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Bayesov klasifikátor. Použit́ım týchto algoritmov sme naimplementovali knižnicu
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1. Introduction

1.1 Motivation

Machine learning is an interesting field in Computer Science. As computers make
progress in terms of storage space, computational speed, mobility or networking,
there is a need to take advantage of that and produce some useful results. Machine
learning can be used when we do not know an exact algorithm to solve a task, but
we can provide enough data to learn from (e.g. hand-written text recognition).
A lots of algorithms have been developed for machine learning, but still there is
a challenge in creating real applications based on them.

We have decided to create a library, which would be easy to use by a pro-
grammer with no experience with machine learning algorithms, and which would
help his application to behave more intelligently.

We have chosen the Android platform, because we consider mobile devices
very perspective and there is a great space for new ideas in this field. Android is
the fastest growing mobile platform, millions of devices (mobile phones, tablets,
...) run Android and its success is based on cloud Google applications as GMail
or GMaps [7]. Another great feature is that the most of the applications are
available at a single place1, which is natively supported by the platform, anyone
can make his application publicly visible there and the users know where they
can find it. Moreover, the devices are available for much lower prices than those
of the currently biggest Android rival - iOS2.

Secondly, it is a platform for which the development is supported very well.
It uses one of the most common programming languages–Java, and for its SDK
there are lots of tutorials and support.

There are many Android applications, lots of them are useful and provide a lot
of information, but there is a lack of some intelligent filters or features that enable
greater customization. That is exactly a task suitable for machine learning.

The result of our thesis is a library for machine learning and a non-trivial
Android application based on the library. Both of them are included on the
attached CD (see Appendix A).

1.2 Related work

There are several projects with a similar effort. However, they are not finished yet
or they are too complicated to use and their sizes are often too big. The android-
reasoning-util3 aims to the sensory data of a device, ml4android4 attempts to
use a wide range of algorithms. Android version of Weka5 is already available,
however its size can be a problem.

Instead, we bring out a ready-to-use, small library, together with an interesting
application.

1https://play.google.com/
2http://www.apple.com/ios/
3http://code.google.com/p/android-reasoning-util/wiki/Home
4http://code.google.com/p/ml4android/
5https://github.com/rjmarsan/Weka-for-Android
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1.3 The structure of the thesis

In the first part of the thesis, we introduce the theoretical issues of machine
learning. We focus on the classification task, which predicts a target class from
a set of attributes. We define the task of concept learning, some basic terms and
algorithms. That leads to an important issue of the inductive bias, which simply
says, that we cannot classify new instances without having some assumptions
while learning.

Then we examine 2 algorithms for the classification task–the Decision tree
algorithm and the Naive Bayes classifier. These belong to some of the most
frequently used ones and we have implemented them in our library.

The second part discusses the development of the classification library. We
describe the representation, the data structures and take a closer look to the
implementation of the two algorithms. We introduce a few problems, e.g. the
necessity of implementing a custom serialization for decision trees.

The main part of the library is a pure Java code, so it is able to operate on a
desktop machine as well. However, we extend that by an Android dependent class
which helps to create a graphic user interface (GUI) describing the learning task.
Moreover, this extension provides some methods that enable the communication
between the GUI and the computing part of the library. These methods make it
easy to develop basic Android applications using our machine learning toolkit.

An important part of the thesis is the testing of the library. We used a
relatively large data set to evaluate the precision. The results have been very
close to the results of one of the most popular machine learning applications–
Weka6 [1]. Here, we also mention the importance of the representation of a
classification task for time and space efficiency.

To document the usefulness of our library, we devote the last part of the
thesis to the application we have developed using our library. The application
is called EventAdviser and it attempts to be a user friendly Android application
that helps the user in filtering some of culture events, which may be of his or her
interest. The application can download real data from two information servers
and learns to sort them according to the user’s preferences. It is designed to be
easily extensible by plugins that enable more sources of the data to be included.
Here, we also demonstrate some principles of using the library.

6www.cs.waikato.ac.nz/ml/weka/
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2. Theoretical background

In this chapter, we define the basic terms connected with machine learning. We
start with the concept learning, which is, in fact, a special case of the classification
task, but it is simpler. This will lead into one of the most important things about
the machine learning - the inductive bias. Then we will discuss two classification
task algorithms - the Decision tree algorithm and the Naive Bayes classifier.

The most of this chapter is based on the first 3 chapters of Mitchell (1997)
[2].

2.1 Definitions and the concept learning

2.1.1 Machine learning

The goal of machine learning is to improve the performance of a computer pro-
gram with experience. There are a lot of tasks that can be solved using machine
learning, including speech recognition, playing games, automatic driving of a ve-
hicle, diagnosing medical cases and data mining (getting some valuable knowledge
from large databases). It is also known by common Internet users, for whom ma-
chine learning filters spam mail, shows user-aware advertisements or helps with
customized search.

Various algorithms have been invented for machine learning. They use results
from the fields of artificial intelligence, probability and statistics, information
theory, neurobiology and others. Some of the algorithm categories are Decision
trees, Artificial Neural Networks, Bayesian learning and Genetic Algorithms.

In the thesis, we shall talk about supervised learning. That means the algo-
rithm has input-output pairs to learn from. If the output is not present, it is
called unsupervised learning. The last type is reinforcement learning where the
algorithm is awarded or punished after its (multiple) actions.

2.1.2 Concept learning

A concept learning task is a simple learning task that has much in common with
classification task and illustrates the main ideas.

A concept describes a subset of objects in a larger set, so we can think of it
as a boolean-valued function over this larger set. The task of concept learning is
to approximate this function. For example, we want to find a general definition
for a bird over a set of animals.

The set of all items over which the concept is defined is called the set of
instances, denoted X. The function is called the target concept, denoted c : X 7→
{0, 1}.

Then we have a set of training examples D = {xi}, which can be positive
(c(xi) = 1) and negative(c(xi) = 0). The goal is to estimate c, i.e. create a
hypothesis.

The set of all possible hypotheses H is determined by the representation. The
easiest way is to have only a conjunction of constraints, which means that a
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hypothesis would be a vector of constraints specifying values of attributes. Each
attribute can either

• indicate that any value is acceptable

• specify a single required value

• indicate that no value is acceptable

We should find h ∈ H such that h(x)=c(x) for all x ∈ X. However, we do
not have information about all elements of X. The only information we have
is about our training examples. Our assumption is that the best hypothesis
regarding unseen instances is the hypothesis that best fits the observed training
data.

2.1.3 Simple algorithms

There are a few simple algorithms for the concept learning task that demonstrate
the main problems to deal with and which are solved later by the Decision tree
algorithms. Let us define some notions.

A hypothesis h is consistent with a set of training examples if and only if
h(x) = c(x) for each example < x, c(x) > in D.

An example x satisfies a hypothesis h when h(x) = 1.
A hypothesis covers a positive example when it correctly classifies it as posi-

tive.
General to specific ordering of hypotheses: Let hj and hk be boolean-valued

functions defined over X. Then hj is more general than or equal to hk if and only
if

(∀x ∈ X)[(hk(x) = 1)→ (hj(x) = 1)]

We also define strictly more general than relationship similarly. This relation
is important because it provides a useful structure over the hypothesis space H
for any concept learning problem.

Find-S

This algorithm finds a maximally specific hypothesis. It starts with the most
specific hypothesis in H, which is, in the simplest representation mentioned above,
conjunction of empty sets. Then it uses more-general-than ordering, takes all
positive training examples and for each of their attributes, replaces it by the next
more general constraint that is satisfied by x. This algorithm ignores negative
examples, it just tries to cover all the positive ones.

The algorithm is based on two main assumptions:

1. The correct target concept is in H.

2. There are no errors in the training data.

If these are met, the output hypothesis will be consistent with all training
examples, including the negative ones, which follows from the definition of more-
general-than ordering.
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The algorithm cannot even detect inconsistency in training examples, because
it ignores the negative ones.

We do not know whether we should prefer the most specific hypothesis to
more general ones. Moreover, there can be more maximally specific hypotheses.

Candidate-Elimination

The version space, with respect to hypothesis space H and training examples D
is, by definition, the subset of H consistent with the training examples in D.

Candidate-Elimination algorithm starts with all H and then removes any
hypothesis inconsistent with any training example. Since it is unreal to enumerate
all H, it uses a representation of Version space that consists of its most general
and most specific members. Then, as needed, it is possible to enumerate all
members between these to sets in the general-to-specific ordering. Thanks to
this ordering, during the algorithm, just the general and specific boundaries are
changing.

With the same assumptions as in Find-S, this algorithm will converge to the
correct hypothesis. Ideally, S and G boundaries are one identical hypothesis at
the end. Otherwise, we can use the partially learned concept to classify new
instances with some degree of confidence. For example, a new instance can be
classified positive by all hypotheses in the current Version space. This happens
if and only if the instance satisfies every member of S, because every other hy-
pothesis in current Version space is at least as general. Similarly for all negative
classification using all members of G. In other cases, the new instance is some-
where between the boundaries and we can compute the degree of confidence.

Having the training data with errors, the algorithm removes the correct target
concept from Version space, but with sufficient additional data, we detect an
inconsistency, because the final Version space would be empty.

2.1.4 Inductive bias

The hypotheses space is determined by the representation of hypotheses. Using
conjunction of constraints, we cannot describe even a simple disjunction. That
means, the correct target concept does not have to be in H. In this case, for
example Candidate-Elimination returns an empty set.

To assure this will not happen, we could use a representation, where a hypoth-
esis is any subset of X. However, it is not very reasonable, because the power
set of X is too large. Moreover, generalization cannot be applied, because the S
boundary will always be the disjunction of observed positive examples and G will
be the negated disjunction of the observed negative examples. Therefore, we can
classify only previously observed examples. Each unseen instance will be clas-
sified half positive half negative, because in power set, for each hypothesis that
classifies x positive, there will be identical hypothesis except for its classification
of x.

The space of all possible hypotheses (power set of X) is called unbiased. When
we have an assumption about the hypotheses, the space is smaller and it is called
biased.

A learner that makes no a priori assumptions regarding the identity of the
target concept has no rational basis for classifying any unseen instances. In-
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ductive bias of an algorithm is a set of assumptions B, such that for a new
instances xi, their classification by the algorithms follows deductively from B
and D and xi, where D is a set of training examples. For example, inductive bias
of Candidate-Elimination algorithm is that the target concept is contained in the
given hypothesis space H.

2.1.5 Remarks

Find-S and Candidate-Elimination algorithms are iterative, because they just
iterate over the set of training examples, which means we can add new examples
without starting again. This is not true for Decision tree algorithms.

2.2 Decision tree learning

Decision tree learning is one of the most used methods for the classification task.
It is robust to noisy data, it is able to represent and learn disjunctive expressions.
Another advantage is that these algorithms are white boxes, which means it is
approximately clear, how they work.

2.2.1 The principles

In the classification task, unlike in the concept learning, the target function can
have more than two possible output values. The task is to classify examples into
one of a discrete set of possible values.

Input: Training examples - a subset of X, where X is the set of all possible
instances. An instance is represented by attribute-value pairs (extensions allow
real-valued attributes) and the label (the output value of the target function).
For each attribute we know its possible values and so do we for the label.

Output: Decision tree. Using decision tree, we can easily classify unseen
instances. Each node of the tree represents a test of some attribute of the instance.
Each branch from that node corresponds to one of the possible values for this
attribute. An instance is classified by starting in the root node, testing the
attribute specified by this node, moving down the branch corresponding to the
value of the example and this is recursively repeated until it reaches a leaf node,
which provides the classification.

We can divide the algorithm into 2 main parts:

1. Creating the tree.

2. Post-pruning the tree, which deals with noisy data.

2.2.2 Creating the tree

The tree is constructed top-down. It finds such attribute that is the best to test
as the first, in sense, how well it can distinguish the training examples. It is
selected as the root node and for each its possible value, its descendent is created
recursively with appropriate examples (whose values correspond to the branch).

12



2.2.3 Choosing the best attribute

We will define a statistical property, called information gain, that measures how
well a given attribute separates the training examples according to their target
classification.

At first, let us define the Entropy, that characterizes the purity of the exam-
ples.

Entropy(S) ≡ −p⊕log2p⊕ − p	log2p	

This is a definition useful for positive/negative classification. Only if the
entropy is 0, all members belong to the same class. The entropy is 1 if the col-
lection contains an equal number of positive and negative examples. For unequal
numbers, it is between 0 and 1.

One interpretation says that Entropy(S) specifies the minimum number of
bits of information needed to encode the classification of an arbitrary member S.
For example, if all are positive, no message is needed, and entropy is 0. If the
numbers of positive and negative is equal, 1 bit is required for each classification.
Finally, if positive (or negative) ones are more frequent, in average less than 1 bit
is needed, using shorter codes to the collections of those more frequent.

In general, if the output can have c different values, entropy is defined as
follows.

Entropy(S) ≡
c∑

i=i

pilog2pi

The logarithm is still base 2, because we are interested in expected encoding
length in bits. The maximum of the entropy for c-valued target function is log2c
.

What we want is to know the efficiency of splitting examples with respect
to the attribute. Information gain measures the expected reduction of entropy
caused by the split.

Gain(S,A) = Entropy(S)−
k∑

v∈V alues(A)

|Sv|
|S|

Entropy(Sv)

As the best attribute, we select the one with highest information gain, so, in
fact, we search for the minimal sum over values of A.

2.2.4 Inductive bias in decision tree learning

Although there are many decision trees consistent with the examples, the algo-
rithm chooses one of them, the first acceptable it finds. In its search, it prefers
shorter trees and selects the trees that have the attribute with highest information
gain in root node.

As we mentioned, there has to be some inductive bias if we want to classify
unseen instances. The inductive bias of decision trees reminds of Occam’s razor,
which says:

“Prefer the simplest hypothesis that fits the data.”
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More precisely, the inductive bias of decision tree algorithms is: “Shorter trees
are preferred over longer trees. Trees that place high information gain attributes
close to the root are preferred over those that do not.”

2.2.5 Post-pruning the tree

Post-pruning is a method used to avoid so called overfitting the data. We say that
a hypothesis overfits the training examples if there is some other hypothesis that
fits the training data less well, but performs better over the entire distribution
of instances. This is caused either by errors in the training data, or because the
training set is too small.

The most common approach is to divide the training set into two parts. Two
thirds serve as the training examples and the rest as a validation set, used for
the post-pruning. We can remove a subtree and make it a leaf node assigning it
the most common classification of the training examples affiliated with the root
of the subtree. We remove a subtree only in case that the resulting pruned tree
performs no worse than the original over the validation set.

2.3 Naive Bayes classifier

The Bayesian learning methods are based on a probabilistic approach.
Each observed training example can incrementally decrease or increase the

estimated probability that a hypothesis is correct, unlike algorithms that com-
pletely eliminate a hypothesis if it is inconsistent with any seen example.

New instances can be classified with a certain amount of probability, such as
“there is 90% chance that the event is interesting for this user”.

Naive Bayes classifier is a very popular method and its performance has been
shown to be comparable to decision trees and neural networks.

2.3.1 The algorithm

We assume a classification task as we have defined before. The label can take on
values from some finite set V .

The approach to classifying an instance a is to assign the most probable target
value vMAP , given the attribute values {a1, ..., an} that describe the instance.

vMAP = arg max
vj∈V

P (vj|a1, ...an)

We use the standard notation P (x|y) which means the probability of x as-
suming y. Now, using the Bayes theorem, we can rewrite the expression as

vMAP = arg max
vj∈V

P (a1, ...an|vj)P (vj)

P (a1, ...an)
= arg max

vj∈V
P (a1, ...an|vj)P (vj)

It is easy to estimate P (vj), however, it is too difficult to estimate P (a1, ...an|vj)
without any assumption. The main idea of Naive Bayes is to assume that the at-
tribute values are conditionally independent given the target value. That means,
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the probability of this conjunction is just the product of the probabilities for the
individual attributes. This leads to the final equation

vNB = arg max
vj∈V

P (vj)
∏
i=1

P (ai|vj)

where vNB is the target value output of the algorithm.
Furthermore, we can return the probability of this result. Let us say we have

calculated the term for each vj in V as f(vj). The most probable is vk. Then the

normalized probability is f(vk)∑
i
f(vi)

.

2.3.2 Estimating probabilities

There is a difficulty when estimating the probabilities as the simple fractional
count (nc/n). We get poor estimates when the number of examples with a certain
value of some attribute is very small. If a probability of an attribute’s value is
very small, it is very probable that we have 0 training examples with that value
and our estimate is 0. This causes underestimation and moreover, it affects other
terms because we use multiplication in our equation.

To avoid this, we use the m-estimate:

nc + mp

n + m

Where p is our prior estimate of the probability we wish to determine and
m m is a constant called the equivalent sample size. Typically, we choose p
to be the same for all possible values of the attribute. We can interpret this
estimation as extending the n actual observations by an additional m virtual
samples distributed according to p.
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3. The library

This chapter provides information about the library, we have implemented. It
describes our considerations about the representation, the most important issues
of implementation of the algorithms and briefly talks about how the library can
be used.

3.1 Representing the data

The library shall be implemented in the Java programming language, since it is
the only one directly supported by the Android platform.

3.1.1 Representing the task

The first thing to consider is the representation of a classification task. It is
defined by a set of attributes, where each attribute has its possible values. There
are algorithms in machine learning that can use real-valued attributes, but the
ones we have chosen don’t support them directly. Therefore, we will operate
with discrete-valued attributes. The user of our library can divide a real-valued
attribute into some intervals on his own. The second thing we leave to the library
user is the data types of the attributes. In a classification task, the values can
be strings, various numbers, etc. As these are discrete, we have decided to use
a common format of the values - each attribute has its values represented as
integers from 0 to mi − 1, where mi is the number of the values (we shall call it
range). Note however, that the ordering is arbitrary and has no impact on the
classification. The conversion is made by the user, or it is made by the GUIHelper
class from our library, which offers a comfortable way to declare the classification
task in XML format.

The advantage of the integer representation is clear - the efficiency. A question
we dealt with was if it is possible to use smaller data types, e.g. bytes, as integers
could be wasteful if only a few values are needed. There are generic types in Java,
however they cannot be applied on the primitive types. We could use wrapper
types for numbers when declaring a generic class, but it would not bring any
saving, because a wrapper type is a class and therefore needs 4B reference, which
is the size of the primitive integer type.

Our first approach was to represent the task by the ranges and the index of
the target attribute. The motivation was a task described by some attributes,
where one of them is the one we are to predict. However, especially for the
implementation of the Naive Bayes classifier, it is more convenient to have the
target attribute separated.

In conclusion, the main class that represents the task is called Classifier. It is
initialized by an integer array describing ranges of the attributes and an integer
representing the range of the target attribute (which is not included in previous
ranges). This class provides the methods for adding examples and classifying new
instances. These are represented as integer arrays of values corresponding to the
ranges given in the initialization.

Inside the class, we use Example class containing the values and the label.
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3.1.2 Representing the decision tree

We represent the tree by abstract Node classes, which can be an InnerNode con-
taining the attribute number and an ArrayList of Node, or a LeafNode containing
the label. As the ArrayList is indexed directly by the attribute values (due to
the representation), the classification can be very fast.

Since we need the training data and the learnt models to persist across ses-
sions, we consider a few options. For the training examples we could use a
database approach (SQLite is directly supported by the Android platform). How-
ever, there would be difficulties in saving the decision tree. We have thus opted
for the serialization of the Classifier class, which includes the learnt Naive Bayes
data and the decision tree. An application that uses the library should serialize
the Classifier object, which costs about 3 lines of code in Java, and save it on
the file system. When making the class serializable, we use standard Java serial-
ization mostly. The only thing the standard serialization cannot manage is the
tree. Therefore, we override it in the Node class.

3.2 Implementing the algorithms

Here, we shall describe the standard ID3 algorithm (Quinlan 1986) [5] and Naive
Bayes with a few implementation details we used.

3.2.1 Decision tree - ID3

The algorithm ID3 recursively computes a (sub)tree of the decision tree. Its
parameters are:

• ArrayList< Example > examples–a list of examples relevant to the current
subtree, i.e. examples from the training set, which satisfied all values of
attributes tested during the descent in the tree to the current subtrees’s
root. The main call of ID3 includes the whole training set.

• ArrayList< Integer > attributeIndexes–a list of indexes of the attributes,
which have not been tested yet. At the start it is all attributes.

The algorithm:

1. If all examples are with the same label, return a new leaf node with this
label.

2. If attributeIndexes is empty (i.e. no more attributes to be tested), return
a leaf node with the most common label among the current examples.

3. Choose the attribute, which best classifies the example (see Section 2.2.3).

4. Create a root node of the subtree labeled with the chosen attribute and
create branches for all its possible values.

5. Create SvSet according to the current examples and the attribute a, which
is a list of lists of examples. The v-th member of the SvSet is a list of
examples, all of which have v as the value of the attribute a.
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6. For each member of the SvSet (i.e. for each possible value of the attribute
a)

• run ID3 recursively with examples of the SvSet for v-value and cloned
attributeIndexes with a removed. Assign the output of this recursive
call to the corresponding branch.

7. Return root.

We have not used any post-pruning method in our implementation.

3.2.2 Naive Bayes learning

The learning phase computes the probabilities, which are used in the classifica-
tion. They are stored in Classifier fields:

• probabilities–a 3 dimensional array of double. The first dimension is the
attribute number, the second is its value and the third is the label value.

probabilities[i][j][k] = P (attri = valj|label = labelk)

• labelProbabilities–an array of double, indexed by the label value. labelProbabilities[2]
contains the probability of an example having its label equal 2.

The algorithm:

1. let subsets be the set of subsets of the examples, where examples in a subset
have the same label v for each possible label.

2. initialize the probability arrays according to number of attribute and ranges.

3. for each label value v:

(a) labelProbabilities[v] = subset.size/totalExamplesCount

(b) Count the occurrences of each possible attribute value. This is done
proportionally to all attributes of all training example. We have coun-
ters for each attribute value represented by the two dimensional array

counts[attrIndex][attrV al]

(c) Count the probabilities using the counters and adopting the m-estimate
with uniform prior probabilities and m equal to the number of the at-
tributes.

This algorithm works in

O(LabelRange.AllPossibleV alues + ExamplesCount.NumberOfAttributes)

Here, the classifying is not so straightforward as it is in the decision tree.
As we explained in 2.2.3, the most probable label of a new instance is acquired
as argmax from some multiplication of probabilities. However, it can lead into
floating point underflow easily, as all the probabilities are between 0 and 1 and the
multiplication iterates over all attributes. Therefore we compute the logarithm of
the multiplication, which is the sum of the individual logarithms. The argument
of the highest sum is the most probable classification, because the logarithm
function is monotonic. This modification is described in online version of [6].
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3.3 The GUIHelper

What we have introduced so far, has been a pure Java part of our code. All the
code is fully portable to any desktop with the Java Virtual Machine.

A part of the library we also developed is a helper class for creating a simple
GUI for Android. The idea is to have a helper class that enables to create a
simple classifying application quickly and that is flexible enough to be used in
more advanced applications.

The GUIHelper class can create combo boxes (called spinners in the Android
GUI) that represent the attributes of a classification task. Moreover, they provide
methods to retrieve the data prepared to be used by the Classifier class (integer
representation of the selected values).

The GUIHelper does not communicate directly with the Classifier. That en-
ables the user of the library to extend the attributes from the GUI with some
custom attributes which could be retrieved from the Internet, the device resources
or a custom GUI.

The input of the class is a simple XML document that describes the task. It
can look like this:

<task>
<a t t r i b u t e name=” genre ”>

<value>Jazz</ value>
<value>Rock</ value>
<value>Pop</ value>
. . .

</ a t t r i b u t e>
<a t t r i b u t e name=”company”>

<value>Alone</ value>
<value>With f r i e n d s</ value>
<value>With fami ly</ value>

</ a t t r i b u t e>
. . .
<a t t r i b u t e name=” i n t e r e s t i n g ” i sTarge t=” true ”>

<value>Yes</ value>
<value>Medium</ value>
<value>No</ value>

</ a t t r i b u t e>
</ task>

The outputs are: A GUI component with spinners describing the input at-
tributes. The target spinner can be retrieved separately, so the application may
put some GUI between the input spinners and the target spinner. Alternatively,
the application can implement the classification GUI by some buttons instead of
the target spinner.

To create a Classifier instance, we need the attribute ranges. The GUIHelper’s
method returns this array that can be directly passed to the Classifiers’s construc-
tor. When we want to use custom attributes, (not defined in the XML file), we
prepare an additional array and pass the concatenation of the two arrays to the
constructor.
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Similarly, when adding a new example, there’s a method in GUIHelper that
returns the selected values prepared for the Classifier (i.e. an array of integers).

3.4 Using the library in other projects

A programmer can use either the Java base of the library or the full Android
version. The attached CD (see Appendix A) includes a jar file, which can be
imported to any Java project and provides all the functionality of the Classifier.
The androidClassificationLib uses this jar and adds the AndroidGuiHelper class.

This approach enables a programmer to create a system consisting of two
parts–an Android application (mainly to collect the data and show classifications)
and a desktop application (mainly to learn the model). These parts shall be
compatibile.

Using Eclipse1 and Android ADT 17 plugin2 or higher, a recommended (and
standard) way to use the full library is the following:

• In your application project, create a folder called libs and add the android-
ClassificationLib there.

• Import androidClassificationLib from libs to your workspace.

• In the application project properties, select Android and add a reference to
androidClassificationLib.

If you use an XML file to describe the task, insert it into the assets folder of
your application project.

The summary of the main methods is in Appendix B.

1http://www.eclipse.org/
2http://developer.android.com/sdk/eclipse-adt.html
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4. Testing of the library

This chapter describes the evaluation method we have used, our testing task and
the results we have reached.

4.1 Evaluation of trained models

The library provides a complex method for evaluating given a collection of labeled
examples. Its parameters are the evaluation set1 size (a portion of the whole
dataset) and the sizes of training sets to be tested.

The evaluation set is fixed (randomly selected collection of examples). Then,
for each training set size, a training set disjoint from the evaluation set is randomly
selected from the examples. The both learning algorithms are called for each of
these. As the evaluating set is in fact a part of the labeled examples, we can
measure the success. This procedure is repeated r-times (r can be set by a
parameter, too) and the average success is returned.

While performing that, the learning and classifying times are measured. The
times are measured and returned in milliseconds. The classifying time is the
average time spent for classifying whole evaluating set as classifying a single
instance is typically extremely short.

Note that the real performance in terms of classification accuracy can be
better as it uses the whole training set.

4.2 The testing task

We have tested the library’s performance on the following problem: We have the
data from a linguistic project CzEng [4]. The data contain parallel sentences
in English and Czech. The information which word of a sentence is mapped
(translated) into which word is included. Now, we are only interested in these
word pairs. Each word is described by a set of some linguistic attributes. In our
task, we need a few of them - the formeme of the English word, the formeme
of the father word of the English one and the Czech formeme. The task is to
predict the third one from the first two mentioned. We can see the most common
examples from the data in table 4.1. The linguistic meaning of the attributes is
not important for our experiment, so we do not provide any detailed explanation.

A simple representation therefore is: A training example is a word pair. It
has two input attributes, myFormeme, fatherFormeme, both of which can have
values from a set called engformemes. The label is the czFormeme that can
have values from the set czFormemes. These sets are not identical, but they have
some common values and both are relatively large. We chose just a part from the
full CzEng data (they are already shuffled and thus distributed uniformly) which
lead to 100 000 examples, 431 possible values for engformeme and 288 values
for czformemes. That means 288 possible labels.

Already from the representation, we can see that the decision tree will be very
wide (many possible values for the attributes) and its depth will be small (only

1It is not a set, because an element can be included more times
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myFormeme fatherFormeme czFormeme
v:fin no father v:fin
n:subj v:fin n:1
n: no father n:1
n:obj v:fin n:4
v:fin x v:fin
n:attr n:attr n:???
n:obj v:fin n:1
adj:attr n:obj adj:attr
n:subj v:rc n:1
n:attr n: n:???

Table 4.1: The most common examples from the CzEng data.

two attributes, max. depth is two).

4.3 The testing procedure

We would like to see the progress while enlarging the training examples. However,
the step of choosing the mentioned 100 000 examples is very important. If we
started with a smaller part (and then enlarge it), it would mean a different task,
because the vocabularies would be different and the smaller task would be easier.
Therefore we could not compare the results.

Having defined the task firmly, we can use the Evaluate method properly. We
called the Evaluate method with various training set sizes and a fixed evaluation
set size of 30% of the 100 000 examples.

4.4 The results

The Naive Bayes learning is faster, but the classifying is slower than it is in the
decision tree method. It’s clear when talking about the classifying, because when
the decision tree is already constructed, we just need to go down through it.
Choosing the branch is very fast, because they can be directly indexed by the
attribute value. Moreover, the tree is never deep in this representation. On the
other hand, the Naive Bayes classifier has to count the probability for each pos-
sible label (and even the logarithms). One of the reasons for the slower Decisions
tree’s learning performance is the memory allocation which is not performed once,
but each time when creating an inner node.

The performance of both methods has reached 52%. As the number of labels
is 288, a random prediction would succeed just in 0.34%. If the predictions
were fixed to the most frequent label (known as Zero classifier method), it would
succeed in 18% of cases. The results are summarized in tables 4.2 and 4.3.

We’ve tried to compare the results to the results from the Weka application
using its implementation of the Naive Bayes classifier and the ID3 algorithm. The
success hasn’t reached more than 51%. The learning times were similar to ours,
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Number
of training
examples

Bayes success
in %

Decision tree
success in %

Bayes
learn time
in ms

Decision
tree learn
time in ms

50 35.68 36.61 9 19
100 40.87 40.93 11 22
500 45.52 45.87 7 103
1 000 47.07 47.42 11 198
5 000 49.89 50.04 10 890
10 000 50.54 50.89 12 1662
20 000 50.87 51.51 30 3076
40 000 51.26 52.03 22 5417
60 000 51.51 52.21 28 7191

Table 4.2: The results of the testing of the library on linguistic data. The proce-
dure has been performed on a desktop and repeated 10-times.

Bayes classification time (30 000 examples) in ms 2531
Decision tree classification time (30 000 examples) in ms 9

Table 4.3: The average classification times in the test.

but slightly better. The success rates with less training data were a little worse
when using Weka.

4.5 An alternative representation

Apart from assessing the library’s performance, we shall demonstrate the impor-
tance of task representation. Let us consider another representation of the task.
Instead of two input attributes with larger ranges, we will use many attributes
with small ranges. For each English formeme, there will be an attribute with the
possible values as follows:

1. neither the word nor its parent have the formeme set to the given value

2. the word (and not its parent) has this formeme

3. the parent (and not the word itself) has this formeme

4. both the word and its parent have this formeme

The label could stay the same as in the previous representation, or we could
add a special value that says “it is the same as in the English word”. With this
representation, we see that the algorithms run much slower.

The worst of all is the classifying time in the Naive Bayes method. The learn-
ing phase is “only” 2 times slower, but the classifying is about 200 times slower
with our task size. We see it in the theory already: The learning in the Naive
Bayes counts the probabilities for each possible value of each attribute for each
label. That is |engFormemes| · 4 · |czFormemes| (|engFormemes| attributes, 4
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possible values for each, |czFormemes| possible labels), while in the previous rep-
resentation it is 2 · |engFormemes| · |czFormemes| (2 attributes, |engFormemes|
possible values for each, |czFormemes| possible labels).

However, the classifying iterates through each attribute for each label value.
That is |czFormemes| · |engFormemes| = 125000, while in the previous rep-
resentation, it is |czFormemes| · 2 = 576. Note, that it is the same task, just
represented alternatively.

Finally, if we want to use the information about the agreement of myformeme
and fatherformeme, we can do it effectively by having 3 attributes

• isSame ∈ 0, 1

• myformeme ∈ engformemes

• fatherformeme ∈ engformemes

• label ∈ czformeme ∪ SAME AS ENGLISH

The times and successes of this representation were close to the first ap-
proach. Note, that in a real testing it could be slightly better, considering the
case when the prediction is a correct, but concrete formeme, but not labeled
as SAME AS ENGLISH. The default Evaluate method doesn’t count that as a
success.
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5. The application

Here, we examine the application that we have created using our library. The
chapter starts with motivation, then describes the architecture of the application
and focuses on the most important issues of the implementation. Finally, it
explains how the machine learning is used and shows some patterns for using our
library in non-trivial cases.

5.1 Introduction

The main aim of our sample application built using our machine learning library
is to provide information about culture events that could be interesting for the
user.

There are many web servers in Czech Republic which contain huge amounts
of data about culture events. However, they typically don’t provide any advanced
filters. The first task of our application is to bring the data into the mobile device
and serve them in an appropriate easy-viewable format instead of using a mobile
web browser, which is not very convenient. As the users don’t always have the
Internet connection, having the data offline can be very useful. However, the
most important feature is the intelligent filter based on the machine learning,
which sorts the events by their importance for the user.

The user documentation can be found in Appendix C.

5.1.1 Advantages and problems

Typical situations solved by the application

• I feel like attending a culture event in the moment, but I can’t find anything
suitable, because I get lost in the multitude of the data.

• I miss something what could be interesting for me, because I don’t have the
energy to search for the events regularly.

Summary of the main features

• comfortable access to the data in a mobile phone

• having the data offline, no need to have the connection

• effective filtering and sorting events customized to the user

• taking current conditions into account (location, occupation, etc.)

• grouping the data from various servers together

• simple GUI
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The problems

Often, one of the most important factors in making the decision whether to attend
an event is the price. However, this is rarely a part of the data provided on the
most servers. Usually, it is quite hard to find this information and you have to
search the proper venue’s website or even further to a ticket portal.

The application’s approach is to filter as well as possible and then to provide
links to the event’s details.

5.2 Source data and servers

We asked several Czech information servers for an access to their data. The infor-
muji.cz server allowed us to use the data for their partners, which is periodically
updated on a certain URL. Then we added the data from the last.fm server that
provides full API to various data (albums, interprets, events), but for our purpose
it is sufficient to get the data about the concerts.

Both servers allow to use a HTTP request to gain the actual data in XML. The
informuji.cz server events for the Czech Republic. last.fm is a worldwide server,
so in the URL we can specify some attributes. We use the data for Prague, but we
possibly could add a parameter which would specify the diameter (in kilometers)
how far an event can be be accepted, too. We could also use another city, but it
would need a change in the front-end.

The main idea is to have a class that represents the data about an event and
is independent from the source servers. We have an abstract class called Event.
Each server will implement its own descendant of the Event class and therefore
provide public methods like getName, getShortDescription, getLongDescription,
getPlace, etc. Moreover, the specific ServerClassifiers can take the advantage of
having their specific Event descendants and use some extra data in the classifi-
cation task.

For instance, informuji.cz usually provides longer text descriptions, which is
very uncommon for the last.fm. Instead, last.fm has a data node for the list of
the performing artists. So, the output of getDescription is generated from the
first 300 characters of the text description in the informuji.cz case and from the
list of the artists and tags (keywords) in the last.fm case. Due to this, the logic
is separated from the specific data parsing.

We wanted the application to be able to load the data offline from a file.
It was intended mostly for the testing and it wouldn’t be very convenient for a
common user as they would have to get the files somehow. Therefore we have
revoked this functionality.

Possibly, the release version could perform the updates periodically in the
background (it is already implemented asynchronously) and the user would not
have to do anything.

5.2.1 Loading the data

The data about the available events are stored in a Map indexed by the event Id
ant the values are instances of the Event class. The Id is a string created this
way: < server name code >< internal event id on the server >. It should
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prevent from the Id collisions when having multiple servers events Ids stored in
the front-end’s structures.

The application is able to update the data online. We use simple HTTP
requests to URLs with the XML data. Then we can apply some helper methods
for getting an instance of Document, which is a Java class that represents an
XML file and provides some parsing methods.

The specialized classes LfmEvent and InformujiEvent can parse a Document
instance in their constructors.

Both data downloading and XML parsing can take a longer time (a few sec-
onds), therefore it is reasonable to run them asynchronously. That is nicely
supported by the Android class AsyncTask, which also cooperates with the GUI
thread to pass the progress messages. The user can keep using the application
while updating the data.

5.3 The main design concepts

The whole application’s front-end is managed by a single Activity. The layout
consists of a Pager, to which we define an Adapter that describes how to display
an event according to the current mode.

The activity has an instance of the EventToClassifierAdapter class (referred
to as adapter) that provides methods for getting the data about the events and
working with the machine learning (i.e. addExample, classify,...).

As we support multiple servers, the task of the adapter is to unite them. The
activity works with the events using the abstract Event class that guarantees the
specific server’s event to have methods like getShortDescription, getName, etc.
Similarly, there is a separate Classifier instance for each server.

The adapter stores a structure of all the specific classifiers. The classifier for a
server is contained in a class that inherits from the ServerClassifier class, which
is also responsible for providing and updating the data about the events.

Therefore, the front-end activity has a complete support for filtering the
events.

Figure 5.1: The main design concepts of the application. Separating the servers.

For instance, let us show how the addExample call is propagated. The user
clicks the Yes/Medium/No button. The ButtonListener in the activity sets the
GUIHelper’s target spinner to the selected value. A new instance of Example is
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created–we have the Id of the Event and the conditions values. This instance
is passed to the adapter that chooses the right ServerClassifier and calls its
addExample.

When learning, each ServerClassifier specifies the classification task according
to the collected examples and the available data, transforms the examples into
integer values and passes them to the “low level” addExample of the Classifier.

5.3.1 Separating the servers–advantages and disadvantages

Due to the separation of the servers, we have the application easily extensible.
One can just implement a class that inherits from the ServerClassifier. Only a few
(abstract) methods must be implemented and typically can follow the patterns
we used in the 2 default servers. The methods include updating the data and
preparing the classification task.

The second advantage is that a unification of various source servers could
be unefficient in case of the classification. For example, the informuji.cz server
provides various types of events (e.g. cinema, theater, music, exposition), which
is an important attribute for the classification of these events. However, there is
no way to map the last.fm examples to this, as they all are about music (which
is more precisely described by the tags). If we set this attribute to “music” for
all last.fm examples, it can lead to wrong classifications. It happens for example
when we collect more negative examples from the last.fm. In such case, it appears
to the Classifier as the value “music” from the attribute “type” indicated the
example is not interesting.

When we tested the unifying approach, the problem proved to be serious.
On the other hand, the separation of servers brings a little disadvantage, too.

We lose portions of information common for all servers. At least, it is the values
of the conditions. There can be some conditions indicating the user’s decision,
but our approach splits the information into the individual classifiers. However,
if there is such a rule in the user’s decisions, the problem will be solved by adding
more examples.

5.3.2 Event importance ranking

For showing the actual events ordered by their importance to the user, we define
a ranking system. It is based on the results of the two available classifying
methods–Decision trees (DC) and the Naive Bayes classifier (NB).

Each event that satisfies the time filter is classified by both of the methods.
Then, the rank is computed as follows:

if bothmethodssayNo then
return

else
if DCsaysY es then
rank ← 100

end if
if DCsaysMedium then
rank ← 50

end if
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rank ← rank + 100 ∗ P (Y es)byNB
rank ← rank + 50 ∗ P (Medium)byNB

end if

The main advantage is that we get a larger scale than just Yes, Medium or
No. Mainly due to the probabilities of the NB we can see the slight differences
between the importance of events. The training phase is unaffected and we still
ask the user to select from three simple options.

5.3.3 Being user friendly

One of the main approaches of the application is to be accessible for ordinary
people. That is partially done by the rank of the events, because it hides the
machine learning background.

The second task is to develop a user friendly GUI. The main feature is the
pager that enables the easiest way to switch events.

The pager class is a class from the Android API and provides the functionality
of viewing some data in pages that can be switched by dragging them horizontally.
This pattern is used for instance in the Android Market application. Note, that for
a horizontal scrolling, the Gallery widget can be used too. However, the Gallery
is intended mainly for viewing pictures and there have been several problems in
implementing the GUI this way.

It is important to realize that the application is to be run on a mobile device
where a click is more difficult for a user than on a desktop. Therefore we try
to minimize the clicks needed for an operation. For instance, as there are just
3 possible labels in the classification, we don’t use the library’s target spinner.
Instead of clicking on the spinner, choosing the value and submitting, the user
can click just once on one of the 3 buttons (Yes, Medium, No). This action adds
the example and switches to the next event.

5.3.4 The pager and front-end’s structures

The whole application’s GUI, except for the dialogs, is wrapped in the Pager.
We have to implement a class that extends the PagerAdapter class. Its most
important method is initLayout.

The initLayout method gets the position of the pager and should return a
View to be displayed when the user scrolls to the position. Therefore, we must
have a mapping from the positions to the events, which depends on the current
mode. For each mode, we have a list of event Ids that defines the mapping
directly–we index the list by the pager position. When we have the event, we can
easily prepare the layout.

Let us examine how these ArrayLists are constructed.

• allIds–should contain all events that can be shown in the training mode.
After a startup and updating, we set the list a as random permutation of
all the available data.

• candidates–after a change of the time filter (or change of allIds), we refresh
this list to contain such Ids from allIds that satisfy the time filter.
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• advisedEvents–after changing the candidates list, we apply the machine
learning classification for each member of candidates (as an Example with
current conditions), use the ranking algorithm, set the helper Map with the
ranks and create the advisedEvents list that contains the event Ids with the
rank > 0 sorted from the best one.

Figure 5.2: Three ArrayLists for storing culture event Ids for each mode and the
events that cause refreshing the ArrayLists.

In the classifying mode, we show the events from the candidates along with
their ranks (not sorted), i.e. the user can see also the actual events with the rank
0 to retrain the classifier.

5.3.5 Using the application preferences

For saving the data connected with the classification, we use the serialization of
the EventToClassifierAdapter object which includes the examples, learned model
and the data about the events. However, there are some more data to preserve,
for example the current mode, time filter and the flag which says if the application
is running for the first time.

Such data are recommended to be represented as application preferences.
There is a mechanism for working with application preferences in Android API,
which enables us to save key-value pairs which persist over multiple user sessions.
We encapsulate this key-value approach in our Preferences class with custom
methods like getMode or setMode.

5.4 Developing an adapter for the Classifier

When developing a little more advanced application that needs to use the Clas-
sification library, we recommend to create an adapter class for the Classifier.

It should separate the application logic from the Classifier usage mechanisms.
For instance, the input (and the output, too) of the Classifier class is represented
as integers, which is good as it is universal and efficient, However, the adapter
class should receive some custom data (e.g. keywords from an event). We shall
describe some of the patterns that are used in the EventAdviser application.

5.4.1 Principles

Each time the data is updated, the classification task changes. It is because the
new available events may contain new values for some attributes (e.g. a new city)

30



that lead to a change in the attribute ranges, or new attributes can be added (e.g.
a new keyword). As we usually have some examples collected during an update,
and there is not a way how to re-create them for the new task from the old one
(explained later), we store the examples separately from the machine learner.
That means we have a representation of an example and the classifier adapter (in
its ServerClassifier) contains a list of Examples.

Example

An instance of Example is created each time the user chooses Yes, Medium or No
for an event (being in certain conditions). Duplicities are allowed. The Example
class consists of 3 parts:

• conditions–we gain this easily from the GUIHelper

• eventId–we store just the Id for the classified event. The advantage is that
we get all the attributes for the classification later, when learning and they
can be different when learning after uploading the data, i.e. changing the
task.

We just remember which event has been classified and then we get the
information that is needed. For instance, a word from the tags might not
be considered as the classification attribute if it occurs only in one event,
but later, after an update, it can be important as a keyword.

• the label (interesting – yes, medium or no).

5.4.2 Preparing the classifier

When the classification is needed after a data update, we should re-create the
Classifier instance and prepare some data structures for the newly formulated
task.

Let us precisely define, what the classification task is in the case of our source
servers.

• The possible labels are Yes, Medium and No.

• The attributes are:

1. conditions–describing the user’s conditions when he added the exam-
ple. We have the array of integer values already prepared in the Ex-
ample instance that received it from the GUIHelper.

2. custom values

(a) event type (only for the informuji.cz case)

(b) clubId

(c) city

When preparing the Classifier, we have to determine all the possible
values for these attributes. Therefore, we iterate through all the avail-
able data and construct enums for each. Actually, we construct Maps
with the attribute values (strings) as keys and an increasing integer

31



representation for the Classifier as values. When creating a new Clas-
sifier instance we simply set the corresponding ranges to the size of the
Map. When adding the examples to the Classifier, we use the Maps.
For instance, to add an example of an event in Prague, we find Prague
in the Map for the cities (in constant time).

3. keywords (only for the last.fm case). These are boolean attributes that
just specify if a keyword is present. We consider the tags given by the
last.fm API (notice, that we can use the specific data). We count
their occurrences in all the available data. The keywords considered
as classification attributes will be the ones that satisfy both of the
following:

(a) they are contained in the training examples (otherwise, we could
not learn anything from them)

(b) they appear in the available data more than 5 times (we can clas-
sify more instances using it)

Possible improvements

We could search for the keywords in the title and/or description of the event, even
in the informuji.cz case (no tags, just a longer text), assuming we have a set of
keywords prepared somehow. Possibly, the ServerClassifier could cooperate when
choosing the keywords, which would require several design changes. However, we
suppose these two servers not to have much in common.
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6. Conclusion

In the thesis, we have introduced the classification task and examined two algorithms–
decision trees and naive Bayes classifier. There are many more algorithms for
machine learning, for example neural networks, genetic algorithms or support
vector machines. None of them is the best for any task and data.

We have implemented a machine learning library for the Android platform
that provides basic and required functionalities–defining the task, adding training
examples, learning a model, classifying new instance and evaluation of the model.
We have tested and documented its performance including an example how the
performance but also computational costs increase when adding more training
instances.

We have demonstrated the ways of using our library in a real application. The
advantage of the library is its small size. That could play a major role in the
decision of a developer whether to use it or not. It is because the most of Android
applications are targeted to the Google Play service, where the users download
the applications online from their devices and mobile Internet connections are
often slow. Moreover, the memory for applications is limited on the Android
platform. There is a port of Weka to Android, but it is much bigger and maybe
too complicated for a programmer with no experience in machine learning.

The approach of the thesis has been to point out the importance of using
advanced algorithms in practice. Nowadays, a user of the information technologies
is flooded by vast data and it is important to simplify his orientation. It is often
not possible to program it directly, however programs can learn to follow regular
patterns on their own.

Besides the development of a learning algorithm, it is important to come up
with a useful task, and then to define and represent it well. For example, in
classification of culture events according to the degree of interest of the user, it is
important to decide what the input attributes will be. Definitely, it would be the
keywords describing the genre and the venue, but we could take the advantage of
the mobility of the target devices–consider the current location of the user, ask
him whether he is alone, with friends or his partner and so on.

The sample application, which is a part of the thesis, seems to be practically
usable, mainly due to the capability of working with real online data. Before a
public release, there are still a lot of necessary things to improve, mostly in terms
of graphics and user interface. The users are especially perceptive to these. It
is expected that an application respects the newest UI standards of the Android
platform and provides backward compatibility for the older Android versions as
well.

We believe that not only our main result, the machine learning library, but also
the example application aimed at pre-selection of culture events has a potential
to be widely used and we are going to continue with their development.
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A. Content of the CD

The attached CD contains the following items:

• sources - complete Eclipse projects with sources and javadoc for:

1. classificationLib - Java project with the base of the library.

2. androidClassificationLib - Android library, i.e. the full version of the
library with helpers for Android GUI.

3. EventAdviser - the Application using the library.

• bin

1. jar file for the library base (not Android-specific)

2. apk file with the application (installation file for Android device)

• pdf with the thesis
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B. Summary of the main
methods of the library

The complete documentation with more detailed (and all) methods of the library
is included on the CD. Here, we mention the most important parts.

B.1 Base methods (Java)

public class C l a s s i f i e r implements java . i o . S e r i a l i z a b l e

• The main library class. Represents a classification task. Enables the user
to add examples, process learning algorithms and classify new instances.
Attribute values are required to be represented as integers from 0 to n-1
where n is the number of possible values for the attribute, specified for each
attribute when constructing the Classifier.

public C l a s s i f i e r ( int [ ] ranges , int labelRange )

• Constructor for a new instance of classifier with no training data.

• ranges: the ranges of the attributes NOT including the label.

• labelRange: the number of possible labels.

public void addTrainingExample ( int [ ] a t t r i b u t e s , int
label ) throws Exception

• Adds a training example.

• attributes: The values for each attribute.

• label: The label of the example.

public void l e a rn ( Method method ) throws Exception

• Learns from the available training examples using the given method.

• method: The method to be used (from enum).

• Throws an exception if there are no training examples.

public int c l a s s i f y (Method method , int [ ] a t t r i b u t e s )
throws Exception

• Classifies a new instance by the given method.

• method: The method to be used (from enum).
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• attributes: The values of the attributes of the instance to be classified.

• returns: The label of the instance according to the method used.

• Throws an exception if the classification cannot be processed. That is
typically caused by not calling the Learn method before.

public double probab i l i t yOfLabe l ( )

• Returns a number between 0 and 1 that determines the probability of the
recent classification result.

public double [ ] p r o b a b i l i t i e s O f L a b e l s ( )

• Returns the probabilities of all label values for the recent classification. The
probabilities are represented as double values from 0 to 1 and ordered the
same way as the label value.

public boolean c a n C l a s s i f y ( Method method )

• Checks if the Classifier is ready to classify a new instance by the given
method (i.e. Learn for this method has processed).

public boolean needReLearn ( Method method )

• Checks if some new training examples have been added since the last Learn
process for the given method.
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B.2 Android extension

public class AndroidGUIHelper

• A class which helps to create a GUI for Android and provides data repre-
senting the selected values in GUI compatible with the Classifier class.

public LinearLayout makeForm( Context ctx , S t r ing
fi leName , boolean i nAs s e t s )

• Parses the given XML document, prepares the internal structures to be able
to provide the rest of the public methods and produces the form.

• ctx: Android context (the Activity where the form should be).

• fileName: the file name of the XML document.

• inAssets: true if the document is located in assets, otherwise it is saved on
the device.

• returns: LinearLayout with the form. For each field there is a TextView
with its name and a Spinner with the possible values. The target attribute
is not included (you can get GUI for it by using GetTextViewForTarget and
GetTargetSpinner.

public int [ ] g e tSe l e c t edVa lue s ( )

• Gets the selected values as integers (ready to be passed to the Classifier).

public int getTargetValue ( )

• Gets the selected target value (label) as an integer (ready to be passed to
the Classifier).

public Spinner getTargetSpinner ( )

• Gets the GUI for the target spinner (ComboBox).

public int [ ] getRanges ( )

• Gets the ranges of the attributes (ready to be passed to the Classifier)

public int getLabelRange ( )

• Gets the ranges of the attributes (ready to be passed to the Classifier)

public St r ing getLabelValue ( int i )

• Gets the string for a given label number.

• i: the integer typically returned from a classifying method.

• returs: a string value for the label as defined in XML.

public int getNumberOfAttributes ( )

• Gets the number of attributes NOT including the label.
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C. User documentation of the
EventAdviser application

C.1 The first run

The first screen provides the menu, when you can select one of three modes.
There is just one of them enabled at the beginning, because no training examples
are available from the user.

The Set conditions dialog is shown when running the training mode for the
first time. It can be open again from the options menu. The options menu is
launched by the options menu button on the device and in every mode provides
important functionalities (update data online, set source servers, reset training
and reset data).

When running any mode for the first time, a help for the mode is shown.
The application has some default offline data about culture events, so you can

start without the Internet connection.

C.2 Training mode

In the training mode, the dates for the events are not shown, because it is not
important–you should teach the Adviser about the character of events which are
(un)interesting for you. This is learned together with the current weekday and
set conditions. This means, such an event is (or is not) interesting for you when
it is Friday and you are in the conditions you’ve set. The training mode lets
you classify all the available events. They are displayed randomly and you do
not have to classify each one, for example when the description is not sufficient.
In such case you can just switch event by dragging the screen horizontally (like
switching the Android desktop).
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C.3 Main usage: Adviser mode

Now, let us see the result of the learning. By the back button you can return
to main menu, where the rest of the menu items should be yet enabled. Select
EventAdviser mode. You shall get the events for the next 2 days ordered from
the probably most interesting one. They are displayed more detailed. Moreover,
the events which seem to be really uninteresting for you are not shown at all.

What more exactly happens in the Adviser mode? The available data are
firstly filtered by the time filter, which is set to ”next 2 days” by default. You can
change this in the options menu. These candidates are then classified according
to the learned model. Remember, your current conditions are taken into account.
For instance, if you have classified some rock concerts as interesting when you are
alone and in the city center (conditions), some actual rock concerts will probably
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be advised. They may not be so interesting when you’re at home and the weather
is bad, but classical concerts could be good no matter your conditions. The
Adviser can learn more complicated variations, because it classifies according to
some keywords, which can describe the event more precisely.

When training, you say just Yes, Medium or No, but the application assigns
a rank from 0 to 200 to each event. This expresses some probabilities and so on.
You can see the rank at the top of the screen above each event.

In each mode, you can click on a link (if available) to be redirected to your
web browser with a page containing more details about the selected event.

C.4 Optional details: Classification view

Let us examine the last mode - Classification. This is something between. You see
just the time filtered events, but the ones with rank 0 are displayed, too. You can
check the classification process of each event (meaning event + current conditions)
more closely. It shows the results of 2 methods used by the application.

This does not have to be interesting for you, but after you see the results,
you can set the correct answer and it will be added to the training examples and
considered in the next advising. It can be used also when the answer is correct,
to make the application ”more sure”. You can display this results dialog even in
the Adviser mode from the options, but the Classifying mode has a specialized
button to save one click.
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