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ABSTRACT 

This bachelor thesis is focused on the synthesis of organocatalysts derived from 

monosaccharides, in particular D-glucose and D-glucosamine, with various protecting groups. 

Synthesis of various thiourea catalysts and the attempt to prepare new squaramide catalysts is 

described.  
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1. INTRODUCTION 

1.1 SACCHARIDES 

Saccharides are biomolecules and most common compounds in the living world. It is 

impossible to imagine the World without them. Fact, that every living organism contains 

saccharide scaffold, makes these chemical compounds very important to man.
1
 Some of them 

are recruiting from the basic and crucial process known as photosynthesis (Scheme 1).
2
 

 

Scheme 1: Photosynthesis equation. 

An expression carbohydrate, against saccharide, is more commonly used name in 

English speaking countries. Carbohydrate is quite unlucky name, which has been developed 

with first discover of D-glucose and its summary formula C6H12O6, respectively C6(H2O)6, 

which indicates a carbon hydrate.
3
 Following this definition formaldehyde was used to 

considered to be a simplest carbohydrate.
4
 

Family of saccharides is divided, with making provision for its molecular weight, into 

three groups – mono-, oligo- and polysaccharides. Monosaccharides are elementary units and 

can’t be split (by hydrolysis) into smaller saccharides units, for example D-glucose (1) (Figure 

1). Oligosaccharides are compounds built by two to ten monosaccharides, for example 

saccharose, commonly known as table sugar, which is built by monosaccharides D-glucose 

and D-fructose. Other example could be lactose (2) (disaccharide consisting of D-glucose and 

D-galactose unit), which is present in human or cow milk. Last group – polysaccharides, built 

by tens to thousands of monosaccharides, could stand out as a structural element of plants 

(e.g. cellulose (3)) or energy storage (e.g. starch).
1,2
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Figure 1: The most common carbohydrates shown with pyranose form – β-D-

glucopyranose (1), lactose (2) and cellulose (3). 

What else makes saccharides so important? Besides what was already mentioned 

(building material, energy storage), it is following: 

a) they are involved in the biosynthesis of proteins and lipids;
1,2,5

 

b) they are parts of glycoproteins, glycolipids and also nucleic acids (D-ribose, 2-

deoxy-D-ribose);
1,2,5

 

c) they are used for making drugs (e.g. streptomycin (4)) (Figure 2);
1
 

d) many of industrial uses (including hardly believe gunpowder).
1
 

 

Figure 2: Streptomycin (4) is an antibiotic drug and was the first drug remedy for 

tuberculosis.  
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We can summarize basic physical properties of non-substituted saccharides. They are 

always chiral, mostly crystalline solids and solvable in water and other polar solvents. They 

are hardly solvable in non-polar solvents.
1 

To display carbohydrates four different formulas are used. Original formula by E. 

Fischer, next Haworth and Mills formula are shown in Figure 3. Advantage of Haworth 

projection is simply imagination in the space; on the other hand, Mills formula can help us 

with determining absolute stereochemistry.
1 

In Figure 1 we presented another display type of 

carbohydrates formula – chair conformation. 

CHO

OHH

HHO

OHH

OHH

CH2OH

O

OH

OH

OH

OH

CH2OH O

OH

HOH2C

HO

HO OH

5 6 7  

Figure 3: D-glucose displayed by Fischer formula (5), β-D-glucopyranose by Haworth 

formula (6) and β-D-glucopyranose by Mills formula (7). 

Pioneering work
6
 in the field of saccharides did German chemist Emil Fischer (1882-

1919, Nobel Prize 1902). He was the first, who proved D-glucose scaffold and invented 

Fischer formula. His only clue was optical rotation and yet he successfully determine (+)-

glucose as a D-form. 

“With its oxygen-containing structure (pyranose) and five stereogenic centers (four 

controllable), glucose represented the state-of-the-art in terms of target molecules at the end 

of the nineteenth century.” states K. C. Nicolaou in the review on the history of the total 

synthesis.
7
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1.2 ORGANOCATALYSIS 

Modern asymmetric catalysis is built on biocatalysis, metal catalysis and 

organocatalysis.
9
 Organocatalysis is the acceleration of chemical reactions with a 

substoichiometric amount of an organic compound which does not contain a metal atom.
8
 

Organocatalysts can be classified into four groups – Lewis bases, Lewis acids, Brønsted bases 

and Brønsted acids
10

 (Figure 4). 

Nowadays, organocatalysis is widespread used, for example Diels-Alder reaction
11

, 

Mannich reaction
12

, Michael addition
13

 or Aza-Henry reaction
14

. Not only natural compounds, 

but also synthetic catalysts, act as organocatalysts (e.g. prolin).
15

 

Unlike metal-ligand complexes, organocatalysts generally tolerate aerobic conditions 

and do not require rigorous exclusion of water. They possess a wider substrate scope than 

enzymes and can be used in a variety of organic solvents. Organocatalysts can be synthesized 

or accessed from naturally chiral molecules and they can be used in solid phase synthesis. 

Moreover it is possible prepare both enantiomer modifications and therefore we can prepare 

different enantiomer products. Besides, there are already a number of organocatalytic 

reactions being used in the pharmaceutical and chemical industries.
8,9 

 

Figure 4: Lewis and Brønsted acid/base catalysts. 
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These catalysts (Figure 4) initiate their catalytic cycles by either providing or 

removing electrons or protons from a substrate or a transition state. The former class of 

organocatalysts includes compounds that act as covalently bonded reagents. However, latter 

class induces mainly such interactions as hydrogen bonding or ion bonding to provide high 

level of enantioselectivity. The huge potential of hydrogen bonding as an activating 

interaction has been recognized in recent decades. For example, (thio)urea catalyst can also 

act as a Brønsted acid.
9
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1.3 (THIO)UREA BASED ORGANOCATALYSTS 

Various derivatives of urea and, preferably, thiourea were studied due to their 

hydrogen donor character.
16

 Their catalytic effect was proven lately as acid catalysts. Success 

of (thio)urea based catalysts is its ability to form two H-bonds to a reactant. The second H-

bond not only activates reactant but also constrains it to a well-defined orientation. Original 

concept of double H-bonding was represented in 1990. Diels-Alder reaction was catalyzed by 

biphenyl-diol I
17

 and subsequently urea catalyst II
18 

was presented. Both cases demonstrate 

coordination of two hydrogen atoms to the carbonyl group (Figure 5). 

 

Figure 5: Coordination to the carbonyl group via hydrogen bonding. 

Double H-bonding is also used in catalysis of Lewis acids and central-coordinated 

metal atoms, but this could be limited to appropriate substrate structure. Against that, any 

Lewis base (aldehydes, ketones, esters, imine derivatives, etc.) could interact via two H-bonds 

with this organocatalysts.
19

 

(Thio)urea’s catalytic properties are given by their ability of decreasing LUMO energy 

of electrophile functional group present in the base. This is possible due to its double H-bond 

donating. Preference of thiourea functional group is due to its more acidic character (pKa = 

21.0 in comparison to pKa = 26.9 of urea) and also much weaker H-bond acceptance.
20

 It was 

proven that (thio)urea catalysts makes their H-bond with the functional group, which is also 

strongest Lewis bases and reduces difference in HOMO and LUMO energy in a similar way 

as Lewis acids does.
21

 

1.3.1 ACHIRAL (THIO)UREA CATALYSTS 

Development of (thio)urea catalysts begun in 90’s, when Curran and his research 

group published application of electron-deficient derivatives of diarylurea III (Scheme 2).
22
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Those compounds were successfully employed for Claisen rearrangement and radical 

reaction.
23

 Their preference is easy preparation and modifications. 

 

Scheme 2: Claisen rearrangement was promoted by Curran’s urea catalyst III. 

Thiourea derivative IV (Scheme 3) developed by Schreiner
24

 and co-workers in 1998 

was successfully used for Diels-Alder reaction and 1,3-dipolar cycloaddition of α,β-

unsaturated carbonyl groups. 

 

Scheme 3: Schreiner’s thiourea catalyst IV was used for Diels-Alder reaction. 

1.3.2 CHIRAL (THIO)UREA CATALYSTS 

In 1998 Jacobsen
25 

reported the first use of compounds containing thiourea moiety as 

catalysts for highly enantioselective Strecker reaction of imines (Scheme 4). Catalyst V was 

originally designed as a ligand for reactions of Lewis acids and metal-coordinated compounds 



13 

 

 

Scheme 4: Strecker imine reaction was catalyzed by Schiff base containing thiourea 

moiety V. 

Later, in 2005, Jacobsen presented thiourea catalysts without Schiff base and applied it 

for aza-Henry reaction (Scheme 5).
26

 In the presence of Hünig base and molecule sieves 

corresponding aza-Henry products were achieved excellent yields with excellent 

enantioselectivity. Those results led to conclusion that Schiff base isn’t necessary in (thio)urea 

catalysts moiety. 

 

Scheme 5: Thiourea catalyst VI showed whitout Schiff base and its use in aza-Henry 

reaction of N-Boc imine 15 and nitroalkans 16. 

Use of those organocatalysts is unfortunately limited (to specific substrates), because 

their weaker acidity than Lewis acids containing metals.
27

 Hence a class of bifunctional 

(thio)urea catalysts was developed. 
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1.3.3 BIFUNCTIONAL (THIO)UREA CATALYSTS 

One of the most important aspects of organocatalysis is biomimetics, thus enzyme-

behaviour imitation.
28

 Enzymes form multiple weak interactions with substrates. On the other 

hand, Lewis bases in response to Lewis acids provide one strong interaction, which we know 

as monofunctional catalysts concept. 

Bifunctional catalysts contain several functional groups. These groups interact with 

two components of chemical reaction at one time. This is commonly used in biocatalytic 

systems. It enables control of transition state development and therefore it increases the 

stereoselectivity of the particular reaction.
28

 

(Thio)ureas were used for molecule recognizing at first and therefore their H-bond 

interaction with nitro group was known.
29

 In 2004 Nagasawa presented bis-thiourea catalyst 

VII (Scheme 6).
30

 This catalyst was successfully used for Baylis-Hillman reaction of 

cyclohexenones with aldehydes in the presence of DMAP including transition state (Figure 6), 

which describes coordination of VII via hydrogen bonds with enone 18 and aldehyde 19. 

 

Scheme 6: Baylis-Hillman reaction of cyclohexenon (18) with benzaldehyde (19), 

which was catalyzed by bis-thiourea bifunctional catalyst VII, was presented. 
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Figure 6: Transition state of the bis-thiourea-catalyzed Baylis-Hillman reaction. 

In 2005, Takemoto developed chiral bifunctional thiourea organocatalyst VIII 

(Scheme 7) and demonstrated its application for Michael addition of diethyl malonate (22) to 

β-nitrostyrenes (21).
31 

Necessity of thiourea moiety and tertiary amine (bifunctional character 

of organocatalyst) for the acceleration and high enantioselectivity of the reaction was proven 

by structural methods (X-ray). Particular orientations of N-H group and tertiary amine were 

also proven.
32

 Nowadays Takemoto catalyst belongs to commonly used thiourea.
33 

 

Scheme 7: Takemoto bifunctional catalyst VIII was used in Michael addition of β-

nitrostyrene (21) to diethyl malonate (21), and activation via this catalyst was presented. 
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1.4 SQUARAMIDE AS H-BOND DONORS 

As we outlined above in 1.3, H-bonding promoted organocatalysis has grown 

explosively over the past decades.
34

 Mainly, we discussed (thio)ureas as most used 

organocatalyst so far.
35

 Let’s introduced new family of H-bonding catalysts based on 

squaramide motive 25 (Figure 7) presented in 
 
2008 by Rawal and his research group.

36
 

It was proved by examination of crystallographic and computational data that two 

hydrogen atoms of thiourea 24 are positioned ~213 pm apart, each canted by ~0.6°. The 

distance between two hydrogens is determined by the fact that the accompanying N atoms are 

connected by a one-carbon link. Than was postulated that bisamide derivatives of squaric acid 

25, which position the hydrogen 60 pm further apart, could serve as a versatile core activation 

unit for dual H-bonding catalysts.
37

 

 

Figure 7: Calculated distances in N,N’-dimethylthiourea (24) and N,N’-

dimethylsquaramide (25). 

Squaramid derivative IX was firstly used as catalyst for the conjugate addition of 2,4-

pentanedione 26 to nitrostyrene 21 (Scheme 8). This reaction had showed excellent yield and 

enantiomeric excess.
36

 Now we are able to compare thiourea and squaramide based catalysts 

(see Table 1).
30,36
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Scheme 8: Conjugate addition of 2,4-pentanedione (26) to β-nitrostyrene (21) 

promoted by squaramide catalyst IX. 

Table 1: Comparison of thiourea catalyst VIII and squaramide catalyst IX using the 

same reactions. 

 

Results summarised in Table 1 by Rawal show the squaramide unit to be an effective 

scaffold. For this conjugate addition it was remarkably active catalyst and it deserves our 

attention. 
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1.5 CARBOHYDRATES IN ORGANIC SYNTHESIS 

As it was told above, carbohydrates are chiral and natural compounds.
1
 They are 

readily available in a variety of diastereometric forms, chiral and conformationally rigid 

molecules providing a various multi-configured hydroxyl groups for chemical 

modifications.
38

 Carbohydrates can stand out as an auxiliaries, reactants, ligands or 

organocatalysts.
39

 

1.5.1 CARBOHYDRATE AUXILIARIES 

Almost 40 years ago carbohydrates were reported as an auxiliary tool. Broader 

investigation started only 25 years ago. Since then a multitude of structures were developed 

and applied to various reactions.
40

 Kunz and co-workers reported a very versatile tool in a 

pivaloyl protected D-galactosyl amine 28.
41

 Condensation with aldehydes yielded galactosyl 

aldimines 29 which underwent highly diastereoselective Strecker reactions with trimethylsilyl 

cyanide in the presence of Lewis acids (Scheme 9).
41

 The solvent had a crucial influence on 

the stereoselectivity, SnCl4 in tetrahydrofuran (affording R configuration) or ZnCl2 (S) in 

isopropanol yielding α-aminonitriles
40,41

 while Strecker products with opposite configuration 

at the new stereocenter were obtained with ZnCl2 in the less polar chloroform.
40,42

 

 

Scheme 9: Strecker diastereoselective reaction uses a D-galactose as an auxiliary 

group. 
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1.5.2 CARBOHYDRATE REAGENTS 

Duthaler and his research group successfully prepared half-sandwich titanium 

compound 34.
43

 When compound 34 was treated with an allyl magnesium chloride, 

compound 35 was formed, which transferred the allyl residue to aldehydes with good to 

excellent enantiomeric excess (Scheme 11).
44

 Reagent 35 has proved valuable in aldol 

reactions. 

 

Scheme 10: Titanium half-sandwich compound 32 treated with diisopropylidene 

glucose 33 to afford carbohydrate reagent 34. 

1.5.3 CARBOHYDRATE LIGANDS 

Carbohydrates have been increasingly used as chiral ligands in the last two decades. 

Carbohydrates generally contain several weak donor sites. Since then, many of the catalytic 

precursors in homogenous coordination complexes of the platinum-group metals have been 

presented. The required ligands should contain such donor atoms such as N, S and P which 

can form stable complexes with practically all transition metals.
45

 

Recently, Boysen and co-workers presented a new carbohydrate bis(oxazoline) ligand 

X with a dimethylmethylene bridge (’’glucoBox’’) derived from D-glucosamine 

hydrochloride. This ligand was used to catalyze cyclopropanation of olefins with 

diazoacetates promoted by copper(I) (Scheme 11).
46
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Scheme 11: Asymmetric cyclopropanation promoted with copper(I)-glucoBox X. 

1.5.4 CARBOHYDRATE ORGANOCATALYSTS 

One of the first example of use of carbohydrate derivative as catalyst is the D-fructose-

based ketone XI applied in Shi epoxidation (Scheme 12).
47

 Dioxirane is generated in situ from 

XI and Oxone (Potassium peroxysulfate) which epoxidized 1,2-trans di- and trisubstituted 

alkenes in good to excellent enantiomeric excess.
48

 

 

Scheme 12: Epoxidation of alkens with D-fructose based ketone XI catalyst. 

Typical example of carbohydrate catalysts containing thiourea moiety is Ma’s 

bifunctional catalyst XII (Scheme 13).
49

 Catalysts developed by Ma has proved valuable in 

Michael addition of aromatic ketones to a range of nitroolefins with excellent enantiomeric 

excess. 
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Scheme 13: Direct enantioselective Michael addition promoted by carbohydrate 

catalyst XII. 

A bifunctional catalytic mechanism was suggested in which a thiourea moiety 

interacts through H-bonding with a nitro group of the nitroolefines and enhances their 

electrophility while the neighbouring primary amine activates ketones involving an enamine 

intermediate. The observed absolute configuration (S) of the conjugate adduct was explained 

by the transition state model (Figure 8).
49

 

 

Figure 8: Transition state model. 

Efficient organocatalysts for enantioselective Strecker
24

 and Mannich
50

 reactions can 

be constructed from D-glucosamine as a component of the natural chiral pool. With catalyst 

XIII, high yields and enantioselectivity were accomplished in hydrocyanation reactions of 

aromatic aldimines (Scheme 14, i). It has also proven to be able to enantioselectively catalyze 

the Mannich reaction of N-Boc-aldimine 47 with silyl ester enolate 48 to produce β-amino 

acid ester 49 (Scheme 14, ii).
51 
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Scheme 14: Strecker synthesis (i) and Mannich reaction (ii) catalyzed by glucosamine 

derived catalyst XIII. 

From research of Kunz and his group
51

, novel bifunctional catalyst XIV has 

recruited.
52

 Then urea catalyst was applied to nucleophilic addition to nitroolefines. Best 

results were achieved by using silyl ethers protecting groups (Scheme 15). The level of 

stereoselectivity was comparable to Takemoto catalyst VIII and also the urea derivative was 

shown to behave better than corresponding thiourea catalyst, where 70:30 α/β-anomers were 

achieved. 

 

Scheme 15: Addition of acetylacetone (26) to β-nitrostyrene (21) performed by urea 

catalyst XIV containing carbohydrate scaffold. 
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2. GOALS  OF  THIS  THESIS 

With the respect to the general needs to improve accessibility of H-bonding 

organocatalysts, the aim of this work is the preparation of a set of various sugar-derived 

organocatalysts containing thiourea and squaramide moiety from the most easily available 

monosaccharides, D-glucose and D-glucosamine. This general aim includes several goals, as 

follows: 

1. Preparation of acyl-, alkyl- and silyl-protected saccharide units suitable for the 

construction of thiourea and squaramide organocatalysts. 

2. Synthesis of new thiourea catalysts derived from D-glucose and D-

glucosamine. 

3. Synthesis of new squaramide catalysts derived from D-glucose. 
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3. RESULTS  AND  DISCUSSION 

As was told above (Page 19), carbohydrates are natural, cheap and readily available 

compounds. They provide multi-configured hydroxyl groups for chemical modifications.
38

 

Hence they are very good participants to organocatalytic chemistry. D-Glucose and D-

glucosamine hydrochloride, respectively, were used as starting material. Variously modified 

catalysts XVI – XX were prepared by altering protecting groups of hydroxyls on D-glucose or 

by altering position of thiourea linkage itself (Figure 9). 

 

Figure 9: Catalysts prepared during completing this thesis. 

Acetyl was selected as acyl group. Reasons comprised its easy preparation and ability 

to modify as well as its stability in various conditions. Methyl ether was used as alkyl 

protecting group, because small size of alkyl chain and stability in majority of conditions. 

Finally we prepared silyl protected derivative, namely trimethylsilyl derivative. It is stable 

and large protecting group, which can be easily installed and removed. 

Catalyst XV was prepared in cooperation with Tereza Řehůřková and it was not object 

of this thesis.
53 

This catalyst is modification of Ma’s catalyst. Primary amine group of 

cyclohexane could be transformed to tertiary amine or to another modification. 



25 

 

Squaramide catalyst XXI, which was subject of this thesis, was not prepared yet 

successfully neither with changing reaction conditions and this area of research is still in 

progress. 
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3.1 SACCHARIDE DERIVATIVES 

3.1.1 PREPARATION OF ISOTHIOCYANATE AND AZIDE 

α-D-Glucopyranose (50) was used as the starting compound 51. After completing 

acetylation we obtained much more reactive β-anomer of D-glucopyranose.
54 

From this 

derivative 51 was subsequently prepared isothiocyanate 53, which was synthesized by two 

different methods (A and B). In Scheme 16 is shown Method A. 

 

Scheme 16: Preparation of fully acetylated glucose 51 and glycosyl isothiocyanate 53 

using KSCN. 

Method A: After obtaining fully acetylated glucose 51, glycosyl bromide 52 was 

prepared by dissolving 51 in glacial acetic acid and addition to 30 % solution of HBr in acetic 

acid was performed. Next, glycosyl bromide 52 was melted with KSCN to afford glycosyl 

isothiocyanate 53.
55

 Unfortunately, this reaction afforded less than 10 % yield. Moreover, it 

takes 2 steps to isothiocyanate product and reaction was not so comfortable to perform, 

because of high temperature needed for melting and solution of HBr in acetic acid. 

Method B: As is shown in Scheme 17, simple one-step preparation of isothiocyanate 

53 was performed.
56

 Trimethylsilyl isothiocyanate was added and tin(IV) chloride was used as 

a Lewis acid. This reaction was providing good yields even in larger amounts.  

 

Scheme 17: One-step preparation of glycosyl isothiocyanate 53. 
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It is clear now that we prefer Method B because it provides better yields and the 

synthesis is quicker. 

As is shown in Scheme 18, glycosyl azide
51 

54 was prepared from starting material 51 

with very similar conditions as glycosyl isothiocyanate 53. In this case we did not use 

trimethylsilyl isothiocyanate, but trimethylsilyl azide instead and tin(IV) chloride as well. We 

achieved 100 % conversion with good to excellent yields. This reaction was modified, from 

that given in literature (increase of TMSN3, longer reaction time). Using this modification we 

avoid purifying on silica gel. 

 

Scheme 18: Preparation of glycosyl azide 54. 

3.1.2 ALTERATION OF PROTECTING GROUPS 

Starting material 54 was deacetylated and subsequently protected by methyl and silyl 

ethers. Deacetylation was performed by the classical Zemplén method.
58

 We used 1 M 

solution of sodium methoxide in methanol, which was used also as solvent (Scheme 19). 

 

Scheme 19: Zemplén O-deacetylation. 

Zemplén method was very satisfying, providing excellent yields in short reaction time. 

Compound 55 were immediately used for next reactions. 

As the first, we prepared O-methylated glycosyl azide 56 (Scheme 20). The product 55 

was functionalized under classical Williamson conditions.
59

 

 

Scheme 20: Williamson ether synthesis. 
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Then we focused on the preparation of O-silylated azide 57. To achieve satisfactory 

results in the preparation of this substance, we had to try three different procedures – C
52

, D 

and E
60

 (Scheme 21). Methods C and D provided very low yields of 57, moreover, method C 

was practically uncomfortable, due to its reaction conditions (-20 °C for 24 hours). On the 

other hand, method E afforded compound 57 in excellent yields. Performing Method E is also 

very effective and quick, because reaction time is only 1 minute and it gives very good yields 

(95 % in small amount, about 70 % in larger amounts). 

 

Scheme 21: Preparation of a silylated glycosyl azide 57. 

3.1.3 REDUCTION OF AZIDES TO AMINES 

Next, we needed to reduce the azide to amine. To obtain the amine three different 

methods – F
61

, G
62

 and H
63

 were tested (Scheme 22). Method F, which is Staudinger 

reduction, was not successful at all, even when we changed reaction conditions (temperature, 

solvents and reaction time). Method H, where NaBH4 was used to generate H2 in situ, did not 

afford satisfying conversion. The isolation of resulting product was the major problem. Best 

results were achieved using method G – classical method of hydrogenation using Pd/C. 

Sometimes 100 % conversion was achieved (mostly with smaller amounts). Reaction mixture 

was purified on silica gel with 1 % of triethylamine. We successfully produced glycosyl 

amine in various, poor to good, yields. This could be caused by saturating the palladium with 

other elements besides the hydrogen molecule. 
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Scheme 22: Different ways to prepare an amine from azide. 

3.1.4 PREPARATION OF O-ACETYLATED D-GLUCOSAMINE 

Finally, we prepared acetylated glucosamine derivative 66 (Scheme 23) based on the 

procedure described in literature
57

. D-Glucosamine hydrochloride (61) was used as the 

starting material. The Schiff base 63 was prepared by using anisaldehyde (62) in 1 M aqueous 

solution of sodium hydroxide. Product 63 was O-acetylated with acetic anhydride in the 

mixture of dichloromethane and pyridine. This transformation was promoted by DMAP. 

Subsequently, Schiff base was removed by treatment of compound 64 with 5 M HCl. To the 

resulting O-acetylated glucosamine hydrochloride 65, sodium bicarbonate was added, 

affording corresponding derivative 66. 

 

Scheme 23: Preparation of acetylated glucosamine. 
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3.2 THIOUREA CATALYSTS 

In general, nucleophile attack to carbonyl group of isothiocyanate was performed. 

Isothiocyanate derivatives were 3,5-bis-trifluoromethylphenyl or 4-trifluoromethylphenyl. 

Individual reactions were performed in very similar conditions, thus at room temperature 

(approx. 25 °C) and as preferred solvent dichloromethane was selected. Conversion of the 

reaction was monitored on TLC. Thiourea linkage was defined by NMR measurements 

(corresponding chemical shifts to thiourea link), MS (ESI source) and IR.  

The fact that glycosyl isothiocyanates and primary amines interact and provide good 

yields was reported in Ma’s research
49

. We also tried this reaction type. Reaction between 

compound 53 and 67 was performed as in Scheme 24.
53

 

 

Scheme 24: Preparation of Ma catalyst. 

Next, the reaction between compound 53 and 3,5-bis-trifluoromethylphenyl aniline 

(68) was performed. Reaction conditions used previously were successfully adopted to this 

transformation, and maximum conversion of 53 to XVI was obtained after 2 hours (Scheme 

25). 

 

Scheme 25: Preparation of new thiourea catalyst. 

Further, we had to perform reaction between glycosyl amine derivatives 58, 59, 60, 66 

and aryl isothiocyanate (69). All these reactions afford very similar yields as compared to that 

shown in Scheme 25. In this way we prepared catalysts XVII and XVIII (Scheme 26). 
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Scheme 26: Catalysts XVII and XVIII were prepared. 

We also decided to examine effect of thiourea linkage located to C2 carbon of D-

glucose. Catalyst XIX (Scheme 27) was prepared under the same conditions as other 

catalysts, but reaction time was increased up to 12 hours. 

 

Scheme 27: Reaction between glucosamine and isothiocyanate 69 was affording 

catalyst XIX. 

Another catalyst was prepared (Scheme 28). This time we used 4-trimethylphenyl 

isothiocyanate (70). Catalyst XX was prepared in view of the catalytic effect of different aryl 

group. 

 

Scheme 28: Preparation of catalyst XX using glycosyl amine 58 and aryl 

isothiocyanate 70. 
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3.3 SQUARAMIDE CATALYSTS 

We decided to prepare new carbohydrate catalyst that would include squaramide 

scaffold. As starting materiel we used glycosyl amine 58 and various derivatives with 

squaramide motive (71, 72 and 73, Scheme 29 and 30). 

 

Scheme 29: Unsuccessful preparation of new squaramide catalyst XXI. 

To perform this reaction we followed literature
64

, which described also the preparation 

of compound 71. Unfortunately, these conditions did not led to satisfactory conversion, so we 

tried different solvents, namely methanol, tetrahydrofuran and toluene. Hence, we decided to 

try reaction between amine 58 and non-substituted squaric acid derivative 72, and also to 

change methoxy group for some more reactive group or element (compound 76) (Scheme 30). 

 

Scheme 30: Different experiments of preparation compound 73, which could serve as 

a starting material for preparation catalyst XXI. 

Reaction using compound 72 was performed as described above, thus using toluene as 

solvent and reflux. In the same scheme, we described reaction performed with dichloride 

derivative of squaric acid 73 dissolved in THF at 0 °C and continuous stirring for 2 hours – 2 

days at room temperature. As it turned out from MS and NMR, resulting product was not 

compound 73a or 73b. Compound 76 was prepared from squaric acid (74) and oxalyl chloride 

(75) (Scheme 31).
65 
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Scheme 31: Preparation of dichloride derivative 76 of squaric acid. 

After obtaining these results, we left this topic and focused on thioureas. Nevertheless, 

squaramide derivatives remain our aim for the future. 
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4. EXPERIMENTAL  PART 

Chemicals and solvents were either purchased p.a. from commercial suppliers or 

purified by standard techniques. For thin-layer chromatography (TLC), silica gel plates Merck 

60 F254 were used, and compounds were visualized with UV light and/or by treatment with a 

solution of sulphuric acid (5% solution in water), followed by heating. Flash chromatography 

was performed by using silica gel Merck 60 (particle size 0.063–0.200 mm). 
1
H and 

13
C NMR 

spectra were recorded with a Varian 
UNITY

INOVA-300 and Brucker AVANCE III 600. 

Chemical shifts for protons are given in δ relative to tetramethylsilane (TMS) and are 

referenced to residual protium in the NMR solvent (CDCl3: δ = 7.26 ppm). Chemical shifts 

for carbon are given in δ relative to tetramethylsilane (TMS) and are referenced to the carbon 

resonances in the solvent (CDCl3: δ = 77.0 ppm). Peaks of 
19

F NMR spectra were referenced 

to the standards peak of trifluoacetic acid (0 ppm). Interact constant J is reported in Hz units. 

2D NMR spectra (HMBC, COSY and HSQC) were measured for accurate peaks defining. MS 

ESI spectra were measured by using Bruker Esquire 3000. 

1,2,3,4,6-Penta-O-acetyl-β-D-glucopyranose (51) 

To the suspension of D-glucose (50) (10.0 g, 55.6 mmol) in toluene 

(83 ml), acetic anhydride (33.0 ml, 356.0 mmol) and sodium acetate 

(1.7 g, 20.7 mmol) were added under stirring. The reaction mixture 

was refluxed at 110 °C for 4 hours. Water (30 ml) was added and the 

mixture was neutralized with 3% NaOH aq. The organic layer was separated, dried over 

MgSO4 and concentrated under reduced pressure to halves. The obtained crystals were filtered 

and recrystallized from ethanol. It was obtained 15.5 g of pure colourless crystalline solid (51) 

(yield 71 %). 
1
H NMR (300 MHz, CDCl3): δ 5.73 d (1H, J = 8.4 Hz, C1H), 5.25 t (1H, J = 9.3 

Hz, C2H), 5.17-5.10 m (2H, C3H, C4H), 4.32 dd (1H, J13 = 12.6 Hz, J23 = 8.1 Hz, C6Ha), 4.14 

dd (1H, J13 = 12.3 Hz, J23 = 10.2 Hz, C6Hb), 3.87-3.81 m (1H, C5H), 2.12 s (3H, CH3CO), 

2.09 s (3H, CH3CO), 2.03 s (6H, CH3CO), 2.01 s (3H, CH3CO). 

2,3,4,6-Tetra-O-acetyl-α-D-glucopyranosyl bromide (52) 

1,2,3,4,6-Penta-O-acetyl-β-D-glucopyranose (51) (1.0 g, 2.6 mmol) was 

dissolved in glacial acetic acid (3.0 ml) and 33% solution of HBr in acetic 

acid was added drop wise. The reaction mixture was stirred for 24 h in 
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the dark. Reaction was monitored by TLC and after disappearance of starting compounds ice 

water was added (10 ml). The reaction mixture was extracted with DCM (3x 4 ml) and the 

organic layers were separated, neutralized with water and NaHCO3 sat. aq. was added. The 

organic layer was finally washed with brine, dried over MgSO4 and concentrated under 

reduced pressure. It was obtained 0.7 g of brown oil (52) (yield 69 %); Rf = 0.73 (H/EA 1:1). 

1
H NMR (300 MHz, CDCl3): δ 6.60 d (1H, J = 3.9 Hz, C1H), 5.54 t (1H, J = 9.6 Hz, C4H), 

5.14 t (1H, J = 9.6 Hz, C3H), 4.84 dd (1H, J13 = 10.2 Hz, J23 = 6.0 Hz, C2H), 4.34-4.25 m (2H, 

C5H, C6Hb), 4.13 dd (1H, J13 = 12.3 Hz, J23 = 10.5 Hz, C6Hb), 2.08 s (3H, CH3CO), 2.07 s 

(3H, CH3CO), 2.03 s (3H, CH3CO), 2.01 s (3H, CH3CO). 

2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl isothicyanate (53) 

Method A: To the solution of compound 52 (0.7g, 1.8 mmol), 

potassium isothiocyanate (1.8 g, 18.5 mmol) was added and the 

mixture was dissolved in the minimum volume of EtOAc (ca 2.0 

ml). Solvent was evaporated under reduced pressure after 

homogenization and mixture was degassed and carried with inert atmosphere (Ar). The flask 

was moved to the pre-warmed (190 °C) sand for 1 h. The reaction mixture was cooled down 

and dissolved in a mixture of water and DCM (5 + 5 ml). The organic phase was separated, 

dried over MgSO4 and evaporated under reduced pressure. Suspension was purified by flash 

chromatography on silica gel; Rf = 0.3 (toluene/EtOAc 1:1). Reaction was given product in 

minimum yield of 53. 

Method B: 1,2,3,4,6-Penta-O-acetyl-β-D-glucopyranose (51) (4.0 g, 10.3 mmol) and SnCl4 

(10.6 ml, 1 M solution in DCM) were dissolved in DCM (60 ml). After 5 minutes TMSSCN 

(1.6 ml, 11.6 mmol) was added and the reaction mixture was stirred at25 °C for 2 days. Then 

NaHCO3 sat. aq. (60 ml) was added and the aqueous phase was extracted with DCM (40 ml). 

The combined organic phases were washed with water (3x 30 ml) and dried over MgSO4, 

filtered and concentrated under reduced pressure. The crude product was purified by flash 

chromatography on silica gel; Rf = 0.7 (DCM/EtOAc 1:1). Solvent was evaporated to obtain 

2.5 g of pure crystalline solid (53) (yield 63 %). 
1
H NMR spectrum corresponds to the 

literature.
56 
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2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl azide (54) 

Compound 51 (8.0 g, 20.5 mmol) was dissolved in dry DCM (130.0 

ml). To the solution TMSN3 (3.7 ml, 30.5 mmol) and SnCl4 (0.5 ml, 

3.3 mmol) were added at 25 °C and the reaction mixture was stirred 

for 4 h. The solution was poured into a saturated NaHCO3 solution 

(130 ml) and extracted with a separator funnel until evolution of CO2 was ceased. The organic 

layer was separated, washed with brine (80 ml) and dried over MgSO4. After removal of the 

solvent under reduced pressure, the resulting viscous oil was dissolved in DCM and 

concentrated under reduced pressure to give pure monocrystaline product; Rf = 0.7 

(DCM/EtOAc 5:1). It was obtained 4.6 g of 54 (yield 61 %). 
1
H NMR (300 MHz, CDCl3): δ 

5.20 t (1H, J = 9.3 Hz, C2H), 5.09 t (1H, J = 8.1 Hz, C3H), 4.94 t (1H, J = 9.0 Hz, C4H), 4.64 

d (1H, J = 9.0 Hz, C1H), 4.29 dd (1H, J13 = 12.6 Hz, J23 = 7.8 Hz, C6Ha), 4.18 dd (1H, J13 = 

10.2 Hz, J23 = 2.4 Hz, C6Hb), 3.80-3.75 m (1H, C5H), 2.10 s (3H, CH3CO), 2.07 s (3H, 

CH3CO), 2.01 s (3H, CH3CO), 1.99 s (3H, CH3CO). 

β-D-glucopyranosyl azide (55) 

Compound 54 (4.0 g, 10.7 mmol) was dissolved in dry methanol (80 

ml) and solution of 1 M MeONa (0.2 eq), which was prepared by 

dissolving sodium in methanol. After disappearance of starting 

material (TLC analysis, EtOAc), the reaction was quenched with 

DOWEX
®
 50W resin (H

+
 form), filtered and concentrated under reduced pressure, affording 

2.2 g (yield 99 %) of compound 55 as a yellow glass. Compound was used for another 

reaction without further characterization. 

2,3,4,6-Tetra-O-methyl-β-D-glucopyranosyl azide (56) 

NaH (60% dispersion in mineral oil, 1.8 g, 55.0 mmol) was added 

under stirring to a cooled (0 °C) solution of β-D-glucopyranosyl azide 

(55) (2.2 g, 10.5 mmol) in dry DMF (66 ml). After stirring for 1 h at 

25 °C, the solution was cooled down to 0 °C before dropwise addition 

in 2 portions of MeI (4.4 ml, 77.4 mmol) at this temperature. The reaction mixture was stirred 

overnight at 25 °C before second portion was added and then was stirring continued for 3 h. 

Methanol (4 ml) was added. The residue obtained after solvent removal under reduced 

pressure was taken up in DCM (130 ml). After washing with water and brine, the organic 
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phase was concentrated and the residue applied to a column chromatography on silica gel; Rf 

= 0.6 (hex/EtOAc 1:1). It was obtained 2.1 g (yield 76 %) of brown oil 56. 
1
H NMR (300 

MHz, C6D6): δ 4.13 d (1H, J = 8.4 Hz, C1H), 3.48 s (3H, CH3), 3.43-3.41 m (2H, C6Ha, 

C6Hb), 3.94 s (3H, CH3), 3.38 s (3H, CH3), 3.22 t (1H, J = 9.6 Hz, C4H), 3.14 s (3H, CH3), 

3.10-3.03 m (2H, C3H, C5H), 2.91 t (1H, J = 8.4 Hz, C2H). 

2,3,4,6-Tetra-O-trimethylsilyl-β-D-glucopyranosyl azide (57) 

Method A: Compound 55 (0.12 g, 0.6 mmol) was dissolved in dry 

DMF (2.5 ml) under an inert atmosphere (Ar) and cooled to -20 °C. 

Sym-collidine (9.2 ml, 6.7 mmol) and TMSOTf (0.2 ml, 0.8 mmol) 

were slowly dropped into the solution. After 24 h the reaction was 

quenched by pouring it into a NaHCO3 sat. aq. (10.0 ml) and extracted with EtOAc (10.0 ml). 

The combined organic layers were washed with water, dried over Na2SO4, filtered and 

concentrated under a reduced pressure. The crude product was purified by flash 

chromatography on silica gel; Rf = 0.6 (hex/EtOAc 10:1). It was obtained 33 mg (yield 11 %) 

of pure compound 57. 
1
H NMR spectrum corresponds to the literature.

52
 

Method B: Compound 55 (60 mg, 0.3 mmol) was dissolved in dry DMF (2 ml). TMSCl (0.15 

ml, 1.2 mmol) and triethylamine (0.4 ml, 3 mmol) were slowly dropped into the solution. 

After 1 h the reaction was quenched by pouring it into a NaHCO3 sat. aq. (5.0 ml) and 

extracted with EtOAc (5.0 ml). The combined organic layers were washed with water, dried 

over Na2SO4, filtered and concentrated under a reduced pressure. The crude product was 

purified by flash chromatography on silica gel; Rf = 0.6 (hex/EtOAc 10:1). It was obtained 25 

mg (yield 17 %) of pure compound 57.
 1

H NMR spectrum corresponds to the literature.
60

 

Method C: Compound 55 (64.5 mg, 0.3 mmol) was dissolved in pyridine (8 ml). HMDS (0.2 

ml, 0.8 mmol) and TMSCl (0.1 ml, 0.6 mmol) were added into the solution. The solution was 

shaken for 30 s and stored at 25 °C for 10 min. The solvent was removed under reduced 

pressure. The crude product was dissolved in EtOAc and concentrated under reduced pressure 

again. It was obtained 149.9 mg (yield 95 %) of pure crystalline solid 57. α]D: -17.7 (c 0.5, 

CHCl3); IR (KBr) ν = 2953, 2905, 2875, 2489, 2241, 2110, 1455, 1437, 1413, 1383, 1353, 

1287, 1251, 1180, 1159, 1090, 1039, 994, 875, 845, 755, 686 cm
-1

; 
1
H NMR (300 MHz, 

CDCl3): δ 4.44 d (1H, J = 8.1 Hz, C1H), 3.85 dd (1H, J13 = 11.7 Hz, J23 = 9.6 Hz, C6Ha), 3.73 

dd (1H, J13 = 11.4 Hz, J23 = 6.9 Hz, C6Hb) 3.49-3.37 m (2H, C3H, C4H), 3.30-3.25 m (1H, 

C5H), 3.20 t (1H, J = 8.1 Hz, C2H), 0.14 s (36H, -Si(CH3)3); 
13

C NMR (600 MHz, CDCl3): δ 
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90.7, 78.9, 78.4, 75.5, 70.9, 61.9, 1.3 (3C), 1.1 (3C), 0.8 (3C), -0.2 (3C); m/z: 

(C18H43N3O5Si4, M = 493.2), 516.3 (M + Na)
+
. 

General procedure (G) of reduction using H2 and Pd/C 

Azide (1 eq.) was dissolved in EtOAc (15 ml per 1 mmol) and Et3N (0.1 eq.) was 

added. The reaction mixture was degassed and the Pd/C (0.0035 eq.) dissolved in EtOAc (40 

μl per 10 mg) was added via syringe. The reaction mixture was degassed again and the H2 (g) 

was set into the reaction. The reaction mixture was stirred at 25 °C for 24 h and filtered 

through Na2SO4 pad (ca 1 cm) after disappearance of starting material (TLC analysis). 

Solvent was evaporated under reduced pressure and product was applied to column 

chromatography (hex/EtOAc 1:2 + 1 % Et3N). 

General procedure (H) of reduction using H2 generated in situ from NaBH4 

Azide (1 eq.) was dissolved in water (10 ml per 0.3 mmol) and THF (20 per 0.3 mmol) 

and CoCl2 • 6 H2O (0.8 eq.) was added. To this stirred mixture NaBH4 (7.4 eq.) was added at 0 

°C and mixture was continued to stirring for another 5 hours. After reaching maximum 

conversion (TLC analysis), the reaction mixture was transferred into the DCM and shaken 

with water. Organic layer was dried over MgSO4 and solvent was evaporated under the 

reduced pressure and product was applied to column chromatography (hex/EtOAc 1:2 + 1 % 

Et3N). 

2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl amine (58) 

By following method G was obtained 1.6 g of yellow crystalline 

solid 58 (yield 70 %). 
1
H NMR (300 MHz, DMSO): δ 5.76 d (1H, J 

= 0.6 Hz, C1H), 5.23 t (1H, J = 9.6 Hz, C2H), 4.86 t (1H, J = 9.6 Hz, 

C3H), 4.66 t (1H, J = 9.3 Hz, C4H), 4.31 d (2H, J = 8.4 Hz, NH2), 

4.13 dd (1H, J13 = 12.0 Hz, J23 = 6.9 Hz, C6Ha), 3.99 dd (1H, J13 = 12.0 Hz, J23 = 9.9 Hz, 

C6Hb), 3.91 m (1H, C5H), 2.00 s (3H, CH3CO), 1.99 s (3H, CH3CO), 1.97 s (3H, CH3CO), 

1.93 s (3H, CH3CO). 
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2,3,4,6-Tetra-O-methyl-β-D-glucopyranosyl amine (59) 

By following method G was obtained 0.7 g of pure crystalline solid 

59 (yield 30 %). 
1
H NMR (300 MHz, CDCl3): δ 3.98 d (1H, J = 8.4 

Hz, C1H), 3.64 s (3H, CH3), 3.62 s (3H, CH3), 3.60-3.55 m (2H, 

C6Ha, C6Hb) 3.53 s (3H, CH3), 3.40 s (3H, CH3), 3.33-3.27 m (1H, 

C5H) 3.23-3.09 m (2H, C3H, C4H), 2.77 t (1H, J = 9.0 Hz, C2H), 1.82 br s (2H, NH2). 

2,3,4,6-Tetra-O-trimethylsilyl-β-D-glucopyranosyl amine (60) 

By following method G was obtained 81 mg of yellow oil 60 (yield 

17 %). α]D: 28.2 (c 0.4, CHCl3); IR (KBr) ν = 3374, 2959, 2929, 

2896, 2854, 1676, 1550, 1456, 1401, 1377, 1251, 1162, 1075, 872, 

848, 752 cm
-1

 
1
H NMR (300 MHz, CDCl3): δ 4.86 d (1H, J = 4.5 

Hz, C1H), 3.91 dd (1H, J13 = 12.3 Hz, J23 = 9.2 Hz, C6Ha), 3.78 dd (1H, J13 = 11.6 Hz, J23 = 

6.7 Hz, C6Hb) 3.51-3.37 m (2H, C3H, C4H), 3.33-3.26 m (1H, C5H), 3.22 t (1H, J = 8.1 Hz, 

C2H), 1.86 br s (2H, NH2) 0.15 s (36H, -Si(CH3)3).
 13

C NMR (600 MHz, CDCl3): δ 93.2, 88.4, 

86.4, 78.9, 71.9, 52.4, 1.3 (3C), 1.1 (3C), 0.8 (3C), 0.2 (3C); m/z: (C18H45NO5Si4, M = 467.2), 

490.4 (M + Na)
+
. 

2-deoxy-2-[[(4-methoxyphenyl)methylene]amino]-β-D-glucopyranose (63) 

Glucosamine hydrochloride 61 (15.0 g, 70.0 mmol) was dissolved in 

1 M NaOH (aq. 84 ml) and Anisaldehyde (62) (15.0 ml, 714.6 mmol) 

was added to this vigorously stirred mixture. After solidifying, the 

mixture was placed to the refrigerator for 2 h and then mixed with 

ice-water (90 ml). Obtained solid was filtered and washed with Et2O. 

After 2-days long dry over KOH and vacuum affording 17.4 g of 63 

(yield 82 %). Compound was used for another reaction without further characterization. 

1,3,4,6-Tetraacetate-2-deoxy-2-[[(4methoxyphenyl)methylene]amino]-β-D-

glucopyranose (64) 

To the stirred mixture of 63 (17.4 g, 57.0 mmol) in DCM (73 ml) 

and pyridine (45 ml), acetic anhydride (33.0 ml, 369.0 mmol) and 

DMAP (0.4 g, 1.2 mmol) was added at 0 °C. The reaction mixture 

was stirred at 25 °C overnight. After disappearance of starting 
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material (TLC analysis; DCM/MeOH 7:1), The mixture was cooled down, ethanol (20 ml) 

was added and the mixture was stirred for another 3 h. The mixture was concentrated, co-

distilled with toluene (5 x 50 ml) and concentrated. Obtained solid was mixed with Et2O (30 

ml) and placed to the refrigerator overnight. Product was filtered and recrystallized from 

ethanol affording 14.2 g of pure crystalline solid 64 (yield 54 %). Compound was used for 

another reaction without further characterization. 

1,3,4,6-Tetra-O-acetatyl-β-D-glucosamine hydrochloride (65) 

Compound 64 (5.0 g, 10.7 mmol) was dissolved in acetone (50 ml) 

and 5 M HCl was added dropwise. Solid product was placed to the 

refrigerator for 2 h and then mixed with acetone and filtered. Solid 

product was mixed with Et2O, filtered and dried over KOH in vacuo. 

It was obtained 4.2 g of 65 (yield 95 %). Compound was used for another reaction without 

further characterization. 

1,3,4,6-Tetra-O-acetatyl-β-D-glucosamine (66) 

Glucosamine hydrochloride 65 (1.1 g, 2.9 mmol) was dissolved in 

water (6.3 ml) and DCM (7.5 ml) and NaOAc (0.8 g, 9.2 mmol, sat. 

aq.) was added. Mixture was stirred at 25 °C for 0.5 h and water 

phase was extracted with DCM (3 x 15 ml) and collected organic 

layers were dried over MgSO4 and concentrated. After mixing with Et2O, pure compound 66 

was obtained (0.5 g, yield 53 %). 
1
H NMR (300 MHz, DMSO): δ 5.55 d (1H, J = 8.4 Hz, 

C1H), 5.08 t (1H, J = 9.6 Hz, C3H), 4.83 t (1H, J = 9.9 Hz, C4H), 4.19 dd (1H, J13 = 8.4 Hz, 

J23 = 7.8 Hz, C6Ha), 3.96-3.92 m (2H, C6Hb, C5H), 2.77-2.71 m (1H, C2H), 2.11 s (3H, 

CH3CO), 1.99 s (3H, CH3CO), 1.97 s (3H, CH3CO), 1.96 s (3H, CH3CO), 1.68 br s (2H, 

NH2). 

N-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)-N’-((1’R,2’R)-diaminocyclohex-

2-yl) thiourea (XV) 

Preparation of compound XV corresponds to literature.
53

 It 

was obtained 89.5 mg (yield 71 %). 
1
H NMR (300 MHz, 

CDCl3): δ 5.83-5.75 m (1H, C1H), 5.16-4.99 m (3H, C2H, 

C3H, C4H), 4.34 dd (1H, J13 = 12.3 Hz, J23 = 7.5 Hz, 



41 

 

C6Ha), 4.16-4.09 m (1H, C6Hb), 3.87-3.83 m (1H, C5H), 3.69-3.52 m (1H, cyclohexyl-H), 

2.58-2.31 m (3H, NHC(S)NH, cyclohexyl-H), 2.18-1.94 m (14H, 4x CH3CO, 2x cyclohexyl-

H), 1.74 br s (2H, NH2), 1.24-1.11 m (6H, cyclohexyl-H). 

N-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)-N’-(3,5-bis-

trifluoromethyl)phenyl thiourea (XVI) 

To the mixture of 53 (0.8 g, 2.1 mmol) in DCM (15.0 

ml) 3,5-bis-trifluoromethylphenyl aniline (68) (0.3 ml, 

2.1 mmol) was added. The mixture was stirred at 25 

°C for 2 h. The crude product was purified by flash 

chromatography on silica gel; Rf = 0.7 (hex/EtOAc 

1:2). It was obtained 0.6 g of XVI (yield 50 %). α]D: 25.7 (c 0.5, CHCl3); IR (KBr) ν = 3321, 

3037, 2956, 2938, 1751, 1529, 1470, 1377, 1281, 1230, 1135, 1036, 955, 905 cm
-1

;
 1

H NMR 

(300 MHz, CDCl3): δ 8.18 s (1H, ArNH), 7.88 s (2H, Ar), 7.73 s (1H, Ar), 7.22 d (1H, J = 4.2 

Hz, C1NH), 6.30 d (1H, J = 4.2 Hz, C1H), 5.23 t (1H, J = 9.3 Hz, C3H), 5.11 t (1H, J = 9.3 Hz, 

C4H), 4.99 br s (1H, C1NH), 4.32 dd (1H, J13 = 12.6 Hz, J23 = 7.8 Hz, C6Ha), 4.19-4.09 m 

(1H, C6Hb) 3.84-3.79 m (1H, C5H), 2.17 s (1H, CH3CO), 2.11 s (1H, CH3CO), 2.10 s (1H, 

CH3CO), 2.05 s (1H, CH3CO); 
13

C (600 MHz, CDCl3): δ 182.5, 170.8, 170.7, 169.7, 169.6, 

144.1, 139.7, 132.0, 131.8, 123.8, 123.7 (2C), 118.8, 90.0, 82.2, 72.9, 70.5, 69.3, 61.4, 20.7, 

20.6, 20.5, 20.4; 
19

F NMR (300 MHz, CDCl3): δ -63.0; m/z: (C23H24F6N2O9S, M = 618.5), 

641.1 (M + Na)
+
. 

N-(2,3,4,6-Tetra-O-methyl-β-D-glucopyranosyl)-N’-(3,5-bis-

trifluoromethylphenyl thiourea (XVII) 

To the dissolved compound 59 (50.0 mg, 0.2 mmol) 

in DCM (1.0 ml) 3,5-bis-triflouromethylphenyl 

isothiocyanate (69) (0.04 ml, 0.2 mmol) was added 

and the mixture was stirred at 25 °C overnight. After 

solvent removal under reduced pressure the residue 

was applied to a column chromatography; Rf = 0.65 (hex/EtOAc 1:2). It was obtained 48.6 

mg of XVII (yield 50 %). α]D: -8.6 (c 0.4, CHCl3); IR (KBr) ν = 3434, 3252 3066 2989, 2941, 

2902, 2836, 1628, 1556, 1497, 1470, 1389, 1287, 1251, 1186, 1123, 1087, 958, 896 cm
-1

;
 1

H 

NMR (600 MHz, CDCl3): δ 9.43 s (1H, ArNH), 8.51 s (2H, Ar), 7.66 s (1H, Ar), 6.72 s (1H, 

C1NH), 3.93 m (1H, C5H), 3.72 dd (1H, J13 = 9.8 Hz, J23 = 2.0 Hz, C6Ha), 3.63 s (3H, CH3), 
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3.53 s (3H, CH3), 3.52 s (3H, CH3), 3.51 dd (1H, J13 = 9.8 Hz, J23 = 8.8 Hz, C6Hb), 3.42 s 

(3H, CH3) 3.37 m (1H, C3H), 3.36 m (1H, C2H), 2.94 dd (1H, J13 = 10.0 Hz, J23 = 8.4 Hz, 

C4H); 
13

C NMR (600 MHz, CDCl3): δ 184.1, 140.5, 131.7 (2C), 124.0, 123.1, 118.7, 83.4, 

79.8, 79.7, 79.3, 71.8, 70.7, 61.3, 60.7, 59.0 (2C); 
19

F NMR (300 MHz, CDCl3): δ -62.9 ; m/z: 

(C18H21F6N2O4S, M = 506.13), 529.1 (M + Na)
+
. 

N-(2,3,4,6-Tetra-O-trimethylsilyl-β-D-glucopyranosyl)-N’-(3,5-bis-

trifluoromethylphenyl thiourea (XXIII) 

To the dissolved compound 67 (50.0 mg, 0.2 mmol) 

in DCM (1.0 ml) 3,5-bis-triflouromethylphenyl 

isothiocyanate (69) (0.04 ml, 0.2 mmol) was added 

and the mixture was stirred at 25 °C overnight. After 

solvent removal under reduced pressure the residue 

was applied to a column chromatography (hex/EtOAc 8:1). It was obtained XX mg of 

compound XVIII (yield XX %). α]D: 69.0 (c 0.3, CHCl3); IR (KBr) ν = 3282, 3052, 2959, 

2923, 2893, 1724, 1709, 1688, 1544, 1529, 1476, 1377, 1278, 1248, 1177, 1135, 1108, 1084, 

884, 851, 680 cm
-1

;
1
H NMR (300 MHz, CDCl3): δ 9.38 s (1H, ArNH), 8.18 s (2H, Ar), 7.56 s 

(1H, Ar), 6.76 s (1H, C1NH), 5.31 d (1H, J = 2.4 Hz, C1H), 4.00 dd (1H, J13 = 10.8 Hz, J23 = 

8.7 Hz, C6Ha), 3.86 dd (1H, J13 = 11.4 Hz, J23 = 8.2 Hz, C6Hb), 3.74-3.59 m (3H, C3H, C4H, 

C5H), 3.40 t (1H, J = 8.1 Hz, C2H), 0.15 (36H, -Si(CH3)3); 
13

C (600 MHz, CDCl3): δ 184.1, 

140.4, 133.5, 133.3, 131.9, 131.7, 124.0 (2C), 118.8, 82.1, 75.1, 73.1, 73.8, 71.7, 71.6, 62.4, 

1.3, 1.0, 0.8, 0.7; 
19

F (300 MHz, CDCl3): δ -62.9; m/z: (C27H48F6N2O9SSi4, M = 738.2), 761.4 

(M + Na)
+
. 

N-(1,3,4,6-Tetra-O-acetyl-β-D-glucopyranos-2-yl)-N’-(3,5-bis-

trifluoromethyl)phenyl thiourea  (XIX) 

To the compound 66 (0.5 g, 1.4 mmol) dissolved in DCM (6 ml), 

3,5-bis-trifluoromethylphenyl isothiocyanate (69) (0.3 ml, 1.4 mmol) 

was added and mixture was stirred overnight. After solvent removal 

under reduced pressure, the residue was applied to a column 

chromatography on silica gel; Rf = 0.5 (hex/EtOAc 1:1). After 

concentration, residue was mixed with DCM and solvent was 

evaporated to obtain 0.2 g of pure XIX (yield 40 %). α]D: 7.8 (c 0.4, 
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CHCl3); IR (KBr) ν = 3321, 3058, 2956, 2929, 2869, 1751, 1538, 1467, 1377, 1278, 1227, 

1183, 1135, 1081, 1039, 952, 893 677 cm
-1

;
1
H NMR (300 MHz, CDCl3): δ 8.15 s (1H, 

ArNH), 7.90 s (2H, Ar), 7.72 s (1H, Ar), 6.16 d (1H, J = 9.6 Hz, C1NH), 5.75 d (1H, J = 8.1 

Hz, C1H), 5.23 t (1H, J = 9.3 Hz, C3H), 5.11 t (1H, J = 9.3 Hz, C4H), 4.99 br s (1H, C1NH), 

4.32 dd (1H, J13 = 12.6 Hz, J23 = 7.8 Hz, C6Ha), 4.19-4.09 m (1H, C6Hb, C5H) 3.84-3.79 m 

(1H, C5H), 2.17 s (1H, CH3CO), 2.11 s (1H, CH3CO), 2.10 s (1H, CH3CO), 2.05 s (1H, 

CH3CO); 
13

C NMR (600 MHz, CDCl3): δ 182.0, 171.7, 170.7, 170.4, 169.2, 138.9, 133.4, 

133.0, 132.8, 132.6, 124.3 (2C), 122.6, 119.7, 92.9, 73.1, 72.8, 67.3, 61.7, 57.8, 21.0, 20.8, 

20.7, 20.5; 
19

F NMR (300 MHz, CDCl3): δ -63.0 m/z: (C23H24F6N2O9S, M = 618.5), 641.1 (M 

+ Na)
+
. 

N-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)-N’-(4-trifluoromethyl)phenyl 

thiourea (XX) 

To the mixture of 58 (0.5 g, 1.4 mmol) in DCM (3.0 

ml) solution of 4-trifluoromethylphenyl isothiocyanate 

(70) (0.3 g, 1.4 mmol) was added. The mixture was 

stirred at 25 °C for 4 h. The crude product was 

purified by flash chromatography on silica gel; Rf = 

0.5 (hex/EtOAc 1:1). It was obtained 0.3 g of XX (yield 35 %). α]D: -2.3 (c 0.4, CHCl3); IR 

(KBr) ν = 3318, 3046, 2941, 1751, 1616, 1532, 1434, 1371, 1329, 1233, 1171, 1120, 1069, 

1042, 845, 603 cm
-1

;
 1

H NMR (300 MHz, CDCl3): δ 8.08 br s (1H, ArNH), 7.70 d (2H, J = 

8.4 Hz, Ar), 7.41 d (2H, J = 7.8 Hz, Ar), 6.81 d (1H, J = 4.4 Hz, C1NH), 5.79 t (1H, J = 9.3 

Hz, C1H), 5.37 t (1H, J = 9.6 Hz, C2H), 5.05 t (1H, J = 10.2 Hz, C3H), 4.95 t (1H, J = 9.3 Hz, 

C4H), 4.37 dd (1H, J13 = 12.6 Hz, J23 = 7.8 Hz, C6Ha), 4.16 dd (1H, J13 = 18.3 Hz, J23 = 11.4 

Hz, C6Hb) 3.90-3.84 m (1H, C5H), 2.10 s (1H, CH3CO), 2.07 s (1H, CH3CO), 2.04 s (1H, 

CH3CO). 
13

C NMR (300 MHz, CDCl3): δ 182.1, 171.3, 170.7, 169.8, 169.6, 127.2, 127.1, 

124.66, 83.2, 73.8, 72.6, 70.7, 68.2, 61.6, 20.8, 20.7, 20.6, 20.6; 
19

F NMR (300 MHz, CDCl3): 

δ -62.6; m/z: (C22H25F3N2O9S, M = 550.1), 573.2 (M + Na)
+
. 

3,4-Dichloro-3-cyclobutene-1,2-dione (76) 

Squaric acid (74) (5.0 g, 43.9 mmol) was dissolved in CCl4 (22.0 ml) and DMF 

(0.18 ml) at 25 °C. Reaction mixture was cooled down with N2 (l) and oxalyl 

chloride (75) (7.5 ml, 87.8 mmol) was added. Mixture was stirred and warmed to 
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25 °C and subsequently was stirred for 2 hours at 50 °C. After observing colour change (to 

brightly yellow), mixture was concentrated under the reduced pressure to halves and 

transferred under the inert atmosphere (Ar). This concentrated mixture was distilled under the 

reduced pressure. Obtained product was transferred under the inert atmosphere (Ar) and 

stored into the freezer. It was obtained 5.3 g of yellow crystalline solid 76 (yield 80.2 %). 
13

C 

NMR (600 MHz, CDCl3): δ 189.4 (2C), 188.1 (2C); m/z: (C4Cl2O2, M = 149.9), 131.3 (M – 

H
+
)
-
. MS spectrum corresponds to the product of partial hydrolysis of compound 76, where 

one of the chlorine is substituted by hydroxyl group. 
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5. CONCLUSION 

We successfully accomplished preparation of acyl- (acetyl), alkyl (methyl) and silyl-

protected (trimethylsilyl) derivatives of D-glucose. Trimethylsilyl derivatives (57 and 60) of 

D-glucose were prepared as new compounds. Those derivatives were used for the preparation 

of new thiourea catalysts XVI, XVII, XVIII, XIX and XX. Catalyst XIX with different 

thiourea linkage was prepared from D-glucosamine. 

Preparation of new squaramide catalyst XXI was not successful yet, but it remains a 

part of our continuing research. 

Examination of the effects of catalysts XVI – XX in particular reactions was beyond 

the scope of this thesis. 
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