repair of an R-XML tree which does not satisfy FD set of functional

dependencies is a pair of functions δ′ and ̺′ such that RXT ′ tree composed

of the original tree and the repair (RXT ′ = 〈T, δ′ · δ, ̺′ · ̺〉) weakly satisfies

FD (RXT ′ |=w FD). The composition of the R-XML tree and the repair (i.e.

composition of their δ and ̺ functions) is defined as follows:

Definition 3.3 (Composition of δ functions). The composition of two functions

δ1 and δ2 asssociating values to leaf nodes is

δ1 · δ2(n) =







δ1(n) if δ1(n) is defined over n,

δ2(n) otherwise (i.e. δ1(n) is not defined over n).

Definition 3.4 (Composition of ̺ functions). The composition of two reliability

functions ̺1 and ̺2 asssociating a boolean value to nodes is

̺1 · ̺2(n) = ̺1(n) AND ̺2(n).

With a repair 〈δ, ̺〉 of R-XML tree and a set of labelled nodes N of this tree,

we denote Updatedδ(N) the set of nodes modified by δ. Analogously, we denote

True̺(N) = {n ∈ N |̺(n) = true} and False̺(N) = {n ∈ N |̺(n) = false}.

Definition 3.5 (Minimal Repair). Let RXT = 〈T, δ, ̺〉 be an R-XML tree

conforming DTD D, FD a set of functional dependencies and R1 = 〈δ1, ̺1〉,

R2 = 〈δ2, ̺2〉 two repairs for RXT . We say that R1 is smaller than R2 (R1 �

R2) if Updatedδ1(NT ) ∪ Falseδ1(NT ) ⊆ Updatedδ2(NT ) ∪ Falseδ2(NT ) and

Falseδ1(NT ) ⊆ Falseδ2(NT ). Repair R is minimal if there is no repair R′ 6= R

such that R′ � R.

An R-XML tree is used as an input for the main algorithm computing repaired

R-XML tree described in Algorithm 3.1. First, the algorithm computes all the

possible repairs of tuples which do not satisfy a functional dependency using

the function computeRepairs() (lines 2-6). Next, all non-minimal repairs are
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removed from all possible repairs (line 7). In the last step, all the repairs are

merged and a unique repaired R-XML tree is returned.

Algorithm 3.1 XML Repair
Input:

RXT = 〈T, δ, ̺〉: R-XML tree conforming a DTD D
FD = F1, . . . , Fm: Set of functional dependencies

Output: a unique repaired R-XML tree
1: S = ∅ // Set of repairs
2: for each (F : S → p) ∈ FD s.t. RXT 6|=w F do

3: for each t1, t2 tuples of RXT s.t. t1, t2 do not weakly satisfy F do

4: S = S ∪ computeRepairs(F, t1, t2, RXT )
5: end for

6: end for

7: S = removeNonMinimal(S,RXT )
8: 〈δ′, ̺′〉 = mergeRepairs(S)
9: return 〈T, δ′ · δ, ̺′ · ̺〉

Function computeRepairs() (in Algorithm 3.2) gets an R-XML tree, a func-

tional dependency F and tuples t1, t2 of the R-XML tree as input and computes

the repair as follows:

• If path p denotes a textual element, one of the two terminal values of t1.p

or t2.p is changed, so that they become equal (line 3).

• Otherwise p denotes a node, so either the node t1.p or t2.p is marked as

unreliable (line 5).

• For each path pi on the left side of a functional dependency F

– If path pi denotes a textual element, then one of the two terminal

values t1.pi or t2.pi is changed to the newly generated value (⊥) (line

9).

– Otherwise pi denotes a node, therefore one of the nodes t1.pi or t2.pi

is marked as unreliable (line 11).
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Function 3.2 computeRepairs(F, t1, t2, RXT )

Input:

RXT = 〈T, δ̺〉: R-XML tree conforming to DTD D
F : X → p functional dependency
t1, t2 tuples of RXT

Output: S: Set of repairs
1: S = ∅
2: if p ∈ StrPaths(D) then

3: S = S ∪ {〈{δ(p(t1)) = t2.p}, ̺〉} ∪ {〈{δ(p(t2)) = t1.p}, ̺〉}
4: else

5: S = S ∪ {〈∅, ̺{t1.p} · ̺〉} ∪ {〈∅, ̺{t2.p} · ̺〉}
6: end if

7: for each pi ∈ X do

8: if pi ∈ StrPaths(D) then

9: S = S ∪ {〈{δ(pi(t1)) =⊥1}, ̺〉} ∪ {〈{δ(pi(t2)) =⊥2}, ̺〉}
10: else

11: S = S ∪ {〈∅, ̺{t1.pi} · ̺〉} ∪ {〈∅, ̺{t2.pi} · ̺〉}
12: end if

13: end for

14: return S

3.1.4 Conclusion

The authors proposed a technique for repairing XML documents violating func-

tional dependencies based on approaches proposed for relational database re-

pairing. The algorithm introduces two possible repair primitives, which create

many possible results from which those with minimal impact on the document

are chosen. However the authors do not consider creation of new violations after

repairing the initial violations as it is in [10]. Another disadvantage of this ap-

proach is that an unnecessary repair of some particular violation could be applied

to an XML document because another repair could repair that violation before.

3.2 Querying and Repairing Inconsistent XML Data

Studying the problem of repairing inconsistent XML documents with respect to a

set of functional dependencies and investigating the existence of repairs has been
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introduced in [9]. The authors introduce two kinds of repair primitives. The

first one is deleting “unreliable" nodes of document, the second one is inserting

new nodes. Similarly to other approaches, authors prefer minimal set of repair

primitives applied to the XML document to form a repair.

The introduced repair primitives the authors use in three different repair

strategies consisting of:

1. (general) repairs, where both delete and insert operations are used,

2. cleaning repairs, where for documents interpreted as "dirty" only delete

operations are used to repair inconsistencies,

3. completing repairs, where for documents interpreted as incomplete, insert

operations are used.

3.2.1 General Repair

With the insert and delete operations as repair primitives, the structure of the

XML document which conforms DTD D (defined in Definition 2.3) and vio-

lated functional dependency is updated. The insert operation is denoted as

〈+[x]a[y], z〉, where:

i) x is a node identifier

ii) a is a label

iii) y is either a node identifier or a value (y is a value, if a ∈ α∪{S}; otherwise

it is a node identifier)

iv) z denotes the child of x which must immediately precede y (⊥ if y is inserted

as the first or a single child of x).

The deletion is represented as −[x]a[y], where x is a node identifier, a ∈

α ∪ τ ∪ {S}, and y is either a node id or a string value, denoting the node to be

deleted.

The set R of update operations can be divided into two subsets: R+ is the subset

of all the insertion operations in R; R− is the subset of all the deletion operations.

A set R is said to be consistent if the following conditions hold:
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1. the deletion of node implies the deletion of all descendant nodes;

2. insertions cannot refer to deleted nodes.

We say that two sets of update operations R1 and R2 are equivalent (R1 ≡ R2)

if R1 is equal to R2 up to an injective renaming of node identifiers. Moreover, we

say that R1 � R2 if R−
1 ⊆ R−

2 ∨ R−
1 = R−

2 and R+
1 ⊆ R+

2 . We say that R1 ⊑ R2

if there exists a R′
2 ≡ R2 such that R1 � R′

2. At last R1 ⊏ R2 if R1 ⊑ R2 and

R1 6≡ R2.

With basic repair operations for general repair of inconsistent XML document

defined let us define a repair as follows:

Definition 3.6 (Repair). Given an XML tree T , a DTD D and a set of integrity

constraints IC (Definition 2.6), a set of update operations R is said to be a repair

of T (with respect to D and IC) if R(T ) |= IC, where R(T ) is application of

consistent set of updates R to T , R(T ) conforms D and 6 ∃R′
⊏ R such that

R′(T ) |= IC and R′(T ) conforms D.

With further investigation, the authors discover that the problem of deciding

whether there exists a repair for a XML document in the presence of DTD with

functional dependencies is undecidable. Therefore they consider restricted forms

of repairs, more specifically cleaning and completing repairs.

3.2.2 Conclusion

In this approach the authors introduce different types of repairs (general, cleaning

and completing) and focus on checking whether there exists a repair for many

classes of integrity constraints (general integrity constraints, inclusion dependen-

cies, functional dependencies, etc.). For the functional dependencies the authors

found out that the problem of checking whether there exists a general repair for

an XML document is NP-complete.
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3.3 Improving XML Data Quality with Functional

Dependencies

The algorithm for repairing XML functional dependency violations which uses

a modification of node value as the repair primitive has been proposed in [10].

To find the optimal repair of an XML document, the authors introduce a cost

model, which assigns a weight to each leaf node in an XML document. The

optimal repair is the one with the lowest repair cost which is measured by the

total weight of the modified nodes.

The authors of this approach found out that repairing one functional depen-

dency violation can violate another. Therefore they divide the main algorithm

into two phases. In the first phase, the conflict hypergraph capturing the initial

functional dependency violations is constructed and all the violations are fixed by

modifying the values of all the nodes on a vertex cover of the conflict hypergraph.

In the second phase, remaining violations are resolved by modifying the violating

nodes and their core determinants to prevent of introducing new conflicts.

3.3.1 Cost Model and Repairing Primitive

Each leaf node v of XML tree is associated with a weight from range [0, 1], which

is denoted W (v). Let us assume that the larger the weight of the leaf, the more

reliable it is. The weight may be automatically generated by statistical methods

or it can be assigned by the user.

As was mentioned earlier, a repairing primitive is a node value modification,

where for repairing algorithm a combination of two rules to resolve violation is

used. Let us have an FD σ = (P, P ′, (P1, . . . , Pn → Pn+1)) (from Definition 2.9)

and consider two nodes v1 and v2 matching path P ′ in a subtree rooted at a node

in {[[p]]}. If the child nodes of v1 and v2 qualified by paths Pi have equal values for

all i ∈ [1, n] and their child nodes qualified by Pn+1 have different values, then v1

and v2 violates σ. The first rule used to repair this violation is to change the value

of the node qualified by Pn+1 from v1 to the value of v2’s child node that matches

Pn+1 (or reversely). The second rule is to choose an arbitrary Pi(i ∈ [1, n]) and

introduce a new value to the node qualified by Pi from v1 (or v2).
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Definition 3.7 (Optimal repair). Being given an inconsistent XML document T

violating a set Σ of FDs, the repair TR of T is called optimal repair, if TR has

the minimum cost among all repairs of T . The cost cost(TR) is defined as:

cost(TR) =
∑

v∈T

w(v)× dist(v, vR),

where dist(v, vR) = 1 if val(v) 6= val(vR), otherwise dist(v, vR) = 0.

3.3.2 Initial Conflicts Hypergraph

A weighted hypergraph is used in the first part of the repair algorithm as a tool

modeling initial functional dependency violations in an XML document. Hyper-

graph g of XML document T can be defined as a pair g = (V,E), where V stands

for a set of elements (called nodes), and E is a set of non-empty subset of V

called hyperedges, more accurately each hyperedge indicates a set of value nodes

violating FDs. Since hypergraph is weighted and a cost model is used in this

approach, each node v ∈ V of the hypergraph is assigned with a weight w(v),

which is the same as the weight of v in T .

To actually resolve the problem of repairing FD violations in an XML doc-

ument, the authors convert this problem into well-known problem of weighted

vertex cover for hypergraph [11]. Let us have hypergraph g = (V,E), where each

hyperedge e ∈ E is a set of value nodes which violate some FD. In a repair of

an inconsistent XML document, for each hyperedge at least one value node is

modified, therefore it is essential to find a vertex cover (VC) for g, which is a

set S ⊆ V , such that for all edges e ∈ E, S ∩ e 6= ∅. Since the hypergraph is

weighted, we can define weight of VC as the total weight of all vertices in S.

The algorithm fixing initial FD violations is shown in Algorithm 3.3. The

algorithm uses an approximation algorithm to find VC for the minimum weighted

vertex cover proposed in [11].
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Algorithm 3.3 Fix-Initial-Conflicts
Input: An XML document T, a set Σ of FDs.
Output: A modified document T.
1: // Create the initial conflict hypergraph g of T w.r.t Σ
2: // Use a known algorithm to find an approximation V C for the minimum

weighted vertex cover of g
3: remaining := VC
4: while there are two target nodes v1, v2 ∈ T violating a FD σ ∈ Σ, and

v1[[Pn+1]] or v2[[Pn+1]] is the only node in VC from the set of nodes {v1[[Pi]](i ∈
[1, n + 1])} ∪ {v2[[Pi]](i ∈ [1, n + 1])}. (W.l.o.g assume the violation is as
follows: σ = (P, P ′, (P1, . . . , Pn → Pn+1)), v ∈ {[[P ]]}, v1, v2 ∈ {v[[P ′]]},
v1[[Pi]] ≡ v2[[Pi]] for all i ∈ [1, n], and v1[[Pn+1]] 6≡ v2[[Pn+1]].) do

5: val(v1[[Pn+1]]) := val(v2[[Pn+1]]) // W.l.o.g, we assume v1[[Pn+1]] is in VC
6: end while

7: for each node u ∈ remaining do

8: val(u) := gen_new_value()
9: // Introduce new values to all the remaining nodes in VC

10: end for

3.3.3 Resolving Violations Thoroughly

After repairing initial FD violations, there is a chance that new violations may

be introduced, therefore the authors provided a method to do modifications on

value nodes without incurring new conflicts (Algorithm 3.4). This method uses

core determinant Cu of value node u defined as follows:

Definition 3.8 (Core Determinant). Being given an XML document T , a set

Σ of FDs and a node u in T , we say that a set of nodes {u1, u2, . . . , un} is a

σ−determinant of u, if there exists a nontrivial FD σ = (P, P ′, (P1, . . . , Pn →

Pn+1)) logicaly implied by Σ, such that ∃v ∈ {[[P ]]}, ∃v1 ∈ {[[P ′]]}, v1[[P ]] = ui for

i ∈ [1, n], and v1[[Pn+1]] = u.

We say that a set Cu of nodes is a core determinant of u, if (a) for every nontrivial

FD σ implied by Σ and every set W that is σ−determinant of u, Cu ∩W 6= ∅;

and (b) for any proper subset C ′
u of Cu, there exists a nontrivial FD σ implied

by Σ, and a set W that is σ−determinant of u, C ′
u ∩W = ∅.
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Algorithm 3.4 Resolve-Remaining-Violations
Input: An XML document T, a set Σ of FDs.
Output: A modified document T, with all the violations fixed.
1: while there are FD violations in T w.r.t. Σ do

2: pick a violating value node u from T w.r.t. Σ
3: let Cu be a core determinant u
4: for each node w ∈ (Cu ∪ {u}) do

5: val(w) := gen_new_value()
6: // it guarantees that no new violations will be introduced
7: end for

8: end while

3.3.4 Conclusion

The authors introduced an effective two-step heuristic method to solve a prob-

lem of finding optimal repair of XML violations against functional dependencies,

which is NP-complete. Moreover, they experimentally verified the effectivity and

scalability of their approach using real-life and synthetic data.
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Chapter 4

Proposed Algorithm

The main goal of this thesis is to propose an algorithm to repair an XML doc-

ument violating functional dependencies defined for this document. We use an

XML tree and tree tuples to represent XML data. We would like our algorithm

to have the following features::

• Incorporation of a weight model into the XML data representation to pro-

vide the selection of repair candidates with the lowest modification cost.

• Involvement of a user in the process of finding and applying repair candi-

dates.

• Application of a single repair candidate at the time and then recalculate

repair candidates again to prevent using unnecessary repairs to repair one

violation and also to prevent of introducing new violations, which will not

be repaired.

• The paths which form a functional dependency are described with XPath

language [12], where only paths with basic construction are allowed (only

path constructed with "/", "//" or "@", no wildcards, "[]" or another con-

structs are allowed).

• We introduce a new concept of the so-called repair group, which clusters

repair candidates (repairs for repairing one FD violation) repairing the same

violation, or modifying the same part of the XML tree.
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4.1 Repairing Algorithm

The proposed algorithm is based on the algorithm described in 3.1 presented in

[8]. This algorithm was chosen because of simple representation of the XML data

using a concept which corresponds with concept used in relational databases.

Another reason, besides modification of node value as an update operation, is

using also marking particular node information as unreliable, which can reveal

forgotten inconsistencies in the data.

Algorithm 4.1 Repair RW-XML tree
Input:

RXT = 〈RT, ω〉: RW-XML tree conforming to DTD D
FD = F1, . . . , Fm: Set of functional dependencies

Output: a unique repaired RW-XML tree
1: resultRXT = RXT
2: while resultRXT 6|=w FD do

3: S = ∅ // Set of repair groups
4: for each (F : S → p) ∈ FD s.t. RXT 6|=w F do

5: for each t1, t2 tuples of RXT s.t. t1, t2 do not weakly satisfy F do

6: S = S ∪ computeRepairGroup(F, t1, t2, RXT, S)
7: end for

8: end for

9: R = getRepair(S,RXT )
10: resultRXT = applyRepair(R, resultRXT )
11: end while

The algorithm is split into three steps, where the second and the third step

are repeated until all violations are repaired. In the first step, XML document

and FDs are loaded, and XML tree with corresponding tree tuples are created.

Next step of the algorithm computes repair groups containing repair candidates

for FD violations. In the third step the chosen repair candidate is applied to an

XML tree. In Algorithm 4.1 we can see the simplified process of repairing XML

FD violations, which covers the second and the third step of the whole algorithm.
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4.1.1 Initial data model

To represent an XML document we use an extended R-XML tree (Definition 3.1),

called RW-XML tree, which has weights assigned to each node of the tree. The

weight of a node is from interval [0, 1] and indicates correctness of the data the

particular node holds, meaning the higher the weight is, the more correct that

particular node is. The weights are used to measure the cost of repair candidates,

where candidate with the lowest cost is picked to be applied to the XML tree. This

is also the first place where some kind of user interaction can be implemented.

The user could assign the weights to nodes manually or could use some sort of

statistical methods to generate them automatically. If the user does not assign

weights nor does he use statistical methods, a default weight is assigned to all

nodes.

Example 8. Consider the XML document and corresponding XML tree from

Example 2.1. Let us assign weights to nodes defined by XPath constructs shown

in Table 4.1. The XML tree with assigned custom and also default weights is

shown in Fig. 4.1.

XPath weight
/bib/book/title/text() 0.8

/bib/book/written_by/author 0.6
/bib/book/written_by/author/@ano 0.1

Table 4.1: Table of custom weights assigned to the XML tree.
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<bib> (v1)

<book> (v2)
<book> (v14)

<written_by> (v3) <title> (v12) <written_by> (v15)
<title> (v20)

<author> (v4)
<author> (v8) <author> (v16)

"Some title" (v13) "Some title 2" (v21)

@ano "A1" (v5)

name (v6)

@ano "A1" (v9)

name (v10)

@ano "A1" (v17)

name (v18)

"John Writer" (v7) "Eric Seller" (v11)
"Adam Publisher" (v19)

0.40.1

0.4

0.6

0.1

0.6

0.4

0.4

0.4

0.4

0.4

0.4

0.8

0.4

0.4

0.6

0.1

0.4

0.8

0.4

0.4

Figure 4.1: The XML tree with assigned weights to the nodes.

Definition 4.1 (RW-XML tree). A RW-XML tree is a pair RWXT = 〈RXT, ω〉,

where RXT is an R-XML tree and ω is a weight function from NT to [0, 1].

After creating the RW-XML tree from input XML data, a set of tree tuples

(defined in Definition 2.7) is constructed. Since the set paths(D), containing

all possible paths defined in DTD D, can be infinite (DTD can define recursive

structure of elements), the actual content of paths(D) is modified to reflect the

current structure of the RW-XML tree. Since definition of a tree tuple says that

answer to the path p contains at most one element, our modification of paths(D)

has no effect on constructing tree tuples if a DTD defines some optional path

which is not defined for the RW-XML tree RWXT (the set p(RWXT ) is empty).

Functional dependencies as defined in Definition 2.8 consist of paths described

with XPath. As was described before, these paths can only have basic structure

shown in Example 9.

Example 9. Example of paths that can be used in functional dependencies:

//bib/book/author

/bib/book/author/@ano

/bib/book/author/name/text()
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4.1.2 Computing Repair Groups

With RW-XML tree RWXT and corresponding tree tuples from input data cre-

ated, we can now proceed to compute repair groups. Repair group is a set of re-

pair candidates, which repairs the same FD or modifies the same part of RWXT .

Each repair candidate is a pair of functions δ and ̺ (〈δ, ̺〉), which either modifies

value of an RW-XML tree node (δ is defined) or marks a node as unreliable (̺ is

defined). The δ function of a repair candidate is defined the same way as in the

XML tree (Definition 2.2) and defines a new value of the RW-XML tree node.

Similarly, the ̺ function defines the node which is marked as unreliable.

To be able to compute repair groups, we need to decide which FDs violate

RWXT . This can be achieved by finding all tree tuple pairs that do not weakly

satisfy particular FD (Definition 3.2). A repair group is then computed for each

tuple pair (line 6 in Algorithm 4.1).

The function computeRepairGroup() responsible for creating the repair group

is shown in Algorithm 4.2. The function gets an RW-XML tree, a functional

dependency F , tuples t1, t2 and a set of repair groups RGS and computes the

repair group containing repair candidates as follows:

1. First the repair candidates are created using function computeRepairs()

from Algorithm 3.1 (line 1). Since an R-XML tree is a special case of RW-

XML tree where all the weights are equal to zero, we can pass RW-XML

tree as a parameter to this function.

2. Next a check is performed whether the repair candidates intersect other

candidates from existing repair groups (line 2)

• If the candidates intersect with some group, they are added to this

group (line 3)

• Otherwise a new repair group containing repair candidates is created

(line 5)

Example 10 demostrates repair candidates of one repair group modifying node

values and marking nodes as unreliable.
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Function 4.2 computeRepairGroup(F, t1, t2, RXT,RGS)

Input:

RXT = 〈T, ω〉: RW-XML tree conforming to DTD D
F : X → p functional dependency
t1, t2 tuples of RXT
RGS set of repair groups

Output: RG: repair group
1: S = computeRepairs(F, t1, t2, RXT ) // set of repair candidates
2: if candidatesIntersectRepairGroups(S,RGS) then

3: RG = getIntersectingRepairGroup(S,RGS)
4: else

5: RG = createNewRepairGroup(S)
6: end if

7: return RG

Example 10. Consider XML data and functional dependency from Example 7,

where XML data is graphically represented as XML tree XT in Fig 2.1. The XT

violates FD

{/bib/book, /bib/book/written_by/author/@ano} → /bib/book/written_by/author

because two authors of the same book have the same value of attribute @ano.

One repair group with these repair candidates is created:

• R1 = 〈{δ(v5) =⊥}, ̺{}(v)〉

• R2 = 〈{δ(v9) =⊥}, ̺{}(v)〉

• R3 = 〈{}, ̺{v4,v5,v6,v7}(v)〉

• R4 = 〈{}, ̺{v8,v9,v10,v11}(v)〉

• R5 = 〈{}, ̺{v2,v3,...,v13}(v)〉

First two repair candidates modify the value of an attribute @ano by assigning

newly generated value (⊥). Next two repair candidates mark each author node

with its child nodes that have the same @ano attribute respectively. The last

candidate marks as unreliable a whole subtree with the book node holding authors

with the same attribute as the root node.
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Weight model of a Repair Group

In this section, we introduce a weight model for a repair group, which will be used

in the next step of our repair algorithm. Before we define a weight of a repair

group, let us introduce some important notations.

Being given a repair candidate R, Modifiedδ(R) denotes the set of nodes

modified by δ function from R. Analogously, we denote Modified̺(R) the set of

nodes modified by ̺ function. The count of nodes modified by repair candidate

R is denoted with λ(R). Last, we denote PS(R) a set of paths defining all nodes

modified by R (example of the set PS(R) is shown in Example 11).

Example 11. Consider the XML tree from Fig. 2.1 and a repair candidate,

which marks nodes v12 and v13 as unreliable. Then the set PS(R) contains the

following paths:

/bib/book/title

/bib/book/title/text()

Since each repair candidate consists of a set of nodes which are modified

(marked as unreliable or having a modified value), we can compute the cost of

each candidate. It is important to say that unlike in original approach, we do

not prefer repair candidates that modify the value of the nodes to those marking

nodes as unreliable. Therefore we added a coefficient k to the calculation of the

repair candidate cost, so that the priority of repair candidate marking node as

unreliable can be achieved. The definition of repair candidate cost is as follows:

Definition 4.2 (Repair Candidate Cost). Being given an RW-XML tree RXT

and a repair candidate R, we define the cost of R as:

cost(R) =
∑

u∈Modifiedδ(R)

ω(u) +
∑

v∈Modified̺(R)

ω(v) · k,

where k is the priority of repairing the candidate by modifying the node value in

constrast to marking it unreliable.
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By default, k is set to such value that the cost of repair candidate marking as

an unreliable node will be higher than the one that modifies node value. How-

ever, this is another place where user can intervene and change the priority of

repair candidates. We show in Example 12 how k can change the costs of repair

candidates.

Example 12. Consider XML tree XT and repair candidates from Example 10.

The default weight of all nodes v of XT is ω(v) = 0.5. If the coefficient k = 1,

cost of repair candidates would be as follows: cost(R1) = 0.5, cost(R2) = 0.5,

cost(R3) = 2, cost(R4) = 2 and cost(R5) = 6. Let us assume that a repair

candidate with the lowest repair cost will be applied to XT . If we order costs

of repair candidates from the lowest to the highest, we can see that candidates

which have marked unreliable nodes are in the end (and will not be applied to

XT ).

However, if we set the coefficient k = 0.1, costs of candidates would be sorted

as follows: cost(R3) = 0.2, cost(R4) = 0.2, cost(R1) = 0.5, cost(R2) = 0.5 and

cost(R5) = 0.6. We can see that order of costs has significantly changed and the

candidate which will be applied is R3 (marking nodes as unreliable).

And, finally, since a repair group is a set of repair candidates, its weight can

be defined as follows:

Definition 4.3 (Repair Group weight). Being given an RW-XML tree RXT and

a repair group RG, we define the weight of RG as the sum of costs of all repair

candidates in the RG.

4.1.3 Repair Candidate Selection and Application

The last step of our algorithm can be divided into two parts, namely selection of

the repair candidate and the subsequent application of the candidate to RW-XML

tree.

Selection of the Repair Candidate

The previous step of the algorithm computes repair groups containing repair

candidates, which can repair violations of provided FDs. From these candidates,
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we must choose the one that is applied to the RW-XML tree. Since we introduced

a weight model to the repair group, we can use the weight of repair groups and

the cost of repair candidates to choose a suitable candidate. In our approach,

we introduce two distinct algorithms: first that does not involve the user in the

process of selection and the second one that uses the user interaction.

The former algorithm simply selects the first repair group with the lowest

weight, and from it the repair candidate with the lowest cost is selected.

The latter algorithm allows the user to choose the repair candidate which is

the most suitable for his needs. Very important aspect of all user interactions in

this kind of algorithm is that the user will not be willing to select more than, e.g.,

ten repairs. We could simply allow user to switch to the first selection algorithm,

but that does not take in account previous user selections of repair candidates.

Therefore, we introduce in this algorithm a functionality able to guess his next

selection from selection done by the user before.

The function selectRepairByUser() responsible for selection of repair can-

didate involving user interactivity is shown in Algorithm 4.3.

First it decides, whether the algorithm is in a state where the user is selecting

repair candidates (the user selection mode), or the user leaves decision making

on the algorithm using his previous selections (the guess mode) (line 2). If we

are still in user selection mode, the user chooses from repair groups sorted by the

weight the most convenient one, and from this group the user chooses the repair

candidate that will be applied on RW-XML tree (line 3). Repair candidates in

each repair group are also sorted by the cost, working as a hint for the user which

repair would be chosen by the previous automatic method of selection. The

last step of user selection mode is saving the information from selected repair

candidate (line 4). This information consists of the FD which this candidate

repairs, nodes the repair changes (their paths) and also whether the change was

a value modification or marking a node as unreliable.

If the user has decided not to select repair candidates by himself anymore,

the algorithm goes into the guess mode (starting at line 5). In this mode the

algorithm checks all repair groups whether one of them contains a repair candidate

that is sufficiently similar to some previously selected repair candidate (line 6-

12). This similarity is checked by function canBeUsedUserSelection() shown
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in Algorithm 4.4. If neither of the candidates is sufficiently similar, the algorithm

chooses the repair candidate with the lowest cost from the repair group with the

lowest weight (line 13-14).

Function 4.3 selectRepairByUser(RGS, SR, t)

Input:

RGS set of repair groups
SR: the set of repair candidates previously selected by the user
t: modified nodes count threshold of previously selected repair candidates

Output: R: repair candidate
1: R = ∅
2: if isUserSelection() then // the user selection mode
3: R = getRepairFromUser() // repair candidate selected by user
4: saveSelectedRepair(SR,R)
5: else // the guess mode
6: for each RG in RGS do

7: for each RC in RG do // for all repair candidates in the repair group
8: if canBeUsedUserSelection(SR, t, RC) then

9: return RC
10: end if

11: end for

12: end for

13: RG = getF irstRG(RGS) // get the repair group with smallest weight
14: R = getF irstRepairCandidate(RG) // get the repair candidate with the

lowest cost
15: end if

16: return R

The function canBeUsedUserSelection() gets the current repair candidate

RC, the set of all previously selected repair candidates SR, and the modified

nodes count threshold t from interval (0, 1] of previously selected repair candidate

and it determines whether the RC is sufficiently similar to some repair candidate

from SR. To be similar with some previously selected repair candidate S, RC

must repair the same FD as S, it must use the same update operation as S and

λ(RC) ≥ ⌈λ(S) · t⌉ (line 2). Furthermore, if λ(RC) = ⌈λ(S) · t⌉, the set of paths

PS(RC) must be a subset of PS(S) (line 3). Otherwise, if λ(RC) > ⌈λ(S) · t⌉,

there must exist a subset of PS(S) with ⌈λ(S) · t⌉ elements that is a subset of
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PS(RC). In other words, without taking into account the threshold t, if a repair

candidate R1 modifies some nodes, the sufficiently similar repair candidate R2 is

the one that modifies at least the same nodes as R1 (when we say the same nodes

we mean same paths representing those nodes). The threshold t can reduce the

number of modified nodes of some previously selected repair candidate R1, which

means that sufficiently similar repair candidate needs to modify fewer nodes that

are similar with nodes modified by R1. In Example 13 the usage of the threshold

t is shown.

Function 4.4 canBeUsedUserSelection(SR, t, RC)

Input:

SR: the set of previously selected repair candidates by the user
t: a suitability threshold (0, 1] of previously selected repair candidates
RC: the current repair candidate

Output: true if RC is similar to some previous repair candidate.
1: for each S in SR do

2: if S repairs the same FD as RC and S use the same update operation as
RC and ⌈λ(SC)× t⌉ ≤ λ(RC) then

3: if ⌈λ(SC)× t⌉ = λ(RC) and PS(RC) ⊆ PS(SC) then

4: return true

5: end if

6: if ⌈λ(SC) × t⌉ < λ(RC) and there exists a subset s of PS(SC) with
⌈λ(SC)× t⌉ elements, that s ⊆ PS(RC) then

7: return true

8: end if

9: end if

10: end for

11: return false

Example 13. Consider repair candidate R1 selected by user, that marks as

unreliable two nodes and PS(R1) = {/bib/book/title, /bib/book/title/text()}.

Next, consider repair candidate R2 with PS(R2) = {/bib/book/title/text()},

that the modified node is marked as unreliable and both R1 and R2 repairs

the same FD. If t = 1, R2 is not considered as sufficiently similar to R1, be-

cause ⌈λ(R1) × t⌉ > λ(R2). However, if t = 0.5, ⌈λ(R1) × t⌉ = λ(R2) and

PS(R2) ⊆ PS(R1), then R2 is sufficiently similar to R1.
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Application of the Repair Candidate

In this part, the selected repair candidate is finally applied to the RW-XML tree.

If after this part the RW-XML tree does not violate any FDs, the whole repair

algorithm ends at this point, otherwise repair groups are regenerated and the

selection of the repair candidate part takes place again.

To apply the selected repair candidate R to the RW-XML tree RXT means

to compose δ and ̺ functions of R with the corresponding functions of R-XML

tree contained in RXT . These compositions are defined in Definition 3.3 and 3.4.

After application of the repair candidate, some of RW-XML tree nodes could

become unreliable, which can lead to the situation that some of tree tuples are not

anymore considered a tuple (it is no longer a maximal subtree). Therefore, before

regeneration of repair groups we need to check all tree tuples to see whether they

satisfy definition of tree tuple.
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Chapter 5

Implementation

A part of this work is an experimental implementation of our proposed algorithm.

Besides our approach, we have also implementened the algorithm proposed in [8],

to be able to compare it with our algorithm. Our algorithm has been implemented

in the Java language, version 6.0 as a part of the schema inference framework for

XML called jInfer [13].

5.1 jInfer Framework

jInfer framework was developed as a Software Project at the Faculty of Mathe-

matics and Physics, Charles University at Prague. The framework is based on

the NetBeans platform and is mainly used for XML schema inference. Although

our proposed algorithm is not dealing with schema inference, jInfer is designed

to be extensible and is suitable for incorporation of our algorithm.

The whole process of repairing inconsistent XML data is divided three steps

(illustrated in Fig. 5.1):

1. Import of input data (XML, functional dependencies, weights) into an in-

ternal representation - Initial Model.

2. Repairing of Initial Model with optional help of user interaction.

3. Export back the repaired data into XML format.
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Figure 5.1: High-level view of the repair process

5.2 Architecture

The main part of our algorithm is implemented as the FDRepairer module

of the jInfer framework. The core package of the module is cz.cuni.mff.

ksi.jinfer.functionalDependencies and contains classes representing base

object important for repairing (Tuple, RW-XML tree, Path etc.). This pack-

age is further divided into the following subpackages:

fd contains data structure of functional dependencies used as an input to the

algorithm.

interfaces contains Java interfaces necessery for integration in the jInfer frame-

work.

modelGenerator contains classes responsible for creating data structures from

loaded input files.
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newRepairer contains class NewRepairerImpl, the class that implements our

proposed algorithm. Also it contains other data structures introduced in

our approach

properties contains classes reponsible for showing properties of this extension

in the jInfer.

repairer contains classes implementing the original algorithm from [8].

weights contains data structure for node weights used as an input to the algo-

rithm.

5.2.1 Input Files Processing

Files that can be added as an input to our algorithm are of three types. The XML

data, file containing functional dependencies and file containing weights. First,

the XML is processed with build-in Java DOM parster. Files with FDs and

weights both contain XML data with specific structure defined as XML Schema

in Fig. B.2 and B.1 and are both processed with JAXB [14].

5.3 Restriction of Implementation

The FDRepairer module of the jInfer framework is an implementation of our

proposed algorithm presented in Chapter 4. However, one part of the algorithm

have not been implemented yet, namely the intersection of repair candidates with

existing repair group.

5.4 Building and Executing

For building jInfer with FDRepairer from sources, please refer to the tutorial at

http://jinfer.sourceforge.net/building_jinfer.html . To execute jInfer,

install plugins from enclosed CD or built from sources into NetBeans.

Appendix C contains a simple user guide with screenshots about how to use

FDRepairer.
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Chapter 6

Experimental Results

In this chapter, experimental results of the FDRepairer module of the jInfer

framework are presented. Set of documents and functional dependencies have

been provided as an input and results from the former algorithm have been com-

pared with results from FDRepairer. Documents in provided datasets are split

into real-world and synthetic XML documents.

6.1 Datasets

All provided documents with functional dependencies and also repaired docu-

ments are placed on the enclosed CD in the directory /datasets/.

6.1.1 Real-World Data

The first real-world dataset originates from the XML data repository

(http://www.cs.washington.edu/research/xmldatasets/), specifically the Course

data derived from university websites. The course data consist, along with other

information, of day of the week, time and place (building and room), where each

course is situated. DTD of one of the dataset file is shown in Fig. 6.1. The

consistency of data is evaluated against FD defined as: Two courses starting at

the same date and time are each situated in a different place.
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<!ELEMENT root (course*)>

<!ELEMENT course (reg_num,subj,crse,sect,title,units,

instructor,days,time,place)>

<!ELEMENT reg_num (#PCDATA)>

<!ELEMENT subj (#PCDATA)>

<!ELEMENT crse (#PCDATA)>

<!ELEMENT sect (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT units (#PCDATA)>

<!ELEMENT instructor (#PCDATA)>

<!ELEMENT days (#PCDATA)>

<!ELEMENT time (start_time,end_time)>

<!ELEMENT start_time (#PCDATA)>

<!ELEMENT end_time (#PCDATA)>

<!ELEMENT place (building,room)>

<!ELEMENT building (#PCDATA)>

<!ELEMENT room (#PCDATA)>

Figure 6.1: DTD of reed.xml from course dataset

The second dataset is a set of actors of IMDB database obtained from the Nia-

gara data source (http://www.cs.wisc.edu/niagara/data.html). The dataset

consists of a set of authors, where for each author a set of movies he played in is

listed. DTD of this dataset is shown in Fig. 6.2. For this dataset, we defined FD

as follows: For each two authors, which played in the movie with the same name,

the year of release of this movie must be the same.

39

http://www.cs.wisc.edu/niagara/data.html


<!ELEMENT W4F_DOC (Actor)>

<!ELEMENT Actor (Name,Filmography)>

<!ELEMENT Name (FirstName, LastName)>

<!ELEMENT FirstName (#PCDATA)>

<!ELEMENT LastName (#PCDATA)>

<!ELEMENT Filmography (Movie)*>

<!ELEMENT Movie (Title,Year)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Year (#PCDATA)>

Figure 6.2: DTD of actors.xml

6.1.2 Synthetic Data

Two synthetic datasets have been constructed, the former represents data intro-

duced in Example 2.1 with FD presented in Example 5. The latter is created

according to Example 1 introduced in [10]. DTD of the former dataset is identi-

cal with DTD defined in Example 2. The latter datasets DTD is shown in Fig.

6.3.

<!ELEMENT customers (country)>

<!ELEMENT country (name,c_list)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT c_list (customer)*>

<!ELEMENT customer (no,phone,zip,city)>

<!ELEMENT no (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

<!ELEMENT city (#PCDATA)>

Figure 6.3: DTD of customers.xml
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6.2 Algorithms Comparison

For each dataset we perform the following. First, we run the original algorithm

and collect from a repaired document informations about how many nodes have

been modified with particular update operation. Moreover, we split the value

modification operation into two types. The first is changing value to new one and

the second one is copying the value from one node to another.

After that, we use our proposed algorithm with minimal repair candidate se-

lection mode, and along with the data we collect for original algorithm, we also

gather information on how many repair groups have been created before the first

application of repair candidate and the total number of picked repair groups. We

run our algorithm multiple times with different value of the coefficient k and as-

signment of node weights w.

The first real-world data (course data) is represented by reed.xml and wsu.xml.

For each document, we execute our algorithm with three different settings. First

two use the default value of k (k = 1.5), for the last one, we set k = 0.005. For

the last two executions, we set for reed.xml (wsu.xml) the weight w of nodes

represented by XPath /root/course/time/start_time/text() (resp. /root/

course/time/start/text()) to 0.1.

The document actors.xml represents the second real-world dataset. Our

algorithm is executed two times, where for both executions k = 1.5 is set.

Moreover, the second has weights of nodes represented by XPath /W4F_DOC/

Actor/Filmography/Movie/Year/text() set to w = 0.2.

Generated datasets represented by bib.xml and customers.xml documents

have been both used as a input for our algorithm two times, where first execution

was done with the default value of k. The second execution on bib.xml uses

k = 0.1 and on customers.xml uses k = 1.5 and w = 0.2 is set to all nodes

represented by /customers/country/c_list/customer/city/text().

41



dataset repairer k w RG RG total U NV ChV

reed.xml

old repairer - - - - 0 780 0
FDRepairer 1.5 - 218 195 0 195 0
FDRepairer 1.5 0.1 218 195 0 195 0
FDRepairer 0.005 0.1 218 195 5265 0 0

wsu.xml

old repairer - - - - 0 2612 0
FDRepairer 1.5 - 3520 653 0 653 0
FDRepairer 1.5 0.1 3520 653 0 653 0
FDRepairer 0.005 0.1 3520 653 20833 0 0

actors.xml
old repairer - - - - 0 62 62
FDRepairer 1.5 - 69 62 0 32 30
FDRepairer 1.5 0.2 69 79 0 0 79

Table 6.1: Real-World datasets

6.3 Results

All information gathered from real-world and synthetic datasets is shown in Ta-

bles 6.1 and 6.2. The columns of both tables are defined as follows: RG is the

count of repair groups created before application of repair candidate, RG total is

the total count of picked repair groups, U specifies the number of nodes marked

as unreliable, NV defines the number of nodes changing value to a new one and

finally ChV specifies the number of nodes with value copied from another node.

From the information presented in these tables is apparent that our approach

found for each dataset a repair that modifies less nodes than the original repair

algorithm. One exception where our algorithm modifies more nodes is the case

when we set value of k near 0, which marks nodes as unreliable. With this setting

we want to demonstrate that with our approach it is possible to mark nodes as

unreliable instead of modifying their values. This is not possible with the original

repairer, since it prefers node value modification to marking node as unreliable.

Setting the weight to particular nodes causes two different behaviour of the

algorithm. First, setting the weights effects the choise of strategies used to repair

the violations. In datasets actors.xml and customers.xml setting the custom

weight to nodes causes the node values are changed to values of other nodes.

Second causes modification of nodes defined by the path specifying the weights.
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dataset repairer k w RG RG total U NV ChV

bib.xml
old repairer - - - - 0 913 0
FDRepairer 1.5 - 1444 913 0 913 0
FDRepairer 0.1 - 1444 913 5478 0 0

customers.xml
old repairer - - - - 0 99 99
FDRepairer 1.5 - 232 136 0 72 64
FDRepairer 1.5 0.2 232 361 0 0 361

Table 6.2: Synthetic datasets

In datasets reed.xml and wsu.xml setting the weights still changes the value of

nodes to a newly generated one, however for reed.xml only values of nodes defined

by /root/course/time/start_time/text() are modified and for wsu.xml are

modified values defined by root/course/time/start/text().

Another interesting observation is that for almost all datasets, our algorithm

picks less repair groups (from which picks repair candidate to apply to document)

than were created before first pick. It means that one of the repair candidate

repairs more than one FD violation and therefore less value modifications are

needed. In the case where the number of picked repair groups outreach the

number of firstly created ones, it means that some repair candidate introduces new

violation which was consequently repaired in the next iteration of our algorithm.
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Chapter 7

Conclusion

The aim of this thesis was to propose and implement an algorithm repairing XML

functional dependencies violations. At first, existing solutions were analyzed and

described. The result of the analyses was that none of the recent approaches

uses, even in only limited form, user interaction in the process of finding suitable

repair for the FD violation. Consequently, we proposed algorithm based on [8]

that uses user interaction in various ways.

First, we incorporated a weight model into the XML data representation,

which allows us to measure the modification cost of each possible repair candidate.

This is also the first place for the user to interact with the repair process. Next, we

have introduced a new concept of repair candidates clusters called repair groups.

These clusters group repair candidates according to the violation which they are

repairing or part of the XML data they are modifying.

The main user interaction part of our algorithm is the selection of the repair

group and consequently the repair candidate which is applied to the XML doc-

ument. Besides the repair candidate selection we also introduced a mechanism

allowing to guess the next selection based on the previous candidates selected by

the user, if the user does not want to select the repair candidate anymore.

The experimental implementation of the original as well as proposed algo-

rithms based on the jInfer framework. Both algorithms have been compared

against each other on synthetic as well as real-world datasets. From the data
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gathered from the comparison it is clear that our approach has found repairs

with less modifications applied on the XML data. We have also shown that with

the user interaction it is possible to change the usage of update operations used

in repair, which may create more reasonable result for the user.

7.1 Future Work

Although our approach has introduced user in the process of repairing FD vio-

lations in XML data, there is still work to be done. The first main task in the

further work is to extend paths defining functional dependencies. With usage of

more constructs that XPath provides one can define more sophisticated FDs.

Another part of the algorithm to be improved is clustering repair candidates

into repair groups. The user can provide some additional criteria, that can change

the resulting repair.

Last but not least, guessing part of the user selection algorithm can be im-

proved by using more sophisticated heuristic algorithm to select proper repair

candidate with regard to previous candidates selected by the user.
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Appendix A

Content of CD

The CD is a part of this thesis. It contains text of this thesis, source code

of jInfer framework with FDRepairer module together with documentation and

built jInfer as nbm plugins applicable into NetBeans platform. It aslo contains

experimental data and results. CD has the following structure:

• content.txt - A file with this text

• text - A directory with the PDF file containing text of this thesis

• src - Source codes of jInfer including FDRepairer extension

• javadoc - A generated javadoc documentation

• bin - A directory with nbm plugins of jInfer and FDRepairer

• datasets - Experimental data and results
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Appendix B

Attachments

Figure B.1: XML Schema for weights

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:complexType name="Tweight">

<xs:sequence>

<xs:element name="path" type="xs:string"/>

<xs:element name="value" type="xs:decimal"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Tweights">

<xs:sequence>

<xs:element name="weight" type="Tweight"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:element name="weights" type="Tweights"/>

</xs:schema>
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Figure B.2: XML Schema for functional dependencies

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:complexType name="TleftSidePaths">

<xs:sequence>

<xs:element name="path" type="xs:string"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="TrightSidePaths">

<xs:sequence>

<xs:element name="path" type="xs:string"

minOccurs="1" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Tdependency">

<xs:sequence>

<xs:element name="leftSidePaths" type="TleftSidePaths"/>

<xs:element name="rightSidePaths" type="TrightSidePaths"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Tdependencies">

<xs:sequence>

<xs:element name="dependency" type="Tdependency"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:element name="dependencies" type="Tdependencies"/>

</xs:schema>
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Appendix C

FDRepairer Guide

First, before we start repairing XML data violating functional dependencies, new

jInfer project needs to be created:

Files with XML data, defined functional dependencies and weights assigned to

the nodes needs to be added to the newly created project. Files with functional
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dependencies and weights are xml files with XML Schema shown in Fig. B.2 and

B.1. These files appears after adding in the FD folder of the jInfer project.

The settings of the FDRepairer extension is available in the properties window

of the jInfer project accessible through project context menu. In these settings,

one could choose between original repairer and repairer proposed in this thesis.

For the proposed algorithm is then available to choose between user interactive

repair picker and Minimal Repair Picker. In this place is also possible to set

coefficient k and threshold t.
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The repair is executed by the Run Repair item from the jInfer project context

menu:
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If the user interactive repair picker has been selected, RepairPicker Window

is shown to the user. In this window the user picks repair candidate, which will

be applied to the repaired XML.

After repairing all the violations, repaired XML document is created in the

Output subfolder of the jInfer project.

56


	Introduction
	Aim of the Thesis
	Structure of the Thesis

	Basic Definitions
	XML Trees and DTDs
	Integrity Constraints
	Functional Dependencies
	Functional Dependency 1
	Functional Dependency 2


	Analysis of Recent Approaches
	Repairs and Consistent Answers for XML Data
	XML Tree and Functional Dependency
	Repairing inconsistent XML data
	Repair Algorithm
	Conclusion

	Querying and Repairing Inconsistent XML Data
	General Repair
	Conclusion

	Improving XML Data Quality with Functional Dependencies
	Cost Model and Repairing Primitive
	Initial Conflicts Hypergraph
	Resolving Violations Thoroughly
	Conclusion


	Proposed Algorithm
	Repairing Algorithm
	Initial data model
	Computing Repair Groups
	Repair Candidate Selection and Application


	Implementation
	jInfer Framework
	Architecture
	Input Files Processing

	Restriction of Implementation
	Building and Executing

	Experimental Results
	Datasets
	Real-World Data
	Synthetic Data

	Algorithms Comparison
	Results

	Conclusion
	Future Work

	Bibliography
	List of Tables
	List of Figures
	Content of CD
	Attachments
	FDRepairer Guide

