

Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Ondrej Kováč

Automobile mirror testing

Supervisor: RNDr. Jan Kofroň Ph.D.

I would like to thank to RNDr. Jan Kofroň Ph.D. for the time and advice dedicated

to help me to accomplish this software work. I also appreciate the help of Peter Kurhajec

and Tomáš Kováč who introduced me into the issue of automation technology and lent

me the necessary hardware for the testing purpose.

I declare that I carried out this bachelor thesis independently, and only with the

cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University in Prague has the right to conclude a license agreement on the use of this work

as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague 23.7.2012

Název: Testování automobilových zrcadel

Autor: Ondrej Kováč

Katedra / Ústav: Katedra distribuovaných a spolehlivých systémů

Vedoucí bakalářské práce: RNDr. Jan Kofroň, Ph.D., Katedra distribuovaných a

spolehlivých systémů

Abstrakt: Testování je součástí výrobního procesu v mnoha průmyslových odvětvích.

Slouží jako prevence před vypuštěním chybných kusů na trh. Manuálně skládaná

automobilová zrcadla procházejí testováním, při kterém se ověřují základní požadavky

výrobce a vyřadí se špatně vyrobené kusy. Rozhodli jsme se tento proces zautomatizovat,

což bude mít za následek zrychlení a zvýšení spolehlivosti testování. Pro potřeby

testování slouží speciálně navrženy přístroj. Testovací přístroj je kompletně ovládán

prostřednictvím aplikace spuštěné na běžném počítači. Paralelním spouštěním testů jsme

dosáhli znatelného zrychlení. Vývoj projektu také přispěl ke vzniku knihovny určené k

ovládání průmyslového hardware.

Klíčová slova: automatizace, RTU, vizualizace, EtherCAT, montážní linka

Title: Automobile Mirror Testing

Author: Ondrej Kováč

Department / Institute: Department of Distributed and Dependable Systems

Supervisor or the bachelor thesis: RNDr. Jan Kofroň, Ph.D., Department of Distributed

and Dependable Systems

Abstract: In many sectors of the industry, the testing is a part of the production process. It

prevents defective goods to appear on the market. Manually assemble automobile mirrors

are tested to meet the minimal requirements of the producer and to reject badly mounted

pieces. We decided to automate this process in order speed up and ensure the reliability

of the testing. A special hardware was designed for this purpose. It is completely

controlled by our application running on a regular PC. One of the improvements we have

accomplished is a noticeable acceleration of the testing achieved by the parallel test

execution. Development of this project contributes to the creation of a library for

controlling industrial hardware.

Keywords: automation, RTU, visualization, EtherCAT, assembly line

Contents

1. Introduction ... 1
2. Analysis .. 3
2.1. Programming Language ... 4
2.2. Hardware Control ... 5

2.2.1. Remote Terminal Unit .. 5

2.2.2. Communication Basics ... 7
2.2.3. Common Protocols.. 9

2.3. Shift Workflow .. 10
2.3.1. Machine Control ... 11

2.4. User Interface .. 12
2.4.1. GUI Scheme .. 13

2.5. Testing File .. 14
2.5.1. Expected Parameter Values .. 15

2.5.2. File Format .. 15
2.5.3. File Description ... 16

2.6. Data Storage: Test Measurement Results... 17
2.6.1. Database Application Layer: Entity Framework 18

2.7. Running Testing Sequence ... 19
2.7.1. Scheduling the Testing Sequence ... 19

2.7.2. Test Execution Logic: Read/Write operations .. 21

2.7.3. Task Lifecycle ... 22
2.7.4. Parallel Task Execution .. 23

3. Implementation ... 25
3.1. Application Structure ... 25

3.2. Communication Module ... 26
3.2.1. Communication Module ... 27
3.2.2. Addressing Channels .. 29
3.2.3. Module Specialization .. 30

3.2.4. Module Lifecycle .. 31
3.2.5. Protocol Types and Management.. 32

3.3. Editor Module ... 33
3.3.1. Graphical User Interface ... 36

3.3.2. Unit Conversion .. 37

3.4. Database Module ... 37
3.4.1. Running Shift .. 38
3.4.2. Database Scheme of a Test ... 38

3.5. Tester Module.. 39
3.5.1. Task Definition ... 39
3.5.2. Task Scheduler .. 40
3.5.3. Visualization ... 41

3.6. Simulator ... 42

4. Evaluation .. 43

5. Conclusion ... 45
Appendix A. CD Content .. 46

Appendix B. Configuration Files ... 47
List of Abbreviations ... 48
Attachments .. 49

Bibliography ... 50

1

1. Introduction

In many sectors of industry, man-power is still being used as a primary resource.

Because of the imperfection of human beings, many errors and defects may appear on

final product. Defective goods on the market usually have serious consequences such as

high additional expenses and the loss of goodwill. Testing is therefore an inseparable part

of the production process. In this work, we focus on assembly lines in an automobile

factory producing mirrors. These are made manually and therefore defects arise. Each

mirror passes through several assembly stations mounting its components. At the end,

one testing operator checks every piece. Correct mirrors are packaged and prepared for

dispatching, while defected are excluded from the production. There are many kinds of

mirrors of different brands, for a passenger car or a van, electrical or manual, with a

direction light or without, etc. Contrary to what one would expect, nowadays automobile

mirrors are quite complex and contain several electrical circuits. These need to be tested

very well to prove that the currents are in range and that they would not cause any harm

on the mirror in the future. Also we need to make sure that there are no badly mounted,

missing or damaged parts. Miscellaneous aspects can be tested on the mirror according to

requirements of the customer.

To ensure the testing reliability and to increase the productivity we decided to make

the testing process automated. A special hardware is designed for this purpose, which is

manipulated by a human operator. The tester is controlled by a computer over the

network. Testing is very often the bottleneck in the assembly line. Therefore, acceleration

of this process will speed up the entire production. Considering the previous requirements

we are going to create an application which maintains the tester hardware and automates

the testing part of the production process. We would like to achieve as much scalability

as possible to allow hardware changes with minimum effort and to support various kinds

of tests to be executed depending on the hardware configuration. As a possibility of the

acceleration we considered to perform some tests in parallel. Visualization can be added

as an additional feature for better user experience. Frequently occurring failures on the

mirror may indicate some deeper error caused by an assembly line defect, improperly

designed production process or even unqualified operating personnel. Recording and

2

storing the entire testing process can reveal some of these insufficiencies. It is also useful

for monitoring the efficiency and allowing the traceability of manufactured articles.

The remainder of the work is organized as follows. Chapter 2 analyzes the above

described application and its requirements and outlines basic decisions made during the

development. Chapter 3, based on the previous chapter, describes implementation details

and is intended to be used as the programmer manual. In chapter 4 the entire project is

evaluated and it is illustrated how our objectives were fulfilled. Chapter 0 provides an

overview of the developed software work.

3

2. Analysis

Operator in the factory inserts the mirror into the tester which is fully controlled by

a service computer where Mirror Testing System (MTS) application is running. In order

to support the functionality described in the previous section, the application will consist

of the several parts with the core one providing testing logic of desired tests. The logic

needs to be customizable by user defined parameters. We need a way of enabling the user

to enter them. Also there are usually several mirror models produced in one factory

having various components which require different tests
1
 (different parameters) to be

supported. The tester is controlled by the testing logic from the application

communicating over (local) network. The communication layer is interfacing an

exchangeable and configurable hardware. Provided tests are visualized through the

graphical user interface. Tests results are kept in a database where they are accessible for

statistics and other reference.

When there are too many parameters the user interface can be quite large and

complicated and the testing setup may be considerably time-consuming. User-friendly

interface which does not require hours of operator’s attention will definitely prevent

many failures caused by the loss of user’s attention. Also, our ambition is to simplify the

application control in such a way that no special training of testing operators will be

necessary.

In the following chapters we are going to describe the main difficulties we have

faced during the development and decisions we have made to build the application. We

focus on the possible future extensibility, good programmer manners and the usability of

our application.

Chapter 2.2 describes details about the testing hardware and its control from the

application. Chapter 2.3 shows how application is incorporated to the assembly line and

basic interaction with users. Chapter 2.4 gives reasons for the usage of graphical user

interface. Chapter 2.5 focuses on configuration of tests. The requirement of data storage

is covered in 2.6. Finally, chapter 2.7 describes how test execution is performed.

1
 Some mirrors have a direction light while other not.

4

2.1. Programming Language

It is not the programming language that solves the given problem, but still it has

serious impact on the complexity of our solution.

MTS is intended to be an application up to standards of modern software. In order

to satisfy this demand, it is reasonable to use appropriate instruments. The professional

developers advise to take advantage of market maturity by taking advantage of existing

platform and technology options. Build on higher level application frameworks where it

makes sense, so that you can focus on what is uniquely valuable in your application

rather than recreating something that already exists and can be reused [1].

The modern programming languages we have taken into consideration are Java, C#

and C++. All of them are widely used so there is an extensive support and many third

party libraries. Comparing Java and C# to C++, memory management is not the

programmer’s responsibility anymore.

The advantage of existing platform and technology options we find important is the

comfort of the programmer. It helps us to focus on what is important in our application

rather than on the difficulties with the implementation. The familiarity of the C# language

is the main reason for choosing it instead of Java, even if we lose some portability

options. When talking about C#, rather than the language, we deliberate the .NET

platform. It is not only the garbage collector that simplifies the development, but many

advantages of this language (and underlying .NET platform) that help to create powerful

and stable applications. Some of these are: safety references, system of exceptions

handling and generics. We also appreciate the .NET support for UI programming.

Although the garbage collector simplifies many things, it is also the root of a

complication. During the control of the tester we need to ensure some regularity of the

communication. Let’s say some kind of “real-time” operations. Nondeterministic run of

the GC can negatively influence the communication latency. In spite of that, we have

decided to use C#. As we shall demonstrate later, a small delay of a communication

message is acceptable and can only lead to a negligible impreciseness of the

measurement.

5

The efficiency of C++ comparing to C# is discussable. It was not the ground of our

decision, but it could be considered as well. Some of the specialists say [2] that, in spite

of the fact that C++ is a native compiled code, C# programs can sometimes be faster than

C++ ones, since the C# code is compiled twice and can be adapted to the current

architecture. Whether it is true or not, we have chosen C# for the reasons given above.

2.2. Hardware Control

The essential part of the implementation is communication layer connecting the

application with the tester hardware. Tester consists of several components such as

measurement instruments of electrical current and distance, sensors, actuators and

hydraulic arms. These are controlled by the application using master-slave model [3]. The

application as a master sends commands to slaves (tester components) and waits for an

answer. The important point in this model is that slave never actuates itself, only replies

to incoming requests.

2.2.1. Remote Terminal Unit
2

Communication between the tester components and the application is realized using

hardware modules called remote terminal units (RTU). RTU is a microprocessor-

controlled electronic device that interfaces objects in the physical world [4]. It contains a

piece of addressed memory accessible to both sides over network, which is usually

divided into several memory cells referred to as channels. The application controls the

tester by writing defined values to some channels, while tester responds by writing result

values to other channels. As a consequence of using RTU we have a uniform interface for

controlling various hardware components (see Figure 2.2.1).

2
 Different suppliers use their proprietary denomination i.e. slot, remote terminal block or simply

terminal.

6

Figure 2.2.1 Application communicating with tester components over local network through

terminals

From the application point of view channels are divided into two groups according

to the direction of the communication flow:

 Inputs – all readable channels. These are used by the hardware components to

communicate their current state to the application.

 Outputs – all writable channels. Application uses them to control hardware

components.

As a simplification we consider all outputs to be a subset

of input channels (Figure 2.2.2). When current state of the

physical world is read all channels are accessed. Outputs need

to be initialized before the first access. We also expect that an

output channel may change its value in some extraordinary

situation and we find it out.

Channels are divided according to their size (and method of use) into two groups:

RTU

Figure 2.2.2 Sets of

input/output channels

7

 Digital – logical value of one bit size. Used to switch on/off electrical circuits of

actuators, hydraulic system, lights etc. (output channel) and for sensors indicating

presence of some elements on the mirror or tester (input channel).

 Analog – numeric value of at least one byte size
3
. Used for current value of

ammeters, voltmeters and calibrators
4
.

This implies the existence of four channel types – digital input, digital output,

analog input and analog output. In this application analog outputs are not used.

2.2.2. Communication Basics

When tester components are controlled by the application, remote channels must be

accessed. We have considered two following concepts:

 On demand – read or write channel value immediately when it is necessary.

 Cyclic – cyclically collect all requests and then write or read them at once.

Disadvantage of on demand access is pretty large overhead, because with each

request to read or write a channel all auxiliary data are sent (addressing, synchronization,

etc.). Generally, this type of communication is not very useful when using master-slave

model [3] as the slave only responds on received commands and we have to repeatedly

check for its state. A command within the meaning “Do this job and let me know when

you finish” is not possible. Cyclic access is on the other hand useful for its simplicity, as

the IO
5
 operations are centralized. Commonly used operation flow in automation control

system is the following (see also Figure 2.2.3):

1) Read inputs

2) Execute application logic

3) Write outputs

3
 Size of analog channel may vary according its type and producer. For example: 8, 12, 16, 24 or 32

bits.

4
 Distance measurement device

5
 Input/output – any read or write operation.

8

Figure 2.2.3 Communication loop: read input channels,

execute logic and write outputs. Based on [5]

In other words, make an image of the entire terminals memory in the application

memory, use it to execute application logic – operations will affect the memory image

(inputs are locked and cannot be changed), synchronize application image with the

terminals.

EtherCAT [6] communication protocol used in industrial technology is supporting

the cyclic scenario naturally. As explained in [7] EtherCAT Network is using

communication principle master-slave. Data are not sent to slave devices as single

Ethernet frames, but each frame is passing through all devices equipped with a special

hardware having at least two Ethernet ports allowing to process frames while they are

passing through with a minimal time delay (at nanoseconds level).(see Figure 2.2.4)

Figure 2.2.4 EtherCAT frame traveling across the network (Taken form [7])

Example 2.2.1 Measuring power-fold
6
 current

As an example consider a scenario where the current of mirror power-fold is

measured. During this test a mirror is folded and unfolded again, while electrical current

must not exceed defined maximum value.

6
 Power-fold is an electronic system allowing automatic mirror folding and unfolding. It is installed

inside the mirror.

9

 Read Write Description

1. All - Read all channels to initialize

application memory image. Go to 2.

2. - Fold = true Start mirror folding. Do not

measure current yet. Go to 3.

3. PowerfoldCurrent,
IsFolded

- Check whether current is under the

maximum. Repeat step 3 until

IsFolded is true. Then go to 4

4. - Fold = false Stop folding. Go to 5 immediately.

5. PowerfoldCurrent,
IsUnfolded

Unfold = true Check whether current is under the

maximum. Repeat step 5 until

IsUnfolded is true. Then go to 6.

6. - Unfold = false Stop unfolding.

For complete list of tests see the user manual.

2.2.3. Common Protocols

In industrial technology various communication protocols are used according to the

purpose. The usage of a particular protocol requires dedicated hardware which is the only

interface between tester hardware and tester application. Independence on

communication protocol implies independence on selected hardware.

We have considered two commonly used protocols and another one just for the

purpose of testing. Specifically: TCP modification of Modbus protocol and EtherCAT.

For both of them communication library provided by hardware supplier is used. The main

difference is ISO/OSI layer on which they are communicating. While Modbus puts its

commands into standard TCP packets, EtherCAT overpasses all network layers and uses

directly Ethernet frames
7
.

According to the investigation of EtherCAT Technology Group EtherCAT remains

the fastest industrial Ethernet technology [8] in the world. This fact makes EtherCAT

protocol adequate for usage with our application. But even slower protocols can be used

without significant loss of measurement preciseness. There are other advantages, mainly

from the point of business strategy view that lead us to prefer EtherCAT. The industrial

network based on EtherCAT protocol is not limited by the number of nodes. There is

7
 EtherCAT specification also allows communication on transport layer. Commands are packed into the

UDP datagrams.

10

incomparably major support of various products running on EtherCAT and even

networks with different protocols
8
 can be interconnected together.

2.3. Shift Workflow

Figure 2.3.1 Workflow of the testing process

The manufacturing process starts with a work order (see Figure 2.3.1) telling us the

type and number of mirrors to be produced. The order is processed by an operator who

makes ready the testing machine, starts up the service computer and selects test

configuration for given mirror type. Test configuration is meant to be a set of tests that

should be executed on each mirror and their parameters. It is not intended to change any

configuration setting during the testing.

When the machine is prepared and configuration selected correctly the testing

process may start. Operator inserts a mirror and initiates the testing sequence – all the

tests are executed. This action is repeated until all mirrors are tested.

8
 Profinet, Profibus, CANopen, …

11

Figure 2.3.2 Process of one mirror test

During the testing of each mirror a given set of tests is executed (testing sequence

on Figure 2.3.2). Almost any of them produce result data – measured values, and the

status whether it was completed correctly or failed – which are saved for future use.

Failed mirrors are marked as defective and excluded. The mirror is considered to be

correct if all tests finished correctly. In this case it is marked with a label proving that it

has been tested.

The entire factory process of handling the work order, setting up and executing

testing sequences is referred to as a shift. Our application is intended to assist the operator

during the shift lifetime.

2.3.1. Machine Control

Tester machine is controlled by a computer (1) connected through Ethernet. At the

beginning of a shift a service computer is started. Launching the application enables the

machine to be switched on (2). The computer also allows the operator to follow current

testing state through application visualization (3). At the beginning of a test, the mirror is

inserted to the machine (4). A special exchangeable fixture (5) allows only a mirror of a

right type and orientation to be inserted. A mirror cable is connected to machine

connector (6) which allows controlling its electrical circuits. Testing of the mirror is

started with the START button on the main board (2). Before any test, the machine is

closed (7) and the mirror is strongly fixed. During the testing of mirror glass (pull-off and

travel tests) additional components are elevated from the bottom (8). After all tests have

been finished the result is indicated with a colored light (9) and the machine is opened (7)

12

so that the mirror can be removed. For the next test a new mirror is inserted and START

button is pressed. Figure 2.3.3 shows a basic scheme of tester components.

Figure 2.3.3 Tester machine

2.4. User Interface

Setting up test configuration is quite complicated process. Each test has several

different parameters to be set up. This is the reason why we have decided to use a

graphical user interface for our application. Configuration of tests through the console or

a text file could be possible. But GUI simplifies many things and even an inexperienced

13

user is able to go through it and understand it quickly. It also incorporates many technical

details such as unit of a parameter or maximal and minimal allowed value and helps to

avoid mistakes.

As discussed in 2.1 the application is developed in C#. .NET provides two concepts

for implementation of an application with user interface: WinForms and WPF [9].

Considering the requirements of our application we decided to use WPF for several

reasons:

 It allows a programmer to create dynamic UI based on data templates [10]. Data

templates will definitely help us to handle changes of tests and parameters with

minimum effort.

 Code of user interface is separated in a single file which simplifies the

maintenance and makes possible future localization easier [11].

 Generally WPF offers more sophisticated ways of creating custom controls. We

use this advantage when creating special controls supporting unit values, which

are necessary on many places in the application, or graph controls for test

visualization.

 WPF supports creation of simple 3D objects (in a very programmer-friendly way)

directly from XAML [12] and we have used it for displaying the current position

of mirror glass.

WPF technology brings not only advantages. It is the performance
9
 that makes

WinForms still being used in many applications.

2.4.1. GUI Scheme

Application user interface can be divided into several independent parts. The

essential one is the testing part containing visualization elements and controls for

regulating the process. Some activities during testing are not visualized, i.e. that a

particular test has been started/finished with correct/failed result etc. These and similar

statuses or messages are displayed to user in an output console as text messages.

9
 Performance comparison: http://www.kynosarges.de/WpfPerformance.html

14

As we have already mentioned, configuration of testing parameters is a time-

consuming process. Usually, there are the same parameters for one mirror type. So

default ones may be created once and then reused or propagated also to other computers.

For this purpose an editor is designed. It allows a user to create or edit existing files with

testing parameters. Application requires many settings of hardware (channels, calibration,

printer …) or just user preferences (operators). These need to be presented on the user

interface as well as the data generated during the testing and reviewed by the operator

later.

Considering these requirements we have decided to use a library for docking

panels, which helps us to divide user interface into several independent parts. It is

expected that users will spend hours working with this application so it is reasonable to

let them adjust their workspace according to their preferences. Dockable panels perfectly

satisfy this demand.

2.5. Testing File

Testing requires a configuration of used tests and their parameters. As a storage

medium regular file is used – it allows the user to reuse configuration on other computers.

In order to achieve extensibility with minimum effort, the editor should be independent

on current file format. As we have specified earlier, newer version of testing hardware

may require additional tests to be supported, or modifications of tests execution logic

may need more or less parameters. In the best case the editor supports both newer and

older formats.

Figure 2.5.1 Conversion of testing file to different format

Figure 2.5.1 shows how the conversion to supported format works. Suppose that

we have a file with test configuration and we open it in some version of our application.

15

It contains one test (Test1) with two parameters (Param1 and Param2). Param2 is not

supported by the current version so it is not displayed to user. But we leave it in the file

without any change, as it may be displayed in other version. When the file is saved

unrecognized parameters are deleted. On the other hand Param3 supported by the current

application is not included in the given file. It is displayed to the user with default values

and added to the file when it is saved. So conversion to newer files can be done easily

and even old formatted files can be viewed. The same principle is applied on the tests.

2.5.1. Expected Parameter Values

Test configuration contains a collection of tests that could be executed. Some of

them could be disabled – will be ignored during testing. But we would like to save all of

them to configuration as the operator may only temporarily disable a test and we do not

want to lose its parameters and other settings. We remember for each test a value

indicating whether it is enabled.

The test contains a collection of parameters that may vary. The parameters are of

various types, but usually only primitive ones such as a number or a logical value.

Numeric parameters are values of a certain unit. Time is also considered to be a numeric

value of the milliseconds unit.

We expect at least these types of parameters: real, integer, text, logical value and

enumeration value. However, as mentioned in chapter 2.2.1, there are only two types of

inputs channels – digital and analog. This implies that for test execution only two types of

parameters are necessary. Logical value of a digital input (presence of a mirror

component) and numeric value of an analog input (current in the electrical circuits, etc.).

All other types are only informative or they may be used for label printing.

2.5.2. File Format

During the development we have considered several techniques of file storage. The

very first idea was a .NET serialization. When using the editor or running the testing, an

instance of object representing the testing configuration must exist in the memory.

Serialization gives us a powerful instrument to do so and we do not care about the

implementation of the file format.

16

.NET provides two basic types of serialization – XML and binary. Binary has better

performance [13], but its format is highly dependent on .NET
10

. Serialization output

contains object type and full assembly name where it is defined. On de-serialization

specified assembly is loaded and instance of object is created.

XML serialization using SoapFormater
11 is obsolete. XmlSerializer

12

serializes only public fields and properties and does not support cyclic structures, which

is not a difficulty in our case. Finally, we have decided to use our proprietary format

based also on XML, which we considered to have several important advantages:

 Human readable format; can be changed even without any special editor

 Widely used format so the parsers are very effective

 Easy to validate using DTD [14]

 Easy to extend

The main reason why not to use already implemented XmlSerializer is that we

want to have absolute control over the file format. We need to know when the format of

any test changes. While a serialized object describes definition of a particular type, our

file format holds data in a logical structure. Only parameter values and some test

properties significant for execution behavior are serialized and the rest is initialized

according to other application settings. Serialization will only complicate the entire

process.

2.5.3. File Description

Definition of used tests and their parameters may change in different versions of the

application. It would be convenient to have a specification of supported test types with

parameters. The advantage we are trying to approach is an easy way to extend application

functionality without extensive code changes. If the editor is a standalone application (or

10

 Format of binary serialization hasn’t changed since .NET 1.0 and probably we can expect not to be

changed in the future versions.

11
System.Runtime.Serialization.Formatters.Soap namespace in

System.Runtime.Serialization.Formatters.Soap assembly

12
System.Xml.Serialization namespace in System.Xml assembly

17

an isolated module), which only produces the testing file as an output, the new type of

test supported by the hardware will not require any change to the editor code.

The format specification is very simple – a collection of tests where each has a

collection of parameters with a default value. A simple way we can handle it is to

hardcode it. When a new file is created, the (hardcoded) collection of tests is initialized

and saved to XML file as described in 2.5.2.

Rather than defining it in the code, we have used a configuration file to define the

format of a testing file. It is much more transparent as the structure of tests may contain

many entries. The configuration file contains settings that could be changed by the

customer, i.e. the test name or description. That way we provide a chance to do so in one

place. We would like to delay the process of the customization of GUI up to the

deployment. The customer decides how editor should look like.

The configuration file containing the description of the used tests and parameters is

referred to as a template. The principle is similar to the MS Office Word template file.

When a new file is created, the template is opened what results in a new file with default

values. When an existing file is opened, new file is created from template and overwritten

by the opening one. Notice that the template contains settings and localization data that

are not saved to the file. Also the default values of parameters are placed here, so the

customer may adjust them in such a way that new file will be created very quickly just by

editing some of them.

The XML format for template file is adequate because the customer needs to

modify it in a text editor manually. No template editor is shipped with this application. It

is also possible to apply an XSLT transformation on the template and create a new file

with default values.

2.6. Data Storage: Test Measurement Results

During the testing a quite large amount of data is produced. Some of them we need

to conserve for future use, even though the most significant is the result telling us

whether a mirror has passed or not. Frequently occurring failures on the mirror may

indicate some deeper error caused by an assembly line defect, improperly designed

18

production process or even unqualified operating personnel. Recording and storing the

entire testing process can reveal some of these insufficiencies. It is also useful for

monitoring the efficiency and allowing the traceability of manufactured articles.

Running a testing sequence can be done only by identified personnel. Business

strategy requires keeping track over operator’s activities therefore every one must be

authenticated before testing is started.

It is not expected that several instances of the application will be running in the

same factory. Thus, storing of the data in an ordinary file is also possible. But the

advantages of a database are unquestionable. Authentication of the users can be done

easily using the database.

2.6.1. Database Application Layer: Entity Framework

We have chosen MS SQL Server as a database layer technology. It is easy to

integrate and develop in a .NET application. The performance is not the main

requirement. Even if SQL database is hosted on a remote computer common for several

instances of our application, the load will never be considerably extensive. In the most

cases SQL server is running on the same machine as our application.

Entity Framework [15] provides a very effective and comfortable way to access the

database. Together with MS SQL Server it is a very powerful tool, which highly

simplifies the process of database integration to our application. A part of EF is a code

generation tool that creates strongly typed classes directly from database. Collection of

instances of these classes are stored in the memory and synchronized with the database

on our request. For such a simple database as our application is using, Entity Framework

is the right choice.

Business logic of the application sometimes requires more complicated database

interaction than only inserting or selecting some piece of data from the database. For

example, when the shift is started several information are immediately saved, such as

current time, logged in operator, tested mirror, used tests and parameters, etc. In these or

similar situations we are using stored procedures which considerably simplify the code on

the application side, hide implementation details about the database scheme and assure

19

data integrity. Entity Framework generates methods that allow us to call these procedures

directly from the code.

2.7. Running Testing Sequence

The fundamental feature of the application is the ability of automobile mirror

testing. This process can be divided into two independent parts: the execution logic and

the visualization. The execution logic is the process of inserting mirror into the tester and

running the code that controls the tester and executes the tests. The visualization part

itself is not fundamental as it only displays the current state of execution logic to user.

As an example consider the case when the current of some electrical circuit is

measured. The execution logic is the activation of the circuit and regular reading of the

current value. Visualization can display the graph of current value over time.

While the execution logic is a time-critical operation, the visualization does not

necessarily need to be so. A small delay in visualization is acceptable even if the user

notices that.

2.7.1. Scheduling the Testing Sequence

Consider a simplification that tasks are executed sequentially (next one can start

only after the previous has been finished). Then scheduling is straightforward by defining

an order of tasks and updating them one by one until they are finished.

As described in chapter 2.2.2, cyclic communication is used. During the execution

remote terminals memory is regularly read and written. It is necessary to cut down the

latency between each read-write cycle as much as possible to ensure preciseness of the

measurement. As an example we mention a test where maximum allowed current is

measured. During this test the value of the current is regularly read and compared to a

given maximum. Figure 2.7.1 shows an imprecise measurement caused by a too high

latency where the current exceeds the maximum allowed value and returns back between

two read operations.

20

Figure 2.7.1 Imprecise measurement caused by high latency

To avoid such mistakes we would like to run only the test logic during the test

sequence execution. Any initialization of tasks, even of those that will never run, can be

done before. It will be also convenient to stop garbage collection for a while. At this point

it seems that C# (or generally .NET) is not the right platform to use for such an

application where time critical operations are performed. This issue is discussed in

chapter 2.1. The experiments show that the delay between two updates is 10-20

milliseconds, which is within the range of customer’s acceptable preciseness.

Figure 2.7.2 describes the lifecycle of the test sequence execution. First of all a

scheduling is performed – order of tasks is defined. As the scheduling can be a time

consuming operation it will be done before any of the tests starts. When all tasks are

prepared, they are executed in scheduled order, by regular update
13

. During the update the

finished task is switched for the next one in the sequence. After the entire sequence has

been executed generated data from tests are collected and saved. This way the CPU

resources are reserved only to tasks during the update cycle.

13

 Read, write and logic operations are performed.

21

Figure 2.7.2 Lifecycle of test sequence execution

Notice that abortion of the execution can be enforced at any time, by the user or

currently executed task if some fatal error occurs. An abort must be handled specially in

such a way that no damage on the mirror or testing hardware will be caused. This usually

requires additional updates which bring tester into a safe state. Consider a situation when

the power-fold test has been aborted. At this moment the actuator moving the mirror must

be stopped before test leaves the update loop. Otherwise the actuator may be damaged.

2.7.2. Test Execution Logic: Read/Write operations

The performance of a single test can be divided into two basic phases:

 Preparation phase – bring the tester into a state necessary for execution of a

particular test, i.e. close the device with the mirror inserted or move the support

with calibrators up to measure mirror glass movement.

 Test phase – execute given test, i.e. measure the spiral current

The preparation phase is not a part of the test, it is a requirement only. Several tests

can have the same requirement and if they hold, all of them may start.

Let’s denote a simple action, such as set value of a particular channel a task. Then

the process of testing is a collection of tasks that have to be executed in some order. The

entire control logic is abstracted to simple read/write operations. Write is always a control

command for tester machine. Read is a check for status whether command was executed

or a test of expected values. So there are only a few possible actions to be done during the

preparation phase:

 Set value(s) of some channel(s)

22

 Wait for value(s) on some channel(s)
14

 Decide which action will be executed next, depending on some channel(s)

value(s) – condition

 Sometimes we need an additional operation which does not write or read any

channel – wait for specified period of time

With a combination of these tasks we are able to describe all preparation phases.

On the other hand the test phase is more complicated. Sometimes we need to check

whether measured values are in a given range or whether they do not exceed a defined

maximum. Even more complicated is a situation when the measured values must be

calculated and depend on additional factors such as some application settings, i.e. mirror

rotation angle is calculated from the value of three calibrators and depends on the

distances between them.

2.7.3. Task Lifecycle

During the sequence lifecycle several tasks are executed. They are executed

cyclically in a loop containing the following steps (see also Figure 2.2.3):

 Input channels are loaded to local memory image

 Task logic is updated observing the current channel values and writing outputs

(local only)

 Output channels memory image is written to (remote) terminals

All tasks are intended to be created before the loop starts in order not to consume

any CPU resources. However, at the time of execution the tasks are brought into the

initial state that corresponds to the current sequence state – i.e. starting time is noticed.

Afterwards, the task enters the update loop and stays there until it is finished by itself or

aborted. At this time it leaves the update loop, but no additional operations are performed

until all tasks are finished. The following list describes the task states (see also Figure

2.7.3):

 Initialization – proceeded only once just before entering the update loop. Prepares

the task for execution and initializes its variables.

14

 We only wait for values on input channels as these do not depend on the application but on the tester.

23

 Update – proceeded many times in the update loop. Task logic is executed,

abortion may be caused.

 Finish – proceeded once when leaving the update loop. Finalize tasks execution

and hold the result data until all tasks are finished.

 Abort – the task may be aborted by some external force (i.e. the entire testing is

aborted) or by itself (i.e. running too long). In this moment the task is performing

aborting operations to bring tester into a safe state.

Figure 2.7.3 Task lifecycle

2.7.4. Parallel Task Execution

One update of the task logic is a very short operation. Many times it is simply a

comparison of a channel value or a simple calculation. The major part of one update

cycle is waiting for remote hardware response. The entire memory image is always

transported over the network. Checking which channels have been modified is much

more complicated and without any conducive results. Transport of one channel or of all

of them takes almost the same period of time. The size of memory image never
15

 exceeds

one Ethernet frame. Because of that, executing several tasks at once would not have any

impact on the communication latency and only a small delay during the execution logic

could be noticed. The most important thing is that running time of the testing sequence

can be decreased considerably.

Parallelism brings complications to the sequence scheduling. Some tasks are

executed sequentially and a strict order is defined (i.e. we must wait until the testing

device is closed and only after that we can start the first test) while others can be

15

 The maximum size of the Ethernet frame is 1500 bytes.

24

executed in parallel. We define a requirement relation
16

 < between tasks, which says: if

A, B tasks are in relation A < B then task A must be completed before B can be started.

Now scheduling of tasks consists of:

1) Building a graph where tasks are the vertices and there is an edge from A to B

vertices  A < B.

2) Topologically sorting the graph.

The advantage of this scheduling is that the order of tasks is defined before the

execution and during the update loop no additional operations are performed.

Some tasks do not have to run in the predefined order, but they cannot run at the

same time (i.e. mirror movement to two different sides). In this case we require the

customer to define the strict order of these tasks, even if it can be considered to be a

disadvantage. During topological sorting the order is defined and does not change during

the execution. Hence, any other scheduling that dynamically chooses from two equivalent

tasks is unnecessarily complicated.

Even if we allow several tasks to be running at a time we strongly refuse the idea of

multithreading. Discrete simulation of tasks execution results in a parallelism impression.

By synchronizing several threads during communication and execution logic, the

application becomes quite complicated and not so stable. Safety aspects should be

considered as well, deadlock could in many cases lead to hardware damage. Time of one

update cycle is so short that it is questionable whether even parallel threads bring

acceleration of the tasks execution.

16

 Anti-reflective and anti-symmetric

25

3. Implementation

Mirror testing system (MTS) was designed to automate the process of automobile

mirrors testing which is a part of the assembly line. In particular, the process includes

following steps: create parameters for testing, run specified tests using these parameters

and save measured data. During the development we had to take into account several

aspects:

 Communication with the tester machine; this includes selection of a protocol.

 Scalability in defining parameters and saving data.

 Possible configuration of any application setting that may change in the future.

In the following chapters we describe implementation details of issues covered in

the Analysis.

3.1. Application Structure

The application is divided into following logical modules:

 Communication module – provides safe communication and control of tester

machine components.

 Editor of parameters – provides user friendly interface to create or edit a file with

testing parameters. Also used when loading parameters from disk to memory.

 Database module – provides access to application data such as results of executed

tests or validation of operator login.

 Configuration module – provides access to configuration files and allows user to

setup application according current requirements. This leads to a configurable and

extendable application which is independent on many settings.

 Tester – allows the user to schedule and execute a collection of tests using

defined parameters.

26

Picture 3.1.1 Application module and dependencies between them

The editor is a general tool for creating testing parameters. All types of tests and

parameters are supported. The application configuration defines the structure of the

supported file format. The output of the editor is an XML file that is read by the tester. It

contains necessary configuration of executing tests. The tester is responsible for creating

the tests from given XML configuration, executing them and providing a visualization.

Hardware is controlled by writing defined channel values. This ability assures the

communication module. The communication module is a general interface to remote

terminal units (see 2.2.1) supporting various protocols. Application configuration defines

used channels and their addresses inside the RTU as well as the communication protocol.

The test results are passed to database layer based on Entity Framework using CLR type

instances mapped to database tables or methods mapped to stored procedures.

3.2. Communication Module

The communication module constitutes the interface between the application and

the tester machine. This is the crucial part of our application, because the performance

and safety depends on it. Therefore we have dedicated a significant amount of time to

design and implement this part.

27

Our intension is to make the memory of remote terminals accessible to application

directly and without any time delay. The principle of operating is similar to computer

games. Regularly in a loop the logical step
17

 is executed and memory is synchronized

with remote terminals (comparable to the process when the screen is redrawn in a game).

3.2.1. Communication Module

One of the possible ways to increase configurability is the independence on the

used communication protocol. To implement this feature we decided to make a common

interface for all protocols. The application will only access this interface while technical

details stay hidden. As described in Chapter 2.2.2, during the execution loop only three

types of operations are needed: read all channel values from terminals, write all output

channel values to terminals and access particular channels during the logical phase. These

operations includes IModule interface (see Figure 3.2.1), which provides access to the

underlying protocol implementation. During the execution logical phase the memory

image is accessed by getting a reference to a particular channel identified by a name.

Figure 3.2.1 A common interface for all communication protocols

The list of known channels and their unique identifiers (names) is placed in an

external file. It should be defined by the customer
18

 and loaded at the time of module

initialization. Using channel names is not necessary, but it is more user-friendly to use

names instead of numeric addresses. Different protocols use different addressing, but in

the application we only use unified identifiers. Also the name gives a meaning to the

channel and the configuration becomes more transparent.

The channel value is accessed by various protocols and transferred through the

network. There are two types of channels – digital and analog – which differs in the size.

17

 The logic of the hardware control consists of processing input channels and writing negotiated output

channels

18
 This is a part of the deployment process

28

In the case of analog channels the size is varying (8, 12, 14, 16, 32 bits). Therefore the

common channel interface should be elaborated properly.

The channel data type is not important when transferred over network. It is

represented as a byte array which is accessed by a particular protocol implementation as

shown in Figure 3.2.2 - IChannel interface. Clearly it is not very programmer friendly

and also does not prevent from writing an input. We strongly distinguish between all

types of channels using specialized interfaces. Because the maximum range of an analog

channel is 32 bits we have implemented the analog interface using unsigned integer type.

It is wastage, but the number of analog channels is very limited
19

 and the simplification

of our code is noticeable. The used protocol defines how many of bits in the integer are

utilized. Output interfaces (Figure 3.2.2) only add the ability of writing channel values.

This prevents from causing an error by writing to an input channel. An instance of

IChannel is only a container of remote memory unit. We need to write to it when the

value of a remote channel changes. For this purpose the SetValue method is defined

which is used only internally by the communication module.

Figure 3.2.2 Channel interfaces

19

 The price of one 12-bit analog terminal is higher than 2GB of DDR2 memory (compared on

15.4.2012).

29

3.2.2. Addressing Channels

Each protocol uses a proprietary address format. It can be a number pointing to a

specific memory cell or a pair of numbers specifying a group of memory cells and a cell

inside this group. TwinCAT ADS Library
20

 for the EtherCAT protocol supports several

ways of channel access. One of them is a numeric group identifier and a channel name.

We are using this addressing method for the same reason as the DNS is used in the

networks.

The address does not need to be accessed from the application; it is only used by

the protocol implementation. That is the reason why IChannel does not contains any

address information. We define a special interface IChannelAddress<T> instead,

where T is the type of the structure holding address information. Then implementation of

a channel has two interfaces where IChannel is accessed from the application code

while IChannelAddress<T> is accessed from IModule only. The implementation of

IModule defines the addressing format – the type of T.

Picture 3.2.1 Hiding channel address in specific protocol implementation – it is accessed only

from IModule implementation.

We only define one generic channel type for any protocol. The implementation of

IChannel interface (and derived interfaces) is fairly large, so we do not need to repeat it.

20

 http://www.beckhoff.com/english.asp?twincat/twincat_ads_communication_library.htm

30

The implementation of IModule for a specific protocol instantiates the right type of this

generic class, with specific addressing.

3.2.3. Module Specialization

The implementation of the IModule interface is general enough so any application

may use it. On the other hand, a channel must be accessed by the name and its existence

is checked at the runtime only. When a typing mistake in the name occurs, the intended

channel will not be written, and a serious damage on the mirror may be caused. Also

channels accessed through the IModule interface are not strongly typed and a cast is

necessary which leads to more mistakes.

 To prevent this threat, we decided to make an adaptation of the IModule

implementations for requirements of our application – the Channels class. With the use

of decorator pattern [16] application dependant channels are added as strongly typed

properties
21

 (see Figure 3.2.3). During the initialization phase, all properties are assigned

using the reflection and if a channel is not present, an exception is thrown in underlying

module, which prevents the communication to be started. This way, the existence of a

channel is proved before communication is started and not when firstly accessed. There is

also a small optimization as an instance of a channel is accessed directly and not looked

up by a string identifier
22

. This is significant during the execution logic phase which

needs to run as fast as possible to ensure low latency. The name of a property is always

the same as the name of the channel defined in configuration file.

21

 Type of a property is specified according to the channel type: input/output and digital/analog. For

each channel type is defined special interface.

22
 Even if IModule implemented using Dictionary

31

Figure 3.2.3 Extending IModule implementation with the decorator pattern (Based on [16]

decorator UML diagram)

Operating the tester machine just by writing to channels can be sometimes a little

complicated. Some actions require setting up several channels. In this case, an error can

occur easily when one of these channels is omitted. Another improvement achieved by

the Channels decorator is the possibility to add special methods for well-known actions,

i.e. moving mirror glass up, which requires several channels to be written to.

Example 3.2.1 Extending module functionality by adding well-known actions

public void MoveMirrorUp()

{

 MoveMirrorVertical.Value = false;

 MoveMirrorReverse.Value = true;

 MoveMirrorHorizontal.Value = true;

}

3.2.4. Module Lifecycle

Figure 3.2.4 describes a typical module lifecycle. First of all, an instance of empty

module is created. When a communication is needed to be established, channels

configuration is loaded from an external file – the initialization step. At this time, in the

case of the decorator class, the presence of all channels and their types is checked. If any

of them is missing, an exception is thrown and the use of this module is blocked.

32

Otherwise the module is ready for the next step where the physical connection with the

remote hardware is established. After that the module is prepared to enter the

communication loop and update is called regularly. The connection is closed by the

Disconnect method, but the module can be reused and connected again until it is

disposed. The implementation of IModule for a specific protocol is usually done using

an external library written as an unmanaged code which requires disposing modules.

Figure 3.2.4 Module lifecycle

3.2.5. Protocol Types and Management

Three types of protocol are used for communication. However, it is important that

any protocol can be integrated to our application by implementing the IModule

interface. The following list contains supported protocols:

 EtherCAT – industrial protocol developed by Beckhoff
23

 Modbus – TCP adaptation of Modbus protocol

 Dummy – for testing purpose only. Proprietary protocol type. Useful when

debugging complicated configuration.

Each communication module needs some external configuration containing the list

of all channels and its properties. In particular: the name, type (input/output), size and

address. Loading of this configuration is intended to be done during initialization step

explained in 3.2.4. For the file format we have chosen “.csv” because it can be generated

by many third-party tools. For more information see Appendix B.

For EtherCAT and Modbus external libraries are used. The principle is always very

similar. We use this library to read or write to all channels and distribute their values to

23

 http://beckhoff.com/

33

IModule channels where they are accessible to the testing logic. For more information

about particular protocol see attached documentation:

 EtherCAT (5):

 Modbus TCP (4)

3.3. Editor Module

The application is deployed for a specific tester machine supporting a well defined

set of tests to be provided. The editor allows the user to configure executing tests. It is

important to mention that the deployment process does not require any change to editor

code and the set of tests is configurable. Notice that the tester hardware is frequently

designed for a specific factory with specific requirements.

The editor is designed to be independent on the rest of the application modules. It

also could be transformed into a standalone application easily. Communication with the

tester module is based on a XML file with a well-defined structure. To achieve this goal

we have defined the test and parameters structure configurable, which allows us to

modify tests without any change to the code. Each test can have a different number of

parameters of a certain type. The numeric types use various units.

Each test has an ID defined, which is used for internal requirements of the

application as a reference when a certain test is needed (i.e. during testing). The same

principle is applied to parameters except that their IDs must be unique only inside the test

they belong to. Following picture (Figure 3.3.1) shows the hierarchy of classes defined

for this purpose.

34

Figure 3.3.1 The class hierarchy of test and parameter implementations

The definition of the tests and their parameters is dragged out to an external

configuration file – a so-called template. New files are created according to this

configuration. The template is an XML file so we can modify it by using any text editor.

The root element contains definition of all tests. A test element contains a collection of all

its parameter definitions.

In the template file are defined default values of parameters and tests
24

. This leads

to a more comfortable user interface. We can enable all usual and disable all unusual

tests, so user must not explicitly set up all of them. When a new file is created default

values of parameters are filled automatically in and the user only modifies the necessary

ones.

24

 A test also has some specific value like the parameter – it can be enabled / disabled.

35

Example 3.3.1 Snippet of a template file

This example shows a snippet of a template file defining a test with unique

TravelEast id and disabled by default. The ID is used only internally by the application

while the name and description are localized values and can be displayed in the user

interface. The definition of a parameter is very similar except that there are various types

of parameter values which require additional settings. In this case, a double parameter of

one decimal place with default value 5.0 degrees, minimum possible value 0 and

maximum 15 is defined. See also attached sample file (3) for a complete example.

<test id="TravelEast" enbled="false">

 <name>Travel East</name>

 <group>Travel Tests</group>

 <description>…</description>

 <param id="MinAngle">

 <name>Min angle</name>

 <description>…</description>

 <type decimals="1">double</type>

 <value>5.0</value>

 <min>0</min>

 <max>15</max>

 <unit type="degrees"/>

 </param>

</test>

To improve user experience, similar tests are grouped together. This is achieved by

the <group> setting in the template.

The classes displayed in Figure 3.3.1 are used by the editor to hold the test

configuration. To make the editor more independent, we use the visitor design pattern

[16] in order to extend the functionality; otherwise we would have to go to each class and

modify its code. Also, the classes are accessible through user interface and we do not

want to open unrelated functionality. As an example, we consider the case when

parameters are loaded from the template. They are saved in the string representation and

we need to convert them to strongly typed instances. Rather than defining a method

FromString on ValueBase we use FromStringVisitor which handles the

conversion.

36

3.3.1. Graphical User Interface

Figure 3.3.2 Model-View-ViewModel pattern used for editor UI

The editor user interface is build using Model-View-ViewModel [17] pattern. As

described on Figure 3.3.2, the user interface (View) is created from given collection of

tests having collection of parameters (ViewModel). These tests are loaded from or saved

to a file using the FileManager class (Model). This class implements the file format as

described in the previous chapter.

A collection of tests is displayed through graphical user interface. Each parameter

derivation has strongly typed property for accessing its value. This property is bound to

some control of the user interface. With the advantage of data templates [10] in WPF,

dynamic GUI is achieved – its structure depends on current template configuration.

Following picture shows how different types of parameters are mapped to UI controls

according to their type.

37

Picture 3.3.1 Mapping parameters to user interface using WPF data templates

In the view, only the value of the parameter or test is accessible. Other functionality

required by the model is implemented with the use of visitors.

3.3.2. Unit Conversion

Parameters derived from UnitParam have a unit defined – have a property of

Unit type. This property besides describing the attributes of current unit allows

conversion from and to the upper and lower unit, i.e. from millimeters to centimeters etc.

Before the testing, the parameter value is converted to the base-unit (millimeters for

longitude or milliseconds for time) and measurement is performed. After the testing, the

result values in the base-unit are converted back to the unit of the parameter. By this way,

the customer can choose the unit used in the editor without any impact on the testing

logic.

3.4. Database Module

The database module is based on Entity Framework and collection of classes and

methods generated from the database using T4 Template [18]. The entry point to the

stored data is a DbContext derived class which makes accessible database tables as

properties and stored procedures as methods.

Similarly to the editor module (3.3), the database is designed to be independent of

the rest of the application. The test types and its parameters are not strictly defined in the

database.

38

Mirror testing requires an identified operator so to open testing window valid login

and username must be provided. The authentication data are stored in the database.

During testing sequence we want to save to database information about the logged in

operator, tested mirror, used tests and used parameters, test results and results of test

parameters. For more information see attached database schema.

3.4.1. Running Shift

The application keeps track of the shift execution. The time, mirror type and

executing operator are saved to database so that the company may tack employee

productivity.

From the point of database, a shift is started with the call of StartShift method

on DbContext. This method returns object representing instance of newly created shift

with unique ID generated. Used tests and parameters are added to the database (unless it

is already created) and associated with this shift. This procedure is handled on the

database side by AddTest and AddParam methods. IDs of used tests and parameters are

stored on the application side during the entire shift lifetime and referenced when saving

associated result at the end of each testing sequence – AddParamOutput and

AddTestOutput methods. The shift is finished by the call of FinishShift method.

Picture 3.4.1 Shift lifecycle from the database point of view

3.4.2. Database Scheme of a Test

The most important database tables are Test and Param storing used parameters

and TestOutput and ParamOutput storing measured values during the testing. Usually

one set of testing parameters is used thousand times repeatedly to tests several mirrors.

Therefore Test and Param tables have unique values where a parameter is added only if

it has never been used before. On the other hand, after each test result values are added to

TestOutput and ParamOutput tables with a reference to Test and Param.

39

Parameter values in Param table are in string representation, because we want to

support more data types. All results are numeric values and therefore ParamOutput

table uses real type for parameter value.

Example 3.4.1 Measuring mirror glass inclination angle

As an example we consider measurement of glass inclination angle. The given

parameter P tells how many degrees the mirror should be inclined to satisfy the test. This

angle must be reached in time T. At the time T1 > T current angle was P1 < P, so the test

is finished. Following values will be saved to the database:

See attached database diagram (2) for detailed information.

3.5. Tester Module

The implementation of the tester module is divided into two main parts:

visualization and execution logic. The execution logic is running in a separate thread with

real-time priority. Communication module is a shared intermediate layer.

3.5.1. Task Definition

Any simple interaction with tester hardware is denoted as a task. Implementation of

a specific task must derive from the abstract Task class and override its Update method.

This method is called regularly in a loop. Usual implementation of a task is holding its

current state as an enumeration value and Update method contains a switch for all

possible states. All tasks define at least these states: initializing, finalizing and aborting.

Example 3.5.1 Wait task

Following code snippet shows implementation of Wait task that blocks

communication with tester for specified period of time (waitingTime).

Param

T (string)

P (string)

ParamOutput

T1 (double)

P1 (double)

40

public override void Update(DateTime time)

{

 switch (exState)

 {

 case ExState.Initializing:

 StartWatch(time); // start measuring time

 goTo(ExState.Measuring);

 break;

 case ExState.Measuring:

 if (TimeElapsed(time) > waitingTime)

 goTo(ExState.Finalizing);

 break;

 case ExState.Finalizing:

 case ExState.Aborting:

 Finish(time); // leave the update loop

 break;

 }

}

Finish method defined in the Task class leaves the update loop.

We have considered four types of basic tasks that can be performed to control the

tester – set value of some channel, wait for some channel to have specific value, wait for

specified period of time and make a decision based on some channel value (a condition).

Using combination of these tasks we can fully control the hardware. The next step is the

implementation of tests.

A mirror test is a specific task, derived from the abstract TestTask class. The

main difference is that TestTask requires an instance of TestValue with parameters

(Chyba! Nenalezen zdroj odkazů.) at the initialization time. Also, it is usually

overridden getResult method which returns a TaskResult instance holding

information about task execution and possible results of parameters (for tests).

TestTask results are saved to the database.

3.5.2. Task Scheduler

The responsibility for executing the given set of tasks is wrapped into the

TaskScheduler class. The TaskScheduler lifecycle is very similar to the task one, as

its logic is performed in an update loop. Given set of tasks is contained in four queues – I

(input), P (prepared), R (running) and F (finished). At the beginning the I queue holds all

41

of them. When a task is prepared and there is no restriction for its execution, it is moved

from I to P. At the next update, all tasks from P are initialized (call of the Initialize

method) and moved to R. After that all R tasks are updated. When a task is finished, it is

moved to F. This logic is performed in the Update method.

The definitions of input tasks are contained in an external XML file. For the four

basic tasks and for the test special elements are defined. You can optionally specify a

unique id for each element. Also each task element can have a behavior child element

with required attribute which contains list of task ids that must be finished before the

current one can start. Well defined requirement relations compose a direct acyclic graph

where tasks are the vertices and requirements are the edges. For the details description of

input tasks file configuration see the advanced part of attached user manual (1).

Tasks in I are ordered topologically. When preparing new tasks to be run, from I

are taken those that do not have any predecessor in P or R.

3.5.3. Visualization

In the testing window are displayed current values of all analog channels over time

as a graph. For this purpose FlowControl is designed which displays given set of

channel values. You can add new value by AddValue method which automatically

removes the old ones. The proportions of graph are adjusted according to the maximum

value in the set.

FlowControl is connected to some analog channel through delegate that returns

current channel value. The only demand is to call Update method which takes current

channel value and adds it to the graph. This is handled by a handler registered in a timer

which regularly updates the user interface. The frequency shouldn’t be as high as for the

communication module. Current timer interval is 400 milliseconds.

Another part updated by the GUI timer is 3D model of the mirror glass. It is

encapsulated in the MirrorView user control with RotationAxis and

RotationAngle properties. These values are directly passed to WPF, so no graphics

calculations are done in our code.

42

3.6. Simulator

With the MTS application, a software simulator of the tester is also shipped. It can

be used for application testing or even by the customer, for debugging complicated

configurations before running on the real hardware.

The simulator is listening on given port and waiting for read command
25

. The

response is a list of all channels and their values in the following format {channel

name}:{value}. MTS application is using the Dummy protocol for communication with

the simulator. This protocol is intended to be used for debugging and testing only and is

not optimized for speed. The simulator code is also considered to be quickly written

testing code.

25

 “read” string

43

4. Evaluation

The requirement of the automation in the industry led to the creation of the MTS

application. This requirement was clearly satisfied by the MTS core providing control

logic of the tester machine. The mirror testing is automated completely – only one press

of a button is necessary. The performance was improved by the parallelism. Very

powerful feature is the possibility of defining the control logic of the machine in an

external file.

The design was noticeably influenced by given development conditions – we were

not certain about all the tests that will be possibly necessary in the future. Therefore,

some of the development decisions were made with future changes in mind. As a positive

consequence we consider easy to extend this application with small just a small effort.

Also other aspects necessary for effective usage of the MTS application were

implemented: the editor, printing, users, settings etc. From this point of view, we admit

that some features may be improved or changed to satisfy the customer demands. For

example, the mirror type to be tested can be read from a barcode, the user roles and

authorization are very simple and can be improved, the summaries from the database can

be exported to excel or other format, etc.

One of the achievements that we strongly appreciate is the secondary product of

this software project. It is a communication library for remote terminal units, which can

be used standalone. Very nice feature in this library is that it hides hardware details and

the communication protocol from the programmer, who can develop the execution logic

without knowing what kind of RTU’s will be installed. This advantage is clearly visible

on the usage of the simulator, which is from the application point of view unrecognizable.

The applicability of this library is also confirmed by the fact that it is used by developers

in the company MTS s.r.o. for other projects
26

.

Although we know about the existence of a related work the implementation of this

project is unknown to us. It is expected to be difficult to maintain it and to implement

26

 At the time of writing this thesis for projects under the development

44

such features as we have, using mentioned technologies. Beckhoff announced the release

of TwinCAT 3 which will allow the control of RTU’s and PLC computers directly from

.NET languages and presumable will replace our communication library. Its goal is for

non real-time applications.

45

5. Conclusion

The goal of this project was to make a very specific application for mirror testing. It

requires a special hardware dedicated for this purpose. From this point of view, it seems

that our application is intended to be for a single use in some factory adapted for its

requirement only. But the development, with the future extensibility in mind, leads us to

build a customizable application that can be used for testing almost any kind of mirror for

which the testing hardware is adapted.

The usefulness of this application is also proved by the fact that it will be used for

mirror testing in the automobile factory. A video recording from the testing can be found

on http://code.google.com/p/mirror-testing-system/

46

Appendix A. CD Content

doc/ – documentation of MTS application, tools documentation

html/ – generated documentation from source files

install/ – installation package

samples/ – sample files created by MTS application

src/ – source files including database scripts

config/ – application configuration files

lib/ – external libraries referenced by MTS

Setup/ – setup project for the installation package

index.html – generated documentation from source files

readme.txt – read this file

47

Appendix B. Configuration Files

EtherCAT *.csv configuration file used by our application is generated by

TwinCAT System Manager. For more information how to configure a task in TwinCAT

System Manger and export it to *.csv file readable by MTS see our video tutorial or

Beckhoff documentation.

The format of this file is the following: Name;Type;Size;>Address;In/Out

Name: Channel name given by the customer. Unique identifier used to reference this

channel in the application.

Type: Data type of the channel value (BOOL, UINT, INT, SHORT …), indicates the

channel size.

>Address: Channel address in the format X.Y, where X is the order of byte where

current channel data begins and Y is the order of bit inside X byte where current

channel data begins.

In/Out: A constant values: Input or Output indicating whether current channel is an

input or an output.

Modbus *.csv configuration file is very similar (it is not generated by any third

party tool): [Channel Name];[Slot Number];[Channel Number];[I/O type];[I/O Data

Length (bits)];[Comment]

[Channel Name]: Channel name given by the customer. Unique identifier used to

reference this channel in the application.

[Slot Number]: Address of a group of channels. This association is given by the

hardware slot which contains several channels.

[Channel Number]: Address of the channel inside the slot.

[I/O type]: constant values: Input or Output indicating whether current channel is an

input or an output.

[Comment]: Optional user description of current channel.

http://mts.php5.cz/twincat_demo.htm

48

List of Abbreviations

RTU – Remote Terminal Unit: an electronic device for controlling hardware

components. Contains a piece of addressed memory accessible from the network.

XAML – Extensible Application Markup Language: Declarative markup language used

for creating .NET Framework UI applications.

XML – Extensible Markup Language: general markup language for encoding

documents in a human readable format – stored as a text.

GUI – Graphical User Interface: Application layer interacting directly with the user

through control elements. Sometimes referred to as user interface (UI).

WPF – Windows Presentation Foundation: system for creating Windows application

with rich graphical user interface.

49

Attachments

1. User Manual.pdf

2. database.gif – ER model of the database

3. simulation.tc – sample file with testing configuration

4. MXIO.Net_API_v3.pdf – Documentation of a library for TCP Modbus protocol

5. TcAdsNetRef.chm – Documentation of a library for EtherCAT protocol

50

Bibliography

1. Microsoft Application Achitecture Guide. s.l. : Microsoft Corporation, 2009.

9780735627109.

2. C++ performance vs. Java/C#. Stack Overflow. [Online] December 9, 2009. [Cited:

July 12, 2012.] http://stackoverflow.com/questions/145110/c-performance-vs-java-c.

3. Master/slave (technology). Wikipedia. [Online] February 24, 2012. [Cited: March

19, 2012.] http://en.wikipedia.org/wiki/Master/slave_%28technology%29.

4. Remote Terminal Unit. Wikipedia. [Online] February 18, 2012. [Cited: March 14,

2012.] http://en.wikipedia.org/wiki/Remote_Terminal_Unit.

5. Programable Logic Controller Operations. Plctutor. [Online] [Cited: February 22,

2012.] http://www.plctutor.com/plc-operations.html.

6. EtherCAT - the Ethernet Fieldbus. EtherCAT. [Online] [Cited: March 14, 2012.]

http://ethercat.org/en/technology.html.

7. Zezulka, František and Hynčica, Ondřej. Průmyslový Ethernet IX: EtherNet/IP,

EtherCAT. odbornecasopisy.cz. [Online] October 2008. [Cited: March 16, 2012.]

http://www.odbornecasopisy.cz/index.php?id_document=37910.

8. EtherCAT Performance Analysis. EtherCAT. [Online] [Cited: April 23, 2012.]

http://www.ethercat.org/en/performance.html.

9. Nathan, Adam and Lehenbauer, Daniel. Windows Presentation Foundation

Unleashed. Indianapolis : Sams Publishing, 2007. ISBN 0-672-32891-7.

10. Customize Data Display with Data Binding and WPF. MSDN. [Online] [Cited:

February 26, 2012.] http://msdn.microsoft.com/en-us/magazine/cc700358.aspx.

11. WPF Globalization and Localization Overview. MSDN. [Online] [Cited: April 1,

2012.] http://msdn.microsoft.com/en-us/library/ms788718.aspx.

12. Adam, Nathan and Lehenbauer, Daniel. Windows Presentation Foundation

Unleashed. Indianapolis : Sams Publishing, 2007. 0-672-32891-7.

13. Chartier, Robert. Serialization in the .NET Framework. Codeguru. [Online]

January 10, 2008. [Cited: April 7, 2012.]

http://www.codeguru.com/csharp/.net/net_framework/article.php/c19541/Serializatio

n-in-the-NET-Framework.htm.

14. Document Type Definition. Wikipedia. [Online] June 30, 2012. [Cited: July 22,

2012.] http://en.wikipedia.org/wiki/Document_Type_Definition.

15. ADO.NET Entity Framework. MSDN. [Online] Microsoft. [Cited: April 23,

2012.] http://msdn.microsoft.com/en-us/data/ef.

16. Bishop, Judith. C# 3.0 Design Patterns. s.l. : O'Reilly Media, Inc., 2007. 0-596-

52773-X.

17. Smith, Josh. WPF Apps With The Model-View-ViewModel Design Pattern.

MSDN Magazine. [Online] February 2009. [Cited: May 15, 2012.]

http://msdn.microsoft.com/en-us/magazine/dd419663.aspx.

18. Code Generation and T4 Text Templates. MSDN. [Online] March 2011. [Cited:

July 22, 2012.] http://msdn.microsoft.com/en-us/library/bb126445.aspx.

