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Annotation 

This master’s thesis deals with Value-at-Risk for equity portfolios. The distribution 

of daily returns of equity returns is not perfectly normal. Therefore, the use of the Delta-

Normal Value-at-Risk (VaR) method is misleading. Accuracy of estimation may turn 

out to be failure for portfolios to measure VaR time to time. Therefore, two further 

methods, Modified VaR and Filtered Historical Simulation, are used for VaR 

estimation. The former estimates using Cornish-Fisher (1937) expansion and then the 

latter estimates using autoregressive model for mean equation, EGARCH for volatility 

and Filtered Historical Simulation (FHS) for VaR estimation i.e. AR (1) - EGARCH 

(1,1) - FHS methods; and also the performance of both the VaR estimates with Delta-

Normal VaR estimate are compared. Last but not the least the implementation of various 

methods are discussed and analyzed on the two passive historical index portfolios, 

which represent some of the most attractive financial markets in the world economy.  
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Preface 

Almost everyone who lives in any part of the world not only heard what is going 

on about the recent subprime mortgage crisis but also seriously felt some tension in his 

or her daily life. This crisis affects everybody one way or another. Some people lost 

their houses because of the unpaid installments of the mortgage credit loans, some 

people lost their jobs because of defaulted payment contracts or simply lost their hope 

and prosperity because of being eager on their earnings on the financial markets. In fact, 

because of the nature of economics science, it is not too much clear yet whether this 

financial burden in the world is over or it just started inducing some other financial 

phenomena. All over the world, all economy newspapers, journals, magazines, news on 

television network and so on have been holding economic reviews, financial insights or 

talk shows with broad range of experts from public, business and academia. Main topic 

of the discussions is, of course, the turbulence of global financial market. Everybody 

talks over the risk on global financial crises knowingly or unknowingly. Furthermore, 

most of the market players in the developed and emerging countries rely on the pure 

dynamics of world economics, which obviously undermined economies around the 

globe. This vast majority of problems become apparent in assessing the risk in financial 

markets.  

In last few decades, the growth rate of world economics and trading activity were 

tremendously increased, of course, together with the well-known bankruptcies and 

trading losses of well-known financial institutions. The loss of these multibillion capital-

sized market companies (see Danielsson, 1998, Jorion, 2000, Mishkin, 2004) have 

forced financial regulators and supervisory committees to push to use quantitative 

techniques to measure possible losses that most likely occur. In fact, VaR has been 

recognized as one of the most popular of these techniques. What it made so popular 

actually is that it intuitively provides a straightforward answer to the following key 

question: “with a given confidence level (say 95 or 99.5 percent), what is the predicted 

financial loss over a given time horizon?” (Huang and Lin, 2004). 

The finance, which is one of the sub-fields of economics, studies the management 

of money and other assets. Finance in portfolio theory has three main pillars like 

optimization over time, asset valuation, and risk estimation. When we take a closer look 
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to the market risk estimation in finance, Value-at-Risk estimation method draws great 

attention on academic researches and studies. As of today, as far as author’s knowledge 

and literature review, this approach has been employed neither earlier nor today’s 

economic turbulence so that this study will contribute to debate by answering 

outstanding findings in the long-term perspective. Namely, it takes a closer look at the 

world leading stock markets especially during a subprime mortgage crisis a.k.a. the 

biggest economic depression of the 21st century when this crisis triggered the liquidity 

crisis due to increasing defaults in subprime mortgage credits. This liquidity crisis start 

drawing great attention after February 2007 for the first time. 

The portfolio in finance has a very complex and multidimensional components in 

the actual risk management process. These components refer to different types of 

financial instruments and derivatives. Each portfolio product exposes to different risk 

factors. Notwithstanding anything to the contrary contained herein, this master thesis is 

mainly established on the analysis of two historical portfolio daily price index returns of 

Group of Seven (G-7) and BRICT nations’1. The importance of the academical and 

industrial interest in portfolio risk management and forecasting is induced by the 

regulation of banks whereby this risk is assessed by the certain risk measure methods, so 

called Value-at-Risk (VaR) which is also known as Capital-at-Risk or Money-at-Risk2. 

Furthermore, these BRICT and G-7 countries stock market whose indices were 

fluctuated with consequences of the economic crises are on the world’s top 30 leading 

economies in term of both market capitalization of listed companies in their stock 

markets and GDP figures3. This was an outstanding advantage to take a closer look at 

the crisis impact on global scale. This is because by looking at GDP estimates of 2009 

                                                 
 
1 Group of Seven (G-7) is the seven leading industrial countries of the world: Canada, France, Germany, 
Italy, Japan, the United Kingdom and the United States. BRICT is an abbreviation originates from BRIC 
countries that coined in a 2003 Goldman Sachs paper in which the authors predicted that the economies of 
the emerging markets of Brazil, Russia, India and China (BRICs) would overtake the world’s wealthiest 
countries by 2050. Yet some of the researcher predicted that Turkey could be included into this group as 
well. 
2 See Riskmetrics Group (1996). Concepts and applications are Jorion (2000) and Simons (2000). 
3 See GDP (in USD) figures and market capitalization of listed companies (in USD) of BRICT and G-7 
countries in 2008 which are converted from domestic currencies using single year official exchange rates. 
Data is retrieved from World development indicator of World Bank on May 9, 2010 and available at 
http://data.worldbank.org/indicator/NY.GDP.MKTP.CD and 
http://data.worldbank.org/indicator/CM.MKT.LCAP.CD. 
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and as well as 2010 most of these countries were about to enter economic recession 

where is a period of no or negative economic growth and high unemployment in it.  

However, there is one significant downside, which may have discouraged potential 

researchers, is to deal with monthly data form where it requires substantial amount of 

transformation over subsample time series of the market indices and running some 

analyzes on this daily portfolio data, which does not clearly show evidence of a normal 

distribution on each subsamples. The advantage of this study is the results capture a 

significant aspect of risk in a single number on monthly basis. Therefore, it is easy to 

understand and it asks the fairly simple question: “How bad can things get throughout 

each subsample?” 

Having said that the points mentioned above, there are other significant challenges. 

One of them is to work on some of the consequences that arise from the key 

assumptions of the methodology about the distribution of the portfolio returns, the 

parameter choice of VaR methods and the choice of the proper methodology. Moreover, 

analyzing a topic in which the potentially some of the interest groups have not reached a 

rigid decision is another challenge. Yet some of our findings will inevitably contradict 

with the commonly held opinions of portfolio risk managers, while some of them will 

further strengthen their opinions. The goal is not to pass any final verdict on any of 

these outstanding opinions of risk management. It is rather to contribute to the debate by 

providing sound perspective to them by analyzing empirical daily data in the long term 

period starting from 2002 to 2010 on the stock market indices of BRICT and G-7 

countries.  
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Introduction 

In today's world, the barriers of the capital movement did not disappear completely 

with the rapid growth in trading activity and advances in information technology. Yet 

investment is much easier than earlier. Both nationally and internationally financial 

markets are rapidly liberated. Besides, in the last few decades the financial instruments 

increased in volume and also in variety. Financial markets are grown and spread quickly 

and our giant global world is now becoming a tiny local financial market for the global 

market players. Although each market player, regardless of their size and magnitude of 

financial events, aims to reduce the risk by minimizing the error of risk models, large 

institutions started loosing more and more money due to the bad risk management. This 

cupidity had drawn academicians’ attention so that risk measurement/management and 

controlling of risks had become a distinct sub-field of the theory of finance. 

Long-Term Capital Management (LTCM) hedge fund, one of the large hedge funds 

in US, was collapsed in September 1998 and a consortium of banks bailed out the lost of 

billions of dollars of investors’ money. John Meriwether, the founder of the LTCM 

hedge fund, drew our attention to clearly learn from this experience of extreme stock 

market crises in US and Europe due to Russian economic crisis; he declares that:  

“With globalization increasing, you’ll see more crises. Our whole focus is on the 

extremes now—what’s the worst that can happen to you in any situation—because we 

never want to go through that again.”4 

After a great deal of losses and bankruptcies is observed in the last few decades, 

the risk has clearly become a critical issue for organizations, which often prefer not 

taking the risk in the first place. The most well known example of these is probably the 

collapse of Barings Bank, UK in 1995, that was caused by the Singapore based 

derivatives trader Nick Leeson, who took large positions in futures and options on Asian 

Stock Exchanges (Koupparis, 1995). Other worldwide well-known companies that have 

been seriously impacted by insufficient risk management techniques are the German 

                                                 
 
4 See Embrechts (2008). 
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commodity and engineering conglomerate Metallgesellschaft in 1993 and Summito 

Corp. in 1996, that made lost over 1.8 billion USD through unauthorized copper trades 

(Danielsson, 1998). LTCM hedge fund which was a very large hedge fund caused 

financial crisis in US since LTCM hedge fund that was invested to Russian bonds that 

were defaulted by Russian government in 1998 become huge losses. In late 2001, Enron 

Corporation, a firm focusing on energy market trading and once the seventh largest 

corporation in the United States (Mishkin, 2004), filed for bankruptcy after recognizing 

a series of losses and debts that had previously been concealed in off-balance sheet deals 

with partnerships (Healy and Palepu, 2003).  

Certainly, there is barely any circumstance where economic decisions are made 

with perfect certainty. The statistical uncertainty was traditionally associated with the 

financial risk on the final outcome (Bouchaud and Potters, 2001). Within increasing 

competition in financial markets, both the multinational companies and financial 

institutions become more fragile to financial risk. Subsequently they have taken much 

riskier positions on the market to cover underestimated loss. Thanks to this kind of 

gambling on financial markets, a framework of effective risk management came into 

picture as a necessity of measuring risk. The importance of risk measurement at this 

stage has been accelerated and is understood with the academic studies to possess risks, 

and to assess the risk measures.  

A new approaches and new tools are invented to control the risk.  Within the 

context of risk management process, these approaches vary from a broad perspective. 

More complex risk management techniques such as option pricing models, sensitivity 

analysis, simulation techniques are extensive used. The downside risk measure in 

finance (Value-at-Risk) method is used more and more in order to estimate market risk 

since late 1990s. The Value-at-Risk estimation methods are one of the complex risk 

measurement methods where we are going to explain in more details throughout this 

thesis.  

There are various approaches used by VaR models to estimate the potential losses. 

Each estimation method, of course, has been evolved over time and we can not say any 

risk measurement technique which is a single ultimate technique or absolutely superior 

against other techniques. All techniques have the same intention, that is, in fact, nothing 

but measuring the size of possible future losses at a predetermined confidence level. 



Master’s Thesis 

13 

Models differ from each other in a way that they calculate the density function of future 

profits and losses of current positions and also the underlying assumptions that are 

based on. 

 From the evolutions of risk parameters, corresponding evaluations and 

estimations, a loss distribution is obtained from several risk measures (expected loss, 

value-at-risk, expected shortfall) which are chosen similar to the density function of the 

profits and losses of a credit portfolio. For large portfolios, the above calculation 

method is often simplified by mapping securities to homogeneous buckets with similar 

sensitivity to risk drivers.  

In literature, of computing VaR estimation, there are three basic methods that are 

going to be explained in next chapter. These three methods draw the greatest attention to 

produce forecasts. They are as follows: variance-covariance method, historical 

simulation method and Monte Carlo Simulation Method (Baesens and van Gestel, 

2009). Yet the objective of this thesis is to compare parametric and non-parametric VaR 

estimates for two historical portfolios using alternative methodologies to Delta-normal 

VaR. 

However, the thesis forms by three major chapters. In the first chapter of this 

thesis, a rather unsophisticated review of VaR literature and our objectives are 

introduced. In the second part of the thesis, the general financial risk concept and market 

risk where the Value-at-Risk resides are explained. It continues how the risk concept in 

financial market industry is perceived. Financial risk has been detailed and market risk 

types are explained also here in this chapter.  

Consequently, in the final chapter, measuring market risk with the Value-at-Risk 

(VaR) approach is covered with methods of risk measurement. The classification and 

high level details of various VaR methods are discussed in this section. Furthermore, the 

essential components of assessing the VaR estimate, which have to be kept in mind, are 

put in plain words. Furthermore, data and methodologies are discussed. This section will 

examine the VaR approaches used in this study to illuminate its central questions about 

how the risk estimate in the portfolio risk management is perceived, interpreted and 

used via the empirical methods in the long term. Brief descriptive analysis is given 

about the data we work on. The hypothetical portfolio selection process and the 
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importance of portfolio management are vaguely discussed in this section. Furthermore, 

results of various VaR approaches that are used are both detailed and findings are shared 

with the readers. These approaches enables empirical analysis of VaR estimates on two 

historical portfolios for one-month holding period in the long-run to shed some light on 

the general perception about the accuracy of VaR estimates before, after and during the 

subprime mortgage crisis. Subsequently, further possible studies are discussed.  
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CHAPTER ONE 
 

1 Literature  

Literature on VaR calculation shows that there are numerous types of empirical 

methods available while calculating the passive portfolio VaR and each one of them has 

different assumption sets to measure VaR estimate. Of course, not all the methods give 

similar and singular outcomes; consequently, it draws our attention that research in this 

field is open to new contributions and further studies that can enhance the existing 

methods by measuring accuracy which can be supported with further robust diagnostic 

tests. 

Bernstein (1998) has an eminently good textbook on the history of risk and 

probability with financial applications. His paper explains the history of uncertainty, 

evolution of risk management and the behaviors of financial market investors. 

Supplementary very helpful material on the risk management and its timeline in the 20th 

century is to be found in Field (2003). 

There are various studies on the outstanding losses because of extremely risky 

speculative trading activities on financial derivative products. Dunbar (2000) and 

Lowenstein (2000) explained the LTCM hedge fond case very well. Jorion (2000) is 

particularly for the technical risk measurement issues involved. Boyle and Boyle (2001) 

enlighten the the Orange County5 and Barings and LTCM cases very comprehensibly.  

Crouhy, Galai and Mark (2001) give a very detailed overview of relevant useful 

issues and fundamentals of Risk Management. We also suggest a textbook emphasizing 

the use of VaR as a risk measure and containing several empirical examples in Jorion 

(2001), whose valuable teaching paper is a reference point on the same topic (Jorion, 

2002). 

                                                 
 
5 See Jorion’s Orange County Case Available at http://merage.uci.edu/~jorion/oc/case.html. Retrieved on 
May 19, 2010. 
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Zangari (1996) suggests using the Cornish-Fisher expansion6 of normal 

distributions to capture extreme events much better than the “classical” normal 

distributions thanks to the much fatter tails. 

In another study, the accuracy of several VaR estimation models on Dutch 

portfolios on interest rate is examined by Vlaar (2000). Consequently, he found that 

historical simulation (HS) model calculates satisfactory results only when a long run 

data is available. 

The non-parametric statistical models include the family of HS models. 

Furthermore, the filtered historical simulation (FHS) is a special form of a generalized 

HS. All the positive properties of HS exist in FHS and it surmounts weaknesses of most 

of the historical simulation. This approach which is deliberately mixture of non-

parametric and parametric statistical models is developed by Barone-Adesi, Burgoin and 

Giannopoulos (1998), Barone-Adesi, Giannopoulos and Vosper (1999, 2000) who 

proposed the FHS approach in a sound way and that allowed the introduction of 

GARCH models in VaR measures. They also compared the estimates with traditional 

historical simulation, which has also various shortcomings detailed.  

For the first time, Bollerslev (1986) proposed the GARCH specification that puts 

together the serial dependence of volatility and includes the historical observations into 

the future volatility (Bollerslev et al. (1994)). Nelson (1991) put forward the EGARCH 

model, which allows taking into consideration the ‘leverage effect’ that the volatility of 

the stock returns increases more after bad news than after good news in the market and 

overcomes the standard GARCH model weakness regarding the assumptions of the 

positive and negative error terms have a symmetric effect on the volatility.  

In the working paper of Cavenaile and Lejeune (2010) argue that confidence levels 

below 95.84% should never be used for the Modified Value-at-Risk to be consistent 

with investors’ preferences for kurtosis. In addition, the use of higher confidence levels 

is restricted by the value of the skewness. Failure to respect these restrictions on 

confidence levels results in mistakenly assessing risk and potentially overweighting 

assets which exhibit undesirable properties in terms of higher moments. 

                                                 
 
6 We will elaborate the Cornish-Fisher (1937) expansion of the normal distribution throughout the 
discussion. 
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Baillie and Bollerslev (1992) construct ex-ante approximate prediction confidence 

intervals for GARCH(1,1) dynamic variance forecasts at multiple horizons but ignore 

estimation error. Furthermore, the estimation error issue is not explained in details in 

risk management textbooks such as for example Christoffersen (2003) and Jorion 

(2000). 
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CHAPTER TWO 

 

2 Risk Concept and Market Risk  

2.1 Risk Concept 

2.1.1 Definition of Risk and Types of Financial Risks 

The investment can be defined as the money or capital disposal, which generates 

profitable returns as like interest on principal value, fix or floating income, revenue or 

earnings in the future. As of today, the future can not be known; earnings of the 

investment can be hardly predicted without uncertainty. Any value prediction is 

assessed with risks of these profits and losses as investments are analyzed often involve 

high level uncertain and instability. Uncertainty and instability form a variety of risks in 

the financial markets. Each of these measures is calculated each day, every day for 

every market variable to which they are exposed to. 

Risk, in general, is defined as to exposure the unexpected results. In terms of 

economic perspective, “economic risk consists in that actual positive conventional cash 

flows (income, inflows) turn out to be less than expected or actual negative conventional 

cash flows (expenditures, outflows) turn out to be larger than expected (in absolute 

terms)” (Galasyuk and Galasyuk, 2007). Yet then, we can have a deviation between 

actual results and the expected results can not always be a negative component of risk, 

the risk can be encountered as a positive including the direction of the deviation (Bolak, 

2004). Although above sentences express some of the elements of risk, no single one-

sentence definition is entirely satisfactory in all contexts (Embrechts et al., 2005). 

“In a sense, the economics of risk is a difficult topic to cover; it involves 

understanding human decisions in the absence of perfect information” (Chavas, 2004). 

Maximizing the value of portfolio and providing positive balance on portfolio is some 

of the common goals to support any financial activities of any business organization that 

wants to survive on the market. This is not a binding statement and it is also applicable 

for organizations that rely on heuristic portfolio management models. Providing quick 

and accurate risk measure information is the responsibility of any (back office) business 

decision-support units in the organizations. Portfolio risk management is the main 
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responsibility of the senior management team who is used to compose and decompose 

portfolios to achieve the common goal of any organization that wants to maximize 

profitability.  

Often there are hundreds, or even thousands of market variables, which describe 

and form different aspects of the risk. In traditional sense, we can categorize market risk 

under two main pillars, that is, systematic risk and unsystematic risk.  

Systematic Risk 

Systematic risk can be also called “common risk” or “general market risk”. Any 

The change in the transaction’s value correlated with the behavior of the market such as 

inflation, production factor prices, interest rates, raw material costs affect the scales of 

economy negatively or any changes all over economy forms this type of the risk. There 

is a systematic relationship among the returns of a financial asset with the returns of an 

identical class of all financial assets. Systematic risk of a portfolio of financial assets is a 

combination of risk in the financial assets they contain.  

Systematic risk can affect the return volatility of all financial asset prices in 

different proportions at the same time and in the same direction and does not reduce its 

risk in spite of changing the number of financial assets in portfolio or diversifying the 

risk of financial assets in portfolio. Therefore, systematic risk is the type of risk that can 

not be diversified. 

Unsystematic Risk 

The factors such as the management structure of enterprises, quality of 

management organizations, technical and technological developments, and consumer 

preferences can be considered unsystematic risk also known as an idiosyncratic risk or 

company specific risk. Unlike systematic risk, unsystematic risk is that any change in 

the transaction’s value not correlated with the behavior of the market. It presents the 

characteristics of the company or the business of the underlying risk. Unsystematic risk 

affects specific industry or financial securities and this risk can be reduced by changing 

composition of portfolio. 
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However, in the RiskMetrics — Technical documentation, the risk is defined as 

“the degree of uncertainty of future net returns”. Longerstaey and Spencer (1996) 

categorize this uncertainty in various forms. That is why most financial market players 

are subject to a variety of risks. Based on the source of the underlying uncertainty risk 

can be classified as follows:  

• Credit risk estimates the potential loss as a result of the inability of a 

counterpart to pay back its obligations such as loans and bonds, due to the 

incapacitated payment ability of the borrower.  

• Operational risk is the risk of loss resulting from inadequate or failed internal 

processes, people and systems or from external events. For instance, results 

from errors that can be made in unauthorized transactions or results in money 

laundering.   

• Market risk is the risk that changes in market conditions such as stock and 

bond prices, interest rates, commodity prices, exchange rates and so on. It 

involves the uncertainty of future rate of returns resulting from changes. Since 

the last decade, measure of market risk has become identical with the Value-at-

Risk (VaR) approach. 

In trading activities, risk arises from both open (unhedged) positions and imperfect 

correlations between market positions that are intended to counterbalance each other 

(Crouhy et al., 2000). Besides, “the boundaries of these three risk categories are not 

always clearly defined, nor do they form an exhaustive list of the full range of possible 

risks affecting a financial institution” (Embrechts et al., 2005). 

2.1.2 Types of Market Risk 

In different contexts, market risk is given many different meanings since there is no 

canonical form of market risk types. For instance, in the case of a portfolio 

management, the measure of market risk is often relative to a benchmark index and 

hence the market risk is referred to as “risk of tracking error”. Both positive and 

negative deviations of unexpected outcomes due to changes in financial variables imply 

that these movements should be viewed as sources of risk. Market risk often captures 
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effect on portfolio value. Figure 2-1 illustrates the high level breakdown of four 

principal types of Market risk that is subcategory of a financial risk:  

Figure 2-1 Structural Breakdown of Financial Risk 

 

Source: Author 

• Interest rate risk — the simplest form of interest rate risk is the any change in 

the interest rate value correlated with the behavior of the assets in the market. 

Changes in interest rates negatively affect asset prices and securities. On the 

other side, the components of the financial instrument like the maturity and the 

size and timing of cash flows, portfolio retention time of each asset affect the 

interest rate levels.  

• Foreign exchange risk — risk refers to losses due to the foreign currency debt 

that is incurred a negative exchange rate. Namely, this type of risk is revealed 

in the value of foreign currency debt upon the appreciation or depreciation of 

national currency against foreign currency. As like all other market risks, open 

or imperfectly hedged positions cause foreign exchange risk. Exchange rates 

was not volatile between 1946 and 1973 thanks to the Bretton Woods system7 

                                                 
 
7 Bretton Wood system is the international monetary system of fixed exchange rates that was established 
in 1944 and lasted from 1946 to 1971 for more than quarter century. In a system of fixed exchange rates, 
each country's central bank intervenes in the national monetary market against any currency attacks from 
abroad to balance the exchange rate. (Bordo et al., 1993) 
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but have been volatile ever since the failure of this international monetary 

system of fixed exchange rates in 1970s (Dowd, 2002). 

• Equity price risk — the price risk associated with the sensitivity of an 

instrument or portfolio value to a change in the value of stock prices (Jorion, 

2005). “Specific” or “idiosyncratic” risk refers to this portion of an equity price 

volatility that is determined by characteristics of a firm such as its line of 

business, the quality of its management, or a breakdown in its production 

process. Therefore, equity markets have always been volatile, but sometimes 

extremely so. 

• Commodity price risk — the price risk of commodities differs from interest 

rate and foreign exchange risk considerably. This is because the changes of 

supply in most commodities, which are traded in markets, can float price. Risks 

arise in both the spot market and from transactions that take place in the future 

(e.g., a final product delivery matures in one month’s time) whilst spot market 

condition can be affected positively or negatively. 

Accordingly, one of the simplest forms of risk measure is to calculate volatility by 

standard deviation of unexpected outcomes. There are two factors that can cause losses 

during combination of them. They are as follows: (i) volatility of underlying financial 

variable and (ii) exposure of underlying financial variable to this variable of interest like 

portfolio value, earnings, capital, particular cash flow and so on. 
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CHAPTER THREE 
 

3 Measuring Market Risk: The VaR Approach  

Effects of globalization rigorously observed in a variety of markets like exchange 

rates, interest rates, commodities and stock markets of the global economy. As a result 

of high capital mobility, risk management studies have gained incredible momentum to 

ensure stability of the investment in the second half of the 20th century. Increasing 

interest and rapid development on the risk estimation models become somewhat a 

revolution in the risk management process. Around the globe, finance industry races to 

implement the new models to increase their accuracy on the risk estimation whose 

methodology is transformed as well as the underlying concept. More sophisticated risk 

management techniques such as option pricing models, sensitivity analysis, simulation 

techniques became widespread.  

Hull (2005) underlines that Value-at-Risk (VaR) is an attempt to provide a single 

number summarizing the aggregate risk in a portfolio of financial assets for the senior 

management. VaR has become widely used by banks, securities firms, commodity 

merchants, energy merchants, and other trading organizations. Central bank regulators 

also use VaR while determining the capital requirement to bear with the market risks 

(Hull, 2006). 

VaR method is used more and more as one of the common statistical methods to 

estimate the market risk as is. VaR estimate methods are the basis for sophisticated risk 

measurement in recent years and it is a commonly used risk measure method of the loss 

as well as profit on a designated portfolio. Yet we need to go back in the history of a 

theory of finance a bit and we have to have a look at how, why and when this method is 

brought up and is formed as a method in the theory of finance. 

 

3.1 Measuring Risk: A Historical Perspective 

The term “value-at-risk” (VaR) is coined before the new millennium, more 

precisely in the early 1990s. Yet VaR measure thrown out the consideration for the first 
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time in the literature of the theory of finance is in the early 20th century. Holton states 

that this goes back in the history to prudential capital requirements of US securities 

firms, starting with an informal capital test to the New York Stock Exchange (NYSE) 

first applied to member firms around 1922 (Holton, 2003). 

The measurement of risk has replaced with new improved approaches over time 

likewise other approaches in any science. It has changed from simple measures such as 

the face value or "notional" amount for an individual security, to more complex 

measures of price sensitivities such as the duration and convexity and Greek measures, 

to the most recent methods for measuring VaR estimates (see Figure 3-1). Put it simply, 

sophistication of methods increases from left hand side to right one. Each method has 

run at first to be applied to individual securities, and then to be modified to measure the 

risk of complex portfolios such as those that form with derivatives (Crouhy et al., 2000). 

Figure 3-1 Traditional Measures of Market Risk 

4. VaR approach at 

the portfolio level 

(with volatilities 

and correlations)
3. VaR approach at 

the transaction 

level (with 

volatilities)

2. Basis point value 

(BPV) approach

1. Notional amount

Traditional Measures of Market Risk

 
(*) Source: Crouch et al. (2000) 

None of ad-hoc methods like notional amounts, sensitivity measures, and scenario 

measures that calculate risks was reasonable. These methods do not measure what 

actually matters, i.e., the downside risk for the total portfolio, while they provide some 

quick insight of risk. Hence, they give out to take in account differences in volatilities 

across risk factors, and also the probability of adverse moves in the risk factors (Jorion, 

2005). 

Holton (2003) asserts that portfolio theory influenced the regulatory and 

proprietary VaR measures directly or indirectly. Markowitz (1952) and Roy (1952) 
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independently unveiled VaR measures to back up portfolio optimization theory. In 

1952, processing power in computer technology was not sufficient to support any 

practical use of such methods, but the Markowitz risk-return diagram8 is based on the 

idea that the natural equilibrium between risk and returns of a given investment 

portfolio. It represents the foundation of the “theory of portfolio selection” (see 

Markowitz 1952, 1959). Throughout the entire extent of an efficient portfolio frontier 

that correlates a portfolio's risk profile to expected returns, the portfolio manager could 

see natural fact that increasing returns refer bigger risks and also optimize the portfolio 

return for a given risk level. Markowitz and Sharpe had shown how diversification 

could easily reduce the risk. In the following decades, we saw a tremendous 

development in risk management methodology, including such ideas as the Sharpe ratio, 

the Capital Asset Pricing Model (CAPM) and Arbitrage Pricing Model (APT) 

(Embrechts et al., 2005).  

Even though VaR measures has been used since 1980’s by few large financial 

institutions, it was not too much popular until 1993 when it became widely recognized 

by financial institutions especially banks and by the financial regulators. A linear VaR 

model was the main reason behind this extensive influence. The linear VaR is based on 

the variance-covariance of past portfolio returns, and introduced by JP Morgan, 

RiskMetrics (1993) (Barone-Adesi, Giannopoulos and Vosper, 2000).  

In 1993, the G-309 released an influential report regarding the off-balance-sheet 

products, like derivatives for the first time. Meanwhile, the banking institutions clearly 

perceived the necessity for an appropriate risk management of these new financial 

products. For example, the famous Weatherstone ‘4.15’ report which asked for a one-

day, one sheet of paper summary of the JPMorgan bank’s market risk to be delivered to 

the top senior manager (CEO) in the late afternoon (hence the “4.15”). RiskMetrics set 

an industry-wide standard for a market risk measure so that Value-at-Risk (VaR) was 

born (Phelan, 1997).  

                                                 
 
8 Risk-return diagram shows rates of return and a measure of risk (a standard deviation) for a pre-
specified time period on the horizontal axis and on the vertical axis respectively.  
9 Group of Thirty (G-30) is an influential private, nonprofit, international body consisting of senior 
administrators of the private, public sectors, and academia and established in the late 1970s to understand 
the dynamics of international economic and financial issues. (See http://www.group30.org/) 
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However, for market risk, the VaR measure catalyzed by the 1996 Amendment is 

still the most popular market risk measure at the moment of writing. In 1996, Basel 

Committee on Banking Supervision10 published an amendment to determine an explicit 

capital cushion for market risk to which institutions are exposed. For large portfolios, 

the risk calculation is simplified by mapping securities to homogeneous buckets with 

similar sensitivity to risk drivers. Instead of evaluating each security, the impact of the 

risk-driver evolution is calculated on buckets. 

 

3.2 Definition of Value-at-Risk  

Market risk is primarily measured using VaR that is one of the most ordinary 

methods for assessing this type of risk. VaR is a statistical measure of market risk that is 

easy to interpret. VaR quantifies the total portfolio risk, taking into consideration the 

diversification and leverage of the portfolio.  

VaR as a Downside Risk Measure 

VaR is defined as the expected loss from adverse market movements over a target 

horizon such that there is a low, given probability that the actual loss will be larger 

(Jorion, 2007). Correspondingly, the RiskMetrics Technical Documentation 

(J.P.Morgan and Reuters, 1996) describes VaR as a measure of the maximum potential 

change in value of a portfolio of financial assets with a pre-specified probability over a 

target horizon. Furthermore, Linsmeier and Pearson (1996) underline VaR as such that 

is “a single, summary, statistical measure of possible portfolio losses”.  

Kevin Dowd defines that, “in its most literal sense, VaR refers to a particular 

amount of money, the maximum amount we are likely to lose over some period, at some 

specific confidence level” in his textbook “Beyond value at risk”. Then again, the 

author, Cormac Butler, of the textbook “Mastering value at risk” defines with much 

broader terms. He defines that “Value at Risk is an attempt to identify what causes risk 

and what policies are effective at reducing risk”. It is clearly meant to more complex 

financial instruments. 

                                                 
 
10 The Central-Bank Governors of the Group of Ten (G-10) founded the Basel Committee of Banking 
Supervision committee at the end of 1974. Much of the regulatory drive in the financial institutions 
originated from this committee. See Alexander and Baptista (2001) for further discussion on literature. 
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As a result of these definitions, the term of VaR can be summarized as VaR is a 

summary statistical measure of possible maximum portfolio losses due to the price 

changes of a portfolio. Furthermore, VaR aggregates all of the risky assets into a single 

number that is more than sufficient to report to stakeholders in the senior management, 

to regulators, or to put into activity closure documents such as periodical reports in the 

financial institutions. Losses greater than the VaR are suffered just with a given small 

probability which subject to the simplified assumptions used in its calculation. 

Therefore, the idea of VaR is straightforward to understand even if one does not have a 

competency on a statistical measure. Linsmeier and Pearson (1996) underline “it is 

simply a way to describe the magnitude of the likely losses on the portfolio”.  

3.2.1 Components of a Value-At-Risk Measure 

In preparation of subsequent models, there are two important aspects of VaR 

estimates that need to be focused on. Put it differently, the VaR measure is subject to 

two arbitrarily chosen parameters—a holding (or horizon) period and a confidence level. 

Holding Period 

A holding (or horizon) period is the period of time over which profit or loss of the 

portfolio is measured. Since the holding period is a scalar variable, different VaR 

calculations could use different time. There is no typical “correct” time period while 

measuring VaR to answer how much the portfolio can lose in a time period. For 

instance, financial banks often measure a daily basis; then again, pension funds usually 

calculate a monthly VaR. Thus, the usual holding periods can be either one day or one 

week or two weeks or one month or even one-quarter year. Ideally, other things being 

equal, the holding period is suitable in any given market if the length of time ensures 

liquidation of positions in that market. However, other factors favor a short holding 

period:  

• The assumption that the portfolio does not change over the holding period is 

more easily defended if we have a shorter holding period.  
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• A short-term holding period is preferable for model validation: reliable 

validation requires a large data set, and a large data set requires a short holding 

period. (Dowd, 2002) 

VaR is obviously proportional to holding period and can be extended from a one-

day holding period to T  days by multiplying with the square root of T . This adjustment 

assumes daily returns are independent and identically distributed (i.i.d.) and position is 

constant during the full period of time (Jorion, 2005). When the distribution of returns 

are independent and identically distributed and also the moments of the distribution are 

known, any logical judgment made regarding potential portfolio losses will be accurate 

and unchanging over time (see Barone-Adesi and Giannopoulos, 2003). Therefore, any 

logical conversion of time period can be easily calculated for different holding periods. 

For instance;
250
annual

daily

σ
σ ≅  or

12
annual

monthly

σ
σ ≅  are approximation for the volatility 

estimates.  

Generally speaking, many finance industry experts and academicians would agree 

that the value-at-risk of a passive portfolio is a maximum loss the portfolio itself may 

suffer within a certain holding period, during when the composition of the portfolio 

remains intact. The length of this holding period depends on the purpose but it is a quiet 

short-term, usually one day to a few weeks in the finance industry. Hence, the value-at-

risk helps to quantify the maximum amount of portfolio value that can be lost in a short 

period of time (Huang and Lin, 2004). 

 

Confidence Level 

The selection of confidence level specifies the probability that an outcome will not 

be worse than VaR estimate, and this value could be 90%, 95%, 99%, or any fraction 

between 0 and 1 (Dowd, 2002). The selection of confidence level also depends on the 

composition of portfolio and the liquidity of a market position. 

More rationally speaking, the VaR is a single number such that captures a 

probability clα of a worse return performance over the T holding period. 

Both clα and T  have to be determined beforehand by the portfolio risk manager. “The 
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VaR is thus simply a quantile of return distribution” (Christoffersen, 2009). At the 

below Figure 3-2 depicts that  

Figure 3-2 Loss distribution and probabilities 

 

(*) Source: Author 

A random variable X  is normally distributed with mean µ  and variance 2σ  if the 

probability that X  takes the value x , )(xf , obeys the following probability density 

function (pdf): 
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where X is defined over ∞<<∞− x . Therefore, if we want to calculate the VaR 

estimate at the given confidence level, we can use below equation. 

 [ ] ( )
∫
∞−














 −−=≤

X

dx
x

Xx
2

2

1
exp

2

1
Pr

σ
µ

πσ
  (3-2) 

where x  such that areas to their left represents a given probability clα . For normal 

distribution quantiles can be easily found from statistical tables 

Having said that VaR is a category of market risk measures. In practice, VaR is 

generally estimated by means of conventional methods. In the theory of finance, we can 
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classify VaR models into two main categories: parametric estimation (a.k.a. local 

valuation) and non-parametric estimation (a.k.a. full valuation).  

Figure 3-3 Two categories of Value-at-Risk 

 

(*) Source: Author 

Parametric estimation means the empirical distribution of portfolio returns fits a 

parametric distribution with known parameters and non-parametric estimation means 

past realizations are used to generate historic simulation and assumes that their 

parametric and/or empirical distribution describe future outcomes (See Figure 3-3). Yet 

the latter has higher computational complexity than the former. Moreover, three popular 

VaR estimation models (like Variance-Covariance, Monte Carlo Simulation and 

Historical Simulation approaches) will be explained in this section together with their 

advantages and disadvantages. Afterwards, relatively more complex of two estimation 

models will be covered in the below following sections, “Implementation of Value-At-

Risk Approach”, “Implementation of Modified Value-At-Risk Approach”, and 

“Implementation of Filtered Historical Simulation Approach”. 

3.3 Variance-Covariance Approach 

The variance-covariance approach (a.k.a. the delta-normal method, the closed-form 

method, the parametric method, the analytical method or model-building approach) is 

the simplest VaR approach, which assumes that the portfolio can be adequately utilized 

as a linear combination of normally distributed risk factors. This parametric model 

imposes distributional assumption for the underlying distribution of portfolio returns. 

For instance, underlying distribution could be a normal, mixture of normal, Student’s t , 

Generalized Error Distribution and so on. Therefore, the distribution is one of the core 

aspects of the method. In addition, the approach is also know as “linear” method since it 
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follows the one common characteristic that all linear transformations are applicable to 

portfolios whose portfolio mapping11 function is a linear polynomial. Such portfolios 

include not only portfolios of equities but also portfolios of commodities, or portfolios 

of futures. 

Variance-Covariance VaR measures do not generally suit well to portfolios like 

financial instruments with embedded options, redeemable bonds12, mortgage-backed 

securities (MBS) and many other structured notes. 

The resulting profit and loss distribution is obtained assuming a normally 

distributed where the variance of returns is calculated based upon the variance and 

covariance matrix. The simplest method of variance-covariance method is referred to as 

the minimum data are needed. Apart from the given confidence level, weights of the 

assets in the portfolio, asset risk and their correlation of coefficients are required. The 

correlation between the assets and current risks of them are present in different web sites 

and the weight of the assets in the portfolio may be easily calculated (Butler, 1999). 

Local valuation, in which the portfolio is valued once and the changes in value are 

described by a closed form solution. This is because both the expected return and 

standard deviation of returns are employed in this method. For instance, while 

calculating a daily VaR we calculate the standard deviation of daily returns in the past 

and assume it will be a plausible outcome for the future.  Then again, using the expected 

daily return and standard deviation of a portfolio, we estimate the one day VaR at the 

given confidence level. 

The assumption of normality may not be the most suitable to capture the risk of 

extreme market movements that are observed in market, but for sure it simplifies the 

computational burden (Baesens et al., 2009).  A stylized fact13 of empirical finance time 

series often shows that the distribution of the daily time series of returns has heavier-tail 

than one with the normal distribution. The assumption of the normal distribution is 

                                                 
 
11 The purpose of a mapping (redistribution) procedure is to characterize a portfolio's exposures to present 
value and duration. 
12 a.k.a callable bonds. 
13 The stylized facts of financial time series are a collection of observations and consequences obtained 
from these empirical observations that seem to suit to the most of daily series of returns of equities, 
indexes, exchange rates and commodity prices (EFM, 2005). 
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problematic just because many daily series of returns frequently exhibits the 

characteristic where there are occurrences at the tails, namely, far away from the mean 

than predicted by the normal distribution. More technically speaking, we are talking 

about the nature of the problem of the leptokurtosis of the daily returns. VaR will tend 

to underestimate the loss and its associated probability when a risk factor return 

distribution has “fat tails”. Also, we have to remember that delta-normal VaR is 

calculated using the historical standard deviation, which may not be suitable if the 

composition of the portfolio changes, if the estimation period includes extreme events 

(like market crashes), or if market conditions have differed (Embrechts et al., 2005). 

pdailyclp VRVaR )])((ˆ[ σα−=      (3-3) 

where pR̂ is expected 1-day return on portfolio, pV is value of the portfolio, 

clα is the degree of certainty with the desired level of significance and dailyσ  is standard 

deviation of 1-day returns of the portfolio return which is quantified from historical 

returns variances and covariances for the constituent assets (the ones whose returns have 

an effect on the portfolio value). In fact, these changes are known as risk factors. 

As an impact of the leptokurtic distribution problem, new VaR approaches have 

been proposed to use as estimators for the distribution of outcomes, but these are 

complex and have not been widely accepted by scholars yet. 

We can list of series of advantages and disadvantages of this approach. They are as 

follows in the Table 3-1:  

Table 3-1 Pros and Cons of the Variance-Covariance Approach 

Pros Cons 
• The model is easy to implement 
• Calculations can be performed 

quickly 
• Conductive to analysis because 

risk factors, correlations, and 
volatilities are identified 

• The need to assume a normal 
distribution 

• It requires the estimation of the 
volatilities of the risk factors as 
well as the correlations of their 
returns 

• The method results in a higher 
proportion of distributions with fat 
tails, either because of unidentified 
time variation in risk or 
unidentified risk factors/or 
correlations 

• Nonlinear relationships of options-
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like positions are not adequately 
described by the delta-normal 
method. 

(*) Source: Schweser, 2008 

3.4 Historical Simulation Method 

Historical simulation (HS) (a.k.a. bootstrapping estimation14) method is  used more 

and more in the financial risk management and is one of popular ways of estimating 

VaR. The HS method is based on the past returns. Put it differently, it takes into account 

historic data in a quite straight way as a seed to answer what might happen in the future. 

This is know as bootstrapping which is a method for estimating the distribution of an 

estimator by resampling past return data. HS is often much more accurate in finite 

samples than ordinary asymptotic approximations.  

HS assumes that same parameters of the distribution of past and prediction returns 

has the same parameters and past and prediction moments of the density function of 

returns of a specific risk factor are equivalent to each other. Moreover, HS utilizes 

historical data to estimate future outcomes. Multipath simulation scenarios are generated 

with arbitrarily chosen historical returns coupled with each risk factor. Thanks to 

simulated values of a portfolio, the aggregate risk of all linear positions is generated. 

The procedure is repeated many times using only historical returns (Barone-Adesi and 

Giannopoulos, 2000). 

The method uses one of two procedures: (1) a single-step procedure and long-term 

data; this procedure is used when the data has the same time scale as the time horizon of 

interest, or (2) a multi-step procedure and short-term data to create a longer term 

periods.  

HS requires no statistical assumption except stationarity of the distribution of 

returns or especially their volatility. In addition to that, past returns are drawn with or 

without replacement. Thus, the historical simulation approach does not formulate any 

presumption on the density distribution of the returns. “The historical VaR is an 

                                                 
 
14 Bootstrap method is one of important methods in applied econometrics, because the familiar asymptotic 
normal and chi-square approximations can be very inaccurate. See Efron and Tibshirani (1993) for further 
bootstrap discussions. 
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extrapolative method that assumes the future is a faithful reproduction of the past and 

the present. Historical data are used to identify a hypothetical density function which is 

employed to calculate the current or future portfolio VaR” (Ajili, 2008). 

In its simplest form, Barone-Adesi and Giannopoulos (2000) consider historical 

simulation as following. Given a data set of historical returns Θ , we draw an element ∗
e  

{ } Θ∈= ∗∗∗∗∗ eeeee T,,, 21 K  where Ti ,,2,1 K= refers to past 

days to form a simulation price for asset Y : 

∗∗∗
+ += eYYY TTT 1        (3-4) 

The process in (3-4) is repeated and the simulated price series ∗Y  is recursively 

updated up the last day of the VaR horizon. This sequence of simulated prices for day 

NTTT +++ ,,2,1 K  forms a simulated pathway or scenario for the risk factor Y . 

The ability to gather enough number of appropriate past data for analysis is the 

significant factor for the success of HS approach. If there are any gaps in the past data, 

if there are new unmapped risk factors in the model, if there are troubles fulfilling the 

historical record, these hassle decreases the effective number of observation and that 

also means, no doubt, accuracy of VaR suffers due to the poor empirical predictions.  

In the Historical Simulation methodology, there are at least two techniques. First 

technique uses the present weights of assets, the correlations of assets and assets’ 

volatilities to compute the volatility of portfolio. This technique approach is called as 

“ex-ante” technique. Second, “ex-post” technique computes the portfolio returns and 

then the portfolio volatility is estimated from it. This technique is also known as 

portfolio-normal (Bonollo, 2007). Therefore, a sample of historical portfolio returns 

with current portfolio weights is built as an initial step. The VaR is basically calculated 

as the unconditional quantile of the subsample history. The method therefore mostly 

takes no notice of the last 20 years of academic research on models of conditional asset 

return. Time variability is only captured through the rolling historical sample. Variation 

in time is merely captured through the rolling historical sample. Despite warnings of the 

nature of force-free model, (see Pritsker, 2001), the HS method is seen as a great benefit 

for many professionals. The well-known use of the technique of HS motivates us to 
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concentrate on backtesting VAR calculated using this method (Christoffersen and 

Pelletier, 2004). 

We can list of series of advantages and disadvantages of this approach. They are as 

follows in Table 3-2: 

Table 3-2 Pros and Cons of the Historical Simulation Approach 

Pros Cons 
• The model is easy to implement if 

enough data exists 
• Calculations can be performed 

quickly 
• Horizon is a positive choice based 

on the intervals of historical data 
used 

• It is exposed to model risk  
• It includes all correlations as 

embedded in market price 
changes 

 

• There may be not enough historical 
data for all assets  

• Only one path of events is used 
(the actual history), which includes 
changes in correlations and 
volatilities that may have occurred 
only in that historical period  

• The past data is considered a 
representative of the future. 
Therefore the window may omit 
important data or may include not 
relevant data 

• Time variation of risk in the past 
may not represent variation in the 
future 

• The model may not recognize 
changes in volatility and 
correlations from structural 
changes, such as the introduction 
of the New Turkish Lira in January 
2005 

• It is slow to adapt to new 
volatilities and correlations as old 
data carries the same weight as 
more recent data 

• Small number of actual 
observations may lead to biased 
and insufficiently defined 
distribution tails 

• It can not be used to conduct 
sensitivity analyses 

(*) Source: Schweser, 2008 

3.5 Monte Carlo Approach 

The method is identical to the historical simulation method. Instead of the historical 

time series, a series of pseudorandom numbers is generated via Monte Carlo simulation, 

which attempts to predict the maximum likely loss for a given a confidence interval over 

a prespecified holding period over the distribution of pricing pathways given arbitrarily 
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generated data. It involves the creation of the distribution by taking samples from a 

normal (or Gaussian) distribution to simulate potential future outcomes. For every future 

scenario, a portfolio value can be generated and a corresponding VaR measure can be 

estimated (See Schweser, 2008, p. 198-200). 

The advantage of the Monte Carlo simulation is that it is the most flexible method 

and does not assume linearity or normality and full valuation, in which the portfolio is 

fully valued for each scenario and can include variations in risk and correlations and can 

provide a nearly unlimited number of scenarios. 

We can list of series of advantages and disadvantages of this approach. They are as 

follows in the Error! Reference source not found.:  

Table 3-3 Pros and Cons of the Monte Carlo Simulation 

Pros Cons 
• It is the most powerful model 
• It can accommodate any 

distribution of risk factors and 
account for both linear and 
nonlinear risks 

• It can include time variation in 
risk and correlations by aging 
positions over chosen horizons 

• Nearly unlimited numbers of 
scenarios can produce well-
described distributions 

• It allows the user to perform 
sensitivity analyses and stress 
testing 

• There is a lengthy computation 
time as number of valuations 
escalates quickly 

• It is expensive because of the 
intellectual and computing skills 
required.  

• It is subject to model risk of the 
stochastic processes chosen 

• It is subjected to sampling variation 
at lower numbers of simulations 

(*) Source: Schweser, 2008 

3.6 Usage of Value-at-Risk  

Usually VaR has been a tool for measuring and managing short horizon risk (see 

(Pritsker, 2000) and (Kupiec, 1995)). However, for example financial institutions and 

corporations with long term liabilities, it is necessary to have a proper risk management 

methodology that control risk on longer horizons (Giannopoulos, 1995). Dowd (2002), 

author of an Introduction to Market Risk Measurement, notes that VaR information can 

be used in many ways. For instance, according to Dowd (2002), 

• Top management can use the VaR estimate to set their goal of risk management 

objectives that determine the risk and position limits on the business activity. 
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Whenever they want the financial institution to increase their risk exposure 

relative to comparisons of benchmark value, they would increase the global 

VaR objective, and vice versa. Of course, there are circumstances where risk 

needs be considered on longer horizons for example financial institutions have 

budgeting and forecasting for up to one year or longer. 

• Since VaR tells us the potential loss, we can use it to set the levels of capital 

cushion. It can be used to determine not only capital requirements at financial 

institution but also the level of individual investment decision. Put it simply, 

the riskier the activity, the greater the value at risk and the greater the demand 

for capital. Therefore, financial institutions decide on (internal) long run policy 

based on VaR estimates. 

• VaR can be handy to inform and publicize the purposes and financial 

institutions. VaR is increasingly becoming benchmark information in their 

annual reports15. 

• We can use the VaR information to assess the risks of different investment 

opportunities before making decisions. VaR-based decision rules can guide 

investment, hedging strategies and trading decisions, and also undertaking any 

alternative options for the risk of the portfolio as a whole16. 

• VaR can help provide a more coherent and integrated approach to manage 

different risks, which also leads to greater transparency and better risk 

management strategy. 

                                                 
 
15 Dowd (2002) also suggests seeing Dowd (2000b), Jorion (2001) or Moosa and Knight (2001) for more 
on the use of VaR for reporting and disclosure purposes. 
16 Dowd (2002) also suggests seeing Dowd (1999) for further information on VaR-based decision rules 
and suggests seeing Kuruc and Lee (1998) and Dowd (1999) for such portfolio-wide hedging strategies 
are explained in more detail. 
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4 Data and Methodology 

First of all, there is hardly any circumstances where in any economic decision is 

taken into account the risk. This is understood by everyone without being openly stated. 

Of course, this tacit consent can not be made without any benchmark value to compare 

with the interest. In this section, this benchmark method would be Delta-normal VaR 

estimation. We intend to conduct this research after transforming the data. The 

descriptive statistics of the data before and after transforming the data will be elaborated 

as well. Particularly, we will clarify how historical portfolios and hypothetical portfolios 

of BRICT and G-7 countries and also subsamples are formed to run further 

methodological analysis on the data in the long-run. Afterwards, the Jarque-Bera 

normality test on the data is conducted whether daily returns are normally distributed or 

not.  

Secondly, after how to prepare the subsample data will be illustrated in details, we 

will justify why we want to focus on two more methods that are much more complex 

than delta-normal VaR estimate that is a benchmark method in this thesis so that we will 

be able to compare the VaR estimates in the long run. In addition to that, we will plot 

the histogram diagrams of the periods with the high ‘maximum loss’ and compare them 

to the histogram diagrams of the periods with low ‘maximum loss’ and see how the 

market did change.  

Last but not the least comparison of one another will be performed on VaR 

estimates for various confidence levels and findings will be shared in the following 

section, i.e., Conclusion and Further Studies. Throughout this section, the assumptions 

underpinning the research design will be made explicit and we assume that a reader has 

solid background in applied econometrics to get along with the concepts and details of 

the methodology.  

Where does the Data Comes From? 
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Our data comes from the Reuters Wealth Manager17 data dissemination website. 

We take into account daily stock index returns nrr ,,1 K and assume that these have been 

expressed in geometric form. Put it simply, the geometric return tr  is a first logarithmic 

differencing of a daily index series ( )tY . 

 





=

−1
ln

t

t
t Y

Y
r        (4-1) 

where Tt ,,2,1 K= . 

We decided to use the geometric returns data rather than the arithmetic return 
18data that does not ensure portfolio value is never negative if the returns will be small if 

we are dealing with the short horizon period even if the returns themselves are 

unbounded.  

As per already mentioned in the preliminary of the thesis, we choose the below 

listed stock market indices (see Table 4-1) based on the GDP and market capitalization 

of listed companies in the stock market of BRICT and G-7 countries to analyze the VaR 

estimate among the world’s 30 leading economies. Historical past data consists of 1531 

observations19 of daily closing index values of the below representative equity indices 

for the period of the trading dates between January 8, 2002 to February 26, 2010. 

                                                 
 
17 Historical stock exchange market index closing values had been retrieved from Reuters Wealth 
Manager Service prior to March 1, 2010. All data rights are reserved by http://www.reuters.com and data 
is available at http://www.gva.rapid.reuters.com/wealthmanager/login.aspx?culture=en-GB. We are 
certainly grateful to Institute of Economic Studies at Charles University in Prague for providing us the 
data. 

18 
Data can also come in the form of arithmetic returns. The arithmetic return is defined as 

( )
1

1

−

−−
=

t

tt
t Y

YY
r

 where
Tt ,,2,1 K=

. This form is less meaningful economically. This is 

because a low realized return —or a high loss— implies that the asset value 
( )tY

 is negative, and a 

negative asset price seldom makes economic sense. 

 
19 A careful reader would easily catch that the number of observation is less than what it suppose to be 
because some records are filtered for making VaR prediction consistent if there is any missing 
observation of the closing index of any stock market where there is any local holiday or an off-day. Harri 
and Brorsen (2009, p. 2) argue that “most authors provide no justification for using overlapping data, but 
there must be some advantage to using it or it would not be so widely used”. In fact, we will certainly do 
that too. 
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Table 4-1 List of the hypothetical portfolio which is composed with equal weights 
Hypothetical 
Portfolio 
Composition 

Country Stock Exchange 
Market 

Ticker Symbol 

Brazil Bovespa (.BVSP) 

Russia RMX (.RMX) 

India Bombay SE (.BSE500) 

China Shangai SE (.SSEC) B
R

IC
T

 

Turkey Istanbul SE (.XUTUM) 

Canada TSX Composite (.GSPTSE) 

France CAC 40 (.FCHI) 

Germany DAX (.GDAXI) 

Italy FTSE MIB (.FTMIB) 

Japan Nikkei 225 (.N225) 

UK FTSE 100 (.FTSE) 

G
-7

 

US S&P 500 (.GSPC) 

 

Figure 4-1 and Figure 4-2 illustrate the relative price movement of each index for 

BRICT and G-7 countries respectively. The initial level of each index has been 

normalized to demonstrate the comparison of relative performance. 

Figure 4-1 Relative daily equity indices spanning the trading dates January 8, 2002 to February 26, 
2010 for BRICT countries 
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Figure 4-2 Relative daily equity indices spanning the trading dates January 8, 2002 to February 26, 
2010 for G-7 countries 

 

4.1 Data Description and Preliminary Analysis 

Descriptive statistics on the price and return series, for the period January 8, 2002 

to February 26, 2010, are shown Table 4-2 and Table 4-3 for BRICT and G-7 countries 

respectively. The results from descriptive statistic analysis of these two underlying data 

sets show that the distributions of all return series are characterized by negative 

skewness except for China and Turkey in BRICT and France and UK in G-7 countries. 

The coefficient of kurtosis on the daily returns is greater than that predicted by the 

normal (Gaussian) distribution. 

Table 4-2 Descriptive statistics of the daily equity indices and log returns of whole sample (1531 
observations) of BRICT countries 

Country Descriptive Statistics Country Descriptive Statistics 

  Equity 
Index 

Log. 
Return 

  
Equity 
Index 

Log. 
Return 

Mean: 34866.8086 0.001 Mean: 3697.241 0.0012 

Std. Dev.: 18283.1654 0.0225 Std. Dev.: 1992.095 0.02 

Skewness: 0.3122 -0.3536 Skewness: 0.3056 -0.5315 

Kurtosis: 1.8605 8.9886 Kurtosis: 1.9466 13.1827 

Min: 8370.88 -0.1875 Min: 1021.3 -0.1684 

Brazil 

Max: 73516.8 0.1097 

India 

Max: 8778.98 0.1647 
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Country Descriptive Statistics Country Descriptive Statistics 

  Equity 
Index 

Log. 
Return 

  
Equity 
Index 

Log. 
Return 

Mean: 1068.3808 0.001 Mean: 2182.572 0.0004 

Std. Dev.: 630.266 0.0295 Std. Dev.: 1131.713 0.0209 

Skewness: 0.5353 -0.8673 Skewness: 1.4034 0.0383 

Kurtosis: 1.8809 35.8561 Kurtosis: 4.2043 7.0682 

Min: 282.79 -0.3945 Min: 1011.499 -0.1276 

Russia 

Max: 2478.87 0.2953 

China 

Max: 6092.057 0.1295 

        

Mean: 29039.1288 0.0008 

Std. Dev.: 13796.2337 0.0233 

Skewness: 0.0487 0.1286 

Kurtosis: 1.7049 8.3364 

Min: 8391.84 -0.1439 

Turkey 

Max: 55720.33 0.1504 

 

 

Table 4-3 Descriptive statistics of the daily equity indices and log returns of whole sample (1531 
observations) of G-7 countries 

Country Descriptive Statistics Country Descriptive Statistics 

 
 

Equity 
Index 

Log. 
Return 

  
Equity 
Index 

Log. 
Return 

Mean: 10191.3214 0.0003 Mean: 30107.56 -0.0003 

Std. Dev.: 2481.7133 0.0137 Std. Dev.: 6970.361 0.0165 

Skewness: 0.1248 -1.4028 Skewness: 0.0673 -0.2301 

Kurtosis: 1.7796 23.9313 Kurtosis: 2.1574 12.1269 

Min: 5695.33 -0.17 Min: 12895 -0.1328 

Canada 

Max: 15073.13 0.0871 

Italy 

Max: 44364 0.1372 

        

Mean: 4176.0157 -0.0001 Mean: 12218.51 0.0000 

Std. Dev.: 911.4702 0.0176 Std. Dev.: 2935.497 0.0179 

Skewness: 0.3454 0.0125 Skewness: 0.4754 -0.5216 

Kurtosis: 2.0487 9.3636 Kurtosis: 2.0421 10.8942 

Min: 2403.04 -0.1148 Min: 7173.1 -0.1272 

France 

Max: 6168.15 0.1129 

Japan 

Max: 18252.67 0.1181 

        

Mean: 5096.1828 0.0000 Mean: 5080.862 0.0000 

Std. Dev.: 1407.0255 0.0186 Std. Dev.: 836.8845 0.0151 

Skewness: 0.3139 -0.3596 Skewness: 0.1679 0.0345 

Kurtosis: 2.2409 8.5165 Kurtosis: 1.8713 10.7155 

Min: 2202.96 -0.1183 Min: 3287 -0.1033 

Germany 

Max: 8092.77 0.1159 

UK 

Max: 6732.4 0.1087 

        

Mean: 1158.7023 0.0000 

Std. Dev.: 196.0142 0.0148 

Skewness: 0.0353 -0.7514 

Kurtosis: 2.2066 13.0104 

Min: 682.55 -0.1378 

US 

Max: 1565.15 0.094 
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In here we will let the data explains itself so that there is not much to say about the 

stylized facts of daily index returns’ variances which always exceed the mean and daily 

returns are not normally distributed (see Cont, 2001). Yet some of these aspects are 

meticulously explained for the hypothetical historical portfolio periods later on.   

A time series of T hypothetical historical portfolio returns are computed using 

constant portfolio weights, and historical returns on N equity indices 

{ }
T

t

N

j

jtjT

T

tt rwr

11
,,1

==
=









≡ ∑       (4-2) 

where jtr , denotes the log returns on country equity index j from the market close 

on day 1−t  to market close on day t , that is, (above equation on page 39) and where 

jTw , refers to weight of j  equity index in the portfolio despite the fact that an equally 

weighted portfolio is assumed. The modeling of the properties of this univariate 

portfolio return set for the univariate risk model. Furthermore, the portfolio weights are 

fixed throughout the analysis horizon. Obviously, this approach prevents us to not deal 

with the correlations, quantify the past return variances and covariances and also other 

interdependencies between N equity indices. Disadvantage of this approach, though, is 

that it is restrictive on the portfolio weights. If the weight vectors are altered, then the 

estimated model should be measured again. Thus, “it does not directly allow for 

evaluating the effects of actively managing the risk of the portfolio by changing the 

portfolio weights” (Christoffersen, 2009). Moreover, dividend adjustments, margin 

payments, reinvestment income, storage costs, insurance, financing or changes in 

exchange rates are ignored in the evaluation. Even if it assumes the daily rebalancing 

process is self-financing and no transaction costs required to rebalance the portfolio are 

explicitly taken into account. 

After hypothetical portfolio return series are formed, the sample minimum, 

maximum, standard deviation, skewness, kurtosis, Jarque-Bera and Kolmogorov-

Smirnov statistics of the returns are parts of the descriptive (or summary) statistics that 

can be retrieved easily on the hypothetical return series, for the period January 8, 2002 

to February 26, 2010, are shown Table 4-4 for BRICT and G-7 countries respectively. 

Kurtosis value is equal three for the normal distribution. Values are greater than three 
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show that the distribution has ‘heavy tails’. This clearly indicates the density of a 

distribution is in the center, is higher at the tails and the density in the areas in between 

is smaller than the density of a normal distribution. These are characteristic for financial 

data with daily frequency (Kirshgassner and Wolters, 2007). 

Table 4-4 Descriptive statistics of the portfolio logarithmic returns of whole sample 
Descriptive Statistics of  
the Logarithmic Returns 

 BRICT G-7 

Mean: 0.001 0.000 

Std. Dev: 0.0158 0.0135 

Skewness: -0.4841 -0.6049 

Kurtosis: 20.3329 13.3938 

Min: -0.1719 -0.129 

Max: 0.1154 0.0872 

JB test statistic:* 19212.13 6980.312 

p-value: 0.001 0.001 

KS test statistic:* 0.474438 0.478456 

p-value: 0.000 0.000 

(*) 0H of normality tests can be rejected at 5% significance level 

Mandelbrot (1963) noted that the time series of financial portfolio returns 

frequently exhibit the volatility clustering feature where probability of large price 

changes likely to cluster together, resulting in persistence of the amplitudes of 

subsequent price changes too. For instance, volatility clusters in 2009 on Figure 4-3 and 

Figure 4-4 are evidently distinguishable due to large price changes in the BRICT and G-

7 hypothetical portfolios.  
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Figure 4-3 Hypothetical global equity index portfolio relative closings and returns spanning the 
trading dates January 8, 2002 to February 26, 2010 for G-7 countries 

 

Figure 4-4 Hypothetical global equity index portfolio spanning the trading dates January 8, 2002 to 
February 26, 2010 for BRICT countries 
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A standard Jarque-Bera test is performed and the null hypothesis of normality 

assumption can be rejected in all subsamples except 1, 2*, 3*, 4, 5, 6* and 3, 4, 39, 48, 

49* subsamples of BRICT and G-7 countries respectively for p-value greater than 0.05 

(see Table 4-5 and see Table 0-1 for complete list of subsamples). We took eight years 

of data spanning the period 2002–2010 and formed daily logarithmic returns. For each 

subsample period, we calculated sample skewness and kurtosis and applied the Jarque–

Bera test20 to the univariate time series. The daily return data fail for majority of tests; 

especially, it is notable that there are some large values for the sample kurtosis. Of 

course, the reasons for this high number of rejections are due to days with extreme gains 

or losses, leading to excess skewness and kurtosis. As a result of that, the rejection rate 

decreases to about 100% for the subsamples in the one sample Kolmogorov-Smirnov 

test, which is more “tolerant” to outliers. Both tests indicate that the assumption of 

normality of the returns of the portfolio could lead to specification errors. 

Table 4-5 Jarque-Bera test statistics of normality where the null hypothesis can be rejected for 
subsamples of the portfolio logarithmic returns 
Subsample  
Period 

BRICT for %5 level G-7 for %5 level 

 JB test 
statistic 

p-value JB test 
statistic 

p-value 

2 3.825573 0.110892* 14.702106 0.005845 

3 3.933567 0.105027* 10.51584 0.013298 

6 2.761934 0.199293* 47.666609 0.001 

49 414.2035 0.001 5.014833 0.064407* 

(*) Indicates where the null hypothesis can be rejected 

However, rigorous assumption about the distributional properties is imposed by 

delta-normal VaR models. For instance, the density function of daily returns follows a 

normal distribution and has constant volatility of volatility estimate to produce current. 

The empirical studies on value changes and the distributional properties of them support 

these assumptions (see Kendall, 1953 and Mandelbrot, 1963). Furthermore, the 

frequency of the data these violates assumptions of normality. The hypothetical 

subsample data, which have daily frequency, tend to deviate from normality. 

                                                 
 
20 Jarque-Bera (1987) test statistic is which is asymptotically distributed as a chi-squared random variable 

with two degrees of freedom, to test for the normality of tr . One rejects 0H  of normality if the p-value of 

the JB statistic is less than the significance level. It can be applied on the time series itself  and as well as 
on its differences. 
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In 1997 Alan Greenspan expressed his own concern for the financial returns show 

fat tail characteristic which means that the normal distribution is not a good estimator to 

predict extreme market events by stating “…as you well know, the biggest problems we 

now have with the whole evolution of risk is the fat-tail problem, which is really 

creating large conceptual difficulties” (see Danielsson, 1998-1999, p. 11.).  

In fact, a quantile-quantile (Q-Q) plot is also used to see whether the daily 

observations of data follow normal standard distribution (see Figure 4-5 and Figure 

4-6). Yet due to the fat tailed distribution, the distributions of both BRICT and G-7 

countries are not normal, the blue colored ‘+’ plot is not close to linear. It should be 

approximately linear if the data is normally distributed. 

Figure 4-5 A quantile-quantile plot of the portfolio logarithmic returns for whole sample versus a 
normal distribution, for BRICT countries 
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Figure 4-6 A quantile-quantile plot of the hypothetical portfolio returns for whole sample versus a 
normal distribution, for G-7 countries 

 

In preparation for subsequent modeling of our methodology, first of all, we need to 

focus on the two important aspects of VaR estimates — the holding period and the 

confidence level — that are of interest in risk management and are often chosen 

arbitrarily based on the intention. 

Our purpose is to demonstrate VaR estimates of rolling subsamples over 60 periods 

for comparison; we use three different confidence levels. These values are 90, 95 and 

99%. 

Therefore, in this study, we prefer the one month length (22 days) of the holding 

period in which the simulation of the hypothetical portfolio presents feasible and robust 

results. Time aggregation is possible if and only if it is independent and identically 

distributed. 

As we mentioned earlier, the overlapping data of BRICT and G-7 countries whose 

VaR are predicted on one-month holding period consists of 1531 observations of daily 

returns on closing index values of the below representative equity indices for the period 

of the trading dates between January 8, 2002 to February 26, 2010.  
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These sequences of subsamples can be extracted with the following method 
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where T is the total sample size ( 1530=T ), N is the subsample size ( 200=N ) 

and h is one-month holding period ( 22=h ). Thus, we end up with P sequences of 

historical portfolio returns after (4-2) is applied to index returns. 

However, not complete set of historical observations are used to estimate the VaR. 

Instead of doing this estimation one off, overlapping data is taken a sequential 

subsample from the full data whose size is 20021 observations and data is forwarded 

one-month for next subsample. Namely, data is split into chunks of multiple periods by 

rolling one month. Afterwards, the VaR estimation of each subsample is analyzed for 

one-month holding period using both parametric and non-parametric methods (see 

Figure 4-7). Therefore, each underlying subsample has different volatility regime 

prevailing on the VaR estimate. Moreover, overlapping data are used not only to form a 

global portfolio but also to avoid the loss of any information. Furthermore, a global 

portfolio is subsequently used as part of the parametric/local valuation methods (such as 

a delta-normal model) and also the nonparametric/full valuation methods (such as a 

filtered historical simulation model) to use multipath innovations in it.  

                                                 
 
21 The Market Risk Amendment to the Basel Capital Accord requires for 1%, 1-day VaR estimates for 
market risk using a 1-year historical return history (RiskMetrics — Technical Document, 1996). On the 
other side, because country holidays were not aligned, this one-year observation number is reduced to 
200.  
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Figure 4-7 Illustration of rolling windows for subsamples 

 

VaR estimates can be measured ex-post, i.e. when the true values are available. 

There are many different measures to do this and this is done on the line charts of the 

estimated values displaying trend over time throughout the thesis. 

4.2 Implementation of Value-At-Risk Approach 

Parametric VaR measurement is constrained by the strong assumptions about the 

distributional properties of returns.  Instead of repeating what has been said, the details 

that have been covered already throughout the thesis previously, below Figure 4-8 and 

Figure 4-9 present the Delta normal VaR estimates of 60 periods across the time. These 

two will be used as a benchmark later on. 
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Figure 4-8 Delta-Normal Value-at-Risk for each period for BRICT countries 

 

 

Figure 4-9 Delta-Normal Value-at-Risk for each period for G-7 countries 
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As per mentioned earlier in the previous chapter of the thesis (see Table 3-1) the 

normality assumption of overlapping data brings some undesirable statistical properties. 

One of these desirable motivations is also the violation of the assumption of the normal 

distribution; since VaR is totally depend on the standard deviation in returns. On the 

other side, Modified VaR allows certain flexibility to model our methodology while we 

deal with analysis and evaluation of VaR in the long-run. We focus on the Cornish-

Fisher expansion under which the distribution of returns can be non-normal. 

4.3 Implementation of Modified Value-At-Risk Approach 

Zangari (1996) proposed to obtain reliable estimates of parametric VaR assuming 

the returns to be non-normal distributed to use the Cornish and Fisher (1937) expansion 

to rectify the problem due to skewness and heavy tails in the distribution of returns. This 

VaR estimator, so-called modified Value-at-Risk (MVaR), has become popular due to 

its high accuracy and computational efficiency. Campbell et al. (2001) and Favre and 

Galeano (2002) propose a modified VaR calculation that takes the higher moments 

(skewness, kurtosis and, the measurement of the ‘heavy-tailedness’ of the returns) of 

non-normal distributions into account by use of a Cornish and Fisher (1937) expansion, 

a better approximation of the shape of the true distribution. 

wwqVAR Σ′−= α       (4-4) 

where we present the equations for calculating VaR for a general portfolio of 

N assets with the portfolio weights, w , the negative value of a lower quantile 

(confidence level) of the portfolio returns, αq , and covariance matrix, Σ . Here we 

present the rest of the parameters denoted by r the return on the hypothetical global 

index with mean µ . In the rest of the study, VaR has to be understood as the negative 

value of a lower quantile (confidence level) of the hypothetical global portfolio index 

returns, representing the random risk at hand too. This is because these returns can be 

non-normal, we also need the 2Ν×Ν co-skewness matrix of the returns: 

( )( ) ( )




 ′

−⊗
′

−−Ε=Μ µµµ rrr3     (4-5) 

and the 3Ν×Ν co-kurtosis matrix:  
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where ⊗ stands for the Kronecker product (see e.g. Jondeau and Rockinger, 

2006). In the portfolio theory, the moments could be computed using the past returns of 

the whole portfolio. Hence, the q
th centered portfolio moment ( )[ ]q

p wrEq µ′−=Μ . 

We have:  

wwm Σ′=2        (4-7) 

( )wwMwm ⊗′= 33       (4-8) 

( )wwwMwm ⊗⊗′= 44       (4-9) 

(see Jondeau and Rockinger, 2006). The portfolio skewness ps
and excess kurtosis 

pk
are the given by:  
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       (4-11) 

For the probability α such as 90%, 95% and 99%, portfolio VaR under the 

assumption of normally distributed returns is given by: 

wwqwGVAR Σ′−′−= αµ      (4-12) 

where αq is the α -quantile of the standard distribution and also GVaR stands for 

Gaussian VaR. 
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Figure 4-10 Gaussian Value-at-Risk for BRICT countries 

 
 
Figure 4-11 Gaussian Value-at-Risk for G-7 countries 
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Having said that the returns of many financial assets are heavy-tailed and skewed, 

we can get a better estimate of VaR by accounting for the non-normality. Zangari 

(1996) provides Modified VaR (MVaR) calculation that takes the higher moments of 

non-normal distributions (skewness, kurtosis) into consideration through the use of 

Cornish and Fisher (1937) expansion. MVaR is defined as follows: 

wwqwMVAR
cf Σ′−′−= αµ      (4-13) 

where 
cf

qα is the α -Cornish&Fisher quantile. Using the below formulas, this 

quantile can be easily calculated as: 
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where ps  is the skewness and pk is the kurtosis of the return series.  

Modified VaR gives a larger loss estimate than delta normal VaR when returns are 

negatively skewed or highly heavy-tailed. On the contrary, you can expect it gives a 

smaller loss estimate if returns are leptokurtotic or positively skewed. Not surprisingly, 

Modified VaR becomes Gaussian VaR provided that skewness and excess kurtosis are 

zero. The Cornish-Fisher expansion covers much of the non-normality in returns that 

could be overrun by more computationally intensive techniques such as filtered 

historical simulation (which is going to be covered later on) or direct assumption of an 

ideal distribution. 

For estimation of portfolio VaR especially, MVaR is much better than GVaR. This 

is because of the fact that MVaR takes into accounting for asymmetry and fat-tails in the 

marginal distribution of the returns of components, as well as accounting for non-linear 

dependence between the component returns. MVaR utilizes not only correlations, but 

also high-order cross-moments such as co-skewness and co-kurtosis, to aggregate risk of 

the portfolio (Boudt and Peterson, 2007).  

In the Figure 4-12 and Figure 4-13, the modified VaR model is used to estimate for 

various confidence levels over each subsample of 200 data observations.  
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Figure 4-12 Modified Value-at-Risk for G-7 countries 

 
 
Figure 4-13 Modified Value-at-Risk for BRICT countries 
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Although the simplest manner to carry on is to suppose the distribution of returns 

has the theoretical normal distribution, we know from the empirical studies on the 

stylized facts of the daily frequency can not be described by a theoretical distribution. 

Instead of employing alternative distribution, we rely on an enhancement of the standard 

VaR model on the subsamples, which ignores the fact that volatility regimes are 

changing each time by using modified VaR. Furthermore; the autocorrelation in the 

dynamics of risk measurement is not taken into account across each subsample as 

parametric VAR measurement described before. The application of conditional 

heteroscedastic models to estimate the volatility of the return distribution can consider 

autocorrelation and / or conditional heteroscedasticity. 

4.4 Implementation of Filtered Historical Simulation Approach 

 

Filtered historical simulation (FHS) is derived from a generalized historical 

simulation. It surpasses most of the weaknesses of historical simulation thanks to its  

positive features. This approach is introduced by Barone-Adesi, Bourgoin and 

Giannopoulos (1998) and Barone- Adesi, Giannopoulos and Vosper (1999).  

In this thesis, we will use of one of the non-parametric models, i.e. FHS, on an 

underlying daily data. The above mentioned limitations of HS at Table 3-2, a filtered set 

of results and improved response to changes in market volatility can be bypass with the 

use of FHS. Yet it is better to go over HS in order to grasp the FHS technique.  

. In the “Handbook of Financial Time Series” textbook edited by Anderson et al., 

Christoffersen (2009) explains that there are two steps to compute VaR in FHS method. 

First, a series of hypothetical historical portfolio returns are constructed with weights of 

the today’s portfolio and the past performance of returns. Second, the quantile of the 

historic returns of the hypothetical portfolio is calculated. Some of the researchers focus 

on the HS approach because of its “model-free” nature. Nonetheless, it is completely not 

“assumption-free”. HS fundamentally assumes the distribution of returns is independent 

and identically distributed. In fact, it is unfortunately not the case for the most of the 

empirical daily data. Besides, Christoffersen (2009) asserts that the HS method has 

become known as the standard for estimating VaR. 
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Apart from stationarity assumption of the portfolio returns, HS does not require any 

statistical assumption in particular to the volatility. In HS method, we consider a series 

of daily historical returns of hypothetical portfolio returns Θ  we choose ∗
e   

{ }∗∗∗∗ = Teeee ,...,, 21  Θ∈∗

ie   where Ti ,...,2,1=  refers to past days to form a 

simulated portfolio index.  

The HS technique basically presumes that the distribution of forecasted portfolio 

returns, ∗

+1ie , is very close to the empirical distribution of the actual T observations, that 

is,{ }T

jjie
11 =

∗
−+ . Put it differently, the distribution of ∗

+1ie is captured by the histogram 

of{ }T

jjie
11 =

∗
−+ . Consequently, we simply sort the returns in { }T

jjie
11 =

∗
−+ in ascending order 

and choose the VaR to be the negative value of a lower quantile of the observations is 

smaller than the quantile. 

However, in the simplest form of HS, subsamples of the data are analyzed 

repeatedly rather than analyzing subsets of the data repeatedly. Each subsample return is 

a randomly drawn replacement from the full data set. The size of observations in the 

subsample is chosen depending on empirical data. In addition, bootstrap method does 

not need formulae so that any limiting parametric assumptions can be simply avoided.  

There are more sophisticated bootstrap methods that can be assessed for estimating 

errors as well as estimating confidence intervals (Efron and Tibshirani, 1993). 

As we mention in the Table 3-2, as well as Pritsker (2000) enlightens, the accuracy 

of HS model to forecast future losses may be made it less strong and less secure if the 

distribution of any risk factor does not change over the time. The Filtered Historical 

Simulation model tries to bring together the most desirable features of the HS model 

with the parametric estimation model. The latter attempts to capture conditional 

heteroscedasticity but assumes a normal distribution while the former does not assume a 

specific distribution but does not capture conditional heteroscedasticity. More 

specifically, The FHS method forecasts volatility by means of a parametric volatility 

model and utilizes the standardized returns’ the quantile to measure the VaR estimate. It 

relies on a model based approach for the volatility, typically using a GARCH type 

model, while remaining model free in terms of the distribution. In particular, this 

method has the notable advantage of being able to simulate extreme losses even if they 
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are not available in the sample past returns used for the simulation, thus taking tail risk 

into consideration more accurately. Therefore, “FHS requires a shorter historical record 

than HS to simulate the tails of the distribution of price changes. This is because this 

process is essentially an extrapolation, its validity must be carefully tested” (see Barone-

Adesi et al., 2000). 

In FHS approach, the stationarity assumption is eased; historical returns are first 

standardized by volatility estimated on that particular day (that's why the name of 

filtered),

t

t

t

h
z

ˆ

ε
= . This filtering procedure gives in return for historical simulation 

suitable i.i.d. past returns. Before filtered returns are used as innovations, which are 

scaled (standardized) by the current forecast of conditional volatility, they reproduce 

simulated market conditions: 

nTnTnTnT hzYYY +
∗

−+
∗

−+
∗
+ += 11      (4-15) 

where { }∗∗∗∗ = Tzzzz ,...,, 21  Θ∈∗
iz  where Ti ,,2,1 K= refers to 

historical observations and { }T

tTh
1=

is the simulated conditional variance of the 

process and is estimated recursively by the time-series model, such as the one illustrated 

in equation (Barone-Adesi and Giannopoulos, 2000).  

The FHS method can be expedited by explaining step-by-step to get i.i.d. 

standardized returns as innovations to calculate VaR. The steps —derived from 

(Bakshia and Panayotovb, 2009) — in applying the FHS are as follows: 

• fit a AR(1) model to the conditional mean of returns and get the residuals;  

• filter these residuals with contemporaneous volatility estimates obtained, 

e.g., in an EGARCH(1,1) model, thus removing serial correlation and 

volatility clustering;  

• draw random samples from the standardized residuals to be used as an input 

in a bootstrap procedure, and  

• use them recursively as innovations in a conditional variance equation to 

simulate forecast values of returns  
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Engle (1982) proposed the method of Autoregressive Conditional 

Heteroscedasticity (ARCH), which drew a significant attention and recognized as a 

significantly powerful tool in the quantitative finance and method is used on stock 

returns especially. ARCH models allow the conditional variances to change over time 

with respect to the past error terms. Subsequently, Bollerslev (1986) improved the 

ARCH model and introduced the General Autoregressive Conditional 

Heteroscedasticity (GARCH). Nonetheless, there are drawbacks in all models 

considered so far. This drawback of pure GARCH model is equivalent impact is 

observed for positive or negative impact on the conditional variance since the sign 

effects of shocks get lost because of squaring. In contrast, the volatility response is 

different to positive and negative shocks, i.e. if the volatility response occurs due to 

good or bad information. In fact, the ‘leverage effect’ causes to larger volatility due to 

negative shocks as unlike to positive ones. Therefore, one of extension models of the 

symmetric GARCH (1,1) model, i.e. EGARCH (1,1), with Student’s t distribution data 

generation process presented is capable to take care of such asymmetric effects. 

NELSON (1991) proposed an Exponential GARCH model (EGARCH). His 

proposed solution takes control of asymmetries and also guarantees that the conditional 

variance is always positive. By calibrating the EGARCH (1,1) model to the past 

information formed via residual returns of data, Residual returns are filtered to apply a 

first order autoregressive model to the conditional mean of the portfolio returns  

ttt rr εθδ ++= −1        (4-16) 

where ( )tt hN ,0~ε , 
t

t

t
h

z
ε

=  and an asymmetric exponential GARCH 

(EGARCH) model to the conditional variance  

[ ] [ ]( ) 1111ln)ln( −−−− +Ε−++= ttttt zzzhh ψφακ   (4-17) 

Here, the standardized residuals 
t

t

tz
σ

ε
=  are used as an input in a bootstrap 

procedure for estimating VaR and a series of i.i.d. random variables with Student’s 

distribution to compensate for heavy tails that is one of the stylized facts of daily 

returns. The absolute value of the standardized residuals produces the ARCH effect. The 
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standardized residuals capture the asymmetry as well. An ARCH effect of φ  for 

positive residuals is true for 0≠φ . If there is a ‘leverage effect’22, φ  will be negative 

which means the increase in volatility following a previous fall in portfolio returns. 

Particularly, the outstanding benefit of this model is to be able to simulate extreme 

losses even if they are not present in the sample historical returns used for the 

simulation, consequently tail risk is taken into account more accurately (Kirchgässner et 

al., 2007). 

Having said about FHS method, we can keep on talking about the analysis of the 

bootstrapped FHS method to produce a series of independent and identically distributed 

observations, which fit a first order autoregressive model to the conditional mean of the 

returns, i.e., above equation (4-16). In addition to that, the term “filtered” comes from 

the set of shocks, tz , which are returns filtered by the EGARCH model. Thus, “the thrust 

of FHS method is to obtain an i.i.d. series of standardized returns to be used as an input 

in a bootstrap procedure for estimating VaR” (Bakshia and Panayotovb, 2009).  

As per mentioned, initially the changes that have been observed in the hypothetical 

portfolio returns are analyzed thorough a pre-specified period of time; in our case, it is 

200 observations for each subsample. The current analyzed portfolio is then simulated 

for 100,000 multipaths for the number of pre-specified holding period in the historical 

sample. Hence, forecast model creates the distribution of the forecast returns in the 

simulation process can be derived from which the VaR of the distribution of portfolio 

returns. Volatility is forecasted in a sample period and standardized returns are obtained. 

The standardized returns are bootstrapped and multiplied with each random drawing by 

the most recent volatility forecast. Each daily forecast return of the portfolio is 

considered as data in the histogram of portfolio values is finally constructed so as to 

measure the VaR that captures the given confidence level of the distribution on the left 

side. In other words, all of the past historical returns in terms of the lowest to the highest 

are literally ranked, and at the predetermined confidence level, what the lowest return is 

                                                 
 
22 Leverage Effect appears firstly in Black (1976), who noted that:  
“a drop in the value of the firm will cause a negative return on its stock, and will usually increase the 
leverage of the stock. [...] That rise in the debt-equity ratio will surely mean a rise in the volatility of the 
stock”.  The existence of a “leverage effect” is empirically shown that there is increase in volatility after 
smaller changes.  
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computed thanks to the FHS method. For example, if we had 100,000 simulations to 

approximate the true but unknown distributions of returns on the VaR estimates, 1000 

simulations on the tail observations will be taken into account when computing a VaR 

for 99% confidence level. Afterwards, for all periods values are plot in a figure along 

with other confidence levels. 

 
Figure 4-14 Value-at-risk values of the simulated one-month hypothetical portfolio returns for 
BRICT countries 
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Figure 4-15 Value-at-risk values of the simulated one-month hypothetical portfolio returns for G-7 
countries 

  
 

The aim of these analyses is to examine the VaR estimates for the subsamples with 

the ARCH family of volatility models for BRICT and G-7 countries respectively. In the 

figures, an overview of unconditional and conditional volatility models is provided for 

three different confidence levels. As we highlighted before, the unconditional volatility 

model is based on constant volatilities whereas the conditional volatility model uses 

historical subsample’s information to simulate a series of i.i.d. observations, which fit a 

first order autoregressive model to the conditional mean of the portfolio returns. 

“Unconditional models are based on rigorous assumptions about the distributional 

properties of returns while the conditional models are less rigorous and treat 

unconditional models as a special case. In order to simplify the VaR calculations 

unconditional models make strong assumptions about the distributional properties of 

financial time series. However, the convenience of these assumptions is offset by the 

overwhelming evidence found in the empirical distribution of returns, e.g. fat tails and 

volatility clusters. VaR calculations based on assumptions that do not hold, underpredict 

uncommonly large (but possible) losses” (Giannopoulos, 2000). 
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4.5 Comparisons and Findings 

 

To measure VAR estimates it is very essential to project the distribution of 

probable returns.  We can accomplish this many possible ways to do so and now we 

have focused on just few of these methods. The parametric method is formed after 

specifying the distribution of returns on the holding period and then using one of the 

delta-normal and MVaR valuation models together with the presumed standard normal 

distributions to measure the VAR estimates. Of course, historical data is utilized to 

estimate parameter values required for answering our vital questions regarding the 

probability.  

The modified VaR method responds strongly for the 99 % confidence level and 

estimate is rising in magnitude compare to delta-normal VaR estimates. In the Figure 

4-16 and Figure 4-17  that VaR estimates at 99% confidence level are outperformed by 

the FHS forecasts for both BRICT and G-7 countries. Interestingly, magnitude values 

are exaggerated for again past 10 months from April 2010.  

Figure 4-16 Delta-Normal Value-at-Risk versus Modified Value-at-Risk for BRICT countries 
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Figure 4-17 Delta-Normal Value-at-Risk versus Modified Value-at-Risk for G-7 countries 

 
 

In the Figure 4-18 and Figure 4-19, the filtered historical simulation model is 

estimated over each subsample of 200 data observations. Their forecasting ability is 

compared to delta-normal VaR estimates. It could be noticed VaR estimates at 99% 

confidence level are outperformed by the filtered historical simulation forecasts for both 

BRICT and G-7 countries. This is also in parallel with the modified VaR results. 
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Figure 4-18 Delta-Normal value-at-risk versus the filtered historical simulation value-at-risk for 
BRICT countries 
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Figure 4-19 Delta-Normal value-at-risk versus the filtered historical simulation value-at-risk for G-
7 countries 

  
 

One of the most important challenges of this empirical thesis, of course, is 

modeling the conditional volatility of the portfolio index. Univariate process forecast are 

generated by EGARCH(1,1) process to estimate the portfolio index outcomes. The delta 

normal VaR approach is unable to be accurate regarding the estimate due the pitfalls of 

the delta normal approach. On the other hand, the simulation methods suffer from the 

well known difficult of computing because of a huge number of parameters in the 

conditional covariance and/or conditional correlation matrices. Yet computational 

burden is not what we focus on this thesis. 

Once VaR and its confidence interval have been calculated, accuracy of the VaR 

model should be checked by inquiring the normality assumptions are justifiable or not. 

Having simulated the returns, these simulation values for all three confidence levels 

evidently show that risk gets higher and higher after second half of the 2008 and this 

estimate is peaked at the end of the first half of 2009. VaR estimates at 95% and 99% 

confidence levels are transposed in the Figure 4-20 and Figure 4-21 for BRICT and G-7 

countries. Furthermore, the Figure 4-22 and Figure 4-23 illustrate the maximum 

simulated gains and losses of the returns for each subsample over the one-month 
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holding period. This maximum simulated gains and losses show that the portfolio index 

can be interpreted that market risk of BRICT is much higher than the G-7’s one. These 

results are, in fact, in parallel with the Lehman Brothers23 collapse in September 2008. 

Maximum losses are increasing after September 2008 for both BRICT and G-7 

countries.  

Figure 4-20 Comparison of value-at-risk estimates at 95% and 99% confidence levels for BRICT 
countries 

 

                                                 
 
23 Lehman Brothers Holding Inc. was one of the oldest and largest investment banks in USA and 
collapsed from toxic financial instruments on mortgage-backed securities (MBSs) and collateralized debt 
obligations (CDOs) of real estates holdings. In September 2008, it went bankruptcy and became the first 
largest bank to  bankrupt since the start of the subprime mortgage crisis. (Telegraph, September 15, 2008 
Available at http://www.telegraph.co.uk/finance/newsbysector/banksandfinance/2963415/Credit-Crunch-
timeline-From-Northern-Rock-to-Lehman-Brothers.html and retrieved on May 10, 2010). 
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Figure 4-21 Comparison of value-at-risk estimates at 95% and 99% confidence levels for G-7 
countries 
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Figure 4-22 Maximum simulated gains and losses of the one-month hypothetical portfolio returns 
for BRICT countries 

  
 
Figure 4-23 Maximum simulated gains and losses of the one-month hypothetical portfolio returns 
for G-7 countries 
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Below figures of the histogram of the period with high and low ‘maximum loss’ 

show the associated cumulative probability distribution utilizes a plot of the probability 

that the actual VaR estimate will not be greater than each of a set of possible values and 

we compare them to see how did the market change. 

Even though the VaR measure approach assumes normality, the changes in daily 

returns exhibit positive kurtosis. This is absolutely predictable for the daily returns and 

the findings of Cont (2001) regarding the empirical properties of daily returns are in 

parallel with this. This also implies that extreme events in the returns are more expected 

than a normal distribution would forecast. Figure 4-25 and Figure 4-27 for BRICT 

countries and Figure 4-29 and Figure 4-31 for G-7 countries compare empirical 

distributions exhibiting positive kurtosis with normal distributions24. Both distributions 

have the different descriptive statistical properties like mean, variance and so on. 

Nevertheless, the positive-kurtosis distribution is spikier and has heavier tails for the 

high ‘maximum loss’ periods of BRICT and G-7 countries. It is noticeable what 

happens while we can still observe some of the stylized facts of the daily returns within 

the high and low maximum losses of the data generation process. Probability mass of 

the returns is accumulated at the positive central part and added to the tails for the high 

‘maximum loss’ of both BRICT and G-7 countries (See Figure 4-24 and Figure 4-28). 

On the other side, probability density is more concentrated from tails of the probability 

distribution that are off the tails. The effect of kurtosis is therefore to increase the 

probability of very small moves in the returns of low ‘maximum losses’ of BRICT and 

G-7 countries while decreasing the probability of extreme returns.  

                                                 
 
24 The normal distribution in the figures is scaled by using mean and variance of the simulated portfolio 
returns. In addition, bin width is selected as 0.02. 
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Figure 4-24 Plot of the cumulative probability distribution of the period with the high ‘maximum 
loss’ for BRICT countries 

 
 
Figure 4-25 Histogram of the period with the high ‘maximum loss’ for BRICT countries 

 
 



Master’s Thesis 

73 

Figure 4-26 Plot of the cumulative probability distribution of the period with the low ‘maximum 
loss’ for BRICT countries 

 
 
Figure 4-27 Histogram of the period with the low ‘maximum loss’ for BRICT countries 
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Figure 4-28 Plot of the cumulative probability distribution of the period with the low ‘maximum 
loss’ for G-7 countries 

 
 
Figure 4-29 Histogram of the period with the high ‘maximum loss’ for G-7 countries 
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Figure 4-30 Plot of the cumulative probability distribution of the period with the low ‘maximum 
loss’ for G-7 countries 

 
 
Figure 4-31 Histogram of the period with the low ‘maximum loss’ for G-7 countries 
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5 Conclusion and Further Studies 

Risk assessment, which is very subjective to terms and conditions, is entailed to 

any economic activity. If we would like to implement the VaR calculation as an 

objective measurement to any of these risk assessment activities, we must ask ourselves 

what VaR estimate can really measure. In each case, some mechanism must be found 

that will support the VaR measure to help human judgment—without replacing it by 

default. For portfolio risk managers, the answer is value at the risk limits. Rhetorically, 

the reliability remains fairly open question for other possible applications. 

VaR has become one of the key subject matters while quantifying portfolio market 

risk. It provides information not only that can be easily understandable for portfolio 

managers but also that is especially practical for risk management while measuring the 

capital requirements that their inspectors have set up. In addition, VaR estimate can be 

utilized as an instrument to evaluate the performance of portfolio executives.  

Whatever approach is used to obtain VaR—the variance-covariance, historical 

simulation, or Monte Carlo simulation approach—the outcome of the method is 

basically an algebraic estimation. The “accurate” VaR can not be estimated with 

sureness due to the nature of the dynamics of economics and also the core assumptions 

that are vulnerable to any third party dynamics of economics. 

Crouchy et al. (2000) notes that the measurement errors of the VaR estimation 

depends on the accuracy of the VaR calculation parameters like the mean, the variance, 

and/or the quantiles of the distribution of the portfolio return. Clearly, any estimate is 

only informative and useful for portfolio risk manager or analyst unless it is irrationally 

wrong within confidence intervals. 

All-in-all, a delta-normal VaR approach is more accurate over shorter holding 

periods than longer holding periods and also the filtered simulation approach does not 

bring out any additional value to estimation for shorter holding periods. On the other 

side, the filtered historical simulation method totally depends on not only the number of 

scenarios to mimic the market returns in scenarios but also parameters of the simulation 

where data can be generated by true estimate process on assumed parametric 

distribution on standardized residuals. In applied econometrics, the filtered historical 

simulation method is significant, because the asymptotic student’s t distribution of 
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returns can be very accurate even though the distribution has higher density on the tails 

and lower peak at the center compare to the empirical data unless a degree of freedom is 

too large. Thus, historical simulation approach itself allows easing on the normality 

assumption of daily returns. When this happens, the difference between the probability 

of true and path simulations of a confidence interval can be very large, and inference 

can be highly misleading for the risk management reports. Yet it does not often response 

the market events very well as expected or it may exacerbate the estimation results. We 

can say that neither the portfolio of BRICT nor the portfolio of G-7 countries is 

impacted from the subprime mortgage crisis by looking at the comparison results in the 

Figure 4-18 and Figure 4-19. Filtering historical returns through an appropriate filter 

leads to time-consistent estimates of risk. The implementation of filtered historical 

simulation through EGARCH(1,1) filters by using bootstrapped standardized residuals 

as the i.i.d. input noise process. However, if this empirical study shows the impact of the 

crisis as a whole time, then we had to be cautious about the last 10 months before April 

2010. While looking for answer to the inquiry of “How bad can things get throughout 

each subsample?” under perfectly “normal” market conditions for more precise 

calculations of market risk, “normal” market condition conceals the limitations of the 

simplest calculations of market risk. Filtered historical simulation VaR is providing 

evidence to be an exceedingly robust way of evaluating the risk of hypothetical global 

index portfolio over a prespecified holding period, such as one-month period, and 

predefined confidence level. In fact, the FHS method allows us to calculate the risk as a 

single number that we can rely on by imposing input noise process on autocorrelation 

and heteroscedasticity observed in the historical time series. 

Schachter (1998) noted that VaR does not measure “event” (e.g., market crash) 

risk. This is what we disagree due to our findings that VaR estimates for both two global 

portfolios that are measured against the risk associated with equity positions are 

incorporated with all plausible affiliations on this credit crunch crisis and aftermath of it. 

Filtered historical simulation VaR supplies us a common risk benchmark, and this 

benchmark enables for portfolio risk managers to keep eye on the risk of the portfolios 

risks in new outlooks that were not feasible before. However, we agree with Schachter 

on portfolio should be tested more rigorously to add on VaR estimates. VaR does not 

promptly detect liquidity differentiations amongst financial instruments but VaR does 

not measure model risks with good grace. 
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5.1 Limitations of VaR as a Risk Measure 

A very significant concern in financial risk management, and one that makes it 

predominantly appealing as an outstanding topic in the financial statistics and 

probability as well, is the indigence to concentrate on extreme results, rather than the 

expected results that are at the center of lots of traditional tools. Alan Greenspan at the 

first “Risk Measurement and Systemic Risk” conference in Washington (DC), 1995: 

“From the point of view of the risk manager, inappropriate use of the normal 

distribution can lead to an understatement of risk, which must be balanced against the 

significant advantage of simplification. From the central bank’s corner, the 

consequences are even more serious because we often need to concentrate on the left tail 

of the distribution in formulating lender-of-last-resort policies. Improving the 

characterization of the distribution of extreme values is of paramount importance.”25 

Until certain extents, any VaR measure supplies an ordinary reliable criterion of 

risk across different positions for institutions to manage the portfolio risks. 

Theoretically, portfolio directors are supposed to not focus on the whole distribution of 

gains and losses over the target horizon. In fact, this distribution is assessed to one 

figure, i.e. the maximum loss at a given confidence level at either 90%, 95%, 99% or 

99.9%. Jorion (2005) asserts that VaR is only one of the measures that financial 

portfolio directors take into consideration. Then again, in technical terms, the 

probability distribution of future gains and losses has to be assessed assuming an 

unchanged position. He suggests it ought to be validated by stress-testing, which 

discovers possible losses under extreme circumstances, which are associated with much 

higher confidence level.  

On the contrary, VaR has its shortcomings as a ‘risk measure’ as well. Some of 

these shortcomings are quite obvious that VaR estimations can tend to model risk 

arising from inadequate presumptions on which models are based or implementation 

risk arising from the technique in which model is implemented. However, these are 

common problems for any risk evaluation methods, and such problems are not exclusive 

to VaR approach. 

                                                 
 
25 See Hartmann et al. (2005). 
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Like Jorion(2005) suggests, running complementary tests are obviously correct 

way to test our hypothesis when we think of verifying the model that is derived from the 

observation of empirical data analysis and we are supposed to take into consideration 

risk management is not a pure science which we can test our hypothesis again and again. 

What could be done more on the study? 

Even though one of the most regular methods for assessing the risk is VaR, it is 

often calculated via delta normal and/or simulation techniques. However, VaR analysis 

is of limited use to describe extreme losses that exceed a certain threshold. Extreme 

value theory (EVT) is gaining popularity as a complementary to VaR analysis by 

focusing exclusively on tail events (Dowd, 2002). 

There are various methods utilized by VaR measures to calculate most likely 

losses. Having said that, of course, each estimation method has been evolved over time 

and we can not put a final verdict any risk measurement technique which is a single 

ultimate technique or absolutely superior against other techniques. Furthermore, any 

econometric model has to come across with two typical types of errors, viz Type (I) 

Reject a correct model and Type (II) Accept an incorrect model. Type I and II errors 

have to be verified and validated by questioning the stability of our model. Hence, VaR 

model is validated by backtesting and this test is complemented by stress testing. Very 

high level we will introduce these two testing procedures. 

Backtesting is a procedure where model based VaR is continually implemented and 

compared with the actual performance of the portfolio over time. This process of 

monitoring is fulfilled by evaluating a subjected model to calculate the accuracy of the 

existing approach. Put it simply, backtesting involves systematically comparing the 

associated ex-ante forecasted VaR measures with subsequent returns of actual measures. 

For example, reviews of various approaches can be found in Hurlin and Tokpavi (2006). 

The test method presented here is not ultimate and many other tests do exist. Depending 

on the type of forecast (quantile or density), different approaches are used.  

For instance, calculate one-month holding period with 95% confidence level VAR 

estimates for a frozen weighted portfolio each month for some rolling period of time 

(i.e., 200 Days) with non-benchmark models. For backtesting purposes: use again lower 

confidence level (i.e., 95%) to ensure that estimates “over” actually occur during 
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holding periods and then compare the VaR estimates on the succeeding trading month 

with the previous month’s losses26. Finally, count the number of times the loss goes 

beyond the VAR estimates. 

Assume that ty  denotes the realization of the forecasted variable, and 

)(1| clttVaR α−  the associated ex-ante forecasted value-at-risk for a confidence levelα , 

predicted with both MVaR and FHS methods on the information available at time 1−t  

against delta-normal VaR on the information available at time t . Backtesting procedures 

for α -quantile forecasting models (e.g. value-at-risk models) based on the exception 

indicators can be written as follows: 

( )


 ≤
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−
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Given the history of this indicator function for Tt ,,2,1 K= , the accuracy of the 

forecasting model is determined. The random variable )( clf α  is said to follow a 

Bernoulli distribution whose expected value is clα . 

Stress Testing essentially defines and reviews validity of exceptional but plausible 

events in the macro scenarios and associated parameters so that we could determine 

possible changes in the spot rate of a portfolio that could arise due to non-normal 

movement in one or more market parameters. Thus, stress testing concentrates on the 

occasional but large scale events that happen in the left tail of the histogram and 

consider current scenarios that are of relevance to risk profiles. These are precisely the 

events that traditional VaR can not accommodate. For instance, we can pay attention to 

risks in emerging markets considering political and economic developments in these 

countries or liquidity crisis in developed countries (Lee, 2003) despite the global effect 

of the subprime mortgage crisis.  

In VaR models stress test can be run by inputting the stressed values of the risk 

factors and also recalculating the portfolio value using the new data. 

                                                 
 
26 The focus of this method is on losses but it can also apply to gains. 
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Annex 1: Jarque-Bera tests of normality for all subsamples of the hypothetical 

portfolio log returns 

 
Table 0-1 Jarque-Bera tests of normality for all subsamples of the hypothetical portfolio log returns  
Subsample  
Period 

BRICT for %5 level G-7 for %5 level 

 JB test 
statistic 

p-value JB test 
statistic 

p-value 

1 10.39779 0.013648 29.809994 0.001 

2 3.825573 0.110892* 14.702106 0.005845 

3 3.933567 0.105027* 10.51584 0.013298 

4 5.744428 0.048825 10.467594 0.01344 

5 7.773181 0.026058 16.573587 0.004272 

6 2.761934 0.199293* 47.666609 0.001 

7 1685.61 0.001 68.461479 0.001 

8 1284.036 0.001 40.17268 0.001 

9 1675.226 0.001 35.170141 0.001 

10 1103.016 0.001 56.690882 0.001 

11 1166.55 0.001 26.038505 0.001195 

12 780.3541 0.001 29.404908 0.001 

13 723.9198 0.001 52.760461 0.001 

14 735.8 0.001 72.073096 0.001 

15 820.6298 0.001 85.157884 0.001 

16 610.0243 0.001 106.348917 0.001 

17 423.0937 0.001 107.155179 0.001 

18 183.2597 0.001 24.007467 0.001511 

19 210.4839 0.001 24.434898 0.001437 

20 153.0694 0.001 43.978067 0.001 

21 90.51063 0.001 31.294065 0.001 

22 147.0134 0.001 34.261905 0.001 

23 163.9335 0.001 43.430443 0.001 

24 145.9899 0.001 38.578811 0.001 

25 44.72876 0.001 18.845951 0.003012 

26 56.51943 0.001 21.862865 0.001976 

27 653.9888 0.001 171.248001 0.001 

28 529.1315 0.001 218.276192 0.001 

29 453.4072 0.001 128.910606 0.001 

30 320.2407 0.001 122.928432 0.001 

31 240.2221 0.001 68.173897 0.001 

32 229.3361 0.001 63.926291 0.001 

33 200.4315 0.001 58.283322 0.001 

34 266.7388 0.001 87.760967 0.001 

35 244.6853 0.001 93.530202 0.001 

36 181.8643 0.001 47.821155 0.001 

37 147.5258 0.001 24.17756 0.001481 

38 179.7475 0.001 29.786308 0.001 

39 73.37938 0.001 8.445721 0.021794 

40 61.36815 0.001 16.802962 0.004117 

41 182.1326 0.001 32.225542 0.001 



Master’s Thesis 

91 

Subsample  
Period 

BRICT for %5 level G-7 for %5 level 

 JB test 
statistic 

p-value JB test 
statistic 

p-value 

42 163.1377 0.001 28.398285 0.001 

43 81.90966 0.001 14.22252 0.006366 

44 52.5663 0.001 14.15875 0.006439 

45 680.88 0.001 17.363553 0.003768 

46 750.3877 0.001 16.406733 0.004389 

47 694.4338 0.001 12.726297 0.00842 

48 487.4281 0.001 7.032203 0.032185 

49 414.2035 0.001 5.014833 0.064407* 

50 427.6462 0.001 23.955938 0.001521 

51 1334.337 0.001 811.380057 0.001 

52 878.105 0.001 374.70344 0.001 

53 760.9832 0.001 315.87448 0.001 

54 802.7233 0.001 222.836293 0.001 

55 601.1293 0.001 165.903638 0.001 

56 542.2731 0.001 148.035714 0.001 

57 540.9041 0.001 142.922821 0.001 

58 534.7242 0.001 140.922987 0.001 

59 643.0896 0.001 173.090534 0.001 

60 196.9754 0.001 52.691109 0.001 
(*) Indicates where the null hypothesis can be rejected at 5% significance level 
 

Annex 2: Sample ACF and PACF of the returns, for G-7 countries 

The lag at which the PACF goes below the upper and lower threshold boundaries is 

the indicated as a number of AR terms. If the lags in a PACF of the stationary series 

exhibits a sharp cutoff and/or the lags of sample autocorrelation are positive, then we 

consider adding an autoregressive term to the volatility estimate model. That is why in 

general we used AR(1) term throughout the analysis. However, there are more rigorous 

diagnostic tests such as the information criterion and so on but we did not apply those 

for any periods. 
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Figure 0-1 Sample ACF and PACF of the returns, for G-7 countries 

 
 
Annex 3: Sample ACF and PACF of the squared returns, for G-7 countries 

Figure 0-2 Sample ACF and PACF of the squared returns, for G-7 countries 
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Annex 4: Sample ACF and PACF of the returns, for BRICT countries 

The lag at which the PACF goes below the upper and lower threshold boundaries is 

the indicated as a number of AR terms. If the lags in a PACF of the stationary series 

exhibits a sharp cutoff and/or the lags of sample autocorrelation are positive, then we 

consider adding an autoregressive term to the volatility estimate model. That is why in 

general we used AR(1) term throughout the analysis. However, there are more rigorous 

diagnostic tests such as the information criterion but we did not apply those for any 

periods. 

Figure 0-3 Sample ACF and PACF of the returns, for BRICT countries 

 
 
Annex 5: Sample ACF and PACF of the squared returns, for BRICT countries 
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Figure 0-4 Sample ACF and PACF of the squared returns, for BRICT countries 

 
 


