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Preface

This work builds on the leaf correspondence method for the generic creation of
double ended priority queues from two single-ended priority queues of Chong and
Sahni[4]. The original method was an improvement of the total correspondence
heaps employing the fact that if not all nodes have to be interconnected, a great
deal of unnecessary operations can be eliminated.

We define a new type of a double ended heap, the L-correspondence heap. The
L-correspondence heap is a generalization of the previous approach and admits a
broader area of base heaps (for example the Fibonacci heap or the Rank-pairing
heap).

The new approach relies on the fact, that in many known and practically
eligible heaps, the operation of deleting a leaf (or a similar special type of a
node that we will denote L-node) is simple and fast. We define a new method
Delete-L-node, that is a restriction of the Delete operation on the L-nodes.
This procedure is generally no different from the standard Delete operation, but
the analysis of its time bound is more precise.

Figure 1: A chain of leaves in Fibonacci heap - it will be shown that its disas-
sembly runs in amortized constant time. This is mainly because such chains are
very rare and to achieve them, many cuts have to be made - these cuts then pay
for the operation.

In the L-correspondence heap, the strict assumption for the priority of the
parent (relative to the child’s priority) is relaxed, which allows structures that do
not satisfy the min-heap ordering (such as the Rank-pairing heap) to be eligible
as base heaps.

The previous approach as it was originally defined did not allow heaps where
the deletion of a node can result in a cascaded deletion of other nodes, to be used
as the base heap (for example the Fibonacci heap). In our new approach, such
heaps become eligible.
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Very importantly, the Delete-L-node operation allows the operations De-
crease and Increase. Since these operations use the base heaps’s Decrease and
Increase, a pure amortized time bound is not always possible. A simple proba-
bilistic bound will be made instead to show that for some heaps, their expected
amortized time bound is O(1).

In the second chapter, the L-correspondence heap is defined and the Delete-
L-node operation of the base heap is declared along with its use in Delete-min
and Decrease and their symmetrical counterparts. In the third chapter, specific
examples for the L-correspondence heap are shown for three different base heaps.
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1. Introduction

1.1 Priority queue

1.1.1 Definition

Priority queue is an abstract data type containing elements with associated pri-
ority. Elements may be of a primitive or a structured type. The priority of an
element x is denoted Pr(x). The data type supports the following operations:

Insert(x) - Inserts an element x, that is not represented by the priority
queue, into the priority queue.

Find-min - Returns an element with the smallest priority.

Delete-min - Deletes and returns an element with the smallest priority.

Meld(Q1, Q2) - Returns a priority queue that represents the set S = S1∪S2,
where S1 and S2 are sets represented by Q1 and Q2 respectively and
|S1 ∩ S2| = ∅.

In this work we will refer to a specific realization of the priority queue as
implementation. The set of basic operations can be extended by following
operations in most implementations:

Delete(x) - Deletes element x.

Decrease(x, a) - Sets a priority of element x, such that Pr(x) ≥ a, to a.

Increase(x, b) - Sets a priority of element x, such that Pr(x) ≤ b, to b.

Most of the time, to call these three operations, it is necessary to have some
additional structural information. In case of a tree representation it may be a
reference to a tree node representing the given element. In case of an array rep-
resentation it can be an index of the array where the element is stored. This is
necessary to avoid searching for the element in the structure and also not too
limiting since many algorithms using priority queues can extend the object they
are working with by a reference into the priority queue.

The argument x in these operations is a formal argument for the abstract data
structure. In practice it will be information about the element’s position in the
data structure.

The defined priority queue is also called a min priority queue as it supports
the Delete-min operation. Symmetrically equivalent data type is a max priority
queue that supports the Delete-max operation. The implementations of both
priority queue types are generally equivalent and do not require any additional
work once the basic min priority queue is established.
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1.1.2 Heap

The most typical way of representing a priority queue is by using a tree or a
collection of trees. A conventional name for such structure is heap. Heap is a
collection of trees where nodes represent elements from a priority queue and the
following condition, also called min-heap ordering condition, holds:

(Min-heap ordering) For every non-root node v, if v represents element x from
a priority queue and Parent(v) represents element y, then Pr(y) ≤ Pr(x).

To represent a max priority queue, the symmetrical max-heap ordering con-
dition with reverse ordering will be used. For the rest of the work we will assume
that min priority queue and max priority queue are represented by min-heap and
max-heap, respectively, if not specified otherwise.

Priority queue can be implemented by a heap in two ways. Either the nodes
can change the element they represent, thus they serve only as a container. Or
they can be bound together with one single element. In this case the node is cre-
ated when the element is inserted and is deleted whenever element is deleted. In
this work we will consider only the second type of the implementation, therefore
the node, and the element it is representing are considered equivalent.

This allows us to define a priority of the node v representing element x, as
Pr(v) = Pr(x).

1.2 Double-ended priority queue

1.2.1 Definition

Double-ended priority queue is an abstract data type that is both a min priority
queue and a max priority queue, thus supports the following operations:

Insert(x) - Inserts an element x, that is not represented by the priority
queue, into the priority queue.

Find-min - Returns an element with the smallest priority.

Find-max - Returns an element with the largest priority.

Delete-min - Deletes and returns an element with largest priority.

Delete-max - Deletes and returns an element with largest priority.

Delete(x) - Deletes element x.

Decrease(x, a) - Sets a priority of element x, such that Pr(x) ≥ a, to a.

Increase(x, b) - Sets a priority of element x, such that Pr(x) ≤ b, to b.

Meld(Q1, Q2) - Returns a priority queue that represents the set S = S1∪S2,
where S1 and S2 are sets represented by Q1 and Q2 respectively and
|S1 ∩ S2| = ∅.
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1.2.2 Previous works

Many efficient double ended priority queue representations have been proposed.
The Symmetric min-max heap of Arvind and Rangan[1] can be represented by
an array. Its Find-min and Find-max operations have O(1) running time and
all other operations have O(log n) running time.

The Interval heap of [7] is equivalent with the Interval heap of [19], the Twin
heap[18], the Min-max pair heap of [15], and the Diamond deque of [3]. The
Twin heaps will be shown later. The Find-min and Find-max operations have
O(1) running time and all other operations have O(log n) running time.

All these approaches have one in common: they are in some way inspired
by a basic 2-regular heap and they are static, meaning that the performance of
their operations can not be changed to favor one specific operation or a set of
operations.

The generic double ended heap approach, that we describe later, on the other
hand is dynamic. For every approach (dual heap, total correspondence heap, leaf
correspondence heap, our L-correspondence heap) there is a class of single-ended
priority queues that can be used as the base heap to build the double ended
priority queue.

1.2.3 Applications

One of the applications of the double ended priority queue is the modification
of the sorting algorithm Quicksort for external sorting. External sorting is
used when the elements to be sorted do not fit into the (fast) memory.

In the internal Quicksort, we split elements into two groups L and R and the
pivot. All elements from L are smaller than the pivot, all elements from R are
larger than the pivot. Then we recursively sort L and R and output the result:
sorted L, pivot, sorted R.

With a double ended priority queue Q, we can sort elements externally. As-
sume that the priority of the element is equal to the key that we want to sort by.
First read as much elements as fit into the memory and insert them into Q. The
elements represented by Q will be our pivot set. Read the remaining elements
one by one, let x be the current element:

• If Pr(x) ≤ Pr(Q.Find-min), output x into the file for the set L.

• If Pr(x) ≥ Pr(Q.Find-max), output x into the file for the set R.

• Else perform

y ← Q.Delete-min and output y into the file for the set L

y ← Q.Delete-max and output y into the file for the set R

Choice can be made arbitrarily or randomly. Perform Q.Insert(x) to in-
clude x into the pivot set.

When all elements have been read, the elements from Q are output in the sorted
order. Then sets L and R are sorted recursively and the algorithm can output
the result.
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The following application is described in [14]. Assume we want to search in a
set of records by a given criterion and we want the found records to be ordered
decreasingly by their relevance for this search. The number of output records will
be limited by m. This can be done using a double ended priority queue.

Let the priority of the record be its relevance for the search. First we insert
first m records into the priority queue Q. Then as we go through the remaining
records, if for the record x, Pr(x) ≤ Pr(Q.Find-min), we can skip to the next
record since the relevance of x is too small. If Pr(x) > Pr(Q.Find-min), we
perform Q.Delete-min and Q.Insert(x).

When all the records have been considered, the set represented by Q is the
set of m records with the largest relevance among all records. Since Q is a double
ended queue, it supports Find-max and Delete-max and the records can be
output one by one in a decreasing order.

1.3 Generic methods for double ended heaps

There exist several implementations of double ended priority queues with varying
performances. It has become apparent that a very logical approach is to reuse the
implementations of single-ended priority queues, where they are used as a sort of a
black-box. This way, whenever there is a need for some special property belonging
to some type of a heap, then this heap can be used as the base heap. The advan-
tage is that the structure is already implemented, analyzed theoretically and/or
experimentally, so only a reasonable amount of time and resources are necessary.

The generic double ended heap is a scheme that, given compatible heaps as
base heaps, can be turned into a particular implementation. There are three no-
table generic approaches[13]: Dual heaps, Total correspondence heaps and Leaf
correspondence heaps. This work builds on and generalizes the leaf correspon-
dence approach.

1.3.1 Dual heap

Possibly the most straightforward type of a generic double ended heap is a dual
heap. To represent a set S of elements, a min-heap and max-heap are used, both
representing the whole set S. For every element x, there is a pointer correspon-
dence between node u representing x in min-heap and node v representing x in
max-heap. This way, it is possible to get a reference on v knowing u and vice
versa. Consequently, for every element it is sufficient to only have a reference to
a node representing it in any of the heaps.
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Figure 1.1: Dual heap - minimal element is represented by red nodes, maximal
by blue nodes.

Under such conditions, the operations are very simple. Let Qmin and Qmax

be base structures of the dual heap, the operations follow:

Insert(x)

Qmin.Insert(x)
Qmax.Insert(x)

Delete(x)

Qmin.Delete(x)
Qmax.Delete(x)

Find-min

return Qmin.Find-min

Find-max

return Qmax.Find-max

Delete-min

x← Qmin.Find-min
Qmin.Delete-min
Qmax.Delete(x)
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Delete-max

x← Qmax.Find-max
Qmax.Delete-max
Qmin.Delete(x)

Decrease(x, a)

Qmin.Decrease(x, a)
Qmax.Decrease(x, a)

Increase(x, a)

Qmin.Increase(x, a)
Qmax.Increase(x, a)

Meld(Q1, Q2)

Q.Qmin ←Meld(Q1.Qmin, Q2.Qmin)
Q.Qmax ←Meld(Q1.Qmax, Q2.Qmax)
return (Q.Qmin, Q.Qmax)

It is easy to see that algorithms for the dual heap are correct and straightfor-
ward to implement given the base heaps. It’s most obvious disadvantages are that
it takes twice as much memory as would be needed to represent each element once
and that every operation is done twice. This makes it inferior in performance and
effectivity to the next approach, the total correspondence heaps.

1.3.2 Total correspondence

In the dual heap, all elements were duplicated and they, along with their copies,
formed two heaps linked by pointers. The total correspondence heap eliminates
the need for duplicate elements and represents every element exactly once. It
borrows its ideas from the twin heap[18]. In the twin heap, elements are repre-
sented by two binary (min- and max-) heaps in an array. Each of the min-heap
and max-heap represent half of all elements - the possible odd element is stored
in a buffer. Let Element(buffer) be the element stored in the buffer, or null
if the buffer is empty. The structure is a twin heap, if for every i, where Qmin[i]
(and Qmax[i]) is defined, Pr(Qmin[i]) ≤ Pr(Qmax[i]).
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Figure 1.2: Twin heap - the minimal element is represented by a red node, max-
imal by a blue node.

This structure ensures that the minimal element is either in the buffer or is
the minimal element of the min-heap and symmetrically for the maximal element.

The twin heap cuts space requirements of dual heaps to half and no longer
has to be every operation performed twice. The problem is that this works only
for heaps with an array representation.

The total correspondence heap is less restrictive and achieves the same results.
The elements are represented by a min-heap and a max-heap and a buffer. Buffer
stores a potential odd element, the remaining elements are uniformly split between
both heaps. Since heaps may not be represented by an array, there are no implicit
pairs of nodes that have to be in an ordering relation.

Instead, explicit pairs of nodes are formed: heaps are connected using ad-
ditional pointers. Pair of nodes u and v can be connected if u is representing
element x in min-heap and v is representing element y in the max-heap and
Pr(x) ≤ Pr(y). Then v is a pointer pair node for u and u is a pointer pair node
for v and we denote Pointer(u) = v and Pointer(v) = u.

The structure consisting of a min-heap, max-heap and a buffer, is a total
correspondence heap if every node from min-heap and max-heap has a pointer
pair node from the other heap.
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Figure 1.3: Total correspondence heap - minimal element is represented by a red
node, maximal by a blue node. Every element has a corresponding and exclusive
pair satisfying the ordering condition. There are no restrictions on the position
of the nodes within the heap - unlike in the twin heap.

The operations must ensure that the total correspondence condition is satisfied
at all times. The basic operations without their symmetrical counterparts follow.

Set-pointers(x, y) - establishes a pointer pair relation between two nodes

Pointer(x)← y
Pointer(y)← x

Insert(x)

if buffer is empty then
buffer ← x

else
small← min {Element(buffer), x} . Smaller element
large← {Element(buffer), x} \ {small} . Larger element
Qmin.Insert(small)
Qmax.Insert(large)
Set-pointers(small, large)

end if

Find-min

if buffer is empty then
return Qmin.Find-min

else
return min {Qmin.Find-min,Element(buffer)}

end if
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Delete-min - deletes the minimal element from the heap

1: if buffer is empty then
2: y ← Qmin.Find-min
3: z ← Pointer(y)
4: Qmin.Delete-min
5: buffer ← z
6: else
7: b← Element(buffer)
8: y ← Qmin.Find-min
9: if Pr(b) ≤ Pr(y) then
10: buffer ← null
11: else
12: z ← Pointer(y)
13: Qmin.Delete(y) . z lost its pointer pair y
14: if Pr(b) ≤ Pr(z) then
15: Qmin.Insert(b)
16: Set-pointers(b, z)
17: else
18: Qmax.Delete(z)
19: Qmin.Insert(z)
20: Qmax.Insert(b)
21: Set-pointers(z, b)
22: end if
23: buffer ← null
24: end if
25: end if

Meld(Q1, Q2)

Q.Qmin ←Meld(Q1.Qmin, Q2.Qmin)
Q.Qmax ←Meld(Q1.Qmax, Q2.Qmax)
Q = (Q.Qmin, Q.Qmax)
B = {Element(Q1.buffer),Element(Q2.buffer)} \ {null}
if |B| = 1 then

let B = {b}
Q.buffer ← b

else if |B| = 2 then
let B = {b1, b2} where Pr(b1) ≤ Pr(b2)
Qmin.Insert(b1)
Qmax.Insert(b2)
Set-pointers(b1, b2)

end if
return Q

In a same way that twin heap does, the total correspondence heap performs
only a half of operations and uses half of space of the dual heap. It no longer
requires an array representation and can use any heap as the base heap - as long
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as it is represented by a collection of trees with the min-heap ordering property.

Even better approach is however possible. It is not necessary that every node
has a pointer pair to ensure that minimal and maximal elements are at correct
locations. The pointer pair condition can be constricted to leaf nodes as will be
shown in the next section.

1.3.3 Leaf correspondence

Our heap is based on the leaf correspondence heap of Chong and Sahni[4]. The
double ended heap is created by interconnecting two base heaps: a min-heap and
a max-heap, as defined in the previous chapter. The authors illustrate leaf corre-
spondence on the Height biased leftist trees[6], Pairing heaps[8][16] and the Fast
meldable priority queues of Brodal[2].

The leaf correspondence heap consists of two interconnected min- and max-
heaps. Heaps are connected using additional pointers. A pair of nodes u and v
can be connected if u is representing element x in the min-heap and v is repre-
senting element y in the max-heap and Pr(x) ≤ Pr(y). Then v is a pointer pair
node for u and u is a pointer pair node for v and we denote Pointer(u) = v and
Pointer(v) = u. If node u has no pointer pair node, then Pointer(u) has null
value.

The main requirement for the leaf correspondence is that each leaf u in the
min-heap has a pointer pair node v in the max-heap that may or may not be a
leaf and symmetrically, every leaf v in the max-heap has a pointer pair u in the
min-heap that may or may not be a leaf.

This definition is not sufficient, because if there is only one element in the
whole heap, then it is certainly a leaf and can not have a pointer pair, therefore
there are some sets that are not representable by this heap. A separate container,
denoted buffer is thus included in the heap. The buffer can hold one element or
be empty. The second and probably more important use of the buffer is in most
of the operations, because it helps build the leaf correspondence itself.

For example, to insert an element x, it must be ensured that in case it becomes
a leaf, it has a pointer pair. This is easy to do with a buffer. If it is empty, the
element is inserted there. If not, it must be inserted into one of the base heaps.
If it becomes a leaf, the element from the buffer will serve as a pointer pair node.
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Figure 1.4: Leaf correspondence heap - red nodes are leaves and all such nodes
must have a pointer pair. Every node is allowed to have a pointer pair however
(note nodes with priorities 16 and 17 in the figure).

Let a priority queue be meldable if it supports the Meld(Q1, Q2) operation.
The leaf correspondence heap of Chong and Sahni can be created from heaps that
fulfill the following four conditions:

1. The (meldable) base heap supports the operation Delete efficiently.

2. When an element is inserted into the (meldable) base heap, no non-leaf
node becomes a leaf node, except possibly the node for the newly inserted
item.

3. When an element is deleted from the (meldable) base heap, no non-leaf
node becomes a leaf node, except possibly the parent of the deleted node.

4. The Meld operation of the base heap (if supported) should not create new
leaf nodes.

The fourth condition is only required if the new structure must support melding.

Basic operations

The operations of the leaf correspondence heap must ensure that the leaf corre-
spondence condition holds at all times.

Set-pointers(x, y) - establishes a pointer pair relation between two nodes

Pointer(x)← y
Pointer(y)← x
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Meld(Q1, Q2)

Q.Qmin ←Meld(Q1.Qmin, Q2.Qmin)
Q.Qmax ←Meld(Q1.Qmax, Q2.Qmax)
Q = (Q.Qmin, Q.Qmax)
B = {Element(Q1.buffer),Element(Q2.buffer)} \ {null}
if |B| = 1 then

let B = {b}
Q.buffer ← b

else if |B| = 2 then
let B = {b1, b2} where Pr(b1) ≤ Pr(b2)
Qmin.Insert(b1)
Qmax.Insert(b2)
Set-pointers(b1, b2)

end if
return Q

To meld two double ended heaps (if it is supported by base heap), the Meld
operation of the base heap is used. First both min-heaps and both max-heaps
are melded. Afterwards the potential elements from the buffer are reinserted and
linked. The resulting heap is guaranteed to satisfy the pointer pair node condition
due to requirement (4).

Insert(x) - inserts a new element into DEPQ

1: if buffer is empty then
2: buffer ← x
3: else
4: small← min {Element(buffer), x} . Smaller element
5: large← {Element(buffer), x} \ {small} . Larger element
6: Qmin.Insert(small)
7: if small is a leaf then
8: Qmax.Insert(large)
9: Set-pointers(small, large)
10: buffer ← null
11: else
12: buffer ← large
13: end if
14: end if

The Insert is straightforward. If the buffer is empty, the element is inserted
into the buffer. If it is not, the smaller of the inserted and the element from the
buffer is found. It is then inserted into the min-heap and in case it becomes a
leaf, the larger will serve as a pointer pair node after insertion into the max-heap.
In case the smaller element does not become a leaf, the larger element is left in
the buffer.

The Delete-min operation of the leaf correspondence heap follows. Note
that the following algorithm excludes the use of base heaps where a form of a
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cascaded cut is possible, such as the Fibonacci heaps. After a deletion other
than of a node with the minimum priority, only the parent of a deleted node is
considered to become a new leaf, while in fact, more than one nodes could have
become leaves.

Delete-min - deletes the minimal element from the heap

1: if buffer is empty then
2: y ← Qmin.Find-min
3: z ← Pointer(y)
4: Qmin.Delete(y) . deleting the minimum
5: if z 6= null then
6: if z is not a leaf then
7: Pointer(z)← null
8: else
9: p← Parent(z)
10: Qmax.Delete(z)
11: if p is a leaf and Pointer(p) = null then
12: Qmin.Insert(z)
13: Set-pointers(p, z)
14: else
15: buffer ← z
16: end if
17: end if
18: end if
19: else
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Delete-min (continued - the buffer is not empty)

20: b← Element(buffer)
21: y ← Qmin.Find-min
22: z ← Pointer(y)
23: if Pr(b) ≤ Pr(y) then
24: buffer ← null
25: else
26: Qmin.Delete(y) . deleting the minimum
27: if z 6= null then
28: if z is not a leaf then
29: Pointer(z)← null
30: else
31: if Pr(b) ≤ Pr(z) then
32: Qmin.Insert(b)
33: Set-pointers(b, z)
34: buffer ← null
35: else
36: p← Parent(z)
37: Qmax.Delete(z)
38: Qmin.Insert(z)
39: if either p or z became a leaf and Pointer(p) = null then
40: Set-pointers(z, p)
41: else . z 6= null
42: if z became a leaf then
43: Qmax.Insert(b)
44: Set-pointers(z, b)
45: buffer ← null
46: end if
47: end if
48: end if
49: end if
50: end if
51: end if
52: end if

The Delete-min is easier when the buffer is empty. The minimum is simply
deleted from Qmin. If it had no pointer pair node, we are finished. If it had a
pointer pair node z that is not a leaf, we simply cancel the pointer for this node.
If the pointer pair node z is a leaf, we delete it from Qmax. If its parent p did not
become a leaf, we simply put z into the buffer. If its parent p did become a leaf
and has no pointer pair node, we put z into Qmin and make a pointer pair out of
z and p.

If the buffer is not empty, we must also check the buffer for it may contain
the smallest element. If it does not, we delete the node with minimum element
from Qmin. If it has no pointer pair node, we are finished. If it has a pointer pair
node z that is not a leaf, we cancel the pointer for this node. If the pointer pair
node z is a leaf, we must fix the pointer for this node. If it represents element
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that is larger than one in the buffer, we can insert the element from buffer into
Qmin and make them pointer pairs. Otherwise we delete z from Qmax and rein-
sert into Qmin. Now we must look at its previous parent p in Qmax. If none of
them became a leaf after deletion and reinsertion, we are done. If any of them
became a leaf, we will need to find a pointer pair. If p does not have a pointer
pair, we can simply connect them and finish because z has just been inserted
and has no pointer pair. If however p has a pointer pair and z became a leaf, we
insert into Qmax a buffer element (that we know represents element larger than
one represented by z) and make them a pointer pair.

After this operation is finished, every leaf has a correct pointer pair. The
symmetrical procedure Delete-max is similar up to reversed inequalities and
base heap references.

The complexity of Insert and Meld is equal to at most two times the com-
plexity of Insert and Meld in the base heaps. The complexity of Delete-min
is at most twice the complexity of Delete plus twice the complexity of Insert
in base heaps.
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2. L-correspondence heap

2.1 Definition

2.1.1 Conditions

Let L-property be a property of a node in the heap. For a given L-property
we denote a node having this property L-node. As an example the L-property
could be that a node is a leaf. In this case a leaf would be an L-node. If we
want to emphasize that a node does not have the desired property, we denote it
non-L-node.

The restriction on the base heaps can be relaxed. Instead of heaps that are
collections of trees satisfying the min-heap ordering, we will allow that the relaxed
min-heap is any collection of trees where in every tree, the root has minimal
priority and for any node x in a tree, there exists an L-node y in the same
tree such that Pr(x) ≤ Pr(y). Note that it is not necessary that x 6= y. From
now on we will call this relaxed min-heap simply min-heap. The same applies to
max-heap symmetrically.

Similarly as for the leaf correspondence, we define L-correspondence. The
main requirement for the L-correspondence is that each L-node u in the min-heap
has a pointer pair node v in the max-heap that may or may not be an L-node
and symmetrically, every L-node v in the max-heap has a pointer pair u in the
min-heap that may or may not be an L-node.

Lemma 2.1. The L-correspondence requirement ensures that in a double ended
heap made of a relaxed min-heap and max-heap, either the buffer contains an
element with minimal priority, or one of the roots in min-heap represents an
element with minimal priority. The same applies symmetrically to the element
with maximal priority.

Proof. Let x be any element with minimal priority. If it is in the buffer or the min-
heap, we are finished, because the priority of a root is at most as large as of every
other element in the tree. Let u be node from max-heap representing x. There
exists an L-node v representing y such that Pr(y) ≤ Pr(x). L-correspondence
ensures that v has a pointer pair node w representing element z in min-heap
such that Pr(z) ≤ Pr(y). The root of tree containing z represents the element
with minimal priority in the tree and since this is at most Pr(x), the statement
holds.

Let singleton trees be trees that consist of a single node.

We base the L-correspondence approach on a restricted deletion operation.
Let Delete-L-node(x) be an operation that deletes an L-node x from the heap
and if any new singleton trees are created during the process, the insertion of
such nodes into the root list is deferred and a reference to these nodes is easily
retrievable. The same will apply for the Decrease and Increase operations.
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The conditions for the base min- and max- heaps of the L-correspondence
heap are the following:

1. The (meldable) base heap supports the operation Delete-L-node efficient-
ly.

2. When an L-node is deleted from the (meldable) base heap, or a priority
of any node is decreased or increased, then

• if any new singleton trees are created during the operation, they can
not be put into the root list, but instead kept aside in a temporary
data structure (such as a linked list) and it must be possible to retrieve
this list in at most O(1) additional time

• apart from these nodes there is at most one new arbitrary L-node
and reference to this L-node can be determined in O(1) time

3. When an element is inserted into the (meldable) base heap, no non-L-node
becomes an L-node, except possibly the node for the newly inserted element.
Insertion of a singleton tree takes O(1) time.

4. The Meld operation of the base heap (if supported) does not create new
L-nodes.

For the operations Delete-L-node, Decrease and Increase, we will denote
symbolically (List, w) ← Operation(x) the fact that this operation provides a
reference to the list of singleton trees and to one arbitrary L-node. Note that the
retrieval of this pair is an implementation detail and even in the next chapter
(specific implementations of base heaps for L-correspondence), its implementa-
tion will be omitted for clarity.

The conditions for the L-correspondence are similar to those for the leaf cor-
respondence with a few notable differences:

• We generalize on the leaf correspondence approach to broaden the set of
the eligible base heaps (for example Rank-pairing heap).

• We do not require the existence of a general Delete operation, but a special-
ized Delete-L-node operation is needed instead. Note that this operation
may be implemented in the same way in the base heaps, but its analysis
may differ and provide a better time complexity bound.

• The restrictions on Delete-L-node are different than on Delete in the leaf
correspondence heaps. The reason is that the leaf correspondence condi-
tions did not accommodate cases when several nodes are removed due to a
Delete operation. For example this could happen in Fibonacci heap after
deletion of a node x in case the path from Parent(x) to the root contains
a continuous segment of marked nodes with exactly one child. All nodes
from the path would become singleton trees and it is not guaranteed in
any way that they would end up with the required pointer pair node. Our
approach will therefore enable the use of Fibonacci heap and other heaps
where deleting one node can induce deletion of other nodes.

• The conditions enable the Decrease and Increase operations.
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2.1.2 Basic operations

The operations Set-pointers and Insert are the same as in the leaf correspon-
dence heap and are shown for clarity, the Meld operation is slightly optimized.

Set-pointers(x, y) - establishes a pointer pair relation between two nodes

Pointer(x)← y
Pointer(y)← x

Insert(x) - inserts a new element into DEPQ

1: if buffer is empty then
2: buffer ← x
3: else
4: small← min {Element(buffer), x} . Smaller element
5: large← {Element(buffer), x} \ {small} . Larger element
6: Qmin.Insert(small)
7: if small is an L-node then
8: Qmax.Insert(large)
9: Set-pointers(small, large)
10: buffer ← null
11: else
12: buffer ← large
13: end if
14: end if

Meld(Q1, Q2)

Q.Qmin ←Meld(Q1.Qmin, Q2.Qmin)
Q.Qmax ←Meld(Q1.Qmax, Q2.Qmax)
Q = (Q.Qmin, Q.Qmax)
B = {Element(Q1.buffer),Element(Q2.buffer)} \ {null}
if |B| = 1 then

let B = {b}
Q.buffer ← b

else if |B| = 2 then
let B = {b1, b2} where Pr(b1) ≤ Pr(b2)
Qmin.Insert(b1)
if b1 is an L-node then

Qmax.Insert(b2)
Set-pointers(b1, b2)
buffer ← null

else
buffer ← b2

end if
end if
return Q
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To meld two L-correspondence heaps (if it is supported by base heaps), the
Meld operation of the base heap is used. First both min-heaps and both max-
heaps are melded. Afterwards, the element with the smaller priority is inserted
into the min-heap and if it is a leaf after the operation, the element with the larger
priority is inserted into the max-heap and both nodes are linked. The resulting
heap is guaranteed to satisfy the pointer pair node condition due to requirement
(4).

2.2 Delete-min and Decrease

2.2.1 Fix-L-node

In the L-correspondence conditions, we allow certain base operations to create
new L-nodes. We define a procedure Fix-L-node that handles such nodes to
ensure the L-correspondence. Let x be a node from the L-correspondence. Then
Heap(x) denotes the heap in which x is located (the min-heap or the max-heap).

Fix-L-node(x)

1: Q← Heap(x)
2: if x 6= null and Pointer(x) = null then
3: (L,w)← Q.Delete-L-node(x)
4: Insert(x)
5: if L is not empty then
6: let Ls be the set of all singleton trees with a pointer pair in L
7: for all s ∈ Ls do
8: Q.Insert(s)
9: end for
10: split L \ Ls into subsets Li of size 2 and let l be a possible odd node
11: if l 6= null then
12: Insert(l)
13: end if
14: for all Li = (l1, l2) do
15: if l1 > l2 then
16: swap l1 and l2
17: end if
18: Qmin.Insert(l1)
19: Qmax.Insert(l2)
20: Set-pointers(l1, l2)
21: end for
22: end if
23: if w 6= null then
24: Fix-L-node(w)
25: end if
26: end if

The Fix-L-node procedure ensures that the L-correspondence condition holds
by forming pairs of singleton trees that had no pointer pairs (result of the Delete-
L-node operation) and reinserting them into both heaps. The Delete-L-node
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procedure can create one new arbitrary L-node by definition, in which case a
recursive call must be made. It is easy to see that Fix-L-node always termi-
nates (in every recursive call it removes and reinserts at least one L-node with no
pointer pair and never breaks a pointer pair connection). The Delete-L-node
operation must be designed in a way that ensures that Fix-L-node performs
fast. Fix-L-node accepts null node argument for the ease of use.

It is not enough if the bound for Delete-L-node or Insert is given. It must
be possible to give a time bound for the whole Fix-L-node operation including
all recursive calls and all calls to Delete-L-node. It is therefore fully dependent
on the Delete-L-node of the base heap.

This analysis is left to the specific implementations and no reasonable time
bounds for our double ended heap can be made without it. The analysis of this
operation for some well known base heaps will be shown in next chapter. We will
show that for these heaps, the amortized cost of the Fix-L-node operation is
O(1).

Figure 2.1: Example of a Fix-L-node operation (L-property ≡ leaf) - leaves are
deleted until Delete-L-node creates no more leaves. Then they are reinserted
using the Insert operation.
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2.2.2 Delete-min

The new Delete-min operation no longer needs a general Delete in the base
heaps and uses Delete-L-node instead.

Delete-min - deletes the minimal element from the heap

1: y ← Qmin.Find-min
2: z ← Pointer(y)
3: Qmin.Delete-min
4: if z 6= null then
5: if z is not an L-node then
6: Pointer(z)← null
7: else
8: Fix-L-node(z)
9: end if
10: end if

The Delete-max operation is defined symmetrically.
For the purposes of the time complexity analysis, let cAoperation(n) denote the

amortized complexity of the operation in the base heap Qmin with n elements for
the potential function Φbase(Qmin). Then we denote CA

operation(n) the amortized
complexity of the operation in the L-correspondence Q for the potential function
Φ(Q) = Φbase(Qmin) + Φbase(Qmax).

The upper bound on the time complexity of Delete-min is then:

CA
Delete-min(n) ≤cADelete-min(n) + cAFix-L-node(n)

2.2.3 Decrease

The Fix-L-node operation enables the operation Decrease for the L-correspondence
heap.
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Decrease(x, a)

1: if x is in Qmin then
2: (L,w)← Qmin.Decrease(x, a)
3: Fix-L-node(w)
4: else . x is in Qmax

5: if Pointer(x) = null or Pr(Pointer(x)) ≤ a then
6: (L,w)← Qmax.Decrease(x, a)
7: Fix-L-node(w)
8: else . Pr(Pointer(x)) > a
9: y ← Pointer(x) . y ∈ Qmin

10: b← Pr(y)
11: swap elements x and y leaving the priorities in place
12: (L1, w)← Qmin.Decrease(x, a)
13: (L2, z)← Qmax.Decrease(y, b)
14: Fix-L-node(w)
15: Fix-L-node(z)
16: L← L1 ∪ L2

17: end if
18: end if
19: if L is not empty then
20: split L into subsets Li of size 2 and let l be a possible odd node
21: if l 6= null then
22: Insert(l)
23: end if
24: for all Li = (l1, l2) do
25: if l1 > l2 then
26: swap l1 and l2
27: end if
28: Qmin.Insert(l1)
29: Qmax.Insert(l2)
30: Set-pointers(l1, l2)
31: end for
32: end if

If node x to be decreased is in Qmin, it is decreased using the base heap
Decrease. The conditions of the L-correspondence heap allow it to create any
number of singleton trees and at most one arbitrary L-node. The singleton trees
are reinserted and a possible L-node is fixed.

If node x is in Qmax, we have to check for violation of the L-correspondence
condition. If x has no pointer pair node or the new decrease value is larger that
the one represented by its pointer pair node, the Decrease in Qmax is performed
which as in previous case can create singleton trees and at most one arbitrary
L-node.

Otherwise we swap the elements leaving the priorities in place and then per-
form Decrease in the both heaps. The swapping of elements is correct, because
each element was given the priority of the other element and the min-heap and
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max-heap condition were not affected. Both Decrease operations can create new
singleton trees and at most one arbitrary L-node each. These must be all fixed
to ensure the L-correspondence.

At the end of the algorithm, all singleton trees from the Decrease and In-
crease operations are reinserted and the L-correspondence is ensured.

The upper complexity bound for Decrease is then:

CA
Decrease(n) ≤ cADecrease(n) + cAIncrease(n) + 2cAFix-L-node(n)

There is an iterated reinsertion of singleton trees at the end of the algorithm. The
conditions of the L-correspondence heap ensure that insertion of the singleton
trees into the base heaps takes O(1), therefore the reinsertion can be accounted
to the Fix-L-node operation.

Note that the Increase operation of the L-correspondence heap is symmetrical
up to the reverse ordering relations.

2.3 Comparison with other structures

As we saw in the previous chapter, there are three important generic double end-
ed priority queue approaches: Dual Heaps, Total Correspondence Heaps and Leaf
Correspondence Heaps.

Dual heaps store all elements (or nodes representing them) twice. This makes
them very memory consuming, but even worse, every operation is performed
twice. This is obvious for Delete or Insert. The bigger problem is that the
Decrease in min-heap is always paired with a corresponding Decrease in max-
heap which is usually a much more expensive operation.

Total correspondence heaps, in the same way as the leaf correspondence heaps,
store each element once, either in the min-heap, the max-heap or in the buffer.
The difference is that every node in one heap must have a pointer pair node from
the other heap. This constraint causes that for every removal of node x in one
heap, the correspondence condition will have to be ensured for its pointer pair
every time. In leaf correspondence heaps, the conditions have to be ensured only
in cases when x has a pointer pair and only when this pointer pair is a leaf. This
leads to belief that leaf correspondence heaps are faster than total correspondence
heaps in general. It has also been shown experimentally[4] that this suggestion
is probably legitimate.

It seems that the leaf correspondence is the most effective way of building
a double ended priority queue. A more general correspondence approach is the
L-correspondence that allows the use of a broader set of base heaps and makes
use of the fact, that deleting a leaf (or generally an L-node) may be a very fast
operation.

To support the Increase operation, instead of performing Delete and Insert
or even worse a Decrease, Delete-min and Insert, it can be desirable if the
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Increase operation of the base heap is used directly. The problem is that that
Decrease and Increase of the base heap may create new L-nodes. We use the
Fix-L-node operation to handle such cases.

In the next chapter we will show how to extend several well known heaps to
support the Delete-L-node operation in a way that the amortized time bound
for the Fix-L-node operation is O(1). Using this time bound, the time bounds
for the Delete-min and Decrease procedures of the L-correspondence heap will
be derived.

A separate, but interesting result is that the expected amortized cost for
Increase is O(1) for some types of base heaps. We will be depending on the
following general probabilistic bound for the number of children in a rooted tree.

Lemma 2.2. The expected number of children in a node selected with uniform
probability from a rooted tree is bounded by a constant. Same applies to a node
selected with uniform probability from a collection of rooted trees.

Proof. For uniform probabilistic distribution, the expected value is equal to aver-
age number of children. Let the number of nodes be n. Every edge represents one
parent-children relation and there is exactly n−1 edges in a tree. Or equivalently,
exactly n − 1 nodes are children to some node. The average number of children

is then
n− 1

n
= O(1). For a collection of rooted trees, the average number of

children is even less.
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3. L-correspondence
implementations

A general approach for building a double ended priority queue from two (min
and max) heaps has been shown. There are several conditions that have to be
satisfied by a base heap in order to transform two instances of the base heap into
a double ended heap. We will show how these conditions can be satisfied in some
well known heaps.

3.1 Fibonacci heap

The Fibonacci heap has been proved useful in the area of graph algorithms, so it is
natural to expect its double ended variant could perform well in a similar context.
It’s effectivity for some algorithms is based on very fast Decrease operation.

3.1.1 Description

The Fibonacci heap was first introduced in 1987 by Fredman and Tarjan[9] as
an extension to the Binomial heap invented by Vuillemin [17]. The binomial
queues are famous for their simplicity and intuitiveness and the fact that all pri-
ority queue operations have O(log n) worst-case time bound. Fibonacci heap is
more complex to implement and analyze, but it achieves O(1) amortized time
for Insert, Find-min, Meld and Decrease and O(log n) amortized time for
Delete-min and Increase.

The Fibonacci heap is a collection of trees satisfying the min-heap ordering
property, that is, rooted trees where the priority of a child is greater or equal
than the priority of its parent. The trees are stored in a circular list and there
is a special minimum pointer that always points on a root with minimal priority.
This list is called the root list.

Every node stores its priority, a pointer to its parent, a pointer to its first
child and pointers to its left sibling and right sibling. With such structure it is
possible to iteratively walk through any node’s children list in time equal to the
number of its children. It is also possible to cut out a node in constant time by
removing it from the doubly linked list using references to left and right siblings.

Apart from pointers, every node keeps record of the number of its children
(this is possible and straightforward to implement in constant time), the rank,
and a boolean value indicating whether it is marked. Intuitively, a marked node is
a node that had one child removed and has not been a root since, thus a number
of its descendant decreased by a possibly large amount. Whenever a child is
removed from its marked parent, the parent is removed too, is unmarked, added
into the root list and possibly forms a new tree. This ensures that trees never
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have too little descendants with respect to its rank. It will be shown that number
of descendants is always exponential in its rank.

Eligibility for the L-correspondence

First we define that L-property for a node x in the Fibonacci heap:

x is an L-node ≡ x is a leaf

Then the condition for relaxed min-heap (page 19) holds. This is also clear from
the fact that the relaxed min-heap is a generalization of a usual min-heap satis-
fying the min-heap ordering property.

From the definition of the operations it will be clear that all L-correspondence
conditions are satisfied. Notably the condition of instant retrieval of the (List, w)
pair after the Delete-L-node, Decrease and Increase operations is easily sat-
isfied, but its implementation is not included in these operations for clarity.

Operations

The algorithms for the Fibonacci heap operations follow. Note that every time a
root list is changed (a root is added or it is concatenated with another root list),
it is ensured in constant time that a root with minimal priority is referenced by
a minimum pointer.

Insert(x)

create a new node v representing element x and add v into the root list

Meld(Q1, Q2)

concatenate the root lists of Q1 and Q2

Find-min

x← root referenced by the minimum pointer
return a reference to x

Link(x, y) - link two trees of equal rank rooted in x and y

if Pr(x) > Pr(y) then
swap x and y

end if
make x the first child of y
return x
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Delete-min

x← first root in root list
remove x from root list
for all child y of x do

Parent(y)← null
add y into root list

end for
∀i let Ti be a set of all trees of rank i
clear root list
i← 0
while ∃i |Ti| ≥ 1 do

while |Ti| > 1 do
remove any two trees t1 and t2 from Ti

add Link(t1, t2) to Ti+1

end while
if |Ti| = 1 then

remove tree t from Ti and add to root list
end if
i← i + 1

end while

The Cut(x) procedure is used by the Decrease(x) and Increase(x) opera-
tion in case the min-heap ordering property has been breached. In this case, the
whole subtree of x is cut out and added to the root list. If parent y of the node
x is marked, recursively cut y.

Cut(x)

y ← Parent(x)
if y = null then

return
end if
remove x from its parent y by setting appropriate pointers
Parent(x)← null
add x into root list
Marked(x)← false
if Marked(y) then

Cut(y)
else if y is not a root then

Marked(y)← true
end if
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Decrease(x, a)

Pr(x)← a
y ← Parent(x)
if y = null then

return
end if
if Pr(x) ≤ Pr(y) then

Cut(x)
end if

The performance of the heap can be analyzed using a potential function de-
fined as ΦF = 2m+ t, where t is the number of trees in heap and m is number of
marked nodes. This leads to the following (see [5]):

Lemma 3.1. The number of descendants of any node with rank r is at least Fr+2,
where Fk is the kth Fibonacci number.

Theorem 3.2. The amortized time bound (with ΦF as the potential function) in
Fibonacci heap for operations Insert, Meld, Find-min and Decrease is O(1)
and amortized time bound for Delete-min is O(log n).

We will use a different approach however, because we are interested in the
time complexity of Fix-L-node (page 22). We will define a new potential func-
tion for the modification of the Fibonacci heap and show that using this potential
function, all basic operations have the same amortized time cost as in the original
Fibonacci heap using ΦF . Then we will show that using the new potential, the
operation Fix-L-node of the L-correspondence heap has O(1) amortized time
bound and from the operation Increase of Fibonacci min-heap we will derive a
bound for the L-correspondence Decrease operation.

Let
Φ = 7m + 4s + 2t

be a potential function for the L-correspondence modification of the Fibonacci
heap, where m is the number of marked leaves, s is the number of nodes that
have only one child and t is the number of trees in root list.

For every operation, let ∆m, ∆s, ∆t be the difference between the number of
marked nodes, nodes with one child, and trees, respectively, after the operation,
and this number before the operation.

For the operations Increase and Delete-min let c be the number of children
of the argument of the operation. From Lemma 3.1, c ≤ O(log n).

We can then compute the amortized time complexity for the potential Φ. Note
that all of the following operations are for the Fibonacci min-heap.

Insert - the time of the operation is O(1), the change of potential:

∆Φ = 7∆m + 4∆s + 2∆t

= 0 + 0 + 2

= 2
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Meld - the time of the operation is O(1), the change of potential:

∆Φ = 7∆m + 4∆s + 2∆t

= 0 + 0 + 0

= 0

Find-min - the time of the operation is O(1), the change of potential:

∆Φ = 7∆m + 4∆s + 2∆t

= 0 + 0 + 0

= 0

Decrease - let k be the number of Cut operations, i.e. the number of nodes
that ceased to be marked plus one. One node may have been marked. There
are k new trees. Each one of the k cuts may have created one node with
only one child (see Fig. 3.1). The time of the operation is O(k), the change
of potential:

∆Φ = 7∆m + 4∆s + 2∆t

= −7(k − 2) + 4k + 2k

= −k + 14

Delete-min - let T be the set of trees in the root list right before the operation.
After the linking, there is at most one tree of each rank. The number of
trees after the linking is therefore at most log n (Lemma 3.1). No nodes
are marked, some may become unmarked. During the linking, only nodes
of rank 0 can create new nodes with only one child and it takes two such
nodes to make one with only one child. Furthermore roots of rank 1 (that
have exactly one child) will be linked together in pairs, so only at most a
half of these trees will have exactly one child after the linking. The possible

increase in nodes with only one child is therefore ∆s ≤ |T |
4

. The time of

the operation is O(|T |+ log n), the change of potential:

∆Φ = 7∆m + 4∆s + 2∆t

≤ 0 + 4
1

4
(|T |+ c) + 2(log n− |T |)

≤ − |T |+ 3 log n

Theorem 3.3. The amortized time bound (with Φ as the potential function) in
the Fibonacci min-heap for operations Insert, Meld, Find-min and Decrease
is O(1) and amortized time bound for Delete-min is O(log n).

We now show that using the potential function Φ we get a desired amortized
time bound for the Fix-L-node operation (page 22) of the L-correspondence
heap using a very natural Delete-L-node operation. Then a probabilistic time
bound for the Decrease operation of the L-correspondence heap will be given.
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Figure 3.1: Cutting can lead to nodes with one child: cutting out node x causes
three more cuts, unmarks 3 nodes, marks one node and creates 3 nodes with
exactly one child.

Delete-L-node and Increase

Delete-L-node(x)

y ← Parent(x)
if y = null then

remove x from root list
return

end if
remove x from its parent y by setting appropriate pointers
if Marked(y) then

Cut(y)
else if y is not a root then

Marked(y)← true
end if

During Delete-L-node, the leaf is removed from its parent or from root list in
case it has no parent. If it had a parent, this gets marked if it was unmarked. If
it was marked however, we must call the Cut procedure to ensure that crucial
properties of the Fibonacci heap are not broken.

The implication of this is that the Fix-L-node operation (page 22) cuts out
a sequence of leaves one by one until an unmarked node that is either non-leaf or
a leaf with pointer pair, is reached.
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Increase(x, a)

Pr(x)← a
y ← Parent(x)
if y 6= null then

Cut(x)
end if
for all child y of x do

remove y from its parent x by setting appropriate pointers
add y into root list

end for

3.1.2 Fibonacci heap in the L-correspondence

We will now analyze the Fix-L-node operation (page 22) of the L-correspondence
heap with Fibonacci heap as the base heap. We are interested in the total change
of potential in both heaps.

Fix-L-node

The time of the operation is clearly O(k), where k is the number of nodes cut
out either because they were marked, or because they became leaves after their
only child had been cut out.

Figure 3.2: Fix-L-node(x) stops when y is reached, because it is unmarked and
a non-leaf.

One node can become marked and some other nodes can become unmarked,
but there is no guarantee on the number of such nodes. Let cm be the number
of nodes cut out because they were marked and cs be the number of nodes cut
out because they became leaves during the operation (they had only one child
before). We have k = cm + cs. The number of new trees in both heaps in total is
k + 1. The time of the operation is O(k), the change of potential:

∆Φ = 7∆m + 4∆s + 2∆t

≤ −7(cm − 1)− 4cs + 2(k + 1)

= −3cm − 2k + 9
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Decrease

To analyze the Decrease operation (page 24) of the L-correspondence heap, we
must give amortized time bound for every sub-routine as in:

CA
Decrease(n) ≤ cADecrease(n) + cAIncrease(n) + 2cAFix-L-node(n)

It remains to show the time bound for the min-heap Increase operation. Its
time cost is dependent on the amount of children and this in the Fibonacci heap
is bounded by O(log n). If we pick a node at random, the expected amortized
cost is constant.

Lemma 3.4. If the argument of Increase operation in Fibonacci min-heap is a
node selected with uniform probability, the expected amortized time bound (with
Φ as the potential function) is O(1).

Proof. Let k be the number of Cut operations, i.e. the number of nodes that
ceased to be marked plus one. One node may have been marked. Each one of
the k cuts may have created one node with only one child. Let c be the number
of children of the increased node. There are 1 + k + c new trees. The time of the
operation is O(k + c), the change of potential:

∆Φ = 7∆m + 4∆s + 2∆t

≤ −7(k − 2) + 4k + 2(k + 1 + c)

= −k + 2c + 16

If we let c be a random variable from a probabilistic space where every node
is selected with uniform probability, applying Lemma 2.2, we get the desired
bound.

All results together give us the following:

Theorem 3.5. The expected amortized cost (with Φ as the potential function)
of operation Decrease on a node selected with uniform probability in the L-
correspondence heap, with Fibonacci heap as the base heap, is bounded by a con-
stant.

We give the following overview for the L-correspondence heap using the Fi-
bonacci heap as the base heap.

Operation Worst case Amortized Expected amortized
Insert O(1) O(1) O(1)
Meld O(1) O(1) O(1)
Find-min and Find-max O(1) O(1) O(1)
Delete-min O(n) O(log n) O(log n)
Decrease and Increase O(n) O(log n) O(1)
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3.2 Thin heap

Thin and Thick Heaps are inspired by the Fibonacci heap, but are less restrictive.
The relaxation is sufficient to give amortized efficiency of the Fibonacci heap.
They require less space than the Fibonacci heap and are expected to perform
better in practice because the number of cuts is minimized.

3.2.1 Description

The Thin and Thick heaps were introduced in 2008 by Kaplan and Tarjan[11].
The authors gave two variants of a Thin heap and analogous structure Thick
heap. Both Thin heap variants are asymptotically more efficient than the Thick
heap and the second variant is more promising in practical use compared to the
first. We will describe and build upon the second variant of the Thin heap.

Thin trees

A thin tree is a tree where priorities of nodes satisfy the min-heap ordering con-
dition and where every node has a non-negative integer rankT with the following
properties:

1. The children of a node with k children have rankT from k− 1 to 0 and are
ordered decreasingly in the children list: k − 1, k − 2, . . . , 0.

2. A node with rankT k has k or k − 1 children. It is denoted normal if it
has k children, otherwise it is thin.

3. The root is always normal.

Note that a thin tree whose all nodes are normal is a binomial tree and every
binomial tree is a thin tree with all nodes normal.

Lemma 3.6. The number of descendants of any node (including itself) in a thin
tree with r children is at least Fr+1, where Fk is the kth Fibonacci number.

Proof. We will prove by induction by the number of children. Nodes with 0
and 1 children have 1 ≥ F1 and 2 ≥ F2 descendants respectively. For k ≥ 2,
let x be a node with k children, thus its children have the following rankT s:
k − 1, k − 2, . . . , 0. A child with rankT l has at least l − 1 children. By the
induction hypothesis and a well known equation for the sum of a continuous
sequence of Fibonacci numbers, the number of descendants of x including itself
is at least 1 + Fk−1 + Fk−2 + . . . + F0 = Fk+1.

Structure

The structure consists of a circular linked root list, where it is ensured that a
root with minimal priority is always pointed on by a special minimum pointer.
There are three pointers per node: to the first child; to the right sibling (or next
root if node is root); and to the left sibling or the parent, if node is a first child.
Every node stores a non-negative integer rankT . A singleton tree (in root list)
has rankT 0.
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Eligibility for the L-correspondence

As in the Fibonacci heap we can define that L-property for a node x in the Thin
heap is:

x is an L-node ≡ x is a leaf

Since Thin heap satisfies the min-heap ordering property, it is also a relaxed min-
heap (page 19).

From the definition of the operations it will be clear that all L-correspondence
conditions are satisfied. Notably the condition of instant retrieval of the (List, w)
pair after the Delete-L-node, Decrease and Increase operations is easily sat-
isfied, but its implementation is not included in these operations for clarity.

Basic operations

The algorithms for the Thin heap operations follow. Every time a root list is
changed (a root is added or it is concatenated with another root list), it is ensured
in constant time that a root with minimal priority is referenced by a minimum
pointer.

In the following algorithms, to “make node x normal” means decrementing
its rankT by one in case x was thin. This has to be done everytime a node with
its subtree is added into the root list to ensure the condition (3).

Insert(x)

create a new node v representing element x and add v into the root list
rankT (v)← 0

Find-min

x← root referenced by the minimum pointer
return a reference to x

Meld(Q1, Q2)

concatenate the root lists of Q1 and Q2

Link(x, y) - link two normal trees of equal rankT rooted in x and y

if Pr(x) > Pr(y) then
swap x and y

end if
make x the first child of y
rankT (y)← rankT (y) + 1
return x
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Delete-min

x← root referenced by the minimum pointer
remove x from the root list
for all child y of x do

Parent(y)← null
add y into the root list and make it normal

end for
∀i let Ti be a set of all trees of rankT i
clear the root list
i← 0
while ∃i |Ti| ≥ 1 do

while |Ti| > 1 do
remove any two trees t1 and t2 from Ti

add Link(t1, t2) to Ti+1

end while
if |Ti| = 1 then

remove tree t from Ti and add into the root list
end if
i← i + 1

end while

In the Fibonacci heap, if the min-heap ordering condition is violated, a (possi-
bly cascaded) cut is made. In the Thin heap, only one cut followed by reinsertion
into the root list is made. To ensure that the thin tree conditions are satisfied,
this cut is followed by restructuring operations during which rankT of some nodes
may be changed and some nodes can become children of their siblings.

After the initial cut of a node x, let y be its first left sibling or parent if it has
no left siblings. There are three ways of violating the main conditions at node y:

Violation of condition 1 - Node y has rankT two greater than that of its first
right sibling, or has rankT 1 and no right siblings.

Violation of condition 2 - Node y has rankT three greater than that of its
first child, or has rankT 2 and no children.

Violation of condition 3 - Node y is a thin root.

To cope with the violations the procedure Fix-violation(y) is defined. This
procedure can create new violation in left sibling or parent of y in which case it
calls itself recursively.
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Fix-violation(x)

1: if Condition 1 is violated then
2: if x is thin then
3: y ← first left sibling of x or parent if x has no left siblings
4: rankT (x) = rankT (x)− 1 . May create a new violation at y.
5: Fix-violation(y)
6: else if x is normal then
7: remove first child z of x and make z right sibling of x
8: end if . Does not create a new violation.
9: else if Condition 2 is violated then
10: z ← right sibling of x
11: if z is normal then
12: rankT (z) = rankT (z) + 1
13: rankT (x) = rankT (x)− 1
14: swap x and z in the children list . Does not create a new violation.
15: else if z is thin then
16: y ← first left sibling of x or parent if x has no left siblings
17: if Pr(z) ≤ Pr(x) then
18: rankT (x) = rankT (x)− 2
19: make x the first child of z
20: else if Pr(x) ≤ Pr(z) then
21: rankT (x) = rankT (x)− 1
22: rankT (z) = rankT (z)− 1
23: make z the first child of x
24: end if . May create a new violation at y.
25: Fix-violation(y)
26: end if
27: else if Condition 3 is violated then
28: rankT (x) = rankT (x)− 1 . Makes root normal.
29: end if

The Decrease operation then follows:

Decrease(x, a)

Pr(x)← a
if x is not root then

y ← first left sibling of x or parent if x has no left siblings
remove x from its parent by setting appropriate pointers
put x with its subtree into the root list and make it normal
Fix-violation(y)

end if

The performance of the heap can be analyzed using a potential function de-
fined as ΦT = h+ t, where h is the number of thin nodes in heap and t is number
of trees.

Lemma 3.7. The amortized time bound (with ΦT as the potential function) of
the Fix-violation operation in the Thin min-heap is O(1).
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Theorem 3.8. The amortized time bound (with ΦT as the potential function) for
the Thin min-heap operations Insert, Meld, Find-min and Decrease is O(1)
and amortized time bound for Delete-min is O(log n).

Proof. See [11].

We now define a Delete-L-node operation and show the amortized time
bound for the Fix-L-node operation (page 22) of the L-correspondence heap
with Thin heap as the base heap. Finally, a probabilistic time bound for the
Decrease operation of the L-correspondence heap will be given.

Delete-L-node and Increase

Delete-L-node(x)

if x is root then
remove x from root list
return

end if
y ← first left sibling of x or parent if x has no left siblings
remove x from its parent by setting appropriate pointers
Fix-violation(y)

The Delete-L-node operation uses Fix-violation in the same way as Decrease.
By definition it is allowed to create new leaves and as we will see, in some cases
it will.

Increase(x, a)

Pr(x)← a
if x is not root then

y ← first left sibling of x or parent if x has no left siblings
remove x from its parent by setting appropriate pointers
put x into root list and make it normal
Fix-violation(y)

end if
for all child z of x do

remove z from its parent x by setting appropriate pointers
add z into root list and make it normal

end for

The Increase operation uses Fix-violation in the same way as Decrease,
but to ensure the min-heap ordering property, its children must be removed.

3.2.2 Thin heap in the L-correspondence

We will now analyze the Fix-L-node operation (page 22) of the L-correspondence
heap with the Thin heap as the base heap. We are interested in the total change
of potential in both heaps, which in this case is the sum of the number of trees
and the number of thin nodes in both heaps.
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Fix-L-node

We will show that the Fix-L-node operation (page 22) of the L-correspondence
heap using Delete-L-node of the Thin heap terminates after a constant number
of steps that take constant time and increases the potential by a constant amount.

First we must determine whether Fix-violation procedure creates new leaves
and under what conditions. First we look only at the body of the procedure, then
we handle the recursive calls. Suppose there is a violation at node x.

Violation of condition 1 - If node x is thin, no structural change is done. If
it is normal, it has its first child removed. It can therefore become a leaf
if before the operation it had rankT 1.

Violation of condition 2 - Let z be the right sibling of x. If z is normal, the
only structural change is a swap of children in the children list. If z is thin,
either z becomes the child of x or vice versa, depending on the priorities of
both nodes. No leaves are created.

Violation of condition 3 - No structural change is done.

We conclude that in the body of Fix-violation, the only case where a new
leaf is created is when x violates condition 1, is normal and rankT (x) = 1. Let
a node with such characteristics be called bad. Now we analyze whether there
is a possibility that a bad node becomes an argument of a recursive call of
Fix-violation (lines 5 and 25 of the algorithm).

First consider the recursive call on line 5. If the argument y of the recursive
call is bad, then rankT (y) = 1. Before rankT adjusting, y was either the first left
sibling or the parent of x. In any case, at this time rankT (x) ≤ 0. A node with
rankT 0 can not violate any condition, which gives us a contradiction.

Second, the recursive call on line 25. Again, before adjustment of rankT , y
was either the first left sibling or the parent of x, so at this time rankT (x) ≤ 0,
therefore the assumption of the recursive call is incorrect.

It is clear that no recursive call of Fix-violation can cause creation of a new
leaf.

Lemma 3.9. The Fix-violation of the Thin heap with argument x creates a
new leaf if and only if x is normal of rankT 1 and violates condition 1 of the thin
tree.

Now we can finally show that the Fix-L-node operation (page 22) with
Delete-L-node in Thin heaps terminates after a constant time.

Consider node x, the argument of the Fix-L-node operation. We must de-
termine in which cases a new leaf is created after calling Delete-L-node on
x.

The only two cases when Delete-L-node is called on x is when rankT (x) = 1
or rankT (x) = 0, thus it is thin or normal, respectively. First assume rankT (x) =
1 (Fig. 3.3). The x is deleted, but it has a right sibling of rankT 0, therefore its
possible parent does not become a leaf. Afterwards the Fix-violation procedure
is called on y, the first left sibling of x or the parent if is has no left siblings. In any
case rankT (y) ≥ 2. Fix-violation(y) does not create new leaves if rankT (y) 6= 1
(Lemma 3.9).
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Figure 3.3: x has rankT 1

The second case is when rankT (x) = 0. Here we must distinguish whether x
has a left sibling or not. First if it does not have a left sibling. Then its parent y
has either rankT 1 (Fig. 3.4), in which case after deletion a new leaf y is created
of rankT 1 and Fix-violation is not required because there is no violation. We
already know that the deletion of a leaf of rankT 1 does not create new leaves so
the Fix-violation operation stops after a constant number of steps.

Figure 3.4: x has rankT 0, no left sibling and its parent y is normal

If rankT (y) = 2, a violation of condition 2 is created at y and Fix-violation(y)
is called. Let w be the right sibling of y. If w is normal (Fig. 3.5), a swap of y
and w in the children list is done, therefore y does not acquire any new children
and a call to Delete-L-node(y) may be performed (if y has no pointer pair).
But new rankT of y is 1 and deletion of such leaf does not create new leaves.

If w is thin (Fig. 3.6), y may acquire new child if its priority is smaller than
that of y. If its priority is greater than that of y, it will become a child of w
and remain a leaf of rankT 0, but its new parent w will have a rankT 1, and the
deletion of such leaf does not lead to the creation of more than one new leaf.

Figure 3.5: x has rankT 0, no left sibling, its parent y is thin, right sibling w of
y is normal
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Figure 3.6: x has rankT 0, no left sibling, its parent y is thin, right sibling w of
y is thin

The last case is when x has a left sibling ys (with rankT 1). Then after
the deletion of x, there is a violation of condition 1 at ys. Now if ys was thin
(Fig. 3.7), its rankT is decreased and there is a new violation in z, the first left
sibling of ys or its parent if it has no left siblings. In any case rankT (z) ≥ 2.
Fix-violation(z) does not create new leaves if rankT (z) 6= 1.

If ys was normal (Fig. 3.8), the Fix-violation removes the child wc of ys and
makes it the right sibling of ys. This will make a leaf out of ys and may cause
the Delete-L-node(ys). But rankT (ys) = 1, so this case does not lead to the
creation of more than one new leaf.

Figure 3.7: x has rankT 0 and its left sibling ys is thin

Figure 3.8: x has rankT 0 and its left sibling ys is normal

Lemma 3.10. The amortized time complexity (with ΦT as the potential function)
of the Fix-L-node operation in the L-correspondence heap with the Thin heap
as base heap is O(1).

Proof. The number of Delete-L-node and Fix-violation calls is constant. The
potential ΦT = h + t is increased by one for every new tree and decreased for
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every thin node that becomes normal. The amortized time cost of Fix-violation
is O(1), therefore we consider only increase of potential due to calls of Delete-
L-node operation. One call may decrease the number of thin nodes and it may
increase the number of trees by one, which concludes the proof.

Decrease

To analyze the Decrease operation (page 24) of the L-correspondence heap, we
must give amortized time bound for every sub-routine as in:

CA
Decrease(n) ≤ cADecrease(n) + cAIncrease(n) + 2cAFix-L-node(n)

It remains to show the time bound for the min-heap Increase operation. Its
time cost is dependent on the amount of children and this in the Thin heap is
bounded by O(log n). If we pick a node at random, the expected amortized cost
is constant.

Lemma 3.11. If the argument of Increase operation in the Thin min-heap is
a node selected with uniform probability, the expected amortized time bound (with
ΦT as the potential function) is O(1).

Proof. Let c be the number of children of y, the argument of the operation. The
potential may increase by 1 for every removed child and it may decrease if there
were any thin nodes among the children of y. The increase in potential is O(c),
therefore the amortized time cost of the operation is O(c), because the amortized
time cost of Fix-violation is O(1).

If we let c be a random variable from a probabilistic space where every node
is selected with uniform probability, applying Lemma 2.2, we get the desired
bound.

All results together give us the following:

Theorem 3.12. The expected amortized cost (with ΦT as the potential function)
of the Decrease operation on a node selected with uniform probability in the
L-correspondence heap with the Thin heap as the base heap, is bounded by a
constant.

The theoretical performance of the L-correspondence heap with the Thin heap
as the base heap follows:

Operation Worst case Amortized Expected amortized
Insert O(1) O(1) O(1)
Meld O(1) O(1) O(1)
Find-min and Find-max O(1) O(1) O(1)
Delete-min O(n) O(log n) O(log n)
Decrease and Increase O(log n) O(log n) O(1)
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3.3 Rank-pairing heap

The Rank-pairing heap is a recent result that shows that simplicity of Fibonacci
heaps can be kept intact while at the same time, the number of cut operations
can be minimized (to at most one cut per decrease operation).

3.3.1 Description

The Rank-pairing heap was introduced in 2011 by Haeupler, Sen and Tarjan[10]
and inspired by the Fibonacci heap and the Pairing heap[8]. The operations of
the data structure are very simple, but they are not easy to analyze. Similarly as
the Fibonacci heap, it achieves O(1) amortized time for Insert, Find-min and
Decrease and O(log n) amortized time for Delete-min, but intuitively it has a
potential to perform better in practice.

Half trees

A half-tree is a binary tree where root has no right child. A half-ordered
binary tree is a binary tree such that for every node v representing element x, all
elements represented by nodes from left subtree of v have larger priority than x.
A half-tree is perfect if after removing the root, we are left with a full binary
tree.

Figure 3.9: A perfect half-tree

The half-trees use three pointers per node, parent pointer and left and right
child pointers. It is possible to use two pointers instead of three as a trade of
space for additional constant time[8] (Fig. 3.10). The left pointer points on the
left child, or the right child if it has no left child. The right pointer points on
the right sibling, or the parent if it has no right sibling. The right pointer of the
root is always null. To distinguish left and right nodes, every node must keep an
additional bit indicating whether it is the left or the right child.

Similarly as with rank in the Fibonacci heap, nodes keep additional infor-
mation. We will denote this as rankRP because it has a different meaning than
rank in the Fibonacci heap. Since we are working with binary trees, rankRP

does not describe the number of children, but serves as a lower bound on the size
of the node’s subtree. Trees have the rankRP of its root. Singleton trees have
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Figure 3.10: Binary tree representation using two pointers instead of three.

rankRP 0. A linking operation (Fig. 3.12) is defined such that only trees with
equal rankRP can be linked and the rankRP of the new tree has rankRP equal to
previous rankRP incremented by one.

The half-ordered half-trees are fully equivalent with the heap-ordered trees[12]
and this will be used in our latter analysis. The reason why the Rank-pairing heap
is analyzed as a half-ordered half-trees instead of considering its heap-ordered rep-
resentation is that “[half-ordered half-tree representation] is closer to an actual
implementation, and it unifies the treatment of key decrease”[10].

Figure 3.11: Equivalence of half-ordered half-tree to heap ordered tree

Equivalence of a perfect half-ordered half-tree with a heap-ordered (binomial)
tree is shown on Fig. 3.11. Blue dashed lines represent the right child pointer
that is replaced by right sibling pointer. Red lines represent (typically virtual)
parent-children pointers. Note that ordering is equivalent too: for a node in heap-
ordered representation, its descendants are exactly nodes from its left subtree in
the half-tree representation.

Algorithms for the operations will be described and later analyzed from the
view of the half-ordered half-trees for the simplicity of analysis. A single exception
will be the analysis of the Increase operation for which the heap-ordered tree
representation is preferred.
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Rank-pairing heaps

For a non-root node v, let the rank difference of v be rankRP (Parent(v)) -
rankRP (v). Node whose children have rank differences i and j is called an i,j-
node. A missing child is considered having rankRP -1. In the original paper, two
types of Rank-pairing heaps were defined. The type-1 Rank-pairing heap per-
forms better than the type-2 Rank-pairing heap, but is more difficult to analyze.
We will extend the type-1 Rank-pairing heap and for the rest of the work we
denote it Rank-pairing heap.

A collection of (not necessarily perfect) half-ordered half-trees is a Rank-
pairing heap if it satisfies the following constraints on rankRP s: every non-root
node is a 1,1-node or a 0,i-node for some i > 0. For a root node, the rank differ-
ence of its (left) child is 1 and it is denoted 1-node.

The definition of the Rank-pairing heap leads to the following restrictions on
the node rankRP . Let x be a node of a Rank-pairing heap. Then for non-root x

rankRP (x) =


0 if x is a leaf

rankRP (y) if y is a child with the larger rank

rankRP (y) + 1 if both children y and z have the same rank

The first case holds because the missing children of x have rankRP -1 by
definition, therefore x is a 1,1-node and its rankRP is larger by one than the
rankRP of its children. The second and third cases correspond to the case when
x is either a 0,r-node for some r > 0 or a 1,1-node, respectively.

The half-trees are stored in a circular list and there is a special minimum
pointer that always points on a root with minimal priority. This list is called a
root list.

Lemma 3.13. In the Rank-pairing heap, a non-root node of rankRP k has at
least 2k+1 − 1 descendants (including itself), therefore any node of rankRP k has
at least 2k descendants (including itself).

Proof. First part of the lemma implies the second part since in Rank-pairing
heaps the rank difference of the left child of the root is 1. The first part is proved
by induction on a height of a node. First a leaf has rankRP 0 and 1 = 21 − 1
descendants. Let the statement be true for all nodes with height smaller than k.
Let v be a node of rankRP k. If v is a 1,1-node, then number of its descendants
is at least 2(2k − 1) + 1 = 2k+1 − 1. If v is a 0,i-node for some i > 0, then
one of its children has rankRP k. By the induction hypothesis, it has at least
2k+1 ≥ 2k+1 − 1 descendants.

Eligibility for the L-correspondence

For the Rank-pairing heap we define that L-property for a node x is:

x is an L-node ≡ x has no left child

The condition for the relaxed min-heap (page 19) holds, because for any node x
there must be a node y in the same tree with no left child such that Pr(x) ≤
Pr(y).
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This is very natural, because a node in a half-ordered half-tree has no left
child if and only if in the min-heap representation this node is a leaf.

From the definition of the operations it will be clear that all L-correspondence
conditions are satisfied. Notably the condition of instant retrieval of the (List, w)
pair after the Delete-L-node, Decrease and Increase operations is easily sat-
isfied, but its implementation is not included in these operations for clarity.

Operations

The algorithms for the Rank-pairing heap operations follow. Every time a root
list is changed (a root is added or it is concatenated with another root list), it
is ensured in constant time that a root with minimal priority is referenced by a
minimum pointer.

Insert(x)

create a new node v representing element x and add v into the root list
rankRP (v)← 0

Meld(Q1, Q2)

concatenate the root lists of Q1 and Q2

Find-min

x← root referenced by the minimum pointer
return a reference to x

Link(x, y) - link two trees of equal rankRP rooted in x and y (Fig. 3.12)

if Pr(x) > Pr(y) then
swap x and y

end if
z ← Left(x)
remove the subtree rooted in z from x
Right(y)← z
Left(x)← y
rankRP (x)← rankRP (x) + 1
return x

The Delete-min operation is defined in a different way than a typical multi-
pass linking of the Fibonacci (or Thin) heap. First, let all trees before the op-
eration be old trees. After the operation, let trees from the disassembly be new
trees. Now the linking is performed in the following way: until there is a pair of
new trees with the same rankRP , link them together, let the resulting tree be old
and put it into the root list with the rest of the old trees. When there is no such
pair left, let all trees be old and perform a standard multi-pass linking.
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Figure 3.12: Link of half-ordered half-trees of equal rankRP

Delete-min

(∀i ≤ maximum rank from the trees of the root list)Fi ← ∅
x← root referenced by the minimum pointer
remove x from the root list
y ← Left(x)
while y 6= null do . Disassemble the tree

Parent(y)← null
z ← Right(y)
Right(y)← null
if Left(y) = null then

rankRP (y)← 0
else

rankRP (y)← rankRP (Left(y)) + 1
end if
r ← rankRP (y)
if Fr = ∅ then

Fr ← {y}
else if Fr = {w} then

add Link(y, w) into the root list . One-pass linking
Fr ← ∅

end if
y ← z

end while
add all remaining trees from all Fi into the root list
∀i let Ti be a set of all trees of rankRP i from the root list
clear the root list
i← 0
while ∃i |Ti| ≥ 1 do . Proceed with multi-pass linking

while |Ti| > 1 do
remove any two trees t1 and t2 from Ti

x← Link(t1, t2)
add x to Ti+1

end while
if |Ti| = 1 then

remove last tree from Ti rooted in x
add x into the root list

end if
i← i + 1

end while
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To delete the minimum, take the first tree from the root list, remove its root
x and disassemble the tree (Fig. 3.13). Start with the left child y of x and after
removing its right child either put y into Fi, where i = rankRP (y), or if Fi was
not empty, link y with the tree of Fi and put the result into the root list (as an
old) tree. Proceed by setting the former right child of y as the new y and repeat
until there is no right child.

Note that the two-phase linking process is required for the analysis of the
change of potential and the authors admit that it is not known whether “[our]
analysis can be extended to arbitrary multipass linking”.

Figure 3.13: Disassembly of a perfect half-tree

Fix-rank(x)

if x is a root then
rankRP (x)← rankRP (Left(x)) + 1

else
if rankRP (Left(x)) = rankRP (Right(x)) then

k ← rankRP (Left(x)) + 1
else

k ←max(rankRP (Left(x)), rankRP (Right(x)))
end if
if rankRP (x) = k then

return . no rankRP update needed
else

rankRP (x)← k
Fix-rank(Parent(x))

end if
end if
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The Fix-rank procedure is called to ensure that the rankRP invariants of the
Rank-pairing heap are satisfied.

Decrease(x, a) - decrease a priority of an element (Fig. 3.14)

Pr(x)← a
if x is a root then

put x in front if Pr(x) is the new minimum
else

y ← Right(x)
cut x and y from the tree with their subtrees
attach y in place of x
add x into the root list
if Left(x) = null then

rankRP (x)← 0
else

rankRP (x)← rankRP (Left(x)) + 1
end if
Fix-rank(Parent(y))

end if

Figure 3.14: Decrease operation

The Decrease procedure makes one cut at most. After the cut, the former
parent of x is a node with a new child y. The former parent and x are the only
nodes where rankRP invariants may have been breached and must be fixed.

Delete-L-node and Increase

The Delete-L-node operation must be designed in a way that the L-correspondence
conditions are met. It may create a set on new singleton trees during its operation
and one arbitrary L-node. In the Rank-pairing heap, L-node is a node with no
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left child.

For the simplification of our analysis we will design Delete-L-node specifi-
cally for the L-correspondence heap. This will allow us to check whether a node
has a pointer pair. Let’s assume that Fix-L-node of the L-correspondence heap
is the only operation that calls Delete-L-node. From the definition of Fix-L-
node (page 22), the operation stops when Delete-L-node does not create a new
L-node with no pointer pair (it may create new singleton trees however).

The main reason for this is the operation Fix-rank. This is required after
deletion to ensure that the conditions on rankRP are satisfied. We cannot afford
to call this procedure every time a node is deleted, therefore we call it only on
the parent of the topmost deleted node, i.e. when no more Delete-L-node
operations are going to be called. To see when this happens, we need to check
whether a node has a pointer pair.

Delete-L-node(x)

if x is a root then
remove x from the heap
return

end if
y ← Parent(x)
z ← Right(x)
remove x from its parent y by setting appropriate pointers
if x was the right child of y before the operation then

Right(y)← z
else if x was the left child of y before the operation then

Left(y)← z
end if
if Pointer(y) 6= null then

Fix-rank(y)
end if

In the Delete-L-node we remove node x from its parent y. If x was the right
child of y before the operation, we put z, the former right child of x, in the place
of x.

If x was the left child of y before the operation, again we put z, the former
right child of x, in the place of x. Note that if z is null (x had no right child
before the operation), a new L-node is created (at y).
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Increase(x, a)

Pr(x)← a
if x is not root then

y ← Right(x)
cut x and y from the tree with their subtrees
attach y in place of x
Fix-rank(Parent(y))

end if
z ← Left(x)
remove z from x
add x into the root list
rankRP (x)← 0
while z 6= null do . Disassemble the tree

Parent(z)← null
w ← Right(z)
Right(z)← null
if Left(z) = null then

rankRP (z)← 0
else

rankRP (z)← rankRP (Left(z)) + 1
end if
add z into the root list
z ← w

end while

The Increase starts with a cut of x. If x is not a root, the former parent
of x gets the right child of x instead of x. This is same as in Decrease. The
subtree of x, stripped of its right child subtree, may not satisfy the half-ordering
property, thus must be disassembled as in Delete-min.

3.3.2 Rank-pairing heap in the L-correspondence

We will show that the Fix-L-node operation (page 22) of the L-correspondence
heap using Delete-L-node of the Rank-pairing heap terminates after a constant
number of steps that take constant time and increases the potential by a constant
amount.

Fix-L-node

We will show that the potential function of the original analysis can be reused to
give good amortized time bounds on Delete-L-node and Increase. The original
potential function is described in the following way:
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Every node is either good or bad. A node is good if it is one of the following:

• singleton tree

• leaf

• root with a 1,1-node left child

• 1,1-node with both children that are 1,1-nodes

• 0,1-node but its 0-child is a 1,1-node

The potential of a node is defined as the sum of the rank differences of its
children plus a constant depending on whether it is good or bad and whether it
is a root:

• root that is good: +1

• root that is bad: +5

• non-root that is good: -1

• non-root that is bad: +3

Note that the missing right child of a root is not considered as a node of rankRP

-1, therefore the rankRP of a root is defined as the rank difference of its left
child plus a constant specified above. The potential ΦRP of the heap is the sum
of its node potentials. See [10] for the following results:

Theorem 3.14. The amortized time bound (with ΦRP as the potential function)
for operations Find-min, Meld, Insert and Decrease is O(1) and for opera-
tion Delete-min is O(log n) in rank pairing heaps.

Lemma 3.15. The amortized time bound (with ΦRP as the potential function)
for the Fix-rank operation in rank pairing heaps is O(1).

Lemma 3.16. The amortized time bound (with ΦRP as the potential function)
for the Fix-L-node operation in the L-correspondence heap with Rank-pairing
heap as the base heap is O(1).

Proof. Let x be the argument of the first Delete-L-node operation. Delete-L-
node is called again by Fix-L-node if x has a parent and Parent(x) has no left
child after the operation and no pointer pair. This is applied iteratively until we
reach the topmost node that is either not an L-node after the operation or has a
pointer pair or is a singleton tree.

Let k be the number of calls of the Delete-L-node operation. Then Fix-L-
node takes O(k) time. There are three possible cases for Fix-L-node to finish.

First assume that the Fix-L-node operation stops because it reaches the root
(Fig. 3.15). Let x be the first deleted L-node, and y be its parent. All nodes on
the path from x (including x) to the root have no right children (Fix-L-node
would have terminated here otherwise), therefore they have rankRP 0. The root
has rankRP 1. The only two good nodes on the path are x and y, all others

54



Figure 3.15: Fix-L-node stops at the root.

including the root are bad. The potential of good non-root i,j-nodes is i + j − 1
and it is i + j + 3 for bad non-root nodes. The root is a 1-node and its potential
is defined as the sum of the rank difference of its left (and only) child plus a
constant depending on whether it is good or bad. The root is bad, therefore its
potential is 1 + 5 = 6.

All nodes on the path will be deleted and reinserted as singleton trees. The
root of a singleton tree has rankRP 0 and is a 1-node. It is a good node, hence
its potential is 1 + 1 = 2. The change in potential is therefore:

∆ΦRP = 2k − [1 + 0 + 4(k − 3) + 6]

= −2k + 5

The second case is that the Fix-L-node operation stops because it deletes a
node that is the right child of its parent, thus does not create a new L-node (Fig.
3.16).

55



Figure 3.16: Fix-L-node stops at a right child.

This case is almost identical to the previous case except that the last deleted
(and reinserted) node is not the root, but w, the first node on the path that is
the right child of its parent. Node z will not be deleted, but its child will and this
will change the potential of z. Assume node z was i,j-node before the operation.
After its child is deleted, it becomes a i,(j+1)-node and its potential increases by
one. Then the change in potential is:

∆ΦRP = 2k − [1 + 0 + 4(k − 2)] + 1

= −2k + 8

The last possible case is when the Fix-L-node operation stops because the
last deleted node had a right child and this comes in place of the deleted node
(Fig. 3.17).

Figure 3.17: Fix-L-node stops at a node with a right child.
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Let z be the last deleted node, w1 be its parent, w2 be its right child. The
situation is similar to the previous case, but we must consider the change in the
potential of z and w1. Let the rankRP of z be r and the rankRP of w2 be r2. If
z is a 1,1-node, r2 = 0 and r = 1. If z is a 0,i-node, r2 = r > 0.

The new left child of w1 will be w2. The potential of w1 either does not change,
or changes by O(1), depending on whether w1 is good or bad and whether w2 is
good or bad.

Node z is a bad i,j-node, so its potential is i+ j + 3. It is either a 1,1-node or
a 0,i-node for i > 0. Therefore ΦRP (z) ≥ 4. The change in potential is:

∆ΦRP ≤ 2k − [1 + 0 + 4(k − 2)] + O(1)

= −2k + O(1)

In any of the three cases, the decrease in the potential pays for the operation.
The last step of the operation is Fix-rank(p), where p is the parent of the last
deleted node, in case the last deleted node was not a root. From Lemma 3.15,
we know that Fix-rank has O(1) amortized time bound which completes the
proof.

Decrease

To analyze the Decrease operation (page 24) of the L-correspondence heap, we
must give amortized time bound for every sub-routine as in:

CA
Decrease(n) ≤ cADecrease(n) + cAIncrease(n) + 2cAFix-L-node(n)

It remains to show the time bound for the min-heap Increase operation.
Its time cost is dependent on the dissasembly. Let the right path of x be all
nodes on the path from x to a node with no right child, following only the right
children. Let y be the argument of the Increase operation and let x be its
left child. We will show that the amortized time bound of Increase is O(1 +
length of the right path of x) and that the expected length of the right path of
x is O(1). Note that in the Rank-pairing heaps, the length of the right path can
be Ω(n).

Lemma 3.17. If the argument of Increase operation in the Rank-pairing min-
heap is a node selected with uniform probability, the expected amortized time bound
(with ΦRP as the potential function) is O(1).

Proof. The Increase operation can be split naturally into two parts. First if the
node with increased priority is not a root, it is cut out and its left child is cut out
and put in the former place of x. Then the Fix-rank procedure is performed on
the former parent of x. It takes constant time to cut out x and there is only a
constant change in potential: Let z be the parent of x and y be the right child
of x. Since the potential of a i,j-node node is defined as i + j + O(1), the only
change in potential is with respect to the rank difference of z and x and the rank
difference of x and y. The change of potential in z is

rankRP (z)− rankRP (y)− (rankRP (z)− rankRP (x)) + O(1)
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The change of potential in x is

−(rankRP (x)− rankRP (y)) + O(1)

The total change of potential is then O(1).
From Lemma 3.15, the Fix-rank takes O(1) amortized time which concludes

the time bound for the first part of the algorithm.
In the second part, a dissasembly of the tree is performed. During the dis-

assembly, k new trees are created and added into the root list, which amounts
for O(k) work and an increase in potential. Every node of the k nodes on the
disassembly path becomes a root. A root has a potential of 2 or 6 depending
on whether it is good or bad, so the increase in potential is at most 6k. The
amortized time cost is therefore O(k).

The number k of new trees is equal to the length of the right path of the left
child of x. Since the half-ordered half-tree is equivalent to heap-ordered tree, the
length of the right path is simply the number of children of x. From Lemma 2.2,
if we let k be a random variable representing the number of children of a node
picked with uniform probability, E[k] = O(1) which concludes the proof.

All results together give us the following:

Theorem 3.18. The expected amortized cost (with ΦRP as the potential function)
of the Decrease operation on a node selected with uniform probability in the L-
correspondence heap with the Rank-pairing heap as the base heap, is bounded by
a constant.

The theoretical performance of the L-correspondence heap with the Rank-
pairing heap as the base heap follows:

Operation Worst case Amortized Expected amortized
Insert O(1) O(1) O(1)
Meld O(1) O(1) O(1)
Find-min and Find-max O(1) O(1) O(1)
Delete-min O(n) O(log n) O(log n)
Decrease and Increase O(n) O(n) O(1)
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Epilogue

We have shown that it is possible to generalize on the leaf correspondence heap
to enable a larger class of heaps to serve as the base heap. We have shown how
the Delete-min, Decrease and Increase operations can take advantage of a
fast Delete-L-node operation.

Specific examples were given on how to extend and analyze some well known
heaps. For these heaps, expected amortized time bound has been given for the op-
eration Increase which led to expected amortized time bound of the Decrease
operation in the L-correspondence heap. The expected time bound assumed
uniform probability distribution when selecting a node as an argument of the op-
eration. This assumption is very simplified, and it may be much more valuable to
give an expected time bound on an arbitrary probabilistic distribution. Intuitive-
ly, if there are nodes that are selected with higher probability as an argument
for the Increase operation, then this should not lower the performance. The
reason is that once Increase is performed, the node loses all its children and the
next Increase operation can be expected to be cheaper than the previous one.
It seems that proving this conjecture is not going be as trivial as for the uniform
probabilistic distribution.

Experiments in the previous work by Chong and Sahni on the leaf corre-
spondence have shown that basic operations are faster in the leaf correspondence
heaps than in the total correspondence heaps in practice. Intuitively, the L-
correspondence heap should perform at least as well as the leaf correspondence
heap. Since this approach admits a larger class of base heaps, some very effective
heaps may be utilized.
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