

Univerzita Karlova v Praze

Matematicko-fyzikální fakulta

DIPLOMOVÁ PRÁCE

František Kovařík

Supporting multiplatform applications with YA-RPC

Katedra softwarového inženýrství

Vedoucí diplomové práce: RNDr. Petr Hnětynka, Ph.D.

Studijní program: Informatika

Studijní obor: Softwarové systémy

Praha, 2011

Na tomto místě bych rád poděkoval Doc. RNDr. Petru Hnětynkovi, Ph.D. za jeho

cenné rady, připomínky a neskonalou vstřícnost při vedení diplomové práce.

Stejné díky patří Mgr. Janu Čurnovi za poskytnutí možnosti se tímto tématem

zabývat, za poskytnutí podkladů, následně všech připomínek a neustálého

povzbuzování.

Rovněž patří velké díky mé rodině za veškerou podporu při studiu a tvorbu

potřebného zázemí. Závěrem nemohu zapomenout poděkovat také své přítelkyni za její

trpělivost a stálou podporu.

Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně a výhradně

s použitím citovaných pramenů, literatury a dalších odborných zdrojů.

Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající

ze zákona č. 121/2000 Sb., autorského zákona v platném znění, zejména skutečnost,

že Univerzita Karlova v Praze má právo na uzavření licenční smlouvy o užití této

práce jako školního díla podle § 60 odst. 1 autorského zákona.

V Praze dne 15. 4. 2011

František Kovařík

Abstrakt

Název práce: Supporting multiplatform applications with YA-RPC

Autor: František Kovařík

Katedra: Katedra softwarového inženýrství

Vedoucí diplomové práce: RNDr. Petr Hnětynka, Ph.D.

E-mail vedoucího: hnetynka@d3s.mff.cuni.cz

Abstrakt:

Během posledních tří desetiletí se vzdálené volání procedur (RPC) stalo

oblíbeným způsobem pro komunikaci mezi počítači a procesy, využívaným v mnoha

různých distribuovaných systémech. I přes velké množství RPC protokolů

a implementací vyvinutých během těchto let, ani jeden systém nenabízí veškeré podstatné

funkce a zároveň uživatelsky přívětivé rozhraní pro programování aplikací.

V této práci představíme Yet Another Remote Procedure Call – YaRpc –

specifikaci flexibilního a uživatelsky přívětivého middleware, který nabízí pokročilé

funkce jako např. rozšiřitelnost a nezávislost na transportním či komunikačním

protokolu, zpětná volání a konfigurovatelnou obsluhu volání metod. Následně popíšeme

YaRpc Native Protocol (YNP), což je nový, minimalistický a výkonný RPC protokol

s bohatou množinou funkcí. Dále představíme nativní implementaci YaRpc standardu

a YNP protokolu v Javě a .NET Frameworku, a porovnáme jejich použití vůči

protokolům jako je Java RMI, .NET Remoting a SOAP webové služby.

Klíčová slova: YaRpc, vzdálené volání procedur, distribuované systémy

mailto:hnetynka@d3s.mff.cuni.cz

Abstract

Title: Supporting multiplatform applications with YA-RPC

Author: František Kovařík

Department: Department of Software Engineering

Supervisor: RNDr. Petr Hnětynka, Ph.D.

Supervisor's e-mail address: hnetynka@d3s.mff.cuni.cz

Abstract:

Over the last three decades, Remote Procedure Call (RPC) has become

a popular inter-computer and inter-process communication paradigm widely used by

a variety of interconnected computer systems. Even though a number of RPC protocols

and implementations evolved over those years, no single system offers a significant set

of features, while providing an easy-to-use application programming interface.

In this thesis, we present Yet Another Remote Procedure Call – YaRpc,

a specification of a flexible and programmer friendly middleware that offers advanced

features such as pluggable transports and protocols, callbacks, and configurable

method dispatch. Additionally, we define YaRpc Native Protocol (YNP), a new

light-weight high-performance RPC protocol with a rich set of features. We provide

a native implementation of both YaRpc middleware and YNP protocol for Java

and .NET Framework, and compare its usability with Java RMI, .NET Remoting

and SOAP web services.

Keywords: YaRpc, remote procedure call, distributed system

mailto:hnetynka@d3s.mff.cuni.cz

Table of Contents

Introduction ... 1

1. State of the Art .. 3

1.1. History of RPC .. 3

1.2. How RPC Works ... 5

1.3. Why RPC ... 6

1.4. Review of Existing Relevant RPC Technologies .. 7

1.4.1. CORBA .. 7

1.4.2. .NET Remoting .. 9

1.4.3. Java Remote Method Invocation .. 10

1.4.4. SOAP/WSDL ... 12

1.4.5. XML-RPC .. 14

1.4.6. REST .. 15

1.5. Emerging RPC Protocols ... 15

1.5.1. Etch .. 16

1.5.2. Protocol Buffers ... 17

1.5.3. Thrift .. 18

1.6. RPC Protocols Comparison ... 19

2. Design ... 20

2.1. Core Services ... 24

2.1.1. YaRpcManager .. 24

2.1.2. IYaRpcConnection ... 26

2.1.3. YaRpcRequest .. 27

2.1.4. YaRpcResponse ... 28

2.1.5. IYaRpcTransport .. 29

2.1.6. IYaRpcRemotable .. 31

2.1.7. IYaRpcWorker ... 33

2.2. Protocol Plug-ins ... 33

2.3. Serialization ... 35

2.3.1. YaRpcSmartStream .. 35

2.3.2. YaRpcWriter .. 37

2.3.3. YaRpcReader ... 38

2.3.4. Z-Encoding ... 39

2.4. Utility Services .. 40

2.4.1. YaRpcStub ... 40

2.4.2. YaRpcProxy ... 41

2.4.3. YaRpcConnectionBase .. 42

2.5. YaRpc Native Protocol (YNP) .. 42

2.5.1. Message Format ... 43

2.5.2. Serialization.. 45

2.5.3. Asymmetric Serialization ... 47

2.5.4. Nested Method Calls .. 47

3. Implementation ... 50

3.1. .NET Framework 2.0 ... 50

3.2. Java 6 ... 53

4. Evaluation ... 59

4.1.1. Java RMI .. 59

4.1.2. .NET Remoting .. 61

4.1.3. SOAP Web Services with C# ... 64

4.1.4. SOAP Web Services with Java .. 65

4.1.5. YaRpc with YNP in C# .. 67

5. Conclusion & Future Work ... 69

References & Annexes .. 71

List of Tables... 73

List of Figures ... 74

Definitions and Abbreviations .. 76

1

Introduction

The history of Remote Procedure Call (RPC) can be tracked as far as 1976, when

a first official RPC proposal has been described in RFC 707 [Rfc707]. In simple terms,

RPC enables software developers to use an elementary programming construct –

a procedure call – to perform a task as complex as communication with a remote

computer system over a network link. Since 1976, dozens of different RPC

communication protocols have been proposed, hundreds of implementations of those

protocols developed, and many thousands applications created and deployed in all areas

of the industry.

The RPC is intrinsically a client-server communication paradigm; one side,

a client, issues a procedure call, which is dispatched by another side – a server, while

possibly returning a response back to the client. The popularity of RPC in general stems

from the simplicity of its use. A single procedure call on a client side encapsulates

a sequence of tasks which the programmer otherwise would have to perform, such

a serialization of the procedure parameters, formatting and submission of the message

over the network using a specific protocol, receiving a response message from the

server, and deserialization of the response in order to return a value from the procedure.

Similarly, on the server side, the RPC infrastructure is responsible for receiving

incoming network messages, deserialization of them into procedure call requests,

mapping the requests to procedures registered by a programmer of the server system

(aka stubs), and serialization and submission of the procedure’s return value back to the

client.

The existing RPC protocols vary in a number of factors, such as the

representation of messages (text or binary), transport layer (TCP, UDP, HTTP,

HTTPS…), supported data types (simple or complex), text encoding (ASCII, UTF-8…),

byte ordering (little-endian or big-endian), encryption, or procedure invocation mode

(unidirectional, bidirectional). A single RPC protocol typically has a number of

implementations for various programming languages and platforms, offering different

sets of features, runtime performance, and varying levels of mutual compatibility. Even

2

though the number of alternatives seems to be quite high, making a right selection from

the zoo of RPC protocols and implementations for a particular application is not

a simple task. Very often the constraints imposed by RPC protocols, or (un)availability

or (in)appropriateness of a particular RPC implementation for a particular programming

environment or operating system, forces programmers to change design of their

applications, or even dictates a selection of another programming environment.

Moreover, the implementations of feature-rich protocols tend to be too heavy-weight,

with everything but easy-to-use tools and application programmable interface (API).

The main contribution of this thesis is to demonstrate that it is possible to support

feature-rich high-performance RPC protocols with an easy-to-use API. We present

Yet Another Remote Procedure Call (YaRpc), a flexible framework that aids in the

development of communicating applications. YaRpc is not just another RPC protocol; it

is rather an extensible middleware that allows application developers to select

a combination of a transport layer (e.g., TCP, UDP, HTTP, HTTPS, shared-memory)

and communication protocol (e.g., SOAP, XML-RPC, CORBA) of their preference for

a particular task. As a proof of concept, we provide two native implementations of the

YaRpc specification, for Java and .NET Framework platforms. Additionally, we define

the YaRpc Native Protocol (YNP), a new light-weight high-performance binary RPC

protocol that provides a large number of features such as server-initiated callbacks,

customizable serialization and nested method calls. The core of the YaRpc framework is

protocol-independent, and provides low-level services to particular protocol

implementations, such as advanced dispatch threading control, high-performance and

customizable serialization, asynchronous method invocation and dispatch, or interface

definition based on reflection.

The text of the thesis is organized as follows: Section 1 describes basic concepts

of RPC and reviews the state-of-the-art protocols and implementations. Section 2

describes the architecture of the YaRpc middleware and justifies the design decisions

behind it. Section 3 then details particularities of Java and .NET Framework

implementations. In Section 4, we compare usage of YaRpc with YNP protocol to Java

RMI, .NET Remoting and SOAP web services. Section 5 concludes the main findings of

this research and outlines the future work.

3

1. State of the Art

This section provides an overview of existing Remote Procedure Call (RPC)

protocols and describes advantages and disadvantages of the popular ones. We provide

a brief introduction to the fundamentals of RPC operation, followed by an analysis

of some well established protocols as well as recently emerged ones. In the conclusion

of this section, we show differences between the described protocols to demonstrate the

specific values the new proposed middleware and protocol described and implemented

within this work – the YaRpc and YaRpc Native Protocol (YNP) – brings into the

equation.

1.1. History of RPC

RPC stands for Remote Procedure Call. As such it does not refer to any

particular product, protocol or a single standard but rather describes a common design or

architectural pattern in the distributed computing universe. The quintessential operation

behind this term is the ability to execute functions/procedures on remote computers via

some network connection or eventually in other address spaces on the same computer.

An implementation of such a mechanism has to address various specific needs and

aspects such as transfer of the computational context of an invoked procedure,

interoperability considerations etc. in order to make the implementation suitable for

a specific desired application. RPC thus makes it possible to physically (or

architecturally) separate entities contributing to the same computational task, linking it

closely to the field of distributed systems. RPC has evolved significantly over time

keeping up with advent of new concepts and paradigms in areas like programming,

computing or application architecture.

At the beginning of the computer era the most common way of computing was

bound to mainframe nodes accessed via terminals. The boom of personal computers

brought the need of gradually more sophisticated user interfaces and the application

model changed. While previous programs needed a mainframe for their entire operation,

the new model of client/server architecture allowed for transferring part of the execution

4

to users' desktops and thus drove improvement of user interfaces – effectively forming

a two-tier architecture.

While the two-tier model is still being used by many applications, the

requirements for efficient software development, manageability, scalability,

interoperability and robustness motivated the efforts to create new more sophisticated

platforms by introducing additional application layers (Multi Tier Architectures),

breaking applications into components (Component Architectures), facilitating

applications by thoughtful development and subsequent composition of services (Service

Oriented Architectures) or indeed composition of predefined canonical hosted services

as in the case of Cloud Computing. All of these concepts are built around ways how to

efficiently communicate between the tiers, services or components and how to distribute

and manage these services across various computational facilities for a greater flexibility

– making a suitable RPC mechanism a must.

Another important mover in RPC evolution was the nearly universal adoption of

Object Oriented Design paradigms across the computer society. Instead of only

distinguishing between the layers, this model enables to represent atomic application

abstractions as objects. Thus an object or a set of objects may represent an application

layer, provide a service interface or form a single system component. Again, as these

objects can be distributed, there clearly need to be means to remotely discover and

invoke other objects’ methods. The inter-object RPC mechanism is often referred to as

Remote Method Invocation (RMI), or Remote Method Call.

First RPC techniques were investigated as early as 1976 by B. J. Nelson at

XEROX PARC [Bir83]. Sun Microsystems popularized the technique with its SunSoft's

ONC (Open Network Computing) remote procedure calls (SunRPCs) [Rfc1831], which

was one of the first commercial implementations of RPC. In addition, source code for

ONC RPC has been available since 1988 as RFC 1057 [Rfc1057]. For example, millions

of systems running Network File System (NFS) use the ONC RPC libraries. In 1989 the

Object Management Group (OMG) organization has been founded. OMG defined

general system architecture for object-oriented applications based on the specification of

the interface, and the standard has been published as Object Management Architecture

(OMA).

5

1.2. How RPC Works

In this section we discuss fundamentals of the RPC operation. Figure 1 depicts

the basic difference between a local procedure call and a remote procedure call.

Figure 1 Local procedure call vs. remote procedure call

In a local procedure call, the execution context can easily be shared between the

caller and the called code or simply passed through simple memory or register

operations. In a remote procedure call, however, the context has to be explicitly

transferred to called execution environment and the resulting context after the operation

execution then needs to be pushed back to the client – potentially across the network.

Such a transfer is usually described in the following steps, which effectively represent

the basic RPC algorithm:

1. Serialization: encoding of input parameters and identification of the procedure

into a pre-defined format for transfer.

2. Transfer: transfer of the serialized data to the remote server via a network

transport.

3. Deserialization: decoding of the input parameters and identification of the called

procedure.

4. Dispatch: call of the local procedure.

5. Serialization: encoding of the output parameters from the called procedure for

transfer.

6. Transfer: transfer of the serialized data back to the client via a network transport.

6

7. Deserialization: decoding of the output parameters, and return of the values to

the caller.

The format of the network messages, and particularities of the communication

mechanism, is defined by an RPC protocol. Serialization (sometimes called

marshalling), deserialization (unmarshalling) and data transfer routines are usually

wrapped into objects denoted as stub objects (proxy objects, skeletons – the terminology

is somewhat scattered). The way this helper code is generated – and indeed the time

when it happens, the effort required by the developer to make it happen (level of

automation), the level of control or finesse with which the two interconnected systems

can interact, the various levels of support for various programming languages and

architectures – is specific for specific RPC protocols and their implementations.

There is no “best” RPC mechanism – there are many typical tradeoffs one should

consider when choosing the right RPC protocol and implementation for a particular

application. The protocol with most features might not be the easiest to learn and use

efficiently and comfortably, the most robust protocol might not be the fastest etc.

Surprisingly enough, in many situation, all the major protocols seem suboptimal when

considering all the options modern programming languages can provide – which is

essentially the basic idea behind this thesis.

1.3. Why RPC

The typical advantages of adopting some RPC mechanism for inter-component

communication are:

1. Execution location transparency – the called object may reside on a different

computer without this fact being of any concern to the programmer.

2. Programming to interfaces – it is a good practice to hide the implementation

behind a well-defined interface, and RPC mechanisms usually do this.

3. Platform independence – many RPC mechanisms provide implementations for

various platforms, enabling efficient means of mixing different architectures into

a single distributed system. This might provide a welcome freedom in integrating

7

legacy or third-party components while keeping the design of a system clean and

simple.

4. Scalability/distribution potential – with execution location transparency it is easy

to see how a system can be effectively distributed over a number of nodes. This

makes it possible to increase the aggregate computational power of the system by

increasing the number of nodes and potentially also exploiting routing of

requests across nodes to balance the load of individual nodes.

1.4. Review of Existing Relevant RPC Technologies

As noted earlier, there is large number of RPC protocols and implementations –

way more than we can cover within the scope of this work. However, we argue that we

cover the most relevant RPC protocols for the purposes of this thesis and thus that the

foundations for a further work are sound.

1.4.1. CORBA

CORBA, which stands for Common Object Request Broker Architecture, has

emerged in 1991 and is maintained and developed within the OMG consortium

[Omg04]. At the core of the architecture is the Object Request Broker (ORB)

specification defining the basic rules for marshalling and unmarshalling phases of RPC,

and the Interface Description Language (IDL) which allows for defining component

interfaces in a platform/implementation independent way. Based upon IDL definitions

the ORB implementation (specific for a given target platform) can generate the

stub/proxy code for that particular platform, which can be easily integrated into existing

application logic. A component providing such CORBA powered interfaces can then be

called from other CORBA-enabled components regardless of their individual

architectures and the fact that they communicate over the network. The ORB provides

all necessary functionality for this to happen in a transparent manner.

In 1995, an important milestone was established with the CORBA Specification

version 2.0. The rules for communication between ORB servers were made part of the

standard itself, which further boosted the interoperability potential. The abstract

inter-ORB protocol is called General Inter-ORB Protocol (GIOP). The most

8

fundamental implementation of GIOP protocol is based on TCP/IP network stack and is

referred to as Internet Inter-Orb Protocol (IIOP).

During the further development, a number of extensions and generalizations has

been defined, including other GIOP implementations and bridges. A basic CORBA

architecture is depicted in Figure 2.

Figure 2 CORBA architecture

In order to make a request, the client can use the Dynamic Invocation interface

(which is a uniform interface to call any CORBA component at the price of more

cumbersome coding and more space for possible error). For more static integrations,

a stub based on the target IDL definition can be generated in advance - this makes the

calling trivial, but requires the stub-generation intermediate phase and thus makes the

calling process less dynamic. The object implementation then receives the request

through its own IDL generated skeleton (or stub, proxy…) or through a dynamic

skeleton in symmetrical fashion.

CORBA is considered a very powerful and fully fledged remoting platform that

provides its robust function set at the expense of relative un-ease of use and heavyweight

footprint; this comes hardly as a surprise considering the fact that CORBA specification

has more than 1000 pages.

9

1.4.2. .NET Remoting

Microsoft .NET Remoting is a Microsoft application programming interface

(API) for inter-process communication. It was released in 2002 with the 1.0 version

of .NET Framework [Net07]. Microsoft .NET Remoting is not exactly an RPC protocol,

but it provides the same features like other RPC protocols do. It offers a comprehensive

functionality including support for the transfer of objects by value or reference,

operating conditions, life cycle, etc.

As .NET Framework is built around objects in a similar way Java is, it is objects

that can be remotely accessed in .NET Remoting. An object, denoted as a remote

reference from within the client application, can then be remotely accessed in a very

easy and transparent way just like a normal object is. The stub code generation is hidden

from the programmer and is performed automatically and dynamically for objects

registered as client or remote objects with the system. All remote objects must be

registered with the remoting system (environment) – at which point the environment

generates necessary glue code. Instead of IDL the system uses reflection and code level

annotations and obtains all the properties necessary for stub generation from the remote

object definition itself, which makes the process much simpler. Figure 3 illustrates the

basic operation of .NET Remoting platform.

10

Figure 3 Microsoft .NET Remoting architecture

When writing a client application using a remote object, the developer requests

a remote reference to that object from the remoting system and then uses this reference

in the same way as if it was the object itself used locally. The reference is in fact

a wrapper of a proxy class that is responsible for communication with the remote object.

The system allows for customization of communication channels with ad-hoc

implementation of communication protocols – or a choice of typical standardized

solutions such as TCP/IP (more efficient due to binary transport, but with firewalls

problems) or HTTP (a little slower, but without firewalls problem) or a named pipe.

.NET Remoting is very simple and powerful technology with one major disadvantage: it

is only available in programs written in Microsoft .NET Framework.

1.4.3. Java Remote Method Invocation

Java Remote Method Invocation (RMI) is a robust and effective way to build

a distributed application in a situation where all the participating programs are written in

Java [Java06]. Interfaces and classes that are responsible for the RMI are distributed

within the java.rmi package. RMI first appeared in JDK 1.1 and used the JRMP (Java

Remote Method Protocol) protocol, which is an efficient binary protocol. Later RMI

11

adopted the RMI-IIOP which made it out-of-the-box compatible with CORBA powered

systems.

The proxy code in RMI stack is generated by the RMI compiler - the rmic.

Generated classes contain unique identification of the server callable objects,

marshalling and unmarshalling code and a lot of other functionality. To use the remote

object in RMI, the object has to be registered within the RMI registry. From Java version

2, it is not necessary to use skeleton, because they are dynamically generated based on

reflection. Java RMI architecture is depicted in Figure 4.

Figure 4 Java RMI architecture

The basic procedure a client uses to communicate with a server is as follows:

1. The client obtains an instance of the stub class. The stub class is automatically

pre-generated from the target server class and implements all the methods that

the server class implements.

2. The client calls a method on the stub. The method call is actually the same

method call the client would make on the server object if both objects resided in

the same Java Virtual Machine (JVM).

12

3. Internally, the stub either creates a socket connection to the skeleton on the

server or reuses a pre-existing connection. It marshalls all the information

associated to the method call and sends this information over the socket

connection to the skeleton.

4. The skeleton unmarshalls the data and makes the method call on the actual server

object. It gets a return value back from the actual server object, marshalls the

return value, and sends it back over the wire to the stub.

5. The stub unmarshalls the return value and returns it to the client, and the control

goes back to the client.

Today, with Java 6 SE, the classical pantheon of features is present to compete

with other remoting solutions – including fully fledged implementations of remoting

stacks based on various protocols, dynamic proxy generation based on annotations and

reflection etc. Thus Java RMI is very a powerful remoting stack with a one major

disadvantage: to use it, we have to use Java.

1.4.4. SOAP/WSDL

SOAP, which stands for Simple Object Access Protocol, is a protocol for

exchanging XML-based messages over the network, mainly via Hypertext Transport

Protocol (HTTP) [Web04]. The SOAP format is a basic layer of communication

between web services and provides an environment for creating more complex

communication. The SOAP format is based on a previous protocol XML-RPC.

XML-RPC is a protocol that provides a set of rules how to use an already functioning

and standardized technology for the needs of the RPC.

WSDL stands for Web Services Description Language. WSDL is a language

powered by a set of specifications that allows for XML-structured

descriptions/specifications of web services that can be used in similar fashion as IDL in

CORBA. Based upon a service WSDL advertised descriptor, a client can decide how to

structure the parameters in a SOAP/XML message so that the service understands the

request. WSDL is then used for proxy code generation with many tools available for this

task. Even more comfort is available when the actual WSDL is generated from object

façade by further automation based on reflection or annotations. Such functionality is

13

well defined within the J2EE stack specification and is provided by most of the standard

J2EE containers. This makes deployment of a service end-point extremely easy.

SOAP and WSDL are well-established standards which are widely used in

practice. Complementary to the semantic aspect of service provision is the service

directory and discovery functionality and the service contract description functions. Web

service APIs as final products of enterprises are more and more common and thus a need

for accepted fitting standards in above mentioned areas is growing. UDDI (Universal

Description, Discovery and Integration) protocol provides a standardized semantics for

service directory facilitation, service discovery and service contract specification. WSIL

(Web Services Inspection Language) protocol provides standardized means to aggregate

information about a web service in an efficient wrapper – this includes both service

WSDL functional specification as well as the UDDI meta-data bound in a uniform

presentation façade. The standard also defines ways how to query and process this

information. Web services architecture is depicted in Figure 5.

Figure 5 Web services architecture

Web services are de-facto a standard for cross-enterprise integration and service

front provision. Therefore, the support for easy web service creation is one of the central

pieces in every enterprise development platform or architecture, such as .NET, J2EE, all

14

the major IDEs etc. Web services provide well supported platform-independent and fully

fledged RPC/communication stack.

On the other hand, one can argue whether the inherent complexity of web

services is appropriate for all possible uses. Web services are not simply a data transport

layer and not even a simple one at that. Probably the unanimous effort to support web

services from all competing parties and the hype effect of repeating a single word too

many times are to blame. Additionally, the XML-based communication protocol is too

inefficient to be used by high-performance distributed systems.

1.4.5. XML-RPC

XML-RPC is a protocol which allows users to easily perform remote procedure

calls [Xml99]. XML-RPC is a widely supported RPC mechanism with supporting

libraries available for most common programming languages and some automation tools

available for main enterprise application architectures. The data transferred during RPC

calls is encapsulated using the XML language (eXtensible Markup Language) and

transmitted through the HTTP protocol. In general, it can be said that XML-RPC is a far

less complex than web services and while lacking some features necessary for full

fledged enterprise SOA development, it is fitting for many simpler applications – and

fitting better than web services. Currently the project is ended, but the XML-RPC

protocol has been used as a draft for a newer SOAP protocol. XML-RPC architecture is

depicted by Figure 6.

15

Figure 6 XML-RPC architecture

1.4.6. REST

The list of web-related RPC protocols would not be complete without

mentioning REST [Rest07]. REST uses URL mappings and GET parameters to pass the

procedure call parameters to the server and is one of the rapidly emerging technologies

especially in application development for heterogeneous devices like iPhones, Android

phones and web browsers. REST is a very simple and very easy to learn and use, which

makes it ideal for numerous embedded or uncomplicated usages. REST is also de-facto

standard in modern Model View Controller (MVC) web-development platforms –

including Ruby on Rails, Groovy on Grails and many others. Obviously, REST is not an

appropriate solution for high-performance distributed applications.

1.5. Emerging RPC Protocols

In this section we present some of the newer and very young protocols that

extended the RPC family in recent years. These protocols provide new features or new

techniques for more user-friendly programming. Advent of these protocols is mainly

motivated by the boom in the internet and service market, inadequacy of existing RPC

protocols for a particular use, and specific needs for application development and its

16

simplicity. These motivations do not different significantly from the motivations behind

this thesis.

1.5.1. Etch

Etch is a relatively new protocol that was announced in May 2008 by Cisco

Systems [Etch08]. Cisco presents Etch as an open source, cross-platform framework for

building high-performance network services. It is intended to supplement SOAP and

CORBA as methods of communicating between networked pieces of software,

especially where there is an emphasis on portability, transport independence, small size,

and high performance. There is a stable implementation for Java and C# programming

languages with Ruby, Python and C support planned in the near future. Etch is available

under Apache license in Apache Incubator. Etch architecture is illustrated by Figure 7.

Figure 7 Etch architecture

Architecture of Etch is based on fully symmetric, flexible protocol stack for

client and server. Stubs and skeleton are automatically generated by Java or .NET

reflection, and a stub on client side corresponds with remote skeleton on a server side,

and analogously, a remote skeleton on the client side corresponds to the stub on the

server side. The Deliver Service and Mailbox Manager provide a layer for accepting and

17

managing incoming and outgoing requests. In a lower layer, the Messagizer or

Packetizer deal with composing and parsing the actual transported messages, passing or

getting the underlying byte arrays from the bottom level Transport Layer responsible for

addressing, and actual network communication. The underlying communication channel

may be TCP/IP or other protocol. The Etch stack natively supports Secure Socket Layer

(SSL) for encryption.

Etch protocol tries to be simpler, faster and more flexible than existing

competing systems that are either too slow, hard to use, bloated, and/or proprietary. The

integration into development process is done on the lines of today commonly accepted

scaffolding paradigm with a simple to use and integrate command-line utility generating

necessary helping code, project fragments and other artifacts necessary for smooth and

comfortable operation. Even though Etch is far simpler to use than other protocols, we

believe that the simplicity of use can further be improved.

1.5.2. Protocol Buffers

Protocol Buffers, developed by Google, are not an RPC mechanism on its own

[Gpb08]. Protocol Buffers is rather a way of encoding structured data in an efficient yet

extensible format for the purposes of RPC-like communication. Google uses Protocol

Buffers for almost all of its internal RPC protocols and file formats.

The main aspects of Protocol Buffers are language-neutrality, platform-neutrality

and extensibility in the way structured data can be serialized. Compared to its main

competitor in the RPC arena – the XML – Protocol Buffers format is simpler to parse

and manipulate, resulting data is significantly smaller, the basic operations like

simplistic traversing or searching is much faster and achievable by simpler means. All of

this is achieved by creating a format that is less general and less ambiguous than XML,

and thus easier to parse systematically, orderly and still correctly. Data access classes

generated along the way of parsing the data stored in this format were developed with

ease of programmatic use in mind – a strong and reasonable selling point these days.

The Protocol Buffers protocol is a valuable alternative to more sophisticated

formats and may help to significantly save space for storage of large amounts of data, to

speed-up transmission of data over the internet and thus accelerate the execution of

RPC. Implementations of the protocol are available in C++, Java and Python – a typical

18

Google portfolio. Alongside JSON, it is a compelling alternative to structure complex

data transferred between components or applications.

1.5.3. Thrift

Thrift is an easy-to-use cross-platform and cross-language framework for

developing service infrastructures [Ft07]. The protocol was originally developed at

Facebook before it went open source in April 2007 and entered the Apache Incubator in

May, 2008.

Thrift offers scalability, efficiency and freedom of choice of language and

platform. It provides support for C++, Java, Python, PHP, C# and other languages.

Service data types and service interfaces can be defined in a simple definition file and

the file is then compiled by a provided compiler to generate necessary proxy classes and

management source code for facilitating the service client and/or server facades. Thrift

architecture is illustrated in Figure 8.

Figure 8 Thrift architecture

Service interfaces are specified using a dedicated language – the Thrift Interface

Description Language (TIDL), which is being processed by the Thrift Preprocessor

Utility. Multiple options for a transport layer facilitator are available.

19

1.6. RPC Protocols Comparison

Table 1 summarizes the features of the RPC technologies discussed, in order to

compare their strengths and weaknesses.

Protocol

/ Feature
CORBA

[Omg04]

.Net Remoting

[Net07]

Java RMI

[Java06]

Web

Services
[Web04]

XML-RPC

[Xml99]

Etch

[Etch08]

Protocol Buffers

[Gpb08]

Thrift

[Ft07]

RPC

IDL needed

Transports
TCP, SSL,
HTTP(S),

bridges

TCP,

HTTP(S)

TCP,

HTTP(S)
HTTP(S) HTTP(S)

TCP,UDP,

SSL,

HTTP(S),
…

TCP, UDP,

files, memory

…

TCP, UDP,

files,

memory,
zlib, …

Protocols GIOP
.NET

Remoting

JRMP,

RMI-
IIOP

SOAP XML-RPC
Binary,

XML, …

Binary, XML,

JSON,…

TBinary,

TCompact,
TJSON, ...

Free for
languages

Java,

C/C++,

Python,

…

C# Java

C#, Java,

Python,

C/C++,

…

C#, Java,

Python,

C/C++, …

C#, Java,

C

C#, Java,

Python,

C/C++, …

C#, Java,

Python,

C/C++, …

Callbacks

Asynchronous

method

dispatch

High
performance

High
scalability

Table 1 RPC technologies comparison

20

2. Design

As discussed in Section 1, even the most widely accepted and used RPC

technologies have serious issues in terms of a general usability and ease-of-use – at least

for certain very general purposes. Features and particularities of the available RPC

protocols and implementations often force developers of distributed applications to

make non-trivial design decisions, such as to trade off high performance to code

portability, choose a heavy-weight technology in order to support a single specific

feature, resort to a paid RPC implementation in order to support a specific protocol on

a specific platform, or to make non-elegant workarounds such as firewalls and/or

Network Address Translation (NAT) reconfiguration on client systems in case callbacks

are needed and a desired protocol does not support them.

In this thesis, we demonstrate that there is another way, and that it is possible to

provide a portable RPC middleware with a wide range of features, yet fast, lightweight,

and simple to use. YaRpc is not just a new RPC protocol or implementation; it is rather

a specification of a toolkit and an application programming interface (API) for

developers of distributed applications. The design goals of the YaRpc middleware can

be summarized as follows:

1. Plug-in architecture and modularity in terms of network transport protocols, i.e.

a possibility to use a number of transport layers such as TCP/IP, UDP, SSL,

named pipes, etc.

2. Plug-in architecture and modularity in terms of communication protocols, i.e.

a possibility to integrate existing protocols such as XML-RPC, SOAP, Java RMI,

.NET Remoting, CORBA, etc.

3. Availability for both Microsoft .NET and Java platforms as an open source, or

under some public license, with a possibility to extend to other platforms.

4. Simple and user-friendly rules for the definition of a communication interface

between client and server. Interface description language (IDL), or external

utilities for a manual proxy code generation are time consuming and not

easy-to-use, and thus should be avoided whenever possible. We rather rely on

21

code reflection and want to achieve a high-level of user transparency in both

development and operational process.

5. Bi-directional remote calls invoked by both client and server, for protocols that

support it. This means that we want to make YaRpc a prepared solution for

technologies of callbacks without any constraints on firewalls or NAT.

6. Asynchronous remote calls and server method dispatch. Both issuing and

dispatch of a remote method calls should be able to take advantage of underlying

operating system asynchronous I/O capabilities, and execute in background

while not blocking the calling or dispatching thread, respectively. After the issue

or dispatch of a remote method call is finished, the RPC mechanism initiates

response processing via a callback.

7. High performance, fast and robust.

8. There is a need for a new RPC protocol, the YaRpc Native Protocol (YNP), that

can take the best out of the YaRpc middleware, and existing RPC protocols. The

protocol should be fast, light-weight and offer a comprehensive set of features,

most prominently callbacks.

The ultimate goal of our effort was to provide an easy-to-use feature-rich RPC

infrastructure that would be an interesting alternative to existing RPC systems and

potentially even adopted by an open-source community for a further development.

In order to achieve this goal, the framework needs to provide an attractive set of features

that existing frameworks do not or cannot provide, and be available to a larger software

developer community.

 The starting point of our work was an early prototype of YaRpc, which was just

a monolithic RPC protocol with an implementation for .NET Framework only.

This prototype has been developed for one particular application – the DistributedMI

distributed application [Jc07], and although it already contained some interesting

features (e.g., nested call execution), it was far from being a generally usable RPC

middleware. Another problem of the prototype was a fixation to a new unknown

protocol, which altogether with a user-unfriendly API made it very unlikely that the

prototype might ever be adopted by the desired target audience.

22

By a careful review of the YaRpc prototype, it became apparent that only a small

subset of the code was actually related to the communication protocol itself, and the

most of the code was dedicated to service routines that might be used by other protocols

as well (e.g., serialization, remotable object registration, network transport routines).

This led to an idea that the framework can be designed in an extensible fashion that

would allow developers to plug-in additional protocols, and support implementations

of these protocols by a rich lower-level API. Once the framework provides a sufficient

number of protocol plug-ins, while still keeping a clean and easy-to-use API, it will have

a potential to be widely adopted. Also, the provision of quality core services will be

enough incentive for developers not to create new RPC systems from a scratch, but

preferably implement their protocols as YaRpc plug-ins. It is necessary to make

switching of the actual communication protocols absolutely seamless, without requiring

users to significantly change their code.

Another important design goal was high runtime performance. Traditional

threading models used by distributed applications, such as select/poll loops, do not scale

well for large number of parallel network connections [Bhkk06]. Fortunately, modern

operating systems provide new networking primitives such as I/O Completion Ports

in Microsoft Windows, which can even scale to tenths thousands of parallel network

connections [Jon02]. The RPC system should be able to take advantage of the operating

system capabilities, and thus enable developers to create high-performance applications

with a little effort. In practice this means that all slow operations, such as connection to

a remote host or execution of a remote call, are always supported using asynchronous

(non-blocking) methods; the caller issues a request to begin an asynchronous operation

which gets executed in the background, and receives a notification that the operation has

been finished using a callback, possibly called in another thread. This allows the original

thread to perform some more interesting tasks than waiting. For a convenience,

the synchronous (blocking) equivalents of the asynchronous methods are also provided,

wherever appropriate.

From a programmer’s point of view, the YaRpc specification only defines a set

of interfaces and classes that should be provided by a particular implementation of the

middleware. As such, the YaRpc can be implemented virtually in every modern

23

object-oriented programming language; however, a functionality that utilizes special

features of a language, such as runtime code reflection, might be limited.

The object-oriented paradigm is adopted not only by the YaRpc specification,

but also by the abstraction of the remote procedure calls. The remote procedure calls are

assumed to always reference an object that will dispatch the calls. For this reason, in the

later text we use the term remote method call instead, without any confusion. Note that

the assumption of existence of an object that dispatches the remote calls does not force

users or protocols to also adopt the object-oriented semantics; standard static procedure

calls can easily be “emulated” by particular protocols implementations, if they choose

so. An overall view of the YaRpc architecture is available in Figure 9.

Figure 9 YaRpc architecture

24

2.1. Core Services

The Core Services part of the YaRpc specification defines the elementary

services that are to be provided by each YaRpc implementation. The specification also

defines a set of appropriate interfaces to guide “external” implementations of objects

used by the middleware, such as protocol plug-ins.

2.1.1. YaRpcManager

The main entry point to the YaRpc infrastructure is the YaRpcManager, a class

which contains static methods to manage aspects such as global configuration, protocol

plug-ins, remotable object registration, opening of remote connections for clients and

listeners for servers. Table 2 lists the methods of the YaRpcManager class.

Method Description

RegisterProtocol Registers a new protocol plug-in to the YaRpc

middleware, under a specific name. The protocol

plug-in is a combination of transport layer type

implementation (IYaRpcTransport interface) and

connection type implementation (IYaRpcConnection

interface).

TryGetRegisteredProtocol Determines whether a particular protocol plug-in is

registered.

UnregisterProtocol Unregisters a specific protocol plug-in.

Connect Opens a connection to a remote host, and returns an

instance of the IYaRpcConnection interface.

BeginConnect Asynchronously connects to a remote host. This

method is a non-blocking equivalent of the

BeginConnect method.

EndConnect Finishes an asynchronous connection to a remote

host.

StartListening Starts listening for incoming connections at a specific

local end-point, using a specific protocol. A user-

provided callback might be executed whenever a new

connection is accepted.

25

StopListening Stops listening for incoming connections on a specific

local end-point.

RegisterObject Registers a remotable object (implementing the

IYaRpcRemotable interface) to receive the remote

method calls, under a specific object key.

IsObjectRegisterted Determines whether a specific remotable object is

registered.

GetObjectKeys Gets all object keys a remotable object is registered

under.

GetRegisteredObject Gets a registered remotable object based on its key.

UnregisterObject Unregisters a remotable object.

NewGuid A helper method to genereate a new globally unique

identifier (GUID).

NewObjectKey A helper method to generate a new object key.

HideRemoteExceptionDetails Configuration parameter: indicates whether local

exception details should be forwarded to a remote

side, which might be a security issue.

MaxReceiveMessageSize Configuration parameter: maximum size of any

incoming message, in order to help prevent

overloading of the server, or denial of service (DoS)

attacks.

MaxRecursionDepth Configuration parameter: maximum depth of

recursion for nested method calls.

BlockIncomingRequests Configuration parameter: indicates whether all

incoming method calls should be blocked, to increase

the level of security for pure clients.

NotifyConnectionClosed An utility method that has to be called whenever an

implementation of IYaRpcConnection determines that

the connection has been closed.

Table 2 YaRpcManager class methods

26

2.1.2. IYaRpcConnection

The IYaRpcConnection interface represents an open connection to a remote host,

or a process. It provides all the necessary methods to manage the connection and to issue

a remote method call on that connection. The implementations of the IYaRpcConnection

interface are responsible for serialization of the method parameters, and deserialization

of the return values, and as such an IYaRpcConnection implementation in represents

a particular RPC protocol. The methods of the IYaRpcConnection interface are described

in detail in Table 3.

Method Description

State Gets the state of the connection (None, Intializing, Open, Closed).

BeginIntialize Asynchronously initializes a new connection, over a provided

communication channel (specified using the IYaRpcTransport

interface). The initialization is protocol- specific, and might

involve a network hand-shake between the two endpoints.

EndInitialize Finishes asynchronous initialization of the connection, invoked

using the BeginInitialize method.

IsServer Gets a value indicating that this connection was accepted from the

remote side, i.e. the local side acts as a server.

Tag Gets or sets a user-provided tag associated with the connection.

RemoteCall Synchronously issues a remote method call, specified using an

instance of the YaRpcRequest class. After the remote call is

finished, the method returns an instance of the YaRpcResponse

class with the call results.

BeginRemoteCall An asynchronous version of the RemoteCall method.

EndRemoteCall Finishes an asynchronous method call, invoked using the

BeginRemoteCall method.

KeepAlive Can be called by the YaRpc middleware or a user to prevent the

connection from timing-out.

Ping Measures the duration of a single network roundtrip.

Close Closes the connection.

27

ConnectionClosed Registers a user callback which will be called when the

connection was closed.

Table 3 IYaRpcConnection interface methods

Even though an implementation of the IYaRpcConnection interface will usually

be associated with a physical network link (e.g., a TCP socket), it is not the same thing.

The IYaRpcConnection serves merely as an abstraction that captures a state

of communication between two end-points, and does need to be associated with

a particular network link at all (e.g., consider an in-process connection). In the YaRpc

middleware, the network link is considered as a separate entity, and is handled by the

IYaRpcTransport interface, which is described in the Section 2.1.5.

Implementations of the IYaRpcConnection interface are also responsible for

dispatching of the remote method calls received from a remote end-point of the

connection. Typically, this will be the case for accepted incoming connections on

a server (see the IsServer property), but it might also apply to client connections in case

of a bidirectional RPC protocol. In order to dispatch the method call,

the IYaRpcConnection implementation needs to use methods provided by

the YaRpcManager class to obtain a reference to the dispatching object (aka remotable

object), and invoke the appropriate method of the IYaRpcRemotable interface - see

Section 2.1.6 for details.

2.1.3. YaRpcRequest

The YaRpcRequest class is a simple store for all the necessary information about

a remote method call that a client is issuing to a server. An IYaRpcConnection

implementation accepts a YaRpcRequest instance in the RemoteCall method (or

BeginRemoteCall), and serializes the request to a message in a protocol-specific way for

the transmission over the network link. Table 4 lists the properties of the YaRpcRequest

class.

Property Description

ObjectKey The key under which the remotable object is registered on the

server.

28

MethodKey The name of the remote method to be executed.

Inputs An array of input parameters for the remote method.

InputsDefinition A list containing the name and type of each input parameter.

OutputsDefinition A list containing the name and type of each return value from the

remote method.

Timeout Time after which the remote method call will be considered as

failed.

Flags Additional flags affecting the issue and execution of the remote

call.

Context A protocol-specific hash-map with additional information about

the request.

Table 4 YaRpcRequest class properties

It might be surprising that the YaRpcRequest class also contains definition of the

output values (see OutputsDefinition property), but in fact, this information is necessary

for some implementations of IYaRpcConnection interface in order to correctly

deserialize the returned message, especially in case of binary RPC protocols that do not

transmit meta-data describing the type of return values. Fortunately, YaRpc

implementations in high-level programming language such as Java or C# can use code

reflection to automatically extract all the necessary information in the run-time from

a user-provided communication interface, so that the users do not need to use or even

know about the YaRpcRequest class at all. For more details, see the YaRpcProxy class in

Section 2.4.2.

2.1.4. YaRpcResponse

The YaRpcResponse class has a symmetric role to the YaRpcRequest class – it

contains information about a finished remote method call, such as the return values or

an exception that has been thrown. All the properties of the YaRpcResponse class are

listed in Table 5.

Property Description

Outputs The array of return values of a remote method call.

Exception An exception thrown during the execution of the remote method

29

call.

Context A protocol-specific hash-map with additional information about

the response.

Table 5 YaRpcResponse class properties

Although some languages only allow methods to return a single value (e.g.,

Java), the YaRpc middleware supports remote methods with multiple output values. In

languages that support output or by-reference parameters, the output values can be

mapped to those parameters. Again, users usually do not need to deal with the

YaRpcResponse class directly, and can use convenience classes to issue and dispatch

remote method calls with a little programming effort. See YaRpcProxy in Section 2.4.2

for more details.

2.1.5. IYaRpcTransport

Even though RPC protocols are usually associated with a specific network

transport layer (e.g., SOAP is associated with HTTP or HTTPS) and in numerous RPC

implementations the protocol and transport are tied closely together, the protocol and the

transport layer can be considered as two separate entities. The RPC protocol, here

represented using the IYaRpcConnection interface, is responsible for serialization of

requests and responses to network messages, and maintaining a logical state between

two communication end-points, whilst the functionality of a network transport layer,

here encapsulated in the IYaRpcTransport interface, is responsible for establishing a

physical link between two end-points, and sending and receiving messages over that

link. In a wider picture, such a distinction between the protocol and transport allows us

to reuse software components in various protocol implementations. For example, a

HTTP implementation of the IYaRpcTransport interface can be used by both SOAP and

XML-RPC implementation of the IYaRpcConnection interface. All the following

network transport layers can easily be represented using the IYaRpcTransport interface:

UDP, TCP, SSL, HTTP, HTTPS, named pipes, shared-memory, etc. Table 6 lists the

methods of IYaRpcTransport interface.

30

Method Description

State Gets the state of the transport link (Uninitialized, Connecting,

Connected, Listening, Closed).

IsServer Indicates whether the network link has been initiated by the

remote end-point (i.e. that the current end-point represents a

server).

Tag Gets or sets a user-provided tag associated with the transport.

BeginConnect Asynchronously initiates a connection to a remote end-point,

specified using a transport-specific address.

EndConnect Finishes the asynchronous connection initiated previously using

the BeginConnect method.

BeginSend Asynchronously begins sending a message over the link. The

message is stored in a YaRpcSmartStream class instance.

EndSend Finishes an asynchronous sending operation previously initiated

using the BeginSend method.

BeginReceive Asynchronously begins receiving a message over the link. The

received message is stored in a provided YaRpcSmartStream class

instance.

EndReceive Finishes an asynchronous receive operation previously initiated by

the BeginReceive method.

Close Closes the network link and releases associated resources.

StartListening Starts listening for incoming connections, on a local end-point

specified by a transport-specific address. Whenever an incoming

connection is accepted, a user-provided callback is executed.

StopListening Registers a user callback which will be called when the

connection was closed.

Table 6 IYaRpcTransport interface methods

An implementation of IYaRpcTransport works in two distinct modes

of operation: connection and listening. In the connection mode, the transport represents

and open network link between two end-points that can be used to send or receive data.

In the listening mode, the transport is listening for incoming connections in a network

transport layer-specific way, and whenever a connection is accepted, a new instance

31

of an appropriate IYaRpcTransport implementation is created which represents the

newly established link.

Clearly, the methods provided by the IYaRpcTransport interface resemble the

Berkeley sockets interface [Ws97], and in many situations an IYaRpcTransport

implementation will be just a thin wrapper above a socket (e.g., for UDP and TCP

transports). However, for a special transport layers, such as shared-memory or named

pipes, the IYaRpcTransport implementations will need to provide a more comprehensive

functionality.

The IYaRpcTransport implementations should preferably use asynchronous

capabilities of the underlying operating systems for their own asynchronous operations,

e.g. I/O Completion Ports in Microsoft Windows, in order to reduce performance

bottlenecks caused by poor threading model [Jon02]. However, if such asynchronous

capabilities are not available on a particular platform, the implementations have to

emulate them by spawning a thread to execute an underlying blocking I/O operation.

2.1.6. IYaRpcRemotable

The IYaRpcRemotable interface represents an object that is able to execute

remote method calls (aka remotable object). Typically, a developer of a server

application will register a bunch of remotable objects to the YaRpc infrastructure (using

appropriate methods of the YaRpcManager class – see Section 2.1.1), and a protocol

implementation will call their methods during a dispatch of a received remote method

call (in an implementation of the IYaRpcConnection interface – see Section 2.1.2). The

methods of the IYaRpcRemotable interface are described in Table 7.

Method Description

ObjectKey Gets an object key under which the remotable object is

registered to the YaRpcManager. This property is necessary for

RPC implementations that can serialize a reference to a

remotable object.

GetMethodDefinition Gets the definition of a particular method given its name.

Among other things, the definition contains a list of the method

input parameters and return values, including their names and

32

types.

ExecuteRequest Synchronously executes a specific remote method call, using a

list of parameters provided.

BeginExecuteRequest Begins asynchronous execution of a remote method call. This

method is a non-blocking variant of the ExecuteRequest method.

EndExecuteRequest Finishes the asynchronous execution of a remote method call

initiated previously using the BeginExecuteRequest method.

Table 7 IYaRpcRemotable interface methods

A remotable object has a role similar to the stub (sometimes called skeleton),

a piece of code generated from an interface description language (IDL) in traditional

RPC protocols such as CORBA or DCOM [Dcom98]. The IYaRpcRemotable interface

does, however, provide more flexibility to RPC implementations compared to the stubs

– implementations in high-level programming languages such as Java or C# can take

advantage of code reflection and provide an appropriate implementation of the

IYaRpcRemotable interface automatically in the run-time, while an implementation in

a low-level language such as C/C++ can still use IDL to automatically generate the stubs

that will implement the IYaRpcRemotable interface, in the development time. See the

description of the YaRpcStub class in Section 2.4.1 for more details on how to use code

reflection to aid creation of remotable objects.

Remotable objects need to provide a definition of the remotable methods they

support, including the name and type of its parameters and return values, using the

GetMethodDefintion method. The information provided might (or might not) be used by

a particular RPC protocol implementation for serialization and deserialization

of requests and responses, and to execute the requests in a right way. Among other

things, the GetMethodDefintion method definition provides a worker object that should

be used to execute the request. This functionality enables server applications to only use

one thread to serve all requests on a specific remotable object, for instance. For more

details on the execution workers, please see the description of the IYaRpcWorker

interface in Section 2.1.7.

 The YaRpc infrastructure enables remotable objects to execute the remote

method call request either synchronously or asynchronously, based on their preference.

33

The information whether a request should be executed synchronously or asynchronously

is also provided by the GetMethodDefintion method. Asynchronous execution of request

is especially useful due to runtime performance reasons. For example, a server accessing

files on a disk might prefer to provide asynchronous remote methods so that the

dispatching thread will not be blocked while waiting for the file access to finish and thus

the thread can perform some more interesting tasks. The fact, that remotable objects can

provide asynchronous remotable methods, has important implications for the scalability

of server applications. In YaRpc, this behavior is called asynchronous method dispatch.

The asynchronous method dispatch can be also advantageous to

high-performance server applications that only forward method calls between a number

of clients. When a remote call is received, the server’s remotable object can

asynchronously issue a remote call to another client, and this initiation is likely to be

executed before a context switch occurs (possibly on an I/O Completion Port thread),

thus providing an enormous scalability potential.

2.1.7. IYaRpcWorker

The IYaRpcWorker interface represents a worker object that can “physically”

execute a remote method call request. For example, the requests can be executed on a

thread pool, or on a single-thread queue. The IYaRpcWorker interface gives

IYaRpcRemotable objects a flexibility to define when and where each dispatched request

should be executed. Table 8 shows a single method of the IYaRpcWorker interface.

Method Description

QueueWorkItem Schedules a method delegate for an execution, with an

implementation-specific semantics.

Table 8 IYaRpcWorker interface methods

2.2. Protocol Plug-ins

Software developers are encouraged to implementation plug-ins in order to add

support of RPC protocols of their choice to the YaRpc middleware. A protocol plug-in is

a combination of an implementation of the IYaRpcConnection interface (see Section

2.1.2) and an implementation of the IYaRpcTransport interface (see Section 2.1.5).

34

A developer registers such a combination to the YaRpc infrastructure using the

YaRpcManager.RegisterProtocol method, under a specific protocol name. When a user

is connecting to a remote end-point using the YaRpcManager.Connect method (or the

BeginConnect method), he or she has to provide an URL of the remote end-point. The

appropriate protocol is selected based on the URL scheme prefix.

For example, in order to support web-services, a user might register the

YaRpcConnectionSoap and YaRpcTransportHttp types under “soap” scheme prefix.

Whenever a connection attempt is made to an URL such as:

soap://www.hostname.com/protocol/specific/part

then the YaRpc infrastructure will automatically perform the following steps:

1. Identify the connection-transport pair based on the “soap” scheme prefix.

2. Create a new instance of the YaRpcTransportHttp class.

3. Invoke YaRpcTransportHttp.BeginConnect in order to open a network link to

www.hostname.com.

4. Create a new instance of the YaRpcConnectionSoap class.

5. Invoke YaRpcConnectionSoap.BeginIntialize to associate the connection with the

established network link and to let the connection perform any necessary

initialization steps.

6. Returns the instance of the YaRpcConnectionSoap class back to the user.

Note that during the connection, the full original URL is provided to both

IYaRpcTransport and IYaRpcConnection implementations, thus enabling them to use

other parts of the URL (i.e., hostname, port number, path and query) for an

implementation-specific purpose. Typically, different RPC protocols share a common

transport layer (e.g., both SOAP and XML-RPC use HTTP), so that a protocol developer

might not need to implement the IYaRpcTransport interface at all, and he or she can just

use an implementation that is already available.

35

2.3. Serialization

The serialization is a process of encoding of a remote method call request

or response, including all the input or output parameters, into a data message that can be

transferred over a network link. The deserialization is a process symmetric to the

serialization – it decodes a data message received over the network and creates

an appropriate request or response object. Even though the serialization is RPC

protocol-specific, the YaRpc middleware provides a several supporting classes to help

particular protocol implementers, i.e. the implementers of the IYaRpcConnection

protocol as described in Section 2.1.2.

2.3.1. YaRpcSmartStream

The YaRpcSmartStream class serves as a storage of bytes that grows

automatically as more data is added to it. The stream supports random access read and

write – a user can seek to any position and read or write data to that position. Unlike

similar stream implementations available in many programming languages, the interface

of the YaRpcSmartStream class is designed in a way that enables users to save

unnecessary re-copying of byte buffers when reading or writing to the stream, which

leads to a higher runtime performance of operations with the stream. Additionally,

YaRpcSmartStream has methods that allow users to impose a limit on a read position

from the stream. This functionality might be used when deserializing object-trees in

particular protocol implementations, in order to prevent poorly written custom

serialization or deserialization routines to fail the whole deserialization process. Table 9

lists the methods of the YaRpcSmartStream class.

Method Description

Length Gets or sets the total length of the stream in bytes.

Tag Gets or sets a user-provided tag associated with the

stream.

Clear Resets the stream to the initial state, with 0 bytes

stored.

BuffersCount Gets the number of buffers used by the storage.

Write_Position Gets or sets the current write position in the stream.

36

Write_Flush Updates the total length of the stream to reflect the

most recent writes.

Write_GetBlock Gets a continuous chunk of memory which may be

used to write the data directly to the stream, without

any additional copying.

Write_FinalizeBlock Finalizes a write operation started previously using the

Write_GetBlock method.

Write_PutBytes Writes a data to the stream.

Write_PutByte Writes a single byte to the stream.

Write_FromStream Writes a part of another YaRpcSmartStream to the

current stream.

Read_Position Gets or sets the current read position in the stream.

Read_GetBlock Gets a continuos block of memory from which the

stream data may be read directly, without any

additional copying.

Read_FinalizeBlock Finalizes the read operation started previosuly using

the Read_GetBlock method.

Read_GetBytes Copies data from the stream to a byte buffer.

Read_GetByte Reads a single byte from the stream.

Read_RemainingBytes Gets the maximum number of bytes that can be read

from the stream, starting from the current read position.

Read_EnsureRemainingBytes Checks that a specific number of bytes may be read

from the stream and throws an exception if not.

Read_PushLimit Imposes a lower and upper bound for the read position.

Read_PopLimit Removes the top-most read-position limit imposed

using the Read_PushLimit method.

Read_Compare Reads chunk of data from the stream and compares it to

a specified buffer.

Table 9 YaRpcSmartStream class methods

Typically, growing memory streams are implemented using a single byte buffer

(i.e., an array); if the buffer is full, the stream allocates a new buffer twice as long and

copies the data from the previous buffer to the beginning of the new buffer. This

37

approach is easy to implement, however, it does unnecessary copying of buffers and

limits the maximum size of the data stored to the maximum length of an array available

on the particular platform (e.g., 2 GB in Java and .NET Framework [Java06, Net07]).

Several platforms and operating system, such as .NET Framework running on Microsoft

Windows, allow to use a list of buffers when sending data or receiving data from

a socket, instead of a single buffer. The use of this API, which is also known as

scatter/gather I/O [Mwgs07], is typically more efficient then copying buffers into

a single buffer before the I/O operation is invoked. Particular YaRpc middleware

implementations are highly encouraged to internally implement the YaRpcSmartStream

storage using a list of buffers, in case the underlying platform supports the scatter/gather

I/O. Whenever the existing buffers in a YaRpcSmartStream are full, a new larger buffer

is allocated and appended to the list of buffers. If the new buffer is twice as large as the

previous buffer, the stream can theoretically save up to ca. 2
60

 bytes of data. This

capability is important in situations where applications want to use network messages

larger than 2 GB; even though at the current day and age there will not be many such

applications, we assume that with the evolution of many-Gigabit optic fiber network

links such applications will arise.

2.3.2. YaRpcWriter

The YaRpcSmartStream interface on its own is not very convenient, because it

only allows writing of byte or byte array. The RPC implementations, or custom user

serialization routines, often need means to serialize common data-types to a stream. The

YaRpcWriter class allows writing of all or most of the common data types of a particular

language to an instance of YaRpcSmartStream. The YaRpcWriter is flexible in the sense

that it allows users to specify byte ordering for integer data type (little-endian or big-

endian [Dce80]), and encoding used for string serialization. The methods of the

YaRpcWriter class are described in Table 10.

Method Description

Stream Gets the underlying instance of the YaRpcSmartStream class.

IsBigEndian Indicates whether integer data types are serialized using little-

endian or big-endian byte order.

38

Encoding Gets the encoding used to serialize text strings. The default

encoding is UTF-8.

Write Writes a common data type to the stream.

WriteString Writes a string to the stream, prefixed with a Z-encoded length of

the string, or -1 if the string is null.

WriteArray Writes a (multidimensional) array to the stream. Each array is

prefixed with a Z-encoded length of the array, or -1 if the array is

null.

WriteRaw Writes a string or an array to the stream, without any prefix.

WriteMagic A convenience method that writes a 16-bit or 32-bit magic number

to the stream.

WriteZeroBytes Writes a number of zero bytes to the stream.

WriteZetCode Writes a Z-encoded integer to the stream.

Align Advanced the write position in the stream to the nearest multiple of

specific number.

Flush Invokes the Write_Flush method on the underlaying stream.

Table 10 YaRpcWriter class methods

The YaRpcWriter uses Z-encoding to write the length prefix for a string or an

array. The Z-encoding is an efficient way how to serialize an arbitrarily large integer

number. For more details, see Section 2.3.4.

2.3.3. YaRpcReader

The YaRpcReader has a role symmetric to the YaRpcWriter – it reads common

data types from an underlying YaRpcSmartStream. The YaRpcReader class also enables

users to choose the byte ordering and string encoding. Table 11 lists the method of the

YaRpcReader class.

Method Description

Stream Gets the underlying instance of the YaRpcSmartStream class.

IsBigEndian Indicates whether integer data types are assumed to be serialized

using little-endian or big-endian byte order.

Encoding Gets the encoding used to deserialize text strings. The default

39

encoding is UTF-8.

ReadXXX Reads a common data type XXX from the stream.

ReadString Reads a string from the stream. The string is prefixed with a Z-

encoded length of the string.

ReadArray Reads an array from the stream. The array is prefixed with a Z-

encoded length of the array.

ReadRaw Reads a non-length-prefixed string or array from the stream.

ConsumeMagic A convenience method that reads a 16-bit or 32-bit magic number

from the stream and throws an exception if it does not match.

ReadZetCodeAsInt32 Reads a Z-encoded integer as a 32-bit integer.

ReadZetCodeAsInt64 Reads a Z-encoded integer as a 64-bit integer.

Align Advanced the read position in the stream to the nearest multiple of

specific number.

Table 11 YaRpcReader class methods

2.3.4. Z-Encoding

Z-encoding is a new algorithm that we have developed for serialization of

an arbitrarily large integer value in a storage-efficient way. In YaRpcWriter and

YaRpcReader, Z-encoding is widely used to serialize lengths of a strings or arrays. The

main assumption is that numbers close to zero will occur more frequently than numbers

far from zero, thus they should not need too much storage space. Additionally, the

encoding needs to be byte-oriented and also support negative numbers. This led us to a

definition of Z-encoding as follows:

1. An integer value v is transformed into v’ using the following formula:

 v’ = 2v (if v >=0)

or v’ = -2v – 1 (if v < 0)

 For example, 0 gets transformed to 0, -1 to 1, 1 to 2, -2 to 3, 2 to 4, etc. Note that

v’ is always a non-negative value.

2. The bits of the transformed integer value v’ are split into a sequence of 7-bit

chunks, starting from the least-significant bits of the value.

40

3. Each 7-bit chunk is bitwise ORed with a byte value where the most significant

bit set if the chunk is not the last one in the sequence, and unset if the byte is last.

The whole byte is written to the stream.

The reading of a Z-encoded value is symmetrical to the writing:

1. Read bytes from the stream, and stop when the last byte read has the

most-significant bit unset.

2. Concatenate the lower 7 bit chunks from each byte read into a single integer

value v’, in the least-to-most-significant bit order.

3. Compute the original value v using the following formula:

 v = v’ / 2 (if v is even)

or v = -1 – v’ / 2 (if v is odd)

The name “Z-encoding” is appropriate for a number of reasons: the transformation

of integer values resembles a zigzag pattern or a simply the letter “Z”, a mathematical

symbol for integer numbers is ℤ, and the letter “Z” also resembles the number 7, which

is the length of each bit chunk. The reader is free to choose the most appropriate

explanation.

2.4. Utility Services

The YaRpc middleware provides several classes to help both users of the

middleware and implementers of RPC protocols. However, these helper classes are not

a mandatory part of the YaRpc specification, and might not be available on all

platforms, because they might depend on specific features of programming languages.

2.4.1. YaRpcStub

The YaRpcStub class is used to simplify creation of remotable objects by

developers of server applications. The class implements the IYaRpcRemotable interface,

and uses code reflection to obtain the signature of methods of a user object that are to be

made remotable. The user only needs to mark which methods are that, using for example

code meta-data if the programming language supports it, and also the user needs to link

the user object with a particular YaRpcStub instance, which can conveniently be done

using a generic type argument. For example, in .NET Framework the YaRpcStub

41

implementation uses the YaRpcMethodAttribute meta-data attribute and a generic type

argument for this purpose, respectively, while Java implementation uses the

YaRpcMethod annotation and an instance reference, respectively. See Section 3 for

more details on particular implementations. Table 12 lists methods of the YaRpcStub

class; the members inherited from the IYaRpcRemotable are skipped.

Method Description

RegisterToYaRpc Registers a user object to the YaRpc infrastructure to receive

remote method calls, under a specific object key.

UnregisterFromYaRpc Unregister the user object from the YaRpc infrastructure.

Worker Gets or sets an implementation of the IYaRpcWorker interface

that should be used to execute the method calls.

Table 12 YaRpcStub class methods

2.4.2. YaRpcProxy

The YaRpcProxy class simplifies development of client applications by either

providing convenience methods that simplify issuing of remote method calls, or even

providing methods that can dynamically generate a proxy object based on an interface,

using a runtime code generation capability of a programming language if it is available.

The YaRpcProxy class usually provides methods listed in Table 13.

Method Description

YaRpcTimeOut Gets or sets the timeout for remote calls issued from the proxy

object.

YaRpcConnection Gets the IYaRpcConnection associated with the proxy object.

YaRpcObjectKey Gets the object key of the remote object this proxy is associated

with.

Generate Dynamically generates an instance of a proxy object, based on a

provided communication interface. This method might not be

available on every platform.

YaRpcRemoteCall A convenience method that constructs a YaRpcRequest instance and

invokes the remote call using the YaRpcManager class.

Table 13 YaRpcProxy class methods

42

2.4.3. YaRpcConnectionBase

Even though the YaRpc specification already separates RPC protocols from the

physical network transport layer (see Sections 2.1.2 and 2.1.5), many RPC protocol

implementations will still share a lot of common functionality, such as remote call

dispatching, connection management or response processing. The

YaRpcConnectionBase is an abstract class that aims to provide these common services to

particular IYaRpcConnection implementations. In fact, new protocols will usually only

need to override the abstract methods of the YaRpcConnectionBase class, which are

listed in Table 14.

Method Description

BeginHandshake Asynchronously starts a hand-shake with the

remote end-point to initialize the connection.

SerializeMessage Serializes a request or response message.

ControlMessageReceiving Manages the receiving of network message from

the remote end-point.

DeserializeMessage Deserializes the header of a received network

message.

DeserializeMessageBottomHalf Finishes deserialization of a received network

message.

Table 14 Abstract methods of the YaRpcConnectionBase class

2.5. YaRpc Native Protocol (YNP)

Although the YaRpc middleware is designed to support a number of existing

protocols, it also defines a new light-weight YaRpc Native Protocol (YNP) that offers

a unique set of features compared to existing RPC protocols, such as high performance

due to a binary message format, server-initiated callbacks, customizable serialization,

asymmetric serialization and nested method calls. The YNP uses TCP or TCP+SSL as

the underlying network transport, in order to provide a reliable data transfer [Rfc793]

and encryption [Ssl94], respectively. YNP was purposely designed as a minimalistic

protocol with a simple message format, in order to promote creation of YNP

implementations for other platforms and operating systems.

43

2.5.1. Message Format

The YNP is a message oriented RPC protocol; both remote call request and

response are packed into a single network message. In case a remote method call failed,

the remote side sends back a message describing the exception that occurred. Each

request, and corresponding response or the exception message, is assigned a random

generated 16-byte globally unique identifier (GUID). The messages have a binary

format, in order to save the network bandwidth and enable fast serialization and

deserialization. Table 15 shows the format of an YNP message header.

Field Bytes Description

Magic 3 A protocol magic number: an ASCII-encoded “YAR” string.

Protocol version 1 A number identifying the protocol version, current version is

0x02.

Message type 1 The type of the message (0x01=REQUEST,

0x02=RESPONSE, 0x04=EXCEPTION)

Message flags 1 OR-combination of message flags (0x01=BIG_ENDIAN)

Specific flags 1 OR-combination of request or response flags, depending on the

message type.

Reserved 1 A field reserved for a future use, must be zero when sending

and is to be ignored when receiving messages.

Body size 8 The length of the message body in bytes, encoded using a

message's byte ordering.

Method call GUID 16 A globally unique identifier of the remote call.

Table 15 YNP protocol message header

The message header is followed by a body which is specific to the message type.

The REQUEST, RESPONSE and EXCEPTION message body is described in Table 16,

Table 17 and Table 18, respectively.

Field Bytes Description

Nested to GUID 16 A unique identifier of remote call to nest to – see Section 2.5.4.

Object key ? The name of the dispatching remotable object (Z-encoded length

+ UTF-8 encoded string).

44

Method key ? The name of the remotable object method (Z-encoded length +

UTF-8 encoded string).

Context data ? Additional invocation-specific information, specified as a list of

string key-value pairs.

Argument count ? A Z-encoded number of input parameters of the remote call.

Arguments ? A sequence of input parameters serialized using the YNP

serialization scheme – see Section 2.5.2.

Table 16 YNP protocol REQUEST message body

Field Bytes Description

Context data ? Additional invocation-specific information, specified as a list of

string key-value pairs.

Argument count ? A Z-encoded number of output parameters of the remote call.

Arguments ? A sequence of output parameters serialized using the YNP

serialization scheme – see Section 2.5.2.

Table 17 YNP protocol RESPONSE message body

Field Bytes Description

Context data ? Additional invocation-specific information, specified as a list of

string key-value pairs.

Fault code ? A Z-encoded error code, which may be used by a user code.

Exception type ? A name of the type implementing the exception (7-bit encoded

length + UTF-8 encoded string)

Message ? A text with description of the exception (7-bit encoded length +

UTF-8 encoded string).

Stack trace ? A text with stack trace of the exception (7-bit encoded length +

UTF-8 encoded string)

Data records ? A table of key-value pairs with additional exception information.

Table 18 YNP protocol EXCEPTION message body

45

2.5.2. Serialization

The REQUEST and RESPONSE message contains a sequence of input and

output parameters of the remote call, respectively. In the stream, each parameter is

prefixed with a 1 byte signature. The signature is a bit-field that describes the type of the

serialized value; the meaning of each bit is described in Table 19.

Bit 7 6 5 4 3 2 1 0

Value Is null Type code Array dimension

Table 19 Serialized value signature byte

If the serialized value is null, the bit 7 will be set, otherwise it will be unset. For

reference types, the meaning of a null value is clear, but for value types the meaning

might be problematic (e.g., consider int type in Java). The implementations are free to

choose the “best” way, e.g. an implementation in .NET Framework might use nullable

types to represent a null value-type [Net07], while a Java implementation might simply

use the default value of a value-type, i.e., zero. Bits 3-6 describe the type of the

serialized value; all the possible type codes are listed in Table 20.

Type code Value Description

BackReference 0x00 The object has already been serialized/deserialized, and this is just

another reference to it.

Boolean 0x01 A boolean value (true of false, 8-bit).

Byte 0x02 8-bit integer value

Int16 0x03 16-bit integer value

Int32 0x04 32-bit integer value

Int64 0x05 64-bit integer value

Single 0x06 A single-precision IEEE 754 floating point number (32-bit)

Double 0x07 A double-precision IEEE 754 floating point number (64-bit)

Decimal 0x08 A 64-bit IEEE 754 decimal.

DateTime 0x09 Date & time value, represented as number of 100-nanosecond

intervals that have elapsed since 12:00:00 midnight, January 1,

0001, encoded as a 64-bit integer.

TimeSpan 0x0a A difference between two time instants, represented as number of

46

100-nanosecond intervals, encoded as a 64-bit integer.

Guid 0x0b A 16-byte globally unique identifier (GUID)

Char 0x0c A UTF-8 encoded character (1-6 bytes per character)

ComplexType 0x0d A complex data-type.

Table 20 Signature type code

The type code is followed by a data block in the stream, and the format of the

data differs based on the signature. For simple values (i.e. all type codes except of

BackReference and ComplexType, and with array dimension zero), the signature type

code is simply followed by the value, serialized using current session’s byte-ordering.

The BackReference code is a special type code that enables serialization of

object-graphs. If an object (e.g. array, string or complex type) has already been

serialized/deserialzied in a same serialization/deserialization session, there is no need to

write or read it again, respectively. The BackReference signature code is followed by a

Z-encoded relative offset in the stream where the original object has been serialized.

Note that if BackReference code is used, bits 7 and 0-2 must always be unset.

The ComplexType code is used to specify that the data have been serialized

by a complex user-provided object. The ComplexType code signature is followed

by a 64-bit integer storing a total length of the data, and then by the data stream as

encoded by the object. A user on the receiving side is responsible to provide an object

(more precisely a type) that is able to deserialized the data.

Bits 0-2 of the signature store the number of dimensions of an array. This is used

to encode (multidimensional) arrays of simple or complex data types. The signature byte

is followed in the stream by a Z-encoded length of the array, and then a sequence

of serialized elements of the array, each encoded the same way as if it were the only

element (e.g. for a ComplexType code, each element of the array is prefixed with 64-bit

byte length). Multidimensional arrays are encoded as array of arrays, recursively. Each

sub-array is encoded as a one-dimensional array, including its own full 1-byte signature.

This is useful e.g. in case a sub-array has already been serialized, so that only

BackReference signature and offset might be written instead. Strings are serialized

as a single-dimensional array of characters, where each character is encoded using

UTF-8 encoding.

47

The YaRpcNativeSerializer class encapsulates all the serialization functionality

of the YNP protocol. This makes it possible for user to use the YNP serialization scheme

e.g. for serialization of sub-objects of a complex data type. The methods of the

YaRpcNativeSerializer class are listed in Table 21.

Method Description

RegisterSerializationSurrogate Registers a custom user serializer /deserialzier to

the chain of serializers.

UnregisterSerializationSurrogate Unregisters a custom serializer from the chain.

GetSurrogates Gets the chain of serializers.

Serialize Serializes a value using the first serializer in the

chain that is able to do it.

Deserialize Deserializes a value from a stream using the first

deserializer in the chain that is able to do it.

Table 21 The YaRpcNativeSerializer class methods

Note that the RegisterSerializationSurrogate method enables users to completely

override the default YNP serialization behavior, and thus provide an important feature

of the YNP protocol – custom serialization.

2.5.3. Asymmetric Serialization

Note that there is no type code to distinguish between signed and unsigned

integer values, a string is considered equivalent to an array of chars, and there is no

check to ensure a complex object that has been serialized on one side is being

deserialized by the same complex type on the other side. This ambiguity, which we call

asymmetric serialization, however, enables clients and servers to use slightly different

communication interfaces, while still enabling them to communicate seamlessly. This

can potentially lead to a higher efficiency, as the end-points do not need to convert data

to a required form after the deserialization.

2.5.4. Nested Method Calls

Consider a situation where a client synchronously issues a remote call to a server

and during the execution of that remote call the server issues a callback to the client (aka

48

nested call). For a number of reasons, it is desirable that the remote callback is executed

on the same thread that is blocked while waiting for the result of the original remote call

(aka causal call). Such a behavior can not only improve runtime performance

by utilizing an otherwise blocked thread, but it can also be crucial for applications that

need to guarantee that certain activities are always executed on a single thread, such as

update of a graphical user interface (GUI) or an invocation of COM components that use

the single-thread apartment (STA) model on Microsoft Windows [Win07].

In order to support execution of nested method calls on a causal thread, the YNP

REQUEST message body contains a globally-unique identifier of the remote call to nest

to. Also, the YNP implementations need to determine that a remote method call was

invoked during execution of another remote call. Fortunately, most programming

languages and/or operating systems provide means to save certain information on

per-thread basis, for example Microsoft Windows provide the Thread Local Storage

which is accessible using C#’s [ThreadStatic] attribute [Net07, Win07].

A more complicated situation arises when more than two communication

end-points are involved. For example, consider the communication between three end-

points as depicted in the sequence diagram in Figure 10. When issuing callback GUID4

from the server to client A, the server needs to determine that the causal call is the call

GUID1, and not the call GUID3. In order to do that, the YNP implementations need to

keep track of causality between the method calls, which basically means to maintain a

stack of call-connection pairs that can be used to answer queries such as “what is the

top-most call from the client X, that caused the execution of the current request”.

49

Figure 10 Causality of remote method calls in YNP (Source: [Jc07])

Note that the concept of method call nesting as described here has already been

available in the prototype of YaRpc that we used as a starting point of our efforts.

As such, it has not been developed as part of this thesis, and we only provide its

description here for the sake of completeness.

50

3. Implementation

Even though the YaRpc middleware specification defines precisely which

interfaces, classes and methods should the YaRpc implementations support, and what

functionality they should provide, the specification is flexible in order to support a wide

range of platforms and programming languages. Different programming languages

provide different syntax and run-time features. With respect to the syntax features,

languages without support of output or by-reference parameters might need to define

a handful of additional objects to be able to return more complex values from a method

call, or languages without support of object properties will need to define getter and

setter methods, for example. Generally speaking, the variances in syntax features

between the languages usually will not be a problem; however, unavailability of certain

runtime features, such as the code reflection or dynamic code generation, might

seriously affect implementations and potentially force them to redesign certain

functionalities.

As a proof of concept, we have implemented the YaRpc infrastructure and

YaRpc Native Protocol (YNP) in both Java 6 and .NET Framework 2.0 (with C#)

programming languages. In this section, we describe some of the details of the two

implementations and how peculiarities of the corresponding platforms can be tackled.

3.1. .NET Framework 2.0

The Microsoft .NET Framework 2.0 with C# language was the initial platform

used for prototyping of the whole YaRpc specification, so naturally the first

implementation was available in C#. The C# language is a modern high-level

programming language with a wide range of features (e.g., events, delegates, object

properties, generics) that stream-line the development and enable creation of clean

interfaces. Additionally, the standard system libraries provide advanced APIs which take

advantage of the host operating system capabilities (e.g. asynchronous I/O, vectored I/O,

advanced threading and synchronization).

One of the design goals of YaRpc for .NET Framework was the compatibility –

the library only uses standard APIs, does not use P/Invoke [Msdn] and is written in

51

version 2.0 of the language, so that it might be used on a range of operating systems,

including Linux with MONO framework [Mono].

A first step when creating a distributed application is the definition

of a communication interface, which is known by both the client and server. Figure 11

shows an example of such an interface. The methods of the interface that are to be made

remotable are marked using the YaRpcMethodAttribute meta-data attribute, which is

then used by both YaRpcProxy and YaRpcStub classes, as we will see later.

 public interface IHelloWorld

 {

 [YaRpcMethod]

 string GetGreeting();

 }

Figure 11 A communication interface, shared by both client and server

With C#, the YaRpcStub class can be extended with a generic type argument, and

a user object dispatching the remote calls can be inherited from such a class. The

YaRpcStub<T> class implements the IYaRpcRemotbale interface, and uses the runtime

type reflection to identify which methods of type T are to be made remotable, based on

the presence of the YaRpcMethodAttribute attribute. This leads to a clean and

straightforward design pattern for development of the server applications, such as the

example in Figure 12.

 public class HelloWorldStub : YaRpcStub<IHelloWorld>, IHelloWorld

 {

 public HelloWorldStub(string objectKey)

 : base(objectKey)

 {

 }

 public string GetGreeting()

 {

 return "Hello world";

 }

 }

 ...

 YaRpcManager.StartListening("ynp://0.0.0.0");

 HelloWorldStub stub = new HelloWorldStub("key");

 stub.RegisterToYaRpc();

Figure 12 An implementation of a server in .NET

52

Similarly, the YaRpcProxy class uses a generic type argument to associate the

proxy object with a user-provided communication interface. In a first (simpler) variant,

the YaRpcProxy uses the type information to dynamically find signatures of the user-

provided communication interface methods (again, marked with the

YaRpcMethodAttribute attribute), and uses them to help the user with issuing remote

method calls by aiding with creation of a YaRpcRequest, and handling the returned

YaRpcResponse, via the YaRpcRemoteCall method – see example in Figure 13.

 public class HelloWorldProxy : YaRpcProxy<IHelloWorld>, IHelloWorld

 {

 public HelloWorldProxy(IYaRpcConnection conn, string objectKey)

 : base(conn, objectKey)

 {

 }

 public string GetGreeting()

 {

 return (string) YaRpcRemoteCall("GetGreeting");

 }

 }

 ...

 IYaRpcConnection conn = YaRpcManager.Connect("ynp://127.0.0.1");

 IHelloWorld proxy = new HelloWorldProxy(conn, "key");

 string greeting = proxy.GetGreeting();

Figure 13 Client code, with a manually created proxy in .NET

Microsoft .NET Framework enables dynamic class code generation in the

runtime, by emitting the code in form of Microsoft Intermediate Language (MSIL) using

the libraries provided by the System.Reflection.Emit namespace [Msil00]. A more

sophisticated YaRpcProxy implementation can use this capability to generate and

instantiate a type that implements the user-provided communication interface, with

a functionality equivalent to the manually created proxy object. The runtime proxy

generation greatly simplifies development of client applications, as shown in the code

example in Figure 14. Note that the dynamic proxy generation is not part of the current

YaRpc .NET implementation, and will be developed in the future.

53

 IYaRpcConnection conn = YaRpcManager.Connect("ynp://host.com");

 IHelloWorld proxy = YaRpcProxy<IHelloWorld>.Generate(conn, "key");

 string greeting = proxy.GetGreeting();

Figure 14 Client code, with a dynamically generated proxy in .NET

The YaRpc .NET implementation is available as a stand-alone assembly called

YaRpc.dll which does not depend on any other third-party assembly, in order to provide

maximum portability and ease of use.

3.2. Java 6

The Java Platform Standard Edition (Java SE) version 6 was the second platform

selected for implementation of the YaRpc specification. Java 6 is a very popular and

widely adopted software platform, probably due to the fact that it offers a powerful and

easy-to-use high-level programming language, a comprehensive set of libraries, and,

most importantly, a true portability which enables Java applications to run on operating

systems such as Microsoft Windows, Linux, and Mac OS X, without any modification.

Compared to the previous versions, Java 6 also offers several language features that

enable creation of convenient programming interfaces to the YaRpc middleware,

e.g. annotations and generics. An important goal of the Java 6 implementation was to

provide a YaRpc programming interface that will be similar to the interface of the .NET

implementation as much as possible. In fact, the .NET implementation served

as a prototype during development of the Java version, and the only differences between

the two implementations usually stemmed from the differences in the language features

and libraries available. Another goal of the Java implementation was a maximum

portability – for this reason, we chose to only use the standard libraries provided by the

Java Platform Standard Edition (java.* packages only).

Java does not provide any standardized way how to implement asynchronous

operations, such as .NET Framework does (i.e., BeginXXX and EndXXX method pair,

a delegate used to supply a callback method, and the IAsyncResult interface

as a descriptor of the asynchronous operation). We chose to adopt an equivalent model

also in the Java implementation. The main issue is that Java does not support method

delegates directly, thus user-provided method callbacks need to be supplied using

54

interfaces, which makes the code a little cumbersome. Figure 15 shows an example

of an interface that emulates a method delegate.

public interface IAsyncCallback {

 void finished(IAsyncResult asyncResult);

}

Figure 15 A method delegate in Java

The IAsyncResult interface represents a token to an asynchronous operation,

which can also hold a user-provided state object and be used to determine whether the

asynchronous operation finished. Figure 16 shows methods of the IAsyncResult interface

in Java.

public interface IAsyncResult {

 Object getAsyncState();

 boolean isCompleted();

 boolean isCompletedSynchronously();

}

Figure 16 A token to an asynchronous operation in Java

An example of implementation of an asynchronous operation - acceptance

of a connection over a socket - is shown in Figure 17. A user invokes the asynchronous

operation using the beginAccept method, where he or she provides an implementation

of IAsyncCallback interface that represents a callback that will be called after the

operation finished, and an arbitrary user-defined object. The beginAccept method returns

an instance implementing IAsyncResult interface. After the asynchronous operation is

finished, the implementation invokes the user callback, and the user invokes the

endAccept method, passing it the IAsyncResult token, in order to get information about

the result of the asynchronous operation, e.g. to obtain the newly accepted socket as in

this example.

55

private class AcceptingThread extends Thread {

 YaRpcAsyncResult _asynResult;

 ...

 @Override

 public void run()

 {

 Socket newSocket = null;

 Exception exp = null;

 try {

 newSocket = _socket.accept();

 }

 catch (IOException ex) {

 exp = ex;

 }

 finally {

 YaRpcAsyncResult sar =

 YaRpcAsyncResult.getFrom(_asynResult);

 sar.setTag(newSocket);

 if (exp != null)

 sar.failed(exp);

 else

 sar.completed();

 }

 }

}

...

public IAsyncResult beginAccept(IAsyncCallback cb, Object state)

 throws IOException

{

 YaRpcAsyncResult asynResult = new YaRpcAsyncResult(cb, state);

 AcceptingThread at = new AcceptingThread(this, asynResult);

 at.run();

 return asynResult;

}

...

public Socket endAccept(IAsyncResult asyncResult) throws Exception

{

 YaRpcAsyncResult sar = YaRpcAsyncResult.getFrom(asyncResult);

 sar.end();

 return (Socket) sar.getTag();

}

Figure 17 Implementation of an asynchronous operation in Java

56

One could ask why YaRpc provides an asynchronous interface to operations that

are internally implemented using separate threads. The reason is that the internal

implementation might be transparently changed in the future in order to support some

asynchronous I/O interfaces provided by the underlying Java platform and operating

system, and thus enable users to improve performance and scalability of their application

without any change in the code. Asynchronous I/O operations will be available in Java

7, which is announced to be released in few months, at the time of writing of this thesis

[Jsr203].

Similarly to the .NET implementation, the @YaRpcMethod annotation is used

to mark the methods that are to be made remotable. Figure 18 shows an example

of a communication interface shared between the client and server.

public interface IHelloWorld {

 @YaRpcMethod

 String getGreeting();

}

Figure 18 Definition of a communication interface in Java

Although Java provides support of generic type arguments, unlike in C#, the

generics in Java are just a language sugar and the generic type information is not

available in the runtime. However, the YaRpcStub implementation can obtain the current

object type anyway, and uses it to inspect the remotable methods. An example

of a server implementation is shown in Figure 19.

public class HelloWorldStub extends YaRpcStub

 implements IHelloWorld {

 public HelloWorldStub(String objectKey)

 {

 super(objectKey);

 }

 @Override

 public String getGreeting()

 {

 return "Hello world";

 }

}

57

...

YaRpcManager.startListening("ynp://127.0.0.1");

HelloWorldStub stub = new HelloWorldStub("key");

stub.registerToYaRpc();

Figure 19 An implementation of a server in Java

Similarly to the .NET implementation, the YaRpcProxy class simplifies

development of client applications by providing the yaRpcRemoteCall method that helps

with issuing the remote call by creation of the appropriate YaRpcRequest and

YaRpcResponse objects, based on the signature of remotable methods as discovered

by runtime code reflection. The main issue is that Java class files do not preserve names

of method parameters, and consequently, this information is not available in the

reflection. In order to support RPC protocols that need to know the parameter names, the

Java YaRpc implementation provides the @YaRpcParam annotation that can gives

a name to a method parameter.

Same as the YaRpcStub class, the YaRpcProxy class is also used without

a generic type argument; the YaRpcProxy implementation can obtain the runtime type of

the inheritor using other means. For an example of a client with a manually created

proxy object, see Figure 20.

public class HelloWorldProxy extends YaRpcProxy

 implements IHelloWorld {

 public HelloWorldProxy(IYaRpcConnection conn, String objectKey)

 {

 super(conn, objectKey);

 }

 @Override

 public String getGreeting()

 {

 return (String) yaRpcRemoteCall("GetGreeting");

 }

}

...

IYaRpcConnection conn = YaRpcManager.connect("ynp://127.0.0.1");

IHelloWorld proxy = new HelloWorldProxy(conn, "key");

String greeting = proxy.getGreeting();

58

Figure 20 Client code, with manually created proxy in Java

Java also offers means to dynamically generate byte code and to dynamically

load class files in the run-time. Unfortunately, standard Java libraries do not provide any

convenient API to generate the byte code, so a third-party library might be necessary,

such as Javassist [Javass] or Apache BCEL [Bcel]. By using dynamic byte code

generation, we could generate a particular inheritor of YaRpcProxy automatically, and

thus greatly simplify development of YaRpc client applications, as shown in Figure 21.

Note that this functionality is currently not implemented, and will be added in the future.

 IYaRpcConnection conn = YaRpcManager.connect("ynp://127.0.0.1");

 IHelloWorld proxy = (IHelloWorld)

 YaRpcProxy.generate(IHelloWorld.class,

 conn, "key");

 String greeting = proxy.getGreeting();

Figure 21 Client code, with a dynamically generated proxy in Java

The YaRpc Java implementation is available as a stand-alone JAR file called

YaRpc.jar, which does not depend on any other third-party libraries, in order to provide

maximum portability and ease of use.

59

4. Evaluation

The main goal of this thesis was to design a flexible high-performance RPC

middleware that would enable software developers to create distributed applications

with an unprecedented ease. In order to evaluate the level to which this goal has been

accomplished, we provide an example distributed application implemented with Java

RMI, .NET Remoting, SOAP web services and YaRpc middleware with the YNP

protocol. Each implementation is accompanied with a description of all the steps

an application developer needs to perform.

Unfortunately, as described in Section 5, both Java and .NET Framework

implementations of the YNP protocol are still in the state of a prototype and do not reach

a production quality, which prevented us to provide an accurate comparison of YNP

protocol performance compared to other protocols.

4.1.1. Java RMI

In this example, we present all the steps necessary to develop an example

distributed application using Java RMI. Even though a number of third-party libraries

provide a different means to implement the example application in RMI, we chose to

only use standard tools and libraries provided by the Java Development Kit (JDK) 1.6.

1. Define a communication interface to the remote object, which will be shared by

both client and server. Every interface to a remote object in RMI needs to extend

the java.rmi.Remote interface and the remotable methods need to declare that

they throw the RemoteException exception – see Figure 22.

2. Implement the class representing the remote object. This class is only available

on the server and implements the communication interface as defined in

step 1 - see Figure 23.

3. Create the server main code, which registers the remote object into rmiregistry

by calling the rebind method on the object Naming - see Figure 23.

60

4. Create the client source code, where first the security policy needs to be set up,

and then the remote object needs to be looked up in rmiregistry by calling the

lookup method on the object Naming - see Figure 24.

5. Run the rmiregistry utility (which is a part of JDK) on both client and server,

in order to set up the RMI registry on port 1099.

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface IRObject extends Remote {

 void sayHelloWorld(String clientName) throws RemoteException;

 long getSum(int numA, int numB) throws RemoteException;

 List<String> reverseArray(List<String> inputArray)

 throws RemoteException;

}

Figure 22 Java RMI communication interface

public class RObjectImpl extends UnicastRemoteObject implements IRObject {

 private static final long serialVersionUID = 1L;

 public RObjectImpl() throws RemoteException { super(); }

 public void sayHelloWorld(String clientName) throws RemoteException

 {

 try {

 System.out.println(

 String.format("Hellow world from %s", clientName));

 }

 catch (Exception e) {

 throw new RemoteException("Error in sayHelloWorld", e);

 }

 }

 ...

public static void main(String[] args) {

 try

 {

 String codebase = "file:/" +

 new File("").getAbsolutePath() + "/";

 codebase = codebase.replaceAll(" ", "%20");

 System.setProperty("java.rmi.server.codebase", codebase);

 String host = args.length > 0 ? args[0] : "localhost";

 RObjectImpl remoteObject = new RObjectImpl();

61

 Naming.rebind("//" + host + "/RemoteTestObject", remoteObject);

 System.out.println("Remote object is registred in RMIregistry.");

 ...

Figure 23 Java RMI server code

public static void main(String[] args) {

 try

 {

 System.setProperty("java.security.policy", "rmi.policy");

 if (System.getSecurityManager() == null)

 System.setSecurityManager(new RMISecurityManager());

 String host = args.length > 0 ? args[0] : "localhost";

 IRObject remoteObject = (IRObject) Naming.lookup("//"

 + host + "/RemoteTestObject");

 remoteObject.sayHelloWorld("Client");

 ...

Figure 24 Java RMI client code

4.1.2. .NET Remoting

In this section we present an implementation of the equivalent distributed

application as in Section 4.1.1, in C# language and using .NET Remoting for underlying

communication. In general, .NET Framework provides a fairly easy and straightforward

way to create a simple distributed application, however, things get more complicated

if a developer wants to get more control over configuration of the remoting

infrastructure. In order to create the example application, the following steps need to be

performed:

1. Create an implementation of the remotable object in an assembly, which will be

referenced by both client and server. The remote object has to extend the

MarshalByRefObject class (which is “the base class for objects that

communicate across application domain boundaries by exchanging messages

using a proxy”, see [Msdn]) - see Figure 25.

2. Create a server code which registers the remote object in the .NET Remoting

repository - see Figure 26.

62

3. Modify a server configuration file that specifies the type of the transport channel

(TCP or HTTP), the mode of a calling behavior of object and the URI where the

remote object will be made available – see Figure 27.

4. Create the client code, which loads the configuration from a file, and uses that

information to create a proxy to the remotable object – see Figure 28.

5. Define the client configuration file, to specify the URI of the remotable object –

see Figure 29.

namespace RObjects

{

 public class RObject : MarshalByRefObject

 {

 public void SayHelloWorld(string clientName)

 {

 Console.Out.WriteLine("Hello world from " + clientName);

 }

 public long GetSum(int a, int b)

 {

 return ((long)a + (long)b);

 }

 public List<string> ReverseArray(List<string> array)

 {

 array.Reverse();

 return (array);

 }

 }

}

Figure 25 .NET Remoting remote object implementation

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

namespace Server

{

 class Server

 {

 static void Main(string[] args)

 {

 RemotingConfiguration.Configure("server.config", false);

 Console.WriteLine("Server start listening");

 Console.ReadLine();

 }

 }

}

Figure 26 .NET Remoting server code

63

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.runtime.remoting>

 <application>

 <service>

 <wellknown mode="Singleton"

 type="RObjects.RObject, RObject"

 objectUri="RObject.rem" />

 </service>

 <channels>

 <channel ref="http" port="8989"/>

 <!--if you want tcp then port would be =8080-->

 </channels>

 </application>

 </system.runtime.remoting>

</configuration>

Figure 27 .NET Remoting server configuration file

using System.Runtime.Remoting;

using RObjects;

namespace Client

{

 class Client

 {

 static void Main(string[] args)

 {

 try

 {

 RemotingConfiguration.Configure(

 "Client.exe.config", false);

 RObject remoteObject = new RObject();

 remoteObject.SayHelloWorld("Client");

 ...

Figure 28 .NET Remoting client code

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.runtime.remoting>

 <application>

 <client>

 <wellknown type="RObjects.RObject, RObject"

 url="http://localhost:8989/RObject.rem" />

 </client>

 </application>

 </system.runtime.remoting>

</configuration>

Figure 29 .NET Remoting client configuration file

64

4.1.3. SOAP Web Services with C#

In this section we present the example application developed using a web

services created in C# using Microsoft Visual Studio IDE, which allows programmers to

define web methods without manually creating a WSDL definition file. The creation of

the web services application comprised the following steps:

1. In order to develop the server, create a new web services project in Microsoft

Visual Studio IDE. The wizard will automatically generate the basic code.

2. Define methods of the web service – see Figure 30.

3. Deploy the web service to a web server, such as Internet Information Services

(IIS) server.

4. In order to create the client, obtain the WSDL definition of the web service from

the server, and use the wsdl.exe tool to generate a proxy code to access the web

service – see Figure 31.

5. Implement the client code, using the generated proxy – see Figure 32.

[WebService(Namespace = "http://yarpc.example.org/")]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

[ToolboxItem(false)]

public class WSexample: System.Web.Services.WebService

{

 [WebMethod]

 public string SayHelloWorld(string clientName)

 {

 return ("Hello World from " + clientName);

 }

 [WebMethod]

 public long GetSum(int a, int b)

 {

 return ((long)a + (long)b);

 }

 [WebMethod]

 public List<string> ReverseArray(List<string> array)

 {

 array.Reverse();

 return (array);

 }

}

Figure 30 Web service server code in C#

65

 // This source code was auto-generated by wsdl utility

 [System.Web.Services.Protocols.

 SoapDocumentMethodAttribute("http://yarpc.example.org/SayHelloWorld",

 RequestNamespace="http://yarpc.example.org/",

 ResponseNamespace="http://yarpc.example.org/",

 Use=System.Web.Services.Description.SoapBindingUse.Literal,

 ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]

 public string SayHelloWorld(string clientName) {

 object[] results = this.Invoke("SayHelloWorld", new object[] {

 clientName});

 return ((string)(results[0]));

 }

Figure 31 Auto-generated web service proxy in C#

 WSexample webService = new WSexample();

 string greetings = webService.SayHelloWorld("C# client");

 long sum = webService.GetSum(5, 8);

Figure 32 Web service client code in C#

Note that the creation of distributed applications using web services in C# is

greatly simplified thanks to the tools available in Microsoft Visual Studio; manual

creation of both server and client web service is a much more complicated and error-

prone task.

4.1.4. SOAP Web Services with Java

The process of development of web services server and client in Java is very

similar to the development process in C#; a lot of the application code can be generated

using wizards available in IDEs such as Netbeans [Nbide]. The development process

consists of the following steps:

1. In order to develop the server, create a new web services project in Netbeans.

The wizard will automatically generate the basic code.

2. Define methods of the web service – see Figure 33. Netbeans offers another

wizard to help a developer to get the annotations right.

3. Deploy the web service to a web server, such as Apache Tomcat server.

4. In order to create the client, obtain the WSDL definition of the web service from

the server, and use the Java API for XML Web Services (jax-ws) [Jaxws] to

generate a proxy code to access the web service – see Figure 34.

66

5. Implement the client code, using the generated proxy methods – see Figure 35.

@WebService()

public class WSExample {

 @WebMethod(operationName = "sayHelloWorld")

 public String sayHelloWorld(@WebParam(name = "clientName")

 String clientName) {

 return "WSJava: hello world from: " + clientName;

 }

 @WebMethod(operationName = "getSum")

 public long getSum(@WebParam(name = "a")

 int a, @WebParam(name = "b")

 int b) {

 return ((long) a + (long) b);

 }

 @WebMethod(operationName = "reverseArray")

 public List<String> reverseArray(@WebParam(name = "array")

 List<String> array) {

 Collections.reverse(array);

 return (array);

 }

}

Figure 33 Web service server code in Java

 private static String sayHelloWorld(String clientName)

 {

 javaclientws.WSexample service = new javaclientws.WSexample();

 javaclientws.WSexampleSoap port = service.getWSexampleSoap();

 return port.sayHelloWorld(clientName);

 }

 private static long getSum(int a, int b)

 {

 javaclientws.WSexample service = new javaclientws.WSexample();

 javaclientws.WSexampleSoap port = service.getWSexampleSoap();

 return port.getSum(a, b);

 }

Figure 34 Web service auto-generated proxy methods in Java

 public static void main(String[] args)

 {

 String sayHelloWorld = sayHelloWorld("Java client");

 long sum = getSum(10, 15);

 ...

Figure 35 Web service client code in Java

67

4.1.5. YaRpc with YNP in C#

In this section we show how to implement an equivalent distributed application

with YaRpc middleware, YNP protocol, and C# programming language. The

development process consists of the following steps:

1. Define the communication interface, shared by both client and server – see

Figure 36.

2. Implement the methods of the communication interface on the server, and

activate the server – see Figure 37.

3. Create the client code, using a runtime-generated proxy – see Figure 38.

 public interface IRObject

 {

 [YaRpcMethod] string SayHelloWorld(string clientName);

 [YaRpcMethod] long GetSum(int a, int b);

 [YaRpcMethod] List<string> ReverseArray(List<string> array);

 }

Figure 36 YaRpc+YNP communication interface definition in C#

 public class RObjectStub : YaRpcStub<IRObject>, IRObject

 {

 public RObjectStub(string objectKey) : base(objectKey)

 { }

 public string SayHelloWorld(string clientName)

 {

 return "Hello world from " + clientName;

 }

 public long GetSum(int a, int b)

 {

 return (long) a + (long) b;

 }

 public string[] ReverseArray(string[] array)

 {

 Array.Reverse(array);

 return array;

 }

 }

 ...

 YaRpcManager.StartListening("ynp://127.0.0.1:1234");

 RObjectStub stub = new RObjectStub("robject");

 stub.RegisterToYaRpc();

 ...

Figure 37 YaRpc+YNP server code in C#

68

 ...

 IYaRpcConnection con = YaRpcManager.Connect("ynp://127.0.0.1:1234");

 IRObject proxy = YaRpcProxy<IRObject>.Generate(con, "robject");

 string greeting = proxy.SayHelloWorld("YaRpc C# client");

 long sum = proxy.GetSum(5, 8);

 ...

Figure 38 YaRpc+YNP client code in C#

The Java equivalent of the example application looks very much the same

as the C# version, so we skipped it. Clearly, the development of the application using

YaRpc only requires three trivial steps that can easily be performed manually, without

need of any external tool or wizard. In our opinion, YaRpc enables developers to create

new distributed applications rapidly, even if they have limited or no knowledge of the

underlying infrastructure or distributed computing in general, which is not the case with

the other RPC technologies presented in this section.

69

5. Conclusion & Future Work

In this thesis we have presented a specification of an extensible RPC

middleware, which can support virtually any network transport layer and RPC protocol.

Additionally, we have designed a new light-weight communication protocol, the YaRpc

Native Protocol (YNP), which is an interesting alternative to existing RPC protocols

thanks to features such as high performance due to a binary message format,

server-initiated callbacks, customizable serialization, asymmetric serialization and

nested method calls. As a proof of concept, we provide an implementation of the YaRpc

middleware specification in both Microsoft .NET Framework (with C#) and Java

programming languages, including the support of the YNP protocol. The

implementations try to bring high-performance distributed computing to the fingertips

of application developers, by utilizing advanced data structures and capabilities of the

underlying operating systems, while still offering a simple to use application

programming interface (API).

The main contribution of the thesis is a proof that an RPC middleware can be

made simple and generally usable, and still offer a rich set of features. We have shown

how the capabilities of modern high-level programming languages can be leveraged

to encapsulate a complex functionality into an easy-to-use API. Also, to the best of our

knowledge, YaRpc is the only middleware that aims to fully support a wide range

of existing RPC protocols under a single API. Some of the features provided by YNP,

such as nested method calls or asymmetric serialization, are not readily available in any

other RPC middleware.

We need to note that both implementations of the YNP protocol in C# and Java

are currently in a state of a prototype, and cannot be used in a production environment

as is, without additional testing and debugging. We believe, however, that in

forthcoming weeks both implementations will reach a sufficient level of maturity that

will allow us to release the source code to the public. We also believe that soon after the

release YaRpc will attract an open source development community that will drive

further extension of YaRpc with other RPC protocols and features. If we succeed in this

70

effort, YaRpc has a potential to become a popular tool used by distributed application

developers world-wide.

In a longer term, besides adding support for new transport layers and RPC

protocols, we plan to introduce a range of unique features such as connection pooling

and transparent network failover. After a final release of Java 7 platform we want

to provide a YaRpc implementation for Java that would take advantage of the new

asynchronous I/O API provided by the JSR 203 [Jsr203], and thus enabled developers

to create high-performance distributed applications in Java with a little effort. Also,

a new version of the YNP protocol is being planned, that would allow serialization

of remotable object references by generating appropriate proxy objects, and intelligent

handling of proxy-to-proxy chains.

71

References & Annexes

[Bcel] The Byte Code Engineering Library Project, http://jakarta.apache.org/bcel/

[Bhkk06] J.W. Berry, B.A. Hendrickson, S. Kahan, P. Konecny: Graph Software

Development and Performance on the MTA-2 and Eldorado, 2006

[Bir83] A.D. Birrell, B.J Nelson: Implementing Remote Procedure Calls, XEROX

CSL-83-7, 1983

[Dce80] D. Cohen: On Holy Wars and a Plea for Peace, IEN 137, 1980

[Dcom98] The Open Group (1998): The COM/DCOM Reference, Documentation for

ActiveX Core Technology

[Etch08] The Etch Project, https://cwiki.apache.org/ETCH/

[Ft07] The Thrift Project, http://thrift.apache.org/

[Gpb08] The Google Protocol Buffers Project, http://code.google.com/p/protobuf/

[Java06] Sun Microsystems, Inc.: JavaTM Platform, Standard Edition 6, API

Specification, 2006

[Javass] The Java Programming Assistant Project, http://www.javassist.org/

[Jaxws] The JAX-WS Project, http://jax-ws.java.net/

[Jc07] J. Čurn: Distribution for Open Modeling Interface and Environment,

Master thesis, MFF UK, 2007

[Jon02] A. Jones, J. Ohlund: Network Programming for Microsoft Windows,

Second Edition, 2002

[Jsr203] Java Specification Requests: More New I/O APIs for the JavaTM Platform

("NIO.2"), http://jcp.org/en/jsr/, 2007

[Mono] The MONO Project, http://www.mono-project.com/

[Msdn] Microsoft Corporation: The Microsoft Developer Network library,

http://msdn.microsoft.com/

[Msil00] Microsoft Corporation: MSIL Instruction Set Specification, 2000

[Mwgs07] M. Wilson, Gathering Scattered I/O, 2007

[Net07] Microsoft Corporation: .NET Framework Reference, 2007

[Omg04] Object Management Group, Inc.: Common Object Request Broker

Architecture: Core Specification, 2004

http://jakarta.apache.org/bcel/
https://cwiki.apache.org/ETCH/
http://thrift.apache.org/
http://code.google.com/p/protobuf/
http://www.javassist.org/
http://jax-ws.java.net/
http://jcp.org/en/jsr/
http://www.mono-project.com/
http://msdn.microsoft.com/

72

[Rest07] L. Richardson, S. Ruby: RESTful Web Services, Web services for the real

world, O'Reilly Media, 2007

[Rfc1057] Sun Microsystems, Inc.: Remote Procedure Call, Version 2, 1988

[Rfc1831] R. Srinivasan: RPC: Remote Procedure Call Protocol Specification Version

2, Sun Microsystems, Inc., 1995

[Rfc707] J. E. White: A High-Level Framework for Network-Based Resource

Sharing, Stanford Research Institute, 1976

[Rfc793] J.Postel: Transmission Control Protocol, USC/Information Sciences

Institute, 1981

[Ssl94] Hickman, Kipp: The SSL Protocol, Netscape Communications Corp., 1994

[Web04] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, D.

Orchard: Web Services Architecture, W3C Working Group Note, 2004

[Win07] Microsoft Corporation: Windows API Reference, 2007

[Ws97] Microsoft Corporation: Windows Sockets 2 API specification, 1997

[Xml99] Dave Winer: XML-RPC Specification, 1999

73

List of Tables

Table 1 RPC technologies comparison ... 19

Table 2 YaRpcManager class methods ... 25

Table 3 IYaRpcConnection interface methods .. 27

Table 4 YaRpcRequest class properties... 28

Table 5 YaRpcResponse class properties .. 29

Table 6 IYaRpcTransport interface methods .. 30

Table 7 IYaRpcRemotable interface methods ... 32

Table 8 IYaRpcWorker interface methods .. 33

Table 9 YaRpcSmartStream class methods ... 36

Table 10 YaRpcWriter class methods ... 38

Table 11 YaRpcReader class methods .. 39

Table 12 YaRpcStub class methods... 41

Table 13 YaRpcProxy class methods .. 41

Table 14 Abstract methods of the YaRpcConnectionBase class 42

Table 15 YNP protocol message header ... 43

Table 16 YNP protocol REQUEST message body... 44

Table 17 YNP protocol RESPONSE message body... 44

Table 18 YNP protocol EXCEPTION message body .. 44

Table 19 Serialized value signature byte .. 45

Table 20 Signature type code .. 46

Table 21 The YaRpcNativeSerializer class methods .. 47

74

List of Figures

Figure 1 Local procedure call vs. remote procedure call ... 5

Figure 2 CORBA architecture .. 8

Figure 3 Microsoft .NET Remoting architecture ... 10

Figure 4 Java RMI architecture .. 11

Figure 5 Web services architecture .. 13

Figure 6 XML-RPC architecture .. 15

Figure 7 Etch architecture .. 16

Figure 8 Thrift architecture .. 18

Figure 9 YaRpc architecture .. 23

Figure 10 Causality of remote method calls in YNP (Source: [Jc07]) 49

Figure 11 A communication interface, shared by both client and server 51

Figure 12 An implementation of a server in .NET ... 51

Figure 13 Client code, with a manually created proxy in .NET 52

Figure 14 Client code, with a dynamically generated proxy in .NET 53

Figure 15 A method delegate in Java ... 54

Figure 16 A token to an asynchronous operation in Java ... 54

Figure 17 Implementation of an asynchronous operation in Java 55

Figure 18 Definition of a communication interface in Java 56

Figure 19 An implementation of a server in Java ... 57

Figure 20 Client code, with manually created proxy in Java 58

Figure 21 Client code, with a dynamically generated proxy in Java 58

Figure 22 Java RMI communication interface ... 60

Figure 23 Java RMI server code ... 61

Figure 24 Java RMI client code .. 61

Figure 25 .NET Remoting remote object implementation ... 62

Figure 26 .NET Remoting server code ... 62

Figure 27 .NET Remoting server configuration file .. 63

Figure 28 .NET Remoting client code .. 63

Figure 29 .NET Remoting client configuration file ... 63

75

Figure 30 Web service server code in C# ... 64

Figure 31 Auto-generated web service proxy in C# ... 65

Figure 32 Web service client code in C# .. 65

Figure 33 Web service server code in Java .. 66

Figure 34 Web service auto-generated proxy methods in Java 66

Figure 35 Web service client code in Java ... 66

Figure 36 YaRpc+YNP communication interface definition in C# 67

Figure 37 YaRpc+YNP server code in C# ... 67

Figure 38 YaRpc+YNP client code in C# .. 68

76

Definitions and Abbreviations

API Application Programming Interface

ASCII American Standard Code for Information Interchange

COM Component Object Model

CORBA Common Object Request Broker Architecture

DCOM Distributed Component Object Model

DoS Denial of Service attack

GIOP General Inter-ORB Protocol

GUI Graphical user interface

GUID Globally Unique Identifier

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

I/O Input/Output

IDE Integrated development environment

IDL Interface description language

IEEE Institute of Electrical and Electronics Engineers

IIOP Internet Inter-ORB Protocol

J2EE Java 2 Enterprise Edition

JDK Java Development Kit

JRMP Java Remote Method Protocol

JSON JavaScript Object Notation

JVM Java Virtual Machine

MSIL Microsoft Intermediate Language

MVC Model View Controller

NFS Network File System

OMA Object Management Architecture

OMG Object Management Group

ONC Open Network Computing

ORB Object Request Broker

RMI Remote Method Invocation

77

RPC Remote Procedure Call

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer

STA Single Thread Apartment model

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol / Internet Protocol

TIDL Thrift Interface Description Language

UCS Universal Character Set

UDDI Universal Description, Discovery and Integration

UDP User Datagram Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

UTF-8 UCS Transformation Format

WSIL Web Services Inspection Language

XML Extensible Markup Language

YaRpc Yet Another Remote Procedure Call

YNP YaRpc Native Protocol

