
Charles University in Prague

Faculty of Mathematics and Physics

MASTER’S THESIS

Srdan Prodanović

Semantic disambiguation
using Distributional Semantics

Institute of Formal and Applied Linguistics

Supervisor of the master’s thesis: RNDr. Jiřı́ Hana, Ph.D.,
Institute of Formal and Applied Linguistics

Study programme: Computer Science

Specialisation: Computational and Formal Linguistics

Prague 2012

At a very high risk of sounding extremely clichéd I do have to say that I am profoundly
grateful for the chance of being exposed to such exciting areas of CL and NLP. The de-
cision to take the the two years off work and attend this program was (unintentionally)
one of the best decisions of my life. Of course I would not be able to struggle all the
challenges without the constant support of my family, my love and my friends. I also
wish to thank all the wonderful people from the program, both teachers and colleagues
for equally helping me thrive in the areas of my interest. Lastly I wish to thank the
Erasmus Mundus organization for supporting the LCT program and giving a chance to
non–European students to attend truly excellent studies.

I declare that I carried out this master’s thesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles
University in Prague has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In date signature

Název práce: Word Sense Disambiguation in Prague Dependency Treebank via Distri-
butional Semantic Approach

Autor: Srdan Prodanović

Katedra: Ústav formálnı́ a aplikované lingvistiky (UFAL)

Vedoucı́ diplomové práce: RNDr. Jiřı́ Hana, Ph.D., Institute of Formal and Applied
Linguistics

Abstrakt: In statistical models of semantics word meanings are based solely on their
distributional properties. The core resource here is a single lexicon that can be used for
a variety of tasks, where word meanings are represented as vectors in Vector Space, and
word similarities as distances between their vector representations. Using strengths of
similarities, appropriateness of terms given a particular context can be calculated and
used for a variety of tasks, one of them being Word Sense Disambiguation.
In this thesis several different approaches to models of Vector Space were examined
and implemented in order to cross evaluate their performance on the Word Sense Dis-
ambiguation task in Prague Dependency Treebank.

Klı́čová slova: WORD SENSE DISAMBIGUATION, VECTOR SPACE MODEL,
PRAGUE DEPENDENCY TREEBANK
Title: Word Sense Disambiguation in Prague Dependency Treebank via Distributional
Semantic Approach

Author: Srdan Prodanović

Department: Institute of Formal and Applied Linguistics

Supervisor: RNDr. Jiřı́ Hana, Ph.D., Ústav formálnı́ a aplikované lingvistiky

Abstract: In statistical models of semantics word meanings are based solely on their
distributional properties. The core resource here is a single lexicon that can be used for
a variety of tasks, where word meanings are represented as vectors in Vector Space, and
word similarities as distances between their vector representations. Using strengths of
similarities, appropriateness of terms given a particular context can be calculated and
used for a variety of tasks, one of them being Word Sense Disambiguation.
In this thesis several different approaches to models of Vector Space were examined
and implemented in order to cross evaluate their performance on the Word Sense Dis-
ambiguation task in Prague Dependency Treebank.

Keywords: WORD SENSE DISAMBIGUATION, VECTOR SPACE MODEL, PRAGUE
DEPENDENCY TREEBANK

Contents

1 Introduction 4
1.1 About the task . 4
1.2 About the model . 4
1.3 Thesis goals . 5
1.4 Road map . 6

2 Computational model of semantics 7
2.1 Motivation . 7
2.2 Similarity is proximity . 8
2.3 Distributional manifestation of meaning 9
2.4 Context vectors . 9

2.4.1 A brief history of context vectors 10
2.5 The co–occurrence matrix . 11

3 Word sense disambiguation 14
3.1 Word sense(s) . 14
3.2 Applications of WSD– why is it important? 15
3.3 Classification of approaches to WSD 16

3.3.1 Unsupervised learning methods 17
3.3.2 Supervised methods . 18

3.4 Approaches that use VSM for WSD 19
3.5 State–of–the–art . 19

4 Word space implementations 21
4.1 High dimensionality and data sparseness 21
4.2 Dimensionality reduction . 22
4.3 Latent Semantic Analysis . 22
4.4 Hyperspace Analogue to Language 25
4.5 Random Indexing . 26

1

5 The theory behind experiments 28
5.1 Linguistic preprocessing . 28
5.2 Statistic preprocessing . 29
5.3 Types and Tokens . 30
5.4 Building the matrix . 31

5.4.1 Normalizing the frequency counts 31
5.4.2 TF–IDF . 32
5.4.3 PMI . 32

5.5 Calculating similarity . 34

6 Experiments 36
6.1 The resource . 36

6.1.1 Polysemous words . 38
6.1.2 Why PDT 1.0 instead of PDT 2.0? 38

6.2 Preprocessing . 39
6.3 Train and test sets . 41
6.4 Document size . 41
6.5 Normalization of the frequency counts and dimensionality reduction . 43
6.6 Evaluation context size . 44
6.7 Evaluation metrics and baselines . 45
6.8 Tuning . 47

6.8.1 Tuning preprocessing parameters 47
6.8.2 Tuning evaluation context size 48
6.8.3 Evaluation on polysemous words of different level 48

6.9 TF–IDF experiments . 50
6.9.1 Tuning preprocessing parameters 50
6.9.2 Tuning evaluation context size 54
6.9.3 Evaluation on polysemous words of different level 55

6.10 PMI experiments . 57
6.10.1 Tuning preprocessing parameters 57
6.10.2 Tuning evaluation context size 59
6.10.3 Evaluation on polysemous words of different level 60

6.11 RI experiments . 60
6.11.1 Tuning preprocessing parameters 61
6.11.2 Tuning evaluation context size 62
6.11.3 Evaluation on polysemous words of different level 62

7 Implementation 64
7.1 Data flow . 64

2

8 User manual 67
8.1 Input parameters . 67
8.2 Logs . 68

Summary 69

Bibliography 70

Appendices 73

A List of filter words for Czech language 74

3

Chapter 1

Introduction

1.1 About the task

Lexical disambiguation is concerned with determining the meaning of every word giv-
en their context. As a computational problem it is often described as ”AI–complete”,
which means that in order to solve the problem of word meaning one needs to solve
completely natural–language understanding or common– sense reasoning (Ide and
Véronis 1998) . Fortunately, this is in not the case in the field of computational linguis-
tics. There, this problem is generally called word sense disambiguation (WSD), and
is defined as the problem of computationally determining which “sense” of a word is
activated within a particular context. WSD is essentially a task of classification: word
senses are the classes, a word’s context contains necessary disambiguation informa-
tion, and each occurrence of a word is assigned to one or more of its possible classes
depending on the context information.

The Prague Dependency Treebank is a large annotated corpus built to further the re-
search in Computational Linguistics for Czech language. It is fully annotated at mor-
phological and syntactic analytic layers of annotation as well as in tectogrammatical
layer. Like any other language, Czech language has its own share of words with mul-
tiple meanings. Thus the main task of this thesis is word sense disambiguation on the
PDT dataset.

1.2 About the model

Semantic theory has existed long enough to witness many different attempts to repre-
sent the meaning of words. Starting from Frege, Tarsky and Davidson’s Propositional
Logic representations where they concentrated on the Propositions about Symbols, cal-
culating the “truth” of those Propositions. However, they were more focused on “truth

4

conditions” and less on the content (representing what the propositions are about). (De
Saussure 1878) in his first work talks about the signifier (the signs) and the signified

(the ”meaning”), followed with the theory of mediated reference (Frege 1892) where he
makes a distinction between sense (intension) and reference (extension). Then comes
the theory of direct reference (Rusell 1905) who equates the meaning with reference.
If we look even further in history and beyond linguistic theory we can find examples in
philosophy like with Aristotle where he describes concepts as a finite sets of features
that belong to different categories (animate–inanimate, etc.). Leibnitz also used this
approach when he tried to make his ”language of meaning”.

Some applications. A large part of Natural Language Processing today is concerned
with tasks and applications related to the use of meaning, like lexicon acquisition,
word–sense disambiguation, information access, machine translation, dialogue sys-
tems, etc. Vector space models have proven to be applicable in these fields. Another
immediate application could be in the field of Information Retrieval, in particular for
the expansion of user queries, since word–space models easily retrieve nearest neigh-
bours in semantic space, in order to obtain better search results.

Intuitiveness. There is a certain intuitiveness behind statistical models of semantics.
Experiments by Tom Mitchell successfully predict the fMRI (fuctional MRI) brain im-
ages for particular nouns, based on fMRI images of seen nouns, completely relying
on statistical approach. Lexical priming studies beginning with Ratcliff & McKoon
(1978) and Swinney (1979) as well as eye movement studies (Rayner, Pacht, & Duffy,
1994) , suggest that ambiguous words first activate multiple interpretations, but very
soon settle to that sense most appropriate to their discourse contexts. An analogy to
estimating the amount of appropriateness of a word’s meaning in some context could
be drawn to the same way the scores of a word’s meaning in some context are calcu-
lated, as will be presented in this thesis. It should be noted that computational models
presented here are not necessarily similar to the way humans process information when
they think about word meaning. They are however empirically consistent with human
behaviour when they are performing semantic related tasks.

1.3 Thesis goals

Main goal of this Master’s thesis is to, by utilizing various approaches to statistical
representation of semantics, perform a Word Sense Disambiguation using Prague De-
pendency Treebank as a dataset. Various approaches that were used for the task utilize
different statistical models of semantics, and they as well as subsume a variety of steps
in linguistic and statistical preprocessing of text. All necessary parameters are tuned

5

in order to achieve best results for every model examined. Therefore, the secondary
goal of this thesis was to establish the methodology by which preprocessing steps and
tuning of models parameters should occur.

1.4 Road map

This thesis is organized as follows: second chapter is describing the Word sense dis-
ambiguation task, its purpose, applications and overview of approaches. Next chapter
explains the statistical model of semantics starting from motivation, rationale and then
details the mathematical foundation of word–space models. Chapter after that is devot-
ed to the problem of high dimensionality, present in word–space models, and gives an
overview of best known techniques in overcoming this issue. Chapter four describes
all the steps that can be taken when constructing the model, concentrating on present-
ing current approaches to such steps. With chapter four the theoretical part of the
thesis is concluded. Chapter five, which is on experiments, details all the steps taken
in experiments performed. Here are described: the research methodology and sections
devoted to presenting tuning and results for three word–space models used for WSD
task. Final chapters describe the implementation and in the user manual explain how
the implementation should be run when performing experiments.

6

Chapter 2

Computational model of semantics

The computational model of semantics presented here is referred to in the literature
as the word–space model or vector–space model (VSM). Term was coined by Hinrich
Schütze (1993) who defined the model as:

Vector similarity is the only information present in Word Space: se-

mantically related words are close, unrelated words are distant. (p.896)

2.1 Motivation

Despite the wealth of theories on meaning only a number of them has proven to be fully
functional in an actual implementation. This is mainly due to the fact that linguistic
data tends to be variable, inconsistent and vague. Keeping this in mind, a categorization
of approaches can be viewed (Jurafsky, Martin 2000):

1. Representational approach: involves the creation of formal meaning repre-
sentations that are intended to bridge the gap from language to commonsense
knowledge of the world. These representations need to be able to support the
practical aspects of semantic processing, like to resolve the truth of propositions,
to support unambiguous representations, to represent variables, and to support
inference. Human languages have various tools used to convey meaning, the
most important being the one used to convey a predicate–argument structure.
First order Predicate Calculus is a computationally tractable meaning representa-
tion language that is used mainly for the purpose of handling predicate–argument
structure.

2. Syntax-driven approach: rests on the Principle of Compositionality that states
that the meaning of a sentence can be composed from the meanings of its parts.
Semantic analyzers that make use of static knowledge from the lexicon and
grammar can create context-independent literal, or conventional, meanings. In

7

Syntax-driven semantic analysis, the parts are the syntactic constituents of an
input.

Vector–space models described in this thesis rely completely on the language data and
do not have a single rule or constraint pre–written into the model. Apart from the
advantage of avoiding laborious task of handcrafting rules for the model of semantics,
statistical modeling has yet another advantage- its construction is entirely automatic,
straight from the raw or annotated corpus. Since the modeling depends on the data set
used in training, results are completely optimized toward that data set.

2.2 Similarity is proximity

The word–space model is a spatial representation of a word meaning. If every word
is represented as a vector in n–dimensional space then the claim is that semantic
(un)similarity of those words can be measured as a distance between their vectors.
To illustrate this on a simple example for vectors representing meanings of 2 words in
2–dimensional space:

tangerine

�
�
�
�
�
�
�
�
�
�
��

orange

��
��

��
��1

Semantic similarity between words can be measured as a distance between vectors
representing tangerine and orange. Mathematical background of this claim will be
explained in detail later in chapter 5.5.

Distance in space as a way to represent semantic similarity seems to be a very natural
and intuitive idea. This has been pointed out in a number of works by George Lakoff
and Mark Johnson (Lakoff & Johnson, 1980, 1999) where it is explained how hu-
mans use their spatio–temporal knowledge to conceptualize abstract objects. (Sahlgren
2006) notes that similarity–is–proximity also entails another geometric metaphor: concepts–

are–locations. This is also important to observe because in Distributional Semantics
word meanings are percieved according to the differential property of their geometric
locations in the Word Space.

8

2.3 Distributional manifestation of meaning

In the word–space model similarities between words are automatically extracted from
language data. As data, the word–space model uses statistics about the distributional
properties of words. (Sahlgren 2006) has formulated from this insight his Distribution-

al Hypothesis which states:

Words with similar distributional properties have similar meanings.

There are number of examples in previous work to back this claim. (Schutze & Peder-
sen 1995), claim that ”words with similar meanings will occur with similar neighbors if
enough text material is available”, and (Rubenstein & Goodenough 1965) in one of the
very first studies to explicitly formulate and investigate the distributional hypothesis
state that ”words which are similar in meaning occur in similar contexts” .

According to Zelig Harris in his ”Mathematical Structures of Language” linguistic
meaning is inherently differential, instead of referential which means that differences
in meaning are visible through the differences in distribution. One of the first exper-
iments to back this is (Rubenstein & Goodenough 1965), who compared contextual
similarities with synonymy judgments provided by university students. Their experi-
ments demonstrated that there indeed is a correlation between semantic similarity and
the degree of contextual similarity between words.

2.4 Context vectors

After describing the geometrical intuition behind the semantic similarity in this section
will be explained how the model is built. Let us start by quoting Zelig Harris:

The distribution of an element will be understood as the sum of all its
environments. (Z. Harris, 1970, p.775)

Let us illustrate on a one sentence example how a distributional model could be
built from it:

”Where there is smoke there is fire.”

We start by determining what is the appropriate environment of the word. In linguistics
word environment is called context. In our example we will restrict the context to the
preceding and succeeding word. Distributions gathered from our example are shown
in the table below.

9

where there is smoke fire

where 0 1 0 0 0
there 1 0 2 0 0
is 0 2 0 1 1
smoke 0 0 1 0 0
fire 0 0 1 0 0

As we can see from the table every word is represented with a vector, for instance
”smoke” is (0,0,1,0,0). To put it more formally: every vector is defined by n compo-
nents, where each component represents a location in n–dimensional space. To quote
Magnus Sahlgren’s definition on context vectors:

I call the co–occurrence counts context vectors because they effectively
constitute a representation of the sum of the word’s contexts.

2.4.1 A brief history of context vectors

The notion of context vectors has begun with the prominent work in psychology by
Charles Osgood in the 1950’s on feature space representations of meaning, which
he called semantic differential approach to meaning representation. In this approach
words are represented as feature vectors where elements are contrastive adjective pairs
such as ”soft–hard”, fast–slow”, etc. The idea was to measure the psychological dif-
ference between words. An example from the research is given below.

small–large bald–furry docile–dangerous
mouse 1 6 1
rat 2 6 4

Table 2.1: Feature vectors based on three contrastive pairs for words mouse and rat

Osgood’s work was an inspiration for Stephen Gallant, who introduced the term
”context vector” to describe the feature–space representations (Gallant, 1991a). In
Gallant’s algorithm, context vectors were defined with a set of manually derived fea-
tures, such as ”human, ”man, ”machine,” etc. However as some researchers later no-
ticed drawbacks of this approach to describe the word’s semantics were:
1. which features should be used?
2. how many features are enough?

These questions led to first approaches to automatically construct a feature space. One
of the first approaches was by Gallant (1991b) where he described the algorithm in two
steps:

1. A context vector is initialized for each word as a normalized random vector.

10

2. While making several passes through the corpus, the context vectors are changed
to be more like the context vectors of the surrounding words.

The results were then used for word–sense disambiguation, where he calculated mean-
ings for words from context, and compared them to the manually defined ones (Gallant,
1991b). However, probably the most influential work comes from Hinrich Schütze
(1992, 1993), who built context vectors (which he calls ”term vectors” or ”word vec-
tors”) similarly to the approach described above: co–occurrence counts are collected
in a words–by–words matrix, in which the elements record the number of times two
words co–occur within a set window of word tokens. Context vectors are then defined
as the rows or the columns of the matrix.

2.5 The co–occurrence matrix

The most formal definition of a co–occurrence matrix would be that it is a matrix of
co–occurrence counts of its elements. The matrix can be a words–by–words matrix
w × w, where w are the word types in the data, or a words–by–documents matrix w

× d, where d are the documents in the data. A cell fi j of the co–occurrence matrix
contain the frequency of occurrence of word i in the context of word j or in document
j, depending on the matrix type.
In the study on Vector Space Models of Semantics (Turney&Pantel, 2010) authors look
into various approaches to the task of semantic processing of text. They observe and
classify Vector Space Models into three main classes, depending on the type of the co–
occurrence matrix they are based on: term–document, word–context or pair–pattern
matrices.

1. Term–Document matrix: The row vectors of the matrix correspond to terms
(usually terms are words, but there are also other possibilities), and the column
vectors correspond to documents (web pages, for example). Term–Document
matrix follows the ”bag–of–words” hypothesis, which means that the order of
words does not matter in order to estimate the importance of the query to the
document (Salton et al. 1975). The ”bag” here is like a mathematical set, with
allowed duplicates. To illustrate this on a simple example using pseudo–words:
bag {aa, ab, aa, ab, ac} contains elements aa, ab, ac. The order of bag’s elements
is of no relevance here– bag {aa, ab, aa, ab, ac} is the same as a bag {aa, aa,
ab, ab, ac}. If we measure raw frequencies, this bag can be represented with a
vector A={2,2,1} where first element is the frequency of aa, second element is
the frequency of ab, and third element is the frequency of ac. A set of bags can
be represented as a matrix X, in which each column x: j corresponds to a bag,
each row xi: corresponds to a unique term, and an element xi j is the frequency of

11

the i–th term in the j–th bag. If we look at the documents as bags, this example is
easily transported into the Information Retrieval domain. The pattern of numbers
in xi: is a kind of signature of the i–th term wi; likewise, the pattern of numbers in
x: j is a signature of the j–th document d j. This means that the pattern of numbers
reveal, to some degree, what the term or document is about.

The vector does not attempt to capture the structure in the phrases, sentences,
paragraphs, and chapters of the document. Despite this omission, search engines
work really well when based on term document matrix. Term–document matrix
reflects in fact the similarity of documents. In the IR domain, search engines
treat queries as documents, and return search results whose score is based on the
degree of similarity between query vectors and all document vectors in corpus.

2. Word–Context matrix: Deerwester et al. (1990) observed that we can shift the
focus to measuring word similarity, instead of document similarity, by looking at
row vectors in the term–document matrix, instead of column vectors. In general,
we may have a word–context matrix, in which the context is given by words,
phrases, sentences, paragraphs, chapters or documents. A word may be repre-
sented by a vector in which the elements are derived from the occurrences of the
word in various contexts, such as windows of words (Lund & Burgess, 1996),
grammatical dependencies (Lin, 1998), and richer contexts consisting of depen-
dency links and selectional preferences on the argument positions (Erk & Padó,
2008). To illustrate this on a simple example: consider a co–occurrence matrix
populated by simple frequency counting: if word i co–occurs 16 times with word
j, we enter 16 in the cell fi j in the words–by–words co–occurrence matrix. The
co–occurrences are normally counted within a context window spanning some
(usually small) number of words.

3. Pair– Pattern Matrix: reflects the similarity of relations. Row vectors cor-
respond to pairs of words, such as mason : stone and carpenter : wood, and
column vectors correspond to the patterns in which the pairs co–occur, such as
”X cuts Y” and ”X works with Y”. Turney et al. (2003) introduced the use of the
pair–pattern matrix for measuring the semantic similarity of relations between
word pairs, which in this case is the similarity of row vectors. The latent rela-

tion hypothesis is that pairs of words that co–occur in similar patterns tend to
have similar semantic relations (Turney, 2008a). Word pairs with similar row
vectors in a pair–pattern matrix tend to have similar semantic relations.

(Schütze and Pedersen 1993) defined two ways that words can be distributed in a
corpus of text: If two words tend to be neighbours with each other, then they are syn-
tagmatic associates. If two words have similar neighbours, then they are paradigmatic

12

parallels. As they noted, syntagmatic associates are often different parts of speech,
whereas paradigmatic parallels are usually the same part of speech. Syntagmatic asso-
ciates tend to be semantically associated (for example, bee and honey), while paradig-
matic parallels tend to be taxonomically similar (for example doctor and nurse).

While word–document and word–word matrices reflect attributional relations between
word senses, the pair–pattern matrix reflects relational similarity between word senses.
This distinction was explained in (Gentner 1983). Being that we are focused in this
dissertation on the application of vector space models solely on the task of WSD we
are interested only in models that stem from attributional kind of relationship, thus uti-
lizing the first two kinds of matrices. The pair–pattern matrix has proven track record
with other applications, for example one of them being the analogies task, and is there-
fore of no interest to implement in this research.

13

Chapter 3

Word sense disambiguation

3.1 Word sense(s)

A meaning of a word is a variable category, very much dependent on its surrounding
context. In the field of lexical semantics it is found that many words have overlapping
or extended meanings (Kilgarriff 1997). ”Polysemy” of a word means that it has mul-
tiple, but related meanings. At a more coarse grained level of meaning words that have
the same spelling and pronunciation as each other but different meanings and origins
are called homonyms. Polysemy is a feature of words while ”ambiguity” is a property
of text. If there is uncertainty about the meaning of a word there is ambiguity about
the whole text as well. Probably the most well known example of an ambiguous word
is the word bank, which contains two homonyms: as a as financial institution, and as
a river bank. Bank as financial institution splits further into the following cloud of re-
lated senses: the company or institution, the building itself, the counter where money
is exchanged, a fund or reserve of money, a money box (piggy bank), the funds in a
gambling house (WordNet 2.1)1. Different words have different number of meanings.
A view on the number of senses word might have is somewhat controversial. Some
argue that task– independent senses simply cannot be enumerated in a list (Kilgarriff
1997) while others claim that words can have only a single, abstract meaning (Ruhl
1989).

WSD was first formulated as a distinct computational task during the early days of
machine translation. It was Weaver (1949) who noted in his memo on machine trans-
lation the importance of context in determining word sense(s), by conducting a simple
experiment- observing words from a sentence in isolation, and trying to determine their
meaning. (Zipf 1949) published his ”Law of Meaning” where he states that more fre-
quent words have more senses than less frequent words in a power–law relationship.

1http://wordnet.princeton.edu/

14

A valuable point worth noting in any experiment with WSD. This was later confirmed
for the British National Corpus (Edmonds 2005) as well.

Statistical and machine learning methods have been successfully applied to the WSD
problem. Methods that train on manually sense–tagged corpora (like Penn Treebank, or
Prague Dependency Treebank) are called supervised learning methods. Since models
implemented in this thesis are trained on annotated corpus, they are as well supervised.
Supervised methods have become in general the mainstream approach to WSD, with
the best results in all tasks of the Senseval2 competitions.

3.2 Applications of WSD– why is it important?

WSD’s importance lies in the fact that it enables other tasks and applications of com-
putational linguistics (CL) and natural language processing (NLP) such as information
retrieval(IR), parsing, machine translation(MT), semantic interpretation, text mining,
and (lexical) knowledge acquisition. Detail applications of WSD to each of these fields
is presented below.

Machine translation (MT). In MT, choice of the correct translation of a word is prob-
ably one of the hardest tasks in that field. WSD originally introduced for lexical choice
of words that have multiple translations depending on their context. For example, in an
English–French financial news translator, the English noun change could translate to
either changement (’transformation’) or monnaie (’pocket money’). Nowadays, there
is contrasting evidence that WSD can benefit MT: for instance, (Carpuat and Wu 2005)
claimed that WSD cannot be integrated into MT applications, while (Dagan and Itai
1994) show that the proper use of WSD leads to an increase in the translation perfor-
mance.

Information retrieval (IR).In IR, documents retrieved depend on query terms, which
are often ambiguous. For instance, given the query ”depression” should the system re-
turn documents about illness, weather systems, or economics? Current IR systems do
not use explicit WSD, and rely on the user typing enough context in the query to only
retrieve documents relevant to the intended sense (i.e., ”tropical depression”). (Sander-
son 1994)concluded that with queries containing large number of words, WSD cannot
benefit IR. (Schutze and Pedersen 1995) have however demonstrated that at a 90% ac-
curacy level of WSD, there is an IR performance improvement by about 4,3%(from
29.9% to 34.2%).

2http://www.senseval.org/

15

Information extraction (IE) and text mining. WSD is required for the accurate
analysis of text in many applications. For example if we wish to somehow mark the
difference between medical drugs and illegal drugs we would need to have these phras-
es disambiguated first. More generally, the Semantic Web requires automatic annota-
tion of documents according to a reference ontology: all textual references must be
resolved to the right concepts and event structures in the ontology (Dill et al. 2003)
(Narayan et al. 2010).

Lexicography. Modern lexicography is corpus–based, thus WSD and lexicography
can work for each other. WSD is providing empirical sense grouping and contextual
indicators of sense to lexicographers, who provide better sense inventories and sense–
annotated corpora to enable better WSD. Some of the more famous examples are the
HECTOR project (Atkins 1993) and the Sketch Engine (Kilgarriff et al. 2004).

However it should be noted that explicit WSD by itself, has not always demonstrat-
ed decisive benefits in real end–to–end applications (Navigli 2009:51). There have
been isolated results that show some improvements, but just as often WSD can hurt
performance, as is the case in one IR experiment (Sanderson 1994).

3.3 Classification of approaches to WSD

In a broad view, we can distinguish two main streams of approaches to WSD (Nav-
igli 2009). First stream classifies WSD approaches based on level of supervision it
requires:

1. supervised: use machine learning techniques to learn a classifier from labeled
training sets of any kind

2. unsupervised: employ mainly clustering techniques on unlabeled corpora, and
do not employ a manually sense-tagged corpus to provide a sense choice for a
word in context.

Another way of viewing approaches to WSD is according to the nature of the resource
used during training. Methods that rely primarily on dictionaries, thesauri, and knowl-
edge bases (like ontologies), without using any corpus evidence, are called dictionary–

based or knowledge–based. Contrary to them there are methods that work directly
with raw, unannotated corpora, and are termed as corpus–based methods.
Senseval (later Semeval) is a competition among NLP practitioners devoted solely to
WSD and WSD– related tasks. Two oldest variants of WSD task is based on the con-
tent of the test set used for evaluation of WSD systems entered in that competition:

16

1. Lexical sample task: a system is required to disambiguate a restricted set of
target words usually occurring one per sentence.

2. All-words WSD task: systems are expected to disambiguate all open-class words
in a text (i.e., nouns, verbs, adjectives, and adverbs)

Since the inception of Senseval systems perform better on the lexical sample task.

3.3.1 Unsupervised learning methods

Unsupervised methods have the potential to overcome the new knowledge acquisition
bottleneck (manual sense–tagging), which is the lack of large-scale resources manu-
ally annotated with word senses. These methods are able to induce word senses from
training text by clustering word occurrences, and then classifying new occurrences into
the induced clusters/senses. They are based on the idea that the same sense of a word
will have similar neighboring words. However, they may not discover clusters equiva-
lent to the traditional senses in a sense inventory. While supervised WSD is typically
identified as a sense labeling task, that is, the explicit assignment of a sense label to
a target word, unsupervised WSD performs word sense discrimination, which aims to
divide the occurrences of a word into a number of classes by determining for any two
occurrences whether they belong to the same sense or not [Schútze 1998, page 97].
Main approaches to unsupervised WSD are:

1. Context Clustering: Each occurrence of a target word in a corpus is represent-
ed as a context vector. The aim of the approach is to cluster context vectors,
that is, vectors which represent the context of specific occurrences of a target
word. Sense discrimination can then be performed by grouping these context
vectors using a clustering algorithm. (Schutze 1998) proposed an algorithm,
called context-group discrimination, which groups the occurrences of an am-
biguous word into clusters of senses, based on the Expectation Maximization
algorithm. A different clustering approach consists of agglomerative cluster-
ing (Pedersen and Bruce 1997). Initially, each instance constitutes a singleton
cluster. Next, agglomerative clustering merges the most similar pair of clusters,
and continues with successively less similar pairs until a stopping threshold is
reached.

2. Word Clustering: Aim at clustering words which are semantically similar and
can thus convey a specific meaning. One approach to word clustering (Lin
1998a) involves identification of words similar (possibly synonymous) to a tar-
get word. To discriminate between the senses, a word clustering algorithm is
applied to induce senses of the target word. In the next attempt, clustering by

17

committee (CBC) algorithm (Lin and Pantel 2002), a different word clustering
method was proposed. To calculate the similarity each word is represented as
a feature vector, where each feature is the expression of a syntactic context in
which the word occurs. Recursive procedure is applied to cluster word into com-

mittees, and then discrimination is performed based on the similarity of feature
vector to the centroid of each committee.

3.3.2 Supervised methods

Supervised methods are also called exemplar based methods on account of the learn-
ing phase. The training set used to learn the classifier typically contains a set of ex-
amples in which a given target word is manually tagged with a sense from the sense
inventory of a reference dictionary. They are predominantly consisting of Machine
Learning(ML) methods.

1. Probabilistic Methods: these methods usually estimate a set of probabilistic pa-
rameters that express the conditional or joint probability distributions of cate-
gories and contexts (described by features). These parameters can be then used
to assign to each new example the particular category that maximizes the condi-
tional probability of a category given the observed context features.

2. Methods Based on the Similarity of the Examples: the methods in this family
perform disambiguation by taking into account a similarity metric. This is done
by comparing new examples to a set of learned vectors (one for each word sense)
and assigning the sense of the most similar vector, or by searching in a stored
base of annotated examples for the most similar examples and assigning the most
frequent sense among them. VSM fall into this family of approaches.

3. Methods Based on Discriminating Rules: decision lists and decision trees use
selective rules associated with each word sense. Given an example to classify,
the system selects one or more rules that are satisfied by the example features
and assign a sense based on their predictions.

4. Linear Classifiers and Kernel-Based Approaches: Linear classifiers have been
very popular in the field of information retrieval (IR), since they have been used
successfully as simple and efficient models for text categorization. A linear (bi-
nary) classifier is a hyperplane in an n-dimensional feature space that can be
represented with a weight vector w and a bias b indicating the distance of the
hyperplane to the origin. In the WSD task it classifies meanings of polysemous
word against its context.

18

Support Vector Machines (SVM) is the most popular kernel-method. The learn-
ing phase consists of choosing the hyperplane that separates the positive exam-
ples from the negatives with maximum margin between. This learning bias has
proven to be very powerful and has lead to very good results in many pattern
recognition, text, and NLP problems.

3.4 Approaches that use VSM for WSD

As mentioned in the previous section Vector Space Model (VSM) approaches fall un-
der methods based on the similarity of the examples. There are many ways to calculate
the similarity between two examples. Assuming the VSM one of the simplest similar-
ity measures is to consider the angle that both example vectors form (i.e., the cosine
measure). (Leacock et al. 1993) compared VSM to ML techniques such as Neural
Networks, and Naive Bayes methods, and drew the conclusion that the two first meth-
ods slightly surpass the last one in WSD.

There was also an automatic and unsupervised approach (Schütze 1998), based on
clustering. Senses are interpreted as groups (or clusters) of similar contexts of the
ambiguous word. Words, contexts, and senses are represented in Word Space, a high-
dimensional, real-valued space in which closeness corresponds to semantic similarity.
The algorithm is unsupervised in both training and application: senses are discrimi-
nated by learning from a corpus without labeled training instances or other external
knowledge sources.

Another unsupervised approach at WSD done by (Pantel & Lin, 2002a) is a clustering
algorithm called CBC (Clustering By Committee). The centroid of the members of a
committee is used as the feature vector of the cluster. Words to are assigned to their
most similar clusters. After assigning an element to a cluster, overlapping features of
the cluster are removed from that element. Finally, each cluster that a word belongs to
represents one of its senses. Weighting is performed with PMI(explained in the chapter
5.4.3) and distance between vectors is calculated using cosine distance.

3.5 State–of–the–art

In 1997, Senseval–1 (Kilgarriff and Palmer 2000) found accuracy of 77% on the En-
glish lexical sample task, just below the 80% level of human performance (estimat-
ed by inter–tagger agreement). In 2001, scores at Senseval–2 (Edmonds and Cotton
2001) appeared to be lower, but the task was more difficult, as it was based on the finer

19

grained senses of WordNet. The best accuracy on the English lexical sample task at
Senseval–2 was 64% (to an inter–tagger agreement of 86%). Senseval–2 showed that
supervised approaches had the best overall performance.
By 2004, the top systems on the English lexical sample task at Senseval–3 (Mihalcea
and Edmonds 2004) were performing at human levels according to inter–tagger agree-
ment. The top ten systems, (all supervised) made between 71.8% and 72.9% correct
disambiguations compared to an inter–tagger agreement of 67%. The best unsuper-
vised system overcame the most–frequent–sense baseline achieving 66% accuracy.

20

Chapter 4

Word space implementations

We have described in the previous chapters the intuitions behind Word Space Mod-
els in Distributional Semantics as well as how the semantic similarity between words
represented there can be computed. This chapter will be dedicated to presenting how
some of the best known Word Space Models are implemented with respect to difficul-
ties that arise when dealing with corpora of large volume. The first section will outline
some of the main difficulties that stem from facing large and sparse data. Sections that
follow will present main implementations of Word Space Models that address these
difficulties. These models will also be reviewed with respect to their applicability on
the task of WSD.

4.1 High dimensionality and data sparseness

The word–space methodology relies on statistical evidence to construct the word space.
If there is not enough data, there is no required statistical foundation to build a mod-
el of word distributions. At the same time with a substantial volume of data, context
(co–occurrence) matrices easily become very large, with high dimensional context vec-
tors which seriously affects the scalability and efficiency of the algorithm. As we can
already see this issue presents a problem that is fortunately, neither new nor unsolv-
able. After all, a Word Space Model implemented by the vast majority of commercial
Search Engines handles this issue gracefully by approaching it from its technical side–
the most common solution is division and distribution of index. However, in this thesis
we are interested in addressing this problem from another perspective, and see how this
issue can be resolved from the mathematical stance to prevent the models to become
computationally expensive.

Another issue that appears within a high–volumed corpus is that the majority of its
term vectors turns out as sparse. This means that most the elements of a term vector

21

are zero, while only a small amount of elements has non–zero values. This fact stems
from the notion that only a tiny amount of the words in language are distributionally
promiscuous; the vast majority of words only occur in a very limited number of con-
texts. This phenomenon is well known, and is an example of the general Zipf’s law
(Zipf, 1949). This reflects on the co-occurrence matrix, causing the majority of term
vectors from it to be sparse.

4.2 Dimensionality reduction

The solution to both issues mentioned in the previous section is an NLP operation (bor-
rowed from linear algebra) called dimensionality reduction. Dimensionality reduction
represents high–dimensional data in a low–dimensional space, so that both the dimen-
sionality and sparseness of the data are reduced, while still retaining as much of the
original information as possible. There are two general ways to perform dimensional-
ity reduction, that can also be combined: word filtering and matrix reduction.

The simplest way to perform dimensionality reduction is to filter out words and doc-
uments based on either linguistic or statistical criteria (Sahlgren 2006). Linguistic
criteria can be word’s affiliation to certain (unfavorable) grammatical classes. Statis-
tical criteria can be an undesirable statistical property of a word. Both linguistic and
statistic criteria are discussed in more detail in the preprocessing section. In the follow-
ing sections three major, and most influential approaches in performing dimensionality
reduction by reducing the co–occurrence matrix are presented.

4.3 Latent Semantic Analysis

Probably the best know VSM that performs dimensionality reduction is Latent Seman-
tic Analysis (LSA) (Landauer & Dumais, 1997). LSA was developed under the name
Latent Semantic Indexing (LSI) (Dumais et al., 1988; Deerwester et al., 1990) in the
late 1980s as an extension to the traditional vector–space IR. The terms LSI and LSA
have since become more or less synonymous in the literature, though LSI is a term
more frequently used in the IR domain. The development of LSA was motivated by
the inability of the vector–space model to handle synonymy: a query about ”boats”
will not retrieve documents about ”ships” in the standard vector–space model. LSA
addresses this problem by reducing the original high–dimensional vector space into a
much smaller space, in which the original dimensions that represented words and doc-
uments have been shrunk into a smaller set of latent dimensions that collapses words
and documents with similar context vectors.

22

The dimensionality reduction is accomplished by using a statistical dimensionality–
reduction technique called Singular Value Decomposition (SVD). (Golub and Kahan
1965) introduced SVD as a decomposition technique for calculating the singular val-
ues, pseudo–inverse and rank of a matrix. The equation is given below:

A =USV T (4.1)

,where:
U is a matrix whose columns are the eigenvectors1 of the AAT matrix. These are called
left eigenvectors.
S is a matrix whose diagonal elements are the singular values of A. This is a diagonal
matrix2, so its non–diagonal elements are zero
V is a matrix whose columns are the eigenvectors of the AT A matrix. These are called
the right eigenvectors.
V T is the transpose matrix3 of matrix V.

This outlines the basic mechanism of LSA when performing SVD. Main steps which
are performed in building and using LSA are:

• Building a term–document matrix;

• SVD based dimensionality reduction

• Calculating the cosine measure to compute vector similarities between vectors
from the co–occurrence matrix

LSA is well applied in information retrieval(Deerwester et al., 1990; Dumais, 1993;
Dumais et al., 1997; Jiang & Littman, 2000). The incentive for using SVD in an
information–retrieval setting is obvious: words with similar co–occurrence patterns
are grouped together, allowing for the retrieval of documents that need not necessarily
contain any of the query words.

In the domain of the Contextual Disambiguation LSA has had both good and bad
performances, depending on the aspect of the task(Landauer & Dumais, 1997). Good

1The eigenvectors of a square matrix are the non–zero vectors that, after being multiplied by the
matrix, remain parallel to the original vector.

2diagonal matrix is a matrix (usually a square matrix) in which the entries outside the main diagonal
are all zero

3The transpose of a m by n matrix is defined to be a n by m matrix that results from interchanging
the rows and columns of the matrix.

23

performance is demonstrated for the task of choosing the correct one out of all mean-
ings of a polysemous word, when presented as certain context. On the other hand,
for polysemous words that take many semantically diverse meanings, it has proven
to be ineffective when it comes to acquisition and representation of multiple separate
meanings of a single word.

24

4.4 Hyperspace Analogue to Language

A pretty different word–space implementation is the Hyperspace Analogue to Lan-
guage (HAL) (Lund et al., 1995), which in contrast to LSA was developed specifically
for word–space research. HAL builds a words–by–words co–occurrence matrix, which
is populated by counting word co–occurrences within a directional context window 10
words wide. The co–occurrences are weighted with the distance between the words, so
that words that occur next to each other get the highest weight, and words that occur on
opposite sides of the context window get the lowest weight. The result of this opera-
tion is a directional co–occurrence matrix in which the rows and the columns represent
co–occurrence counts in different directions.

Each row–column pair (i.e. the left and right–context co–occurrences) is then concate-
nated to produce a very–high–dimensional context vector, which has a dimensionality
two times the size of the vocabulary. If such very–high–dimensional vectors prove to
be too costly to handle, HAL reduces their dimensionality by computing the variances
of the row and column vectors for each word, and discarding the elements with lowest
variance, leaving only the 100 to 200 most variant vector elements. In HAL, two words
are semantically related if they tend to appear with the same words. Summarized, HAL
is built in the following steps:

• Building a directional words–by–words matrix.

• Distance weighting of the co–occurrences.

• Concatenation of row–column pairs.

• Normalization of the vectors to unit length.

• Minkowski metric to compute vector similarities.

The Minkowski metric, also called the Minkowski tensor or pseudo-Riemannian
metric, is a tensor ηαβ whose elements are defined by the matrix:

(η)αβ =

∣∣∣∣∣∣∣∣∣∣
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣∣∣
,which means that for 2 vectors α and β when computing similarity between them,
the first coordinate is taken with a negative sign. Minkowski metric is normally used
in physics, in theory of relativity, and there the first coordinate represents the time
dimension.

25

4.5 Random Indexing

Another approach is Random Indexing (RI) (Kanerva et al., 2000; Karlgren & Sahlgren,
2001), developed at the Swedish Institute of Computer Science (SICS) based on Pent-
ti Kanerva’s work on sparse distributed memory (Kanerva, 1988). Like the previous
approaches described in this chapter RI is motivated as well with the problem of high
dimensionality. What is different with RI is how it addresses that problem: while previ-
ous approaches make lower–dimensional context vectors which are easier to compute
with, they do not solve the problem of initially having to collect a potentially huge co–
occurrence matrix. Even implementations that use powerful dimensionality reduction,
such as SVD, need to initially collect the words–by–documents or words–by–words
co–occurrence matrix. RI addresses this problem at its source, and removes the need
for the huge co–occurrence matrix.

RI incrementally accumulates context vectors which can then, if needed, be assembled
into a co- occurrence matrix (both words–by–documents and a words–by–words). RI
accumulates context vectors in a two–step operation:

1. Each context (i.e. each document or each word type) in the text is assigned a
unique and randomly generated representation called an index vector. In RI,
these index vectors are sparse, high-dimensional, which means that their dimen-
sionality r is on the order of thousands, and that they consist of a small number
of randomly distributed non–zero elements (as many +1s as –1s). Each word
also has an initially empty context vector of the same dimensionality r as the
index vectors.

2. The context vectors are then accumulated by advancing through the text one
word token at a time, and adding the context’s (the surrounding word types’ or
the current document’s) r–dimensional index vector(s) to the word’s r–dimensional
context vector. When the entire data has been processed, the r–dimensional con-
text vectors are effectively the sum of the word’s contexts.

If we then want to construct the equivalent of a co-occurrence matrix, we can sim-
ply collect the r-dimensional context vectors into a matrix of order w× r, where w is
the number of unique word types, and r is the chosen dimensionality for vectors. The
dimensions in the RI vectors are randomly chosen, and therefore do not represent any
kind of context (which is the case with the original co–occurrence matrix). Further-
more, r is chosen to be much smaller than the size of word types and the number of
documents in the data, which means that RI will accumulate (roughly) the same infor-
mation in the w× r matrix as other word-space implementations collect in the w×w

or w×d co-occurrence matrices, except that in case of RI r� d;w.

26

If we think about every document in the term–document matrix to be different from
each other, we can represent them with n–dimensional unary, zero vector, that have 1
written in a different place. These vectors are orthogonal4. The r-dimensional ran-
dom index vectors are only nearly orthogonal. This near–orthogonality of the random
index vectors is in fact an explanation of the RI methodology. There are many more
nearly orthogonal than truly orthogonal directions in a high–dimensional space (Kaski,
1999), and choosing random directions, as is it is done with index vectors, can approx-

imate orthogonality. The near-orthogonality of random directions in high-dimensional
spaces is exploited by a number of dimensionality-reduction techniques which include
methods such as Random Projection (Papadimitriou et al., 1998), Random Mapping
(Kaski, 1999), and Random Indexing. The dimensionality of a given matrix F can be
reduced to F’ by multiplying it with (or projecting it through) a random matrix R:

F ′w×r = Fw×dRd×r (4.2)

Obviously, the choice of the random matrix R is an important design decision. If
the d random vectors in matrix R are orthogonal, so that RT R = I, then F ′ = F . If
random vectors are nearly orthogonal, then F ′ ≈ F in terms of the similarity of their
rows. RI uses the following distribution for the elements of the random index vectors:

ri j =


+1 with probability ε/2

r

0 with probability r−ε

r

−1 with probability ε/2
r

(4.3)

where r is the dimensionality of the vectors, and ε is the number of non-zero elements
in the random index vectors, usually a very small number.

Random Indexing is comparably robust with regards to the choice of parameters.
Other word-space implementations, such as LSA, are very sensitive to the choice of di-
mensionality for the reduced space. For RI, the choice of dimensionality is a trade–off
between efficiency and performance (random projection techniques perform better the
closer the dimensionality of the vectors is to the number of contexts in the data (Kaski,
1999; Bingham & Mannila, 2001)). Performance of RI reaches a stable level when the
dimensionality of the vectors become sufficiently large as concluded in (Sahlgren &
Karlgren, 2005a).

4Two vectors,~x and~y are orthogonal if their dot product is zero. Dot product is an algebraic operation
that takes two equal–length sequences of numbers (usually coordinate vectors) and returns a single
number obtained by multiplying corresponding entries and then summing those products.

27

Chapter 5

The theory behind experiments

In previous chapters we have explained the intuitions and approaches in building Se-
mantic Vector Models. This chapter is devoted to outlining possible approaches in
preprocessing, matrix normalization and evaluation with respect to experiments per-
formed in this thesis on the of Word Sense Disambiguation (WSD) in Prague Depen-
dency Treebank1 (PDT).

5.1 Linguistic preprocessing

Before generating a term–document or a word–context matrix it can be useful to apply
some sort of linguistic preprocessing to the raw text. First type of linguistic prepro-
cessing constitutes of text normalization, where words can be filtered out based on
their Part–Of–Speech1, then stemming or lemmatization and finally annotation.

POS filtering normally consists of removing words that belong to closed grammati-
cal classes2, since they are assumed to have little or no semantic meaning. However
POS filtering removes only a small part of the lexicon, because the majority of words
belong to open grammatical classes.

In linguistic morphology and information retrieval (IR), stemming is the process of
reducing inflected (or sometimes derived) words to their stem, base or root form. In-
flection characterizes a change in word form when found in a different case, gender,
number, voice, tense, person or mood. In IR all variants of a word should be consid-
ered as just a single word. In English, affixes are simpler and more regular than in

1In grammar, a part of speech is a linguistic category of words (or more precisely lexical items)
(POS), which is generally defined by the syntactic or morphological behaviour of the lexical item in
question

2Closed grammatical classes rarely acquire new members, like adpositions, pronouns, conjunctions,
and determiners. Open grammatical classes, on the other hand, and constantly drop, replace, and add
new members. Examples of such classes are nouns, adjectives, and verbs.

28

many other languages, and stemming algorithms based on heuristics (rules of thumb)
work relatively well (Porter, 1980; Minnen, Carroll, & Pearce, 2001). The most popu-
lar stemming approach is the language independent Porter’s stemmer. Lemmatization
is the process of assigning a form its correct lemma (canonical/base/dictinary form).
The difference between stemming and lematization can be illustrated on the follow-
ing example: word ”better” is an inflected form for comparison of adjective ”good”.
This link is missed by stemming, as it requires a dictionary look–up. Lemmatization
utilizes the use of a vocabulary and morphological analysis of words, and attempts to
remove inflectional endings only and to return the base or dictionary form of a word,
which is known as the lemma. However, lemmatization is a difficult task– especially
for highly inflected natural languages having a lot of words for the same normalized
word form, which is in fact the case with the Czech language. Another difference
between lemmatization and stemming is that stemming sometimes collapses deriva-
tionally related words, whereas lemmatization commonly only collapses the different
inflectional forms of a lemma.

Annotation is the process that is inverse of normalization. Just as different strings
of characters may have the same meaning, it also happens that identical strings of
characters may have different meanings, depending on the context. Common forms
of annotation include part–of–speech tagging (marking words according to their parts
of speech), word sense tagging (marking ambiguous words according to their intended
meanings), and parsing (analyzing the grammatical structure of sentences and marking
the words in the sentences according to their grammatical roles) (Manning & Schütze,
1999). In our experiments we are using a treebank as a dataset, which is as resource
fully annotated on morphological, syntactics and semantic level the task of annotation
comes down to simply extracting the desired tag connected to the word. Since we are
only using semantic annotation I will just mention here few more examples that use se-
mantic annotation: disambiguating abbreviations in queries (Wei,Peng, & Dumoulin,
2008) and finding query keyword associations (Lavrenko & Croft, 2001) and (Cao,
Nie, & Bai, 2005).

5.2 Statistic preprocessing

Statistic preprocessing is a process of filtering words that have an undesirable statistical
property, like very high or very low frequency of occurrence. It should be noted that
filtering high frequency words has approximately the same effect as POS filtering, due
to the generally low count of such words(Zipf, 1949). More sophisticated statistical
criteria for filtering includes filtering based on the TFIDF, and different variants and
mixtures of the Poisson distribution (Katz, 1996).

29

5.3 Types and Tokens

After preprocessing phase the time is to decide whether to base the co–occurrence
matrix on types or tokens. A token is a single instance of a symbol, whereas a type is
a general class of tokens (Manning et al., 2008). Consider the following example built
on three short sentences taken from PDT:

(5.1) Ale šance je přesto minimálnı́.

(5.2) Dnes je také mnohem menšı́ šance.

(5.3) Přesto se stávat.

In this example there are eleven types and fourteen tokens present. Types ”šance”, ”je”
and ”přesto” each have 2 tokens in this mini–corpus, that consists of 3 documents, if
we consider every sentence here a document. We can represent this example with a
token–document matrix or a type–document matrix. The token–document matrix has
fourteen rows, one for each token, and three columns, one for each line (Figure 6.1).
The type–document matrix has eleven rows, one for each type, and three columns
(Figure 6.2). A row vector in the token matrix has binary values: an element is 1 if the
given token appears in the given document and 0 otherwise. A row vector for a type
has integer values: an element is the frequency of the given type in the given document.
A type vector is the sum of the corresponding token vectors.

Ale šance je Dnes je také mnohem Přesto se
přesto minimálnı́ menšı́ šance stávat

Ale 1 0 0
šance 1 0 0
je 1 0 0
přesto 1 0 0
minimálnı́ 1 0 0
Dnes 0 1 0
je 0 1 0
také 0 1 0
mnohem 0 1 0
menšı́ 0 1 0
šance 0 1 0
Přesto 0 0 1
se 0 0 1
stávat 0 0 1

Figure 5.1: Example of token–document matrix

In applications dealing with polysemy, one line of approaches uses vectors that
represent word tokens (Schütze, 1998)Hinrich (1998) while others use vectors that

30

Ale šance je Dnes je také mnohem Přesto se
přesto minimálnı́ menšı́ šance stávat

Ale 1 0 0
šance 1 1 0
je 1 1 0
přesto 1 0 1
minimálnı́ 1 0 0
Dnes 0 1 0
také 0 1 0
mnohem 0 1 0
menšı́ 0 1 0
se 0 0 1
stávat 0 0 1

Figure 5.2: Example of type–document matrix

represent word types (Pantel & Lin, 2002)Pantel and Lin (2002). Typical word sense
disambiguation (WSD) algorithms deal with word tokens (instances of words in spe-
cific contexts) rather than word types, although a defining characteristic of the VSM
is that it is concerned with co-occurrence counts. In our experiments we will be using
both types of vectors, although the majority of experiments will be based on the type
vectors.

5.4 Building the matrix

When the basic unit of frequency counting is chosen (as explained in the previous sec-
tion), and (optional) preprocessing is done on the corpus, the co–occurrence matrix
can be built. As outlined in the chapter 2.5 the matrix can be either a word–document
or word–context, based on their applicability on the task of WSD (therefore, the pair–
pattern matrix was ruled out). When all frequencies are counted and placed in the ma-
trix, frequency counts are normalized, and/or matrix’s dimensionality can be reduced
(using the models described in chapters 4.3 and 4.5).

5.4.1 Normalizing the frequency counts

When frequency counts are calculated for every element in the matrix, it customary to
weight the elements in the matrix. The hypothesis is that surprising events, if shared by
two vectors, are better signs of the similarity between these vectors than less surprising
events. For example, when measuring the semantic similarity between the words cat

and puss, the contexts like fur and pat are more discriminative of their similarity than

31

the contexts have and like. The idea stems way back to Information Theory where it
is said that a surprising event has higher information content than an expected event
(Shannon, 1948).

5.4.2 TF–IDF

The most popular way to weight the elements in the matrix is usually composed of
three components:

fi j = T Fi j ·DFi ·S j

,according to Robertson & Spärck Jones (1997) where T Fi j is some function of the
frequency of term i in document j, DFi is some function of the number of documents
term i occurs in (DF for document frequency), and S j is a normalizing factor, usually
dependent on the length of document(s for scaling). The first component indicates
how important word i is for document j, because the more often a term occurs in a
document, the more likely it is to be important for identifying the document. DFi is
the discriminatory component– if the term appears in many documents, it should not
be considered important. DF is usually computed as:

IDF = log D
DFi

, where D is usually usually the total number of documents in the whole corpus. The
third component Sj is normally a function of the length of document j, and is based on
the idea that a term that occurs the same number of times in a short and in a long doc-
ument should be more important for the short one.(Singhal, Salton, Mitra, & Buckley,
1996).

5.4.3 PMI

An alternative to TF–IDF is Pointwise Mutual Information (PMI) (Church & Hanks,
1989), which works well for both word–context matrices (Pantel & Lin, 2002a)Pantel
and Lin (2002) and term– document matrices (Pantel & Lin, 2002b).
We will explain now PMI on Information Theory and present how it is applied on
the co–occurrence matrices. The Pointwise Mutual Information (PMI) between two
words, and is defined as follows (Church & Hanks, 1989):

PMI(word1,word2) = log2(
p(word1&word2)

p(word1)p(word2)
)

Here, p(word1&word2) is the probability that word1 and word2 appear together in
some context, p(word1) is the probability of word1, and similarly for word2. The ratio
between p(word1&word2) and p(word1)p(word2) product is a measure of the degree

32

of statistical dependence between these words.
If we observe a word–context frequency matrix with nr rows and nc columns, where
the i– th row (word vector) is represented as fi∗, j–th column(document–vector) as
f∗ j and frequency of word i in document j as fi j, we can present how frequencies are
weighted for each element of the matrix:

pi j =
fi j

∑
nr
i=1 ∑

nc
j=1 fi j

pi∗ =
∑

nc
j=1 fi j

∑
nr
i=1 ∑

nc
j=1 fi j

p∗ j =
∑

nr
i=1 fi j

∑
nr
i=1 ∑

nc
j=1 fi j

PMIi j = log2(
pi j

pi∗p∗ j
)

In this definition, pi j is the estimated probability that the word wi occurs in the context
c j, pi∗ is the estimated probability of the word wi, and p∗ j is the estimated probability
of the context c j. If wi and c j are statistically independent, then pi∗ p∗ j equals pi j (by
the definition of independence), and thus PMIi j is zero (since log(1) = 0). The product
pi∗p∗ j is what we would expect for pi j if wi occurs in c j by pure random chance.

On the other hand, if there is an interesting semantic relation between wi and c j,
then we should expect pi j to be larger than it would be if wi and c j were completely
indepedent. In that case we should find that pi j ¿pi∗p∗ j, and thus PMIi j is positive. If
the word wi is unrelated to the context c j, we may find that PMIi j is negative.

A variation of PMI is Positive PMI (PPMI), in which all PMI values that are less
than zero are replaced with zero (Niwa & Nitta, 1994). Bullinaria and Levy (2007)
demonstrated that PPMI performs better than a wide variety of other weighting ap-
proaches when measuring semantic similarity with word–context matrices. PPMI is
designed to give a high value to xi j when there is an interesting semantic relation
between wi and c j ; otherwise, xi j should have a value of zero, indicating that the
occurrence of wi in c j is uninformative.

PMI is biased towards infrequent events. Consider the case where wi and c j are
statistically dependent: Then pi j = pi∗ = p∗ j. Hence xi j becomes log(1

pi∗
) and PMI

increases as the probability of word wi decreases.
PMI was tested in many experiments, one of them being the TOEFL synonym test,

where its performance was was found to be better than LSA: 73.75% over LSA’s 64.4%
(36% without the use of SVD) (Turney, 2001).

33

5.5 Calculating similarity

When we have the co–occurrence matrix the question is how to use it? How to extract
useful information from it?

As previously mentioned in Chapter1.2 an n–dimensional vector identifies a location in
an n–dimensional space. However, the vector in isolation does not contain any mean-
ingful information. It is the distance or proximity from other vector representations
of word meanings that establishes a word’s meaning. In the Vector Space Model of
word’s meaning, similarity of words is a geometrical proximity between their vectors.
Thus, the point of the context vectors is that they allow us to define (distributional,
semantic) similarity between words in terms of vector similarity.

There are many ways to compute the similarity between vectors(raw or weighted).
Large similarity produces a small distance in vector space, and opposite. The arguably
simplest vector similarity metric is the scalar (or dot) product between two vectors ~x
and~y, computed as:

sim(~x,~y) = x · y = x1y1 + x1y1 + ..+ xnyn (5.4)

Another simple metric is the Euclidian distance, which is measured as:

distE(~x,~y) =

√
n

∑
k=1

(xi− yi)2 (5.5)

These measures are not ideal to use for word–space algorithms: scalar product fa-
vors frequent words (i.e. words with many and large co–occurrence counts will end
up being too similar to most other words), while Euclidian metrics have the opposite
problem (frequent words will end up being too far from the other words).
A convenient way to compute normalized vector similarity is to calculate the cosine of
the angles between two vectors~x and~y, defined as:

simCOS(~x,~y) =
∑

n
k=1 xiyi√

∑
n
k=1 x2

i

√
∑

n
k=1 y2

i

(5.6)

34

Many other similarity measures have been proposed in both IR (Jones & Furnas,
1987) and lexical semantics circles (Dagan, Lee, & Pereira, 1999). It is commonly said
in IR that, properly normalized, the difference in retrieval performance using different
measures is insignificant (van Rijsbergen, 1979). Often the vectors are normalized in
some way (e.g., unit length or unit probability) before applying any similarity mea-
sure. Popular geometric measures of vector distance include Euclidean distance and
Manhattan distance. Distance measures from information theory include Hellinger,
Bhattacharya, and Kullback–Leibler. Bullinaria and Levy (2007) compared these five
distance measures and the cosine similarity measure on four different tasks involving
word similarity. Overall, the best measure was cosine. Other popular measures are the
Dice and Jaccard coefficients (Manning et al., 2008). Determining the most appropri-
ate similarity measure is dependent on the similarity task, the sparsity of the statistics
and the frequency distribution of the elements being compared.
As you may have noticed– the cosine measure corresponds to taking the scalar prod-
uct of the vectors and then dividing by their norms. The cosine measure is the most
frequently used similarity metric in word–space research, and the one we will use as
well in this thesis. It is attractive because it provides a fixed measure of similarity and
it ranges from 1 for identical vectors, over 0 for orthogonal vectors, to –1 for vectors
pointing in the opposite directions.

35

Chapter 6

Experiments

In the previous chapter we have outlined all the important steps in the process of con-
structing Vector Space Models, and listed all major approaches that we thought to be
important for the task of Word Sense Disambiguation. There are certainly many other
approaches that are employing VSM in some CL or NLP task, but because their do-
main of application is not relevant for the task of interest they where not mentioned
here. This chapter is devoted to describing the full methodology behind the experi-
ments performed in this thesis as well as how this methodology stems from previous
approaches in VSM, in all the relevant phases of the process. First we will describe the
resource that WSD was performed on, Prague Dependency Treebank, which will be
followed with data preprocessing section. In the section after we will describe all the
models implemented for the WSD task. After that the evaluation rationale will be pre-
sented. All experiments were performed on the principle: one model– one experiment.
In the final sections of this chapter results of experiments with the baseline random
guessing scores will be presented.

6.1 The resource

Prague Dependency Treebank (PDT) is project that stemmed from work of a group
of Czech linguists (Institute of Formal and Applied Linguistics1, Institute of Theoreti-
cal and Computational Linguistics2) from Charles University3 in Prague and Masaryk
University4 in Brno. PDT was inspired by the research resulting from the Penn Tree-
bank5 project.

PDT was generated in two major phases. In the first phase (1996–2000), the mor-
phological and syntactic analytic layers of annotation have been completed along with

1http://ufal.ms.mff.cuni.cz/
2http://utkl.ff.cuni.cz/
3http://www.cuni.cz/
4http://www.muni.cz/
5http://www.cis.upenn.edu/ treebank/

36

the preview of tectogrammatical layer annotation available as PDT 1.0. During the
second phase (2000–2004), the tectogrammatical layer of annotation was completed
and PDT 2.0 was done.
The structure of the Prague Dependency Treebank (PDT) consists of three layers:

• morphological layer (lowest)– full morphological annotation

• analytic layer (middle) – superficial (surface) syntactic annotation using depen-
dency treebank; level conceptually close to the syntactic annotation used in the
Penn Treebank

• tectogrammatical layer (highest) – level of linguistic meaning

In our experiments we were using as a resource PDT 1.0 version, instead of PDT 2.0.
Frequencies for each layer in PDT 1.0. are given in the table below:

Layer of annotation # of tokens # of sentences
morphological (total) 1,725,242 111,175

syntactic–analytic (total) 1,507,333 98,263
tectogrammatical (portion) 3,490 203

morphological and syntactic–analytic 1,255,590 81,614

Table 6.1: Frequencies of tags for every layer in PDT 1.0.

Text Sources

The text material that was annotated in PDT contains samples from the following
sources:

• Lidové noviny6 (daily newspapers), 1991, 1994, 1995

• Mladá fronta Dnes7 (daily newspapers), 1992

• Ceskomoravský Profit (business weekly), 1994

• Vesmı́r (scientific magazine), Academia Publishers, 1992, 1993

6http://www.lidovenoviny.cz/
7http://www.idnes.cz/

37

6.1.1 Polysemous words

Czech language is the typical representative of inflectionally rich free–word–order lan-
guage8, which surely doesn’t have a favorable influence on the number of polysemous
words in Czech language. From the training set that represents approximately 9/10 of
the whole PDT 1.0 we present in the table below the number of words that have more
than one meaning. In the left column is given the number of meanings, and in the
right column the number of words that take that number of meanings. For instance,
the eight row informs us that there are two words that take 8 different meanings in
the training set. It has to mentioned that these numbers could be different in another
instance of training, being that the training set is assembled pseudo–randomly before
the training phase. However, for the PDT training set they would not be drastically
different because training is performed on the 90% of the entire set.

of meanings # of types
2 319
3 49
4 19
5 9
6 5
7 1
8 2

Total =404

Table 6.2: Number of types with multiple meanings in the training set

6.1.2 Why PDT 1.0 instead of PDT 2.0?

The question from the title of the section is indeed a perfectly valid and reasonable
question indeed, for any type of research– why use an older version of a resource,
when there is a newer, more complete version of the same resource?

To answer this question we must go back to the task that is in focus of this research.
For the WSD task the important feature of the text on which the system is trained and
tested on is that every different meaning of a word is marked orthographically different.
This information that could be extracted both from PDT 1.0 and PDT 2.0, therefore for
the WSD task one resource is as much sufficiant as the other one. The only difference
between the two treebanks is that PDT 2.0 contains additionally the tectogramaticall
layer, that was not used in this research.

When building(training) Vector Space Models, a researcher might want to include
POS information with every tag. This was not done in our experiments but it was

8http://www.czech– language.cz/index.php

38

always an option supported by the resource, because like previously mentioned, PDT
1.0 is fully annotated on the syntactic level. version of PDT2.0, encoded in Standard
Generalized Markup Language (SGML9), which made it easier to handle during the
preprocessing stage.

6.2 Preprocessing

The preprocessing phase involves several several sub–stages. As we have described
theoretical approaches to these steps in length in previous chapters, we have decided to
explain all the preprocessing steps performed in experiments in this chapter. Prepro-
cessing involves following sequential steps: text extraction from PDT files along with
relevant tags, text normalization, stemming and filtering.

Text extraction
Text used during training and testing phase of VSM was extracted from PDT files

and put into a single file. In order to make the implementation applicable for other
resources other than PDT we have made a design decision that the implementation uses
this single file as its input. Apart from the single–meaning words, the system extracts
multiple meaning words, and represents differently each separate meaning. In PDT1.0
if a word has multiple meanings, meaning of that word is given in a separate tag, in the
following format: word–index number of meaning. Index number increments as the
word has more meanings.

Therefore, the tagging step in this case was simplified: every multiple–meaning

word was represented with its orthographic representation meaning in context, which
was simply extracted from the Treebank. An example of a sentence extracted from
PDT is given below:

(6.1) Krumbachová práci přijali podle vlastnı́ch slov ” v hodině dvanácté ”.

Krumbach has accepted the work ”in the last minute” .

Word’s meaning in context was given as it was represented in PDT.

Text normalization
Czech language has spelling variants– words that are orthographically slightly dif-

ferent but are actually identical on every other level of analysis, for example words like
abcházská and abchazská. Many foreign names have variant spellings, especially in
marking the vowel length. Spelling variants should not be counted as different types so
it was therefore decided to normalize all characters with diacritics marking the vowel

9http://www.w3.org/MarkUp/SGML/

39

length into characters without them.
As a measure of normalization that would reduce distributional sparsity of words all
words were lowercased. Punctuation marks were also filtered from the entire corpus,
so that the models could be trained on terms only.

Stemming
Stemming process was detailed in the Chapter 5.1, as well as how it is different

from lemmatization. To re–iterate: lemmatization is more precise than stemming be-
cause it picks up lexical variants that are not orthographically similar to the stem. At
the same time it is much harder to implement than a stemmer, because it requires uti-
lization of a lexicon.

Although a good lemmatizer was built at UFAL10, it was not used in this system.
During preliminar experiments with cosine-weighted co-occurrence matrix it was ob-
served that the improvement in precision when applying lemmatizer over stemmer is
not significant. It was therefore assumed that precision would not be improved in other
models experimented with as well. A stemmer built for the Czech language made at
University of Neuchatel11 was used in preprocessing phase. An example of text that
was extracted, normalized and stemmed is given below:

(6.2) krumbach prak přijmout–2 podle–2 vlastni–1 slov ” v–1 hodin dvanact ”.

Krumbach has accepted the work ” in the last minute” .

In example above we can see how a brute force of stemming can sometimes fail be-
cause it does not employ linguistic analysis. Czech noun práce, here in its inflected
form práci has fallen under a stemmer’s rule for palatalisation which converts endings
like –ci, –ce, –či, –č into –k, which is wrong. However, as later experiments will prove,
this does not affect the algorithm’s precision in a bad way.

Word Filtering
Two effective filtering criteria were applied (optionally) in our experiments for the
purpose of reducing the sparsity of vectors and improving overall precision: POS and
low frequency counts. A list of Czech stop words was compiled(Apendix A) in order
to filter out words that belong to closed grammatical classes. Both types of filtering
were experimented with, in order to observe how their tunning influences the overall
precision of system.

10http://ufal.mff.cuni.cz/pdt/Morphology and Tagging/Morphology/index.html
11http://members.unine.ch/jacques.savoy/clef/CzechStemmerLight.txt

40

6.3 Train and test sets

After extracting the text from PDT and optional preprocessing normalization per-
formed on text, text’s sentences are randomized and split into 3 separate files: train,
testDev, testFinal. Training set holds 90% of the number of sentences in the whole set,
while testDev holds about 5% and testFinal about 5%. First test file (testDev) is used
to evaluate during training phase, while the second (testFinal) is used for evaluation
in the testing phase.

Below is given an overview of the number of types and tokens for each of these
files, before and after preprocessing applied to them:

train set test devel set final test set
#types #tokens #types #tokens #types #tokens

no preprocessing 138098 1521180 6447 20536 19858 80514
merge variants 137448 1521180 6444 20536 19824 80514
stemming 71311 1521180 4965 19054 20536 80514

Table 6.3: Influence of the preprocessing method on the size of training and test token
count

We can observe that stemming reduces the vocabulary size much more than merg-
ing lexical variants. This fact will reflect on the precision in the evaluation phase. The
number of types decreases with the application of an individual normalizer, while the
number of tokens stays the same in all sets.

6.4 Document size

After preprocessing phase, the next step is to build the term–document matrix. This
step is generalized for all the models we will be training. This is because the term–
document matrix is a simple frequency matrix, and (optional) normalization of fre-
quency counts or dimensionality reduction takes place in the next phase. Crucial prop-
erty of this phase is the size of the document in the term–document. Previous approach-
es were described on the use of context, ranging from word–level to paragraph–level.
Document size used in the following experiments will be:

• five sentence paragraph

• three sentence paragraph

• one sentence paragraph

• three neighboring words of preceding and succeeding context

• two neighboring words of preceding and succeeding context

41

• one neighboring word of preceding and succeeding context

To further clarify what exactly do last three items in the list mean, we will point out
that the since the task at hand is disambiguation of polysemous words. Therefore,
polysemous meanings should be in focus of every document. We have decided to
conduct experiments by partioning sentences into fragments where in the center of
every such fragment is a polysemous meaning, surrounded by symmetrical window
length of varying size. An example is given for a one neighboring word of preceding
and succeeding context. For a sentence:

(6.3) Krumbachová práci přijmout–2 podle–2 vlastnı́–1 slov ” v–1 hodině dvanácté ”.

Krumbach has accepted the work ” in the last minute” .

the corresponding fragments extracted from it are:

(6.4) práci přijmout–2 podle–2

(6.5) přijmout–2 podle–2 vlastnı́–1

(6.6) podle–2 vlastnı́–1 slov

(6.7) slov v–1 hodině

This kind of fragmentation increases the number of documents in the co-ocurrence
matrix. The rationale behind this was that centering documents around polysemous
encounters will help in training the model to be better. The idea was that in this way
the model will become ”more sensitive” for contexts in which the ambiguous words
appear, and will assign correct meanings to their rightful contexts better.

Choice of document size during model training is one of the crucial features of
VSM, and can very much influence the results of the model’s performance, through
the size of vocabulary. Size of vocabulary is influenced by preprocessing method ap-
plied as well the size of the document. Below is given a table that shows how the
choice of document size influences the size of vocabulary, for the corpus that was not
preprocessed.

#index ambiguous words other words
document size documents #types #tokens #types #tokens

5 sentences 15732 3513 4721 128676 1155781
3 sentences 26220 3334 4417 129618 1166559
1 sentence 78660 2116 2660 130620 1216412

3+3 231673 2116 2660 105225 1433731
2+2 231673 2116 2660 94018 1088417
1+1 231673 2116 2660 70772 700799

Table 6.4: Influence of document size on the volume of vocabulary

42

With the word–level document size we can observe that number of types is smaller
than in sentence –level documents. This is due to existing gaps between documents
in matrix with word–type document. Number of tokens can be bigger which we see
in the case of 3+3 document size, because in some places, where two occurrences
of ambiguous words stand next to each other, there will be an overlap which will be
counted.

6.5 Normalization of the frequency counts and dimen-
sionality reduction

Normalizing the frequency counts was done in two ways in experiments: the traditional
TF–IDF weighting, and the enthropy–based weighting as prescribed in LSA. To re–
iterate the formulas again:

fi j = T Fi j ·DFi ·S j (6.8)

,where T Fi j is the frequency of term i in document j, DFi is some function of the
number of documents term i occurs in (DF for document frequency), and S j is a nor-
malizing factor, usually dependent on the length of document(s for scaling). DF is
usually computed as:

IDF = log
D

DFi
(6.9)

, where D is the total number of documents in the whole corpus.

Another frequency weighting performed was the entropy–based weighting as given
in the formula below:

Ei j = 1+
∑ j Pi jlogPi j

logD
(6.10)

where D is the total number of documents in the collection. Pi j is given with a formula

Pi j =
T Fi j

fi
(6.11)

43

where T Fi j is the frequency of term i in document j and fi is the frequency of term i in
the whole document collection.

The last model that was experimented with is created through the use of dimen-
sionality reduction technique– Random Indexing. Frequencies counts of its term–
document matrix were not normalized, due to the nature of its generation. Detail
description of RI is given in chapter4.5. What should be restated is that:

• It builds term vectors by adding pseudo–random vectors assigned to documents
in the corpus.

• It uses fixed dimensionality for both term and document vectors, which means
that new data do not increase the dimensionality of the vectors.

• It uses implicit dimensionality reduction, since the fixed dimensionality is much
lower than the number of contexts in the data. Producing context vectors with
RI is only O(wr), since the method is not reliant on the initial construction of the
co-occurrence matrix.

• It is incremental, which means that the context vectors can be used for similarity
computations even after just a few examples have been encountered.

More details on RI can be found in Chapter4.5.
The two approaches to weighting the co–occurrence matrix(TF–IDF and PMI) and

one approach to dimensionality reduction (RI) are considered as fundamentally dif-
ferent. That is why the experiments are organized around these models, with other
parameters like preprocessing, document size, and evaluation context size and num-
ber of word meanings threshold used in the evaluation(both explained in following
sections) are changed to investigate how they influence the overall performance.

6.6 Evaluation context size

After the co-occurrence matrix is built and frequencies of its elements are normalized
with some value (TF–IDF or PMI), or the matrix’s dimensionality is reduced (RI) our
model is ready to be tested out. This means that now for every word in the dictionary
we have a vector that is in a way its representation. A unique methodology is then ap-
plied for each model in order to calculate the measure of appropriateness for a current
word meaning against the context it is found in. Size of the context around the current
meaning in question is experimented with and in our experiments takes values from
1 to 7, to determine the influence of symmetric context size on the overall accuracy.
Evaluation context size is the number of words taken from preceding and succeeding
context of the occurrence of ambiguous word. For instance, for the sentence:

44

(6.12) Krumbachová práci přijmout–2 podle–2 vlastnı́–1 slov ”v–1 hodině dvanácté”.

Krumbach has accepted the work ” in the last minute” .

, corresponding contexts for the evaluation context size set to 1 extracted from it are:

(6.13) přijmout–2 : práci podle–2

(6.14) podle–2: přijmout–2 vlastnı́–1

(6.15) podle–2 slov

(6.16) slov hodině

In the implementation level, the way the most appropriate meaning for the context
is calculated in two passes:

• The test set is traversed, in order to extract all the contexts for all the polysemous
words encountered in testing.

• Extracted contexts are traversed, and for every different meaning the appropri-
ateness for that word meaning in context is calculated. The meaning that has the
highest score is selected as the true meaning by the system.

Two things here are of importance: the way context vectors is built, and the way dis-
tance between context vector and meaning vector is calculated. Context vector in all
cases (TF–IDF, PMI and RI) is built by superposition of all the term vectors consti-
tuting that context. If the term was not encountered during training it is skipped. If
context vector does not have any terms inside it then that context is skipped during
evaluation. This means a difference in size of vocabulary made in training can influ-
ence the number of contexts being evaluated, and therefore the test set size.

Distance between context and meaning vector is calculated as a cosine distance in
all cases.

To repeat, cosine distance is the angle between two vectors~x and~y, defined as:

simCOS(~x,~y) =
∑

n
k=1 xiyi√

∑
n
k=1 x2

i

√
∑

n
k=1 y2

i

(6.17)

6.7 Evaluation metrics and baselines

In this section evaluation metrics and baselines used in this research will be presented,
employed for in vitro evaluation of WSD systems (Navigli 2009). The evaluation the

45

WSD system as a module embedded in applications (called in vivo or end-to-end eval-
uation) was not conducted in this research.

All sentences extracted from the PDT and annotated to distinguish different meanings
of polysemous words are divided into three sets (files): training, test development, and
test final. Training takes about 9/10 of the entire set, while the rest is distributed evenly
between two test sets. During the training phase the model is trained on the training
set, and evaluated on the test development set. In the evaluation phase training and
test development sets are merged, the model is trained on them, and evaluated on the
final test set, which represents the unseen portion of data. This ensures an unbiased
evaluation of every model.

Given the individual training and test sets coverage C is defined as the percentage
of items in the test set for which the system provided a sense assignment:

C =
#answers provided

#total answers to provide
=

T P+FP
T P+FP+FN

(6.18)

If the systems provides an answer for every test instance then C = 1. The precision

P of a system is computed as the percentage of correct answers given by the system. If
the model ”calculates the correct meaning” properly,
#correct answers provided is incremented. The total number of answers given by the
system is counted as well, and then precision is calculated as:

P =
#correct answers provided

#answers provided
=

T P
T P+FP

(6.19)

Precision determines how good are the answers given by the system. Recall R is de-
fined as the number of correct answers given by the automatic system over the total
number of answers to be given:

R =
#correct answers provided
#total answers to provide

=
T P

T P+FP+FN
(6.20)

If the coverage of the system is absolute (C = 1) then recall and precision will be equal.
From these two values (precision and recall) an F–measure is calculated according to

46

formula:

F−measure =
1

α

P + 1−α

R

(6.21)

where α is the weight factor which in experiments performed here takes the value of
0.5, in order to give equal weights to both precision and recall. As it is customary for
WSD experiments (Navigli 2009), all results in the experiments are presented in as
Precision/Recall pairs, though an alternate output in the form of F–measure/Coverage
could be enabled as well by the system.

Baseline.
As a baseline result, random guessing is calculated for every test set used in eval-

uation. Random baseline is the probability of a random choice of a sense from those
available for each polysemous word wi . Overall random precision is then calculated
as:

RandomP =
1
n

n

∑
i=1

1
Senses(wi)

(6.22)

where Senses(wi) is the number of senses that a wi can have.

6.8 Tuning

Number of meanings that polysemous words encountered in the corpus can vary from
1 to 8 meanings. The actual number of meanings follows Zipf’s distribution, where
ranks are the number of meanings word can take (1 to 8) and numbers are the number
of polysemous words that take that number of meanings. To illustrate this with a simple
example: number of words that take 2 meanings in PDT 1.0 is 329. Full table is given
in chapter 6.1.1.In the figure 6.1 is given a plot to illustrate how meaning’s counts and
word types conform to the Zipfian distribution.

Three types of experiments for each model were performed, in order to tune each
model to achieve its best performance.

6.8.1 Tuning preprocessing parameters

Each of the preprocessing measures mentioned before (lowercasing, filtering words
that belong to the closed class group, stemming and merging of lexical variants in
Czech language) was experimented against the different document size (5,3,1 sentence
document and 3+3, 2+2, 1+1 words surrounding polysemous word) to determine for
which parameters the model achieves the highest accuracy. These models were eval-
uated only for highly polysemous words, at the fixed size of the evaluation context
size. In order to able to test how models really perform we train models only on highly

47

Figure 6.1: Distrubution of number of polysemous types per number of meanings

polysemous words, the ones that have 5 or more meanings. For instance, there are 19
polysemous words in the test development set that can take 5 to 8 meanings.

6.8.2 Tuning evaluation context size

When the best parameters for preprocessing and document size (in the term–document
matrix) are discovered, the next tuning phase experiments with different sizes of Eval-
uation Context against these best paremeters. There are two motivations for this se-
quence of tuning experiments: first, the preprocessing and building the matrix come
before matrix frequency normalization and evaluation. Second, after the best parame-
ters in the preprocessing stage are found, we can observe how this (best) model behaves
with different sizes of context (from which the evaluation context vector is construct-
ed).

6.8.3 Evaluation on polysemous words of different level

Words whose orthographic representation can take on a large number of meanings can
be considered as ”highly polysemous”, while words that can take on a small num-
ber of meanings(like two or three) can be regarded as ”not highly polysemous”. As
explained, numbers of occurrences of polysemous words conform to the Zipfian dis-
tribution, which means that there is only a small number of highly polysemous words.
Therefore, when experimenting with such words test set is not overly large, but if other,
less polysemous words are included, the number of test set instances rise. The purpose

48

of this experiment is to investigate how do models handle more and less polysemous
words. Ranges from 2 to 8 meanings per word are taken into consideration.

49

6.9 TF–IDF experiments

As previously mentioned experiments are organized around 3 different different Vector
Space Models, based on the weighting of the matrix elements or dimensionality reduc-
tion technique. Matrix reduction technique used for this model was TF–IDF (described
in Chapter 6.5). For all the models experiments were performed on every parameter
for a range of meaningful values. Parameters are grouped according to the phase in
which they were used in:

• Tuning preprocessing parameters (preprocessing method and document size in
co-occurrence matrix)

• Tuning evaluation context size

• Evaluation on polysemous words of different level

These rounds are ordered sequentially in order to ensure best possible tuning for the
model. Final step represents an evaluation on words with different degree of ambiguity
attached to them.

6.9.1 Tuning preprocessing parameters

First, no preprocessing method was applied on the train and test set. The size of the
document in the term–document co- occurrence matrix was changed in order to ob-
serve the influence on the precision. A threshold number of meanings to be evaluated
on was set to 5, which means that other polysemous words that had less than 5 mean-
ings encountered in training were discarded for this test. There was 177 polysemous
words that appeared in 1861 occurrences, and for this test set a number of test instances
was discarded for having a low number of meanings. The reason for discarding is that
this round of tests is aimed at finding the best preprocessing method, so therefore a full
number of test instances was not necessary. An evaluation context size was fixed to 3,
which means that a symmetric window 3 preceding and 3 succeeding words were used
to build a vector which was used for classification. First column in the table displays
the preprocessing method used on the entire corpus (except on the test instances) used
in the phase of constructing co–occurrence matrix. To ensure that the best preprocess-
ing method is chosen, regardless of the document size used in co–occurrence matrix,
different size of documents were observed. Document sizes that were experimented
with are: 5 sentence document, 3 sentence document, 1 sentence document, and 3+3,
2+2, 1+1 symmetric word windows around polysemous word. For baseline random
precision was calculated for every individual test. Random precision represents the
precision of the system when it is picking a random meaning for a polysemous word
that is tested. Precision and recall (in %) for every document size is presented in

50

the tables below. First a sentence–level document size was experimented with. This
means that for the units from which the frequencies were calculated from (for the co-
occurrence matrix) the paragraphs of size 1, 3 and 5 sentences. Best results in all the
tables are bolded.

preprocessing 1 sentence 3 sentences 5 sentences random
P R P R P R precision

NO 92.31 100 94.57 100 95.67 100 11.36
LOWCASE 90.6 100 91.45 100 92.31 100 11.36
STOP 89.74 100 93.16 100 94.87 100 11.36
STEM 90.6 100 96.58 100 95.73 100 11.36
MERGE 90.6 100 94.87 100 95.72 100 11.36

Table 6.5: Precision and Recall using various individual preprocessing techniques,
sentence level document size

Random precision is the same regardless of the preprocessing technique applied
due to the fact that they were applied to all tokens except the polysemous words. This
had helped preserve the size of the test set, which reflected on the consistent number of
random precision in tests. Recall is 100 because all test instances were encountered in
training and the system was able to provide an answer. This is not necessarily always
the case, it depends on the pseudo–random split on training and testing sets whether
an instance will be encountered during training.

It seems that individual preprocessing technique that yields best results is stemming,
though lowercasing and merging of Czech variants give the most consistent results.
To ensure the validity of these findings, same test was repeated for the word–level
document size. Results are given in the table below.

preprocessing 1+1 word 2+2 words 3+3 words random
P R P R P R

NO 90.6 100 94.87 100 95.73 100 13.96
LOWCASE 91.45 100 95.73 100 95.73 100 13.96
STOP 89.74 100 93.16 100 94.87 100 13.96
STEM 90.6 100 96.58 100 95.73 100 13.96
MERGE 93.58 100 98.17 100 98.17 100 13.76

Table 6.6: Precision and Recall of TF–IDF model, no preprocessing, word level docu-
ment size

Evaluation of preprocessing technique on the word level document size gives ap-
proximatively similar results, though it can be observed that merging of Czech variants
gives slightly better results in this case. Lowercasing filtering of Czech stop words is
not that far behind. In the next round of experiments, combinations of best individual

51

techniques were tested to find out whether an improvement is obtained. Results are
given in the tables below.

preprocessing 1 sentence 3 sentences 5 sentences random
P R P R P R precision

STOP+LOWCASE 90.6 100 92.31 100 91.45 100 13.96
STEM+MERGE 91.45 100 91.45 100 91.45 100 13.96
STEM+LOWCASE 91.45 100 91.45 100 91.45 100 13.96
STOP+MERGE 92.31 100 93.16 100 93.16 100 13.96
STEM+STOP+LOWCASE 91.45 100 93.16 100 92.31 100 13.96
STEM+STOP+MERGE 91.45 100 93.16 100 92.31 100 13.96
STOP+MERGE+LOWCASE 90.6 100 92.31 100 91.45 100 13.96
STEM+STOP+ 91.45 100 93.16 100 92.31 100 13.96
+MERGE+LOWCASE

Table 6.7: Precision and Recall using combinations of preprocessing techniques, sen-
tence level document size

It seems that the combination of filters reduces the word space too much, which
causes the overall precision to deteriorate a bit. It is also interesting to see that appli-
cation of combination of 3 techniques yields slightly better results than the application
of just 2 techniques. If we look at the last column, where all 4 preprocessing tech-
niques were tested, we can see that results are the same as for the combinations of 3
techniques which do not include merge of Czech lexical variants. It would seem that
this technique does not contribute any improvement when in combination with other
preprocessing techniques.

Same combinations were tested out on the word level document size, in order to
confirm the findings from the previous table. Results are given in the table below.

preprocessing 1+1 word 2+2 words 3+3 words random
P R P R P R

STOP+LOWCASE 91.45 100 94.87 100 95.73 100 13.96
STEM+MERGE 90.6 100 96.58 100 95.73 100 13.96
STEM+LOWCASE 90.6 100 96.58 100 95.73 100 13.96
STOP+MERGE 89.74 100 93.16 100 94.87 100 13.96
STEM+STOP+LOWCASE 92.31 100 96.58 100 95.73 100 13.96
STEM+STOP+MERGE 92.31 100 96.58 100 95.73 100 13.96
STOP+MERGE+LOWCASE 91.45 100 94.87 100 95.73 100 13.96
STEM+STOP+ 91.45 100 94.87 100 95.73 100 13.96
+MERGE+LOWCASE

Table 6.8: Precision and Recall of TF–IDF model, no preprocessing, word level docu-
ment size

Experiments on combinations of preprocessing techniques for different word level
document sizes showed approximatively the same results as the ones on the sentence
level document size. This led to the same conclusion as inferred before– there is a slight
improvement in applying 3 or 4 preprocessing techniques, though when compared to
applying individual technique the results are still slightly worse . An explanation for
this could be that when the word space shrinks too much, TF–IDF weighting becomes

52

to similar for different meanings of tested polysemes, and the algorithm starts to make
false predictions.

Although results achieved without any preprocessing whatsoever are good ones it
should be noted that the size of the test set is not that large and that more than 60% of
test set data was discarded as unsuitable for this experiment for having to few meanings
attached to them. Best achieved result without preprocessing was accomplished for
1 sentence document size and 2+2 word window for sentence level and word level
document, respectively. Again, the sole purpose of this phase of experiments was to
establish which preprocessing method (or combination of methods) is the best one.

Lowercasing produced a somewhat smaller vocabulary over the entire corpus, which
resulted in merging several word types. Still, the accuracy of the algorithm was at a
very high level.

Filtering words that belong to closed class of words gave the best results out of all
preprocessing approaches. Precision and recall were at a very high level. Moreover,
it reduced the word space, which considerably influenced the time of computation. If
it was to be compared with the test of the set that was not preprocessed, it can be ob-
served that testing in this case was performed 2 times faster. This is viewable from
the logs (see User Manual). Stemming and merging variants produced good results
as well, at a high level of test set size. All models perform outstanding compared to
random prediction.

Conclusion. The sole purpose of this round of experiments was to determine the
best preprocessing method (or combinations of methods) for the TF–IDF model, for
different sizes of document in the co-occurrence matrix. First, it can be observed that
preprocessing with stemming or merging Czech lexical variants produced the best re-
sults, though filtering of Czech stop words and lowercasing were not far behind. Com-
bination of various preprocessing methods produced somewhat weaker results. This
can be explained that after a lot of token merging and cleaning, the word space was
for this test data (PDT) overly reduced. As a result, the TDF–IDF weight in term vec-
tors became more similar than before. This prevented the model to perform correct
discrimination between all meanings of an ambiguous word in a given context.

The last thing which can be observed for all the values of parameters is the doc-
ument size which produced best results. For TF–IDF model a golden middle seems
to yield best results, somewhere between 1 sentence document, and 3+3 symmetric
window around ambiguous word.

53

6.9.2 Tuning evaluation context size

Evaluation context size is the size of symmetric window of context which is taken
into consideration when the polysemous word is encountered during prediction of the
correct meaning for the word in context. Words that are found within the context
window are used to form a context vector. This context vector’s distance is measured
against every vector of each of the meanings for the polysemous word in question.
Sizes of evaluation context size experimented with range from 1 to 7. In order to have
a larger test set, number of meanings that a word can take was lowered to 3 instead
of 5 like in the preprocessing experiments. As concluded in the previous section,
best preprocessing methods were stemming and merging (individually), for which the
document size was set to 1 sentence, or 3+3 surrounding words, respectively. Therefore
they were experimented here with in this phase of tuning. Results are given in the table
below, with best results in bold.

1+1 2+2 3+3 4+4 5+5 6+6 7+7
STEM (1 sentence) 93.09 94.69 93.93 93.47 93.02 93.02 92.87
MERGE (3+3 words) 93.72 95.26 94.84 94.69 94.99 94.99 93.93

Table 6.9: Precision of TF–IDF model for stemming with document size set to 1 sen-
tence and merge with document size set to 3+3, with various evaluation context sizes

Because the same division training and test development set were used as in tun-
ing preprocessing methods Recall was 100%, and therefore it was not displayed in the
table above. Random precision for the number of meanings threshold set to 3 was
20.42%. Random precision was higher than in the case of tuning preprocessing meth-
ods due to the fact that the number of meaning threshold was lowered which resulted
with testing more words that have higher random accuracy.

Conclusion.
First thing that can be noticed is that merging of Czech lexical variants, with document
size set to 3+3 neighboring words around ambiguous word outperforms stemming with
document size set to 1 sentence, for every value of evaluation context size. It is also
interesting to observe that for both test cases the best evaluation context size is the 2
words surrounding the test word. In the figure below it is observable that the precision
peaks at around evaluation context size (ECS) set to 2, and then it deteriorates as ECS
is increased.

Variance in both sets of results is very low, hence there is not much difference in
which context size will be used for final evaluation of all occurrences of polysemous
words.

54

Figure 6.2: Precision against evaluation context size, for preprocessing method set to
merge of Czech lexical variants and document size set to 3+3

6.9.3 Evaluation on polysemous words of different level

So far we have been training the model on highly polysemous words, the ones that
have 6 or more meanings attached to them. Random prediction on these highly poly-
semous words is very low, therefore they present a better, more unbiased test set than
for instance words that have only 2 meanings, and for which random accuracy is 50%.
We will now observe the accuracy of the model set with best parameters to see how it
performs on different sets of words with the same number of meanings. This means
that for instance, in the first column are results of experiments performed on words
with 2 meanings attached to them. Training is performed on the merged set of training
and testing development, and testing is done on the unseen set.

2 3 4 5 6 7 8
Precision 92.49 97.08 87.87 97.57 64.71 98.49 46.15
Recall 99.82 99.85 99.47 99.72 84.62 99.13 60
Random Precision 50 33.33 25 20 16.67 14.29 12.5

Table 6.10: Precision and Recall of TF–IDF model, closed class filter, document size 1,
evaluation context size 3+3 measured against words with different number of meanings

Conclusion.
We can see that for every group of polysemous words TF–IDF model performs well,
where recall is high. The lowest scores were noted on words with 6 and 8 meanings,
where recall is 84% and 60% respectively. Another thing that characterizes these low

55

scores is that the test were performed on a low number of instances- there are 42 in-
stances in the final test set of words with 6 meanings, and only 10 instances of words
with 8 meanings. In all other cases number of instances was exceeding 500 test in-
stances, which makes their results a more reliable estimator of the model’s accuracy.
Precision is reasonably high for all and though it would be expected to be lower for
words with more meanings, like in the case of words with 7 meanings, out of 508 test
instances only 11 were misclassified which resulted with the highest precision on this
test set, of 98.49%.

Overall, it can be said that TF–IFD model performed well at this task.

56

6.10 PMI experiments

Experiments with PMI model are like the ones with TF–IDF, grouped in three rounds
in order to tune the model for the best performance. PMI weighting should increase
sensitivity of the word to its correct context. The theory behind PMI is explained in
Chapter 5.4.3.

• Tuning preprocessing parameters

• Tuning evaluation context size

• Evaluation on polysemous words of different level

These rounds are ordered sequentially in order to ensure best possible tuning for the
model. Final step represents an evaluation on words with different degree of ambiguity
attached to them.

6.10.1 Tuning preprocessing parameters

Being that reasons for using certain values for preprocessing methods parameters were
thoroughly described in previous section it will not be done again here. From tun-
ing the preprocessing parameters for TF–IDF we have a general idea which values for
document sizes and preprocessing methods give best values. We will thus be concen-
trating on a smaller set of values for preprocessing parameters. Results will be given
in summed tables for all preprocessing methods, measured against different document
sizes. Other parameters are fixed like in TF–IDF tuning experiments: evaluation con-
text size is set to 3, which means that a symmetric window 3 preceding and 3 succeed-
ing words were used to build a vector which was used for classification. The threshold
number of meanings was set to 5, which means that every word with the number of
sense attached to them that is lower or equal to 5 is discarded from the evaluation. Like
before, first was experimented with the individual preprocessing methods. Below are
given tables for the document size of sentence level. Best results in all the tables are
given in bold.

preprocessing 1 sentence 3 sentences 5 sentences random
P R P R P R

NO 92.31 100 94.83 100 95.27 100 13.96
LOWCASE 98.01 100 95.01 100 95.17 100 13.96
STOP 92.31 100 94.72 100 93.86 100 13.96
STEM 91.45 100 91.45 100 91.45 100 13.96
MERGE 92.31 100 94.83 100 95.27 100 13.96

Table 6.11: Precision and Recall of PMI model, individual preprocessing methods,
sentence level document size

57

Total number of not–discarded test set instances was 1174. Random precision was
the same for all test cases, as was recall (100%). It seems that lowercasing produced
the best result. All other individual preprocessing methods achieved slightly better
(like the Czech stop word filtering), or slightly worse results (stemming) than with
when no preprocessing method was applied to the training set. It is interesting to see
that merging of Czech variants brought no improvement whatsoever. Same tests were
repeated for the word level document size.

preprocessing 1+1 word 2+2 words 3+3 words random
P R P R P R

NO 90.6 100 94.87 100 95.73 100 13.96
LOWCASE 94.47 100 97.49 100 97.41 100 11.47
STOP 89.74 100 93.16 100 94.87 100 13.96
STEM 90.6 100 96.58 100 95.73 100 13.96
MERGE 90.6 100 94.87 100 95.73 100 13.96

Table 6.12: Precision and Recall of PMI model, individual preprocessing methods,
word level document size

In the next round of experiments designed for tuning, combinations of preprocess-
ing methods were experimented with. First the combinations of methods were tried,
for different values of sentence level for document size.

preprocessing 1 sentence 3 sentences 5 sentences random
P R P R P R precision

STEM+LOWCASE 98.01 100 97.93 100 98.01 100 11.47
STOP+MERGE 92.31 100 94.72 100 93.86 100 13.02
STOP+MERGE+LOWCASE 97.84 100 95.56 100 94.24 100 11.47
STEM+STOP+ 97.93 100 97.93 100 98.01 100 11.47
+MERGE+LOWCASE

Table 6.13: Precision and Recall using combinations of preprocessing techniques, sen-
tence level document size

It seems that the combination of more preprocessing methods achieves an increase
in accuracy with the PMI model. Also, It would appear that merging of Czech lexical
variants does not contribute in this combination of methods. Contrary to it, combina-
tions where lowercasing appears seem to be giving good results. Lowercasing proved
its mettle in individual tests of preprocessing methods. Then the same test cases were
repeated, only this time for the document size word level values. The reason why these
test cases are repeated is to validate the findings from the previous table.

It can be observed that best results for the PMI weighted model are achieved when
applying lowercase transformation on training and test sets (with the exception of am-
biguous words), at the document size set to symmetric window of size 3. Test set
size was fixed at 1913 instances, out of which 1072 were tested. Lowercasing was

58

preprocessing 1+1 word 2+2 words 3+3 words random
P R P R P R precision

STEM+LOWCASE 95.68 100 97.93 100 97.93 100 11.47
STOP+MERGE 89.74 100 93.16 100 94.87 100 13.96
STOP+MERGE+LOWCASE 93.95 100 97.06 100 97.06 100 11.47
STEM+STOP+ 95.25 100 97.93 100 97.67 100 11.47
+MERGE+LOWCASE

Table 6.14: Precision and Recall using combinations of preprocessing techniques,
word level document size

established to be the best individual preprocessing method (98% accuracy at the 13%
random accuracy, with document size set to 1 sentence). Also in combination with
stemming it yielded very good results (97.9& at 12% random accuracy). With the PMI
model, there is general conclusion that combination of preprocessing methods actual-
ly gives better results. It seems that with reduction of the word space, PMI weights
become better discriminators of context, when the cosine distance is measured against
ambiguous word and its context.

6.10.2 Tuning evaluation context size

Evaluation context size is the size of symmetric window of context which is taken into
consideration when the polysemous word is encountered during testing. Words that
are found within that context window are used to form a context vector. This context
vector’s distance is measured against every vector of each of the meanings for the
polysemous word in question. Sizes of context vector experimented with range from
1 to 7. In order to have a larger test set, number of meanings that a word can take
was lowered to 5 instead of 6 like in the preprocessing experiments. Preprocessing
performed was lowercasing of words, and document size was set to 1 sentence. Results
are given in the table below, and the best result is given in bold.

1+1 2+2 3+3 4+4 5+5 6+6 7+7
LOWCASE 95.54 97.75 98.01 97.93 97.93 97.93 97.93

Table 6.15: Precision and Recall of PMI model, combined preprocessing methods,
word level document size

Recall is 100% for all test cases, therefore it was not displayed in the table. Random
prediction is also the same. It can be observed that the best evaluation context size is
3+3, and that after it peaks at that point it converges to a stable value for all wider
evaluation contexts.

Conclusion.
PMI achieved also very good scores. The best preprocessing method was lowercasing,

59

at 1 sentence document size. The best evaluation context size was found to be 3+3
neighboring words.

6.10.3 Evaluation on polysemous words of different level

We will now observe the accuracy of the model set with best parameters to see how it
performs on different sets of words with the same number of meanings. This means
that for instance, in the first column are results of experiments performed on words
with 2 meanings attached to them. Training is performed on the merged set of training
and testing development, and testing is done on the unseen set.

2 3 4 5 6
Precision 92.17 87.39 64.85 76.77 94.55
Recall 99.81 99.22 98.17 95 96.3
Random Precision 50 33.33 25 20 16.67

Table 6.16: Precision and Recall of PMI model, lowercase preprocessing , document
size 1, evaluation context size 3+3 measured against words with different number of
meanings

PMI model also achieves nice results for all groups of ambiguous terms with dif-
ferent number of meanings.

Conclusion.
It can be seen that PMI model does not provide predictable results when observed
while testing on different levels of ambiguity. For instance, in the Table 6.16 it can be
seen that F–measure seems to deteriorate with the number of meanings attached for a
word starting from 2, but that it jumps again with words that have 6 meanings.

Overall, it can be said that TF–IFD model performed well at this task.

6.11 RI experiments

Random Indexing experiments were performed in order to see how does the matrix re-
duction influence on the overall accuracy of the algorithm. No weighting was applied
on the co–occurrence matrix. The efficacy of the RI to retrieve semantically similar
words is very high. The incentive for applying a matrix reduction technique on the
WSD task was that the representation of the ambiguous word as a random vector could
actually be close in the vector space to a familiar context, that is context in which it of-
ten appears. On the other hand, the algorithm should produce low scores for the target
word against an unfamiliar context. Experiments with RI model are also, grouped in
three rounds in order to tune the model for the best performance. In the end best model
is evaluated on ambiguous words with different counts of meanings attached to them.

60

• Tuning preprocessing parameters

• Tuning evaluation context size

• Evaluation on polysemous words of different level

What is different with RI model is that term–document matrix is built incremen-
tally, by adding initially assigned pseudo-random vectors of documents to initially
pseudo-random vectors of terms. No weighting is applied to elements of the matrix.
Matrix itself is of much less dimensionality than the standard co-occurrence matrix,
and is also much less sparse (considerably lower count of zero elements). Dimension
of random vectors is preset before the construction of matrix and in our experiments
has that value of 300.

6.11.1 Tuning preprocessing parameters

Like with the models tested before different document sizes and preprocessing meth-
ods were tunned for the best performance of the RI model.

preprocessing 5 sentences 3 sentences 1 sentence random
P P P

NO 69.21 70.73 71.1 13.6
LOWCASE 72.4 73.52 74.54 13.6
CLOSED CLASS 70.76 72.52 76.37 13.6
STEM+MERGE 71.5 72.21 74.19 13.6

Table 6.17: Precision and Recall of RI model, various preprocessing methods, sentence
level document size

Recall and random prediction were the same for all document sizes, hence they
were not displayed in the table above. This aggregated table shows both individual and
combined preprocessing methods. Same test cases were repeated for the document
size of word level.

preprocessing 3+3 words 2+2 words 1+1 word random
P P P

NO 71.36 72.51 74.37 13.6
LOWCASE 72.4 73.52 74.54 13.6
CLOSED CLASS 76.85 77.33 78.45 13.6
STEM+MERGE 73.71 75.2 76.84 13.6

Table 6.18: Precision and Recall of RI model, various preprocessing methods, word
level document size

It seems that for RI model smaller document size produces better results. The rea-
son for that can be found in the very nature of term vector generation in RI. Term

61

vectors are constructed from superposition of all document vectors it appears in. Doc-
ument vectors are initially sparse vectors, which means that the smaller the document
size is, the stronger relation gets between a word and its context. The best model
achieved 76.84% accuracy, with a 100% Recall, for document size set to 1+1 context
window, and preprocessing method set to filtering of closed–class words.

6.11.2 Tuning evaluation context size

Evaluation context size is the size of symmetric window of context which is taken into
consideration when the polysemous word is encountered during testing. Words that
are found within that context window are used to form a context vector. This context
vector’s distance is measured against every vector of each of the meanings for the
polysemous word in question. Sizes of context vector experimented with range from
1 to 7. In order to have a larger test set, number of meanings that a word can take
was lowered to 5 instead of 6 like in the preprocessing experiments. Preprocessing
performed was lowercasing of words, and document size was set to 1 sentence. Results
are given in the table below, and the best result is given in bold.

1+1 2+2 3+3 4+4 5+5 6+6 7+7
CLOSED CLASS 80.16 85.14 86.74 79.54 79.54 79.54 79.54

Table 6.19: Precision and Recall of RI model, combined preprocessing methods, word
level document size

Recall is 100% for all test cases, therefore it was not displayed in the table. Random
prediction is also the same. It can be observed that the best evaluation context size is
3+3, and that after it peaks at that point it converges to a stable value for all wider
evaluation contexts.

6.11.3 Evaluation on polysemous words of different level

The best model is evaluated on ambiguous words with different counts of meanings
attached to them.

2 3 4 5 6 7
Precision 87.4 86.02 84.19 76.41 80.5 45.48
Recall 95.44 98.48 94.71 95.12 100.0 100.0
Random prediction 50 33.33 25 20 16.66 14.28

Table 6.20: Precision and Recall of RI model, closed class filter, document size 1+1,
evaluation context size 3+3 measured against words with different number of meanings

It is observable that the best score is achieved with the words that have 3 mean-
ings, but from there precision falls down. It is just 45% for the words with 7 meanings

62

attached to them. Out of all models tested, Random Indexing has the poorest perfor-
mance. One possible explanation is that too much of a contextual information is lost
when matrix reduction of the co– occurrence matrix is performed. As outlined before
RI performs well in tasks with the paradigmatic use of context, like in the individual
word similarity task. However when employed in the WSD task the algorithm is cal-
culating the cosine similarity between the test context and all sense candidates for an
ambiguous word, where term vectors are extracted from a co-occurrence matrix which
has reduced dimensionality. It seems that level of contextual information which is vital
for the WSD task is lowered as well with the RI matrix reduction, which leads to the
poorer performance of the algorithm.

63

Chapter 7

Implementation

Software used in all the experiments in this thesis is developed under the name PDT
Word Sense Disambiguator. Entire system was implemented in Java programming
language. Two third–party libraries were used:

1. Apache Lucene1: for the purpose of text indexing, released under the Apache
Software License and

2. Semantic Vectors2: for the purpose of constructing random vectors, released
under the BSD 2-Clause License 3

Classes are separated into following packages: preprocessing, vectorModels, utils
(contains data types, string manipulation classes, vector operation classes), evaluation
and experiments.

7.1 Data flow

In this section will be presented an outline of sequential steps taken by the system in
order to train the model, and then evaluate it on the test set. The options mentioned
here are dicussed in length in previous chapters, therefore I will outline here only what
is relevant for the data flow.There are 4 major stages that subsume a number of smaller,
potential steps:

Obtaining and dividing the data
First step here is to extract the text from PDT1.0(which is in a form of fully
annotated SGML text). Different meanings of ambiguous word are annotated
differently, so this information is kept, while all other words are extracted in their
normal form. This part is vital because the model needs to be trained on different

1http://lucene.apache.org/java/docs/index.html
2http://code.google.com/p/semanticvectors/
3http://www.opensource.org/licenses/bsd-license.php

64

meanings in order to be able to differentiate them during testing. When the text
is obtained it is divided into three sets: training, testing for development and
final testing. Sentences from original data set are randomized before division.
Training takes about 9/10 of the entire data set, while 1/10 is evenly distributed to
remaining two sets. Evaluation is performed twice: during training, the model is
trained on training set, and tested to development test set. During testing, model
is trained on train+testDev set and evaluated on final test set, which represents
an unseen portion of data. Files that are trained on and later tested on are run
through the indexer. Every vector used in experiments is built straight from the
indexer.

Preprocessing
There are 4 preproccessing options (all optional): lowercasing, stemming, fil-
tering words that belong to closed class, and merging Czech lexical variants.
Lowercasing and word filtering take place in the indexer: lowercasing is just a
matter of option, while for word filtering a stop word list needs to be passed.
This list is to be found in the Apendix 1. Stemming and merging of czech vari-
ants are performed by the program directly on files. If one of these two options
is used, it is applied before indexing.

Building the matrix
After preprocessing indexer builds co-occurrence matrix (term–document). Doc-
uments passed to the indexer are determined by the system, and there are two
options that can be set: number of sentences in one index document, and size
of the context window found around ambiguous word. Any positive number can
be set on either option, there is just a rule not to set number of sentences to a
value larger than 1 when you want to build word–level documents. Choice of
document size determines the ”sensitivity” of the model, as is dicussed in Ex-
periments chapter. During this phase all meanings of ambiguous word are saved
in the hash table. Elements of the hash table are items whose keys are ambiguous
words while the values attached to the keys are lists which keep all the meanings
of ambiguous word. This hash table is passed to evaluator during evaluation.

Normalizing the matrix: frequency weighting or dimensionality reduction
Although in case of frequency weighting this step is performed during eval-
uation, it is more natural to come before it, therefore I will describe it here.
Frequency weighting is performed on elements of term–document matrix, and
which weight scheme is applied depends on the model (either TF–IDF or PMI).
Weighting is however not applied to RI model, due to its nature (see chapter on
Random Indexing). RI model is constructed with the usage of semantic vectors

65

package. After this step, the model is considered to be trained, and is ready for
the evaluation.

Evaluation
Evaluation is performed in several steps. First the entire test set is passed in
order to extract all the ambiguous words and the contexts they are found in.
For some reason in PDT1 some words are labeled as ambiguous although they
have only one meaning. These kinds of occurrences are inserted in previously
mentioned hash table during matrix construction phase. If a an ambiguous word
encountered in testing is determined to have only one meaning in training, it is
not put into the test set. When test set instances are extracted, model compares
distances between a test set instance of ambigous word and all other meanings
to the context vector. Whichever meaning is the closest by cosine distance from
the context vector is predicted to be the ”correct meaning”. Term vectors are
retrieved at this point, and in the case of TFIDF and PMI they are weighted on
the spot. RI were created during indexing and stored in termvectors.bin file.

66

Chapter 8

User manual

In this section it will be explained how to use the software developed for the purpose
of the experiments. First section describes the parameters

8.1 Input parameters

System is accessed through a single class to which command line parameters are
passed in the form:

[-argumentType argumentValue]*

Class to which the arguments should be passed is called Experiment.
All arguments are optional. All arguments have their default values. Class that

parses arguments is called Arguments. An overview of all input arguments is given in
the table below.

index name data type default value used for
1 lowercase String ”n” preprocessing
2 stopWordsRemoval String ”n” preprocessing
3 stemming String ”n” preprocessing
4 mergeLexicalVariants String ”n” preprocessing
5 inputFilePath String pdt1 cleaned getting data
6 numberOfSentencesInLuceneDoc Integer 1 document size
7 numberOfWordsInDocument Integer -1 document size
8 matrixType Integer 0 {0,1,2}={TFIDF,PMI,RI}
9 upBoarderForNumberOfMeanings Integer 6 evaluation
10 evaluationContextWindowSize Integer 3 evaluation

Table 8.1: Overview of system’s input arguments

If someone wishes to perform WSD on another dataset, they should specify the
path to the file with the −inputFilePath argument. However, it should be noted that
occurrences of polysemous words should be annotated so that different meanings could
be differentiated by the system. Content of the file passed to the system is split into
three separate files: train, testDev, testFinal. TestFinal contains test test sentences.

67

8.2 Logs

For every experiment a log is made in the log folder, containing all relevant statistics
related to the experiment. Log name is constructed from abbreviations of all values of
experiment’s phases, for instance: PMI STOP+MERGE 1s 7w 6m means that it is a
log of PMI model, where in preprocessing filtering out closed class words and merging
lexical variants was performed, document size in term–doc matrix is 1 sentence, 7+7
evaluation window context was used to construct context vectors, and only words with
6 meanings were investigated.

68

Conclusion

The primary task of this Master’s thesis was to perform Word Sense Disambiguation
on the Prague Dependency Treebank dataset. A single methodology was crafted and
applied to three different semantic models to ensure an objective comparison between
the two models which perform TF–IDF and PMI weighting of the co-occurrence ma-
trix, and one model which performs dimensionality reduction of the same matrix. This
methodology served to tune the models and find which preprocessing technique, doc-
ument size and evaluation context size produce best results. Results, though achieved
on a different data set, are comparable to some of the state–of–the–art approaches form
the Senseval/Semeval competitions. There are other approaches like(Yarowsky et. al
2001) that similarly to this approach use the cosine similarity to assign the word to its
correct sense (in this case a centroid).However their approach is different in the way
the classification is performed. Further more, it has not been attempted so far to em-
ploy RI on the WSD task, to the best of author’s knowledge. Major conclusion of this
thesis is that the models that do not perform matrix reduction on the co-occurrence
matrix outperform the approach that does (in this case Random Indexing). Another
fact that appears to be the same for all three models is that the size of the document in
the term–document matrix that helps produce the best results of the algorithm is 3+3
symmetric context around the polysemous word. It seems that when training with the
document concentrated around polysemous word a model becomes more sensitive to
such contexts and is ultimately a better discriminator in the evaluation.

69

Bibliography

Proceedings of Senseval-3: Third International Workshop on the Evaluation of Systems

for the Semantic Analysis of Text, Barcelona, Spain, 2004.

Kilgarriff Adam. I don’t believe in word senses. CoRR, cmp-lg/9712006, 1997.
URL http://dblp.uni-trier.de/db/journals/corr/corr9712.html#cmp-

lg-9712006.

Kilgarriff Adam and Palmer Martha. Introduction to the special issue on senseval.
Computers and the Humanities, 34(1–2):1–13, 2000.

Russell B. On Denoting, volume 14, pages 479–93. 1905.

Osgood C. The nature and measurement of meaning. Psychological Bulletin, 49:
197–237, 1952.

Shannon C. A mathematical theory of communication. 27:379–423, 623–656, 1948.

Kenneth W. Church and Patrick Hanks. Word association norms, mutual information,
and lexicography. In 27th Meeting of the Association for Computational Linguistics,
pages 76–83, Vancouver, B.C, 1989.

Lin D. Automatic retrieval and clustering of similar words. In Proceedings of the 17th

international conference on Computational linguistics, pages 768–774, 1998.

Swinney David. Lexical access during sentence comprehension: (re)consideration of
context effects. Journal of Verbal Learning & Verbal Behavior, 18(6):645–659,
1979.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and
Richard A. Harshman. Indexing by latent semantic analysis. Journal of the Ameri-

can Society of Information Science, 41:391–407, 1990.

Susan T. Dumais. Latent semantic indexing (lsi) and trec-2. In TREC, pages 105–
116, 1993. URL http://dblp.uni-trier.de/db/conf/trec/trec93.html#

Dumais93.

70

http://dblp.uni-trier.de/db/journals/corr/corr9712.html#cmp-lg-9712006
http://dblp.uni-trier.de/db/journals/corr/corr9712.html#cmp-lg-9712006
http://dblp.uni-trier.de/db/conf/trec/trec93.html#Dumais93
http://dblp.uni-trier.de/db/conf/trec/trec93.html#Dumais93

SAUSSURE F. de. Memoir on the Primitive System of Vowels in Indo-European Lan-

guages. Leipzig: Teubner, 1878.

Gottlob Frege. über sinn und bedeutung. 1892.

GW Furnas, S. Deerwester, ST Dumais, TK Landauer, RA Harshman, LA Streeter, and
KE Lochbaum. Information retrieval using a singular value decomposition model
of latent semantic structure. pages 465–480, 1988.

Lakoff G. and Johnson M. Philosophy in the flesh: The embodied mind and its chal-

lenge to western thought. New York: Basic Books, 1999.

Salton G., Wong A., and Yang C.S. A vector space model for automatic indexing.
Communications of the ACM, 18:613–620, 1975.

D. Gentner. Structure-mapping: A theoretical framework for analogy. Cognitive Sci-

ence, 7:155–170, 1983.

Zipf George Kingsley. Human Behaviour and the Principle of Least Effort:An intro-

duction to human ecology. Cambridge, MA: Addison-Wesley, 1949.

G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a
matrix. 1965. URL http://www.jstor.org/stable/2949777.

Rubenstein H. and Goodenough John B. Contextual correlates of synonymy. Commun.

ACM, 8(10):627–633, 1965. URL http://dblp.uni-trier.de/db/journals/

cacm/cacm8.html#RubensteinG65.

Schütze H. and Pedersen J. A vector model for syntagmatic and paradigmatic related-
ness. In In Making Sense of Words: Proceedings of the Conference, pages 104–113,
Oxford, England, 1993.

Schütze H. and Pedersen J. Information retrieval based on word senses. In In Pro-

ceedings of the 4th Annual Symposium on Document Analysis and 145 Information

Retrieval, pages 161–175, 1995.

Schütze Hinrich. Word space. In Proceedings of the 1993 Conference on Advances in

Neural Information Processing Systems, NIPS’93, pages 895–902, San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

Schütze Hinrich. Automatic word sense discrimination, volume 24. Computational
Linguistics, 1998.

Nancy I. and Véronis J. Word sense disambiguation the state of the art. Computational

Linguistics, 24:1–40, 1998.

71

http://www.jstor.org/stable/2949777
http://dblp.uni-trier.de/db/journals/cacm/cacm8.html#RubensteinG65
http://dblp.uni-trier.de/db/journals/cacm/cacm8.html#RubensteinG65

Erk K. and Padó S. A structured vector space model for word meaning in context.
In Proceedings of the 2008 Conference on Empirical Methods in Natural Language

Processing (EMNLP-08), pages 897–906, 2008.

Rayner K., Pacht J. M., and Duffy S. A. Effects of prior encounter and discourse
bias on the processing of lexically ambiguous words: Evidence from eye fixations.
Journal of Memory & Language, 33:527–544, 1994.

P. Kanerva. Sparse distributied memory. MIT Press, Cambridge, MA, 1988.

J. Karlgren, M. Sahlgren, and R. Cöster. Principled query processing. In Working notes

of the 6th workshop of the Cross-Language Evaluation Forum, CLEF’05, Vienna,

Austria, pages 245–250. Association for Computing Machinery (ACM), 2005.

George Lakoff and Mark Johnson. Metaphors we Live by. University of Chicago Press,
Chicago, 1980.

T. K. Landauer and S. T. Dumais. A solution to Plato’s problem: the Latent Semantic
Analysis theory of acquisition, induction, and representation of knowledge. Psycho-

logical Review, 104:211–240, 1997.

Burgess C. Lund, K. and R. A. Atchley. Semantic and associative priming in high-
dimensional semantic space. In Proceedings of the 17th Annual Conference of the

Cognitive Science Society, pages 660–665, 1995.

K. Lund and C. Burgess. Producing high-dimensional semantic spaces from lexical
co-occurrence. Behavior Research Methods, Instrumentation, and Computers, 28:
203–208, 1996.

C. Manning and H. Schütze. Foundations of statistical natural language processing.
MIT Press, Cambridge, MA, 1999.

Tom M. Mitchel, Svetlana V. Shinkareva, Andrew Carlson, Kai-Min Chang, Vicente L.
Malave, Robert A. Mason, and Marcel Adam Just. Predicting human brain activity
associated with the meanings of nouns. Science, 320:1191–1195, 2008.

Shashi Narayan, Srdjan Prodanovic, Zoë Bogart, and Mohammad Fazleh Elahi. Popu-
lation and enrichment of event ontology using twitter. In First Workshop of Semantic

Personalized Information Management, LREC, Malta, 2010, May 2010.

Patrick Pantel and Dekang Lin. Discovering word senses from text. In Proceed-

ings of the eighth ACM SIGKDD international conference on Knowledge discov-

ery and data mining, KDD ’02, pages 613–619, New York, NY, USA, 2002.
ACM. URL http://www.patrickpantel.com/cgi-bin/web/tools/getfile.

pl?type=paper&id=2002/kdd02.pdf.

72

http://www.patrickpantel.com/cgi-bin/web/tools/getfile.pl?type=paper&id=2002/kdd02.pdf
http://www.patrickpantel.com/cgi-bin/web/tools/getfile.pl?type=paper&id=2002/kdd02.pdf

C. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent semantic indexing:
A probabilistic analysis. In In Proceedings of the 17th ACM Symposium on the

Principles of Database Systems, pages 159–168. ACM Press, 1998.

Edmonds Philip. Lexical disambiguation. The Elsevier Encyclopedia of Language and

Linguistics. Oxford: Elsevier, 2005.

Edmonds Philip and Scott Cotton. Senseval-2: Overview. In Proceedings of Senseval-

2: Second International Workshop on Evaluating Word Sense Disambiguation Sys-

tems, pages 1–5, Toulouse, France.

M. Porter. An algorithm for suffix stripping. Program, 14(3):130–137,
1980. URL http://ontology.csse.uwa.edu.au/reference/browse_paper.

php?pid=233281850.

Ratcliff R. and McKoon G. Priming in item recognition: Evidence for the propositional
structure of sentences. Journal of Verbal Learning and Verbal Behavior, 17:403–
417, 1978.

Gallant S. A practical approach for representing context and performing word sense
disambiguation using neural networks. Neural Computation, 3(3):293–309.

Gallant S. Context vector representations for document retrieval. In AAAI Natural

Language Text Retrieval Workshop, 1991.

Kaski S. Dimensionality reduction by random mapping: Fast similarity computation
for clustering. In In Proceedings of the International Joint Confer- ence on Neural

Networks, IJCNN’98, pages 413–418. IEEE Service Center, 1999.

Padó S. and Lapata M. Dependency-based construction of semantic space models.
Computational Linguistics, 33(2):161–199, 2007.

Magnus Sahlgren. The Word-Space Model: Using Distributional Analysis to Repre-

sent Syntagmatic and Paradigmatic Relations between Words in High-Dimensional

Vector Spaces. PhD thesis, Stockholm University, Stockholm, Sweden, 2006.

Dill Stephen, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha, Anant Jhingran,
Tapas Kanungo, Sridhar Rajagopalan, Andrew Tomkins, John A.Tomlin, and Ja-
son Y. Zien. Semtag and seeker: Bootstrapping the semantic web via automated
semantic annotation. In Proceedings of the Twelfth International Conference on

World Wide Web (WWW-2003), Budapest, Hungary, pages 178–186, 2003.

Peter D. Turney. Measuring semantic similarity by latent relational analysis, 2005.
URL http://cogprints.org/4501/.

73

http://ontology.csse.uwa.edu.au/reference/browse_paper.php?pid=233281850
http://ontology.csse.uwa.edu.au/reference/browse_paper.php?pid=233281850
http://cogprints.org/4501/

Peter D. Turney and Patrick Pantel. From frequency to meaning: Vector space models
of semantics. CoRR, abs/1003.1141, 2010. URL http://dblp.uni-trier.de/

db/journals/corr/corr1003.html#abs-1003-1141.

Cornelis Joost van Rijsbergen. Information Retrieval. 1979.

Weaver Warren. Machine Translation of Languages. New York: John Wiley & Sons,
1949.

Dominic Widdows. Geometry and Meaning. CSLI Publications, Stanford, California,
USA, 2004.

Harris Z. In Papers in structural and transformational Linguistics, chapter Distribu-
tional structure, pages 775–794.

74

http://dblp.uni-trier.de/db/journals/corr/corr1003.html#abs-1003-1141
http://dblp.uni-trier.de/db/journals/corr/corr1003.html#abs-1003-1141

List of Tables

2.1 Feature vectors based on three contrastive pairs for words mouse and rat 10

6.1 Frequencies of tags for every layer in PDT 1.0. 37
6.2 Number of types with multiple meanings in the training set 38
6.3 Influence of the preprocessing method on the size of training and test

token count . 41
6.4 Influence of document size on the volume of vocabulary 42
6.5 Precision and Recall using various individual preprocessing techniques,

sentence level document size . 51
6.6 Precision and Recall of TF–IDF model, no preprocessing, word level

document size . 51
6.7 Precision and Recall using combinations of preprocessing techniques,

sentence level document size . 52
6.8 Precision and Recall of TF–IDF model, no preprocessing, word level

document size . 52
6.9 Precision of TF–IDF model for stemming with document size set to 1

sentence and merge with document size set to 3+3, with various eval-
uation context sizes . 54

6.10 Precision and Recall of TF–IDF model, closed class filter, document
size 1, evaluation context size 3+3 measured against words with dif-
ferent number of meanings . 55

6.11 Precision and Recall of PMI model, individual preprocessing methods,
sentence level document size . 57

6.12 Precision and Recall of PMI model, individual preprocessing methods,
word level document size . 58

6.13 Precision and Recall using combinations of preprocessing techniques,
sentence level document size . 58

6.14 Precision and Recall using combinations of preprocessing techniques,
word level document size . 59

6.15 Precision and Recall of PMI model, combined preprocessing methods,
word level document size . 59

75

6.16 Precision and Recall of PMI model, lowercase preprocessing , docu-
ment size 1, evaluation context size 3+3 measured against words with
different number of meanings . 60

6.17 Precision and Recall of RI model, various preprocessing methods, sen-
tence level document size . 61

6.18 Precision and Recall of RI model, various preprocessing methods, word
level document size . 61

6.19 Precision and Recall of RI model, combined preprocessing methods,
word level document size . 62

6.20 Precision and Recall of RI model, closed class filter, document size
1+1, evaluation context size 3+3 measured against words with different
number of meanings . 62

8.1 Overview of system’s input arguments 67

76

Appendices

77

Appendix A

List of filter words for Czech language

Below is given a list of Czech stop words, consisting of words that belong to closed
class words, and some frequent words that are assessed to carry little contextual infor-
mation. More detail description on stop–word filtering can be found in Chapter 5.1.

[dnes cz timto budes budem byli jses muj svym ta tomto tohle tuto tyto jej zda proc
mate tato kam tohoto kdo kteri mi nam tom tomuto mit nic proto kterou byla toho pro-
toze asi ho nasi napiste re coz tim takze svych jeji svymi jste aj tu tedy teto bylo kde
ke prave ji nad nejsou ci pod tema mezi pres ty pak vam ani kdyz vsak ne jsem tento
clanku clanky aby jsme pred pta jejich byl jeste az bez take pouze prvni vase ktera nas
novy tipy pokud muze design strana jeho sve jine zpravy nove neni vas jen podle zde
clanek uz email byt vice bude jiz nez ktery by tere co nebo ten tak ma pri od po jsou
jak dalsi ale si ve to jako za zpet ze do pro je na]

78

	Introduction
	About the task
	About the model
	Thesis goals
	Road map

	Computational model of semantics
	Motivation
	Similarity is proximity
	Distributional manifestation of meaning
	Context vectors
	A brief history of context vectors

	The co–occurrence matrix

	Word sense disambiguation
	Word sense(s)
	Applications of WSD– why is it important?
	Classification of approaches to WSD
	Unsupervised learning methods
	Supervised methods

	Approaches that use VSM for WSD
	State–of–the–art

	Word space implementations
	High dimensionality and data sparseness
	Dimensionality reduction
	Latent Semantic Analysis
	Hyperspace Analogue to Language
	Random Indexing

	The theory behind experiments
	Linguistic preprocessing
	Statistic preprocessing
	Types and Tokens
	Building the matrix
	Normalizing the frequency counts
	TF–IDF
	PMI

	Calculating similarity

	Experiments
	The resource
	Polysemous words
	Why PDT 1.0 instead of PDT 2.0?

	Preprocessing
	Train and test sets
	Document size
	Normalization of the frequency counts and dimensionality reduction
	Evaluation context size
	Evaluation metrics and baselines
	Tuning
	Tuning preprocessing parameters
	Tuning evaluation context size
	Evaluation on polysemous words of different level

	TF–IDF experiments
	Tuning preprocessing parameters
	Tuning evaluation context size
	 Evaluation on polysemous words of different level

	PMI experiments
	Tuning preprocessing parameters
	Tuning evaluation context size
	 Evaluation on polysemous words of different level

	RI experiments
	Tuning preprocessing parameters
	Tuning evaluation context size
	Evaluation on polysemous words of different level

	Implementation
	Data flow

	User manual
	Input parameters
	Logs

	Summary
	Bibliography
	Appendices
	List of filter words for Czech language

