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Vedoućı diplomové práce: doc. RNDr. Pavel Valtr Dr., Katedra aplikované matem-
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Introduction

Graph drawing is an area of mathematics and computer science combining meth-
ods from graph theory, geometry and topology to derive suitable representations
of graphs. There are many applications of this field, as graph drawings arising
in other areas of application include, for example, Hasse diagrams, flow charts,
Dessin d’enfants, computer network diagrams and so on.

In this thesis we study particular graph drawings in which vertices of a given
graph are represented by grid points (points having integer coordinates) and
each edge corresponds to a line segment between its endpoints. In addition, the
only vertices a line segment intersects are its own endpoints. Recently, the grid
drawings of graphs have attracted the attention of many researchers (see, for
example [10, 13, 16, 21, 27, 30, 36]).

Although the main area of our interest are connections between grid drawings
of graphs (in the grids of an arbitrary finite dimension) and graph colorings, we
consider even other problems related to the grid drawings of graphs. Specifically,
we study such drawings from three points of view – robustness, compactness and
planarity.

By robustness we mean grid drawings with bounded number of grid points
lying on a line segment. The compactness signifies somehow bounded space of the
drawings and the last point of view, the planarity, involves studying grid drawings
where two line segments meet only in extremal points. Exploring this topic, we
use methods from graph theory, geometry, number theory and computational
complexity theory.

Outline

Chapter 1 should give the reader a brief introduction to graph theory, complexity
theory and number theory. Except of the basic terms and classical results of these
fields, we also introduce a formal definition of grid drawings and some other
related new terms. An experienced reader can skip most of this chapter, as he
might find the majority of the mentioned definitions and statements familiar.

In Chapter 2, we study the grid drawings of graphs with bounded number of
grid points per line segment. The main result of this chapter is Theorem 2.2 whose
proof is shown in Section 2.2. Afterwards, we consider some of the immediate
corollaries of this theorem. The second chapter ends with some other concluding
remarks.

The second point of view, the compactness of the grid drawings, is studied in
Chapter 3. We consider the grid drawings with bounded number of columns on
which a given graph can be drawn or located (a graph can be located in Zd if it
has a grid drawing where every line segment contains exactly two grid points).
We show that this problem is closely connected to a special form of a defective
coloring in which some colors induce independent sets and some disjoint unions of
paths. See Observation 3.2 and Theorem 3.4. We examine this particular coloring
more deeply in Section 3.3 and we use it later to prove a more general result,
Theorem 3.14, which implies NP-completeness of a problem of deciding whether
a graph can be drawn/located on a l columns where l ≥ 2 is a given integer.

2



This answers an open question of Cáceres et. al. [10]. Some other statements
which strengthen known results are also shown in this chapter. For example
Theorem 3.8.

We examine another type of compactness in Chapter 4. That is, the grid
drawings in Z2 with small area. We mention some interesting already known
results and then, in Section 4.2, we show a sharp lower bound on area of grid
drawings of balanced complete k-partite graphs proving a conjecture asked by
David R. Wood [36].

The main result of Chapter 5 is Theorem 5.1, which says that any planar
graph has a planar grid drawing in Z2 where every line segment intersects exactly
two grid points. We use the Four Color Theorem to prove this statement and we
show that these two results are actually equivalent. In the rest of this chapter we
discuss the sizes of the obtained grid drawings.

At the end of the thesis we mention some related open problems and possible
ways for further research together with a brief summary of our results.

An extended abstract containing some results from this thesis appeared in
the proceedings1 of the 28th European Workshop on Computational Geometry
EuroCG ’12 [5]. Afterwards, the paper was amongst selected papers invited to a
special issue of the journal “Computational Geometry: Theory and Applications”.
I also presented a weaker version of Theorem 2.2 together with some older related
results (not mentioned in the thesis) in the competition SVOČ 2011[4]’.

1The booklet of abstracts is available here: http://www.diei.unipg.it/eurocg2012/booklet.pdf
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1. Preliminaries

This chapter should give the reader a brief introduction to graph theory, complex-
ity theory and number theory. We mention some basic definitions and classical
results which we refer to throughout the thesis. We also introduce the concept of
grid drawings and we attach some related definitions.

A reader familiar with the semi-standard notation can skip most of this chap-
ter and move on to Chapter 2 and alternatively return later for unfamiliar defi-
nitions and concepts.

1.1 Graph Theory

All graphs considered are simple, undirected, finite and loopless. It means that
a graph G is given as a pair (V,E) where V is finite set of vertices and E ⊆

(
V
2

)
is a set of unordered pairs which we call edges.

Two graphs G = (VG, EG) and H = (VH , EH) are said to be isomorphic if
there is a bijection ϕ : VG → VH such that uv ∈ EG ⇔ ϕ (u)ϕ (v) ∈ EH . To
simplify the notation, we consider all isomorphic graphs to be equal.

A subgraph H = (VH , EH) of a graph G = (VG, EG) is a graph that satisfies
VH ⊆ VG and EH ⊆

(
VH
2

)
∩ EG. If EH =

(
VH
2

)
∩ EG, then we say that H is a

subgraph induced by the set VH , or simply it is an induced subgraph of G. In such
case we write H = G [VH ]. The degree of the vertex v ∈ VG is a number of edges
incident to v and we denote it as d (v). The maximum degree of a graph G is
denoted as ∆ (G).

Let G = (VG, EG) and H = (VH , EH) be two graphs with disjoint vertex sets.
A disjoint union of graphs G and H is the graph with vertex set V = VG ∪ VH
and edges E = EG ∪ EH .

A path in a graph is a sequence of vertices such that from each of its vertices
there is an edge to the next vertex in the sequence. A cycle is a path such that
the start vertex and end vertex are the same. A path with no repeated vertices
is called a simple path and a cycle with no repeated vertices or edges aside from
the repetition of the start and end vertex is a simple cycle.

A tree is a graph in which any two vertices are connected by exactly one simple
path. A path graph (or path, for short) is a tree which has a simple path which
passes through all its vertices. The disjoint union of paths is called a linear forest.
A cycle graph (or cycle, for short) is a graph that consists of a single simple cycle.
A graph in which every pair of distinct vertices is connected by an edge is called
complete. We also use the term clique for such graph and we denote the complete
graph on n vertices as Kn.

Planar graphs are graphs that can be embedded in the Euclidean plane in
such a way that vertices are represented by points and edges by curves connecting
adjacent vertices that intersect only at their endpoints. A planar graph already
drawn in the plane without edge crossings is called a planar embedding of the
graph.

A k-coloring of a graph G = (V,E) is a function f : V → C for some set C
of k colors such that f (u) 6= f (v) for every edge uv ∈ E. If such k-coloring of
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G exists, then G is k-colorable. The chromatic number χ (G) of G is the least k
such that G is k-colorable.

For k ≥ 2, a k-partite graph is a graph whose vertices can be partitioned into
k disjoint sets such that no two vertices within the same set are adjacent. Let
K (k, t) denote the balanced complete k-partite graph with t vertices in each color
class. These graphs are very important, as every k-colorable graph on t vertices
is a subgraph of K (k, t).

Before introducing the concept of grid drawings, we conclude the part dedi-
cated to graph theory by mentioning two classical results about planar graphs.
The first one is called the Four Color Theorem and it shows the minimum number
of colors that we need to color an arbitrary planar graph.

Theorem 1.1 (The Four Color Theorem, [2]). Any planar graph is 4-colorable.

The second statement, Fáry’s theorem, concerns with drawings of planar
graphs and it states that any planar graph has a planar embedding where edges
are straight line segments.

Theorem 1.2 (Fáry’s theorem, [20, 34, 35]). Any planar graph can be drawn
without crossings so that its edges are straight line segments.

For more throughout introduction to graph theory, we recommend the books
“Graph Theory” by R. Diestel [18] and “Modern Graph Theory” by B. Bol-
lobás [8].

1.2 Grid Drawings

For an integer d ≥ 2, a column in the grid Zd with the rank (x1, . . . , xd−1) ∈ Zd−1

is the set {(x1, . . . , xd−1, x) | x ∈ Z}. Let xy denote the closed line segment joining
two grid points x, y ∈ Zd. The line segment xy is primitive if xy ∩ Zd = {x, y}.

Definition A grid drawing φ (G) of G in Zd is an injective mapping φ : V → Zd
such that, for every edge uv ∈ E and vertex w ∈ V , φ (w) ∈ φ (u)φ (v) implies
that w = u or w = v.

That is, a grid drawing represents vertices of G by a distinct grid points in Zd,
and each edge by a line segment between its endpoints such that the only vertices
an edge intersects are its own endpoints. Note that the condition on the grid
points representing vertices is essential. Without it every graph could be drawn
on a single arbitrary column. Also note that we allow edges to cross in a grid
drawing.

The points x, y ∈ P , where P ⊆ Zd, are (mutually) visible with respect to
P if P ∩ xy = {x, y}. If P = Zd, then we just say that u, v are visible. The
visibility graph υ (P ) of P has a vertex set P where two distinct vertices are
adjacent if and only if they are visible with respect to P .

Now we can use the new terms of visibility for a description of the grid draw-
ings. A graph G has a grid drawing in Zd if and only if there is a set P ⊆ Zd
such that G is a subgraph of υ (P ). Also, there is a primitive grid drawing of G
in Zd if and only if G is a subgraph of the visibility graph υ

(
Zd
)
.
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Figure 1.1: Some grid drawings

In the recent years a lot of interesting results concerning the grid drawings
of graphs appeared. For example, suppose that we want to find a planar two-
dimensional grid drawing of a given planar graph G such that the size of the draw-
ing is as small as possible. The following three results proved by De Fraysseix,
Pach, and Pollack [16], Schnyder [33], and Chrobak and Nakano [13], respectively,
say that we can find such drawings in the grid with size O (n) × O (n) where n
denotes the number of vertices of G. This grid size is asymptotically optimal.

Theorem 1.3 ([16]). Any planar graph with n vertices has a planar grid drawing
on the 2n−4×n−2 grid and there is O (n log n) algorithm to effect this drawing.

Theorem 1.4 ([33]). Each planar graph with n ≥ 3 vertices has a planar grid
drawing on the n− 2× n− 2 grid and this drawing is computable in O (n) time.

Theorem 1.5 ([13]). There is an algorithm which for a given a triangulated
planar graph G with n vertices constructs a planar grid drawing of G into a

ω × (4ω − 1) grid, ω ≤ 2
⌊

2(n−1)
3

⌋
, in linear time with respect to n.

János Pach, Torsten Thiele and Géza Tóth [30] considered a similar problem in
three-dimensional grid. Suppose we have an integer r ≥ 2 and a given r-colorable
graph G with n vertices. We want to map the vertices of G into distinct points of
Z3 such that the straight-line segments representing the edges of G are pairwise
non-crossing. In other words – we want to find a three-dimensional planar grid
drawing of G. The authors showed that there exists such grid drawing of G which
fits into a box of volume O (n2) and that this bound is optimal.

Theorem 1.6 ([30]). For every r ≥ 2 fixed, any r-colorable graph of n vertices
has a planar three-dimensional grid drawing that fits into a rectangular box of
volume O (n2). The order of magnitude of this bound cannot be improved.

Although we consider a similar problem of drawing r-colorable graphs into
two-dimensional grids with small area in Chapter 4, we mainly focus on the
problems concerning the connections between grid drawings and graph colorings
in this thesis.
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1.3 Complexity

Complexity theory is a branch in theoretical computer science and mathematics
that focuses on classifying computational problems according to their difficulty,
and relating those classes to each other.

The asymptotic notation (or so called Bachmann-Landau notation) is used to
describe the limiting behavior of a function when the argument tends towards
a particular value or infinity. We also use it to classify algorithms by how they
respond to changes in input size. Let f (n) and g (n) be two functions defined
on some subset of the real numbers. We write f (n) ∈ O (g (n)) if there is a
positive constant c such that for all sufficiently large values of n the inequality
0 ≤ f (n) ≤ cg (n) holds. Analogously, f (n) ∈ Ω (g (n)) if 0 ≤ cg (n) ≤ f (n).

A decision problem is any arbitrary yes-or-no question on an infinite set of
inputs. We can classify the complexity of a decision problem using the asymp-
totic notation, or we can assign the problem to a complexity class. For the exact
definitions, please, see the book “Computational complexity” by C. M. Papadim-
itriou [31].

There is an infinite hierarchy of complexity classes, but we introduce on-
ly the most basic ones which we mention in the thesis. The complexity class
DTIME (f (n)) is the set of decision problems that can be solved by a determinis-
tic Turing machine which runs in time O (f (n)) where n is the size of the input.
The complexity class P can be defined as P =

⋃
k∈N DTIME

(
nk
)
. That is, P is a

class of of all the problems solvable in a time polynomial in the size of input on
a deterministic Turing machine.

Similarly, the well-known class NP denotes the complexity class defined as⋃
k∈N NTIME

(
nk
)

where NTIME (f (n)) is the set of decision problems that can
be solved by a non-deterministic Turing machine in time O (f (n)). Thus NP is
the class of all the problems solvable in time polynomial in the size of input on
a non-deterministic Turing machine. We have the inclusion P ⊆ NP, but the
question of equality remains open and it is one of the most famous problems in
contemporary mathematics and theoretical computer science.

Let P1 and P2 be two decision problems with inputs I1 and I2, respectively.
We say that P1 is polynomial time reducible to P2 if there is is an algorithm
transforming I1 in time polynomial in |I1| to I2 such that the answer to P (I1) is
“YES” if and only if the answer to P (I2) is “YES”. In other words, P1 can be
solved in polynomial time by an oracle machine with an oracle for P2.

A problem P2 is NP-hard if there is an NP hard problem P1 which is polynomial
time reducible to P2. Note that P2 is at least as hard as P1, because we can use
P2 to solve P1. If P2 is NP-hard an it is in the class NP, then we say that
P2 is NP-complete problem. These are the hardest problems in NP. There are
decision problems that are NP-hard but not NP-complete, for example the Halting
Problem which asks “Given a program and its input, will it run forever?”.

Let us mention some known NP-complete problems which we use later in the
thesis.

GRAPH k-COLORABILITY
Instance: Graph G = (V,E), positive integer k ≤ |V |.
Question: Is G k-colorable?
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This particular problem is solvable for k = 2 in polynomial time, as a graph
is two-colorable if and only if it is bipartite. For every fixed k ≥ 3, the problem
becomes NP-complete. For k = 3, the Graph k-Colorability problem remains NP-
complete even if we restrict our attention to only planar graphs of degree four
as shown by David P. Dailey [15]. Especially, it is NP-complete to compute the
chromatic number of G.

3-SATISFIABILITY (3SAT)
Instance: Set U of variables, collection C of clauses over U such that each clause
c ∈ C has |c| = 3 (see [22] for definitions).
Question: Is there a satysfying truth assignment for C?

This is a classical NP-complete problem which is very useful for showing NP-
completeness. As one of the most important NP-complete problems, 3SAT has
many versions and two of them will be particularly helpful for us in the subsequent
proofs. The following one, One-in-three 3SAT, is used in the proof of Lemma 3.12
in Chapter 3.

ONE-IN-THREE 3SAT
Instance: Set U of variables, collection C of clauses over U such that each clause
c ∈ C has |c| = 3.
Question: Is there a truth assignment for U such that each clause in C has
exactly one true literal?

The following second variant of 3SAT helps us in the proof of Lemma 3.13.

NOT-ALL-EQUAL 3SAT
Instance: Set U of variables, collection C of clauses over U such that each clause
c ∈ C has |c| = 3.
Question: Is there a truth assignment for U such that each clause in C has at
least one true and at least one false literal?

A list of some other NP-complete problems is available, for example, in the
book “Computers and Intractability; A Guide to the Theory of NP-Completeness”
by M. R. Garey and D. S. Johnson [22]. A nice introduction to complexity theory
is also the book “Computational Complexity: A Modern Approach” by Sanjeev
Arora and Boaz Barak [3].

1.4 Number Theory

Generally speaking, we can define number theory as the study of the properties
of integers. It is one of the oldest and most fascinating fields of pure mathemat-
ics and it involves studying elementary objects made out of integers, properties
of primes, congruences and so on. In this section we mention a few standard
definitions and results which are key in the proofs of some statements in the the-
sis. An interested reader may find good introductions to number theory in the
books “Recreations in the Theory of Numbers: The Queen of Mathematics En-
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tertains” by A. H. Beiler [7] and “Elementary Number Theory with Applications”
by T. Koshy [28].

For a positive integer n, the set Zn is the finite set of integers modulo n. Two
integers a and b are said to be congruent modulo n, written a ≡ b(modn), if the
difference a− b is an integer multiple of n. Congruence modulo n is equivalence
relation and the equivalence class [a]n of the integer a is called the residue class
of the integer a modulo n. Thus the set Zn can be written as {[x]n | x ∈ Z}. If
we define addition, subtraction, and multiplication on Zn by the following rules
[a]n + [b]n = [a+ b]n, [a]n− [b]n = [a− b]n and [a]n · [b]n = [ab]n, then Zn becomes
a commutative ring.

For k ≥ 2, the greatest common divisor of integers x1, x2, . . . , xk is denoted as
gcd (x1, x2, . . . , xk). The modular multiplicative inverse of an integer a modulo n
is an integer b such that ab ≡ 1 (modn). That is, it is the multiplicative inverse in
the ring of integers modulo n and it exists if and only if gcd (a, n) = 1. Thus Zn
is a field when n is prime and subdivision is defined as multiplication by inverse.
The modular multiplicative inverse of a modulo n can be found with the extended
Euclidean algorithm in time O

(
log2 n

)
, assuming |a| < n.

The following theorem shows that every linear system in the same single vari-
able with pairwise relatively prime moduli has a unique solution. It is called the
Chinese Remainder Theorem in honor of early contributions by Chinese mathe-
maticians to the theory of congruences.

Theorem 1.7 (The Chinese Remainder Theorem). Let m1,m2, . . . ,mk be pair-
wise coprime integers and let M =

∏k
i=1mi. Then, for any given sequence of in-

tegers r1, r2, . . . , rk, there is a unique solution n ∈ ZM such that n ≡ ri (modmi)
for every i ∈ {1, 2, . . . , k}.

For completeness, we include a proof of this well-known theorem from the
book by T. Koshy [28], as we need to know the details of the proof in Chapter 2,
Corollary 2.9. The important feature of the proof is that it is constructive and
we can find such solution in polynomial time. In addition, if we consider the
numbers n+ iM , where i ∈ Z, then we see that there are infinitely many integer
solutions.

Proof. Let Mi = M/mi for every i ∈ {1, 2, . . . , k}. Since gcd (mi,mj) = 1 for
every distinct i and j, we get gcd (Mi,mi) = 1 for every i. Also we know that
Mi ≡ 0 (modmj) whenever i 6= j.

SinceMi andmi are coprime, there is a unique solution yi ofMiyi ≡ 1 (modmi).
It is the modular multiplicative inverse of Mi modulo mi. If we set n = r1M1y1 +
r2M2y2 + · · · + rkMkyk, then it is not difficult to verify that n is the solution of
our linear system, as, for every j ∈ {1, 2, . . . , k}, we have

n = rjMjyj +
k∑

i=1,i 6=j

riMiyi ≡ rj · 1 +
k∑

i=1,i 6=j

ri · 0 · yi ≡ rj (modmj) .

We have thus proved the existence. Now it remains to show that this solution
is unique. Assume to the contrary that n1, n2 ∈ ZM are two distinct solutions.
Since n1 ≡ ri (modmi) and n2 ≡ ri (modmi) for every i ∈ {1, 2, . . . , k}, we get
that every mi divides n1 − n2 and thus M divides this difference as well. But
then n1 ≡ n2 (modM) which is a contradiction.
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For x ∈ R, let π (x) denote the number of primes less than or equal to x.
It is called the prime-counting function. The following famous result, the Prime
Number Theorem, gives a general description of how the primes are distributed
amongst the positive integers.

Theorem 1.8 (The Prime Number Theorem, [17, 25]).

lim
x→∞

π (x)

x/ lnx
= 1

That is, as x gets larger, π (x) approaches x/ lnx. This result was proved inde-
pendently by Jacques Hadamard [25] and Charles Jean de la Vallée-Poussin [17]
in 1896. Before those proofs, a slightly weaker form of the theorem was proved
by Pafnuty Lvovich Chebyshev. Although he did not prove the Prime Number
Theorem, his estimates were strong enough for him to prove Bertrand’s postulate.

Theorem 1.9 (Bertrand’s postulate, [12]). If n > 3 is an integer, then there
always exists at least one prime number p with n < p < 2n− 2.

We use both these results in Chapter 4. The last statement, I would like
to mention, provides a simple formula for calculating the area of a simple poly-
gon constructed on a grid of equal-distanced points. We use this formula for
estimating the sizes of certain planar grid drawings in Chapter 5.

Theorem 1.10 (Pick’s theorem, [32]). The area of a given simple closed lattice
polygon equals I + B

2
− 1, where I is the number of points in the interior of the

polygon and B the number of lattice points on the polygon edges.
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2. Robustness of Grid Drawings

In this chapter, we are concerned with grid drawings in which the number of grid
points that can appear on a single line segment is bounded.

Theorem 2.2, the main result of the second chapter, shows a connection be-
tween the chromatic number of a given graph and between the number of grid
points that appear on line segments of its grid drawings. In the last section,
we conclude with some additional remarks to the proof and we also show some
interesting corollaries.

2.1 Bounded Number of Grid Points

The robustness of a grid drawing is understood as the maximum number of grid
points a line segment of such drawing contains. For a given graph G we would
like to find a grid drawing of G with the lowest robustness.

A graph G is said to be (grid) locatable in Zd if there exists a grid drawing of
G in Zd where every edge is represented by a primitive line segment (such drawing
is also called primitive). Finding a primitive grid drawing of G is called locating
the graph G. D. Flores Pen̋aloza and F. J. Zaragoza Martinez [21] showed the
following characterization:

Theorem 2.1 ([21, 27]). A graph G is locatable in Z2 if and only if G is 4-
colorable.

Therefore not all graphs are locatable in Z2 and every (two-dimensional) grid
drawing of any k-colorable graph, where k > 4, contains a line segment which
contains at least three grid points. This leads us to a generalization of the concept
of locatability. Let the number gp (φ (G)) denote the maximum number of grid
points any line segment of the grid drawing φ (G) contains.

Definition A graph G is (grid) q-locatable in Zd, for some integer q ≥ 2, if there
exists a grid drawing φ (G) in Zd such that gp (φ (G)) ≤ q.

The grid robustness of a graph G is the minimum of gp (φ (G)) among all grid
drawings φ (G). For example, the graph K5 has chromatic number five, thus it
is not (two-)locatable in Z2. However the grid drawing in Figure 1.1 shows that
K5 is three-locatable in Z2 (the third grid point on one line segment is denoted
by an empty circle). The main result of this chapter is a stronger version of
Theorem 2.1.

Theorem 2.2. For integers d, q ≥ 2, a graph G is qd-colorable if and only if G
is q-locatable in Zd.

The proof is constructive and for a given coloring of G with at most qd colors
we get a linear time algorithm which gives us a grid drawing φ (G) of G in Zd
where every line segment contains at most q grid points. Conversely, we also show
that if we have such grid drawing of G, then it is quite trivial to get coloring of
G with at most qd colors.
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2.2 Proof of Theorem 2.2

Let us show the following trivial but useful proposition before the actual proof.

Proposition 2.3 ([1]). Let d ∈ N and a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ Zd be
two distinct grid points. Then a, b are mutually visible if and only if

gcd (|a1 − b1| , . . . , |ad − bd|) = 1.

Proof. Clearly it suffices to prove the proposition when b = (0, . . . , 0). Assume a
is visible from the origin and let α = gcd (a1, . . . , ad). If α > 1, then aj = αãj for
every j ∈ {1, . . . , d} and the grid point (ã1, . . . , ãd) lies on the line segment ab.
Conversely, assume gcd (a1, . . . , ad) = 1. If a grid point (ã1, . . . , ãd) lies on the line
segment ab, we have ã1 = a1t, . . . , ãd = adt where 0 < t < 1. Hence t ∈ Q, so t = r

s

where r, s are positive integers with gcd (r, s) = 1. Thus sã1 = a1r, . . . , sãd = adr,
so s|a1r, . . . , s|adr. But gcd (r, s) = 1, so s|a1, . . . , s|ad. Hence s = 1 since
gcd (a1, . . . , ad) = 1. This contradicts the inequality 0 < t < 1. Therefore the
grid point a is visible from the origin.

From the equation of a line it is not difficult to characterize the points lying
on the line segment ab.

Corollary 2.4. Let a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ Zd be distinct grid points
and let

α = gcd (|a1 − b1|, . . . , |ad − bd|) .
Then the line segment ab contains exactly the grid points of the form(

a1 + i
b1 − a1

α
, . . . , ad + i

bd − ad
α

)
where 0 ≤ i ≤ α.

Now, we split the proof of Theorem 2.2 into two parts. First, we show the
easier implication and then, after some auxiliary constructions, we give a proof
of the reverse implication.

Lemma 2.5. For integers d, q ≥ 2, if the graph G is q-locatable in Zd, then it is
qd-colorable.

Proof. Using Corollary 2.4 we can prove this lemma immediately by choosing an
appropriate coloring of Zd. Let φ (G) be a grid drawing of the graph G = (V,E)
in Zd having gp (φ (G)) ≤ q. Consider the function f : Zd → Zdq denoted as

f (x1, . . . , xd) = (x1 (modq) , . . . , xd (modq)) .

We use f as coloring of the grid with qd colors and we show that it is also a proper
vertex coloring of G. Assume to the contrary that f (φ (u)) = f (φ (v)) for some
uv ∈ E. Then u1 ≡ v1, . . . , ud ≡ vd (modq) which implies

gcd (|u1 − v1|, . . . , |ud − vd|) ≥ q.

According to our corollary, there are at least q + 1 grid points lying on the line
segment φ (u)φ (v). This contradicts the fact that G is q-locatable via the drawing
φ (G).
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Thus it remains to show the implication in the opposite direction. The main
idea is to find a subset of Zd which we can use for a convenient grid drawing of
every qd-colorable graph.

Assume that the dimension d is fixed and let p be a prime number. We

define Vp,1 as the sequence {xi}p
d−1
i=0 such that each xi is from the set Zdp and no

two terms are equal. This definition is correct, as we can always find p distinct
residues modulo p and, naturally, there are pd distinct d-tuples of these residues.
Now we define Vp,e for e ≥ 2 inductively. Assume as induction hypothesis that
we have already set Vp,e−1. Now we place Vp,e as a chain of pd copies of Vp,e−1.
Then we change the terms on the positions

i+ pd(e−1), . . . , i+
(
pd − 1

)
pd(e−1)

for every i ∈
{

0, 1, . . . , pd(e−1) − 1
}

in such way that the new terms are numbers
from Zpe congruent to their predecessors modulo pe and no two terms in Vp,e are
equal. For each element of Zd

pe−1 there are pd congruent elements from Zdpe modulo

pe−1 and one of them is on the i-th position of Vp,e. Thus the definition of Vp,e is,
again, correct.

On Figure 2.1 there is an example of this construction with fixed parameters.
The following sequence V2,3 would have 64 terms and the first new one would be
on position 16, assuming that the ranking starts at zero.

V2,1:

V2,2:

(0, 0), (0, 1), (1, 0), (1, 1)

(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (2, 1), (1, 2), (1, 3)

(2, 0), (2, 1), (3, 0), (3, 1), (2, 2), (2, 3), (3, 2), (3, 3),

...

Figure 2.1: Construction of V2,e, e = 1, 2, . . ., for d = 2

Continual repeating of the copies of Vp,e gives us the infinite sequence Sp,e.
We denote the i-th term of Sp,e as Sp,e[i] and the distance of two terms Sp,e[i]
and Sp,e[j] is given by |i − j|. The following lemma shows an important feature
of these sequences.

Lemma 2.6. Let p be prime number and e positive integer. Then two terms of
Sp,e are equal if and only if pde divides their distance.

Proof. Suppose that our terms are on positions i and j. The case i = j is
apparent, thus we can assume i 6= j. From the definition two distinct terms equal
if and only if both are in different copies of Vp,e, but on the same position in Vp,e.
The length of Vp,e is exactly pde, so the distance between Sp,e[i] and Sp,e[j] is a
multiple of pde.

Given an integer s, we set f (p) as min
{
e ∈ N | pde ≥ s

}
for every prime

number p < s. Now, for every i, where 0 ≤ i ≤ s − 1, we choose a distinct
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column of Zd such that for every prime number p < s the rank of this column
is congruent to the first d − 1 elements of the d-tuple Sp,e[i] modulo pf(p). We
label the chosen columns as W0,s,W1,s, . . . ,Ws−1,s. In every column Wi,s we keep
only the points with their last coordinate congruent to the last element of Sp,e[i]
modulo pf(p), again for every p < s. Finally we set Ws =

⋃s−1
i=0 Wi,s.

Let us mention the last technical remark. If there is a prime p ≥ s such
that ranks of two or more columns from Ws are congruent modulo p, then we
assign distinct residues modulo p to these columns. Subsequently, we keep only
the points with their last coordinate congruent to the assigned residue modulo
p in each one of these columns. This method is correct, because the number
of possible residues is at least s, thus every column can get a unique residue.
According to the Chinese Remainder Theorem, every column of Ws still contains
infinitely many points.

Example Assume we want to build W9 in two-dimensional case. For s = 9, we
have to define the sequences S2,2, S3,1, S5,1 and S7,1, as 24, 32, 52, 72 ≥ 9. No other
sequences are required, because 9 ≤ p for every other prime number p.

S2,2 = (0, 0) , (0, 1) , (1, 0) , (1, 1) , (0, 2) , (0, 3) , (1, 2) , (1, 3) , (2, 0) , . . .

S3,1 = (0, 0) , (0, 1) , (0, 2) , (1, 0) , (1, 1) , (1, 2) , (2, 0) , (2, 1) , (2, 2) , . . .

S5,1 = (0, 0) , (0, 1) , (0, 2) , (0, 3) , (0, 4) , (1, 0) , (1, 1) , (1, 2) , (1, 3) , . . .

S7,1 = (0, 0) , (0, 1) , (0, 2) , (0, 3) , (0, 4) , (0, 5) , (0, 6) , (1, 0) , (1, 1) , . . .

Then we can get the set W9 as a union of the following columns:

W0,9 =
{

(0, x) ∈ Z2 | x ≡ 0 (mod4) , 0 (mod3) , 0 (mod5) , 0 (mod7)
}

W1,9 =
{

(420, x) ∈ Z2 | x ≡ 1 (mod4) , 1 (mod3) , 1 (mod5) , 1 (mod7)
}

W2,9 =
{

(105, x) ∈ Z2 | x ≡ 0 (mod4) , 2 (mod3) , 2 (mod5) , 2 (mod7)
}

W3,9 =
{

(385, x) ∈ Z2 | x ≡ 1 (mod4) , 0 (mod3) , 3 (mod5) , 3 (mod7)
}

W4,9 =
{

(280, x) ∈ Z2 | x ≡ 2 (mod4) , 1 (mod3) , 4 (mod5) , 4 (mod7)
}

W5,9 =
{

(196, x) ∈ Z2 | x ≡ 3 (mod4) , 2 (mod3) , 0 (mod5) , 5 (mod7)
}

W6,9 =
{

(161, x) ∈ Z2 | x ≡ 2 (mod4) , 0 (mod3) , 1 (mod5) , 6 (mod7)
}

W7,9 =
{

(281, x) ∈ Z2 | x ≡ 3 (mod4) , 1 (mod3) , 2 (mod5) , 0 (mod7)
}

W8,9 =
{

(386, x) ∈ Z2 | x ≡ 0 (mod4) , 2 (mod3) , 3 (mod5) , 1 (mod7)
}

In the last step we ensure possible occurrences of prime numbers p ≥ s in
decompositions of differences of ranks. For example, prime number 23 divides the
difference of ranks 0 and 161. But, if we can keep only the points (0, x) ∈ W0,9

and the points (0, y) ∈ W6,9 such that x and y are not congruent modulo 23, then
23 does not divide gcd (|a1 − b1|, |a2 − b2|) for any a ∈ W0,9 and b ∈ W6,9.

The construction of the setWs is not easy to describe, but it has nice properties
that allow us to prove the crucial lemma in the proof of Theorem 2.2.

Lemma 2.7. Let s be d-th power of integer q ≥ 2. Let a = (a1, . . . , ad), b =
(b1, . . . , bd) be grid points located in distinct columns of the set Ws. Then

gcd (|a1 − b1| , . . . , |ad − bd|) ≤ q − 1.
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Proof. Let α denote the greatest common divisor in the statement. Assume that
the grid point a is in the column Wx,s and the grid point b in the column Wy,s,
0 ≤ x, y ≤ s− 1 and x 6= y. The last remark in the construction of Ws guarantee
that no prime number larger than s−1 divides α. Also, for every e ∈ N and prime
number p, the power pe divides α if and only if Sp,e[x] = Sp,e[y]. Since pe | α
implies that each coordinate of a is congruent to each coordinate of b modulo
pe and these coordinates are congruent to the d-tuples Sp,e[x] and Sp,e[y] modulo
pe. Thus pe does not divide α for e ≥ f (p). Otherwise Sp,f(p)[x] = Sp,f(p)[y]
and, according to Lemma 2.6, the distance |x− y| between them is at least pdf(p),
which is at least s. But this contradicts the inequality 0 ≤ x, y ≤ s− 1.

So we can assume that α =
∏k

i=1 p
ei
i where pi are prime numbers and 1 ≤

ei ≤ f (pi)− 1. Then

αd =
k∏
i=1

pdeii ≤ s− 1

holds. Since the expression of α implies that Spi,ei [x] = Spi,ei [y] and, again, we
get pdeii | |x− y| for every i ∈ {1, 2, . . . , k}. Thus αd ≤ |x− y| ≤ s− 1.

We know that s is d-th power of some integer q ≥ 2 and we just showed
that αd is smaller d-th power than s. Thus αd ≤ (q − 1)d. But this gives us the

required inequality, as (q − 1) ≤ d
√
qd − 1 holds trivially.

Now we can finally prove Theorem 2.2.

Proof of Theorem 2.2. The first implication is proved in Lemma 2.5, so assume
that G is a qd-colorable graph, q ≥ 2. We need to find a grid drawing of G such
that at most q grid points lie on any of its line segments. It suffices to show
how to find such drawing for the graph K

(
qd, n

)
and arbitrary n ∈ N, because

every qd-colorable graph on n vertices is its subgraph. We consider the set Ws

for s = qd and we keep only the first n vertices of its first two columns. Then for
every i, 2 ≤ i ≤ s − 1, we keep the first n points in the column Wi,s such that
all points in previous columns are visible from any of these points (with respect
to other columns). These points in Wi,s exist, because, unlike Wi,s, the previous
columns are finite sets.

Afterwards we obtain the set Ws (n) ⊂ Ws such that K
(
qd, n

)
is isomorphic

to the visibility graph υ (Ws (n)) and, according to Lemma 2.7, no line segment
contains more then q grid points. Therefore we get suitable grid drawing of G
and the second implication is proved.

2.3 Concluding Remarks

The construction of Ws used in the proof of Theorem 2.2 is not difficult to carry
out for a given graph G = (V,E) and its coloring with k colors. The position of its
points can be computed in time O (|V |) and we can use the procedure in the proof
of the Chinese Remainder Theorem. The volume of the obtained grid drawing is
constant with respect to number of vertices in the first d − 1 coordinates and it
depends on k.

One of the most interesting corollaries of this theorem are the following.
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Corollary 2.8. For an integer d ≥ 2, a graph is 2d-colorable if and only if it is
locatable in Zd.

Also note that a graph G has a primitive grid drawing in Z2d, d ∈ N, if and
only if there is a grid drawing of G in Z2 where no line segment contains more
than 2d grid points.

Corollary 2.9. For given d, q ≥ 2, it is NP-complete to decide whether or not
the graph G is q-locatable in Zd.

Proof. Clearly, this problem P belongs to NP. Theorem 2.2 shows a reduction
of the Graph k-Colorability Problem to P . Revisiting the proof of the Chinese
Remainder Theorem we see that this reduction is polynomial.
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3. Compactness

Our main concern in this chapter is how to draw a graph on the bounded number
of columns in a grid. We give a complete characterization of graphs which can be
drawn/located in a grid with fixed number of columns by proving Observation 3.2
and Theorem 3.4. We also discuss the relation between those two cases.

These characterizations seem to be useful, as we use them later to prove some
other statements. For example, we show how to derive an upper bound on the
number of columns, that we need to locate a given graph G, from the maximum
degree of G. That is Theorem 3.8.

We show that such problems are closely connected to a special form of a
defective coloring in which some colors induce independent sets and some disjoint
unions of paths (linear forests). More statements about these colorings are proved
in the last section where the main result, Theorem 3.14, implies that, for l ≥ 2,
it is NP-complete to decide whether or not a given graph can be drawn/located
on l columns of the grid.

3.1 Minimum Number of Columns

For nonprimitive grid drawings, there is no loss of generality in assuming that the
grid is two-dimensional. Since if we can find a grid drawing φ (G) in Zd, d > 2,
on l columns, then we can transfer φ (G) on l columns in Z2. We just take each
column of the original grid drawing and transfer its points to an arbitrary free
column in the plane. Then we might have to shift some columns higher so that
no point representing vertex lies on nonadjacent line segment. This is always
possible, as the number of vertices in G is finite. By the same trick, we can also
assume that there is no unused column between two columns in our drawing. If l
is the minimum number of columns on which G can be drawn, then we say that
this grid drawing of G is compact.

It is easy to see that if there is a grid drawing on l ≥ 2 columns for a graph G,
then G is l-locatable in Z2, because the differences of column ranks from such grid
drawing are always lower then l and we can move the adjacent points of the same
column such that the line segment between them is primitive. The implication in
the reverse direction does not hold, as the graph K7 is, according to Theorem 2.2,
three-locatable, but it cannot be drawn on three columns, because the last vertex
with any other two vertices induces three-cycle. Thus compactness is not the
locatability in disguise. Theorem 2.2 gives us the following upper bound:

Corollary 3.1. Every compact grid drawing of a graph G has at most χ (G)
columns.

However none of the shown bounds is tight, because there is, for example, a
locatable graph with a compact grid drawing on three columns. See Figure 3.1.

Let us mention the following useful definition before we start to explore this
problem more deeply.

Definition If there is a coloring of a graph G such that a colors induce indepen-
dent sets (so called normal colors) and b colors induce linear forests (path colors),
then we say that G is (a, b)-colorable and we call such coloring mixed.
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Figure 3.1: A locatable graph with a compact grid drawing on three columns

The following simple observation characterizes which graphs are embeddable
on l columns in the terms of the graph theory.

Observation 3.2. A graph G is embeddable on l columns if and only if G is
(0, l)-colorable.

Proof. We denote the path color classes as V1, V2, . . . , Vl. In the grid drawing of
G on l columns, the vertices represented by points of a single column define the
set Vi. On the other hand, each induced subgraph G [Vi] can be drawn on a single
column and we can always shift the vertices in such way that the visibility of
representing points is guaranteed.

Thus embedding of a graph on few columns is equivalent with a special version
of the mixed coloring. That is, an improper vertex coloring where every color
class induces a linear forest. We call these color classes path colors for short.
Naturally, the mixed coloring with colors inducing only independent sets is called
normal. Also note that deciding whether G can be drawn on a single column is
not difficult and it can be determined in linear time.

3.2 Compact Locating of Graphs

If we restrict our attention to only primitive grid drawings, then the situation
changes radically. According to Theorem 2.2, only four-colorable graphs have
primitive grid drawings in the plane. Thus we have to proceed to grid drawings
in higher dimensions if we want to obtain primitive grid drawings of graphs with
larger chromatic number. The minimum dimension of a grid on which a graph G
can be located is dlog2 χ (G)e. Despite the fact that the situation with primitive
grid drawings is quite different, Theorem 2.2 gives us the same upper bound on
the minimum number of columns.

Corollary 3.3. Every compact primitive grid drawing of a graph G has at most
χ (G) columns in Zd for d = dlog2 χ (G)e.

However this bound is not tight even in the current case. For example, the
graph K5 cannot be located in Z2, as its chromatic number is five, but it can be
located on three columns in Z3. Note that this number of columns is minimum,
because three vertices on a single column induce a three-cycle. Thus compact
primitive grid drawing of K5 is on three columns in Z3.

In the previous case we assume that the set of columns in a compact grid
drawing does not contain any holes. That is, there are no unused columns be-
tween two columns of this grid drawing. But now we cannot modify a primitive
grid drawing by the same trick as before, because shifted line segments could
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intersect more grid points and the drawing would not be primitive. Thus it could
happen that some primitive grid drawings on minimum number of columns are
necessarily vast and sparse. Luckily, the following theorem shows that there are
compact primitive grid drawings which take up little space. It also gives us a
characterization of locating similar to Observation 3.2.

Theorem 3.4. For a graph G, integers d ≥ 2 and l, 2d−1 < l ≤ 2d, the following
statements are equivalent:

1. G can be located on l columns in Zd,

2. G is
(
2l − 2d, 2d − l

)
-colorable.

The second statement says that G can be colored with at most l colors and at
most 2d− l of them are path colors. Note that if l > 2d, then G cannot be located
in Zd at all, because, according to Corollary 2.8, only 2d-colorable graphs can.
We also describe the case l ≤ 2d−1 later by showing a similar characterization for
nonprimitive grid drawings. See Observations 3.2 and 3.6.

Proof. Suppose that G is located on l columns in Zd. We construct a congru-
ence graph C on the set of column ranks of such primitive grid drawing. Every
vertex of this graph corresponds to a unique column rank and two vertices are
adjacent if the corresponding ranks are congruent modulo two. The graph C is
a disjoint union of complete graphs, because congruence is equivalence relation.
The congruence graph always contains at most 2d−1 < l isolated vertices, because
the maximum number of possible values of ranks modulo two is 2d−1.

All points in the columns with ranks which lie in the same connected compo-
nent of C can be colored with two normal colors. Since if we color the points with
the odd last coordinate white and the points with the even last coordinate black,
then no two monochromatic points can share an edge. If such ranks are congruent
modulo two, then the line segment joining two adjacent monochromatic points
would not be primitive. But this would be a contradiction, as the whole grid
drawing is primitive. Thus we can use two colors in each connected component
of C.

Now we show by induction on l that l colors is enough and that there is always
at most 2d − l path colors among them. This is sufficient, as every normal color
is also a path color. Consider the case when l = 2d−1 + 1. Then we color the
points of every column, whose rank corresponds to an isolated vertex in C, with
a single path color, obtaining at most l− 1 path colors. Afterwards we color the
points in all columns with ranks congruent modulo two using only two normal
colors (by the same way as we showed before). Then the number of path colors
decreases for every isolated vertex which becomes a larger component of C and
we know it happens at least once, because 2d−1 < l. Thus we have at most

l − 2 = 2d−1 + 1− 2 = 2d−1 − 1 = 2d − l

path colors. We also see that the total number of colors is at most l, because we
add at most one new color for every vertex. Thus the case for l = 2d−1 + 1 is
done.

Let us assume that this initial congruence graph contains all isolated vertices
of the final congruence graph. Now suppose that our C contains l vertices and

19



we know from the induction hypothesis that the condition holds for congruence
graphs on l − 1 vertices. We get the graph C by joining one vertex u to such
smaller congruence graph. Due to the choice of initial graph, we know that u is
not isolated in C. If we join u to some component of C which is colored with
two normal colors, then we also color the points of a corresponding column with
these colors. One color for points in even height, the other one for points in odd
height. If 2d − l drops bellow the number of used path colors, then we choose
an isolated vertex whose column is colored with a single path color and color its
points using two normal colors. One color is for the original one, the other is new
for u.

If we join the new vertex u to a component colored with a path color, then it
is an isolated vertex v and we can color points in the columns with ranks u and v
using two normal colors. One is new for u, the other is original. The number of
path colors is always at most 2d − l and we added at most one new normal color
in each step. Thus the conditions on the number of path and normal colors hold.

Now we prove the reverse implication. Let V1, V2, . . . , Vl be the colors (both
normal and path) of our mixed coloring. Consider the set{

(r1, r2, . . . , rd−1) ∈ Zd−1 | r1 ∈ Z4, ri ∈ Z2

}
.

The last d− 2 coordinates r2, r3, . . . , rd−1 determine the set{
(r1, r2, . . . , rd−1) ∈ Zd−1 | r1 ∈ Z4

}
.

We mark it as Gr2,...,rd−1
and its elements as gi,r2,...,rd−1

= (i, r2, . . . , rd−1), for
i = 0, 1, 2, 3. For d = 2, there is only one such G = {0, 1, 2, 3}. Now we show
a simple algorithm how to locate G on columns with ranks from this set. We
repeat the following steps until there is no set of vertices left in our partition.

1. Take Gr2,...,rd−1
that has not been chosen yet.

2. If there are two path colors Vi, Vj and there is no normal color, then map
the vertices of Vi to points of column with rank g0,r2,...,rd−1

and the vertices
of Vj to points of column with rank g1,r2,...,rd−1

.

3. If there is a path color Vi and two normal colors Vj, Vk, then map the
vertices of Vi to the column with rank g1,r2,...,rd−1

. Also, map the vertices of
Vj to points of column with rank g0,r2,...,rd−1

that have even d-th coordinate
and the vertices of Vk to points of column with rank g2,r2,...,rd−1

that have
odd d-th coordinate.

4. If there is no path color, then take four (or two, if there are not that
many) normal colors Vi, Vj, Vk and Vm. Map Vi to points of column with
rank g0,r2,...,rd−1

that have even d-th coordinate divisible by three and Vj to
points of column with rank g1,r2,...,rd−1

that have even d-th coordinate too.
Then, map Vk to points of column with rank g2,r2,...,rd−1

that have odd last
coordinate and Vm to points of column with rank g3,r2,...,rd−1

that have odd
last coordinate which is not divisible by three.

5. Remove the chosen colors.
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Note that the total number of normal colors is even, because it equals l −(
2d − l

)
= 2l − 2d. Thus if there is at least one such color in any step of the

algorithm, then there is also another one, because we remove them by two or
four.

The maximum number of possible steps is 2d−2, since it is also the number of
sets Gr2,...,rd−1

. We show that this number is sufficient. First, notice that for each
path color Vi we lower l by one (if we start with empty partition and l = 2d).
Thus we can pair such Vi with a unique empty color (it does not contain any
vertices) and we obtain 2d colors such that some of them are path, some normal
and some are empty. Each step of the algorithm takes four of these colors and
locates their vertices. Thus we can locate vertices of all these 2d = 4 · 2d−2 colors
within 2d−2 steps.

It is not difficult to see that the obtained grid drawing is primitive, as the
only possible occurrence of nonprimitive line segment is between columns from
the same set Gr2,...,rd−1

. But we mapped the vertices such that no line can intersect
more than two grid points.

Note that the dimension of a grid in the statement of this theorem is minimum
for such choice of l, according to Corollary 2.8. The proof of this theorem also
shows how to relocate a primitive grid drawing of G on a bounded number of
columns, such that the new grid drawing is still primitive and it also requires
small part of the grid (the first d−1 coordinates are constant). We also obtained
relation between compact and primitive compact grid drawings.

Corollary 3.5. Let G be a graph with a grid drawing on l columns. Then G can
be located on k columns, l ≤ k ≤ 2l in Zdlog2 ke.

Proof. The lower bound on k is apparent. For the upper bound, we just combine
Observation 3.2 and Theorem 3.4 and we split every path color into two normal
ones.

We can also characterize graphs which can be located on at most 2d−1 columns.

Observation 3.6. For a graph G and integers d ≥ 2 and l, 1 ≤ l ≤ 2d−1, the
following statements are equivalent:

1. G can be located on l columns in Zd,

2. G is embeddable on l columns (in Z2).

Proof. Let G be located on 2d−1 columns in Zd. Then we can take all columns
of this primitive grid drawing and arrange them in a consecutive order in the
plane. Then we might have to shift some columns higher to satisfy the condition
on mutual visibility with respect to points representing vertices. On the other
hand, if there is a grid drawing of G on 2d−1 columns in the plane, then we take
each column of this drawing and copy it on a unique point from the set

{(r1, . . . , rd−1) | ri ∈ {0, 1}} ⊂ Zd−1.
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This observation is somehow intuitive, as every grid drawing on two columns
is primitive. However, we know, according to Theorem 3.4, that for a larger
number of columns this does not hold and locating becomes more restrictive than
drawing.

Although we show that locating the graph on bounded number of columns
is NP-complete in the following section, there are special classes of graphs for
which we can find suitable estimations. The following theorem gives bounds that
depend on the maximum degree of a graph. In order to show this, we need an
auxiliary lemma proved by László Lovász.

Lemma 3.7 ([29]). Let G = (V,E) be a graph and let k1, k2, . . . , km be nonnega-
tive integers with k1 + k2 + . . .+ km ≥ ∆ (G)−m+ 1. Then V can be partitioned
into V1, V2, . . . , Vm so that ∆ (G [Vi]) ≤ ki, for all i ∈ [m].

Theorem 3.8. Let G = (V,E) be a graph with ∆ (G) ≤ 2d+1 − 1, for d ∈ N.
Then G can be located on 2d columns in Zd+1.

Proof. According to Observation 3.6, it suffices to prove that G is embeddable on
2d columns in the plane. To prove this we apply Observation 3.2. So eventually,
we show by induction on d that the assumption in our theorem implies that V
can be partitioned into V1, V2, . . . , V2d such that every induced subgraph G [Vi] is
isomorphic to a linear forest. As the basis of the induction we use the proof of a
weaker theorem proved in [10].

For d = 1, the graph G is either a complete graph on four vertices or, according
to Brooks’ theorem, G can be colored with three colors. We know that the graph
K4 can be drawn on two columns, so the statement holds in the first case. In
the second case, the vertices of G can be partitioned into three color classes C1,
C2 and C3 (we label the colors as c1, c2 and c3). Consider the induced subgraph
G [C1 ∪ C2]. If there is a vertex of degree three, then we color it with the color
c3. Thus we ensured that ∆ (G [C1 ∪ C2]) ≤ 2. If there is a cycle left, then we
choose its arbitrary vertex and color it with the new color c4. Afterwards the
graph G [C1 ∪ C2] is isomorphic to a linear forest, but there might be a vertex of
degree three in the graph G [C3 ∪ C4]. If there is such vertex, then we color it to
c1. After that, the graphs G [C1 ∪ C2] and G [C3 ∪ C4] are both linear forests.

Now we do the inductive step. Let the maximum degree of G be at most
2d+1 − 1. Then, according to Lemma 3.7, V can be partitioned into V1 and V2

such that ∆ (G [V1]) ≤ 2d − 1 and ∆ (G [V2]) ≤ 2d − 1, if we set m = 2 and
k1 = k2 = 2d − 1. It follows from the inductive step that the vertices of each
of the graphs G [V1], G [V2] can be partitioned into 2d−1 required sets. Together
these partitions give the partition of V into 2d−1 + 2d−1 = 2d sets.

This bound is sharp in certain cases. For example for every complete graph on
2d+1−1 vertices, because the minimum number of columns on which we can draw
a clique Kn is dn

2
e (the rest follows from the previous characterizations). Note

that the reverse implication does not hold, as every star graph can be located on
two columns in the plane and its maximum degree does not have to be bounded.
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3.3 Mixed Colorings

We saw that drawing/locating of a graph with bounded number of columns is
related to the mixed colorings. We use such colorings later in this section to
prove NP-completeness of a problem of deciding whether a graph can or cannot
be drawn/located on l ≥ 2 columns. To do this we prove a more general result,
Theorem 3.14, in this section. But first we show other related results.

We denote the class of all (a, b)-colorable graphs as Ga,b and call it a mixed
coloring type. Then the following holds:

Observation 3.9. Ga,b ⊆ Gc,d if and only if there is a sequence {Gai,bi}ni=1 such
that a1 = a, b1 = b, an = c , bn = d and ai+1 = ai+2, bi+1 = bi−1 or ai+1 = ai−1,
bi+1 = bi + 1 for every i ∈ {1, . . . , n− 1}.

That is, there is a sequence of steps where every step corresponds to a substi-
tution of one path color by two normal colors or one normal by one path color.

Proof. It suffices to show only the second implication, as the other one is apparent.
Let K (a, b, t) denote the balanced complete (a+ b)-partite graph with t vertices
in every color class such that b color classes induce paths and the rest induce
independents sets. Then K (a, b, t) ∈ Ga,b for every t ∈ N and for every G ∈ Ga,b
there exists t such that G is a subgraph of K (a, b, t).

Let Ga,b ⊆ Gc,d. Then we can color K (a, b, t) with c path and d normal colors
for every t. Assume a fixed coloring of K (a, b, 3). Then we can modify it such
that every path color contains only vertices from a single color class of K (a, b, t).
Since it suffices to swap colors between these color classes slightly, because every
path color can contain at most three vertices (and those vetices are in at most
two color classes of K (a, b, 3), as otherwise there is a 3-cycle). Similarly, we can
ensure that there is one path color or at most two normal colors in every color
class of K (a, b, 3). Then it is straightforward to expand such coloring for every
K (a, b, t) and thus obtain the sequence {Gai,bi}ni=1.

Now we can examine the partially ordered set of the set of all mixed coloring
types ordered by inclusion. Figure 3.2 shows the modified Hasse diagram of this
POSET where the inclusion corresponds to an oriented path between two types.
The inclusion is not total order in this case, as there are incomparable elements.

According to Observation 3.2, the mixed coloring types which are drawn in
the common grey site are classes of graphs that can be drawn on the same number
of columns. The mixed coloring types denoted as black vertices correspond to
the graph classes from Theorem 3.4. According to Corollary 2.8, we can split the
POSET along these types into parts Pi, i ≥ 2, such that any graph from a graph
class lying in the part Pi can be located in the grid of dimension i.

The Four Color Theorem implies that every planar graph is (4, 0)-colorable
and Wayne Goddard [23] showed that it is also (0, 3)-colorable. Thus we get the
following corollary.

Corollary 3.10. Every planar graph can be drawn on three columns.

Cáceres et. al. [10] showed that every outerplanar graph can be drawn (and
located) on two columns. In the same paper there is an example of a planar
graph which is not (2, 1)-colorable. Thus we need four columns to locate an
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G0,1

G1,1

G3,0 G0,2

G2,1

G4,0 G1,2

G0,3G3,1

G5,0 G2,2

G4,1 G1,3

G3,2G6,0

G5,1

G0,4

G2,3

G1,4G4,2G7,0

G6,1 G3,3 G0,5

...

P3

P2

Figure 3.2: Mixed coloring types ordered by inclusion

arbitrary planar graph. The natural question is whether every planar graph is
(1, 2)-colorable. The following proposition shows that using one normal and two
path colors is insufficient too.

Proposition 3.11. There is a planar graph which is not (1, 2)-colorable.

Proof. Let α be the normal color and β and γ be the path colors we can use.
Consider the gadget H depicted in part a) of Figure 3.3. This gadget is isomorphic
to a complete graph on four vertices with a path on ten vertices inside each inner
face. The path colors β and γ cannot both appear on the vertices of the outer
face otherwise it is not possible to color the path adjacent to them. We could
color at most four vertices of this path with β and γ in such case, but there would
still be an edge with both vertices of color α. But this is not possible, since α
is normal color. Thus the vertices of the outer face are colored α and one path
color, say β.

Now we join three copies H1, H2 and H3 of H as shown in Figure 3.3, part
b), and we obtain the graph G. We see that G is not (2, 1)-colorable, because the
only way how to color it with α, β and γ is to color K4 with α and β and this is
clearly not possible.

It is not difficult to prove that there is an outerplanar graph which is not
(1, 1)-colorable, hence we know the tight estimations on mixed colorability of
both planar and outerplanar graphs.
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H
G

H2H1

a) b)

H3

Figure 3.3: Construction of a planar graph which is not (1, 2)-colorable

Now our main goal is to prove NP-completeness of problem of deciding whether
a graph G is (a, b)-colorable for sufficiently large a and b. As a consequence
we obtain that drawing/locating of graphs on bounded number of columns is a
difficult task answering the open question in [10].

This problem is already partially solved, as Glenn G. Chappell, John Gimbel
and Chris Hartman [11] proved that determining whether G can be colored with
l ≥ 2 path colors is NP-complete. Although this does not answer the question for
locating of graphs (we need to prove the statement for general mixed colorings,
not only for path colorings), we later apply a similar technique to prove NP-
completeness of (a, b)-colorability for sufficiently large a and b.

In the following lemma we prove the initial case by using a reduction to the
One-in-three 3SAT problem (see [22]).

Lemma 3.12. It is NP-complete to decide whether or not a graph G = (V,E) is
(1, 1)-colorable.

Proof. Let F be a collection of m clauses C1, C2, . . . , Cm over n Boolean variables
v1, v2, . . . , vn such that each clause Ci contains exactly three literals ci,1, ci,2 and
ci,3. Each literal ci,j, i ∈ [m] and j ∈ {1, 2, 3}, is either vk or vk for some suitable
k ∈ [n]. Let us remind that One-in-three 3SAT is a problem of determining
whether there is a truth assignment e satisfying F such that each clause in F has
exactly one true literal (and thus exactly two false literals).

We construct a graph G (k) shown in Figure 3.4 for each variable vk. Then,
for each clause Ci, we construct a graph G (Ci) which is isomorphic to K3 and
each one of its vertices represents a different literal of the clause Ci. Let G (F )
be a graph consisting of all the graphs G (k) and G (Ci) where the vertex ci,j is
adjacent to v ∈ V (G (k)) if and only if the literal ci,j is v ∈ {vk, vk}.

Suppose that G is colored with one path and one normal color, say black and
white. Then the vertices vk and vk of G (k) are colored differently. Otherwise
they are black and the vertex u must be white. But then, since white is a normal
color, w and t are black and induce a black 4-cycle together with vk and vk. Also,
if the vertices x ∈ {vk, vk} and ci,j are adjacent, then their colors are different
too. Assume to the contrary that x (say x = vk) and ci,j are both black and
adjacent. Then we know that vk is white and thus u and v are black. Hence vk
has three black neighbors which is a contradiction.

We define the truth assignment e for F as follows: if vk is black, then e (vk) is
true else e (vk) is false. The assignment e is correct, as the vertices vk and vk are
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vk vk

G (k)
w t

v

u

Figure 3.4: The graph G (k)

not monochromatic. In addition, there is exactly one true literal in every clause.
Otherwise there would be a black 3-cycle or an edge with both vertices white in
some G (Ci).

Suppose that e satisfies F such that every clause has exactly one true and
two false literals. Then we color the labeled vertices of each G (Ci) white, if
the corresponding literal is true; otherwise black. By the assumption, there is
no monochromatic graph G (Ci). After that, we color the vertex v ∈ {vk, vk}
adjacent to ci,j black (white, respectively) if ci,j is white (black, respectively).
Note that the vertices vk and vk are, again, differently colored. It remains to
color the rest of graph G (k) for each k ∈ [n]. One way how to do that is shown
in Figure 3.5.

c1,1

c1,2 c1,3

c2,1

c2,2 c2,3

c3,1

c3,2 c3,3

v1

v1
v2

v2
v3

v3
v4 v4

Figure 3.5: Coloring of G (F ) for F = (v1 ∨ v2 ∨ v3)∧(v1 ∨ v3 ∨ v4)∧(v3 ∨ v4 ∨ v4)
and the truth assignment v1, v3, v4 7→ true and v2 7→ false

We use a reduction to the Graph k-Colorability Problem in the final statement,
but this problem is NP-complete for at least three colors, thus we need to consider
one more special case. That is (0, 2)-colorability. Although the following lemma
is already known to be true [11], the known proof is based on the result with so
called one-defective colorings. For completeness we include a short proof which
uses a similar idea as the previous one (a variation of a technique used by Hoòng-
Oanh Le [26]).
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Lemma 3.13. It is NP-complete to decide whether or not a graph G = (V,E) is
(0, 2)-colorable.

Proof. The main idea is the same as before. We use a reduction to a variation
of 3SAT problem, only this time we use Not-All-Equal 3SAT – a problem of
determining whether there is a truth assignment satisfying a formula such that
each clause has at least one true literal. So, let the notation be the same as
in Lemma 3.12 with the only difference that instead of G (k) we use the graph
depicted in Figure 3.6.

vk vk

Figure 3.6: The new graph G (k)

Let G be colored with two path colors black and white. We can easily show
that, again, it holds that the vertices vk and vk have distinct colors. Otherwise
the remaining vertices of G (k) induce a monochromatic 4-cycle. The adjacent
vertices x ∈ {vk, vk} and ci,j are also heterochromatic. Otherwise x would have
three neighbors of the same color.

Now, we can define the truth assignment as follows: if vk is white, then e (vk)
is true else e (vk) is false. The previous facts imply correctness of this assignment
and there is at least one true literal in every clause, otherwise G (Ci) would be
monochromatic 3-cycle. The proof of the reverse implication is analogous too.

Theorem 3.14. Let a and b be given nonnegative integers such that a + b ≥ 2
and (a, b) 6= (2, 0). Then it is NP-complete to decide whether or not a graph
G = (V,E) is (a, b)-colorable.

Proof. We apply a reduction to the Graph k-Colorability Problem. That is, a
problem of determining whether or not it is possible, for a given graph G and
integer k ≥ 3, to color G with k normal colors. If we set k = a + b, then we can
assume, according to the previous lemmas, that k ≥ 3. The Graph k-Colorability
Problem is NP-complete in such case, thus we can consider the reduction. Suppose
that G is a given graph. Let us create the graph H by joining two disjoint copies
of the complete graph Ka+2b−1 to every vertex v of G.

Suppose that G is colored with k normal colors. Then we color the cliques for
every vertex v with all colors. Two vertices per path color and one per normal
color.

On the other hand, if H is colored with a normal and b path colors, then G is
colored with at most k = a+ b normal colors. Assume to the contrary that there
is an edge uv with both vertices colored with the same path color (say black) in
G. Then u has at least three black neighbors, because the sizes of the adjacent
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cliques imply that there is at least one other black vertex in every one of them.
This is a contradiction, since the coloring of H is correct.

Applying Observation 3.2 and Theorem 3.4 we immediately get the following.

Corollary 3.15. For a given integer l ≥ 2 and a given graph G, it is NP-complete
to decide whether or not it is possible to draw G on l columns.

Corollary 3.16. For a given integer l ≥ 2 and a given graph G, it is NP-
complete to decide whether or not it is possible to locate G on l columns (in a
grid of sufficiently large dimension).
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4. Minimum Area

In the previous chapter, we showed some results concerning with grid drawings
having bounded number of columns. The natural question is – what happens, if
we fix the number of rows as well? This leads to another type of compactness –
grid drawings with a small area and this is the main field of our interest in this
chapter.

The first section is dedicated to already known results. We show a construc-
tion of a grid drawing of the balanced complete k-partite graphs K (k, t) with
asymptotically optimal area. After that, we consider so called aspect ratio of a
grid drawing and its relation to the area.

The main result of the second section is a sharp lower bound on the area of
the grid drawings of K (k, t). This settles a problem of David R. Wood.

In the end of the chapter we focus on a multidimensional grid and we consider
the volume of primitive grid drawings in Zd.

4.1 Grid Drawings with Small Area

Let w, h be positive integers. Suppose that φ (G) is a grid drawing of a graph
G = (V,E) in Z2 such that φ (v) = (X (v) , Y ( v)) for every vertex v ∈ V .
Then φ (G) is said to be w × h grid drawing of G, if |X (u)−X (v)| < w and
|Y (u)− Y (v)| < h for all vertices u, v ∈ V . The number wh denotes the area of
a grid drawing φ (G).

The grid drawings with small area were studied by David R. Wood [36] and
they are closely connected to the famous “No-three-in-line” problem [24]. This
problem was introduced by Henry Dudeney in 1917 and it asks for the maximum
number of points that can be placed in the n×n grid so that no three points are
collinear. Clearly φ (Kn) is a grid drawing of the complete graph Kn = (V,E) if
and only if {φ (v) | v ∈ V } is a set of grid points with no three collinear. Thus
our problem of producing a grid drawing of a given graph with a small area is a
generalization of this problem.

We show some interesting results of David R. Wood in this section. The first
one gives us a construction of grid drawings of the graphs K (k, t) for k, t ≥ 1,
with asymptotically optimal area (as we show later).

Theorem 4.1 ([36]). For every k, t ≥ 1, there is a k × pt grid drawing of the
graph K (k, t), where p is the least prime number that is greater than k.

Proof. Let V0, V1 . . . , Vk−1 be the colors of a k-coloring of the graph K (k, t)
such that Vi = {vi,0, vi,1, . . . , vi,t−1} for every i ∈ {0, 1, . . . , k − 1}. We de-
fine the grid drawing φ (K (k, t)) by mapping the vertex vi,j to the grid point
(i, pj + (i2 mod p)) for every 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ t− 1.

It suffices to prove that no three vertices from distinct color classes are collinear,
as all vertices colored Vi are in the same vertical line. We know that three points
(a1, a2), (b1, b2) and (c1, c2) are collinear if and only if the determinant∣∣∣∣∣∣

1 a1 a2

1 b1 b2

1 c1 c2

∣∣∣∣∣∣ = 0.
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Therefore, if we consider the points vi1,j1 , vi2,j2 and vi3,j3 from distinct color
classes, then we get∣∣∣∣∣∣

1 i1 pj1 + (i21 mod p)
1 i2 pj2 + (i22 mod p)
1 i3 pj3 + (i23 mod p)

∣∣∣∣∣∣ ≡
∣∣∣∣∣∣

1 i1 i21
1 i2 i22
1 i3 i23

∣∣∣∣∣∣ ≡ (i1 − i2) (i1 − i3) (i2 − i3) (modp)

which is nonzero, because p is a prime and 1 ≤ ir − is ≤ k − 1 ≤ p− 1 for every
1 ≤ r < s ≤ 3.

Thus no three vertices from distinct color classes are mapped to collinear
points. Therefore φ (K (k, t)) is a correctly defined grid drawing, because the
only points, which represent vertices, on a line segment are its own endpoints.

It remains to estimate the area of φ (K (k, t)). For every vertex v, the in-
equalities 0 ≤ X (v) ≤ k − 1 and 0 ≤ Y (v) ≤ p (t− 1) + p − 1 hold, hence we
immediately get that φ (K (k, t)) is a k × pt grid drawing.

Figure 4.1: A rotated and scaled grid drawing from Theorem 4.1

Using the Bertrand’s postulate we see that the area of obtained grid drawings
is always less than 2k2t. An example of such drawing is shown in Figure 4.1.
By Bertrand’s Postulate and the Prime Number Theorem we can also derive the
following corollary.

Corollary 4.2 ([36]). For every ε > 0, there exists kε such that for every k ≥ kε
and t ≥ 1, K (k, t) has a k × (1 + ε)kt grid drawing.

Other result of David R. Wood, which I would like to mention, concerns with
relation between the area of a grid drawing and ratio of its width to its height.
The aspect ratio of a w × h grid drawing is the number max {w, h} /min {w, h}.
The following theorem is a generalization of Theorem 4.1 for every k-colorable
graphs using the aspect ratio as a parameter.

Theorem 4.3 ([36]). Let G be a k-colorable graph on n vertices and let r be
integer such that 1 ≤ r ≤ n

k
. Then G has a 2n

r
× 4n grid drawing.

Note that the aspect ratio of the grid drawing is 2r and the area equals 8n2

r
.

Proof. Suppose we have a k-coloring of G. Then we split each color class into
smaller classes such that each one has exactly r vertices except the last one with
at most r vertices. Thus we obtain at most n

r
sets with r vertices and at most k

smaller sets. Since r ≤ n
k
, the total number of sets is at most n

r
+ n

r
= 2n

r
.

Thus we have b2n
r
c-coloring of G where every color contains at most r vertices.

Hence G is a subgraph of K
(
b2n
r
c, r
)

and, according to Theorem 4.1, we know
that G has a 2n

r
× 4n grid drawing.
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Note that for the choice r = bn
k
c we get a O (k) × O (n) grid drawing. The

ideas used in the proofs are similar to methods used by J. Pach et al. [30] and V.
Dujmović et al. [19]

4.2 Lower Bound on Area

Studying the grid drawings of the balanced complete k-partite graphs K (k, t),
k, t ≥ 1, David R. Wood [36] showed that the area of such graphs is at least
k2t
4

. He also asks whether it is possible to improve this bound to k2t
2

. For t = 1
the improvement is not possible, as we can find a grid drawing of K (4, 1) with
area four. However we show that the conjecture is true for t ≥ 2 by proving the
following theorem.

Theorem 4.4. For all k ≥ 1 and t ≥ 2 every grid drawing of the graph K (k, t)
has area at least k2t

2
.

Note that this theorem implies that the area of the grid drawings obtained
in Theorem 4.1 is asymptotically optimal.

Proof. We apply Wood’s proof for the bound k2t
4

in the beginning. Instead of
estimating the area of a grid drawing we consider an easier problem. Assume
that we forbid three collinear points of at least two colors only in vertical and
horizontal direction. We call such grid drawings incomplete. Note that if we
find a lower bound on the area of all incomplete grid drawings of K (k, t), then
the same bound holds for all grid drawings of K (k, t), as the conditions on grid
drawings are more restrictive.

Let w be a width and h a height of a given incomplete grid drawing ψ (K (k, t)).
Without loss of generality let us assume that w ≥ h. For i ∈ {1, . . . , k} let ci
denote the number of columns containing a vertex colored i and let ri denote
the same number for rows. Then we can use the arithmetic-harmonic means
inequality (see [9] for example) to obtain the following(

1

k

k∑
i=1

ci

)(
1

k

k∑
i=1

1

ci

)
≥ 1.

As, clearly, ciri ≥ t for every i ∈ {1, . . . , k}, we get 1
ci
≤ ri

t
and thus(

k∑
i=1

ci

)(
k∑
i=1

ri

)
≥ k2t.

Note that we include a column (or a row) in the sum once if and only if it
contains the points of only one color and twice if and only if it contains (two)
points of two distinct colors. Hence

∑k
i=1 ci ≤ (1 + ε)w and

∑k
i=1 ri ≤ (1 + δ)h

where ε, δ ∈ [0, 1] are numbers such that εw denotes the number of bichromatic
columns and δh number of bichromatic rows. So we have

(1 + ε) (1 + δ)wh ≥
(

k∑
i=1

ci

)(
k∑
i=1

ri

)
≥ k2t.
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This is the end of Wood’s proof, as ε, δ ≤ 1 implies wh ≥ k2t
(1+ε)(1+δ)

≥ k2t
4

. To
obtain the better lower bound we modify the incomplete grid drawing such that
the parameters w and h do not change too much. But first, we solve the trivial
cases.

Note that w ≥ h ≥ k, since t ≥ 2. If ε or δ is zero, then we get wh ≥
k2t

(1+ε)(1+δ)
≥ k2t

2
immediately. We also get the same bound if ε or δ equals one.

This is because every column (or row) is bichromatic in such case and thus w ≥ kt
2

or h ≥ kt
2

. The rest follows from w ≥ h ≥ k. The last trivial case is for t = 2, as

we get wh ≥ k2 = k2t
2

. Therefore we can assume that t ≥ 3 and δ, ε ∈ (0, 1).
Now we describe the modification of the incomplete grid drawing. We add k

new rows above the original drawing, each one for one color. Then we replace each
bichromatic row from original drawing to a new column such that the the points
lie in an appropriate new row according to their colors. Thus every bichromatic
row becomes a bichromatic column. We denote the region with shifted rows as
R and the region with the rest of the drawing as S. One step of the modification
is depicted in Figure 4.2.

S
R

...

...

k

1

... · · ·· · ·

Figure 4.2: The modification of ψ (K (k, t))

Let w and h denote the width and height of the modified incomplete grid
drawing ψ (K (k, t)). Then we see that w ≤ w + δh and h ≤ h− δh+ k, because
all δh bichromatic rows become new bichromatic columns and we added k new
rows. We can decrease h by a simple trick. If there is a row in ψ (K (k, t)) that
contains only points of color i then we can shift the i-th new row to such level
after the modification and decrease the number of the new rows by one.

Thus h ≥ h− δh+ b where b = |B| and B is the set of all colors whose points
are only in bichromatic rows. This is a better estimation, since 0 ≤ b ≤ k. We
also know that wh ≥ k2t

2
, because there are no bichromatic rows in ψ (K (k, t))

and thus δ = 0. If b = 0, then we are done, as the following holds

k2t

2
≤ wh ≤ (w + δh) (h− δh) ≤ (1 + δ) (1− δ)wh =

(
1− δ2

)
wh.

Therefore it remains to show that the bound holds even for b > 0. To do this,
we rearrange the points in ψ (K (k, t)) such that its proportions remain the same,
but we get the smaller area of ψ (K (k, t)). We also have to slightly revise the
modification itself.

Let α be a color from the set B. We show that if we cannot save the new row
for α, then we can save some column for this color. Suppose that α has points
in at least two columns and that the points lying in the same rows as points
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colored α are not all in one column. Then we can perform adjustment shown in
Figure 4.3. After this procedure the color α has its own row and thus we can
save the new row for α after the modification. Note that δ decreases in this case.

α β

α

α α

β γγ
α 6= β

α 6= γ

Figure 4.3: The adjustment of points colored α

If all points colored α are in the same column, then we cannot perform the
adjustment. However we see that after the modification this column is empty
and thus we can save it. The other unsuitable case is when α has at least two
columns, but its points lie in the rows with points of a single column. Since t ≥ 3
we see that all such points have the same color β ∈ B. We cannot save column
for α in such case if and only if the color α does not have its own column. That
is, every column containing a point colored α is bichromatic. If all these other
points in those columns do not lie in the same row, then we can perform the same
adjustment as before, only for rows. After that α has its own column which we
can save after the modification.

Thus it remains to solve the case when all points and rows containing a point
colored α are bichromatic and the points of the other two colors β and γ are in
a single column and row. The way how to do this is drawn in Figure 4.4. We
revise the modification itself. We replace all rows with points colored α and β as
we did before, but instead of replacing the last row with a single column we use
two columns (each one for one point). Then we take two arbitrary points colored
γ and shift them into these columns in the region R. By this procedure we save
all δh rows and also three columns – one for β and two for the points colored γ.
On the other hand we added one extra new column, but it does not matter, as
we can identify it with one the saved columns. At the end we can also say that
the last saved column is for α.

αβ

γ

...

...
R

S

Figure 4.4: Solving the last case

Thus we showed that for each color we can either save a column or a row. Let
c denote the number of colors for which we cannot save a row. Then we get that
w ≤ w+ δh− c and h ≤ h− δh+ c where δ ∈ [0, 1] might differ from the original
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one, because of the adjustments. If we set x = δh− c, then we get

k2t

2
≤ wh ≤ (w + x) (h− x) = wh− wx+ xh− x2 ≤ wh

as w ≥ h and x ≥ 0. This holds, as the number of bichromatic rows δh is at least
ct
2
≥ c (the colors for which we cannot save a row are in B and t ≥ 2).

Although this bound is sharp in general, as it is the minimum area of a grid
drawing of K (2, t) for every t ≥ 1, we can show that we can obtain even better
bounds in some nontrivial special cases.

Corollary 4.5. For all k ≥ 1 and t ≥ 2 every w × h grid drawing of the graph
K (k, t), w ≥ h, has area at least k2t2

4
if δ = 1 and at least k2t

2(1−δ2)
if δ < 1 and

every color has its own row. The parameter δ denotes the ratio of the number of
bichromatic rows to h.

Proof. It suffices to revisit the proof of Theorem 4.4.

4.3 Volume of Primitive Grid Drawings

Using the grid drawings obtained in the proof of Theorem 3.4 we can show some
estimations on the volume of primitive grid drawings (even in higher dimensions).
First, we generalize the definition of the area of the grid drawing. Let d ≥ 2 and
w1, w2, . . . , wd be positive integers. Suppose that φ (G) is a grid drawing of a
graph G = (V,E) in Zd such that φ (v) = (X1 (v) , X2 (v) , . . . , Xd (v)) for every
vertex v ∈ V . Then φ (G) is said to be w1 × w2 × . . .× wd grid drawing of G, if
|Xi (u)−Xi (v)| < wi for all vertices u, v ∈ V and every i ∈ {1, 2, . . . , d}. The
number

∏d
i=1wi denotes the volume of the grid drawing φ (G).

Proposition 4.6. For positive integers d ≥ 2, k ≤ 2d and t, there is a primitive
grid drawing of K (k, t) in Zd with volume at most 24t ·

⌈
k
4

⌉
.

Proof. We map the color classes of K (k, t) to the columns of Zd with ranks from
the set {

(r1, r2, . . . , rd−1) ∈ Zd−1 | r1 ∈ Z4, ri ∈ Z2

}
such that the following conditions on the last coordinates rd hold:

r1 = 0⇒ rd ≡ 0 (mod2) , 0 (mod3)

r1 = 1⇒ rd ≡ 0 (mod2)

r1 = 2⇒ rd ≡ 1 (mod2)

r1 = 3⇒ rd ≡ 1 (mod2) , 1, 2 (mod3) .

Then we know that the obtained grid drawing is primitive and it has a volume
at most 24t ·

⌈
k
4

⌉
, as the last coordinates of the points in the same column differ

by at most six and each color class contains exactly t vertices.

According to the previous bounds, we see that this bound is asymptotically
tight for primitive grid drawings of balanced complete k-partite graphs in plane
and that the additional condition on primitivness does not violate our estimations
too much.
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5. Planar Grid Drawings

The last point of view on the grid drawings, the planarity, is studied in this
chapter. We show that the Four Color Theorem together with Fáry’s theorem
imply the existence of a proper grid drawing for every planar graph, that is
Theorem 5.1. Then we discuss the sizes of such drawings.

At the end of this chapter we show some known results about proper grid
drawings of certain families of planar graphs.

5.1 Proper Drawings of General Planar Graphs

Although Theorem 2.2 and the Four Color Theorem imply that every planar
graph is locatable in Z2, the drawings obtained by this approach do not have to
be planar. On the other hand, De Fraysseix, Pach, and Pollack [16], Schnyder [33],
and Chrobak and Nakano [13] proved that any planar graph on n vertices has
a planar grid drawing which can be realized in grids of sizes (2n− 4) × (n− 2),
(n− 2)× (n− 2) and b2 (n− 1) /3c × (4 b2 (n− 1) /3c − 1), respectively. Unfor-
tunately, these drawings are not primitive.

Theorem 5.1. There exists a proper grid drawing for every planar graph G.

Proof. The main idea is to map a planar drawing of a graph, where line segments
correspond to edges, to a grid such that no line segment contains more than two
grid points. To find convenient coordinates we use the Four Color Theorem.

Let G = (V,E) be a planar graph and let φ (G) be its initial planar embedding
whose existence is ensured by, for example, Fáry’s theorem. The mapping φ
maps vertices of G to points with real coordinates in the plane. The edge uv ∈ E
corresponds to the line segment φ (u)φ (v) in the embedding φ (G). Let f : V → C
be a vertex coloring of G with four colors and let C = {(0, 0) , (0, 1) , (1, 0) , (1, 1)}.
The first coordinate of color c ∈ C is denoted as c1, the second one as c2. The
existence of f is ensured by the Four Color Theorem.

Let r ∈ R denote the smallest distance such that every vertex can be shifted
by r in any direction so that the condition on planarity still holds. We can set
r as one half of the minimum distance between two points x, y ∈ R2 such that
x and y belong to line segments which represent two vertex disjoint edges of G.
The distance r is positive, otherwise we get a contradiction with planarity of
φ (G). Thus, for every vertex v ∈ V , there is an open neighborhood Ω (v, r) of
the point φ (v) such that any point x ∈ Ω (v, r) can represent the vertex v without
violating the condition on planarity. Let us assume that no vertical line segment
intersects two different neighborhoods Ω (u, r), Ω (v, r). Otherwise we can lower
the distance r, as no two points φ (u), φ (v) lie on the same vertical line.

Now we put vertical lines across the whole plane such that the distance be-
tween two consecutive lines is ε > 0. We choose the number ε such that every
neighborhood is crossed by at least six lines (we can assume that ε = 1). Then we
choose one line and declare it as the initial line. Each line gets number according
to its order, the initial line has number zero. Now for every vertex v ∈ V , we
set φ (v) = x, where x is a point from Ω (v, r) such that it lies on some vertical
line with number l and l ≡ f (v)1 (mod2), l ≡ f (v)1 (mod3). We can always
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choose such line, because there are six consecutive lines crossing the neighbor-
hood Ω (v, r). Thus numbers of these lines get through all values modulo two
and three. In the rest of the proof, we assume that the first coordinates of points
representing the vertices of G are integers. The point x is in Ω (v, r), so the mod-
ified embedding is still planar. By choosing appropriate lines we can also ensure
that no two adjacent vertices lie on the same vertical line (but we might have to
cross the neighborhoods by twelve lines).

φ (v) φ (v)

ε

x

Ω (v, r) Ω (v, r)

Figure 5.1: Placing the vertical lines

Let P denote the set of all prime numbers which appear in the decomposition
of the difference |φ (u)1 − φ (v)1| where φ (u)1, φ (v)1 are the first coordinates
of points φ (u), φ (v) and uv ∈ E. The set P is finite, because no two points
representing vertices lie on the same vertical line and thus the difference is always
positive. Now we analogously put horizontal lines across the whole plane such that
the distance between two consecutive lines is δ > 0. This time we choose δ such
that every vertical line is crossed by at least

∏
p∈P p lines in every neighborhood.

Ω (v, r)

φ (v)

δ

Ω (v, r)

φ (v)

x

Figure 5.2: Placing the horizontal lines

Again, we declare one of these lines as initial and number them according to
their order. Then, for every vertex v ∈ V , we set φ (v) = x such that x ∈ Ω (v, r),
the first coordinate of φ (v) remains the same and x lies on the horizontal line
with number l, where l ≡ f (v)2 (mod2), l ≡ f (v)2 (mod3). In addition, if there
is another prime number p which divides the difference |φ (u)1 − φ (v)1|, uv ∈ E,
then we set such horizontal lines for u and v that their numbers are not congruent
modulo p. The different residues modulo p can be chosen according to the coloring
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f . Each color corresponds to a unique residue modulo p (p > 4, so there is enough
residues). We chose δ such that there is enough horizontal lines from which we
can always choose the right ones.

Eventually the horizontal and vertical lines form an elongated grid which we
can modify into a regular grid. It suffices to contract the grid such that the
size of columns equals the size of rows, that is ε = δ. The contraction does not
violate planarity, because the whole grid is regularly contracted, thus no positive
distance can lower to zero. The coordinates of points are chosen such that every
line segment is primitive, thus the embedding is planar and primitive.

This result gives an affirmative answer to the conjecture asked by D. Flores
Pen̋aloza and F. J. Zaragoza Martinez [21]. The authors point out that proof
of this statement would yield an alternate proof of the Four Color Theorem.
However we use it as one of the assumptions. In fact, this theorem is equivalent
to the Four Color Theorem, as the proof of the reverse implication is apparent if
we use the function f (x1, x2) = (x1 (mod2) , x2 (mod2)) as a coloring of Z2. If we
use the Five Color Theorem in the proof instead, then we obtain three-locatable
planar grid drawings of planar graphs.

Note that the choice of coordinates also gives us a coloring of G with at most
four colors. In fact, we also proved a stronger conjecture from [21].

Corollary 5.2. Any planar graph G is isomorphic to a plane subgraph H of the
visibility graph of the integer lattice, in such a way that the function g (a1, a2) =
(a1 (mod2) , a2 (mod2)) is a coloring of H that uses exactly χ (G) colors.

The grid drawings obtained by the proof can require large area with no rea-
sonable bounds. However if we start with a nicer initial drawing, then we can
estimate the upper bounds quite easily.

Suppose that the initial embedding is already a grid drawing of size O (n) ×
O (n) where n denotes the number of vertices of a given graph. The results
of Chrobak, De Fraysseix, Pach, and Pollack, and Nakano [13, 16, 33] ensure
the existence of such embedding. Then the following lemma gives us a lower
bound on r. For completeness we include a short well-known proof using Pick’s
theorem [32].

Lemma 5.3. Given an n×n integer grid, n > 1, the minimum nonzero distance
from any grid point to any line segment is in Ω

(
1
n

)
.

Proof. Let a and b be the extremes of a line segment with grid vertices and c be
any grid point (not on ab). If we consider the triangle abc, then, according to
Pick’s theorem (see Section 1.4), the area of abc is at least 1

2
.

On the other hand the area of abc is one half of the length L of ab times the
distance H from c to ab. Since L ≤

√
2n (consider the diagonal of the grid), we

get
1

2
≤ LH

2
≤
√

2nH

2

and therefore H ≥ 1√
2n

.

Thus if the size of the initial grid drawing is cn × cn, where c > 0 is some
constant, then the minimum nonzero distance r from any point representing a
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vertex to any point representing an edge is in Ω
(

1
n

)
. In the first part of the proof

we refine the coordinates such that the neighborhood of every vertex is intersected
by a constant number of vertical lines. The diameter of the neighborhoods is
exactly r ∈ Ω

(
1
n

)
, therefore the width of the new grid drawing is in O (n2).

All that is left is to estimate the height of the drawing. Following the proof we
refine the vertical coordinates such that every neighborhood is intersected by at
least

∏
p∈P p horizontal lines. The diameter of the neighborhoods is now in O (1),

so if we find a function f : N → N such that the product
∏

p∈P p is in O (f (n)),

then we know that the height is in O (n2f (n)) too.
We can focus on every vertex separately. Let v be a vertex of G and let Pv

denote the set of prime numbers which divide the nonzero horizontal distance
between the points φ (u) and φ (v) where uv ∈ E. Then the product of primes
which divide the distance between u and v is in O (n2), as it is the width of the
whole drawing. Therefore we get that∏

p∈Pv

p ∈ O
(
n2d(u)

)
where d (u) denotes the degree of u. According to the Chinese Remainder Theo-
rem, we see that we can consider only the vertex with maximum degree ∆.

Hence we can find a proper grid drawing of any planar graph G with given
coloring in the grid of size O (n2) × O

(
n2∆+2

)
where n denotes the number of

vertices of G. Thus the rough estimation of the size of the drawing is polynomial
for ∆ ∈ O (1), quasi-polynomial for ∆ ∈ O (poly (log n)) and exponential for
linear maximum degree.

Unfortunately we do not know how to embed the general planar graphs in a
grid of polynomial size and the following question remains open.

Conjecture 5.4. Every planar graph has a proper grid drawing of polynomial
size.

5.2 Specific Families of Planar Graphs

We show some already known results concerning the proper grid drawings of
certain families of planar graphs in this section. As the first example we mention
the planar bipartite graphs. Although the following proposition is an immediate
corollary of Theorem 5.1, we can use its proof to derive a more reasonable upper
bound (but still not really good) for the size of proper grid drawings of planar
bipartite graphs.

Proposition 5.5 ([10]). For every planar bipartite graph G, there exists a proper
grid drawing of G.

Proof. In a 2-book representation of a graph G the vertices of G are mapped to a
line (called spine) and edges are represented by curves that cross nor any other
edge nor the spine. Lali Barrièrei and Clemens Huemer [6] showed that any planar
quadrangulation Q admits a pair of 2-book embeddings of Q. The authors use
such representations to embed the quadrangulation Q in the grid. They assign to
each vertex the coordinates as its relative positions in the spines of both 2-book
representations.
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Note that a similar representation can be performed by forcing the differences
of the X-coordinates to be relatively prime to each other. Since quadrangulations
can be seen as maximal bipartite planar graphs, we get the required result using
Proposition 2.3.

Corollary 5.6 ([10]). For every planar bipartite graph G with n vertices, there
exists a proper grid drawing of G which fits into a rectangle of area O (n2 log n).

Since we know the bounds on the number of columns of general grid drawings,
we might consider the compactness of the proper grid drawings. However it is
hopeless to try to obtain a constant bound on the number of columns for general
planar graphs, as it is well known that some graphs with n vertices cannot be
represented in any rectangular portion of the grid with one of its sides smaller
than n

3
. An example of such graph is shown in Figure 5.3.

Figure 5.3: The nested triangle

We conclude this section by mentioning (without a proof) a complete charac-
terization of graphs which have a proper grid drawing with two columns.

Proposition 5.7 ([14]). A graph G has a proper grid drawing with two columns
if and only if it can be extended to a maximal outerplanar graph such that its dual
(excluding the vertex representing the outer face) is a path.

An interesting problem, which remains open, is to improve the bounds of the
area needed to properly embed a graph for certain families of planar graphs.
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Conclusions

In this chapter, we briefly sum up author’s results and mention some open prob-
lems and possible directions for further research.

We introduce the grid drawings of graphs in Zd, d ≥ 2, and we study those
drawings out of several points of view. First, we consider the situation in which
the number of grid points a line segment of a grid drawing intersects is bounded.
This case leads to the new definition of so called q-locatable graphs for an integer
q ≥ 2. The problem of characterizing such graphs is closely connected with graph
coloring, as we show in Theorem 2.2. This result is a stronger version of a theorem
proved by D. Flores Pen̋aloza and F. J. Zaragoza Martinez [21] and it has nice
immediate corollaries, such as it is NP-complete to decide whether or not a given
graph is q-locatable in Zd for a given integer q ≥ 2.

Second, we focus on the grid drawings with bounded number of columns show-
ing a complete characterizations of graphs which have a (primitive) grid drawing
on l columns for fixed l ∈ N. This helps us understand the relationship between
drawing and locating of graphs. These characterizations have, again, very much
in common with graph coloring, only this time, we consider so called mixed col-
oring whose definition is introduced in Chapter 3. We use the mixed colorings
to prove a more general result which implies NP-completeness of a problem of
deciding whether it is possible to draw/locate a graph on l columns answering an
open question of Cáceres et. al. [10]. We also prove some other statements about
mixed colorings which concern planar and outerplanar graphs. It might be inter-
esting to consider some other known graph classes and their relations to mixed
coloring, as we might obtain some stronger bounds on the number of columns on
which we can draw/locate such graphs.

In Chapter 4, we prove one of the conjectures asked by David R. Wood [36]
which concerns with grid drawings having small area. We known that the problem
of finding a grid drawing of a graph with minimum area is a generalization of the
famous “No-three-in-line” problem. The reader might be interested in the other
conjectures of David R. Wood which remained open, so let us mention these. The
first one is a slightly modified version of Theorem 4.4. It also asks for the lower
bound on the area of the grid drawings of complete k-partite graphs. However
this time, we do not require the graphs to be balanced.

Conjecture ([36]) Has every grid drawing of any (non-balanced) complete k-
partite graph with n vertices Ω (kn) area?

The second question would establish a trade-off between small area and small
aspect ratio of a grid drawing.

Conjecture ([36]) Has every w × h grid drawing of K (k, t) with aspect ratio

r = max{w,h}
min{w,h} Ω

(
k2t2

r

)
area?

We also consider planar graphs and their grid drawings. Although it has been
known that there is a planar grid drawing of any planar graph on n verices in
the grid of size O (n)×O (n), the question “Is there a planar and primitive grid
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drawing of an arbitrary planar graph?” was open (see [21]). We give an affir-
mative answer to this question by proving Theorem 5.1. However the size of the
obtained grid drawings can be exponential and thus we ask whether there is, for
an arbitrary planar graph, a planar and primitive grid drawing with polynomial
size. Another disadvantage of the proof is that it uses the Four Color Theorem
as one of the assumptions, but this is comprehensible, since these two results are
actually equivalent. Perhaps the most intriguing question left open is whether
there is a proof of Theorem 5.1 without using the Four Color Theorem, as it
would yield an alternate proof of this classical result in graph theory.
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