Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Tomas Kypta

Search Strategies for Scheduling
Problems

Department of Theoretical Computer Science and Mathematical
Logic

Supervisor of the master thesis: doc. RNDr. Roman Bartak, Ph.D.
Study programme: Informatics

Specialization: Theoretical Computer Science

Praha 2011

I would like to thank my supervisor doc. RNDr. Roman Bartak, Ph.D. for his
leading of my master thesis, for his many valuable advices, suggestions, and for
providing materials for the thesis.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In ... date signature

Nézev prace: Prohledavaci strategie v rozvrhovacich problémech
Autor: Tomés Kypta
Katedra: Katedra teoretické informatiky a matematické logiky

Vedouci diplomové prace: doc. RNDr. Roman Bartak, Ph.D., Katedra teoretické
informatiky a matematické logiky

Abstrakt: V predlozené praci porovnavam prohleddvaci strategie pro fteseni
rozvrhovacich problému z pohledu programovani s omezujicimi podminkami.
ulohy. V préci jsou jednak rozebrany ruzné jiz publikované zpusoby modelovani
téchto problému, dale pak jsou popsdany a experimentdlné porovnany
prohledavaci strategie pracujici s témito modely. Porovnavan je zejména vliv
strategii na rychlost prace fesice v zavislosti na typu a velikosti dat. Jako
vedlejsi efekt prace studuje moznosti feSeni rozvrhovacich problému obsahujicich
alternativni tilohy pomoci fesice Choco, ktery byl pro implementaci experimentu
pouzit.

Klicova slova: prohledavaci strategie, rozvrhovaci problémy, omezujici podminky,
alternativni aktivity

Title: Search Strategies for Scheduling Problems
Author: Toméas Kypta

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: doc. RNDr. Roman Bartak, Ph.D., Department of Theoretical Com-
puter Science and Mathematical Logic

Abstract: In the present work I compare the search strategies for solving schedul-
ing problems from the view of constraint programming. The thesis is focused on
scheduling problems containing alternative activities. An analysis of previously
published various ways of modelling the problems is provided, next description
and experimental comparison of search strategies targetting these models is pro-
vided. The influence of strategies on the speed of the solver is studied primarily.
As a sideeffect the work studies the ways how Choco solver, which was utililized
for implementation of the experiments, can be used to solve the scheduling prob-
lems with alternative activities.

Keywords: search strategies, scheduling problems, constraints, alternative activ-
ities

Contents

[Introduction

L

1.1 Constraint Ontirrisa.tioa

1.2 Search techniques

1.2.3 Search Heuristics

1.2.4 Branching Schemes

|2 Scheduling Problems

2.1 Basic Definitiond

[1.2.5 Branch and Bound Method

B.1.5

x-RCPSP Constraintd

3.1.6 Optimality Criterionl
|3__2_ emporal Filtering in Temporal Netwo vith Alternative

arallel Branching

N

0 00 1 = O ot gt G

:5 3.2 Results for x-RCPSP Dat |

[Conclusion]
[BibLi ™~
i f ADI ationd
|Attachments

B omparison of the I_a.rg]ﬂs]

O

NA
e 0

Introduction

The thesis deals with the problem of scheduling. Scheduling problems contain a
huge scope of problem types. Some are easy to solve meanwhile there is a sub-
stantial portion of the difficult problems. Many practically important problems
are hard to solve - they are typically NP-complete. Because of the significant
practical impact of such problems there is intensive search for efficient solving
methods. The unfavourable complexity situation caused that various approaches
to enhancing scheduling abilities have been developed during last decades.

Constraint satisfaction is one of the most successful technologies used to solve
scheduling and many other problems. This thesis presents an overview and an
experimental comparison of solving techniques based on the constraint satisfac-
tion technology. Since, the scheduling problems containing optional activities
came recently to the spotlight due to their significant practical importance, the
emphasis of the thesis is put on the scheduling problems with optional activities.
Search strategies and heuristics targetting these problems are studied as the core
goal of the thesis. Finally, some search strategies are proposed for solving the
scheduling problems with alternatives and they are compared to other methods.

The experimental comparison is performed in Choco solver, which is a Java
library constraint solver. Hence, part of the thesis is then focused on usage
of Choco Solver for scheduling. Especially, the implementation of the presented
scheduling strategies is mentioned and strengths and weaknesses of the scheduling
capabilities of the solver are discussed.

Document Structure

The constraint satisfaction technology is first shortly described in chapter Il In
chapter 2 the scheduling problems which the thesis targets are described. Chap-
ter [2 is devoted to the definitions of the scheduling problems that are studied
in the thesis. Also, the notation of scheduling problems is unified here. In sec-
tion the scheduling problems with alternatives, which are studied primarily,
are described.

Chapter Bl presents modelling of the scheduling problem presented in sec-
tion as constraint satisfaction problems. The modelling is described from the
perspective of Choco solver.

Chapter [4] describes search strategies that are studied int the thesis. First
some basic search strategies for scheduling problems are mentioned and then
the strategies developed for scheduling problems with alternative activities are
presented.

In chapter [l the evaluation of the search strategies is provided. Section (.3
presents and discusses the results obtained by the test program.

Appendix [A] provides documentation to the test program that was developed
to evaluate the strategies. In appendix [B] the plotted graphs are situated and
in appendix [(] the tables with results are places. In appendix [D] contents of the
enclosed compact disc is listed.

The enclosed compact disc contains the electronic version of the thesis, the
test program and test data with the generated output.

1. Constraint Satisfaction

First of all constraint satisfaction, as the underlining technology the thesis deals
with, has to be explained in general.

The constraint satisfaction is a technology originating in artificial intelligence
and initially designed for effective solving of combinatorial problems. The idea is
to declaratively describe the problem and then use generic solving techniques. An
overview of constraint satisfaction and its application for planning and scheduling
can be found in [4], 5] [10].

Definition. Constraint satisfaction problem (CSP) is a triple © = (V, D, C),
where V.= {vy,vq,...,0,} is a finite set of variables, D = {Dy, Dy, ..., Dy} is
a set of domains for variables vy, vs, ..., v,, D; is a domain of variable v;, and
C = {ci,co,...,cn} is a finite set of constraints restricting the values that can
be assigned to the variables at the same time. Constraint c; is a relation defined
on a subset {v;,viy, ..., v, } TV, ¢; C{D;; x D, x...x D, }. A solution s
to a CSP is a complete asslz'gnment of the variables from V that satisfies all the
constraints.

In case the domains are finite discrete sets, we talk about (pure) constraint sat-
isfaction. The constraint programming branch where the constraints are defined
over infinite or more complex domains is called constraint solving. Constraint
solving is not targeted in the thesis.

If a domain D is common for all the variables and contains exactly two ele-
ments, we talk about Boolean constraint satisfaction problems. It’s worth noting
that a pure CSP can be converted to an equivalent Boolean CSP using SAT
encoding.

The solving techniques for constraint satisfaction involve several methods. A
short summary of the solving techniques can be found in [4, [5].

1.1 Constraint Optimisation

Practical applications of CSP often require some high-quality solution. It is not
sufficient to find any solution. The quality of solution, usually referred to as an
objective function or, in the context of scheduling (see section 2)), a cost function,
can be defined by many different criteria. The goal is then to find a solution that
minimizes (or maximizes) the given objective function. This class of problems is
referred to as Constraint Optimisation Problems.

1.2 Search techniques

There exist several approaches to solving CSP. It can’t be said that one technique
outperformes all the other. Usually some techniques perform better for some
problems while there might be different problems that the techniques fail to solve
efficiently or even solve at all. Also a small change of a problem instance might
cause a serious change in the performance of a solving technique.

A huge number of publications cover various search techniques. Since solving
techniques for general CSPs are not a target of the thesis only a short summary
of these techniques is presented here. It is based on the publications of Bartak
[4, 5, [10].

A CSP is usually solved by a systematic search through the solution space.
As mentioned earlier in the pure constraint satisfaction there is a finite set of
variables, a finite set of constraints and the domain of each variable is finite and
discrete therefore the solution space is also finite. Although being finite the solu-
tion space is usually huge and search through it is computationally demanding.
To reduce the solution space several sophisticated techniques have to be used.
Some consistency inference (constraint propagation) techniques are being used to
prune values before or during the search.

1.2.1 Complete Search Algorithms

A systematic search through all the variables and through all the assignments
of values to the variables guarantee to find a solution or to prove that there
isn’t any solution for the problem. A systematic search of such algorithm can be
represented by a search tree. The aim is to reduce the size of the search tree and
the number of steps performed by the algorithm during search.

The most simple algorithm is backtracking search. In each step the algorithm
takes the set of consistently instantiated variables and tries to extend the set
with a new variable; a variable is taken and a value is tried being assinged for the
variable. If the new value is consistent with all the constraints and the values of
the previous variables, the process continues with the next unassigned variable.
Otherwise another value is tried for the variable. If there is no other value for
the variable a backtracking step is performed and the algorithm returns to the
previously assigned variable. At the beginning the set of variables is empty. When
the algorithm stops a complete assignement for all the variables is found or the
algorithm returns with an empty set, the same one it started with. If an empty
set was returned the search was unsuccessful and the problem has no solution, it
is inconsistent.

The presented algorithm is probably the most simple systematic search al-
gorithm for solving CSPs, it is called chronological backtracking. The algorithm
can be simply improved. A look-back algorithm tries to use information about
previous assignments. Because the previous assignments can impose inconsisten-
cies in the currently processed variables, consistency checks between the current
variable and the past variables are added. Therefore look-back algorithm can
prune search through a sub-tree containing no solution. There are several ex-
amples of look-back algorithms, for example backjumping [21], conflict-directed
backjumping [31], backmarking [20], learning [19].

Look-forward algorithms look forward to check consistency. Shortly the key
is to recognize that a tested value for a variable can’t be part of the solution
because there exists a variable that doesn’t have a compatible value. An example
of look-forward algorithm is forward-checking [23].

1.2.2 Incomplete Search Algorithms

Although the complete search algorithms possess lots of desirable features, they
still might be computationally expensive. Therefore another types of search algo-
rithms vere developed - incomplete search algorithms. Incomplete search methods
don’t search the whole search space. An incomplete search algorithm might be
also non-systematic, it might visit a state in the search space more than once.

Incomplete search algorithms can’t guarantee finding all the solutions nor
even to find a solution to a problem that is solvable. They also can’t detect
insonsistent problems. Their advantage lies on the speed of the computation.
These algorithms are especially appropriate when searching for any solution to a
problem.

These search methods are often referred to as metaheuristics. Lots of res-
olution paradigms can be covered here: evolutionary algorithms, local search
techniques, etc. The best performing algorithms are based on constructive meth-
ods or on iterative repair methods. The constructive methods gradually extend
a partial solution to a complete one. The iterative repair methods start with
a solution, it frequently don’t have to be a feasible solution, and incrementally
modify it to acquire a better solution. Examples of such algorithms can be found
for example in [29] [30].

1.2.3 Search Heuristics

The search heuristics help to fasten the search algorithm. During the search the
critical point is the decision about which branch of the current search state to
choose. The decision basically consists of two things - the variable and the value
selection.

Variable Selection

In the backtracking-based search the variable selector selects a variable to be
processed in the search step. It corresponds with a node in the search tree. The
order in which the variables are processed can greatly influence the speed of the
search. It changes the shape of the search tree and therefore it can change the
number and ”quality” of leaves of the search tree.

For the variable selection a general rule called fail-first is applied [23]. It
says that the critical decisions are better to be taken first. The point is that
the subtree originating from this decission should have more inconsistent values
and therefore more values are pruned. If there is a solution in the subtree then
it’s not necessary to search through too much values and to backtrack too much.
Otherwise if there is no solution in the subtree then the search would probably
prune lots of values and the complete search through the subtree is supposed to
be fast.

Some examples of variable selectors are shown in chapter 4lin the context of the
search strategy they belong to. For example in the works of Caseau and Laburthe
in [I7] the most constrained activities (activities with the smallest domains) are
selected. Generally it’s better to select a variable with the smallest domain.

Value Selection

Value selection is the decision which value to choose after the variable selection
was performed. A general rule called succeed-first is applied [33]. Tt says that the
value leaving more possibilities should be selected. The point is that if there is
a solution in the subtree then it’s better to select a value that allows to find the
solution faster. Also in the case of constraint optimisation, the obtained solution
might be used by the solver to prune subtrees with worse overall cost function.
More about algorithms for constraint optimisation is in section

Some examples of value selectors are shown in chapter 4] in the context of the
search strategy they belong to.

1.2.4 Branching Schemes

In complete search algorithms a branching scheme is an important factor of the
efficiency of the search strategy. A branching scheme decides about the type of
branching in search steps of the strategy. It decides about the number of options
the value selector can choose from. It can be seen as resolving a disjunction.
Typical branching scheme in classical strategies is enumeration. The scheme is
enumerating all the values for each variable. Let a variable z has a domain
D = {vy,...,v,}. The selection can be assumed as an additional constraint
r=wv1V...Vx =uv,. Each choice in the search step corresponds with a value for
the variable. Value selector then chooses a value from the domain D.

Another way of branching is dichotomic branching x = v;Vx # vy. In this case
the branching factor remains small, but the number of search decissions greatly
increases.

The last frequently used general branching scheme is binary branching which
splits the domain in half x € {vi,..., o2} Vo € {vnyy,...,v,}. This kind of
branching assigns a value to a variable only in several search steps. Other search
decissions only prunes the domain and possibly helps to detect a dead ends sooner.

There are many other types of branching schemes. They are typically part
of a complex search strategy. Some examples of branching schemes are shown in
chapter [l in the context of the search strategy they belong to.

1.2.5 Branch and Bound Method

Branch and bound method is a search algorithm often used for constraint optimi-
sation problems. It needs a heuristic function that maps a partial assignment of
variables to a numerical value. The value is an estimate of the objective function
for the best complete assignment that can be obtained from the partial assign-
ment. Branch and bound is a backtracking based algorithm, after a search step
of the algorithm (assigning a value to a variable), the heuristic function for the
new assignment is computed. If the value exceeds the bound, the current sub-
tree under the current partial assignment is pruned immediately. If the objective
function is being minimized and the estimate computed by the heuristic function
is smaller than the bound, the solver continues in processing the subtree.

2. Scheduling Problems

A scheduling problem is basically a problem of allocating activities to one or more
time intervals and to one or more resources. There exists a wide range of classes
of scheduling problems. An overview of classes of scheduling problems with their
solving algorithms can be found in Brucker’s book [15]. The book is organized
according to well known three-field classificationll] coming from [22].

Two different terminologies can be seen in literature - project scheduling ter-
minology and machine scheduling terminology. The thesis uses project scheduling
terminology and notation that has its roots in [14]. Machine scheduling termi-
nology comes from [18, 32]. In machine scheduling activities are called operations
and resources are called machines, furthermore operations can be groupped in
jobs. In our case we’ll be considering situations where one operation equals one
job.

2.1 Basic Definitions

Let’s go back to the definition of the scheduling problems. For our purpose we
can further narrow it and not consider preemption. A preemptive activity can be
released from the resource it is allocated to at any time of it’s execution and be
restarted later. Activities we are considering has to be finished once started.

Now we define the scheduling problems we are dealing with more formally,
let’s have a set of resources R = {Ri,...,R,} and a set of activities A =
{A,..., A}, every activity A; has a processing time pa, € Ny. Each activity
A; is associated with a set of resources 4, € R, activity A; can be allocated
to any of the resources in ()4,. Unless otherwise stated, further in the text we’ll
be considering only cases where |Q;| = 1,Vi € {1,...,n}. Moreover, we'll be
considering cases where activity A can have more than one set ()4 associated.
Each activity can have g4 € Ny such sets associated, we’ll denote the sets QQ, j e
{1,...,qa}. Such cases cover scheduling problems where the activity has to be
allocated to all those g4 resources at the same time.

The scheduling problems require some kind of optimality criteria to be able
to measure the quality of a schedule. The third field in the Graham classification
[22] specifies the optimality criterion which is measured by a cost function. A
cost function fa(t) is defined to measure the cost of completing activity@ A at
time t, fa : N — R. If the finishing time of an activity A is denoted by Cly,
then a cost function called makespan is denoted by C,,.. = max{C4|A € A}. To
define other cost functions more terms have to be introduced. A release date r 4 is
associated with activity A to define the time when the activity becomes available
for processing. Due date d 4 for activity A defines the time when the activity has to
be finished. Latenessis defined as Ly = Cy—d4, earliness Fx = max{0,da—C4}
and tardiness Ta = max{0,C4 —d4}. Activities might have different importance
in processing, therefore a weight w4 of an activity A can be defined. Also activities

!The notation of the classification is «|B|y where « specifies the resource environment, j3
specifies the job characteristics and -« denotes the optimality criterion.

2A cost function is normally defined to measure the cost of a job, but in our case jobs and
activities correspond.

might have different importance of early or late completion, therefore late cost
and early cost for each activity can be defined. In general, all data pa, 74, da, wa,
late cost and early cost are assumed to be integer. All these terms can be used in
the definitions of various cost functions. Besides makespan a cost function called
mazimum lateness is the most important. It is defined as Ly, = maxaea{La}.
Other frequently used cost functions could be > T, > wy - Ta, > F4 and many
other. They can be found in for example in Brucker’s book [I5]. In further text,
only makespan is referred to as the optimality criterion.

In classic definition, a schedule is a function s : A — R x Ny giving the target
resource and the start times of operations. In our case we’ll consider schedule as
a function s : A — Nj since all the resource requirements Q%,7 € {1,...,qa} are
compulsory.

In general, the aim of the scheduling problem is to find a feasible schedule. A
schedule is called feasible if no two time intervals overlap on the same resource,
all the constraints are satisfied, and the resource meets other problem-specific
characteristics. A feasible schedule is optimal if it minimizes a given optimality
criterion.

2.1.1 Resources

So far, we have defined the resources vaguely. For each resource R we define a
capacity capr € Ny and requirement reqa g € NJ of activity A of the resource.
At any given time the total combined requirement of all the activities allocated
to the resource at the time cannot exceed the capacity of the resource.

When a resource R has capacity capr = 1, we call it unary resource or disjunc-
tive resource. It this case no two distinct activities can overlap an the resource.
Formally, the following formula holds for unary resources:

S(A) +pa < s(B)ors(B)+pp <s(A),if Qs =Qp ={R}and A# B

If a resource R has capacity capg > 1 we call it cumulative resource. The
resource limitation can be formally defined by the next formula:

Z reqar < capr VR € RVt € [0, D].
Ae{BeA|Qp=R & s(B)<t<s(B)+pp}

2.1.2 Precedences and Temporal Constraints

Typical scheduling problem often include temporal relationships between activi-
ties. Therefore precedence relation between activities was introduced. The rela-
tion is denoted by < symbolﬁ. Precedence A < B denotes that activity A must
be finished before the activity B. Formally:

s(A) +pa < s(B)

The precedence relation can be further generalized into temporal constraint
(temporal link) between a pair of activities. A temporal link between two activi-
ties A and B is described by minimum distance minDist 4 gy € Ny and maximum

3In literature, reader might encounter different symbols for precedence relation such as —.

10

distance mazDist(4) € Ng. Formally, it is:

minDist ap) < 5(B) — (s(A) + pa) < maxDista p (2.1)

2.2 Scheduling Problems with Alternatives

In classic scheduling problems the aim is to assign all activities their start times
and resources which the activities will be executed on. Each activity must be
executed. In the previously defined scheduling problems the resource which the
activity is executed on is specified in advance. The only problem is to find the
start time for each activity.

Many real life problems require more variability in the problem definition,
especially splitting into more alternatives, therefore problems with alternatives
were introduced. Alternatives basically divide into two types, alternative ac-
tivities and alternative recources. The thesis targets scheduling problems with
alternative activities, therefore they are discussed in the next sections in further
deatail. Scheduling problems with alternative resrouces are shortly mentioned in
section 2.2.5]

In scheduling problems with alternative activities the problem is to decide
which activities exist in the solution and to find the start times for those activities
that exist in the solution.

Next an overview of works about alternatives is presented in the section. The
works are mentioned in approximate chronological order of their publication.

2.2.1 PEX Temporal Networks

One of the oldest works about alternative activities are the ones of Beck and Fox
in [12], 13]. They studied alternative activities from the view of constraint-based
scheduling - they tried to expand the scope of the constraint-directed scheduling
techniques.

Now, we’ll present only their representation of scheduling problems with alter-
natives. The proposed constraint-directed solving methods are further mentioned
in chapter [4.41

In their work, the scheduling problems with alternative activities are mod-
elled via temporal networks. In the temporal networks nodes represent activi-
ties. Alternatives are introduces through special nodes - so called XorNodes and
AndNodes. XorNodes are used to model alternative branching and AndNodes
are used to model parallel branching. Moreover, XorNodes and AndNodes repre-
sent dummy activities used only to represent the branching of alternative process
plans. An example of temporal network can be seen in figure 2.1 XorNodes are

marked XOR, AndNodes are marked AND.

AndNodes

AndNode is a dummy node with zero processing time in the temporal network
that has special semantics. The semantic of AndNode defines that if the AndNode
exists in a solution then all non-XorNodes directly linked to it also exist. Similarly,
if one of the non-XorNodes linked to an AndNode exist in a solution then the
AndNode exist in the solution as well.

11

Figure 2.1: An example of a PEX temporal network.

Temporal perspective of an AndNode defines that the AndNode have to start
after maximum earliest completion time of all the upstream connected nodes.
Similarly, an AndNode have to end before minimum latest start time of all the
downstream connected nodes.

XorNode

XorNode has, similarly to AndNode, zero length. The semantics of XorNode
defines that if the XorNode exists in a solution then one and only one of the nodes
directly connected upstream/downstream exists in the solution. If a directly
connected node exists in a solution then the XorNode exists in the solution too.

Temporal perspective of a XorNode defines that the XorNode have to start
after the minimum earliest completion time of all the nodes connected upstream
and have to end before the maximum latest start time of all the nodes connected
downstream.

Illegal Temporal Networks

We’ve seen an example of a PEX temporal network in figure 2.1l Although a wide
range of temporal networks can be expressed using AndNodes and XorNodes,
not all such networks are allowed. The limitation is posed to XorNodes. If
the temporal network contains XorNode A with k& upstream links, then it must
contain corresponding XorNode B with & downstream links that is upstream to
A. Similarly, if the temporal network contains XorNode C' with [downstream
links, then it must contain corresponding XorNode D with [upstream links that
is downstream to C'. An example of illegal PEX temporal network can be seen
in figure

The reason why such temporal networks are illegal lies in the context con-
straint satisfaction techniques proposed to solve PEX temporal networks, it is
explained in section .4l

2.2.2 Temporal Networks with Alternatives

Another approach representing alternatives can be found in [6,[9]. The scheduling
problems with alternatives are modeled via temporal networks with alternatives

12

XOR
XOR

XOR

Figure 2.2: An example of illegal PEX temporal network.

(TNA) which are thoroughly studied in [7, 8, @9]. The whole approach of TNA is
build on constraint-based scheduling as the underlying technology. The alterna-
tives are defined through implicit constraints coming from the type of branching
in the network. The work defines two kinds of branching in the network - parallel
branching and alternative branching.

Compared with the PEX temporal networks (see previous section) parallel
branching can be seen as an analogy to AndNode and alternative branching as
an analogy to XorNode. But, in contrary to AndNodes and XorNodes, branching
in TNA can be defined for each node and for each direction (upstream or down-
stream) separately. The concept of TNA is more general, besided the branching
semantics, the PEX illegal network shown in figure is legal in TNA.

Now, we formally define Temporal Networks with Alternatives. The defini-
tions come from [7].

Definition. Let G be an acyclic graph, a subgraph of G s called a fan-out
subgraph if it consists of nodes x,yi,...,yx (for some k € N such that each
(x,y:),1 < i < k is an arc in G. Similarly, a subgraph of G is called a fan-in
subgraph if it consists of nodes x,y1,...,yx (for some k € N) such that each
(yi, k), 1 < i <k, is an arc in G. In both cases x is called a principal node and
all yi, ..., yr are called branching nodes. If y1,...,y, are all and the only succes-
sors of x in G then we call the fan-out subgraph complete (similarly, is defined
complete fan-in subgraph).

Definition. A directed acyclic graph G together with its pair wise edge-disjoint
decomposition into complete fan-out and fan-in subgrahps, where each subgraph
in the decomposition is marked eighter as a parallel subgraph or an alternative
subgraph, is called P/A graph.

Definition. Temporal Network with Alternatives is a P/A graph where each
arc (z,y) is annotated by a pair of numbers [a,b] (a temporal annotation where
a describes the minimal distance between x and y and b describes the maximal
distance, formally, a < t, —t, < b where t, denotes the position of node x in
time.

Alternatives are described by an assignment of 0/1 values to nodes of given
P/A graph. If the node is assigned value 1, it means the node is selected. The
value 0 means the node is not selected. The assignment is called feasible if the
semantics restrictions of parallel and alternative subgraphs is fullfilled.

The semantics of parallel subgraph is similar to the one of AndNode, it defines
that all nodes (both the principal node and all branching nodes) are either selected

13

(have value 1) or not (have value 0). The semantics of alternative subgraph is
similar to XorNode, it defines that all nodes (both the principal node and all
branching nodes) are not selected (have value 0) or the principal node and exactly
one branching node are selected (have value 1) and all other branching nodes are
not selected.

Scheduling Problems Represented by TNA

TNA with its alternative branching implicitly represent alternative processing
plans. Nodes represent activities, temporal annotations on arcs represent tem-
poral constraints between activities, where a corresponds with minDist and b
corresponds with maxDist. The only difference here is that activities can have
non-zero duration. Temporal annotation is then described by (2.1]).

To denote branching of the fan-out/fan-in subgraphs, let A be a principal
activity (an activity representing principal node) in a fan-out subgraph, then
outBranchy € {PAR, ALT'} represents type of branching of the subgraph. Sim-
ilarly, inBranchy € {PAR, ALT} represents type of branching of the fan-in
subgraph with a principal activity A. The value PAR denotes parallel branching
and the value ALT denotes alternative branching.

Also the sets of branching nodes should be defined for further usage. Let A
be a principal activity of a complete fan-out subgraphs and let By,..., By be
the activities representing all the corresponding branching nodes. Then B%" =
{Bjy,..., By} denotes the set of all the activities representing all the branching
nodes in a complete fan-out subgraph with principal node representing activity
A. Similarly, B = {By,..., B} denotes the set of all the activities represent-
ing all the branching nodes in a complete fan-in subgraph with principal node
representing activity A.

An example of temporal network with alternatives can be seen in figure 2.3
The alternative branching is denoted with ALT, the parallel branching is de-
noted with an arch crossing arcs branching/joining in the node. The temporal
constraints are written on the arcs.

[2,7]

/. [7,12] /

Figure 2.3: An example of a temporal network with alternatives.

P/A graph assignment problem
Definition. P/A graph assignment problem is given by a P/A graph G and a

14

Figure 2.4: An example of a nested temporal network with alternatives.

list of nodes of G which are assigned value 1. The question is whether there exist
a feasible assignment of 0/1 values to all nodes of G which extends the prescribed
partial assignment.

In [7] Bartak and Cepek shows that the P/A graph assignment problem is
NP-complete.

Nested Temporal Networks with Alternatives

A restriction from TNA called Nested Temporal Networks with Alternatives (n-
TNA) was proposed in [§]. The restriction is motivated by real-life manufacturing
scheduling problems. The main advantage of n-TNA is tractability (solvability
in polynomial time) of the assignment problem.

Definition. A directed graph G = ({s, e}, {(s,e)}) is a (base) nested graph. Let
G = (V,E) be a graph, (z,y) € E be its arc, and z, ..., z(k € N) be nodes such
that neither z; is in V. If G is a nested graph (and I = {1,... k} then graph
G=WVU{zliel},EU{(z,2),(z,y)|i € I} — {(z,y)}) is also a nested graph.

In [8] Bartak and Cepek have shown that the nested P/A graph assignment
problem is tractable.

An example of nested temporal network with alternatives can be seen in fig-
ure 2.4

In the empirical evaluation of the search strategies in chapter Blone of the data
types used in experiments are Nested Temporal Networks with Alternatives.

2.2.3 Custom Extension to PEX Temporal Networks

The representation proposed by Beck and Fox is rather limited. It defines that
AndNodes and XorNodes are dummy nodes with zero duration that doesn’t rep-
resent any activity. As an extension, we redefine the concept of AndNodes and
XorNodes by utilizing branching properties of TNA from section Let’s call
the extension PEXTNA.

First of all, there’s no reason why AndNodes and XorNodes can’t repre-
sent regular activities with non-zero duration, therefore the extension allows
AndNodes and XorNodes to represent real activities with non-zero duration. Still,
if necessary zero-length dummy nodes are allowed in the network.

15

The properties of AndNodes and XorNodes are defined for both directions -
upstream and downstream. By contrast, the definitions of Temporal Networks
with Alternatives in the works of Bartdk and Cepek is more general, it allows
a node to have different branching upstream and downstream. It’s possible to
replace AndNodes and XorNodes with branching properties of TNA and still ful-
fil requiments for corresponding XorNodes. Instead of an AndNode a parallel
branching for fan-out/fan-in subgraphs will be used. An AndNode in the origi-
nal definition would be then replaced by a node representing activity A having
outBranchy = inBranchy, = PAR. A XorNode will be replaced by an al-
ternative branching for fan-out/fan-in subgraphs. Similarly, a XorNode in the
original definition would be replaced by a node representing activity A having
out Branchy = inBranchy = ALT.

With the extension in place, it’s possible to have a node having parallel branch-
ing in one direction and alternative branching in the second direction. In PEX
temporal network two separate nodes - one AndNode and one XorNode - would
be necessary to represent such situation. Moreover, without the need for dum-
my XorNodes and AndNodes PEXTNA representation requires fewer nodes. An
example of corresponding PEX and PEXTNA temporal networks can be seen in
figure 2.1 it’s clear from the picture, that some of the XorNodes and AndNodes
can be removed and their branching properties transfered to regular nodes (nodes
A and B in the example).

XOR XOR A AND AND B

Figure 2.5: An example of corresponding PEX and PEXTNA temporal networks.

Despite the extension, the requirement for corresponding XorNodes, must
be kept. Formally, defined with branching properties, let A be an activity
and outBranchy = ALT and |B%*| = k then a corresponding activity B hav-
ing inBranchg = ALT and |BY}| = k have to be present in the problem in-
stance downstream to the activity A. And similarly, let A be an activity and
inBranchy = ALT and |B%'| = k then a corresponding activity B having
outBranchg = ALT and |B%"| = k have to be present in the problem instance
upstream to the activity A. Explanation for the corresponding XorNodes require-
ment is provided in section 4.4

With the extension in place, PEXTNA can be seen as a subclass of TNA
(and n-TNA). In the empirical evaluation of the search strategies in chapter
the extension of PEX temporal networks is used.

16

2.2.4 Extended Resource-Constrained Project Scheduling
Problem

A different approach to alternatives was presented in [25] 26]. The papers intro-
duce an extension of Resource-Constrained Project Scheduling Problem (RCPSP)
introduced in [16]. We’ll now shortly present the concept of RCPSP to understand
the extension.

Resouce-Constrained Project Scheduling Problem

RCPSP introduced two kinds of resrouces to scheduling problems: renewable
and nonrenewable resources. Renewable resource were already presented, they
are standard resources as defined in section 2.1.J] Nonrenewable resource are
different, the problem instance specifies the numbers of units of resources of this
kind that are available for the entire planning time. Once an activity consumes
a unit of nonrenewable resource, this unit doesn’t appear again after the end
of execution of the activity. Although nonrenewable resources is an important
feature of scheduling problems, problems with nonrenewable resources are not
targeted in the thesis.

Alternative activities were introduced in RCPSP. A subclass of RCPSP called
multi-mode resource-constrained project scheduling problems (MRCPSP) [16, 24]
provides a way to define alternatives for activities. Each activity can be performed
in one or more processing alternatives - modes. For an activity A, a set M4 of
its modes is defined. An activity can have different processing times and resource
requirements in different modes. Once an activity is started in one of its modes,
it may not be interrupted, and the mode can’t be changed. The support for
alternatives is still very limited in MRCPSP, there is no way to define alternative
execution paths consisting of several activities. The further extensions of RCPSP
were then defined to target the problem.

Extended Resouce-Constrained Project Scheduling Problem

Papers by Kuster, Jannach and Friedrich [25, 26] further extends the concept
of RCPSP into extended resource-constrained project scheduling problem
(x-RCPSP). Instead of using modes for activities like in MRCPSP, the
alternative process plans are implemented through the distinction between
active and inactive activities, where only the active activities are considered in
the resulting schedule. Activities can be dynamically activated and deactivated
according to the predefined rules.

Formally, an instance of x-RCPSP scheduling problem is defined by a set
of potential activities AT = {Ag, Ay, ..., Ay, Api1}, where activity Ag € AT and
A,11 € AT represent mandatory abstract start and end activities with a duration
of 0 and no associated resource requirements. The active activities form a subset
A" C A" the corresponding difference A1 \ A’ contains the inactive activities.
The set of renewable resources is denoted by R = { Ry, ..., Ry}, for each resource
R a constant amount of units capg is available. The set of all potentially relevant
precedence constraints is denoted by P, existence of an element pyp € PT
states that activity B € A" cannot start before the end of activity A € A*. The
set of all potential resource requirements is denoted by the set @, an element

17

qar € QF is a constant denoting the required amount of resource R € R by
activity A € AT. The sets P’ and Q' are defined as restrictions on active activities
of sets P and QT respectively.

The activity relations and dependencies are modeled by activity substitutions
and activity dependencies. The set of potential activity substitutions is denoted
by X, existence of x4 5 € X" states that the process variation where activity
A € A is replaced with activity B € A"\ A’ is allowed. The set M™ denotes the
mandatory implications of a deliberate activity state modification. The existance
of m§ p(my p) € MT indicates that activity B € A has to be (de)activated
upon the (de)activation of activity A € A, the existence of m}y z € M™ indicates
that activity B € A" has to be deactivated upon the activation of activity A €
A*, and the existence of m3 p € M* indicates that activity B € A" has to be
activated upon the deactivation of activity A € A*.

A schedule s of an instance of x-RCPSP is a function s : A" — Ny assigning
active activities their starting times. The activation state A’ is considered valid,
if and only if it can be derived from an original valid activation state through
the application of the substitutions defined in X'*, satisfying all the constraints
defined in M.

To acquire a meaningful model of a process, some extra constraints have to be
defined. Namely the dependency consistency must hold - the model must forbid
simultaneous activation and deactivation of an activity. Next, the precedence
consistency - there must be no cyclic dependencies in the set of active precedence
constraints P’. And also, the requirement consistency as expressed in section Z.1.1]
must hold.

Modeling of a problem in x-RCPSP provides better flexibility than MRCPSP
does. The mode alternatiorl] as it is provided in MRCPSP can be easily modeled
in x-RCPSP. Moreover, activity insertion/removal, order change, and serializa-
tion/parallelization can be modeled in x-RCPSP. More details about defining
these alternatives and the whole concept of x-RCPSP can be found in [25, 26].
This approach provides a pretty general way to model alternative execution paths
and is independent from the underlying scheduling technology.

2.2.5 Alternative Resource Scheduling Problems

For the sake of completeness of the overview of scheduling problems with activi-
ties, alternative resources are shortly mentioned here, although they are not the
target of the thesis. Back in section 2.1] we defined that an activity A is associated
with a set of resources @4 C R, problems where |Q4| > 1 are called alternative
resource scheduling problems.

Modelling with Alternative Activities

The alternative resource scheduling problems can be easily modeled using alter-
native activities. For an activity A that requires some amount of an alternative
resource, a bunch of alternative activities A®,... A% where k = |Q4| can be
created to model the resource alternatives. For each alternative activity A®,

4Mode alternation provides a way to define different activity duration and resource require-
ments.

18

where 1 < < k it holds that |Q 4| = 1. Resource alternatives are then treated
exactly the same way like alternative activities.

Modelling with Cumulative Resources

The alternative resource scheduling problems can be, with some limitations, mod-
elled also with cumulative resources (for definition see section 2.1.T]). Assume that
|Q4| > 1 then we can define one resource R with capacity caps = |Q 4| (presuming
that all the activities B requiring any of the resources in)4 have requirements
reqp.r = 1, where R € QQ4).

19

3. Implementation

In chapter [1 general concepts of constraint satisfaction technology were presented
and in chapter [2l we defined targetted scheduling problems. Scheduling problems
can be naturally represented as constraint satisfaction problems. Before proceed-
ing towards the core of the thesis - search strategies - we have to describe how the
mentioned scheduling problems can be (and are in the test program) modelled
as constraint satisfaction problems. This chapter describes modelling of schedul-
ing problems with alternatives as CSPs. All the modelling is viewed from the
capabilities of Choco solver [37], which is used for empirical evaluation of the
strategies (more about experiments in chapter [).

3.1 Used Choco Constraint Model

Modelling scheduling problems as constraint satisfaction problems usually resem-
bles in its basic features across different constraint solvers. However, there might
be slight differences in capabilities of some solvers and distinct sets of available
constraints might be available in each solver.

The thesis targets scheduling problems with alternative activities, therefore
we’ll concentrate on modelling x-RCPSP and Temporal Networks with Alterna-
tives (specifically n-TNA and PEX temporal networks) in Choco solver.

3.1.1 Activity variables

Traditional representation of scheduling problems involves encoding activities
with several variables. Let s4 € NI be minimum start time and pa € N
processing time (duration) of activity A and D € NI be an overall due date of
the instance of a scheduling problem with alternatives. For each activity A the
following variables are defined:

e Start time: starts € {sa,...,D}

e Completion time: endy € {s4,...,D}

Duration: dury = pa

Validity: vals € {0,1}
o Task variable: taska = (starts, dura, endy)

Processing time of an activity A is usually constant, in the model we represent
it with integer constantl] dur A

Validity variables are present in the model only if the scheduling problem
contains alternative activities. If the scheduling problem contains alternative
activities and an activity A is known to be always valid then it’s modelled with

In Choco an integer constant is only a special type of integer variable. It’s a constraint
variable that’s instantiated from the very beginning, it’s domain is of size 1 and can’t be
emptied.

20

a boolear] constant val 4 = 1. In temporal networks an activity A is known
to be always valid if it has no upstream activities (B3 = () or no downstream
activities (B3 =) linked to it. In x-RCPSP an activity A is always valid if
it has no alternatives ({zaplrap € Xt} = 0) and if it isn’t dependent on any
other activity ({mpa|lmp.a € M} =10).

Task variable is a construct of Choco solver, it’s only a tuple of variables
describing position of the activity in time, it consists of start, duration and end
variable. The task variables are required by some constraints, example of such
constarint is disjunctive constraint described later in section

Other Variables

Some strategies utilize other helper variables. A pair validity variables might be,
in some cases, added to the model. The denote the validity of a pair of activities.
Let A and B be the activities, then the boolean variable pairval,p is defined:

paitrval g = valy - valg

3.1.2 Constraints

All the scheduling constraints defined in chapter [2] can be represented by con-
straints in constraint solvers, although some scheduling constraints require more
complex constraint constructions utilizing some artifical variables.

Resource Constraints

Scheduling problems we are targetting contain only fixed resource requirements
(|Q4] = 1,VA € A;1 < i < qa). The only variability here is the possibility that
an activity isn’t present in the final schedule. The constraint we use to represent
resource requirements must account for validity of activities.

Choco solver offers two kinds of constraints to represent resource requirements
- disjunctive constraint for unary resources and cumulative constraint for cumula-
tive resources. Both these constraint are capable to utilize information about the
validity of the activities. Each such constraint binds together all the activities
requiring the resource.

The experiments target scheduling problems containing only disjunctive re-
source. The model then contains for each resource R one disjunctive constraint
in the form:

disjunctiver{(taska,vala)|(A, R) € Q}

The disjunctive constraint used in the experiments utilizes these filtering al-
gorithmsﬁ:

e Edge-finding

e Not-first /not-last

2In Choco boolean variables are special cases of integer variables defined with domains {0, 1}.

3Choco can also utilize overload checking, but not in one constraint together with the men-
tioned three filtering algorithms. It’s necessary to add second disjunctive constraint with dif-
ferent parameters.

21

e Detectable precedences

The filtering algorithms are capable to deduce significant pruning of domains
of the task variables. Since they are not the core of the thesis they are not further
described (their description can be found in [35]).

Precedences and Temporal Links

Precedences between activities modelled in the solver, have to include information
about the activities’ validity. Each precedence A < B between a pair of activities
A, B € A is modelled:

endy -valy - valg < startpg

Minimum and maximum distance of a temporal link between two activities are
modelled similarly to precedence constraints. The minimum distance constraint
between a pair of activities A, B € A is modelled:

(ends + minDistap) - valy - valg < startg
Similarly, maximum distance is modelled:

(startp — mazxDistap) - vala - valp < enda

3.1.3 PEX

So far, we’ve only described properties of PEX temporal networks. Work of
Beck and Fox [12, [13] is much more complex. It involves not only description of
special kind of temporal network, but also an extension to constraint satisfaction
technology. The extension consists of a new kind of variable, constraints for the
variable and special kind of propagation.

In this section, only PEX related parts of the model are discussed. There are
other constraints used in the model, those constraints are being explained in the
context of nested temporal networks with alternatives in section [3.1.4

PEX variables

The special variable proposed by Beck and Fox is called PEX variable, it was
developed to represent that an activity may not exist in the final solution. The
probability of ezistence (PEX) of an activity is the estimated probability at a
search state that an activity will exist in a solution. The PEX value of an activity
is a real value in the range [0,1]. The PEX value 1 indicates that the activity
will certainly exist and value 0 indicates that it will certainly not.

PEX variable is not a proper domain variable. To be able to maintain consis-
tent probability of existence of an activity during the search, the PEX variable,
until it is instantiated, can be repeatedly assigned any real value from the interval
(0,1) in any search step. The variable can only be instantiated to values 1 or 0.
Once a PEX variable is instantiated in some search step .S, its value cannot be
changed in any search step below S. The domain of the PEX variable cannot be
emptied.

Since PEX variable isn’t a true domain variable, it usually isn’t implemented
in constraint solvers. Choco, which was used for empirical evaluation, doesn’t

22

implement it too. An extension to Choco solver was implemented as part of
the thesis program to provide means to test and evaluate strategies utilizing
PEX variables. The extension implement PEX variables and other PEX related
changes to the constraint solver.

PEX variables are used only in search strategies proposed by Beck and Fox
[12]. In that case the model contains a PEX variable for each activity.

e pex,y - probability of existence (PEX) of activity A

Besides PEX variables, the validity variables are still used in the model, they
are necessary in some constraitns.

PEX Constraints

PEX temporal network uses special type of nodes - AndNodes and XorNodes.
However for testing purposes, the custom extension of PEX (see 2.2.3]) is used
instead. All nodes in the network represent activities.

Parallel branching in the network can be modelled using equality constraints.
Formally, let A be an activity, out Branch, = PAR, then pex 4 is connected with

all pexp € B3 by these constraints:

pexs = pexrg VB € By

Similarly, let A be an activity inBranchy, = PAR, then pex 4 is connected with
all pexp € BY' by the same constraints.

Alternative branching requires different constraint. Let A be an activity and
outBranchy = ALT, then the constraint between pex 4 and all pexp € By is:

zor Node(pex 4, {pexp|B € B4"})
The same constraint is used to model the relationship between pex 4 and pexg €
B in the opposite branching (inBrancha = ALT).

Moreover, PEX variables are bound to validity variables. A PEX value is
propagated to the validity variable only when the PEX variable is instantiated
(the PEX value is 0 or 1).

pexs = valy VA € A

3.1.4 Nested Temporal Networks with Alternatives

In the empirical evaluation, one type of scheduling problems targetted are those
represented with nested temporal networks. Therefore, we're discussing modelling
of n-TNA (and PEX temporal networks as subclass of n-TNA). The constraint
are utilized for n-TNA models and models of PEX temporal networks as well.

Branching

Branching constraints for n-TNA are very similar to those used for PEX variables
in PEX temporal networks.

23

Let A be an activity outBranchy, = PAR, then the constraint describing
parallel branching in the fan-out subgraph is:

valy = valg VB € B3

Similarly, if A is an activity with inBranchy, = PAR, then the constraint de-
scribing parallel branching in the fan-in subgraph is:

valy = valg VB € BY

Now, let activity A be a principal principal of a fan-out subgraph with alter-
native branching (outBranchy = ALT), the following constraint is then used to

model the situation:
valy = Z valp
BeBout

Alternative branching in a fan-in subgraph with A (inBranchs = ALT) as a
principal activity is modelled similarly.

Improving Propagation over Alternative Branching

To improve propagation over alternative branching, pairs of corresponding prin-
cipal activities in alternative branching are bound together with constraints. Let
activity A be the out-branching activity such that out Branch, = ALT and B the
in-branching activity such that inBranchg = ALT, then their validity variables
are constrainted:

valy = valg

and an explicit precedence constraint is added:
endy - valy - valg < startpg

Unfortunately, not all principal nodes having alternative out/in-branching
can be addressed by the constraints. Only pairs of corresponding nodes can be
addressed. For example in figure[3.1lit can be applied only to bind together nodes
A and D. Nodes C' and D doesn’t have any corresponding counterpart. Due to
characteristics of PEX temporal networks, all alternative branching there have
corresponding counterparts.

Figure 3.1: n-TNA example

24

3.1.5 x-RCPSP Constraints

Extended resource-constraint project scheduling problems define special activity
relations: activity substitutions and activity dependencies. The relations can be
modelled using standard solver constraints.

Activity Substitutions

Alternatives in x-RCPSPS are modelled by activity substitutions. We’re target-
ting only cases where the activity substitutions are symmetric (if x4 g € Xt then
also xp 4 € XT). For each activity Ay having k alternatives Ay, ..., Ay (formally
T, A TA; A € X1,0<1i,7 <k,i#}j), the following constraint is then added to
model the situation: .
1= Z valy,
=0

Activity Dependencies

To model activity dependencies constraints on valilidy variables has to be added.
Let activity B to be activated upon activation of activity A, formally mf’ 5 €
M, then the constraint is:
valy < valg

Let activity B to be deactivated upon deactivation of activity A, formally
m¢ g € M, then the following constraint is used:

valy > valpg

Let activity B to be activated upon deactivation of activity A, formally m7 5 €
M the constraint is:
valy +valg > 1

And let activity B to be deactivated upon activation of activity A, formally
m3 g € M™, the constraint is:

valy +valg <1

3.1.6 Optimality Criterion

In all the tests, one cost function is used - makespan. Choco solver natively sup-
ports makespan as its cost function, but the built-in implementation of makespan
doesn’t reflect validity of the variables. Therefore custom model for the makespan
is used. The makespan is modelled with respect to optional activities with the
following constraint:

makespan = maz ac a{end - vala}

25

3.2 Temporal Filtering in Temporal Networks
with Alternatives

As part of the stategy tests temporal filtering as described in [§] is implemented
to evaluate its effectivity. Choco solver doesn’t implement the filtering by default.
In Choco solver filtering is bound to constraints, therefore new constraints were
implemented to provide the temporal filtering functionality.

Now, a short description of the filtering algorithm is provided. In the following
text, let d(z) denote domain of variable z. The model assumes that d(x) is an
interval for any variable z that is taking part in the temporal filtering, thus

the interval arithmetic can be used, formally (I, u) + (a,b) = (I + a,u + b) and
(l,u) — {a,b)y = (Il — b,u — a).

3.2.1 Parallel Branching

Let activities A and B be linked together in parallel branching, let the temporal
link be described by minDist sz and maxDist4g. Then we define

UP = d(startg) N (d(endy) + (minDist yp, maxDistag)).
Whenever d(end,) changes, the following filtering rule is applied:

d(startg) <~ UP ifUP #0
d(valp) < d(valg) N {0} ifuP =10

The temporal filtering works similarly in the opposite direction. Let
DOWN = d(ends) N (d(startg) — (minDist ap, mazDistap))
Whenever d(start,) changes, the following filtering rule is applied:

d(end,) « DOWN it DOWN % 0
d(valy) < d(vals) N {0} if DOWN =)

3.2.2 Alternative Branching
Let activity A be a principal node of fan-in subgraph.Let
UP = d(starta) NUpepin{(d(endg) + (minDist g, mazDist 4p))|d(valp) # {0} }

Now, whenever d(endg) or d(valg) of any B € BY is changed, the following
filtering rule is applied:

d(starty) < UP ifUP #0
d(valy) < d(vals) N {0} ifUP =10
The temporal filtering in the opposite direction is slightly different. Let
DOW Ng = d(endg) N (d(starts) — (minDist a5, maxDist sg))
for activity B € Bf'. Whenever d(endp) is changed, the following rule is applied:

d(valg) < d(valg) N {0} it DOWNp =1

26

3.3 Precedence Constraint Posting in Choco
Solver

There’s one last part of the model, that has to be explained, even though it jumps
ahead. It’s the implementation of precedence constraint posting (PCP) in Choco.

In section [L2.T] complete search algorithm was mentioned in general. Back-
tracking search assigning values to variables was mentioned as the basis. Nev-
ertheless, a different approach to backtracking search exists, in a search step,
instead of assigning values to variables, new constraints are posted to the model.
Upon backtracking the constraints are revoked from the model. Such approach
to backtracking is called constriant posting.

Constraint posting is not implemented by all constraint solvers, usually it’s
being simulated. The simulation is done by adding reified constraints and reifi-
cation variables to the model during modelling. The constraints are then per-
manent, they are present in the model from the very beginning and they are not
being revoked. The search algorithm then assigns values to the reification vari-
ables instead and acts the standard way. Precedence constraint posting (PCP) is
constraint posting of precedence constraints.

Choco solver offers constraint posting directly, however authors of the solver
advise to use reification instead mainly because of the performance.

3.3.1 Modelling PCP with Alternatives

PCP is used by some strategies to post precedences between activities requiring
the same resource. Reified precedences and reification variables are added for
each unordered pair of activities requiring the same resource.

To enable optional activities in PCP the model has to be more complex. For
each pair of activities a pair of boolean precedence decision variables is created:

o precap € {0,1}
e precga € {0,1}

The decision variables are used by the search strategy to "post” the constraint.
The variables are bound together such that only one of them can be true:

precap + precga =1

The precedence decision variables are not the real reification variables. There
is another pair of boolean variables - the reification variables:

e precImplap € {0,1}
e precImplpa € {0,1}
These variables are bound to the precedence decision variables:
precap - vala - valg = precImplap

and
precga - val - valg = precImplpa

27

The binding is done to handle properly all the cases when some of the activities
are invalid.

Precedences are then modelled using precedencelmplied built-in constraint in
Choco solver. The precedencelmplied constraint is defined:

precedencelmplied(taska, taskp,1) = A < B
precedencelmplied(task, taskp,0) = true

The precedencelmplied constraints are then used to model the reified prece-
dences as follows:

precedencelmplied(task, taskg, precImplsp)

precedencelmplied(taskp, taska, precImplpa)

It might happen that precap and precga variables are not instantiated at the
end of the search - such situation happens when at least one of the activities A
or B is invalid. Nevertheless, it is not a problem, the prec,p and precg, are
used only for decision making and only non-invalid activities are considered in
implementation of the search strategies.

28

4. Search Strategies

In section [L.2Z. 1] complete search algorithms were described. This chapter is devot-
ed to description of backtracking based search strategies for scheduling problems
in the framework of constraint satisfaction. First standard strategies for schedul-
ing problems without alternatives are presented and then strategies for scheduling
problems with alternatives.

A search strategy typically consists of three parts: variable selection
(see [L2.3), branching scheme (see [[Z4]) and value selection (see [L2.3). In the
following section the strategies are described as conjunction of these parts and
optionally some other aspects.

4.1 Classical Constraint Satisfaction Search
Strategies

The term ”classical” search strategy means a standard strategy for any CSP that
doesn’t use any scheduling specific information. The problem is modeled using the
mentioned constraints and variables and then the solver uses its built-in solving
procedures to find the values for the modeled variables. The strategy doesn’t
distinguish kinds of variables (e.g. start variable, validity variable), they are all
treated as being all the same. The strategy simply selects variables and values
for the variables according to general search heuristics.

The classical search strategy basically consists of two parts: the variable selec-
tor and the value selector. Examples of standard variable selectors can be found
in table 4.1l All the variable selectors, except Random variable selector, follow
the fail-first principle (see section [[2.3)).

| Variable Selector | Description |

Random A heuristic selecting randomly a non-instantiated variable.

Minimal domain A heuristic selecting the variable with the smallest domain.

Most constrained variable A heuristic selecting the variable with the maximum de-
gree.

Domain over degree A heuristic selecting the variable with the smallest ration
W, the degree is the number of constraints linked
to its.n “

Domain over dynamic degree | A heuristic selecting the variable with smallest degree, the
degree is the number of constraints linked to it that are
not completely instantiated.

Table 4.1: Examples of standard variable selectors in constraint

solvers.

Examples of basic value selectors can be found in table 4.2l

| Value Selector | Description
Random A heuristic selecting randomly a value in the domain.
Min value A heuristic selecting the lowest value in the domain.
Mid value A heuristic selecting the middle value in the domain.
Max value A heuristic selecting the highest value in the domain.

Table 4.2: Examples of basic value selectors in constraint solvers.

29

4.2 Basic Strategies for Scheduling Problems

In the previous section, we presented classic search strategies that do not utilize
any information specific to scheduling problem. The strategies are capable to
solve the problems, but their performance can be very slow. Therefore search
strategies that utilize information about the scheduling problem were developed.
These strategies, presented in this section, perform usually much better in solving
scheduling problems.

4.2.1 Set Start Time

The set start times (SST) scheduling strategy is based on search through all
possible start times of the activities. The strategy selects an activity and then
decides its start time.

If we refer to the previous section [4.1] and variable and value selectors. The
variable selector decides which activity is processed and the value selector decides
the value of the start time of the activity. Typical branching scheme here is
enumeration or binary choice.

There are many ways how to choose an activity, the start time of which, is
to be set in the current step of the search strategy. Some notation has to be
added now. For an activity A the earliest start time is denoted by est,, the
latest start time by [st4 and simirarly the earliest completion time is denoted by
ect4, the latest completion time by lct4. Then the selected activity is normally
determined according to these values. Typically, an activity A with the minimal
est 4 is chosen, and then the minimal value from the domain of start,. Problem
of this strategy is that wrong decisions are often recognized very late in the
search. Therefore, early wrong decission still causes much of the search tree to
be explored, and lots of backtracking steps are performed.

Despite these problems set start times strategy is frequently used. Lots of
local search strategies are based on this strategy. The scenario is following: first
an initial solution is computed, second the local strategy search incrementally
improves the solution. The initial solution is usually computed with a SST strat-
egy. Then these local search strategies usually work in two steps: relaxation and
subsequent incremental recomputing. The recomputing step can be also based on
a SST strategy. Examples of this approach are [?], and also iterative flattening
[29, 130].

The work of Godard, Laborie and Nuijten [?] uses SST to find an initial
solution and also for the recomputing step. They use minimal est for activity
selection, ties are broken with minimal [cf, and then the eariest start time is
chosen as the value for the start variable.

The work of Oddi, Cesta, Policella and Smith [29, 30] assume the initial solu-
tion given. The initial solution can be for example computed with some greedy
search (they optimize a MCJSSP with makespan as the optimality criterion).
Then, again, the local search consists of two steps: relaxation step and flattening
step. The flattening step can be based on SST or PCP (see[d.2.2]). The flattening
step based on SST selects the activity with the minimal lct (ties are broken by
est).

In the following section some search streategies for scheduling problems with

30

alternatives are presented, some of them only decides about the validity the ac-
tivities and order of activities on the resources they require. Then a variant of
SST to assign the start times to the activities is used. In this case, the SST
strategy is very fast, it assigns values to the start times of the activities that are
already ordered, the value is assigned according to est.

4.2.2 Precedence Constraint Posting

A short introduction to PCP was mentioned in section B.3] now the strategy is
presented with more detail.

The precedence constraint posting (PCP) search strategy consists of two stages.
The first stage decides for each resource the order of all activities requiring the
resource. Because the first stage does not assign the start variables values (and the
constraint propagation can rarely prune all other values) there is a necessity for
another scheduling step. Therefore the second stage consists of a time allocation
strategy, typically some variant of SST. But in this case, the search space can be
significantly pruned due to propagation of precedence constraints. That’s why
the two stage PCP search strategy can perform much better that the SST alone.

The PCP stage of this strategy adds one or more precedence constraints be-
tween the activities in every node of the search tree. As mentioned in section B.3]
reified constraints are being used instaed of adding constraints during the search.
The specific PCP strategy is also dependent on the branching strategy, which can
be miscellaneous.

Binary Ordering of Activities

Many works implement some version of PCP. For example Smith and Cheng
in [34] proposed a PCP strategy based on slack. Their strategy is designed for
solving job shop scheduling problems. Job shop scheduling problems (JSSP) are
defined on unary resources, thus cumulative resources are not considered in the
current section. The (temporal) slack for ordering two activities A < B is defined

slack(A < B) = lctg — estqy — (pa + ps)-
(Temporal) slack of two activities A and B is defined
slack(A, B) = max{slack(A < B), slack(B < A)}.
And overal minimum (temporal) slack is defined
min{slack(A, B)|A, B € A, A, B unordered}.

In more detail, their strategy distinguish four dominance conditions:

1. If lety —estg < pa+pp <lctg — est, then A < B.

2. If lctg —esty < pa+pp <lcty — estg then B < A.

3. lf pa+pp > lctp—esty and py+ pp > lct 4 — estg then there is no feasible
schedule.

31

ABC ACB X CAB BAC X BCA CBA

Figure 4.1: An example of a search tree for binary ordering of activities.

4. It pa+pp <lctg —esty and ps + pp < lct4 — estp then either ordering is
possible.

Given a particular resource, a search step of their strategy first decides whether
any from the first three conditions can be used. If so, the rule is applied, and
newly posted constraints are propagated. Otherwise the fourth rule is used. The
fourth rule directly lead to binary branching. And in this fourth condition the
slack is used in variable and value ordering to distinguish the best branch. For
variable ordering they prefer to use overall minimum temporal slack (according
to fail-first principle). And for value ordering, they choose the precedence with
maximal slack (according to suceed-first principle).

Today this strategy is used in a different manner, only the fourth condition is
applied. The first three conditions are part of constraint propagation during the
search. The branching scheme they use is disjunctive constraint (A < B)V (B <
A). An example of the search tree of this strategy can be found in figure A1l
There are three activities to be scheduled on a resource and only the fourth
condition of their strategy is applied. Branching then leads to two inconsistent
activity orderings (they are marked with z).

First Activity Selection

Another version of PCP was proposed by Baptiste, Le Pape and Nuijten in [I].
Instead of choosing a pair of activities and posting the precedence posting between
them, they choose first (or last) activity among the set of unordered activities.
Their strategy is also fitted to JSSP. Their algorithm first chooses a resource that
is required by some unordered activities. Then selects an activity A that will
be ordered first or last among all unordered activities requiring the particular
resource (lets denote 2 the activities requiring the resource). Then the prece-
dence constraints A < B, VB € , A # B are posted and propagated. In
case of inconsistency other activities (activities from Q \ {A}) are tried as the
first activity. The selection of activity runs until all the activities requiring the
particular resource are ordered. Then the strategy runs untill all activities on all
resources are ordered.

The work also proposed variable selections for both stages of this algorithms
- the resource selection and the activity selection. The resource with the minimal
resource slack is recommened (according to the fail-first principle). The resource

32

ABC ACB BAC BCA CAB CBA

Figure 4.2: An example of a search tree for the first activity selection.

slack is defined as

max{maxlct4, — minesty — E At
{AEQ AeQ h Qp }
€

The activity selection consists of two steps. First, decide whether the activity
will be ordered first or last, and better is to choose the variant with the smaller
number of possibilities (the fail-first principle). Second, if the activity is being
ordered to be first, select the activity according to smallest est, ties are broken
by Ist. A symmetric rule is used when ordering the activity as last. An example
of this strategy can be found in figure

The branching scheme they use is fairly complex. Let Q = {A4;,..., A,},
the branching scheme then dissolves disjunctions (4; < (2\ {41})) V (42 <
(Q\{A2})) V...V (An < (Q\{An})) or (2 {A1}) < Ay) V(2 {4:}) <
AV ...V ((Q\{A,}) < A,) in each search tree node.

4.3 Traditional Approach to Scheduling with
Alternatives

Search strategies for scheduling problems with alternatives have to decide not only
about time allocation of the activities but also about validity of the activities.
Traditional approach to handle alternatives is, first, to decide which alternative
to use, then to schedule the chosen activities on chosen resources. This approach
is often referred to as ”plan first, schedule next”. The strategy could be following:
first select a subset of activities satisfying the validity constraints, and second to
schedule a standard scheduling problem that doesn’t have any alternatives. This
is classical strategy how to solve alternatives.

Modern approaches try to incorporate both steps to gain better performance.
The activity selection and scheduling are strongly connected, integrating of these
two stages can produce much better schedules. For example an activity can be
swapped for its alternative when the domain of its start time is emptied. In
traditional approach it would be recognized as a dead-end, the search would
backtrack to the first stage, where a brand new set of valid activities would be
selected.

Because of qualities of the approaches connecting both stages, many ways
to work with alternatives more effectively than traditional ”plan first, schedule
next” approach were introduced.

33

4.4 PEX

The works about PEX [12], [13] were already mentioned in context of modelling
scheduling problems with alternatives. Now, the search related proposition in
their works are presented. Their works propose some adjustments to the search
heuristics to incorporate PEX - probability of existance - as defined in [3.1.3]

4.4.1 PEX Propagation

It was already mentioned that the PEX variables aren’t real CSP domain vari-
ables. All PEX values have to be either 0 or 1 in a solution, but they represent
the current estimated probability of existence during the search. Propagation of
PEX values in a temporal network is a vital part of the work of Beck and Fox.
Initial PEX propagation begins with unassigned PEX values and consistently
assings values to PEX variables. If an activity has to be present in the schedule
(has either no upstream or downstream links) then its PEX value is set to 1. If
an activity A has assigned PEX value pex4 then all activities B represented by
non-XorNode nodes (and all activities C' represented by XorNodes that has A
as the only upstream/downstream neighbour) adjacent to A must have the same
PEX value - pexry = pexp. If an activity A represented by XorNode has PEX
value pex, = x, there is k upstream and [downstream links, the PEX value of
each directly connected upstream activity is set to x/k and the PEX value of
each directly connected downstream activity is set to x/I.

Next, the incremental PEX propagation starts with a consistent network - each
activity has a PEX value. Then a PEX commitment is introduced and PEX value
of an activity is changed to 0 or 1. The new value is propagated into the network
upstream and downstream from the selected activity. The PEX values of other
activities are changed during the propagation, but only the activities with PEX
value not equal to 0 or 1 are affected. PEX propagation runs in cascades - each
cascade is limited by the surounding pair of XorNodes (one XorNode upstream
and one XorNode downstream). Next cascade starts at the XorNodes where the
previous cascade ended, it proceeds further upstream from the upstream XorNode
and downstream from the downstream XorNodes. The propagation in a cascade
runs first from the source node (or the source pair of XorNodes) upstream and
downstream to the pair of surrounding XorNodes, and then from the surrounding
XorNodes back into the nested network affecting only the remaining branches.

In section 2.2.11 it was mentioned that in PEX temporal networks each XorN-
ode must have a corresponding XorNode. The reason is the inconvenient ambi-
guity for expected PEX values - in illegal PEX temporal network such as the one
in figure a value propagated upstream could be different to value propagated
downstream.

Temporal propagation with PEX is different from normal propagation, the
difference is caused by XorNodes. A XorNode must not start before at least one
of its upstream neighbours ends, and similarly with the downstream neighbours.
Also if it happens that a domain of an activity is emptied during the temporal
propagation and there still exists a corresponding PEX value that is less than 1, it
may not be a dead-end, it may only imply a PEX commitment - a particular PEX
variable must be set to 0. If the node with the emptied domain has a PEX value

34

less than 1, PEX commitment is derived, otherwise a dead-end is recognized.
Temporal propagation is performed after each PEX propagation cascade.

PEX Propagation in PEXTNA

In section 2.2.3] a PEX extension was defined. The extension uses alternative
and parallel branching instead of XorNodes and AndNodes. PEX propagation
in the extension remains the same. The initial PEX propagation begins with
unassigned PEX values and consistently assigns values to PEX variables. An
activity A with no upstream or downstream connections must be present in the
schedule, thus pexr4 = 1. If an activity A has PEX value pex 4 then all activities
B such that either B € B4 inBranchg # ALT or B € B%, outBranchp #
ALT, and all activities C' such that either B%* = {A}, out Branchc = ALT or
B = {A},inBranche = ALT are assigne the same value - pexp = pexs and
pexc = pexy. If an activity A is a principal node of alternative branching of a
fan-out subgraph outBranch, = ALT and has PEX value per, = x, then all
activities B € BZ" are assigned PEX value pexp = W. A symmetric rules
is used if an activity A is a principal node of alternative branching of a fan-in
subgraph inBranch, = ALT.

The incremental PEX propagation runs in cascades as well. Each cascade is
imited by surrounding pair of activities with alternative branching - an activity
A upstream such that out Branch, = ALT and an activity B downstream such
that inBranchg = ALT.

Temporal propagation works the same, an activity A such that inBranchs =
ALT must not start before at least one activity B € B ends, similar rule holds
if out Branchy = ALT. Temporal propagation in PEX temporal network can be
effectively implemented using temporal filtering algorithm as defined in

4.4.2 PEX and Heuristics

The works about PEX [12] 13] propose some adjustments to the search heuristics
to incorporate PEX. They extended three heuristics with PEX: SumHeight [I1],
CBASlack [34], LJRand [28]. SumHeightPEX directly use the value of PEX
variable, the other two, CBASlackPEX and LJRandPEX, uses only three values:
0, 1 or neither-0-nor-1. Now the heuristics are described here, further details can
be found in the original works [12, [13].

4.4.3 SumHeightPEX

To understand SumHeight PEX heuristic we first has to present the classical (non-
PEX version) of the algorithm - SumHeight heuristic [11]. The SumHeight heuris-
tic analyzes the constraint graph to identify critical points. Commitments are
then made in these points to decrease the criticality.

First, some definitions are necessary. The individual demand ID(A, R,t) is
measured for activity A, resource R at time ¢:

min (¢, [st(A)) — max (t — duration(A) + 1, est(A))

ID(A R,t) =
(A, R,1) |domain(start(A))|

35

First, the SumHeight heuristic identifies the most critical resource and time
point.The most critical resource R and time point £ is the one with the highest
aggregated demand. The highest aggregated demand is computed by summing
individual demands on each resource over all activities. After identifying R and
t, two activities A and B are identified - activities that contribute most to the
individual demand on resource R at time ¢ that are not already ordered. Then
the consequences of each ordering of activities A and B (A < B and B < A)
are examined and the superior ordering is chosen.

SumHeight PEX heuristic incorporate PEX values into SumHeight heuristic.
The individual demand is extended with PEX information:

IDppx(A, R t) = PEX, - ID(A, R,t).

Again, the resource and time point with the highest aggregate demand are
identified. Then, three activities are then found: an activity A with the high-
est individual demand and PEX value of 0 < pexs < 1, two activities B and
C whose order is not already linkded by constraints, that have PEX values
of 1 and have the highest individual demand on R at time £. Let’s assume
IDppx (B, R,t) >= IDppx(C,R,1). If IDpgx(A, R,#) > IDpgx(B, R,1) then
A is the most critical activity, the best commitment is then to set its PEX val-
ue to 0, upon backtracking its opposite (setting PEX value to 1) is used. If
IDppx(B, R, f) >= [Dppx(A, }A%, f) then activities B and C' are sequenced, up-
on backtracking the reverse sequence is chosen.

Sequencing Critical Activities

The SumHeight (and SumHeightPex) heuristic uses complex value selector for se-
quencing the two most critical activities. It uses three value selectors: Minimize-
Mazx sequencing heuristic, Centroid sequencing heuristic and Random sequencing
heuristic. If MinimizeMax predicts that one sequence will be better, then it’s
selected. If not Centroid heuristic is tried. If Centroid heuristic predics that one
sequence will be better, it is selected. Otherwise Random heuristic, which selects
the sequencing randomly, is used.

MinimizeMax Sequencing Heuristic

Let RD(R,t) denote the aggregated demand for resource R at time ¢. An estimate
of the new aggregate demand at a single time point AD’'(A, A < B) is calculated.
It is calculated on estimate of the new individual demand of activity A provided
that precedence A < B holds. It is calculated as follows:

1. Assuming that A < B, the new individual demand is calculated for activity
A. The time point tp in the individual demand of activity A that has the
maximum increase in height Aheight is identified.

2. Then the value AD'(A, A < B) is defined as RD(R, tp) + Aheight.

Next AD'(B, A < B) is calculated similarly. Then maximum from those two
values is calculated:

max ap (A, B) = max(AD'(A, A < B), AD'(B,A < B))

36

MinimizeMax heuristic then selects sequencing which satisfies:
MM = min(maz ap (A, B), maxap (B, A))

If no sequencing commitment is better than the other, the Centroid heuristic
is tried.

Centroid Sequencing Heuristic

Centroid sequencing heuristic is a variation of heuristic proposed in [27]. The
centroid of the individual demand curve is the time point that equally divides
the area under the curve. The centroid is calculated for each activity. The
sequence that preserves the current ordering of centroids is chosen.

4.4.4 CBASlackPEX

The CBASlackPEX heuristic extends the CBASlack heuristic [34]. The CBASlack
heuristic identifies the pair of activities on the same resource that have the min-
imum biased slack. Let’s denote

min (slack(A < B), slack(B < A))
slack(A, B)

S p—
than biased slack
slack(A < B)

f(9)

where f is a monotonically increasing function, e.g. n-th root of S for n > 2. The
biased slack for a pair of activities A, B is

Bslack(A, B) = min (Bslack(A < B), Bslack(B < A)).

Bslack(A < B) =

The activities are sequentced so as to preserve the most slack.
The CBASlackPEX heuristic calculate biased slack only for activities with
PEX value greater than 0. The following three conditions then apply:

1. If both activities have a PEX value of 1, sequence them so as to have the
maximum slack.

2. If activity A has a PEX value of 1 and activity B has PEX value less than
1, set the PEX value of B to 0.

3. Otherwise set the PEX value of the activity with the longest duration to 0.

CBASlackPEX Implementation

The implementation of CBASlackPEX finds the pair of activities according to the
overall minimum biased slack across all the resources. If the problem instance
contains a resource required by a single activity, then the CBASlackPEX heuristic
isn’t able to decide about PEX value of the activity. Therefore the CBASlack-
PEX heuristic is accompanied by a secondary heuristic, used only if there’s no
remaining pair of activities the CBASlackPEX heuristic can handle. The sec-
ondary heuristic selects activity A according to the longest duration (following
the fail-first principle), the primary commitment is to assign pexs = 0 (following
the succeed-first principle), alternative commitment is to assigne pexq = 1.

37

4.4.5 LJRandPEX

The LJRandPEX heuristic is an extension of the LJRand heuristic [28] that finds
the smallest ect of all the unscheduled activities and identifies set €2 of uncheduled
activities that can start before the smallest ect. Then an activity A is randomly
selected from the set €2 and scheduled at est,. When backtracking, the est, is
updated to the minimum ect of all other activities on that resource.

The PEX extension of LJRand finds the smallest ect of all unscheduled ac-
tivities with PEX greater than 0. Then identifies set Q) of uncheduled activities
with PEX value greater than 0 that can start before the smallest ect. Then it
randomly selects an activity A from the set Q) and schedule A to est4 and assign
PEX, = 1. The alternative commitement, is to update the est, to the mini-
mum ect of all other activities with PEX value greater than 0 requiring the same
resource, the alternative does not contain any PEX commitment.

LJRandPEX Implementation

Implementation of the LJRandPEX heuristic used in the tests is little different
to the one proposed by Beck and Fox. First, it finds the smallest ect of all
unscheduled activities with PEX greater than 0 requiring a resource, let C' be the
activity determining the ect. Then identifies set Q of uncheduled activities with
PEX value greater than 0 that can start before the smallest ect and that require
any resource that C requires. Then it randomly selects an activity A from the set
() and schedule A to est 4 and assign PEX 4 = 1. The alternative commitement,
is changed significantly. In the original version, it can happen that alternative
commitment doesn’t change the est4 at all. In that case, if we are search for the
best solution, the search can end up in an infinite loop.

To prevent such situations, the alternative commitment is implemented in a
way that always increases the est 4. The computation if following, let

Ey, ={ectg | B € A, pexg >0, A, B share a resource},

Ey = {ectg + minDistap) | B € A, pexg = 1, 3 temporal link between A, B}

and
E=FEUE,

then the new est for activity A is computed:
esty = maz{ests + 1, min{z > estalr € E'}}

No change to pex 4 is done in alternative commitment.

4.5 Two Level Branching Strategy for Alterna-
tives

The work of Bartak [6] describes a branching strategy to efficiently solve con-
straint model proposed in [7]. Although the strategy is explained in context of
temporal networks with alternatives, the strategy can be clearly used in other
scheduling problems with alternatives, such as x-RCPSP (see 2:2.4)), too.

38

First few definitions are requiered. An activity is called invalid if the validity
variable is set to 0. An activity is wvalid if its validity variable is set to 1. An
activity is non-inwvalid if it is valid or no value has been assigned to the validity
variable so far.

The branching strategy consists of two stages. The first stage selects a non-
invalid activity A with unknown position and decides whether it is valid or invalid.
The second branching stage is available only for the valid activities. The second
stage decides about the position of the activity on the resource. Let’s denote X4
the set of all non-invalid activities requiring the same resource. Then for each
B € X, disjunction (A < B)V (B < AAvalg = 1) is resolved in the second stage
(propagation of previous decisions can remove some activities from X4 during
the search). An example showing the strategy can be found in figure 43l The
figure shows a part of search tree for a non-invalid activity A, X4 = {B, C, D}, the
leafs denote the partial orders of the activites, bold letters denote valid activities,
other activities are still non-invalid, order of the activities in brackets haven’t
been decided yet.

valid A invalid A

A(B,C,D| CA|(B,D| BA|{C,D| (B,ClAD
DA(B,C) (C,D}AB (B,D]AC [B,C,D|A

Figure 4.3: An example of search tree of OptActTwoLevel branching strategy for
a non-invalid activity A.

If it is decided that activity A is invalid then the branching is repeated for
all the remaining non-invalid unallocated activities until all the branches are
explored. All leafs in complete search tree contain only valid and allocated ac-
tivities. An example of complete search tree is in figure [4.4] the search explores
all posibilities for three non-invalid not-yet allocated activities A, B, C'.

It is obvious from the figure that the strategy explores all possible orders for
these three variables and no order is explored twice. These features of the search
strategy are proven in [6].

The strategy as shown in [6] selects the non-invalid activity which should be
scheduled in the first stage according to est, ties are broken with the smallest
duration and the smallest [ct.

4.5.1 OptActTwoLevel Strategy

In the test program an adjusted version of the strategy was implemented. It
works almost the same as described above. Still, there’s one slight difference.

39

CA BAC BA BCA CBA

Figure 4.4: An example of complete search tree of OptActTwolLevel branching
strategy.

Let’s denote)4 the set of all non-invalid activities requiring any resource that
activity A requires (it’s assumed that an activity A can require any number g4
of resources). Then the OptActTwoLevel strategy (the name is further used in
evalution in section [}l and graphes in appendix [B)) resolves in the second stage
for each B €)4 disjunction (A < B) V (B < AAwalg = 1). In case an activity
doesn’t require any resource, only the first stage of the branching strategy is
performed.

4.6 Proposed Search Strategies for Alternatives

One of the goals of the thesis is to try to develop, customize or enhance a strategy
for a scheduling problem. Since, the thesis is focused on scheduling problem with
alternatives, some customized search strategies for the scheduling problems are
presented in further sections.

4.6.1 OptActTwoLevelPair Strategy

A strategy inspired by the OptActTwoLevel strategy is presented here, let it be
called OptActTwoLevelPair strategy.

One of the problems of the branching strategies described in section is
the imbalace of the search trees. In this case, some solution could require sig-
nificantly more search decisions to find a solution, an early wrong decision can
cause lot of backtracking to find a solution. The figure [£.4] shows such imbalanced
tree generated while scheduling three activities. If there is more activities being
scheduled on a resource the tree becomes even more imbalanced. The problem
of the imbalanced search tree lead to the proposal of a new search strategy for
scheduling problems with alternatives that would produce a search tree with a
better shape, thus fewer search decision would be necessary. Also it was desirable
that the new strategy would cover the same types of problems as the strategy
described in section 4.5 The strategy is suitable for scheduling any presented
scheduling problem with alternatives - either described by a temporal network
with alternatives or an instance of x-RCPSP.

40

The strategy basically decides about the validity and ordering of pairs of
activities that share a resource, it distinguishes valid and invalid activities, and
also valid and invalid pairs of activities. Let’s denote pairvalsp the validity of
a pair of activities A and B. The pair of activities is valid if both activities are
valid, valy, = valg = 1 = pairvalag. A pair of activities is invalid if at least
one of the activities is invalid, pairvalap = 0 < (valy = Oorvalp = 0). A pair
of activities is non-invalid if it is valid or no value has been assigned to the pair
validity variable so far.

The branching strategy consists, similarly to OptActTwoLevel strategy, of
two stages. The first stage selects a pair of non-invalid unsequenced activities
that share a resource and decided about validity and sequencing of the pair of
activities. The second branching stage is available only for pairs of activities that
are decided to be invalid in the first branching stage. The second branching stage
decided about the validity of the activities in the pair.

In the first stage the pair of acitivties that have the largest sum of durations
(of the activities in the pair) is selected according to the fail-first principle. Let
A and B be the activities in the currently selected pair of activities. In the first
starge the strategy selects one of these commitments:

1. Set pairvalsp = 0.
2. Set pairvalap =1 and A < B.

3. Set pairval,p =1 and B < A.

The value are selected accoring to the succeed-first principle. The first com-
mitment is to set validity of the pair to 0. From the alternative commitments,
the sequencing is selected according to the simplified centroid heuristic. The
simplified centroid for activity A is computed as (lct4 + est4)/2, first the order-
ing that preserves the current ordering is selected. In case one of the sequenc-
ing commitment is selected the constraint propagation immediately deduce that
valy = valg = 1. In the next search step, the strategy chooses a new pair of
non-invalid unordered activities and the previous process is repeated.

In case the first commitment was selected in the first stage, the second stage
decides about one of these commitments:

1. Set valy = valg = 0.
2. Set valy = 1 and valg = 0.

3. Set valy = 0 and valg = 1.

Again, the order of the commitments follows the succeed-first principle. The
first commitment is to set both activities invalid. From the alternative commit-
ments, the activity with longer duration is selected first. Let A be the activity
with longer duration and B be the other activity. Then val, is set to 0 and valg
is set to 1. The last alternative is to set valy = 1 and valg = 0.

An example of a part of search tree of the strategy is shown in figure 4.5l the
leafs denote partial orders of the activities, bold letters denote activities whose
validity hasn’t been determined yet , order of the activities in brackets haven’t
been decided yet.

! Although it’s not clear from the picture, the leftmost leaf is annotated with bold C

41

A<KB

invalid X valid X ,,

B4
valid X

invalid X 4 C<B
BESS

valid X 4

invalid A
invalid

valid A
qvalid B

invalid A
valid B

BA BAC (BC|A AB ABC [AC|B

B BC CB A4 AC C4

Figure 4.5: An example of a search tree of OptActTwoLevelPair search strategy.

In case that, there’s no non-invalid unorder pair of activities left on any re-
source, the strategy selects an activity from all remaining non-invalid activities
and decides about its validity. The longest activity is selected first, the first com-
mimtent is to set its validity to 0, the alternative commitment is to set its validity
to 1.

Obviously, some of the branches of the search tree might be pruned during
the search due to constraint propagation. These branches might be inconsistent.
Typical example is a choice of two valid activities. The first commitment in the
first level of the strategy is immeditely pruned because the validity variables are
set to 1 for both activities and the pair validity is also 1.

4.6.2 CBASlackNoPEX Strategy

CBASlackPex strategy (£4.4]) utilizes three values of the PEX variable: 0, 1
or neither-0-nor-1. Such situation can be also reflected by validity variable, the
tricky neither-O-nor-1 value can be reflected by the validity variable as not being
instantiated. Let’s call the altered strategy CBASlackNoPEX.

The motivation behind altering CBASlackPEX into CBASlackNoPEX is the
chance to omit PEX propagation. And more importantly, chance to target more
types of scheduling problems with alternatives. Without PEX variables, the
strategy can target more general temporal networks with alternatives n-TNA
and TNA, and it can be also used for solving x-RCPSP.

Without PEX propagation and its cascading propagation algorithm, there’s
a possibility that the algorithm would run faster.

4.6.3 LJRandNoPEX Strategy

Similarly to CBASlackPEX, LJRandPEX utilizes only three values of the PEX
variable: 0, 1 or neither-0-nor-1. Thus, it can be altered into LJRandPEX strat-
egy, that uses activities’ validity variables instead of PEX variables. The moti-
vation behind LJRandPEX is the same as behind CBASlackNoPEX.

The implementation of LJRandNoPEX strategy has the same adjustments as
LJRandPEX strategy.

42

5. Empirical Evaluation

To experimentally evaluate the strengths and weaknesses of different search
strategies a benchmark framework was created as part of the thesis. It is a
program created in Java programming language using Choco solver [37] as the
underlying constraint technology. Choco solver in the version 2.1.1. was used.
Further description of the benchmark framework can be found in documentation
to the program in appendix [Al The program is contained on the enclosed
compact disc [Dl

5.1 Experiments

In chapter Ml several search strategies for scheduling problems with alternatives
were presented. The main goal of the thesis is to evaluate the performance of the
strategies on various data with various configurations. Since all the strategies are
developed for scheduling problems containing only unary resources, no cumulative
resources were present in the test data.

Test data used in the evaluation were of three types: instances of nested tem-
poral networks with alternatives (see 2.2.2)), instances of extension to PEX tem-
poral networks (see[2Z2.3) and instances of extended resource-constrained project
scheduling problems (see 2.2.4]). The tests are split according to the data types.

5.1.1 Experiments on n-TNA Data

The performance of search strategies on n-TNA data were tested in two config-
urations of the strategies: with the temporal filtering and without the temporal
filtering. Four strategies were tested on the n-TNA data:

o OptAltTwoLevel

o OptAltTwoLevelPair
e CBASlackNoPEX

e LLJRandNoPEX

Several data sets according to two parameters were created. The parameters
and the values used are summarized in table Bl To sum it up, it’s 15 differ-
ent data sets configurations. For each configuration 16 problem instances are
generated.

The created data contain unary resources only, each activity can require any
non-zero number of resources. Temporal links with minimum and maximum
distance are also created. Release dates of activities are specified. Problem
instances can be defined by one or more temporal networks.

| Parameter | Values |

Number of activities (resources) 20 (10), 60 (20), 100 (30)
Probability of alternative branching | 0%, 25%, 50%, 75%, 100%
Table 5.1: Configurations of n-TNA nad PEXTNA data sets.

43

5.1.2 Experiments on PEXTNA Data

Similarly to n-TNA data, the performance of search strategies on PEXTNA data
were tested in two configurations of the strategies: with the temporal filtering
and without the temporal filtering. Seven strategies were tested on the PEXTNA
data:

e SumHeightPEX

CBASlackPEX

LJRandPEX

OptAltTwoLevel

OptAltTwoLevelPair

CBASlackNoPEX
e [LLJRandNoPEX

Several data sets according to two parameters were created. The parameters
and the values used are summarized in table 5.Jl The number of different data
sets configurations is the same as for n-TNA data, it’s 15 different configurations.
For each configuration 16 problem instances were generated.

The data configuration is similar to n-TNA data. The created data contain
unary resources only, each activity can require any non-zero number of resources.
Temporal links with minimum and maximum distance are also created. Release
dates of activities are specified. Problem instances can be defined by one or more
temporal networks.

5.1.3 Experiments on x-RCPSP Data

On x-RCPSP data the strategies were tested in one configurations - without the
temporal filtering, it can’t be used on x-RCPSP data. There were four strategies
tested on the x-RCPSP data:

e OptAltTwoLevel

o OptAltTwoLevelPair
e CBASlackNoPEX

e LJRandNoPEX

The data used in x-RCPSP were from [36]. Originally, the data were designed
for testing x-RCPSP for modeling and solving Disruption Management Problems.
The resources in the data are cumulative. Since, only unary resources are being
targetted by the implemented search strategies, the data were adjusted for out
needs. Changing dat from cumulative to unary involved changing resource ca-
pacities to 1, changing resource requirements to 1 and prolonging due date of
the instances. The data doesn’t contain any temporal links (only precedences,
acitivity substitutions and activity dependencies). Due to the original purpose of
the data - disruption management - the data contain some information that are
being ignored, they are useless for our needs.

44

The data is available in two sets - set of small instances and set of large
instances. Each set further contain 16 groups of problem instances described by
4 binary configuration switches, each group containing 10 instances. From the 4
original configuration switches, only 2 are relevant in our case - process complexity
and resource complexity. The values are of the switches are low and high in both
cases. Other configuration switches are ignored. As results each set of the two
sets contains 4 distinct group of problem instances, each group containing 40
instances. The parameters for x-RCPSP data and values for the parameters are
summarized in table .21

| Parameter | Values |

Data set il (small intances), i2 (large instances)
Process complexity | 0 (low), 1 (high)
Resource complexity | 0 (low), 1 (high)

Table 5.2: Configurations of x-RCPSP data sets.

5.1.4 Test Environment Configuration

Because of the infavourable complexity of the tested problems, the solver must
have been limited during scheduling. Although Choco solver offers number of
available limits to be applied on the search procedure, namely backtrack, node,
fail, restart and time limits, only one of them can’t be used at a time. Therefore
time limit was chosen to limit the search. Maximum time available for solving a
problem instance was set to 20 s.

All the tests were performed on personal computer, configuration of the com-
puter is summarized in table (.3

| Parameter | Value |
OS Ubuntu Linux 10.04
CPU Intel(R) Core™?2 Duo T5870 2.00 GHz
Memory 3 GB DDR2 SDRAM, 800 MHz

Table 5.3: Test computer configuration

5.1.5 Performance Measurement

In all the tests the optimal schedule is being searched for. One cost function is
used in all the test cases - makespan. When a cost function is present, the Choco
solver uses Branch and Bound method (see [L.2.5]).

There are several statistics measured for each test instance during the search:

e Number of backtracks performed

e Number of nodes performed

Number of failures (contradictions) performed

Running time of the search algorithm

Overall time spent scheduling the instance (modelling, and 1/O operations

included)

45

e Information whether a feasible schedule was found (any schedule was found),
the instance is infeasible or the feasibility is unknown

For each strategy and for each test configuration, all feasible results are se-
lected, and then averages for all the statistics (except feasibility information)
are calculated. Results for n-TNA and PEXTNA are averages from up to 16
instances. Results for x-RCPSP are averages from up to 40 instances.

Two main statistics are measured (and their graphs are plotted) - number of
backtracks and running time of the search algorithm. The remaining statistics
(except feasibility information) should correlate with these statistics. Still, the
computed data and plotted graphs are available on the enclosed compact disc.
Plotted graphs of average number of backtracks and average running time are
available in appendix [Bl

5.2 Tested Hypothesis

There are several expected results, the experiments should confirm. First of all,
it’s generally expected that strategies will performe worse on larger instances.

A next result should be the confirmation of the importance of temporal filter-
ing defined in section 3.2l When there are many optional activities in the problem
instance, the filtering is supposed to significantly prune domains of the possible
start times, there should be clear outcome in performance boost. On n-TNA
and PEXTNA data it should hold that the higher the probability of alternative
branching is, the higher the increase in speed of the search should be. Also if the
probability of alternative branching is equal to 0, it’s possible that the version
with temporal filtering could be slower because the cost of computation of the
temporal filtering could outweight the benefits of derived temporal information.

The LJRandPEX and LJRandNoPEX strategies are expected to perform
worse than other strategies. Because of the way they are randomized and the
commitments are made, they are not suitable in cases where we are searching for
an optimum. The number of backtracks performed should be higher compared
with other strategies. Also the running time should be higher, and there’s a high
probability that a significant portion of the test instances would time out. On
the other hand, due to the high randomization of the strategies, they might be
able to find a solution (not optimal) for very complex problem instances, the ones
for which other strategies might fail to find any solution.

It’s not clear if the PEX versions of LJRandPEX and CBASlackPEX strate-
gies would be better than those not using PEX variables. On one side, PEX
propagation requires more computation, on the other side, it migh offer a better
information about the problem structure.

According to [12] the SumHeightPEX and CBASlackPEX strategies should
perform much better than LJRandPEX.

The OptActTwoLevelPair strategy compared with the CBASlackPEX
(CBASlackNoPEX) would probably perform slightly worse because it uses more
constraint variables thus the computation should be more expensive.

OptActTwoLevel strategy would probably perform worse than CBASlack or
OptActTwoLevelPair, it doesn’t always follow the succeed-first principle. And as

46

mentioned in the motivation for OptActTwoLevelPair strategy in section .Gl
it’s early bad decisions could be more expensive.

5.3 Results

Only the most important result are presented in the section. All the test results
for all the strategies, test data and configurations can be found summarized in
tables in appendix [Cl All the plotted graphs of number of backtracks performed
and time used for scheduling, can be found in appendix Bl

All the tests confirmed that temporal filtering significantly improves the per-
formance of the strategies when there are alternative activities present in the
problem instance. It’s clearly visible in figure [5.1] containing the comparison of
strategies on PEXTNA data with 50% probability of alternative branching.

*« 20 460 =100 X nofeasible solution found * 20 460 =100 X nofeasible solution found
G-tf - WA G-tf | =—————4 .
G =5 G ===

F A E A
D-tf { =—F/—r—""——= D-tf { =—F————4 4
D D =
= =
o E-tf O E-tf | 2
£ tf o & g t *a,
3 g , 3 g = .
c-tf - & C-tf -| =Ay
C-H “—x—= cCH 22— 4
B-tf o =4 4 B-tf { =———4 4
B =—= . B 2———4
A-tf { ———Ay A-tf | =2——a g

T T T T T T T T T T T
0 10000 20000 30000 40000 50000 60000 0 5000 10000 15000

Number of backtracks Time (ms)

Figure 5.1: Strategy comparison on PEXTNA data with probability of alterna-
tive 50%. The strategies are: OptActTwoLevel (A), OptActTwoLevelPair (B),
CBASlackNoPEX (C), CBASlackPEX (E), LJRandNoPEX (D), LJRandPEX
(F), SumHeight PEX (G). Suffix ”-tf” denotes usage of temporal filtering.

Practically all the data confirmed that both LJRandPEX and LJRandNoPEX
performed much worse than all other strategies. For example it can be seen in
figure B.11

The CBASlackNoPEX and the CBASlackPEX seems to the fastest with the
least number of backtrack. Also OptActTwolLevelPair seems to be perform well,
see for example figure 5.2

5.3.1 Results for PEXTNA Data

Experiments performed on PEXTNA data showed, that there isn’t any significant
difference in performance of the two variants of CBASlackPEX and LJRandPEX

47

*« 20 460 =100 X nofeasible solution found * 20 460 =100 X nofeasible solution found
D-tf | =—2—— D-tf §{ =—=————a
D D
Cc-tf & C-tf 4 24 g
3 3
o) - A o) —- = a4 -
s “l=— s ¢
? Btf - & O Btf |
B~ 4 B =—7——= .
A-tf o Ay Atf o 2=——a
A - &—a - A 22— a4 -
T T T T T T T T T T T T
0 20000 40000 60000 80000 100000 0 5000 10000 15000 20000
Number of backtracks Time (ms)

Figure 5.2: Strategy comparison on n-TNA data with probability of alterna-
tive 100%. The strategies are: OptActTwoLevel (A), OptActTwoLevelPair (B),

CBASlackNoPEX (C), LJRandNoPEX (D). Suffix ”-tf” denotes usage of tempo-
ral filtering.

heuristic strategies. Both the CBASlackPEX and the CBASlackNoPEX per-
formed similarly. So did LJRandPEX and LJRandNoPEX.

Now if we look at the comparision of the three strategies studied in [12] -
SumHeightPEX, CBASlackPEX and LJRandPEX. LJRandPEX is clearly the
worst performing strategy. Meanwhile, the CBASlackPEX seems to be the fastest
strategy. Although, SumHeighPEX makes in some cases very few backtracks (see

figure BE.1)).

5.3.2 Results for x-RCPSP Data

Experiments with x-RCPSP showed that there is a significant difference in com-
plexity of test set ¢1 and test set :2. While 20 s time limit was sufficient for all
strategies to optimize almost all the problem instances in il, it was very low for
i2 data set. Most of the strategies had problem to find any solution within the
time limit for most of the problem instances.

Still, we can conclude that LJRandNoPEX peform as expected - much worse
than other strategies on standard problem instances. But if we look at the tables
in section [C.3] it’s clear that the strategy found solutions for the biggest number
of the problem instances in the 2 data set. On most of the test data configura-
tions, the OptActTwoLevelPair strategy performed better than OptActTwoLevel
strategy.

CBASlackNoPEX seems to be performing better than all other strategies,
and OptActTwoLevelPair strategy seem to perform slightly better than Op-
tActTwoLevel strategy.

Other results for x-RCPSP test data aren’t much conclusive.

48

Conclusion

In the thesis several approaches to the modelling of the scheduling problems with
alternative activities as constraint satisfaction problems were presented. Several
search strategies for scheduling such problems were described, implemented and
compared.

A new strategy, the OptActTwoLevelPair strategy, was proposed and tested.
The experiments show that it is one of the faster strategies.

CBASlackPEX and LJRandPEX strategies were enhanced such that they can
be used without the complex PEX propagation, and therefore they can target
other types of scheduling problems with alternatives. The experiments shows
that there isn’t any loss in performance.

Temporal filtering algorithm for temporal network with alternatives was tested
and a recognized to bring a significant improvement in performance.

A special type of constraint variable, the PEX variable, and its complex prop-
agation was implemented into a constraint solver and tested. However, the results
of the strategies utilizing the extra information didn’t show any significant benefit
of it.

During the implementation of the PEX propagation Choco solver was studied
as a sideeffect. Unfortunatelly, Choco solver seems to suffer from some bad archi-
tectural decisions and therefore some additions might be difficult to implement
without changing or reimplementing big amount of its code.

Future Work

In future work there’s a space for further improvements. Probably the most
important future work would be the implementation of more clever search strate-
gies, filtering algorithms and constraints with better propagation. For example
Beck and Fox proposed rather strong, but computationally expensive, filtering
algorithm - PEX-edge-finding (for details see [12] 13]).

Reimplementation of the search streategies in different constraint solvers
would be convenient to confirm or disprove the obtained results.

Furthermore, there are another experiments the studied strategies can be
compared at, for example the search for a first solution might be an intersting
result. Some strategies might find a solution quickly, the found solution might be
far from optimum. While other strategies might find a solution slower, but much
closer to the optimum.

A future improvements might be possible in the implementation of some search
strategies in Choco solver. The strategies don’t always work ideally when dealing
with optional activities. For example built-in SetTimes search strategy tries to
assign start times for all activities, even for the invalid ones. Fortunatelly, it’s
not a problem and it doesn’t affect the found schedule, but it’s an unnecessary
computation. Also there’s always a possibility that the implementation of the
studied search strategies might be suboptimal.

Experiments on the x-RCPSP data weren’t much conclusive due to the high
complexity of the problem instances in the i2 data set. In a future work experi-
ments with better x-RCPSP data should be performed.

49

At last experiments with larger data sets should be performed to obtain more
precise results. Also larger time limit could be provided to larger instances.

50

Bibliography

1]

2]

[13]

BaptisTE, P., LE PAPE, C., NUUTEN, W. Constraint-Based Optimiza-
tion and Approximation for Job-Shop Scheduling. Proceedings of the AAAI-
SIGMAN Workshop on Intelligent Manufacturing Systems, IJCAI-95, 1995.

BApTISTE, P., LE PAPE, C. Edge-finding constraint propagation algorithms

for disjunctive and cumulative scheduling. Proceedings of the 15th Workshop
of the U.K. Planning Special Interest Group (PLANSIG), 1996.

BaptisTE, P., LE PAPE, C., NULTEN, W. Constraint-based Scheduling:
Applying Constraints to Scheduling Problems. International Series in Op-
erations Research and Management Science. Dordrecht: Kluwer Academic
Publishers, 2001, vol. 39.

BARTAK, R. Constraint Satisfaction for Planning and Scheduling. In ITonan-
nis Vlahavas, Dimitris Vrakas (eds.): Intelligent Techniques for Planning.

Idea Group, 2005, pp. 320-353.

BARTAK, R. Constraint programming: In pursuit of the holy grail. In Pro-
ceedings of WDS99, 1999, pp. 555-564.

BARTAK, R. Search Strategies for Scheduling Problems with Optional Activ-

ities. In Search in Artificial Intelligence and Robotics: Papers from the 2007
AAAT Workshop, Technical Report WS-08-10. AAAT Press, 2009.

BARTAK, R., CEPEK, O. Temporal Networks with Alternatives: Complexity
and Model. Proceedings of the 20th International Florida AI Research Society
Conference (FLAIRS). AAAI Press, 2007, pp. 641-646.

BARTAK, R., CEPEK, O. Nested Temporal Networks with Alternatives. Pa-
pers from the 2007 AAAT Workshop on Spatial and Temporal Reasoning,
Technical Report WS-07-12. AAAI Press, 2007, pp. 1-8.

BARTAK, R., CEPEK, O., HEINA, M. Temporal Reasoning in Nested Tempo-
ral Networks with Alternatives. Recent Advances in Constraints, LNAI 5129.
Springer-Verlag, 2008.

BARTAK, R., SALIDO, M. A., RossI, F. Constraint satisfaction techniques

in planning and scheduling. Journal of Intelligent Manufacturing. Springer
Verlag, 2010, vol. 21, no. 1, pp. 5-15.

BEeck, J. C., et al. Texture-based heuristics for scheduling revisited. In Pro-
ceedings of AAAI-97. Menlo Park, California: AAATI Press, 1997.

Beck, J. C., Fox, M. S. Scheduling alternative activities. Proceedings of
the 16th national conference on Artificial intelligence and the 11th Innova-
tive applications of artificial intelligence conference innovative applications
of artificial intelligence, AAAT "99/TAAI ’99, 1999, pp. 680-687.

Beck, J. C., Fox, M. S. Constraint-directed techniques for scheduling alter-
native activities. Artificial Intelligence, 2000, pp. 211-250, vol. 121 (1-2).

51

[14]

[22]

[23]

[24]

[25]

[20]

[27]

28]

Brazewicz, J., LENSTRA, J. K., RinNooy Kan, A. H. G. Scheduling

projects to resource constraints: Classification and complexity. Discrete Ap-
plied Mathematics, 5, 1983, pp. 11-24.

BRUCKER, P. Scheduling Algorithms. Third Edition. Springer Verlag, 2001.

BRUCKER, P., DREXL, A., MOHRING, R., et al. Resource-constrained project

scheduling: Notation, classification, models and methods. European Journal
of Operational Research, 1999, vol. 112, pp. 3-41.

CASEAU, Y., LABURTHE, F. Disjunctive scheduling with task intervals.
LIENS Technical Report 95-25. Laboratoire d’Informatique de I'Ecole Nor-
male Superieure, 1995.

CoNwAy, Richard Walter, MAXWELL, William L., MILLER, Louis W. The-
ory of Scheduling. Reading, MA: Addison-Wesley, 1967. ISBN 0-486-42817-6.

Frost, D., DECHTER, R. Dead-end driven learning. In Proceedings with
MIPS-XXL. In 5th International Planning Competition Booklet (IPC-2006).
Lake District, England, 1994, pp. 28-30.

GASCHNIG, J. A general backtrack algorithm that eliminates most redundant
tests. In Proceedings of IJCAI. Cambridge, MA, USA, 1977, pp. 457.

GASCHNIG, J. Performance measurement and analysis of certain search al-
gorithms. Technical Report CMU-CS-79-124. Carnegie-Mellon University,
1979.

GrAHAM, R. L., LAWLER, E. L., LENSTRA, J.K., et al. Optimization and

approzimation in deterministic sequencing and scheduling: A survey. Annals
of Discrete Mathematics. 1979, vol. 5, pp. 287-326.

HarALICK, R., ELLIOT, G. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 1980, vol. 14, pp. 263-314.

HARTMANN, S. Project scheduling with multiple modes: A genetic algorithm.
Annals of Operations Research, 2001, vol. 102, pp. 111-135.

KUSTER, J., JANNACH, D., FRIEDRICH, G. Handling Alternative Activities
in Resource-Constrained Project Scheduling Problems. IJCAL 2007, pp. 1960-
1965.

KUSTER, J., JANNACH, D., FRIEDRICH, G. Extending the RCPSP for mod-
eling and solving disruption management problems. Applied Intelligence.
Springer, 2008.

MUSCETTOLA, N. Scheduling by Iterative Partition of Bottleneck Conflicts.
Technical Report CMU-RI-TR-92-05. The Robotics Institute, Carnegie Mel-
lon University, 1992.

NuwTEN, W. P. M., et al. Randomized constraint satisfaction for job shop
scheduling. In Proceedings of the IJCALJ’93 Workshop on Knowledge-Based
Production, Scheduling and Constrol. 1993, pp. 251-262.

52

[29]

[31]

[32]

[33]

[37]

[38]

[39]

[40]

[41]

ObppI1, A., CESTA, A., POLICELLA, N., et al. Iterative Flattening Search
for Multi-Capacity Scheduling Problems. In In Miguel A. Salido, Juan Fdez-
Olivares (Eds.) Planning, Scheduling and Constraint Satisfaction. Universi-
dad de Salamanca, 2007, pp. 10-21.

ObpI1, A., CESTA, A., POLICELLA, N., et al. Iterative Improvement Strate-
gies for Multi-Capacity Scheduling Problems. In. COPLAS-07. Proceedings
of CP/ICAPS Joint Workshop on Constraint Satisfaction Techniques for
Planning and Scheduling Problems. 2007.

PROSSER, P. Hybrid algorithm for the constraint satisfaction problem. Com-
putational Intelligence. 1993, vol. 9, pp. 268-299.

RinnoOY KaAN, A.H.G. Machine Scheduling Problems: Classifications,
Complezity and Computations. The Hague: Nijhoff, 1976. ISBN 9-024-71848-
1.

SMITH, B. M. Succeed-first or Fail-first: A Case Study in Variable and Value
Ordering. In G. Smolka (ed.), Proc. 3rd Intl. Conf. on Principles and Practice
of Constraint Programming, Lecture Notes in Computer Science. Springer
Verlag, 1997, vol. 1330, pp. 321-330.

SMITH, S., CHENG, C. Slack-Based Heuristics for Constraint Satisfaction

Scheduling. Proceedings 11th National Conference on Artificial Intelligence.
1993, pp. 139-144.

ViLim, P., BARTAK, R., CEPEK, O. Eztension of O(n log n) filtering algo-
rithms for the unary resource constraint to optional activities. Constraints,
2005, vol. 10, no. 4, pp. 403-425.

KusTER, Jiirgen, JANNACH, Dietmar, FRIEDRICH, Gerhard, FExtend-
ing the RCPSP for Modeling and Solving Disruption Management
Problems [test data]. 2011 [cited 2011-11-25] Available from Internet:
<http://rcpsp.serverside.at /applied-intelligence-07.html>.

Choco Solver [computer program]. Ver. 2.1.1. 2011 [cited 2011-11-22]. Avail-
able from Internet: <http://www.emn.fr/z-info/choco-solver>.

The R Project for Statistical Computing [computer program], Ver. 2.10.1.
Available from Internet: <http://www.r-project.org>.

The Java Development Kit [computer programy], Ver.
6. 2011 [cited 2011-11-22]. Available from Internet:
<http://www.oracle.com/technetwork /java/javase/downloads/index.html>.

The Java Runtime Environment [computer programy],
Ver. 6. 2011 [cited 2011-11-22]. Available from Internet:
<http://www.oracle.com/technetwork/java/javase/downloads/index.html>.

Apache Maven Project [computer program], Ver. 2.2.1. 2011 [cited 2011-11-
22]. Available from Internet: <http://maven.apache.org>.

53

List of Tables

o4

4 xamples of standard able selectors in constraint solve 29
4 xamples of basic value selectors in constraint solvers| 29
onfigurations of n-TNA nad PEXTNA datasets|. 43
onfigurations of x-RCPSP datasets) 45

¢ omputer configuration 45

1 List of nrow o7
[A.2 Awvailable values for the model tyvpe parameter) 58
|A.3 Available values for the strategy parameter| 58
(.1 Test results for CBASlackNoPex strategy on n-TNA datal 75
IC.2 Test results for CBASlackNoPex-TF strategy on n-TNA datal . . 75
C C Q RandNoPex atecv on n-TNA datal. 76

(C.4 C C Q RandNoPex- ateev on n-TINA data 76
(C.5 Test results for OptActTwolevel strategy on n-TNA datal 76
IC.6_Test results for OptActTwoLevelPair strategy on n-TNA datal . . 77
IC.7_ Test results for OptActTwoLevelPair-TF strateey on n-TNA datal 77
3 C C or OptA vol.evel- ategy on n-1TNA data 7

9 _Test re or CBASlackNoPex ateov on PEX datal 78
0 Test re or CBASlackNoPex- ategv on PEX data 78
[C.11 Test vesults for CBASlackPex strategy on PEX datal 78
IC.12 Test results for CBASlackPex-TF strateey on PEX datal 79
est. e 0 RandNoPex ateov on PEX datal 79

4 Test, re 0 RandNoPex- ateov on PEX datal) 79

est re 0 RandPex ateov on PEX datal 80

(C.16 Te eSU 0 RandPex- ategv on PEX datal 80
(C.17 Test results for OptActTwolevel strategy on PEX datal 80
IC.18 Test results for OptActTwoLevelPair strateev on PEX datal . . . 81
9 Te o or OptA volevelPair- ategv on PEX latal . 81

0 Te o or OptA volevel- ateecy on PEX dats 81
C.21 Test results for SumHeightPex strategv on PEX datal 82
.22 Test results for SunHeightPex- TF strategy on PEX datal 82
(C.23 Test results for CBASlackNoPex strategv on datal 82
4 Test re 0 RandNoPex atecv ondatal 83

est re or OptA vol.eve atecvondatal 83

6 Te eS1] or OptA wolevelPaj ategv on datal 83

List of Abbreviations

e CSP — Constraint Satisfaction Problem
e JSSP — Job Shop Scheduling Problem.

e MRCPSP — Multi-Mode Resource-Constrained Project Scheduling Prob-
lem

e n-TNA — Nested Temporal Networks with Alternatives
e PCP — Precedence Constraint Posting

e PEX — Probability of Existence. Estimated probability of existence of an
activity at a search state.

e PEXTNA — Extension of PEX temporal networks.

e RCPSP — Resource-Constrained Project Scheduling Problem
o SST — Set Start Times

e TNA — Temporal Networks with Alternatives

e 1-RCPSP — Extended Resource-Constrained Project Scheduling Problem

55

Attachments

56

A. Test Program Documentation

To evaluate the search strategies a test program was created. The test program
is implemented in Java programming language. Choco solver [37] is used as the
underlining constraint technology. To implement all the tested strategies, it was
necessary to adjust and extend Choco solver.

Besides the test program, several small programs and scripts were created to
provide batch processing of the test data, processing of the results and plotting
the graphs. Also, test data generator for n-TNA and PEXTNA data is provided.
The test framework - the test program together with all the other mentioned parts
- is available on the enclosed compact disc. Documentation of the test framework
can be found in section [A.2]

Documentation of the sole test program implementing the search strategies is
located in section [A.]

Only a short documentation of the test program and test framework is pre-
sented, neither the program nor the framework are core of the thesis. The short
documentation is provided to allow the reader to reproduce the results presented
in the thesis.

A.1 Test Program Documentation

The test program implements the studied search strategies, it reads an instance
from an input file and writes the schedule instance into an output file.

A.1.1 Test Program User Documentation

The executable jar file of the is located in directory program on the enclosed com-
pact disc. To run the program, Java SE Runtime Environment [40] is necessary.

The test program doesn’t have any graphical user interface, it’s being run
from the command line. The command to run the program is:

java -jar search-strategies.jar [OPTIONS]

The command line arguments used by the program are summarized in ta-

ble [AT]

| Parameter | Required | Description |

-i INPUTFILE | yes Input file

-o OUTPUT_FILE | yes Output file

-t MODEL yes Type of the used model. Available values are listed
in table [A.2]

-s STRATEGY yes Name of the strategy. Available values are listed
in table [A.3]

-1b NUMBER no Number of backtracks limiting the search.

-1f NUMBER no Number of failures limiting the search

-1n NUMBER no Number of nodes limiting the search

-1t NUMBER no Time limiting the search

Table A.1: List of program’s command-line arguments.

o7

Both input and output file are xml files. The input data can be found in the
inputdata directory on the compact disc. Processed output data can be found
in the outputdata directory. Choco solver can use only one parameter limiting
the search. The priority of the limits is (from higher to lower): time, backtrack,
fail, node. Only the limit with the highest priority is used. If no limit is specified,
time limit is set to 20 s.

| Value | Description |
unary-xrcpsp | model for x-RCPSPS data
unary-ntna model for n-TNA data not using temporal filtering
unary-ntna-tf | model for n-TNA data using temporal filtering
unary-pex model for PEXTNA data not using temporal filtering

unary-pex-tf | model for PEXTNA data using temporal filtering
Table A.2: Available values for the model type parameter.

Value | Description
OptActTwoLevel OptActTwoLevel strategy
OptActTwoLevelPair | OptActTwoLevelPair strategy
CBASlackNoPex CBASlackNoPEX strategy
CBASlackPex CBASlackPEX strategy
LJRandNoPex LJRandNoPEX strategy
LJRandPex LJRandPEX strategy
SumHeightPex SumHeight PEX strategy

Table A.3: Available values for the strategy parameter.

Example usage

Several examples of running the test program are presented.

java —jar search-strategies.jar -t "unary-ntna" -s "OptActTwoLevelPair"

-i "problem-instance.xml" -o "scheduled-instance.xml"

java —jar search-strategies.jar -t "unary-pex" -s "CBASlackPex"

-i "problem-instance.xml" -o "scheduled-instance.xml" -1t 5000

A.2 Test Framework Documentation

The test framework is located in the test-framework directory on the
enclosed compact disc. The framework is a Maven project contained in the
search-strategies-choco subdirectory.

A.2.1 Project Structure

The search-strategies-choco Maven project consists of several other Maven
subprojects that are located in subdirectories of the main project. The projects
are:

e choco — Adjusted Choco solver.

o8

e search-strategies — The test program described in section [A]l it’s de-
pendend on choco project.

e test-data-generator — Utility project containing program for generating
temporal networks (n-TNA and PEXTNA) test data.

e test-strategies — Utility project containing scripts for batch testing.

e test-analysis — Utility project containing scripts and utility programs
for extracting results from the output files, summarizing them and plotting
the graphs.

The test framework located on the compact disc contains all the necessary
compiled files to run the program and all the utilities. However, since the utility
scripts are Bash scipts, there might be problems running them in some environ-
ments. Therefore Unix/Linux operating system is preferred to run the utility
scripts.

To compile the framework Java Development Kit [39] in version 6 or higher
and Apache Maven [41] in version 2.1.1 or higher are required. To compile the
project, change (on command line) to the search-strategies-choco directory
(where pom.xml for the whole framework is located) and run:

mvn package -Dmaven.test.skip=true

The argument -Dmaven.test.skip=true is present to skip the test phase
(running the unit tests) of the build. It first, speeds up the build, and second,
some tests in project choco fails and stops the compilation.

Besides source and compiled files, all the data files - input data files, output
data files and processed output files - are present (so that the results can be
checked) at the location defined by each of the projects.

Choco Project

Choco project in the choco directory contains source files of the Choco solver [37]
at version 2.1.1. The Choco solver had to be adjusted to enable implementation
of the PEX search strategies.

Search Strategies

The main project is the implementation of the search strategies in the
search-strategies directory. Besides implementation of the strategies, the
models, the input and output, it contains the PEX extension to the Choco
solver.

Usage of the program is described in section [A]l

The project is dependent on the choco project, these two projects together
contain the implementation of the strategies. All the remaining projects men-
tioned further are only utilities that ease the data processing and analysis.

59

Generating Test Data

The project in the test-data-generator directory is a utility program for gen-
erating n-TNA nad PEXTNA test data. To generate test data, it’s easier to
run generate-dataset.sh bash script that is located in the script subdirec-
tory. The script generates test data in configurations that were used in experi-
ments, the configurations are summarized in table 5.l The data are created in
generated-test-data subdirectory. The test data generator contains x-RCPSP
data too, they are located in static-test-data subdirectory, these data are
static.

Testing Strategies

For batch testing, some scripts were created in the test-strategies project.
To run the experiments on the x-RCPSP, n-TNA and PEXTNA data, run
test-data.sh script that’s located in the script subdirectory. It would run
all the experiments on the data that are located in test data generator in its
subdirectories generated-test-data and static-test-data. The output files
of the experiments are created in test-output subdirectory.

Running all the experiments requires many hours of processing time.

Processing the Test Output Data

In test-analysis project, in the script subdirectory several scripts for pro-
cessing the scheduled data are placed. The summarize-test-outputs.sh script
summarizes data for each data type and each strategy into one csv file. These
csv files are created in subdirectory analysis-output/summary.

Then there’s script count-averages.sh that would compute the statistics,
that are present in the tables in appendix [C| from the csv files. It creates in
subdirectory analysis-output/avg csv files containing the calculated statistics.

To generate graphs, script plot-graphs.sh can be used. It uses statistical
program R [38] to plot the graphs. The files containing the graphs are created in
subdirectory plot. Most of the plotted graphs is present in appendix [Bl however
there are graphs that aren’t visualized in the thesis. For example, there graphs
for other statistics - number of failures and number of nodes.

60

B. Graphs

B.1 Graphs of n-TNNA Results

B.1.1

Probability of alternative branching (%)

Probability of alternative branching (%)

Figure B.2: Performance of OptActTwoLevel

Probability of alternative branching (%)

100

75

50

25

100

75

50

25

100

75

50

25

Performace of the Strategies

« 20 460 =100

. A

X no feasible solution found

T T T T T T
0 10000 20000 30000 40000 50000

Number of backtracks

Probability of alternative branching (%)

100

75

50

25

A4 60 = 100 X no feasible solution found

T T T T

10000 15000 20000

Time (ms)

Figure B.1: Performance of OptActTwoLevel strategy.

m 100 X no feasible solution found

- A

T T T T T T
0 5000 10000 15000 20000 25000

Number of backtracks

A4 60 = 100 x no feasible solution found

T T T T T T T
0 5000 10000 15000 20000 25000 30000

Number of backtracks

Probability of alternative branching (%)

Probability of alternative branching (%)

100

75

50

25

100

75

50

25

= 100 X no feasible solution found

—e N _

T T T T T T T

0 2000 4000 6000 8000 10000 12000
Time (ms)

strategy with temporal filtering.

A4 60 = 100 x no feasible solution found

e 8

T T T T T T T T
0 2000 4000 6000 8000 10000 14000

Time (ms)

Figure B.3: Performance of OptActTwolLevelPair strategy.

61

Probability of alternative branching (%)

Probability of alternative branching (%)

100

75

50

25

100

75

50

25

no feasible solution found

T T T T T
2000 4000 6000 8000 10000

Time (ms)

strategy with temporal filter-

. .

A4 60 = 100 X no feasible solution found

T T T
10000 15000

Time (ms)

Figure B.5: Performance of CBASlackNoPEX strategy.

g
2 *« 20 460 =100 X nofeasible solution found
£
% 100 - A 4
S
QL 75 n,
g
8 50 ——4 a
©
© 25 t——a .
2
k=] o
I E—
& T T T T
0 5000 10000 15000
Number of backtracks
Figure B.4: Performance of OptActTwoLevelPair
mng.
s
2 ¢« 20 A 60 =100 X nofeasible solution found
£
2 100 | t——a
©
S
. A
2 75 a
g
§ 50 | T——a
‘©
; 25 o A g
-
g o
& T T T T T T
0 5000 10000 15000 20000 25000
Number of backtracks
S
2 *« 20 460 =100 X nofeasible solution found
£
% 100 4 ———a a
S
2 75— .
g -
g 50 =—= a
©
© 254 =24
2
3
g 01 =2—=
I T T T T T T
0 200 400 600 800 1000
Number of backtracks
Figure

Probability of alternative branching (%)

75

50

25

A4 60 = 100 x no feasible solution found

.

T T T T T
500 1000 1500 2000 2500

Time (ms)

B.6: Performance of CBASlackNoPEX strategy with temporal filtering.

62

g g
2 *« 20 460 =100 X nofeasible solution found 2 * 20 460 =100 X nofeasible solution found
= =
S 100 A . 2 100 | —F]————— A]
I I
Qo Qo
g 75 A g 75 A
]]
f=d f=4
§ 50 { —a - § 50 { —/——— A .
© ©
o 25 | /F/]0—73 a———° o 25 | /F/])/—/ 7 7/
£ £
= =
| == _ A
- I B— R I —
& T T T T T T T & T T T T T
0 20000 40000 60000 80000 100000 0 5000 10000 15000 20000
Number of backtracks Time (ms)

Figure B.7: Performance of LJRandNoPEX strategy.

9 g
=4 20 A 60 = 100 X no feasible solution found =4 20 A 60 = 100 X no feasible solution found
= =
2 100 1 —/—— 2 100 { =—=—————a
© ©
S S
o R — A
L 754 = g 54 =
T T
j=s j=s
§ 50 | —/—7 A § e e—
‘S ‘S
s | = s = @ 4
> 25 A 4 > 25 ™
3 3 R
% 0 —m % 0
g T T T T g T T T T
0 20000 40000 60000 0 5000 10000 15000
Number of backtracks Time (ms)

Figure B.8: Performance of LJRandNoPEX strategy with temporal filtering.

B.1.2 Comparison of the Strategies

In the following graphs, the values on the y axis denotes search strategies. Suffix
”-tf” denotes that the strategy used temporal filtering. The strategies are:

e A — OptActTwoLevel

e B — OptActTwoLevelPair
o C — CBASlackNoPEX

e D — LJRandNoPEX

*« 20 460 =100 X nofeasible solution found * 20 460 =100 X nofeasible solution found
D-tf | —/—7—7 3 3 3 — = A D-tf A
D = % D A
C-tf o A C-tf | =2——¢
= =
g CH g (o E———T
O Btf o ? Bt o = - A
B —g— B | = _ A
A-tf o —g—4 A-tf 4 =2 - A
A- —— A - == - A
T T T T T T T T T T T
0 20000 40000 60000 0 2000 4000 6000 8000 10000 12000
Number of backtracks Time (ms)

Figure B.9: Strategy comparison on n-TNA data with probability of alternative
0%.

63

*« 20 460 =100 X nofeasible solution found * 20 460 =100 X nofeasible solution found

D-tf A D-tf | —/—/———2——a
D x D a
Cc-tf 4 4 C-tf 4 2= 4
= =
o} — %A @ = N
g c -a 3 C 2=—a g
D potf { —a g D pf{ 22—,
B =—=a . B-{ =2—a a
A-tf 4 ——ay A-tf | =2——————a a
AL s A= A .
T T T T T T T T T T T T T T
0 10000 20000 30000 40000 50001 0 2000 4000 6000 8000 10000 14000
Number of backtracks Time (ms)

Figure B.10: Strategy comparison on n-TNA data with probability of alternative
25%.

¢« 20 A 60 =100 X nofeasible solution found e 20 A 60 =100 X no feasible solution found
D-tf | —/————=& = D-tf | —Fro—"—=—m4 ~
D - '\ D — p—————————————_ A
c-tf - 4 C-tf H{ 24 4
3 3
S CH ™= . 2 CH Z—
[[
P gt o A B gl 2 a
B *—=a . B - = A
Atf - =—A 4 Atf - == &
A Y——a A 22— — a4

T T T T T T T T T T
0 20000 40000 60000 80000 0 5000 10000 15000 2000

Number of backtracks Time (ms)

Figure B.11: Strategy comparison on n-TNA data with probability of alternative
50%.

¢« 20 A 60 =100 X nofeasible solution found e 20 A 60 =100 X nofeasible solution found
D-tf { ———4 D-tf { —/————a—4
D A D A
c-tf | & C-tf | == 4
3 3
S CH T=—=aA 4 2 Ccq = A
[[
@ Btf - A P gt o A g
B t—=a 4 [[
A-tf o Ay A-tf 4 2——a g
Y I —y A = A

T T T T T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1le+05 0 5000 10000 15000

Number of backtracks Time (ms)

Figure B.12: Strategy comparison on n-TNA data with probability of alternative
75%.

64

*« 20 460 =100 X nofeasible solution found * 20 460 =100 X nofeasible solution found
D-tf | =—2—— D-tf §{ =—=————a
D A Dd =—m———— .
Cc-tf & C-tf 4 24 g
= =
5% e 4 @ —- = a4 -
s “l=— s ¢
? Btf - & O Btf |
B~ 4 B =—7——= .
A-tf o Ay Atf o 2=——a
A t—a Al ZZ—/7———= u
T T T T T T T T T T T T
0 20000 40000 60000 80000 100000 0 5000 10000 15000 20000
Number of backtracks Time (ms)

Figure B.13: Strategy comparison on n-TNA data with probability of alternative
100%.

B.2 Graphs of PEXTNA Results

B.2.1 Performace of the Strategies

g g
2 *« 20 460 =100 X nofeasible solution found 2 * 20 460 =100 X nofeasible solution found
= =
e 100 1 ———————— a e 100 { 2——"—"——— a
I I
Qo Qo
g 75 4 2 A g 75 4 = A
g g
& 50 2 A & 50 = A .
© ©
S 252 A S 25 = A
£ z
o ° o —
- &~ _ 4 4 = 4
g 01 /= f: 0 .
& T T T T T T & T T T T T
0 10000 20000 30000 40000 50000 0 5000 10000 15000 20000
Number of backtracks Time (ms)

Figure B.14: Performance of OptActTwoLevel strategy.

g g

2 *« 20 460 =100 X nofeasible solution found 2 * 20 460 =100 X nofeasible solution found

= =

% 100 { &——— a % 100 | =2=——— a

s s

e 75432 000 4 g 75 =

< . £ —

& 50 A o & 50 A -

© ©

A A © 254 = A

£ £

3 . N 3 e N

g 0 - g 0 -

& T T T T T & T T T T T T
0 5000 10000 15000 20000 0 2000 4000 6000 8000 10000

Number of backtracks Time (ms)

Figure B.15: Performance of OptActTwoLevel strategy with temporal filtering.

65

g g
2 *« 20 460 =100 X nofeasible solution found 2 * 20 460 =100 X nofeasible solution found
= =
g2 100 4 2 A . 2 100 4 = A .
o o
Qo Qo
g 75 4 = A g 75 4 = A
g g
g 50 =—/——a - g 50 T——4 -
© ©
o 25 4 &Y————— 4 o 25 4 22— 4
£ z
8 04 &—a . 8 0 =2——4 -
8 8
& T T T T T & T T T T T T
0 5000 10000 15000 20000 0 2000 4000 6000 8000 10000
Number of backtracks Time (ms)
Figure B.16: Performance of OptActTwolLevelPair strategy.
9 g
=4 20 460 = 100 X no feasible solution found =4 20 A 60 = 100 X no feasible solution found
= =
2 100 - = A 2 100 | =2———a
o o
Qo Qo
. —
QL 75 A 4 QL 75 =2—=a
g g
g 50— g 50 =Z=——
S S
s Je 00O 4 s I Y
2 25 - 2 25 a
3 o 3 e
_ B —,
g oo =/ g 0
& T T T T T T T & T T T T T
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000
Number of backtracks Time (ms)
Figure B.17: Performance of OptActTwolLevelPair strategy with temporal filter-
mg.
9 S
2 *« 20 460 =100 X nofeasible solution found 2 * 20 460 =100 X nofeasible solution found
= =
g2 100 4 A . 2 100 4 2 A .
o o
Qo Qo
g 75 4 2 + g 754 = A
g g
§ 50 =———u—a § 50 = A,
© ©
S 25— S 254 ———4
£ £
= =
g 0 & g 0 24 4
I T T T T T I T T T T
0 5000 10000 15000 20000 0 5000 10000 15000
Number of backtracks Time (ms)

Figure B.18: Performance of CBASlackNoPEX strategy.

66

g g
2 *« 20 460 =100 X nofeasible solution found 2 * 20 460 =100 X nofeasible solution found
= =
e 100 1 =—— S 100 { == A -
I I
Qo Qo
L 75 =—= . QL 75 =——
g g
§ 50 4 T—u4 § 50 =—— .
© ©
o 25 — Ly o 25 — . I—
£ £
= | - = | —e
g 0 e N— g 0 P\ a
& T T T T T T T & T T T T T T T
0 200 400 600 800 1000 1200 0 500 1000 1500 2000 2500 3000
Number of backtracks Time (ms)
Figure B.19: Performance of CBASlackNoPEX strategy with temporal filtering.
9 g
=4 20 A 60 = 100 X no feasible solution found =4 * 20 A 60 = 100 X no feasible solution found
= =
2 100 4 * A 2 100 - = A
o [
Qo Qo
e A -
g 75+ u L 75 -
g g
;._5 50 | —=——3—4 ;._5 50 1 ==——————-H"
‘S ‘S
I e G T o5 A ————a -
2 2
3 3 -
% 014 % 0 2= 4
g T T T T T T g T T T T
0 5000 10000 15000 20000 25000 0 5000 10000 15000
Number of backtracks Time (ms)
Figure B.20: Performance of CBASlackPEX strategy.
g g
2 *« 20 460 =100 X nofeasible solution found 2 * 20 460 =100 X nofeasible solution found
= =
e 100 4 =2—= - S 100 { =2— A -
I I
Qo Qo
'g 75 4 =—a 'g 75 4 —~—— 4
T T
c - c — o
g 50 0 =—=4 g 50 =———= -
© ©
o 25 — Ly o 25 — . —
£ £
= | - = | —
g 0 = 2 a g 0 —— =
& T T T T T T & T T T T T T T
0 200 400 600 800 1000 0 500 1000 1500 2000 2500 3000
Number of backtracks Time (ms)

3500

Figure B.21: Performance of CBASlackPEX strategy with temporal filtering.

Probability of alternative branching (%)

100

75

50

25

A4 60 = 100 X no feasible solution found

T T T T T T
Oe+00 2e+04 4e+04 6e+04 8e+04 le+05

Number of backtracks

s

2 e 20 A 60 =100 X no feasible solution found

£

2 100 4

©

S

2 75 +

T

c

P ———————— A

‘©

s pe— A

> 25 -

3 .,

£ %7

g T T T T T
0 5000 10000 15000 20000

Time (ms)

Figure B.22: Performance of LJRandNoPEX strategy.

67

*« 20 460 =100 X nofeasible solution found e 20 460 =100

100 { =——4 a 100 =

% no feasible solution found

75,ﬁ 75,j‘

Probability of alternative branching (%)
Probability of alternative branching (%)

B e | _— =
50 { —————4 50 4 —/—/——= A o
25 | /—/— ——————4 25 A
(e —— 0 - A
T T T T T T T T T T T T T
0 20000 40000 60000 80000 0 2000 4000 6000 8000 10000 14000
Number of backtracks Time (ms)

Figure B.23: Performance of LJRandNoPEX strategy with

temporal filtering.

9 g

=4 20 A 60 = 100 X no feasible solution found =4 * 20 A 60 = 100 X no feasible solution found

= =

2 100 | 2 100 4

© ©

S S

2 757 S A 2 75 N

T T

j=s j=s

§ 50 | —/]——" A ;._5 e pe— A

‘S ‘S

k] e —=~ kS = A

> 25 o > 25 .

3 3 o

e _ A
% 0 ES] % 0 B |
g T T T T T g T T T T T
0 20000 40000 60000 80000 0 5000 10000 15000 20000

Number of backtracks Time (ms)

Figure B.24: Performance of LJRandPEX strategy.

*« 20 460 =100 X nofeasible solution found e 20 460 =100

100 | =—=—————4

% no feasible solution found

75 —/—=a "

50 | —/—=——4

25 A

25

Probability of alternative branching (%)
Probability of alternative branching (%)

T T T T T T
20000 40000 60000 0 5000

o

10000 1500C

Number of backtracks Time (ms)

Figure B.25: Performance of LJRandPEX strategy with temporal filtering.

9 g
=4 20 A 60 = 100 X no feasible solution found =4 * 20 A 60 = 100 X no feasible solution found
= =
2 100 4 % A 2 100 4 = A
© ©
S S
[] A —_- A
L 5 == 2 75+ »
T T
j=s j=s
g 50 =/~ — § 504 = A
S S
s e s = 4
> 25 o LA 4 4 25 .
3 N 3 o R
% 01 =—= % 0 —
g T T T T T T g T T T T
0 5000 10000 15000 20000 25000 0 5000 10000 15000
Number of backtracks Time (ms)

Figure B.26: Performance of SumHeightPEX strategy.

68

4 60 = 100

100

% no feasible solution found

A

75

50 —

25

T T T T T
0 2000 4000 6000

Probability of alternative branching (%)

Number of backtracks

8000

T

10000

Probability of alternative branching (%)

100

75

50 —

25

100 x no feasible solution found

Figure B.27: Performance of SumHeight PEX

T T T T
10000 15000

Time (ms)

strategy with temporal filtering.

B.2.2 Comparison of the Strategies

In the following graphs, the values on the y axis denotes search strategies. Suffix

"-tf” denotes that the strategy used temporal filtering. The strategies are:

e A — OptActTwoLevel

e B — OptActTwoLevelPair

o C — CBASlackNoPEX
¢ D — LJRandNoPEX

e E — CBASlackPEX

e F— LJRandPEX

e G — SumHeightPEX

¢« 20 A 60 =100 X nofeasible solution found
G-tf 4 =
G | A
F-tf = A
F — A
D—tf A
D =
3
& E-tf -
£ E-tf 4 &
ZE Y
c-tf 4 4
C—H4
B-tf | = 4
B — 4
A-tf { E=—x4
A t— 54

Strategy

0 10000 20000 30000

Number of backtracks

Figure B.28: Strategy comparison on PEXTNA data with probability of alterna-

tive 0%.

T
40000

T
50000

69

A4 60 = 100 X no feasible solution found

10000 15000

Time (ms)

¢« 20 A 60 =100 X nofeasible solution found e 20 A 60 =100 X no feasible solution found
G-tf o g G-tf 4 = A
G - g G4 = A .
F-tf Ay F-tf | =—— A .
F — A F B —————_ A
D-tf 4 bEGEES 4
D - A D — e—— A
3 3
O E-tf O E-tf { ==
g E-tf i, g E-tf =4 g
@ E - —A,4 @ E{ 2————a
C-tf - 2y C-tf { 2= o
C L E—y C e —
B-tf { —aA g B-tf { =——a .
B &—=a g B - = A
Atf | g A-tf | = A
I E————————————— A A = A
T T T T T T T T T T T T T T
0 10000 20000 30000 40000 50000 0 2000 4000 6000 8000 10000 12000 14000
Number of backtracks Time (ms)

Figure B.29: Strategy comparison on PEXTNA data with probability of alterna-
tive 25%.

¢« 20 A 60 =100 X nofeasible solution found e 20 A 60 =100 X no feasible solution found
G-tf 4 WA G-tf | =2———a
G =g G | =——= A
E-tf A Ftf { ——— 4 -
F 4 A F - % A
D-tf | ——>———x A D-tf | =—F—=2————4
D - - A D ———— A -
B 3
O E-tf 4 Q E-tf { =
g E-tf Y g E-tf —
7] E- e A 7] E- = A
Cc-tf 4 & C-tf | 2—Ay
CH —=—= CH 22—« 4
B-tf | A g B-tf | =——a 4
B &Y—a 4 B = A
A-tf H E—=——ay Atf | 20
N A - == A
T T T T T T T T T T T
0 10000 20000 30000 40000 50000 60000 0 5000 10000 15000
Number of backtracks Time (ms)

Figure B.30: Strategy comparison on PEXTNA data with probability of alterna-
tive 50%.

70

¢« 20 A 60 =100 X nofeasible solution found e 20 A 60 =100 X no feasible solution found

G-tf o WA G-tf | 2t g
G —a—4 G- = A -
F-tf { =—=%° F-tf { =—=&—"° .
F A F +
D-tf 4 = o D-tf { =—=—_—°* 4
D A D +
3 3
% E-tf 4 & % E-tf | A g
o g . o g = A
c-tf 4 4 C-tf + 244
C - —t c-H = A
B-tf { g B-tf | =—4A 4
B *——=Aa [Y I Y
Atf 4 & g Atf o =24 g
A e, A= A
T T T T T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1le+05 0 5000 10000 15000
Number of backtracks Time (ms)

Figure B.31: Strategy comparison on PEXTNA data with probability of alterna-
tive 75%.

20 460 = 100 X no feasible solution found e 20 A 60 =100 X no feasible solution found
G-tf { =4 Gtf { =2——a
G ————A, G4 2——+——— 4
F-tf { =——-——a = F-tf { =—————4 -
F - o F - +
D-tf | Z=——=——a D-tf { =———a
D A - D +
3 3
O E-tf O E-tf | 24
£ E-tf 4 & £ E-tf Ay
A . & g .
c-tf 4 4 C-tf | 24 4
CH &——a, c = A
B-tf { —A g B-tf { =—A 4
B &“—a B 22— 4
A-tf o == 4 A-ti - = A
A+ &Y——a A 2———— 4
T T T T T T T T T T
0 20000 40000 60000 80000 0 5000 10000 15000 20000
Number of backtracks Time (ms)

Figure B.32: Strategy comparison on PEXTNA data with probability of alterna-
tive 100%.

B.3 Graphs of x-RCPSP Results

Results of strategies tested on x-RCPSP.

71

B.3.1 Performace of the Strategies

In the following graphs, the values on the y axis denotes data configuration. The
first digit denotes the proces complexity: 0 - low process complexity, 1 - high
process complexity. The second digit denotes the resource complexity: 0 - low
resource complexity, 1 - high resource complexity.

The left figure shows the average number of backtracks, the right figure shows
the average running time of the solver.

o il A 2 X no feasible solution found o il A 2 X no feasible solution found

Data configuration
(=
o
!
Data configuration
(=
o
!
.
s

T T T T T T T T T
0 20000 40000 60000 0 5000 10000 15000 20000

Number of backtracks Time (ms)

Figure B.33: Performance of OptActTwoLevel strategy.

- o il A 2 X no feasible solution found - o il A 2 X no feasible solution found

(=] (=]

® 1-4x° F 114 —/

3 3

£ 104 £ 10 ° A

s} s}

o o

g 014 8 01 —=x

]]

[a) [a)

0o~ 4 00 - * A
T T T T T T T T T T T
0 10000 20000 30000 40000 50000 0 5000 10000 15000 20000
Number of backtracks Time (ms)
Figure B.34: Performance of OptActTwolLevelPair strategy.

- e il A2 % no feasible solution found - e il A2 % no feasible solution found

o (=}

T U R g 114 = 4

3 3

E 10 ° A E 10 A

=} =}

o o

8 01+ a 8 014 —]/ °*

© ©

o o

00 4 ¢ A 00 4 * A
T T T T T T T T T
0 5000 10000 15000 0 5000 10000 15000 20000
Number of backtracks Time (ms)

Figure B.35: Performance of CBASlackNoPEX strategy.

72

=
K]
@ 11
=
£ 10
Q
o
g o1
©
o
00

X no feasible solution found

T T T T T T
0 10000 20000 30000 40000 50000

Number of backtracks

Data configuration

11

10

01

00

- .

X no feasible solution found

T T
10000

T T
0 5000

Time (ms)

Figure B.36: Performance of LJRandNoPEX strategy.

15000

T
20000

B.3.2 Comparison of Strategies by Data Configuration

In the following graphs, the values on the y axis denotes search strategies. The
strategies are:

A — OptActTwoLevel

B — OptActTwoLevelPair
C — CBASlackNoPEX

D — LJRandNoPEX

e il A2 % no feasible solution found e il A2 % no feasible solution found
D A D - A
> >
j=2} j=2}
n B ¢ N n B ® N
N A A A
T T T T T T T T T T
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Number of backtracks Time (ms)

Figure B.37: Strategy comparison on data configuration 00: low process com-

plexity,

Strategy
o

low resource complexity.

e il A2 % no feasible solution found
1 A
1 A
1 A
-1 X
T T T T
0 20000 40000 60000

Number of backtracks

Strategy

A2 % no feasible solutiol

n found

T T T
5000 10000

o

Time (ms)

15000

T T
20000

Figure B.38: Strategy comparison on data configuration 01: low process com-
plexity, high resource complexity.

73

Strategy

Figure B.39: Strategy comparison on data

Number of backtracks

plexity, low resource complexity

Strategy

i1 A 2 X no feasible solution found
. 0 4
T T T T
5000 10000 15000 20000

Number of backtracks

i1 A 2 X no feasible solution found
Y
=a°
—
.
T T T
5000 10000 15000

Strategy

Strategy

o il A2 X no feasible solution found
D 2 A
c:* a
B * A
A A
T T T T T
0 5000 10000 15000 20000
Time (ms)
configuration 10: high process com-
o il A2 X no feasible solution found
Dd —/——— A
cCH — @@ 4
B4 —— 4
A x°*
T T T T T
0 5000 10000 15000 20000
Time (ms)

Figure B.40: Strategy comparison on data configuration 11: high process com-
plexity, high resource complexity

74

C. Tables

Data used for plotting the graphs are summarized in the tables provided here.
The parameters in the tables denote:

e Bt — Average number of backtracks

e F — Average number of failures (contradictions)

e N — Average number of nodes

e T — Average time

e FI — Number of feasible instances that ended before time limit

e IT — Number of infeasible instances (thay ended before time limit)
e TFI — Number of feasible instances that ended on time limit

e UF — Number of instances with unknown feasibility (they ended on time limit)

C.1 Tables with n-TNA Results

Configuration Parameter

Bt] F[N]| T][FI]I]TF]UF
20-0 37 37 51 227 | 15 1 0 0
60-0 1464 1463 1438 2269 | 15 | O 1 0
100-0 155 155 348 2015 | 15 1 0 0
20-25 41 41 51 243 | 15 1 0 0
60-25 1488 1487 1351 2234 | 15 1 0 0
100-25 3469 3468 3010 3996 | 12 | 2 2 0
20-50 41 41 60 201 | 16 | O 0 0
60-50 4556 4555 3853 4269 | 13 | 2 1 0
100-50 14578 | 14577 | 12039 | 15295 3]0 12 1
20-75 91 90 95 286 | 16 | O 0 0
60-75 12334 | 12332 | 10135 8386 91 0 5 2
100-75 22332 | 22329 | 18002 | 14930 51 0 11 0
20-100 110 109 106 240 | 16 | O 0 0
60-100 6845 6842 5664 4685 | 14 | 0 2 0
100-100 24527 | 24524 | 19893 | 14455 5] 0 10 1

Table C.1: Test results for CBASlackNoPex strategy on n-TNA data.

Configuration Parameter

Bt | F | N | T[FI[O] TFI]|UF
20-0 37 37 51 263 | 15 | 1 0 0
60-0 1123 | 1122 | 1124 | 2243 | 15 | O 1 0
100-0 155 155 348 | 2226 | 15 | 1 0 0
20-25 18 18 48 243 | 15 | 1 0 0
60-25 72 72 192 | 1140 | 15 | 1 0 0
100-25 198 198 373 | 2244 | 14 | 2 0 0
20-50 21 20 48 194 | 16 | O 0 0
60-50 149 149 265 933 | 14 | 2 0 0
100-50 469 468 660 | 2683 | 16 | O 0 0
20-75 21 21 59 197 | 16 | O 0 0
60-75 118 117 285 964 | 16 | O 0 0
100-75 233 233 557 | 1885 | 16 | 0 0 0
20-100 21 20 70 170 | 16 | O 0 0
60-100 243 242 393 999 | 16 | O 0 0
100-100 704 703 978 | 2083 | 16 | O 0 0

Table C.2: Test results for CBASlackNoPex-TF strategy on n-TNA data.

75

Configuration Parameter

Bt | F | N | T[FI[IO]TFI | UF
20-0 71054 | 35541 | 35558 | 11506 6 1 9 0
60-0 52973 | 26510 | 26561 | 13084 6| 0 10 0
100-0 29442 | 14750 | 14830 9285 8 1 7 0
20-25 48558 | 24300 | 24307 8912 | 11 | O 4 1
60-25 29375 | 14817 | 14839 8606 9 1 6 0
100-25 42283 | 21357 | 21405 | 14275 3| 2 11 0
20-50 54512 | 27315 | 27312 8863 | 10 | 0 6 0
60-50 55277 | 27928 | 27902 | 11562 51 2 9 0
100-50 92286 | 46623 | 46562 | 18782 0] 0 15 1
20-75 90047 | 45078 | 45086 | 13544 8| 0 8 0
60-75 102251 | 51399 | 51432 | 15423 410 12 0
100-75 75997 | 38784 | 38763 | 16828 310 13 0
20-100 61885 | 30996 | 31000 9273 | 12 | 0O 4 0
60-100 93820 | 47315 | 47316 | 17201 310 13 0
100-100 125531 | 63368 | 63381 | 20033 0| 0 16 0

Table C.3: Test results for LJIRandNoPex strategy on n-TNA data.

Configuration Parameter

Bt | F | N | T | FI | 11 | TFI | UF
20-0 72774 | 36404 | 36418 | 11334 6| 1 9 0
60-0 58475 | 29267 | 29315 | 12754 6| 0 10 0
100-0 24474 | 12298 | 12379 8091 | 10 1 5 0
20-25 22477 | 11245 | 11263 4086 | 13 0 2 1
60-25 22670 | 11371 | 11413 6304 | 11 1 4 0
100-25 32348 | 16351 | 16306 | 12865 4| 2 10 0
20-50 45689 | 22867 | 22874 6502 | 11 | O 5 0
60-50 30170 | 15135 | 15174 7027 9| 2 5 0
100-50 49261 | 24740 | 24809 | 14557 5| 0 11 0
20-75 7154 3593 3613 1936 | 15 | 0O 1 0
60-75 35441 | 17776 | 17825 7113 | 11 | O 5 0
100-75 15024 7671 7749 3997 | 14 | O 2 0
20-100 10511 5266 5287 1423 | 15 | 0O 1 0
60-100 23853 | 12003 | 12043 5641 | 13 | O 3 0
100-100 61265 | 30790 | 30846 | 12099 710 9 0
Table C.4: Test results for LJRandNoPex-TF strategy on n-TNA data.
Configuration Parameter

Bt | F | N | T [FI[IO]TFI | UF
20-0 434 224 240 750 | 15 1 0 0
60-0 27682 | 13887 | 14026 | 11940 710 9 0
100-0 8938 4554 4799 7493 | 10 1 5 0
20-25 329 197 210 634 | 15| 0O 0 1
60-25 25123 | 12757 | 12861 8141 10 1 5 0
100-25 21308 | 10845 | 11041 | 13247 4 2 10 0
20-50 343 200 221 553 | 16 | O 0 0
60-50 34380 | 17516 | 17583 7939 9| 2 5 0
100-50 41391 | 21369 | 21485 | 19335 110 15 0
20-75 222 162 175 493 | 16 | O 0 0
60-75 28708 | 14979 | 15027 | 10499 | 10 | O 5 1
100-75 40357 | 21153 | 21212 | 16585 110 13 2
20-100 201 170 174 345 | 16 | O 0 0
60-100 25507 | 13503 | 13554 8069 | 10 | O 5 1
100-100 51432 | 27579 | 27634 | 15765 310 11 2

Table C.5: Test results for OptActTwoLevel strategy on n-TNA data.

76

Configuration Parameter

Bt | F | N | T [FI[IO]TFI | UF
20-0 50 35 50 256 | 15 1 0 0
60-0 21116 | 10592 | 10694 8970 | 10 | O 6 0
100-0 5506 2787 3009 6518 | 11 1 4 0
20-25 135 86 96 352 | 15 1 0 0
60-25 4478 2291 2384 2847 | 14 | 1 1 0
100-25 11750 6014 6063 7397 9| 2 5 0
20-50 51 41 61 247 1 16 | O 0 0
60-50 9845 5247 4885 3908 | 12 | 2 2 0
100-50 18412 9825 9040 | 13153 510 10 1
20-75 108 91 94 266 | 16 | O 0 0
60-75 15651 8732 7347 7789 | 13 | O 3 0
100-75 28968 | 16683 | 13057 | 13283 91 0 7 0
20-100 131 109 102 269 | 16 | O 0 0
60-100 8184 4847 3940 3971 | 14 | O 1 1
100-100 33341 | 19850 | 14358 | 14201 6| 0 10 0

Table C.6: Test results for OptActTwoLevelPair strategy on n-TNA data.

Configuration Parameter

Bt] F] N[TJ[FI[N]TF]UF
20-0 50 35 50 267 | 15 | 1 0 0
60-0 17525 | 8799 | 8897 | 9039 | 10 | O 6 0
100-0 4764 | 2416 | 2635 | 6403 | 11 | 1 4 0
20-25 112 65 95 328 [15 | 1 0 0
60-25 4021 | 2054 | 2165 | 2674 | 14 1 1 0
100-25 6937 | 3525 | 3738 | 6390 | 10 | 2 4 0
20-50 39 32 60 244 | 16 | O 0 0
60-50 4680 | 2461 | 2500 | 2353 | 13 | 2 1 0
100-50 12692 | 6604 | 6700 | 9904 9| 0 7 0
20-75 46 43 81 223 | 16 | O 0 0
60-75 267 246 408 | 1113 | 16 | O 0 0
100-75 1107 863 | 1136 | 2149 | 16 | O 0 0
20-100 38 36 85 173 116 | 0 0 0
60-100 686 613 739 | 1497 | 16 | O 0 0
100-100 1828 | 1227 | 1366 | 3182 | 16 | O 0 0

Table C.7: Test results for OptActTwoLevelPair-TF strategy on n-TNA data.

Configuration Parameter

Bt | F | N | T [FI[IO]TFI | UF
20-0 434 224 240 895 | 15 | 1 0 0
60-0 24620 | 12358 | 12499 | 11966 710 9 0
100-0 7241 3664 3908 7648 | 10 | 1 5 0
20-25 275 154 185 602 | 15 | O 0 1
60-25 8295 4245 4372 5702 | 12 | 1 3 0
100-25 9565 4921 5155 9998 7T 2 7 0
20-50 284 156 184 604 | 16 | O 0 0
60-50 8707 4486 4617 4846 | 11 | 2 3 0
100-50 18239 9516 9761 | 11958 8|1 0 8 0
20-75 82 66 104 406 | 16 | 0 0 0
60-75 4823 2558 2720 3173 | 15| 0 1 0
100-75 6463 3693 3984 4578 | 14 | 0 2 0
20-100 70 64 111 310 | 16 | O 0 0
60-100 6803 3617 3755 3875 | 15 | 0 1 0
100-100 10883 6175 6449 6106 | 13 | O 3 0

Table C.8: Test results for OptActTwoLevel-TF strategy on n-TNA data.

77

Tables with PEXTNA Results

Configuration Parameter

Bt | F | N T[FI[IO]TFI | UF
20-0 26 26 42 234 | 15 1 0 0
60-0 69 69 187 1048 | 15 | 0O 0 1
100-0 321 321 478 2142 | 14 2 0 0
20-25 69 68 88 275 | 16 | 0 0 0
60-25 5119 5118 4248 4707 | 12 | 1 3 0
100-25 7533 7532 6360 9415 T 2 7 0
20-50 117 116 123 327 | 16 | O 0 0
60-50 10143 | 10141 8541 8092 91 1 5 1
100-50 7914 7912 6639 9582 | 10 | O 6 0
20-75 147 147 136 387 | 16 | O 0 0
60-75 22029 | 22026 | 18248 | 13807 710 9 0
100-75 21772 | 21770 | 17566 | 16929 2|1 13 0
20-100 86 86 89 188 | 16 | 0 0 0
60-100 16506 | 16504 | 13302 8566 | 10 | 0 6 0
100-100 22535 | 22533 | 17818 | 15419 5| 0 11 0

Table C.9: Test results for CBASlackNoPex strategy on PEX data.

Configuration Parameter

Bt | F | N | T[FI[O] TFI]|UF
20-0 26 26 42 232 | 15 1 0 0
60-0 69 70 187 949 | 15| O 0 1
100-0 321 321 478 | 1924 | 14 | 2 0 0
20-25 13 13 44 177 | 16 | O 0 0
60-25 88 88 180 828 | 15 1 0 0
100-25 1197 | 1197 | 1308 | 3366 | 13 | 2 1 0
20-50 23 23 50 177 | 16 | O 0 0
60-50 200 199 294 | 1095 | 14 | 1 0 1
100-50 132 132 399 | 1729 | 16 | O 0 0
20-75 29 29 57 196 | 16 | O 0 0
60-75 150 150 314 933 | 16 | O 0 0
100-75 360 359 624 | 1652 | 15 1 0 0
20-100 16 16 52 181 | 16 | O 0 0
60-100 329 329 462 | 1021 | 16 | O 0 0
100-100 460 459 675 | 1692 | 16 | O 0 0

Table C.10: Test results for CBASlackNoPex-TF strategy on PEX data.

Configuration Parameter

Bt | F | N | T | FI | II | TFI | UF
20-0 26 26 42 237 | 15 | 1 0 0
60-0 69 69 187 1137 | 15 | O 0 1
100-0 321 321 478 2255 | 14 | 2 0 0
20-25 76 67 88 298 | 16 | O 0 0
60-25 5763 4662 3891 4873 | 12 | 1 3 0
100-25 8937 7480 6382 9482 7| 2 7 0
20-50 128 116 123 310 | 16 | O 0 0
60-50 11577 9454 8100 7954 9| 1 5 1
100-50 7795 6352 5553 9805 | 10 | O 6 0
20-75 168 143 136 407 | 16 | O 0 0
60-75 24807 | 20291 | 17275 | 13887 710 9 0
100-75 24188 | 18701 | 15926 | 17114 311 12 0
20-100 94 88 93 215 | 16 | O 0 0
60-100 21180 | 16420 | 13777 9581 91 0 7 0
100-100 25680 | 19370 | 16347 | 16945 310 13 0

Table C.11: Test results for CBASlackPex strategy on PEX data.

78

Configuration Parameter

Bt | F | N | T[FI[O] TFI]|UF
20-0 26 26 42 266 | 15 | 1 0 0
60-0 69 70 187 | 1153 | 15 | 0 0 1
100-0 321 321 478 | 2011 | 14 | 2 0 0
20-25 13 13 44 179 | 16 | O 0 0
60-25 89 88 180 987 | 15 | 1 0 0
100-25 1149 | 1148 | 1264 | 3302 | 13 | 2 1 0
20-50 23 23 50 185 | 16 | O 0 0
60-50 200 198 285 | 1160 | 13 | 2 0 1
100-50 153 152 420 | 1785 | 16 | O 0 0
20-75 33 31 57 208 | 16 | O 0 0
60-75 144 144 294 | 1091 | 16 | O 0 0
100-75 446 441 664 | 1860 | 15 | 1 0 0
20-100 22 21 55 197 | 16 | O 0 0
60-100 129 125 259 936 | 16 | O 0 0
100-100 548 540 693 | 1889 | 16 | O 0 0

Table C.12: Test results for CBASlackPex-TF strategy on PEX data.

Configuration Parameter

Bt] F[N]| T][FI]I]TF]UF
20-0 46061 | 23040 | 23058 9285 8| 1 7 0
60-0 40222 | 20133 | 20182 | 10611 710 8 1
100-0 30220 | 15173 | 15254 9499 7| 2 7 0
20-25 50138 | 25091 | 25110 6383 | 11 | O 5 0
60-25 45927 | 23055 | 23100 | 10359 7|1 8 0
100-25 48665 | 24475 | 24525 | 12900 5| 2 9 0
20-50 38923 | 19488 | 19501 6142 | 12 | 0 4 0
60-50 65313 | 32846 | 32835 | 13958 3|1 11 1
100-50 51097 | 25980 | 26017 | 16578 310 13 0
20-75 90935 | 45515 | 45525 | 14205 710 9 0
60-75 103688 | 52207 | 52224 | 18919 110 15 0
100-75 76830 | 38972 | 39004 | 18783 0 1 15 0
20-100 75551 | 37850 | 37845 | 13524 8] 0 8 0
60-100 94065 | 47505 | 47466 | 20045 0] 0 16 0
100-100 92809 | 47101 | 47043 | 20046 0] 0 16 0

Table C.13: Test results for LJRandNoPex strategy on PEX data.

Configuration Parameter

Bt | F | N | T [FI[IO]TFI | UF
20-0 52771 | 26395 | 26413 | 10655 8| 1 7 0
60-0 38497 | 19321 | 19333 | 11117 710 8 1
100-0 28681 | 14382 | 14461 | 10648 6| 2 8 0
20-25 26234 | 13132 | 13149 3924 | 13 | O 3 0
60-25 40910 | 20489 | 20536 9169 8| 1 7 0
100-25 42419 | 21407 | 21349 | 11928 5 2 9 0
20-50 19398 9715 9733 2919 | 14 | O 2 0
60-50 35444 | 17744 | 17792 8010 8| 1 6 1
100-50 28174 | 14210 | 14282 | 10650 91 0 7 0
20-75 15236 7634 7651 3928 | 14 | O 2 0
60-75 12992 6554 6598 2554 | 15 | O 1 0
100-75 22205 | 11205 | 11285 6554 | 11 1 4 0
20-100 1391 709 726 1068 | 16 | O 0 0
60-100 31853 | 16004 | 16053 7237 | 12 | 0O 4 0
100-100 88806 | 44603 | 44651 | 14318 5] 0 11 0

Table C.14: Test results for LJRandNoPex-TF strategy on PEX data.

79

Configuration Parameter

Bt| F| N| T|FI|H|TFI|UF
20-0 52149 | 26085 | 26101 8852 8 1 7 0
60-0 40281 | 20163 | 20211 | 12880 5 0 10 1
100-0 34211 17142 17224 9007 8 2 6 0
20-25 55555 | 27801 | 27820 6381 | 11 0 5 0
60-25 39809 | 19989 | 20032 | 10487 7 1 8 0
100-25 27681 | 13965 | 14021 | 11461 6| 2 8 0
20-50 42137 | 21096 | 21110 6637 | 12 0 4 0
60-50 58108 | 29231 | 29217 | 13954 3 1 11 1
100-50 50879 | 25888 | 25936 | 17708 2 0 14 0
20-75 75074 | 37584 | 37594 | 15381 8| 0 8 0
60-75 89653 | 45199 | 45193 | 18939 1 0 15 0
100-75 69996 | 35576 | 35599 | 18789 0 1 15 0
20-100 75773 | 37972 | 37963 | 13993 710 9 0
60-100 76046 | 38485 | 38431 | 20048 (U] 16 0
100-100 91410 | 46321 | 46335 | 20044 0] 0 16 0

Table C.15: Test results for LJRandPex strategy on PEX data.

Configuration Parameter

Bt | F | N | T | FI | 11 | TFI | UF
20-0 51480 | 25748 | 25767 9385 8 1 7 0
60-0 40856 | 20497 | 20500 | 12037 6| 0 9 1
100-0 28495 | 14304 | 14386 9443 8| 2 6 0
20-25 28205 | 14114 | 14133 3908 | 13 0 3 0
60-25 42910 | 21501 | 21547 | 10557 7 1 8 0
100-25 32893 | 16520 | 16594 | 10585 7T 2 7 0
20-50 13190 6611 6629 3002 | 14 0 2 0
60-50 33224 | 16637 | 16677 7884 7T 2 6 1
100-50 25196 | 12722 | 12796 9314 | 10 0 6 0
20-75 14632 7335 7351 4241 | 14 | O 2 0
60-75 4226 2177 2225 2236 | 15 0 1 0
100-75 21695 | 10972 | 11042 7609 | 10 1 5 0
20-100 1262 646 664 1082 | 16 0 0 0
60-100 23356 | 11748 | 11800 5740 | 13 0 3 0
100-100 72672 | 36585 | 36626 | 14471 5 0 11 0

Table C.16: Test results for LJRandPex-TF strategy on PEX data.

Configuration Parameter

Bt| F| N| T|FI|H|TFI|UF
20-0 476 246 264 977 | 15 1 0 0
60-0 20697 | 10388 | 10530 7175 | 10 0 5 1
100-0 17669 8969 9203 9880 7T 2 7 0
20-25 546 283 309 580 | 16 0 0 0
60-25 49843 | 25059 | 25154 | 12925 5 1 10 0
100-25 23544 | 11937 | 12119 11733 4 2 8 2
20-50 432 252 273 652 | 16 0 0 0
60-50 27537 | 14076 | 14140 9766 8 1 6 1
100-50 23961 | 12582 | 12692 | 15195 5 0 11 0
20-75 286 200 209 544 | 16 0 0 0
60-75 34660 | 17896 | 17925 | 12939 8| 0 8 0
100-75 37282 | 20447 | 20491 | 17668 3 1 12 0
20-100 286 218 226 517 | 16 0 0 0
60-100 23457 | 12427 | 12448 8755 | 10 0 5 1
100-100 44699 | 23723 | 23772 | 19376 1 0 15 0

Table C.17: Test results for OptActTwolLevel strategy on PEX data.

80

Configuration Parameter

Bt | F | N | T [FI[IO]TFI | UF
20-0 63 38 56 334 | 15 | 1 0 0
60-0 4099 2069 2195 3239 | 14 | O 1 1
100-0 10761 5430 5614 7615 9| 2 5 0
20-25 38 29 55 235 |16 | O 0 0
60-25 8814 4489 4508 3194 | 14 | 1 1 0
100-25 16566 8565 8378 | 10838 6| 2 8 0
20-50 48 40 57 212 | 16 | O 0 0
60-50 8424 4415 4272 5375 | 12 2 2 0
100-50 17547 9704 8384 | 11406 91 0 7 0
20-75 90 73 75 250 | 16 | O 0 0
60-75 14302 7935 6689 6867 | 13 | O 3 0
100-75 18749 | 10696 8662 | 10778 91 1 6 0
20-100 188 129 130 379 1 16 | O 0 0
60-100 15964 8699 7690 6310 | 14 | © 2 0
100-100 22171 | 12282 | 10904 | 10799 | 11 | O 5 0
Table C.18: Test results for OptActTwoLevelPair strategy on PEX data.

Configuration Parameter

Bt] F] N[TJ[FI[N]TF]UF
20-0 63 38 56 364 | 15 | 1 0 0
60-0 2901 | 1471 | 1596 | 3497 | 14 | 0 1 1
100-0 8314 | 4206 | 4388 | 7623 9| 2 5 0
20-25 31 23 54 249 [16 | O 0 0
60-25 5754 | 2924 | 3014 | 3113 | 14 1 1 0
100-25 11169 | 5652 | 5846 | 8881 8| 2 6 0
20-50 36 29 55 236 | 16 | O 0 0
60-50 4474 | 2335 | 2404 | 3983 | 12 | 2 2 0
100-50 7931 | 4176 | 4377 | 6068 | 14 | O 2 0
20-75 59 46 72 263 | 16 | O 0 0
60-75 568 379 525 | 1575 | 16 | 0 0 0
100-75 3702 | 2176 | 2243 | 3401 | 14 | 1 1 0
20-100 148 94 129 392 [16 | O 0 0
60-100 6944 | 3612 | 3761 | 3061 | 15 | O 1 0
100-100 12686 | 6885 | 6803 | 5707 | 14 | 0 2 0

Table C.19: Test results for OptActTwoLevelPair-TF strategy on PEX data.

Configuration Parameter

Bt | F | N | T [FI[IO]TFI | UF
20-0 480 248 266 865 | 15 | 1 0 0
60-0 16738 8409 8554 7153 | 10 | O 5 1
100-0 14393 7330 7565 | 10158 7| 2 7 0
20-25 536 273 304 595 | 16 | O 0 0
60-25 23120 | 11640 | 11747 8178 9| 1 6 0
100-25 10103 5248 5471 7708 8 | 2 5 1
20-50 397 216 245 567 | 16 | O 0 0
60-50 12893 6552 6665 6521 | 10 | 1 4 1
100-50 14825 7881 7983 8197 | 11 | O 5 0
20-75 154 101 130 446 | 16 | 0 0 0
60-75 368 342 492 1341 | 16 | O 0 0
100-75 9553 5364 5616 6248 | 13 | 1 2 0
20-100 99 71 108 343 | 16 | O 0 0
60-100 8628 4565 4729 3775 | 14 | 0 2 0
100-100 15101 8286 8471 9734 | 13 | 0 3 0

Table C.20: Test results for OptActTwolLevel-TF strategy on PEX data.

81

C.3

Configuration Parameter

Bt | F | N T[FI[II]TFI | UF
20-0 129 128 136 1606 | 15 1 0 0
60-0 2594 2523 665 9158 | 12 | 0O 3 1
100-0 2975 2713 | 1002 | 15909 31 2 11 0
20-25 73 70 92 746 | 16 | 0 0 0
60-25 971 898 884 7889 91 1 4 2
100-25 2469 2419 | 1101 | 13945 1| 2 11 2
20-50 17929 | 13598 | 4424 1945 | 15 | 0O 1 0
60-50 4308 4052 | 1867 | 12656 5 1 9 1
100-50 7317 5227 | 3225 | 12036 510 9 2
20-75 163 148 149 700 | 16 | O 0 0
60-75 22250 | 18169 | 5972 | 13753 510 10 1
100-75 10958 9082 | 4323 | 17922 2 1 13 0
20-100 95 91 95 361 | 14 | O 0 2
60-100 25978 | 20974 | 5709 8600 7|10 5 4
100-100 28357 | 24327 | 5576 | 13611 210 10 4

Table C.21: Test results for SumHeightPex strategy on PEX data.

Configuration Parameter

Bt | F | N | T | FI | 11 | TFI | UF
20-0 129 128 136 1653 | 15 1 0 0
60-0 2278 | 2219 645 9320 | 12 | O 3 1
100-0 1933 1779 822 | 16222 2 2 12 0
20-25 50 50 78 707 | 16 | O 0 0
60-25 688 681 727 7709 | 11 1 4 0
100-25 2018 | 2012 999 | 13959 41 2 10 0
20-50 291 276 106 824 | 16 | O 0 0
60-50 2349 | 2316 747 5786 | 10 | 2 3 1
100-50 1102 | 1080 | 1250 | 10233 | 10 | O 6 0
20-75 82 79 108 487 | 16 | O 0 0
60-75 5211 | 5001 877 5516 | 14 | O 2 0
100-75 1412 | 1391 | 1586 6409 | 13 1 2 0
20-100 7568 | 7567 | 2016 1554 | 15 | 0 1 0
60-100 11094 | 9310 | 2488 4436 | 14 | O 2 0
100-100 11515 | 9008 | 4622 6164 | 14 | O 2 0

Table C.22: Test results for SumHeightPex-TF strategy on PEX data.

Tables with x-RCPSP Results

Configuration Parameter

Bt] F[N]| T][FI]I]TF]UF
i1-00 13 13 20 52 | 40 | O 0 0
i1-01 18554 | 18554 | 16296 7118 | 33 | O 7 0
i1-10 7 6 18 50 | 40 | O 0 0
i1-11 779 779 706 1387 | 40 | O 0 0
i2-00 13925 | 13922 | 13626 | 20044 0| 0 40 0
i2-01 198 198 482 2513 0| 0 5 35
i2-10 9052 9047 9042 | 19667 1] 0 39 0
i2-11 385 384 1317 7031 0| O 14 26

Table C.23: Test results for CBASlackNoPex strategy on data.

82

Configuration Parameter

Bt | F | N | T [FI[IO]TFI | UF
i1-00 14203 5297 | 13962 969 | 40 | O 0 0
i1-01 55370 | 27736 | 27709 | 17482 | 11 | 0 29 0
i1-10 187 98 104 234 | 40 | O 0 0
i1-11 15504 7776 7895 8257 | 33 | O 7 0
i2-00 17368 9086 8879 | 18531 0] 0 37 3
i2-01 1960 1379 1445 | 20038 0] 0 40 0
i2-10 17816 9438 9198 | 19029 0] 0 38 2
i2-11 1959 1326 1365 | 19536 0] 0 39 1

Table C.24: Test results for LJRandNoPex strategy on data.

Configuration Parameter

Bt | F | N | T | FI | II | TFI | UF
i1-00 87 48 57 136 | 40 | O 0 0
i1-01 72645 | 36331 | 36346 | 12581 | 25 | O 15 0
i1-10 23 15 27 81 |40 | O 0 0
i1-11 5083 2551 2563 2994 | 40 | O 0 0
i2-00 18640 9370 | 10021 | 20057 0] 0 40 0
i2-01 0 0 0 0 0] 0 0 40
i2-10 22157 | 11280 | 11894 | 20045 0 0 40 0
i2-11 0 0 0 0 0] 0 0 40

Table C.25: Test results for OptActTwoLevel strategy on data.

Configuration Parameter

Bt] F] N] TJ[FI]I]TFL]UF
i1-00 31 19 27 69 | 40 | O 0 0
i1-01 55642 | 27860 | 27813 9812 | 30 | O 10 0
i1-10 9 6 18 56 | 40 | O 0 0
i1-11 2487 1255 1258 1929 | 40 | O 0 0
i2-00 23327 | 11787 | 12313 | 20041 0] 0 40 0
i2-01 128 122 375 2008 0] 0 4 36
i2-10 16924 8625 9132 | 20046 0] 0 40 0
i2-11 246 229 750 4015 0] 0 8 32

Table C.26: Test results for OptActTwoLevelPair strategy on data.

83

D.

Compact Disc Content

The enclosed compact disc contains electronic version of the thesis, test program
implementing the search strategies and the whole testing framework implemented
to evaluate the search strategies. Next, it contains input test data as well as
scheduled output data for each test case.

The directory structure on the disk is:

thesis — The directory contains electronic version of the thesis.

program — The directory contains the exacutable jar file of the test program
used to evalute the strategies, more about it in section [A.1l

test-framework — The directory contains the source files for the whole
test framework. Besides the test program source files, it contains scripts
for batch processing, source files of other utility programs contained in
the framework. To allow immediate usage, necessary compiled files are also
presented in the fromework. The contents and usage of the whole framework
is described in section [A.2l

inputdata — The directory contains the input test data.

outputdata — The directory contains in scheduled instances of the input
test data for each strategy.

84

	Introduction
	Constraint Satisfaction
	Constraint Optimisation
	Search techniques
	Complete Search Algorithms
	Incomplete Search Algorithms
	Search Heuristics
	Branching Schemes
	Branch and Bound Method

	Scheduling Problems
	Basic Definitions
	Resources
	Precedences and Temporal Constraints

	Scheduling Problems with Alternatives
	PEX Temporal Networks
	Temporal Networks with Alternatives
	Custom Extension to PEX Temporal Networks
	x-RCPSP
	Alternative Resource Scheduling Problems

	Implementation
	Used Choco Constraint Model
	Activity variables
	Constraints
	PEX
	Nested Temporal Networks with Alternatives
	x-RCPSP Constraints
	Optimality Criterion

	Temporal Filtering in Temporal Networks with Alternatives
	Parallel Branching
	Alternative Branching

	Precedence Constraint Posting in Choco Solver
	Modelling PCP with Alternatives

	Search Strategies
	Classical Constraint Satisfaction Search Strategies
	Basic Strategies for Scheduling Problems
	Set Start Time
	Precedence Constraint Posting

	Traditional Approach to Scheduling with Alternatives
	PEX
	PEX Propagation
	PEX and Heuristics
	SumHeightPEX
	CBASlackPEX
	LJRandPEX

	Two Level Branching Strategy for Alternatives
	OptActTwoLevel Strategy

	Proposed Search Strategies for Alternatives
	OptActTwoLevelPair Strategy
	CBASlackNoPEX Strategy
	LJRandNoPEX Strategy

	Empirical Evaluation
	Experiments
	Experiments on n-TNA Data
	Experiments on PEXTNA Data
	Experiments on x-RCPSP Data
	Test Environment Configuration
	Performance Measurement

	Tested Hypothesis
	Results
	Results for PEXTNA Data
	Results for x-RCPSP Data

	Conclusion
	Bibliography
	List of Abbreviations
	Attachments
	Test Program Documentation
	Test Program Documentation
	Test Program User Documentation

	Test Framework Documentation
	Project Structure

	Graphs
	Graphs of n-TNA Results
	Performace of the Strategies
	Comparison of the Strategies

	Graphs of PEXTNA Results
	Performace of the Strategies
	Comparison of the Strategies

	Graphs of x-RCPSP Results
	Performace of the Strategies
	Comparison of Strategies by Data Configuration

	Tables
	Tables with n-TNA Results
	Tables with PEXTNA Results
	Tables with x-RCPSP Results

	Compact Disc Content

