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Abstrakt: 

Během posledních tří desetiletí se vzdálené volání procedur (RPC) stalo 

oblíbeným způsobem pro komunikaci mezi počítači a procesy, využívaným v mnoha 

různých distribuovaných systémech. I přes velké množství RPC protokolů  

a implementací vyvinutých během těchto let, ani jeden systém nenabízí veškeré podstatné 

funkce a zároveň uživatelsky přívětivé rozhraní pro programování aplikací. 

V této práci představíme Yet Another Remote Procedure Call – YaRpc – 

specifikaci flexibilního a uživatelsky přívětivého middleware, který nabízí pokročilé 

funkce jako např. rozšiřitelnost a nezávislost na transportním či komunikačním 

protokolu, zpětná volání a konfigurovatelnou obsluhu volání metod. Následně popíšeme 

YaRpc Native Protocol (YNP), což je nový, minimalistický a výkonný RPC protokol 

s bohatou množinou funkcí. Dále představíme nativní implementaci YaRpc standardu  

a YNP protokolu v Javě a .NET Frameworku, a porovnáme jejich použití vůči 

protokolům jako je Java RMI, .NET Remoting a SOAP webové služby. 
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Abstract:  

Over the last three decades, Remote Procedure Call (RPC) has become  

a popular inter-computer and inter-process communication paradigm widely used by  

a variety of interconnected computer systems. Even though a number of RPC protocols 

and implementations evolved over those years, no single system offers a significant set 

of features, while providing an easy-to-use application programming interface. 

In this thesis, we present Yet Another Remote Procedure Call – YaRpc,  

a specification of a flexible and programmer friendly middleware that offers advanced 

features such as pluggable transports and protocols, callbacks, and configurable 

method dispatch. Additionally, we define YaRpc Native Protocol (YNP), a new  

light-weight high-performance RPC protocol with a rich set of features. We provide  

a native implementation of both YaRpc middleware and YNP protocol for Java  

and .NET Framework, and compare its usability with Java RMI, .NET Remoting  

and SOAP web services. 

 

Keywords: YaRpc, remote procedure call, distributed system  

mailto:hnetynka@d3s.mff.cuni.cz


 

Table of Contents 

Introduction ......................................................................................................................... 1 

1. State of the Art ............................................................................................................ 3 

1.1. History of RPC .................................................................................................... 3 

1.2. How RPC Works ................................................................................................. 5 

1.3. Why RPC ............................................................................................................. 6 

1.4. Review of Existing Relevant RPC Technologies ................................................ 7 

1.4.1. CORBA ........................................................................................................ 7 

1.4.2. .NET Remoting ............................................................................................ 9 

1.4.3. Java Remote Method Invocation ................................................................ 10 

1.4.4. SOAP/WSDL ............................................................................................. 12 

1.4.5. XML-RPC .................................................................................................. 14 

1.4.6. REST .......................................................................................................... 15 

1.5. Emerging RPC Protocols ................................................................................... 15 

1.5.1. Etch ............................................................................................................ 16 

1.5.2. Protocol Buffers ......................................................................................... 17 

1.5.3. Thrift .......................................................................................................... 18 

1.6. RPC Protocols Comparison ............................................................................... 19 

2. Design ....................................................................................................................... 20 

2.1. Core Services ..................................................................................................... 24 

2.1.1. YaRpcManager .......................................................................................... 24 

2.1.2. IYaRpcConnection ..................................................................................... 26 

2.1.3. YaRpcRequest ............................................................................................ 27 

2.1.4. YaRpcResponse ......................................................................................... 28 

2.1.5. IYaRpcTransport ........................................................................................ 29 

2.1.6. IYaRpcRemotable ...................................................................................... 31 

2.1.7. IYaRpcWorker ........................................................................................... 33 

2.2. Protocol Plug-ins ............................................................................................... 33 

2.3. Serialization ....................................................................................................... 35 

2.3.1. YaRpcSmartStream .................................................................................... 35 



 

2.3.2. YaRpcWriter .............................................................................................. 37 

2.3.3. YaRpcReader ............................................................................................. 38 

2.3.4. Z-Encoding ................................................................................................. 39 

2.4. Utility Services .................................................................................................. 40 

2.4.1. YaRpcStub ................................................................................................. 40 

2.4.2. YaRpcProxy ............................................................................................... 41 

2.4.3. YaRpcConnectionBase .............................................................................. 42 

2.5. YaRpc Native Protocol (YNP) .......................................................................... 42 

2.5.1. Message Format ......................................................................................... 43 

2.5.2. Serialization................................................................................................ 45 

2.5.3. Asymmetric Serialization ........................................................................... 47 

2.5.4. Nested Method Calls .................................................................................. 47 

3. Implementation ......................................................................................................... 50 

3.1. .NET Framework 2.0 ......................................................................................... 50 

3.2. Java 6 ................................................................................................................. 53 

4. Evaluation ................................................................................................................. 59 

4.1.1. Java RMI .................................................................................................... 59 

4.1.2. .NET Remoting .......................................................................................... 61 

4.1.3. SOAP Web Services with C# ..................................................................... 64 

4.1.4. SOAP Web Services with Java .................................................................. 65 

4.1.5. YaRpc with YNP in C# .............................................................................. 67 

5. Conclusion & Future Work ....................................................................................... 69 

References & Annexes ...................................................................................................... 71 

List of Tables..................................................................................................................... 73 

List of Figures ................................................................................................................... 74 

Definitions and Abbreviations .......................................................................................... 76 

 

 

 

  



1 

Introduction 

The history of Remote Procedure Call (RPC) can be tracked as far as 1976, when 

a first official RPC proposal has been described in RFC 707 [Rfc707]. In simple terms, 

RPC enables software developers to use an elementary programming construct –  

a procedure call – to perform a task as complex as communication with a remote 

computer system over a network link. Since 1976, dozens of different RPC 

communication protocols have been proposed, hundreds of implementations of those 

protocols developed, and many thousands applications created and deployed in all areas 

of the industry. 

The RPC is intrinsically a client-server communication paradigm; one side,  

a client, issues a procedure call, which is dispatched by another side – a server, while 

possibly returning a response back to the client. The popularity of RPC in general stems 

from the simplicity of its use. A single procedure call on a client side encapsulates  

a sequence of tasks which the programmer otherwise would have to perform, such  

a serialization of the procedure parameters, formatting and submission of the message 

over the network using a specific protocol, receiving a response message from the 

server, and deserialization of the response in order to return a value from the procedure. 

Similarly, on the server side, the RPC infrastructure is responsible for receiving 

incoming network messages, deserialization of them into procedure call requests, 

mapping the requests to procedures registered by a programmer of the server system 

(aka stubs), and serialization and submission of the procedure’s return value back to the 

client. 

The existing RPC protocols vary in a number of factors, such as the 

representation of messages (text or binary), transport layer (TCP, UDP, HTTP, 

HTTPS…), supported data types (simple or complex), text encoding (ASCII, UTF-8…), 

byte ordering (little-endian or big-endian), encryption, or procedure invocation mode 

(unidirectional, bidirectional). A single RPC protocol typically has a number of 

implementations for various programming languages and platforms, offering different 

sets of features, runtime performance, and varying levels of mutual compatibility. Even 
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though the number of alternatives seems to be quite high, making a right selection from 

the zoo of RPC protocols and implementations for a particular application is not  

a simple task. Very often the constraints imposed by RPC protocols, or (un)availability 

or (in)appropriateness of a particular RPC implementation for a particular programming 

environment or operating system, forces programmers to change design of their 

applications, or even dictates a selection of another programming environment. 

Moreover, the implementations of feature-rich protocols tend to be too heavy-weight, 

with everything but easy-to-use tools and application programmable interface (API). 

The main contribution of this thesis is to demonstrate that it is possible to support 

feature-rich high-performance RPC protocols with an easy-to-use API. We present  

Yet Another Remote Procedure Call (YaRpc), a flexible framework that aids in the 

development of communicating applications. YaRpc is not just another RPC protocol; it 

is rather an extensible middleware that allows application developers to select  

a combination of a transport layer (e.g., TCP, UDP, HTTP, HTTPS, shared-memory) 

and communication protocol (e.g., SOAP, XML-RPC, CORBA) of their preference for  

a particular task. As a proof of concept, we provide two native implementations of the 

YaRpc specification, for Java and .NET Framework platforms. Additionally, we define 

the YaRpc Native Protocol (YNP), a new light-weight high-performance binary RPC 

protocol that provides a large number of features such as server-initiated callbacks, 

customizable serialization and nested method calls. The core of the YaRpc framework is 

protocol-independent, and provides low-level services to particular protocol 

implementations, such as advanced dispatch threading control, high-performance and 

customizable serialization, asynchronous method invocation and dispatch, or interface 

definition based on reflection.  

The text of the thesis is organized as follows: Section 1 describes basic concepts 

of RPC and reviews the state-of-the-art protocols and implementations. Section 2 

describes the architecture of the YaRpc middleware and justifies the design decisions 

behind it. Section 3 then details particularities of Java and .NET Framework 

implementations. In Section 4, we compare usage of YaRpc with YNP protocol to Java 

RMI, .NET Remoting and SOAP web services. Section 5 concludes the main findings of 

this research and outlines the future work. 
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1. State of the Art 

This section provides an overview of existing Remote Procedure Call (RPC) 

protocols and describes advantages and disadvantages of the popular ones. We provide  

a brief introduction to the fundamentals of RPC operation, followed by an analysis  

of some well established protocols as well as recently emerged ones. In the conclusion 

of this section, we show differences between the described protocols to demonstrate the 

specific values the new proposed middleware and protocol described and implemented 

within this work – the YaRpc and YaRpc Native Protocol (YNP) – brings into the 

equation. 

1.1. History of RPC 

RPC stands for Remote Procedure Call. As such it does not refer to any 

particular product, protocol or a single standard but rather describes a common design or 

architectural pattern in the distributed computing universe. The quintessential operation 

behind this term is the ability to execute functions/procedures on remote computers via 

some network connection or eventually in other address spaces on the same computer. 

An implementation of such a mechanism has to address various specific needs and 

aspects such as transfer of the computational context of an invoked procedure, 

interoperability considerations etc. in order to make the implementation suitable for  

a specific desired application. RPC thus makes it possible to physically (or 

architecturally) separate entities contributing to the same computational task, linking it 

closely to the field of distributed systems. RPC has evolved significantly over time 

keeping up with advent of new concepts and paradigms in areas like programming, 

computing or application architecture. 

At the beginning of the computer era the most common way of computing was 

bound to mainframe nodes accessed via terminals. The boom of personal computers 

brought the need of gradually more sophisticated user interfaces and the application 

model changed. While previous programs needed a mainframe for their entire operation, 

the new model of client/server architecture allowed for transferring part of the execution 
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to users' desktops and thus drove improvement of user interfaces – effectively forming  

a two-tier architecture. 

While the two-tier model is still being used by many applications, the 

requirements for efficient software development, manageability, scalability, 

interoperability and robustness motivated the efforts to create new more sophisticated 

platforms by introducing additional application layers (Multi Tier Architectures), 

breaking applications into components (Component Architectures), facilitating 

applications by thoughtful development and subsequent composition of services (Service 

Oriented Architectures) or indeed composition of predefined canonical hosted services 

as in the case of Cloud Computing. All of these concepts are built around ways how to 

efficiently communicate between the tiers, services or components and how to distribute 

and manage these services across various computational facilities for a greater flexibility 

– making a suitable RPC mechanism a must. 

Another important mover in RPC evolution was the nearly universal adoption of 

Object Oriented Design paradigms across the computer society. Instead of only 

distinguishing between the layers, this model enables to represent atomic application 

abstractions as objects. Thus an object or a set of objects may represent an application 

layer, provide a service interface or form a single system component. Again, as these 

objects can be distributed, there clearly need to be means to remotely discover and 

invoke other objects’ methods. The inter-object RPC mechanism is often referred to as 

Remote Method Invocation (RMI), or Remote Method Call. 

First RPC techniques were investigated as early as 1976 by B. J. Nelson at 

XEROX PARC [Bir83]. Sun Microsystems popularized the technique with its SunSoft's 

ONC (Open Network Computing) remote procedure calls (SunRPCs) [Rfc1831], which 

was one of the first commercial implementations of RPC. In addition, source code for 

ONC RPC has been available since 1988 as RFC 1057 [Rfc1057]. For example, millions 

of systems running Network File System (NFS) use the ONC RPC libraries. In 1989 the 

Object Management Group (OMG) organization has been founded. OMG defined 

general system architecture for object-oriented applications based on the specification of 

the interface, and the standard has been published as Object Management Architecture 

(OMA). 



5 

1.2. How RPC Works 

In this section we discuss fundamentals of the RPC operation. Figure 1 depicts 

the basic difference between a local procedure call and a remote procedure call. 

 

 

Figure 1 Local procedure call vs. remote procedure call 

In a local procedure call, the execution context can easily be shared between the 

caller and the called code or simply passed through simple memory or register 

operations. In a remote procedure call, however, the context has to be explicitly 

transferred to called execution environment and the resulting context after the operation 

execution then needs to be pushed back to the client – potentially across the network. 

Such a transfer is usually described in the following steps, which effectively represent 

the basic RPC algorithm: 

 

1. Serialization: encoding of input parameters and identification of the procedure 

into a pre-defined format for transfer. 

2. Transfer: transfer of the serialized data to the remote server via a network 

transport. 

3. Deserialization: decoding of the input parameters and identification of the called 

procedure. 

4. Dispatch: call of the local procedure. 

5. Serialization: encoding of the output parameters from the called procedure for 

transfer. 

6. Transfer: transfer of the serialized data back to the client via a network transport. 



6 

7. Deserialization: decoding of the output parameters, and return of the values to 

the caller. 

The format of the network messages, and particularities of the communication 

mechanism, is defined by an RPC protocol. Serialization (sometimes called 

marshalling), deserialization (unmarshalling) and data transfer routines are usually 

wrapped into objects denoted as stub objects (proxy objects, skeletons – the terminology 

is somewhat scattered). The way this helper code is generated – and indeed the time 

when it happens, the effort required by the developer to make it happen (level of 

automation), the level of control or finesse with which the two interconnected systems 

can interact, the various levels of support for various programming languages and 

architectures – is specific for specific RPC protocols and their implementations. 

There is no “best” RPC mechanism – there are many typical tradeoffs one should 

consider when choosing the right RPC protocol and implementation for a particular 

application. The protocol with most features might not be the easiest to learn and use 

efficiently and comfortably, the most robust protocol might not be the fastest etc. 

Surprisingly enough, in many situation, all the major protocols seem suboptimal when 

considering all the options modern programming languages can provide – which is 

essentially the basic idea behind this thesis.  

1.3. Why RPC 

The typical advantages of adopting some RPC mechanism for inter-component 

communication are: 

 

1. Execution location transparency – the called object may reside on a different 

computer without this fact being of any concern to the programmer. 

2. Programming to interfaces – it is a good practice to hide the implementation 

behind a well-defined interface, and RPC mechanisms usually do this. 

3. Platform independence – many RPC mechanisms provide implementations for 

various platforms, enabling efficient means of mixing different architectures into 

a single distributed system. This might provide a welcome freedom in integrating 
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legacy or third-party components while keeping the design of a system clean and 

simple. 

4. Scalability/distribution potential – with execution location transparency it is easy 

to see how a system can be effectively distributed over a number of nodes. This 

makes it possible to increase the aggregate computational power of the system by 

increasing the number of nodes and potentially also exploiting routing of 

requests across nodes to balance the load of individual nodes. 

1.4. Review of Existing Relevant RPC Technologies 

As noted earlier, there is large number of RPC protocols and implementations – 

way more than we can cover within the scope of this work. However, we argue that we 

cover the most relevant RPC protocols for the purposes of this thesis and thus that the 

foundations for a further work are sound. 

1.4.1. CORBA 

CORBA, which stands for Common Object Request Broker Architecture, has 

emerged in 1991 and is maintained and developed within the OMG consortium 

[Omg04]. At the core of the architecture is the Object Request Broker (ORB) 

specification defining the basic rules for marshalling and unmarshalling phases of RPC, 

and the Interface Description Language (IDL) which allows for defining component 

interfaces in a platform/implementation independent way. Based upon IDL definitions 

the ORB implementation (specific for a given target platform) can generate the 

stub/proxy code for that particular platform, which can be easily integrated into existing 

application logic. A component providing such CORBA powered interfaces can then be 

called from other CORBA-enabled components regardless of their individual 

architectures and the fact that they communicate over the network. The ORB provides 

all necessary functionality for this to happen in a transparent manner.  

In 1995, an important milestone was established with the CORBA Specification 

version 2.0. The rules for communication between ORB servers were made part of the 

standard itself, which further boosted the interoperability potential. The abstract  

inter-ORB protocol is called General Inter-ORB Protocol (GIOP). The most 
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fundamental implementation of GIOP protocol is based on TCP/IP network stack and is 

referred to as Internet Inter-Orb Protocol (IIOP). 

During the further development, a number of extensions and generalizations has 

been defined, including other GIOP implementations and bridges. A basic CORBA 

architecture is depicted in Figure 2. 

 

 

Figure 2 CORBA architecture 

In order to make a request, the client can use the Dynamic Invocation interface 

(which is a uniform interface to call any CORBA component at the price of more 

cumbersome coding and more space for possible error). For more static integrations,  

a stub based on the target IDL definition can be generated in advance - this makes the 

calling trivial, but requires the stub-generation intermediate phase and thus makes the 

calling process less dynamic. The object implementation then receives the request 

through its own IDL generated skeleton (or stub, proxy…) or through a dynamic 

skeleton in symmetrical fashion.  

CORBA is considered a very powerful and fully fledged remoting platform that 

provides its robust function set at the expense of relative un-ease of use and heavyweight 

footprint; this comes hardly as a surprise considering the fact that CORBA specification 

has more than 1000 pages. 
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1.4.2. .NET Remoting 

Microsoft .NET Remoting is a Microsoft application programming interface 

(API) for inter-process communication. It was released in 2002 with the 1.0 version  

of .NET Framework [Net07]. Microsoft .NET Remoting is not exactly an RPC protocol, 

but it provides the same features like other RPC protocols do. It offers a comprehensive 

functionality including support for the transfer of objects by value or reference, 

operating conditions, life cycle, etc. 

As .NET Framework is built around objects in a similar way Java is, it is objects 

that can be remotely accessed in .NET Remoting. An object, denoted as a remote 

reference from within the client application, can then be remotely accessed in a very 

easy and transparent way just like a normal object is. The stub code generation is hidden 

from the programmer and is performed automatically and dynamically for objects 

registered as client or remote objects with the system. All remote objects must be 

registered with the remoting system (environment) – at which point the environment 

generates necessary glue code. Instead of IDL the system uses reflection and code level 

annotations and obtains all the properties necessary for stub generation from the remote 

object definition itself, which makes the process much simpler. Figure 3 illustrates the 

basic operation of .NET Remoting platform. 
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Figure 3 Microsoft .NET Remoting architecture 

When writing a client application using a remote object, the developer requests  

a remote reference to that object from the remoting system and then uses this reference 

in the same way as if it was the object itself used locally. The reference is in fact  

a wrapper of a proxy class that is responsible for communication with the remote object.  

The system allows for customization of communication channels with ad-hoc 

implementation of communication protocols – or a choice of typical standardized 

solutions such as TCP/IP (more efficient due to binary transport, but with firewalls 

problems) or HTTP (a little slower, but without firewalls problem) or a named pipe. 

.NET Remoting is very simple and powerful technology with one major disadvantage: it 

is only available in programs written in Microsoft .NET Framework. 

1.4.3. Java Remote Method Invocation 

Java Remote Method Invocation (RMI) is a robust and effective way to build  

a distributed application in a situation where all the participating programs are written in 

Java [Java06]. Interfaces and classes that are responsible for the RMI are distributed 

within the java.rmi package. RMI first appeared in JDK 1.1 and used the JRMP (Java 

Remote Method Protocol) protocol, which is an efficient binary protocol. Later RMI 
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adopted the RMI-IIOP which made it out-of-the-box compatible with CORBA powered 

systems.  

The proxy code in RMI stack is generated by the RMI compiler - the rmic. 

Generated classes contain unique identification of the server callable objects, 

marshalling and unmarshalling code and a lot of other functionality. To use the remote 

object in RMI, the object has to be registered within the RMI registry. From Java version 

2, it is not necessary to use skeleton, because they are dynamically generated based on 

reflection. Java RMI architecture is depicted in Figure 4. 

 

 

Figure 4 Java RMI architecture 

The basic procedure a client uses to communicate with a server is as follows: 

 

1. The client obtains an instance of the stub class. The stub class is automatically 

pre-generated from the target server class and implements all the methods that 

the server class implements. 

2. The client calls a method on the stub. The method call is actually the same 

method call the client would make on the server object if both objects resided in 

the same Java Virtual Machine (JVM). 
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3. Internally, the stub either creates a socket connection to the skeleton on the 

server or reuses a pre-existing connection. It marshalls all the information 

associated to the method call and sends this information over the socket 

connection to the skeleton. 

4. The skeleton unmarshalls the data and makes the method call on the actual server 

object. It gets a return value back from the actual server object, marshalls the 

return value, and sends it back over the wire to the stub.  

5. The stub unmarshalls the return value and returns it to the client, and the control 

goes back to the client. 

 

Today, with Java 6 SE, the classical pantheon of features is present to compete 

with other remoting solutions – including fully fledged implementations of remoting 

stacks based on various protocols, dynamic proxy generation based on annotations and 

reflection etc. Thus Java RMI is very a powerful remoting stack with a one major 

disadvantage: to use it, we have to use Java. 

1.4.4. SOAP/WSDL 

SOAP, which stands for Simple Object Access Protocol, is a protocol for 

exchanging XML-based messages over the network, mainly via Hypertext Transport 

Protocol (HTTP) [Web04]. The SOAP format is a basic layer of communication 

between web services and provides an environment for creating more complex 

communication. The SOAP format is based on a previous protocol XML-RPC.  

XML-RPC is a protocol that provides a set of rules how to use an already functioning 

and standardized technology for the needs of the RPC.   

WSDL stands for Web Services Description Language. WSDL is a language 

powered by a set of specifications that allows for XML-structured 

descriptions/specifications of web services that can be used in similar fashion as IDL in 

CORBA. Based upon a service WSDL advertised descriptor, a client can decide how to 

structure the parameters in a SOAP/XML message so that the service understands the 

request. WSDL is then used for proxy code generation with many tools available for this 

task. Even more comfort is available when the actual WSDL is generated from object 

façade by further automation based on reflection or annotations. Such functionality is 
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well defined within the J2EE stack specification and is provided by most of the standard 

J2EE containers. This makes deployment of a service end-point extremely easy. 

SOAP and WSDL are well-established standards which are widely used in 

practice. Complementary to the semantic aspect of service provision is the service 

directory and discovery functionality and the service contract description functions. Web 

service APIs as final products of enterprises are more and more common and thus a need 

for accepted fitting standards in above mentioned areas is growing. UDDI (Universal 

Description, Discovery and Integration) protocol provides a standardized semantics for 

service directory facilitation, service discovery and service contract specification. WSIL 

(Web Services Inspection Language) protocol provides standardized means to aggregate 

information about a web service in an efficient wrapper – this includes both service 

WSDL functional specification as well as the UDDI meta-data bound in a uniform 

presentation façade. The standard also defines ways how to query and process this 

information. Web services architecture is depicted in Figure 5. 

 

 

Figure 5 Web services architecture 

Web services are de-facto a standard for cross-enterprise integration and service 

front provision. Therefore, the support for easy web service creation is one of the central 

pieces in every enterprise development platform or architecture, such as .NET, J2EE, all 
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the major IDEs etc. Web services provide well supported platform-independent and fully 

fledged RPC/communication stack. 

On the other hand, one can argue whether the inherent complexity of web 

services is appropriate for all possible uses. Web services are not simply a data transport 

layer and not even a simple one at that. Probably the unanimous effort to support web 

services from all competing parties and the hype effect of repeating a single word too 

many times are to blame. Additionally, the XML-based communication protocol is too 

inefficient to be used by high-performance distributed systems. 

1.4.5. XML-RPC 

XML-RPC is a protocol which allows users to easily perform remote procedure 

calls [Xml99]. XML-RPC is a widely supported RPC mechanism with supporting 

libraries available for most common programming languages and some automation tools 

available for main enterprise application architectures. The data transferred during RPC 

calls is encapsulated using the XML language (eXtensible Markup Language) and 

transmitted through the HTTP protocol. In general, it can be said that XML-RPC is a far 

less complex than web services and while lacking some features necessary for full 

fledged enterprise SOA development, it is fitting for many simpler applications – and 

fitting better than web services. Currently the project is ended, but the XML-RPC 

protocol has been used as a draft for a newer SOAP protocol. XML-RPC architecture is 

depicted by Figure 6. 
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Figure 6 XML-RPC architecture 

1.4.6. REST 

The list of web-related RPC protocols would not be complete without 

mentioning REST [Rest07]. REST uses URL mappings and GET parameters to pass the 

procedure call parameters to the server and is one of the rapidly emerging technologies 

especially in application development for heterogeneous devices like iPhones, Android 

phones and web browsers. REST is a very simple and very easy to learn and use, which 

makes it ideal for numerous embedded or uncomplicated usages. REST is also de-facto 

standard in modern Model View Controller (MVC) web-development platforms – 

including Ruby on Rails, Groovy on Grails and many others. Obviously, REST is not an 

appropriate solution for high-performance distributed applications. 

1.5. Emerging RPC Protocols 

In this section we present some of the newer and very young protocols that 

extended the RPC family in recent years. These protocols provide new features or new 

techniques for more user-friendly programming. Advent of these protocols is mainly 

motivated by the boom in the internet and service market, inadequacy of existing RPC 

protocols for a particular use, and specific needs for application development and its 
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simplicity. These motivations do not different significantly from the motivations behind 

this thesis. 

1.5.1. Etch 

Etch is a relatively new protocol that was announced in May 2008 by Cisco 

Systems [Etch08]. Cisco presents Etch as an open source, cross-platform framework for 

building high-performance network services. It is intended to supplement SOAP and 

CORBA as methods of communicating between networked pieces of software, 

especially where there is an emphasis on portability, transport independence, small size, 

and high performance. There is a stable implementation for Java and C# programming 

languages with Ruby, Python and C support planned in the near future. Etch is available 

under Apache license in Apache Incubator. Etch architecture is illustrated by Figure 7. 

 

 

Figure 7 Etch architecture 

Architecture of Etch is based on fully symmetric, flexible protocol stack for 

client and server. Stubs and skeleton are automatically generated by Java or .NET 

reflection, and a stub on client side corresponds with remote skeleton on a server side, 

and analogously, a remote skeleton on the client side corresponds to the stub on the 

server side. The Deliver Service and Mailbox Manager provide a layer for accepting and 
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managing incoming and outgoing requests. In a lower layer, the Messagizer or 

Packetizer deal with composing and parsing the actual transported messages, passing or 

getting the underlying byte arrays from the bottom level Transport Layer responsible for 

addressing, and actual network communication. The underlying communication channel 

may be TCP/IP or other protocol. The Etch stack natively supports Secure Socket Layer 

(SSL) for encryption. 

Etch protocol tries to be simpler, faster and more flexible than existing 

competing systems that are either too slow, hard to use, bloated, and/or proprietary. The 

integration into development process is done on the lines of today commonly accepted 

scaffolding paradigm with a simple to use and integrate command-line utility generating 

necessary helping code, project fragments and other artifacts necessary for smooth and 

comfortable operation. Even though Etch is far simpler to use than other protocols, we 

believe that the simplicity of use can further be improved. 

1.5.2. Protocol Buffers 

Protocol Buffers, developed by Google, are not an RPC mechanism on its own 

[Gpb08]. Protocol Buffers is rather a way of encoding structured data in an efficient yet 

extensible format for the purposes of RPC-like communication. Google uses Protocol 

Buffers for almost all of its internal RPC protocols and file formats.  

The main aspects of Protocol Buffers are language-neutrality, platform-neutrality 

and extensibility in the way structured data can be serialized. Compared to its main 

competitor in the RPC arena – the XML – Protocol Buffers format is simpler to parse 

and manipulate, resulting data is significantly smaller, the basic operations like 

simplistic traversing or searching is much faster and achievable by simpler means. All of 

this is achieved by creating a format that is less general and less ambiguous than XML, 

and thus easier to parse systematically, orderly and still correctly. Data access classes 

generated along the way of parsing the data stored in this format were developed with 

ease of programmatic use in mind – a strong and reasonable selling point these days. 

The Protocol Buffers protocol is a valuable alternative to more sophisticated 

formats and may help to significantly save space for storage of large amounts of data, to 

speed-up transmission of data over the internet and thus accelerate the execution of 

RPC. Implementations of the protocol are available in C++, Java and Python – a typical 
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Google portfolio. Alongside JSON, it is a compelling alternative to structure complex 

data transferred between components or applications. 

1.5.3. Thrift 

Thrift is an easy-to-use cross-platform and cross-language framework for 

developing service infrastructures [Ft07]. The protocol was originally developed at 

Facebook before it went open source in April 2007 and entered the Apache Incubator in 

May, 2008. 

Thrift offers scalability, efficiency and freedom of choice of language and 

platform. It provides support for C++, Java, Python, PHP, C# and other languages. 

Service data types and service interfaces can be defined in a simple definition file and 

the file is then compiled by a provided compiler to generate necessary proxy classes and 

management source code for facilitating the service client and/or server facades. Thrift 

architecture is illustrated in Figure 8. 

 

 

Figure 8 Thrift architecture 

Service interfaces are specified using a dedicated language – the Thrift Interface 

Description Language (TIDL), which is being processed by the Thrift Preprocessor 

Utility. Multiple options for a transport layer facilitator are available. 
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1.6. RPC Protocols Comparison 

Table 1 summarizes the features of the RPC technologies discussed, in order to 

compare their strengths and weaknesses. 

 

Protocol  

/ Feature 
CORBA 

[Omg04] 

.Net Remoting 

[Net07] 

Java RMI 

[Java06] 

Web 

Services 
[Web04] 

XML-RPC 

[Xml99] 

Etch 

[Etch08] 

Protocol Buffers 

[Gpb08] 

Thrift 

[Ft07] 

RPC      




IDL needed 
   

   

Transports 
TCP, SSL, 
HTTP(S), 

bridges 

TCP, 

HTTP(S) 

TCP, 

HTTP(S) 
HTTP(S) HTTP(S) 

TCP,UDP, 

SSL, 

HTTP(S), 
… 

TCP, UDP, 

files, memory 

… 

TCP, UDP, 

files, 

memory, 
zlib, … 

Protocols GIOP 
.NET 

Remoting 

JRMP, 

RMI-
IIOP 

SOAP XML-RPC 
Binary, 

XML, … 

Binary, XML, 

JSON,… 

TBinary, 

TCompact, 
TJSON, ... 

Free for 
languages 

Java, 

C/C++, 

Python, 

…

C# Java

C#, Java, 

Python, 

C/C++, 

…

C#, Java, 

Python, 

C/C++, …

C#, Java, 

C

C#, Java, 

Python, 

C/C++, … 

C#, Java, 

Python, 

C/C++, …

Callbacks 
   


  

Asynchronous 

method 

dispatch 
       

 

High 
performance 

  
 

  

High 
scalability     

  

Table 1 RPC technologies comparison 
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2. Design 

As discussed in Section 1, even the most widely accepted and used RPC 

technologies have serious issues in terms of a general usability and ease-of-use – at least 

for certain very general purposes. Features and particularities of the available RPC 

protocols and implementations often force developers of distributed applications to 

make non-trivial design decisions, such as to trade off high performance to code 

portability, choose a heavy-weight technology in order to support a single specific 

feature, resort to a paid RPC implementation in order to support a specific protocol on  

a specific platform, or to make non-elegant workarounds such as firewalls and/or 

Network Address Translation (NAT) reconfiguration on client systems in case callbacks 

are needed and a desired protocol does not support them.  

In this thesis, we demonstrate that there is another way, and that it is possible to 

provide a portable RPC middleware with a wide range of features, yet fast, lightweight, 

and simple to use. YaRpc is not just a new RPC protocol or implementation; it is rather  

a specification of a toolkit and an application programming interface (API) for 

developers of distributed applications. The design goals of the YaRpc middleware can 

be summarized as follows: 

 

1. Plug-in architecture and modularity in terms of network transport protocols, i.e.  

a possibility to use a number of transport layers such as TCP/IP, UDP, SSL, 

named pipes, etc. 

2. Plug-in architecture and modularity in terms of communication protocols, i.e.  

a possibility to integrate existing protocols such as XML-RPC, SOAP, Java RMI, 

.NET Remoting, CORBA, etc. 

3. Availability for both Microsoft .NET and Java platforms as an open source, or 

under some public license, with a possibility to extend to other platforms. 

4. Simple and user-friendly rules for the definition of a communication interface 

between client and server. Interface description language (IDL), or external 

utilities for a manual proxy code generation are time consuming and not  

easy-to-use, and thus should be avoided whenever possible. We rather rely on 
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code reflection and want to achieve a high-level of user transparency in both 

development and operational process. 

5. Bi-directional remote calls invoked by both client and server, for protocols that 

support it. This means that we want to make YaRpc a prepared solution for 

technologies of callbacks without any constraints on firewalls or NAT. 

6. Asynchronous remote calls and server method dispatch. Both issuing and 

dispatch of a remote method calls should be able to take advantage of underlying 

operating system asynchronous I/O capabilities, and execute in background 

while not blocking the calling or dispatching thread, respectively. After the issue 

or dispatch of a remote method call is finished, the RPC mechanism initiates 

response processing via a callback. 

7. High performance, fast and robust.  

8. There is a need for a new RPC protocol, the YaRpc Native Protocol (YNP), that 

can take the best out of the YaRpc middleware, and existing RPC protocols. The 

protocol should be fast, light-weight and offer a comprehensive set of features, 

most prominently callbacks. 

 

The ultimate goal of our effort was to provide an easy-to-use feature-rich RPC 

infrastructure that would be an interesting alternative to existing RPC systems and 

potentially even adopted by an open-source community for a further development.  

In order to achieve this goal, the framework needs to provide an attractive set of features 

that existing frameworks do not or cannot provide, and be available to a larger software 

developer community.  

 The starting point of our work was an early prototype of YaRpc, which was just 

a monolithic RPC protocol with an implementation for .NET Framework only.  

This prototype has been developed for one particular application – the DistributedMI 

distributed application [Jc07], and although it already contained some interesting 

features (e.g., nested call execution), it was far from being a generally usable RPC 

middleware. Another problem of the prototype was a fixation to a new unknown 

protocol, which altogether with a user-unfriendly API made it very unlikely that the 

prototype might ever be adopted by the desired target audience. 
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By a careful review of the YaRpc prototype, it became apparent that only a small 

subset of the code was actually related to the communication protocol itself, and the 

most of the code was dedicated to service routines that might be used by other protocols 

as well (e.g., serialization, remotable object registration, network transport routines). 

This led to an idea that the framework can be designed in an extensible fashion that 

would allow developers to plug-in additional protocols, and support implementations  

of these protocols by a rich lower-level API. Once the framework provides a sufficient 

number of protocol plug-ins, while still keeping a clean and easy-to-use API, it will have 

a potential to be widely adopted. Also, the provision of quality core services will be 

enough incentive for developers not to create new RPC systems from a scratch, but 

preferably implement their protocols as YaRpc plug-ins. It is necessary to make 

switching of the actual communication protocols absolutely seamless, without requiring 

users to significantly change their code.  

Another important design goal was high runtime performance. Traditional 

threading models used by distributed applications, such as select/poll loops, do not scale 

well for large number of parallel network connections [Bhkk06]. Fortunately, modern 

operating systems provide new networking primitives such as I/O Completion Ports  

in Microsoft Windows, which can even scale to tenths thousands of parallel network 

connections [Jon02].  The RPC system should be able to take advantage of the operating 

system capabilities, and thus enable developers to create high-performance applications 

with a little effort. In practice this means that all slow operations, such as connection to  

a remote host or execution of a remote call, are always supported using asynchronous 

(non-blocking) methods; the caller issues a request to begin an asynchronous operation 

which gets executed in the background, and receives a notification that the operation has 

been finished using a callback, possibly called in another thread. This allows the original 

thread to perform some more interesting tasks than waiting. For a convenience,  

the synchronous (blocking) equivalents of the asynchronous methods are also provided, 

wherever appropriate. 

From a programmer’s point of view, the YaRpc specification only defines a set 

of interfaces and classes that should be provided by a particular implementation of the 

middleware. As such, the YaRpc can be implemented virtually in every modern  
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object-oriented programming language; however, a functionality that utilizes special 

features of a language, such as runtime code reflection, might be limited.  

The object-oriented paradigm is adopted not only by the YaRpc specification, 

but also by the abstraction of the remote procedure calls. The remote procedure calls are 

assumed to always reference an object that will dispatch the calls. For this reason, in the 

later text we use the term remote method call instead, without any confusion. Note that 

the assumption of existence of an object that dispatches the remote calls does not force 

users or protocols to also adopt the object-oriented semantics; standard static procedure 

calls can easily be “emulated” by particular protocols implementations, if they choose 

so. An overall view of the YaRpc architecture is available in Figure 9. 

 

 

Figure 9 YaRpc architecture 
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2.1. Core Services 

The Core Services part of the YaRpc specification defines the elementary 

services that are to be provided by each YaRpc implementation. The specification also 

defines a set of appropriate interfaces to guide “external” implementations of objects 

used by the middleware, such as protocol plug-ins. 

2.1.1. YaRpcManager 

The main entry point to the YaRpc infrastructure is the YaRpcManager, a class 

which contains static methods to manage aspects such as global configuration, protocol 

plug-ins, remotable object registration, opening of remote connections for clients and 

listeners for servers. Table 2 lists the methods of the YaRpcManager class.  

 

Method Description 

RegisterProtocol Registers a new protocol plug-in to the YaRpc 

middleware, under a specific name. The protocol 

plug-in is a combination of transport layer type 

implementation (IYaRpcTransport interface) and 

connection type implementation (IYaRpcConnection 

interface). 

TryGetRegisteredProtocol Determines whether a particular protocol plug-in is 

registered. 

UnregisterProtocol Unregisters a specific protocol plug-in. 

Connect Opens a connection to a remote host, and returns an 

instance of the IYaRpcConnection interface. 

BeginConnect Asynchronously connects to a remote host. This 

method is a non-blocking equivalent of the 

BeginConnect method. 

EndConnect Finishes an asynchronous connection to a remote 

host. 

StartListening Starts listening for incoming connections at a specific 

local end-point, using a specific protocol. A user-

provided callback might be executed whenever a new 

connection is accepted.  
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StopListening Stops listening for incoming connections on a specific 

local end-point. 

RegisterObject Registers a remotable object (implementing the 

IYaRpcRemotable interface) to receive the remote 

method calls, under a specific object key. 

IsObjectRegisterted Determines whether a specific remotable object is 

registered. 

GetObjectKeys Gets all object keys a remotable object is registered 

under. 

GetRegisteredObject Gets a registered remotable object based on its key. 

UnregisterObject Unregisters a remotable object. 

NewGuid A helper method to genereate a new globally unique 

identifier (GUID). 

NewObjectKey A helper method to generate a new object key. 

HideRemoteExceptionDetails Configuration parameter: indicates whether local 

exception details should be forwarded to a remote 

side, which might be a security issue. 

MaxReceiveMessageSize Configuration parameter: maximum size of any 

incoming message, in order to help prevent 

overloading of the server, or denial of service (DoS) 

attacks. 

MaxRecursionDepth Configuration parameter: maximum depth of 

recursion for nested method calls. 

BlockIncomingRequests Configuration parameter: indicates whether all 

incoming method calls should be blocked, to increase 

the level of security for pure clients. 

NotifyConnectionClosed An utility method that has to be called whenever an 

implementation of IYaRpcConnection determines that 

the connection has been closed. 

Table 2 YaRpcManager class methods 
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2.1.2. IYaRpcConnection 

The IYaRpcConnection interface represents an open connection to a remote host, 

or a process. It provides all the necessary methods to manage the connection and to issue 

a remote method call on that connection. The implementations of the IYaRpcConnection 

interface are responsible for serialization of the method parameters, and deserialization 

of the return values, and as such an IYaRpcConnection implementation in represents  

a particular RPC protocol. The methods of the IYaRpcConnection interface are described 

in detail in Table 3. 

 

Method Description 

State Gets the state of the connection (None, Intializing, Open, Closed). 

BeginIntialize Asynchronously initializes a new connection, over a provided 

communication channel (specified using the IYaRpcTransport 

interface). The initialization is protocol- specific, and might 

involve a network hand-shake between the two endpoints. 

EndInitialize Finishes asynchronous initialization of the connection, invoked 

using the BeginInitialize method. 

IsServer Gets a value indicating that this connection was accepted from the 

remote side, i.e. the local side acts as a server. 

Tag Gets or sets a user-provided tag associated with the connection. 

RemoteCall Synchronously issues a remote method call, specified using an 

instance of the YaRpcRequest class. After the remote call is 

finished, the method returns an instance of the YaRpcResponse 

class with the call results. 

BeginRemoteCall An asynchronous version of the  RemoteCall method. 

EndRemoteCall Finishes an asynchronous method call, invoked using the 

BeginRemoteCall method. 

KeepAlive Can be called by the YaRpc middleware or a user to prevent the 

connection from timing-out. 

Ping Measures the duration of a single network roundtrip. 

Close Closes the connection. 
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ConnectionClosed Registers a user callback which will be called when the 

connection was closed. 

Table 3 IYaRpcConnection interface methods 

Even though an implementation of the IYaRpcConnection interface will usually 

be associated with a physical network link (e.g., a TCP socket), it is not the same thing. 

The IYaRpcConnection serves merely as an abstraction that captures a state  

of communication between two end-points, and does need to be associated with  

a particular network link at all (e.g., consider an in-process connection). In the YaRpc 

middleware, the network link is considered as a separate entity, and is handled by the 

IYaRpcTransport interface, which is described in the Section 2.1.5. 

Implementations of the IYaRpcConnection interface are also responsible for 

dispatching of the remote method calls received from a remote end-point of the 

connection. Typically, this will be the case for accepted incoming connections on  

a server (see the IsServer property), but it might also apply to client connections in case 

of a bidirectional RPC protocol. In order to dispatch the method call,  

the IYaRpcConnection implementation needs to use methods provided by  

the YaRpcManager class to obtain a reference to the dispatching object (aka remotable 

object), and invoke the appropriate method of the IYaRpcRemotable interface - see 

Section 2.1.6 for details. 

2.1.3. YaRpcRequest 

The YaRpcRequest class is a simple store for all the necessary information about 

a remote method call that a client is issuing to a server. An IYaRpcConnection 

implementation accepts a YaRpcRequest instance in the RemoteCall method (or 

BeginRemoteCall), and serializes the request to a message in a protocol-specific way for 

the transmission over the network link. Table 4 lists the properties of the YaRpcRequest 

class.  

 

Property Description 

ObjectKey The key under which the remotable object is registered on the 

server. 
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MethodKey The name of the remote method to be executed. 

Inputs An array of input parameters for the remote method. 

InputsDefinition A list containing the name and type of each input parameter.   

OutputsDefinition A list containing the name and type of each return value from the 

remote method.  

Timeout Time after which the remote method call will be considered as 

failed. 

Flags Additional flags affecting the issue and execution of the remote 

call. 

Context A protocol-specific hash-map with additional information about 

the request. 

Table 4 YaRpcRequest class properties 

It might be surprising that the YaRpcRequest class also contains definition of the 

output values (see OutputsDefinition property), but in fact, this information is necessary 

for some implementations of IYaRpcConnection interface in order to correctly 

deserialize the returned message, especially in case of binary RPC protocols that do not 

transmit meta-data describing the type of return values. Fortunately, YaRpc 

implementations in high-level programming language such as Java or C# can use code 

reflection to automatically extract all the necessary information in the run-time from  

a user-provided communication interface, so that the users do not need to use or even 

know about the YaRpcRequest class at all. For more details, see the YaRpcProxy class in 

Section 2.4.2.   

2.1.4. YaRpcResponse 

The YaRpcResponse class has a symmetric role to the YaRpcRequest class – it 

contains information about a finished remote method call, such as the return values or  

an exception that has been thrown. All the properties of the YaRpcResponse class are 

listed in Table 5. 

 

Property Description 

Outputs The array of return values of a remote method call. 

Exception An exception thrown during the execution of the remote method 
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call. 

Context A protocol-specific hash-map with additional information about 

the response. 

Table 5 YaRpcResponse class properties 

Although some languages only allow methods to return a single value (e.g., 

Java), the YaRpc middleware supports remote methods with multiple output values. In 

languages that support output or by-reference parameters, the output values can be 

mapped to those parameters. Again, users usually do not need to deal with the 

YaRpcResponse class directly, and can use convenience classes to issue and dispatch 

remote method calls with a little programming effort. See YaRpcProxy in Section 2.4.2 

for more details. 

2.1.5. IYaRpcTransport 

Even though RPC protocols are usually associated with a specific network 

transport layer (e.g., SOAP is associated with HTTP or HTTPS) and in numerous RPC 

implementations the protocol and transport are tied closely together, the protocol and the 

transport layer can be considered as two separate entities. The RPC protocol, here 

represented using the IYaRpcConnection interface, is responsible for serialization of 

requests and responses to network messages, and maintaining a logical state between 

two communication end-points, whilst the functionality of a network transport layer, 

here encapsulated in the IYaRpcTransport interface, is responsible for establishing a 

physical link between two end-points, and sending and receiving messages over that 

link.   In a wider picture, such a distinction between the protocol and transport allows us 

to reuse software components in various protocol implementations. For example, a 

HTTP implementation of the IYaRpcTransport interface can be used by both SOAP and 

XML-RPC implementation of the IYaRpcConnection interface. All the following 

network transport layers can easily be represented using the IYaRpcTransport interface: 

UDP, TCP, SSL, HTTP, HTTPS, named pipes, shared-memory, etc. Table 6 lists the 

methods of IYaRpcTransport interface. 
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Method Description 

State Gets the state of the transport link (Uninitialized, Connecting, 

Connected, Listening, Closed). 

IsServer Indicates whether the network link has been initiated by the 

remote end-point (i.e. that the current end-point represents a 

server). 

Tag Gets or sets a user-provided tag associated with the transport. 

BeginConnect Asynchronously initiates a connection to a remote end-point, 

specified using a transport-specific address.  

EndConnect Finishes the asynchronous connection initiated previously using 

the BeginConnect method. 

BeginSend Asynchronously begins sending a message over the link. The 

message is stored in a YaRpcSmartStream class instance. 

EndSend Finishes an asynchronous sending operation previously initiated 

using the BeginSend method. 

BeginReceive Asynchronously begins receiving a message over the link. The 

received message is stored in a provided YaRpcSmartStream class 

instance. 

EndReceive Finishes an asynchronous receive operation previously initiated by 

the BeginReceive method. 

Close Closes the network link and releases associated resources. 

StartListening Starts listening for incoming connections, on a local end-point 

specified by a transport-specific address. Whenever an incoming 

connection is accepted, a user-provided callback is executed. 

StopListening Registers a user callback which will be called when the 

connection was closed. 

Table 6 IYaRpcTransport interface methods 

An implementation of IYaRpcTransport works in two distinct modes  

of operation: connection and listening. In the connection mode, the transport represents 

and open network link between two end-points that can be used to send or receive data. 

In the listening mode, the transport is listening for incoming connections in a network 

transport layer-specific way, and whenever a connection is accepted, a new instance  
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of an appropriate IYaRpcTransport implementation is created which represents the 

newly established link.  

Clearly, the methods provided by the IYaRpcTransport interface resemble the 

Berkeley sockets interface [Ws97], and in many situations an IYaRpcTransport 

implementation will be just a thin wrapper above a socket (e.g., for UDP and TCP 

transports). However, for a special transport layers, such as shared-memory or named 

pipes, the IYaRpcTransport implementations will need to provide a more comprehensive 

functionality.  

The IYaRpcTransport implementations should preferably use asynchronous 

capabilities of the underlying operating systems for their own asynchronous operations, 

e.g. I/O Completion Ports in Microsoft Windows, in order to reduce performance 

bottlenecks caused by poor threading model [Jon02]. However, if such asynchronous 

capabilities are not available on a particular platform, the implementations have to 

emulate them by spawning a thread to execute an underlying blocking I/O operation. 

2.1.6. IYaRpcRemotable 

The IYaRpcRemotable interface represents an object that is able to execute 

remote method calls (aka remotable object). Typically, a developer of a server 

application will register a bunch of remotable objects to the YaRpc infrastructure (using 

appropriate methods of the YaRpcManager class – see Section 2.1.1), and a protocol 

implementation will call their methods during a dispatch of a received remote method 

call (in an implementation of the IYaRpcConnection interface – see Section 2.1.2). The 

methods of the IYaRpcRemotable interface are described in Table 7. 

 

Method Description 

ObjectKey Gets an object key under which the remotable object is 

registered to the YaRpcManager. This property is necessary for 

RPC implementations that can serialize a reference to a 

remotable object. 

GetMethodDefinition Gets the definition of a particular method given its name. 

Among other things, the definition contains a list of the method 

input parameters and return values, including their names and 
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types. 

ExecuteRequest Synchronously executes a specific remote method call, using a 

list of parameters provided. 

BeginExecuteRequest Begins asynchronous execution of a remote method call. This 

method is a non-blocking variant of the ExecuteRequest method.  

EndExecuteRequest Finishes the asynchronous execution of a remote method call 

initiated previously using the BeginExecuteRequest method. 

Table 7 IYaRpcRemotable interface methods 

A remotable object has a role similar to the stub (sometimes called skeleton),  

a piece of code generated from an interface description language (IDL) in traditional 

RPC protocols such as CORBA or DCOM [Dcom98]. The IYaRpcRemotable interface 

does, however, provide more flexibility to RPC implementations compared to the stubs 

– implementations in high-level programming languages such as Java or C# can take 

advantage of code reflection and provide an appropriate implementation of the 

IYaRpcRemotable interface automatically in the run-time, while an implementation in  

a low-level language such as C/C++ can still use IDL to automatically generate the stubs 

that will implement the IYaRpcRemotable interface, in the development time. See the 

description of the YaRpcStub class in Section 2.4.1 for more details on how to use code 

reflection to aid creation of remotable objects. 

Remotable objects need to provide a definition of the remotable methods they 

support, including the name and type of its parameters and return values, using the 

GetMethodDefintion method. The information provided might (or might not) be used by 

a particular RPC protocol implementation for serialization and deserialization  

of requests and responses, and to execute the requests in a right way. Among other 

things, the GetMethodDefintion method definition provides a worker object that should 

be used to execute the request. This functionality enables server applications to only use 

one thread to serve all requests on a specific remotable object, for instance. For more 

details on the execution workers, please see the description of the IYaRpcWorker 

interface in Section 2.1.7. 

 The YaRpc infrastructure enables remotable objects to execute the remote 

method call request either synchronously or asynchronously, based on their preference. 
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The information whether a request should be executed synchronously or asynchronously 

is also provided by the GetMethodDefintion method. Asynchronous execution of request 

is especially useful due to runtime performance reasons. For example, a server accessing 

files on a disk might prefer to provide asynchronous remote methods so that the 

dispatching thread will not be blocked while waiting for the file access to finish and thus 

the thread can perform some more interesting tasks. The fact, that remotable objects can 

provide asynchronous remotable methods, has important implications for the scalability 

of server applications. In YaRpc, this behavior is called asynchronous method dispatch. 

The asynchronous method dispatch can be also advantageous to  

high-performance server applications that only forward method calls between a number 

of clients. When a remote call is received, the server’s remotable object can 

asynchronously issue a remote call to another client, and this initiation is likely to be 

executed before a context switch occurs (possibly on an I/O Completion Port thread), 

thus providing an enormous scalability potential. 

2.1.7. IYaRpcWorker 

The IYaRpcWorker interface represents a worker object that can “physically” 

execute a remote method call request. For example, the requests can be executed on a 

thread pool, or on a single-thread queue. The IYaRpcWorker interface gives 

IYaRpcRemotable objects a flexibility to define when and where each dispatched request 

should be executed. Table 8 shows a single method of the IYaRpcWorker interface. 

 

Method Description 

QueueWorkItem Schedules a method delegate for an execution, with an 

implementation-specific semantics. 

Table 8 IYaRpcWorker interface methods 

2.2. Protocol Plug-ins 

Software developers are encouraged to implementation plug-ins in order to add 

support of RPC protocols of their choice to the YaRpc middleware. A protocol plug-in is 

a combination of an implementation of the IYaRpcConnection interface (see Section 

2.1.2) and an implementation of the IYaRpcTransport interface (see Section 2.1.5).  
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A developer registers such a combination to the YaRpc infrastructure using the 

YaRpcManager.RegisterProtocol method, under a specific protocol name. When a user 

is connecting to a remote end-point using the YaRpcManager.Connect method (or the 

BeginConnect method), he or she has to provide an URL of the remote end-point. The 

appropriate protocol is selected based on the URL scheme prefix.  

For example, in order to support web-services, a user might register the 

YaRpcConnectionSoap and YaRpcTransportHttp types under “soap” scheme prefix. 

Whenever a connection attempt is made to an URL such as: 

 

soap://www.hostname.com/protocol/specific/part 

 

then the YaRpc infrastructure will automatically perform the following steps: 

 

1. Identify the connection-transport pair based on the “soap” scheme prefix. 

2. Create a new instance of the YaRpcTransportHttp class. 

3. Invoke YaRpcTransportHttp.BeginConnect in order to open a network link to 

www.hostname.com. 

4. Create a new instance of the YaRpcConnectionSoap class. 

5. Invoke YaRpcConnectionSoap.BeginIntialize to associate the connection with the 

established network link and to let the connection perform any necessary 

initialization steps. 

6. Returns the instance of the YaRpcConnectionSoap class back to the user. 

Note that during the connection, the full original URL is provided to both 

IYaRpcTransport and IYaRpcConnection implementations, thus enabling them to use 

other parts of the URL (i.e., hostname, port number, path and query) for an 

implementation-specific purpose. Typically, different RPC protocols share a common 

transport layer (e.g., both SOAP and XML-RPC use HTTP), so that a protocol developer 

might not need to implement the IYaRpcTransport interface at all, and he or she can just 

use an implementation that is already available.   
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2.3. Serialization 

The serialization is a process of encoding of a remote method call request  

or response, including all the input or output parameters, into a data message that can be 

transferred over a network link. The deserialization is a process symmetric to the 

serialization – it decodes a data message received over the network and creates  

an appropriate request or response object. Even though the serialization is RPC  

protocol-specific, the YaRpc middleware provides a several supporting classes to help 

particular protocol implementers, i.e. the implementers of the IYaRpcConnection 

protocol as described in Section 2.1.2. 

2.3.1. YaRpcSmartStream 

The YaRpcSmartStream class serves as a storage of bytes that grows 

automatically as more data is added to it. The stream supports random access read and 

write – a user can seek to any position and read or write data to that position. Unlike 

similar stream implementations available in many programming languages, the interface 

of the YaRpcSmartStream class is designed in a way that enables users to save 

unnecessary re-copying of byte buffers when reading or writing to the stream, which 

leads to a higher runtime performance of operations with the stream. Additionally, 

YaRpcSmartStream has methods that allow users to impose a limit on a read position 

from the stream. This functionality might be used when deserializing object-trees in 

particular protocol implementations, in order to prevent poorly written custom 

serialization or deserialization routines to fail the whole deserialization process. Table 9 

lists the methods of the YaRpcSmartStream class. 

 

Method Description 

Length Gets or sets the total length of the stream in bytes. 

Tag Gets or sets a user-provided tag associated with the 

stream. 

Clear Resets the stream to the initial state, with 0 bytes 

stored. 

BuffersCount Gets the number of buffers used by the storage. 

Write_Position Gets or sets the current write position in the stream. 
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Write_Flush Updates the total length of the stream to reflect the 

most recent writes. 

Write_GetBlock Gets a continuous chunk of memory which may be 

used to write the data directly to the stream, without 

any additional copying. 

Write_FinalizeBlock Finalizes a write operation started previously using the 

Write_GetBlock method. 

Write_PutBytes Writes a data to the stream. 

Write_PutByte Writes a single byte to the stream. 

Write_FromStream Writes a part of another YaRpcSmartStream to the 

current stream. 

Read_Position Gets or sets the current read position in the stream. 

Read_GetBlock Gets a continuos block of memory from which the 

stream data may be read directly, without any 

additional copying. 

Read_FinalizeBlock Finalizes the read operation started previosuly using 

the Read_GetBlock method. 

Read_GetBytes Copies data from the stream to a byte buffer. 

Read_GetByte Reads a single byte from the stream. 

Read_RemainingBytes Gets the maximum number of bytes that can be read 

from the stream, starting from the current read position. 

Read_EnsureRemainingBytes Checks that a specific number of bytes may be read 

from the stream and throws an exception if not. 

Read_PushLimit Imposes a lower and upper bound for the read position. 

Read_PopLimit Removes the top-most read-position limit imposed 

using the Read_PushLimit method. 

Read_Compare Reads chunk of data from the stream and compares it to 

a specified buffer. 

Table 9 YaRpcSmartStream class methods 

Typically, growing memory streams are implemented using a single byte buffer 

(i.e., an array); if the buffer is full, the stream allocates a new buffer twice as long and 

copies the data from the previous buffer to the beginning of the new buffer. This 



37 

approach is easy to implement, however, it does unnecessary copying of buffers and 

limits the maximum size of the data stored to the maximum length of an array available 

on the particular platform (e.g., 2 GB in Java and .NET Framework [Java06, Net07]). 

Several platforms and operating system, such as .NET Framework running on Microsoft 

Windows, allow to use a list of buffers when sending data or receiving data from  

a socket, instead of a single buffer. The use of this API, which is also known as 

scatter/gather I/O [Mwgs07], is typically more efficient then copying buffers into  

a single buffer before the I/O operation is invoked. Particular YaRpc middleware 

implementations are highly encouraged to internally implement the YaRpcSmartStream 

storage using a list of buffers, in case the underlying platform supports the scatter/gather 

I/O. Whenever the existing buffers in a YaRpcSmartStream are full, a new larger buffer 

is allocated and appended to the list of buffers. If the new buffer is twice as large as the 

previous buffer, the stream can theoretically save up to ca. 2
60

 bytes of data. This 

capability is important in situations where applications want to use network messages 

larger than 2 GB; even though at the current day and age there will not be many such 

applications, we assume that with the evolution of many-Gigabit optic fiber network 

links such applications will arise. 

2.3.2. YaRpcWriter 

The YaRpcSmartStream interface on its own is not very convenient, because it 

only allows writing of byte or byte array. The RPC implementations, or custom user 

serialization routines, often need means to serialize common data-types to a stream. The 

YaRpcWriter class allows writing of all or most of the common data types of a particular 

language to an instance of YaRpcSmartStream. The YaRpcWriter is flexible in the sense 

that it allows users to specify byte ordering for integer data type (little-endian or big-

endian [Dce80]), and encoding used for string serialization. The methods of the 

YaRpcWriter class are described in Table 10. 

 

Method Description 

Stream Gets the underlying instance of the YaRpcSmartStream class. 

IsBigEndian Indicates whether integer data types are serialized using little-

endian or big-endian byte order. 
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Encoding Gets the encoding used to serialize text strings. The default 

encoding is UTF-8. 

Write Writes a common data type to the stream. 

WriteString Writes a string to the stream, prefixed with a Z-encoded length of 

the string, or -1 if the string is null. 

WriteArray Writes a (multidimensional) array to the stream. Each array is 

prefixed with a Z-encoded length of the array, or -1 if the array is 

null. 

WriteRaw Writes a string or an array to the stream, without any prefix. 

WriteMagic A convenience method that writes a 16-bit or 32-bit magic number 

to the stream. 

WriteZeroBytes Writes a number of zero bytes to the stream. 

WriteZetCode Writes a Z-encoded integer to the stream. 

Align Advanced the write position in the stream to the nearest multiple of 

specific number. 

Flush Invokes the Write_Flush method on the underlaying stream. 

Table 10 YaRpcWriter class methods 

The YaRpcWriter uses Z-encoding to write the length prefix for a string or an 

array. The Z-encoding is an efficient way how to serialize an arbitrarily large integer 

number. For more details, see Section 2.3.4. 

2.3.3. YaRpcReader 

The YaRpcReader has a role symmetric to the YaRpcWriter – it reads common 

data types from an underlying YaRpcSmartStream. The YaRpcReader class also enables 

users to choose the byte ordering and string encoding. Table 11 lists the method of the 

YaRpcReader class.  

 

Method Description 

Stream Gets the underlying instance of the YaRpcSmartStream class. 

IsBigEndian Indicates whether integer data types are assumed to be serialized 

using little-endian or big-endian byte order. 

Encoding Gets the encoding used to deserialize text strings. The default 
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encoding is UTF-8. 

ReadXXX Reads a common data type XXX from the stream. 

ReadString Reads a string from the stream. The string is prefixed with a Z-

encoded length of the string. 

ReadArray Reads an array from the stream. The array is prefixed with a Z-

encoded length of the array. 

ReadRaw Reads a non-length-prefixed string or array from the stream. 

ConsumeMagic A convenience method that reads a 16-bit or 32-bit magic number 

from the stream and throws an exception if it does not match. 

ReadZetCodeAsInt32 Reads a Z-encoded integer as a 32-bit integer. 

ReadZetCodeAsInt64 Reads a Z-encoded integer as a 64-bit integer. 

Align Advanced the read position in the stream to the nearest multiple of 

specific number. 

Table 11 YaRpcReader class methods 

2.3.4. Z-Encoding 

Z-encoding is a new algorithm that we have developed for serialization of  

an arbitrarily large integer value in a storage-efficient way. In YaRpcWriter and 

YaRpcReader, Z-encoding is widely used to serialize lengths of a strings or arrays. The 

main assumption is that numbers close to zero will occur more frequently than numbers 

far from zero, thus they should not need too much storage space. Additionally, the 

encoding needs to be byte-oriented and also support negative numbers. This led us to a 

definition of Z-encoding as follows: 

 

1.  An integer value v is transformed into v’ using the following formula: 

 v’ = 2v  (if v >=0) 

or v’ = -2v – 1 (if v < 0) 

 For example, 0 gets transformed to 0, -1 to 1, 1 to 2, -2 to 3, 2 to 4, etc. Note that 

v’ is always a non-negative value. 

2. The bits of the transformed integer value v’ are split into a sequence of 7-bit 

chunks, starting from the least-significant bits of the value.  
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3. Each 7-bit chunk is bitwise ORed with a byte value where the most significant 

bit set if the chunk is not the last one in the sequence, and unset if the byte is last. 

The whole byte is written to the stream. 
 

The reading of a Z-encoded value is symmetrical to the writing: 

 

1. Read bytes from the stream, and stop when the last byte read has the  

most-significant bit unset. 

2. Concatenate the lower 7 bit chunks from each byte read into a single integer 

value v’, in the least-to-most-significant bit order. 

3. Compute the original value v using the following formula: 

 v = v’ / 2  (if v is even) 

or v = -1 – v’ / 2 (if v is odd) 

 

The name “Z-encoding” is appropriate for a number of reasons: the transformation  

of integer values resembles a zigzag pattern or a simply the letter “Z”, a mathematical 

symbol for integer numbers is ℤ, and the letter “Z” also resembles the number 7, which 

is the length of each bit chunk. The reader is free to choose the most appropriate 

explanation. 

2.4. Utility Services 

The YaRpc middleware provides several classes to help both users of the 

middleware and implementers of RPC protocols. However, these helper classes are not  

a mandatory part of the YaRpc specification, and might not be available on all 

platforms, because they might depend on specific features of programming languages. 

2.4.1. YaRpcStub 

The YaRpcStub class is used to simplify creation of remotable objects by 

developers of server applications. The class implements the IYaRpcRemotable interface, 

and uses code reflection to obtain the signature of methods of a user object that are to be 

made remotable. The user only needs to mark which methods are that, using for example 

code meta-data if the programming language supports it, and also the user needs to link 

the user object with a particular YaRpcStub instance, which can conveniently be done 

using a generic type argument. For example, in .NET Framework the YaRpcStub 
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implementation uses the YaRpcMethodAttribute meta-data attribute and a generic type 

argument for this purpose, respectively, while Java implementation uses the 

YaRpcMethod annotation and an instance reference, respectively.  See Section 3 for 

more details on particular implementations.  Table 12 lists methods of the YaRpcStub 

class; the members inherited from the IYaRpcRemotable are skipped.  

 

Method Description 

RegisterToYaRpc Registers a user object to the YaRpc infrastructure to receive 

remote method calls, under a specific object key. 

UnregisterFromYaRpc Unregister the user object from the YaRpc infrastructure. 

Worker Gets or sets an implementation of the IYaRpcWorker interface 

that should be used to execute the method calls. 

Table 12 YaRpcStub class methods 

2.4.2. YaRpcProxy 

The YaRpcProxy class simplifies development of client applications by either 

providing convenience methods that simplify issuing of remote method calls, or even 

providing methods that can dynamically generate a proxy object based on an interface, 

using a runtime code generation capability of a programming language if it is available. 

The YaRpcProxy class usually provides methods listed in Table 13.  

 

Method Description 

YaRpcTimeOut Gets or sets the timeout for remote calls issued from the proxy 

object. 

YaRpcConnection Gets the IYaRpcConnection associated with the proxy object. 

YaRpcObjectKey Gets the object key of the remote object this proxy is associated 

with.  

Generate Dynamically generates an instance of a proxy object, based on a 

provided communication interface. This method might not be 

available on every platform. 

YaRpcRemoteCall A convenience method that constructs a YaRpcRequest instance and 

invokes the remote call using the YaRpcManager class. 

Table 13 YaRpcProxy class methods 
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2.4.3. YaRpcConnectionBase 

Even though the YaRpc specification already separates RPC protocols from the 

physical network transport layer (see Sections 2.1.2 and 2.1.5), many RPC protocol 

implementations will still share a lot of common functionality, such as remote call 

dispatching, connection management or response processing. The 

YaRpcConnectionBase is an abstract class that aims to provide these common services to 

particular IYaRpcConnection implementations. In fact, new protocols will usually only 

need to override the abstract methods of the YaRpcConnectionBase class, which are 

listed in Table 14. 

 

Method Description 

BeginHandshake Asynchronously starts a hand-shake with the 

remote end-point to initialize the connection. 

SerializeMessage Serializes a request or response message. 

ControlMessageReceiving Manages the receiving of network message from 

the remote end-point.  

DeserializeMessage Deserializes the header of a received network 

message. 

DeserializeMessageBottomHalf Finishes deserialization of a received network 

message. 

Table 14 Abstract methods of the YaRpcConnectionBase class 

2.5. YaRpc Native Protocol (YNP) 

Although the YaRpc middleware is designed to support a number of existing 

protocols, it also defines a new light-weight YaRpc Native Protocol (YNP) that offers  

a unique set of features compared to existing RPC protocols, such as high performance 

due to a binary message format, server-initiated callbacks, customizable serialization, 

asymmetric serialization and nested method calls. The YNP uses TCP or TCP+SSL as 

the underlying network transport, in order to provide a reliable data transfer [Rfc793] 

and encryption [Ssl94], respectively. YNP was purposely designed as a minimalistic 

protocol with a simple message format, in order to promote creation of YNP 

implementations for other platforms and operating systems. 
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2.5.1. Message Format 

The YNP is a message oriented RPC protocol; both remote call request and 

response are packed into a single network message. In case a remote method call failed, 

the remote side sends back a message describing the exception that occurred. Each 

request, and corresponding response or the exception message, is assigned a random 

generated 16-byte globally unique identifier (GUID). The messages have a binary 

format, in order to save the network bandwidth and enable fast serialization and 

deserialization. Table 15 shows the format of an YNP message header. 

 

Field Bytes Description 

Magic 3 A protocol magic number: an ASCII-encoded “YAR” string.  

Protocol version 1 A number identifying the protocol version, current version is 

0x02. 

Message type 1 The type of the message (0x01=REQUEST, 

0x02=RESPONSE, 0x04=EXCEPTION) 

Message flags 1 OR-combination of message flags (0x01=BIG_ENDIAN)   

Specific flags 1 OR-combination of request or response flags, depending on the 

message type. 

Reserved 1 A field reserved for a future use, must be zero when sending 

and is to be ignored when receiving messages. 

Body size 8 The length of the message body in bytes, encoded using a 

message's byte ordering. 

Method call GUID 16 A globally unique identifier of the remote call. 

Table 15 YNP protocol message header 

The message header is followed by a body which is specific to the message type. 

The REQUEST, RESPONSE and EXCEPTION message body is described in Table 16, 

Table 17 and Table 18, respectively. 

 

Field Bytes Description 

Nested to GUID 16 A unique identifier of remote call to nest to – see Section 2.5.4.  

Object key ? The name of the dispatching remotable object (Z-encoded length 

+ UTF-8 encoded string). 



44 

Method key ? The name of the remotable object method (Z-encoded length + 

UTF-8 encoded string). 

Context data ? Additional invocation-specific information, specified as a list of 

string key-value pairs. 

Argument count ? A Z-encoded number of input parameters of the remote call. 

Arguments ? A sequence of input parameters serialized using the YNP 

serialization scheme – see Section 2.5.2. 

Table 16 YNP protocol REQUEST message body 

 

Field Bytes Description 

Context data ? Additional invocation-specific information, specified as a list of 

string key-value pairs. 

Argument count ? A Z-encoded number of output parameters of the remote call. 

Arguments ? A sequence of output parameters serialized using the YNP 

serialization scheme – see Section 2.5.2. 

Table 17 YNP protocol RESPONSE message body 

 

Field Bytes Description 

Context data ? Additional invocation-specific information, specified as a list of 

string key-value pairs. 

Fault code ? A Z-encoded error code, which may be used by a user code. 

Exception type ? A name of the type implementing the exception (7-bit encoded 

length + UTF-8 encoded string) 

Message ? A text with description of the exception (7-bit encoded length + 

UTF-8 encoded string). 

Stack trace ? A text with stack trace of the exception (7-bit encoded length + 

UTF-8 encoded string) 

Data records ? A table of key-value pairs with additional exception information. 

Table 18 YNP protocol EXCEPTION message body 
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2.5.2. Serialization 

The REQUEST and RESPONSE message contains a sequence of input and 

output parameters of the remote call, respectively. In the stream, each parameter is 

prefixed with a 1 byte signature. The signature is a bit-field that describes the type of the 

serialized value; the meaning of each bit is described in Table 19. 

 

Bit 7 6 5 4 3 2 1 0 

Value Is null Type code Array dimension 

Table 19 Serialized value signature byte 

If the serialized value is null, the bit 7 will be set, otherwise it will be unset. For 

reference types, the meaning of a null value is clear, but for value types the meaning 

might be problematic (e.g., consider int type in Java). The implementations are free to 

choose the “best” way, e.g. an implementation in .NET Framework might use nullable 

types to represent a null value-type [Net07], while a Java implementation might simply 

use the default value of a value-type, i.e., zero. Bits 3-6 describe the type of the 

serialized value; all the possible type codes are listed in Table 20. 

 

Type code Value Description 

BackReference 0x00 The object has already been serialized/deserialized, and this is just 

another reference to it. 

Boolean 0x01 A boolean value (true of false, 8-bit). 

Byte 0x02 8-bit integer value 

Int16 0x03 16-bit integer value 

Int32 0x04 32-bit integer value 

Int64 0x05 64-bit integer value 

Single 0x06 A single-precision IEEE 754 floating point number (32-bit) 

Double 0x07 A double-precision IEEE 754 floating point number (64-bit) 

Decimal 0x08 A 64-bit IEEE 754 decimal. 

DateTime 0x09 Date & time value, represented as number of 100-nanosecond 

intervals that have elapsed since 12:00:00 midnight, January 1, 

0001, encoded as a 64-bit integer. 

TimeSpan 0x0a A difference between two time instants,  represented as number of 
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100-nanosecond intervals, encoded as a 64-bit integer. 

Guid 0x0b A 16-byte globally unique identifier (GUID) 

Char 0x0c A UTF-8 encoded character (1-6 bytes per character) 

ComplexType 0x0d A complex data-type. 

Table 20 Signature type code 

The type code is followed by a data block in the stream, and the format of the 

data differs based on the signature. For simple values (i.e. all type codes except of 

BackReference and ComplexType, and with array dimension zero), the signature type 

code is simply followed by the value, serialized using current session’s byte-ordering. 

The BackReference code is a special type code that enables serialization of 

object-graphs. If an object (e.g. array, string or complex type) has already been 

serialized/deserialzied in a same serialization/deserialization session, there is no need to 

write or read it again, respectively. The BackReference signature code is followed by a 

Z-encoded relative offset in the stream where the original object has been serialized. 

Note that if BackReference code is used, bits 7 and 0-2 must always be unset. 

The ComplexType code is used to specify that the data have been serialized  

by a complex user-provided object. The ComplexType code signature is followed  

by a 64-bit integer storing a total length of the data, and then by the data stream as 

encoded by the object. A user on the receiving side is responsible to provide an object 

(more precisely a type) that is able to deserialized the data. 

Bits 0-2 of the signature store the number of dimensions of an array. This is used 

to encode (multidimensional) arrays of simple or complex data types. The signature byte 

is followed in the stream by a Z-encoded length of the array, and then a sequence  

of serialized elements of the array, each encoded the same way as if it were the only 

element (e.g. for a ComplexType code, each element of the array is prefixed with 64-bit 

byte length). Multidimensional arrays are encoded as array of arrays, recursively. Each 

sub-array is encoded as a one-dimensional array, including its own full 1-byte signature. 

This is useful e.g. in case a sub-array has already been serialized, so that only 

BackReference signature and offset might be written instead. Strings are serialized  

as a single-dimensional array of characters, where each character is encoded using  

UTF-8 encoding. 



47 

The YaRpcNativeSerializer class encapsulates all the serialization functionality 

of the YNP protocol. This makes it possible for user to use the YNP serialization scheme 

e.g. for serialization of sub-objects of a complex data type. The methods of the 

YaRpcNativeSerializer class are listed in Table 21. 

 

Method Description 

RegisterSerializationSurrogate Registers a custom user serializer /deserialzier to 

the chain of serializers. 

UnregisterSerializationSurrogate Unregisters a custom serializer from the chain. 

GetSurrogates Gets the chain of serializers.  

Serialize Serializes a value using the first serializer in the 

chain that is able to do it. 

Deserialize Deserializes a value from a stream using the first 

deserializer in the chain that is able to do it. 

Table 21 The YaRpcNativeSerializer class methods 

Note that the RegisterSerializationSurrogate method enables users to completely 

override the default YNP serialization behavior, and thus provide an important feature  

of the YNP protocol – custom serialization. 

2.5.3. Asymmetric Serialization 

Note that there is no type code to distinguish between signed and unsigned 

integer values, a string is considered equivalent to an array of chars, and there is no 

check to ensure a complex object that has been serialized on one side is being 

deserialized by the same complex type on the other side.  This ambiguity, which we call 

asymmetric serialization, however, enables clients and servers to use slightly different 

communication interfaces, while still enabling them to communicate seamlessly. This 

can potentially lead to a higher efficiency, as the end-points do not need to convert data 

to a required form after the deserialization. 

2.5.4. Nested Method Calls 

Consider a situation where a client synchronously issues a remote call to a server 

and during the execution of that remote call the server issues a callback to the client (aka 
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nested call). For a number of reasons, it is desirable that the remote callback is executed 

on the same thread that is blocked while waiting for the result of the original remote call 

(aka causal call). Such a behavior can not only improve runtime performance  

by utilizing an otherwise blocked thread, but it can also be crucial for applications that 

need to guarantee that certain activities are always executed on a single thread, such as 

update of a graphical user interface (GUI) or an invocation of COM components that use 

the single-thread apartment (STA) model on Microsoft Windows [Win07].  

In order to support execution of nested method calls on a causal thread, the YNP 

REQUEST message body contains a globally-unique identifier of the remote call to nest 

to. Also, the YNP implementations need to determine that a remote method call was 

invoked during execution of another remote call. Fortunately, most programming 

languages and/or operating systems provide means to save certain information on  

per-thread basis, for example Microsoft Windows provide the Thread Local Storage 

which is accessible using C#’s [ThreadStatic] attribute [Net07, Win07]. 

A more complicated situation arises when more than two communication  

end-points are involved. For example, consider the communication between three end-

points as depicted in the sequence diagram in Figure 10. When issuing callback GUID4 

from the server to client A, the server needs to determine that the causal call is the call 

GUID1, and not the call GUID3. In order to do that, the YNP implementations need to 

keep track of causality between the method calls, which basically means to maintain a 

stack of call-connection pairs that can be used to answer queries such as “what is the 

top-most call from the client X, that caused the execution of the current request”. 
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Figure 10 Causality of remote method calls in YNP (Source: [Jc07])  

Note that the concept of method call nesting as described here has already been 

available in the prototype of YaRpc that we used as a starting point of our efforts.  

As such, it has not been developed as part of this thesis, and we only provide its 

description here for the sake of completeness. 
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3. Implementation 

Even though the YaRpc middleware specification defines precisely which 

interfaces, classes and methods should the YaRpc implementations support, and what 

functionality they should provide, the specification is flexible in order to support a wide 

range of platforms and programming languages. Different programming languages 

provide different syntax and run-time features. With respect to the syntax features, 

languages without support of output or by-reference parameters might need to define  

a handful of additional objects to be able to return more complex values from a method 

call, or languages without support of object properties will need to define getter and 

setter methods, for example. Generally speaking, the variances in syntax features 

between the languages usually will not be a problem; however, unavailability of certain 

runtime features, such as the code reflection or dynamic code generation, might 

seriously affect implementations and potentially force them to redesign certain 

functionalities. 

As a proof of concept, we have implemented the YaRpc infrastructure and 

YaRpc Native Protocol (YNP) in both Java 6 and .NET Framework 2.0 (with C#) 

programming languages. In this section, we describe some of the details of the two 

implementations and how peculiarities of the corresponding platforms can be tackled. 

3.1. .NET Framework 2.0 

The Microsoft .NET Framework 2.0 with C# language was the initial platform 

used for prototyping of the whole YaRpc specification, so naturally the first 

implementation was available in C#. The C# language is a modern high-level 

programming language with a wide range of features (e.g., events, delegates, object 

properties, generics) that stream-line the development and enable creation of clean 

interfaces. Additionally, the standard system libraries provide advanced APIs which take 

advantage of the host operating system capabilities (e.g. asynchronous I/O, vectored I/O, 

advanced threading and synchronization). 

One of the design goals of YaRpc for .NET Framework was the compatibility –

the library only uses standard APIs, does not use P/Invoke [Msdn] and is written in 
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version 2.0 of the language, so that it might be used on a range of operating systems, 

including Linux with MONO framework [Mono]. 

A first step when creating a distributed application is the definition  

of a communication interface, which is known by both the client and server. Figure 11 

shows an example of such an interface. The methods of the interface that are to be made 

remotable are marked using the YaRpcMethodAttribute meta-data attribute, which is 

then used by both YaRpcProxy and YaRpcStub classes, as we will see later. 

 

 

 public interface IHelloWorld 

 { 

   [YaRpcMethod] 

   string GetGreeting(); 

 } 

 

Figure 11 A communication interface, shared by both client and server 

With C#, the YaRpcStub class can be extended with a generic type argument, and 

a user object dispatching the remote calls can be inherited from such a class. The 

YaRpcStub<T> class implements the IYaRpcRemotbale interface, and uses the runtime 

type reflection to identify which methods of type T are to be made remotable, based on 

the presence of the YaRpcMethodAttribute attribute. This leads to a clean and 

straightforward design pattern for development of the server applications, such as the 

example in Figure 12. 

 

 

 public class HelloWorldStub : YaRpcStub<IHelloWorld>, IHelloWorld 

 { 

    public HelloWorldStub( string objectKey ) 

     : base( objectKey ) 

    { 

    } 

 

    public string GetGreeting() 

    { 

      return "Hello world"; 

    } 

 } 

 

 ... 

 

 YaRpcManager.StartListening( "ynp://0.0.0.0" ); 

 HelloWorldStub stub = new HelloWorldStub( "key" ); 

 stub.RegisterToYaRpc(); 

 

Figure 12 An implementation of a server in .NET 
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Similarly, the YaRpcProxy class uses a generic type argument to associate the 

proxy object with a user-provided communication interface. In a first (simpler) variant, 

the YaRpcProxy uses the type information to dynamically find signatures of the user-

provided communication interface methods (again, marked with the 

YaRpcMethodAttribute attribute), and uses them to help the user with issuing remote 

method calls by aiding with creation of a YaRpcRequest, and handling the returned 

YaRpcResponse, via the YaRpcRemoteCall method – see example in Figure 13.  

 

 

 public class HelloWorldProxy : YaRpcProxy<IHelloWorld>, IHelloWorld 

 { 

   public HelloWorldProxy( IYaRpcConnection conn, string objectKey ) 

     : base( conn, objectKey ) 

    { 

    } 

 

    public string GetGreeting() 

    { 

      return (string) YaRpcRemoteCall( "GetGreeting" ); 

    } 

 } 

 

 ... 

 

 IYaRpcConnection conn = YaRpcManager.Connect( "ynp://127.0.0.1" ); 

 IHelloWorld proxy = new HelloWorldProxy( conn, "key" ); 

 string greeting = proxy.GetGreeting(); 

 

Figure 13 Client code, with a manually created proxy in .NET 

Microsoft .NET Framework enables dynamic class code generation in the 

runtime, by emitting the code in form of Microsoft Intermediate Language (MSIL) using 

the libraries provided by the System.Reflection.Emit namespace [Msil00]. A more 

sophisticated YaRpcProxy implementation can use this capability to generate and 

instantiate a type that implements the user-provided communication interface, with  

a functionality equivalent to the manually created proxy object. The runtime proxy 

generation greatly simplifies development of client applications, as shown in the code 

example in Figure 14. Note that the dynamic proxy generation is not part of the current 

YaRpc .NET implementation, and will be developed in the future. 
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 IYaRpcConnection conn = YaRpcManager.Connect( "ynp://host.com" ); 

 IHelloWorld proxy = YaRpcProxy<IHelloWorld>.Generate( conn, "key" ); 

 string greeting = proxy.GetGreeting(); 

 

Figure 14 Client code, with a dynamically generated proxy in .NET 

The YaRpc .NET implementation is available as a stand-alone assembly called 

YaRpc.dll which does not depend on any other third-party assembly, in order to provide 

maximum portability and ease of use. 

3.2. Java 6 

The Java Platform Standard Edition (Java SE) version 6 was the second platform 

selected for implementation of the YaRpc specification. Java 6 is a very popular and 

widely adopted software platform, probably due to the fact that it offers a powerful and 

easy-to-use high-level programming language, a comprehensive set of libraries, and, 

most importantly, a true portability which enables Java applications to run on operating 

systems such as Microsoft Windows, Linux, and Mac OS X, without any modification. 

Compared to the previous versions, Java 6 also offers several language features that 

enable creation of convenient programming interfaces to the YaRpc middleware,  

e.g. annotations and generics. An important goal of the Java 6 implementation was to 

provide a YaRpc programming interface that will be similar to the interface of the .NET 

implementation as much as possible. In fact, the .NET implementation served  

as a prototype during development of the Java version, and the only differences between 

the two implementations usually stemmed from the differences in the language features 

and libraries available. Another goal of the Java implementation was a maximum 

portability – for this reason, we chose to only use the standard libraries provided by the 

Java Platform Standard Edition (java.* packages only). 

Java does not provide any standardized way how to implement asynchronous 

operations, such as .NET Framework does (i.e., BeginXXX and EndXXX method pair,  

a delegate used to supply a callback method,  and the IAsyncResult interface  

as a descriptor of the asynchronous operation). We chose to adopt an equivalent model 

also in the Java implementation. The main issue is that Java does not support method 

delegates directly, thus user-provided method callbacks need to be supplied using 
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interfaces, which makes the code a little cumbersome. Figure 15 shows an example  

of an interface that emulates a method delegate.  

 

 

public interface IAsyncCallback { 

    void finished( IAsyncResult asyncResult ); 

} 

 

Figure 15 A method delegate in Java 

The IAsyncResult interface represents a token to an asynchronous operation, 

which can also hold a user-provided state object and be used to determine whether the 

asynchronous operation finished. Figure 16 shows methods of the IAsyncResult interface 

in Java. 

 

 

public interface IAsyncResult { 

    Object getAsyncState(); 

    boolean isCompleted(); 

    boolean isCompletedSynchronously(); 

} 

 

Figure 16 A token to an asynchronous operation in Java 

An example of implementation of an asynchronous operation - acceptance  

of a connection over a socket - is shown in Figure 17. A user invokes the asynchronous 

operation using the beginAccept method, where he or she provides an implementation  

of IAsyncCallback interface that represents a callback that will be called after the 

operation finished, and an arbitrary user-defined object. The beginAccept method returns 

an instance implementing IAsyncResult interface. After the asynchronous operation is 

finished, the implementation invokes the user callback, and the user invokes the 

endAccept method, passing it the IAsyncResult token, in order to get information about 

the result of the asynchronous operation, e.g. to obtain the newly accepted socket as in 

this example. 
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private class AcceptingThread extends Thread { 

 

    YaRpcAsyncResult _asynResult; 

 

    ... 

 

    @Override 

    public void run() 

    { 

        Socket newSocket = null; 

        Exception exp = null; 

 

        try { 

            newSocket = _socket.accept(); 

        } 

        catch ( IOException ex ) { 

            exp = ex; 

        } 

        finally { 

            YaRpcAsyncResult sar =  

               YaRpcAsyncResult.getFrom( _asynResult ); 

            sar.setTag( newSocket ); 

            if ( exp != null ) 

                sar.failed( exp ); 

            else 

                sar.completed(); 

        } 

    } 

} 

 

... 

 

public IAsyncResult beginAccept( IAsyncCallback cb, Object state )  

  throws IOException 

{ 

    YaRpcAsyncResult asynResult = new YaRpcAsyncResult( cb, state ); 

    AcceptingThread at = new AcceptingThread( this, asynResult ); 

    at.run(); 

    return asynResult; 

} 

 

... 

 

public Socket endAccept( IAsyncResult asyncResult ) throws Exception 

{ 

    YaRpcAsyncResult sar = YaRpcAsyncResult.getFrom( asyncResult ); 

    sar.end(); 

 

    return (Socket) sar.getTag(); 

} 

 

Figure 17 Implementation of an asynchronous operation in Java 
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One could ask why YaRpc provides an asynchronous interface to operations that 

are internally implemented using separate threads. The reason is that the internal 

implementation might be transparently changed in the future in order to support some 

asynchronous I/O interfaces provided by the underlying Java platform and operating 

system, and thus enable users to improve performance and scalability of their application 

without any change in the code. Asynchronous I/O operations will be available in Java 

7, which is announced to be released in few months, at the time of writing of this thesis 

[Jsr203]. 

Similarly to the .NET implementation, the @YaRpcMethod annotation is used  

to mark the methods that are to be made remotable. Figure 18 shows an example  

of a communication interface shared between the client and server. 

 

 

public interface IHelloWorld { 

 

    @YaRpcMethod 

    String getGreeting(); 

} 

 

Figure 18 Definition of a communication interface in Java 

Although Java provides support of generic type arguments, unlike in C#, the 

generics in Java are just a language sugar and the generic type information is not 

available in the runtime. However, the YaRpcStub implementation can obtain the current 

object type anyway, and uses it to inspect the remotable methods. An example  

of a server implementation is shown in Figure 19. 

 

 

public class HelloWorldStub extends YaRpcStub  

         implements IHelloWorld { 

 

    public HelloWorldStub( String objectKey ) 

    { 

        super( objectKey ); 

    } 

 

    @Override 

    public String getGreeting() 

    { 

        return "Hello world"; 

    } 

} 
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... 

 

YaRpcManager.startListening( "ynp://127.0.0.1" ); 

HelloWorldStub stub = new HelloWorldStub( "key" ); 

stub.registerToYaRpc(); 

 

Figure 19 An implementation of a server in Java 

Similarly to the .NET implementation, the YaRpcProxy class simplifies 

development of client applications by providing the yaRpcRemoteCall method that helps 

with issuing the remote call by creation of the appropriate YaRpcRequest and 

YaRpcResponse objects, based on the signature of remotable methods as discovered  

by runtime code reflection. The main issue is that Java class files do not preserve names  

of method parameters, and consequently, this information is not available in the 

reflection. In order to support RPC protocols that need to know the parameter names, the 

Java YaRpc implementation provides the @YaRpcParam annotation that can gives  

a name to a method parameter.  

Same as the YaRpcStub class, the YaRpcProxy class is also used without  

a generic type argument; the YaRpcProxy implementation can obtain the runtime type of 

the inheritor using other means. For an example of a client with a manually created 

proxy object, see Figure 20. 

 

 

public class HelloWorldProxy extends YaRpcProxy 

        implements IHelloWorld { 

 

    public HelloWorldProxy( IYaRpcConnection conn, String objectKey ) 

    { 

        super( conn, objectKey ); 

    } 

 

    @Override 

    public String getGreeting() 

    { 

        return (String) yaRpcRemoteCall( "GetGreeting" ); 

    } 

} 

 

... 

 

IYaRpcConnection conn = YaRpcManager.connect( "ynp://127.0.0.1" ); 

IHelloWorld proxy = new HelloWorldProxy( conn, "key" ); 

String greeting = proxy.getGreeting(); 
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Figure 20 Client code, with manually created proxy in Java 

Java also offers means to dynamically generate byte code and to dynamically 

load class files in the run-time. Unfortunately, standard Java libraries do not provide any 

convenient API to generate the byte code, so a third-party library might be necessary, 

such as Javassist [Javass] or Apache BCEL [Bcel]. By using dynamic byte code 

generation, we could generate a particular inheritor of YaRpcProxy automatically, and 

thus greatly simplify development of YaRpc client applications, as shown in Figure 21. 

Note that this functionality is currently not implemented, and will be added in the future. 

 

 

 IYaRpcConnection conn = YaRpcManager.connect( "ynp://127.0.0.1" ); 

 IHelloWorld proxy = (IHelloWorld)  

                     YaRpcProxy.generate( IHelloWorld.class,  

                                          conn, "key" ); 

 String greeting = proxy.getGreeting(); 

 

Figure 21 Client code, with a dynamically generated proxy in Java 

The YaRpc Java implementation is available as a stand-alone JAR file called 

YaRpc.jar, which does not depend on any other third-party libraries, in order to provide 

maximum portability and ease of use.  
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4. Evaluation 

The main goal of this thesis was to design a flexible high-performance RPC 

middleware that would enable software developers to create distributed applications 

with an unprecedented ease. In order to evaluate the level to which this goal has been 

accomplished, we provide an example distributed application implemented with Java 

RMI, .NET Remoting, SOAP web services and YaRpc middleware with the YNP 

protocol. Each implementation is accompanied with a description of all the steps  

an application developer needs to perform. 

Unfortunately, as described in Section 5, both Java and .NET Framework 

implementations of the YNP protocol are still in the state of a prototype and do not reach 

a production quality, which prevented us to provide an accurate comparison of YNP 

protocol performance compared to other protocols.  

4.1.1. Java RMI 

In this example, we present all the steps necessary to develop an example 

distributed application using Java RMI. Even though a number of third-party libraries 

provide a different means to implement the example application in RMI, we chose to 

only use standard tools and libraries provided by the Java Development Kit (JDK) 1.6. 

 

1. Define a communication interface to the remote object, which will be shared by 

both client and server. Every interface to a remote object in RMI needs to extend 

the java.rmi.Remote interface and the remotable methods need to declare that 

they throw the RemoteException exception – see Figure 22. 

2. Implement the class representing the remote object. This class is only available 

on the server and implements the communication interface as defined in  

step 1 - see Figure 23. 

3. Create the server main code, which registers the remote object into rmiregistry 

by calling the rebind method on the object Naming - see Figure 23.  
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4. Create the client source code, where first the security policy needs to be set up, 

and then the remote object needs to be looked up in rmiregistry by calling the 

lookup method on the object Naming - see Figure 24. 

5. Run the rmiregistry utility (which is a part of JDK) on both client and server,  

in order to set up the RMI registry on port 1099. 

 

import java.rmi.Remote; 

import java.rmi.RemoteException; 

 

public interface IRObject extends Remote { 

 

    void sayHelloWorld( String clientName ) throws RemoteException; 

 

    long getSum( int numA, int numB ) throws RemoteException; 

 

    List<String> reverseArray( List<String> inputArray )  

            throws RemoteException; 

}  

 

Figure 22 Java RMI communication interface 

 

 

public class RObjectImpl extends UnicastRemoteObject implements IRObject { 

 

    private static final long serialVersionUID = 1L; 

 

    public RObjectImpl() throws RemoteException { super(); } 

 

    public void sayHelloWorld( String clientName ) throws RemoteException 

    { 

        try { 

            System.out.println(  

                String.format( "Hellow world from %s", clientName) ); 

        } 

        catch (Exception e) { 

            throw new RemoteException("Error in sayHelloWorld", e); 

        } 

    }  

 

    ... 

 

public static void main(String[] args) { 

 

    try 

    { 

        String codebase = "file:/" +  

              new File("").getAbsolutePath() + "/"; 

        codebase = codebase.replaceAll(" ", "%20"); 

 

        System.setProperty("java.rmi.server.codebase", codebase); 

 

        String host = args.length > 0 ? args[0] : "localhost"; 

 

        RObjectImpl remoteObject = new RObjectImpl(); 
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        Naming.rebind("//" + host + "/RemoteTestObject", remoteObject); 

        System.out.println("Remote object is registred in RMIregistry."); 

 

        ... 

 

Figure 23 Java RMI server code 

 

 

public static void main(String[] args) { 

    try 

    { 

        System.setProperty("java.security.policy", "rmi.policy"); 

        if (System.getSecurityManager() == null) 

            System.setSecurityManager(new RMISecurityManager()); 

 

        String host = args.length > 0 ? args[0] : "localhost"; 

 

        IRObject remoteObject = (IRObject) Naming.lookup("//"  

                                           + host + "/RemoteTestObject"); 

 

        remoteObject.sayHelloWorld( "Client" );  

 

        ... 

 

Figure 24 Java RMI client code 

4.1.2. .NET Remoting 

In this section we present an implementation of the equivalent distributed 

application as in Section 4.1.1, in C# language and using .NET Remoting for underlying 

communication. In general, .NET Framework provides a fairly easy and straightforward 

way to create a simple distributed application, however, things get more complicated  

if a developer wants to get more control over configuration of the remoting 

infrastructure. In order to create the example application, the following steps need to be 

performed: 

 

1. Create an implementation of the remotable object in an assembly, which will be 

referenced by both client and server. The remote object has to extend the 

MarshalByRefObject class (which is “the base class for objects that 

communicate across application domain boundaries by exchanging messages 

using a proxy”, see [Msdn]) - see Figure 25.  

2. Create a server code which registers the remote object in the .NET Remoting 

repository - see Figure 26. 
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3. Modify a server configuration file that specifies the type of the transport channel 

(TCP or HTTP), the mode of a calling behavior of object and the URI where the 

remote object will be made available – see Figure 27. 

4. Create the client code, which loads the configuration from a file, and uses that 

information to create a proxy to the remotable object – see Figure 28. 

5. Define the client configuration file, to specify the URI of the remotable object – 

see Figure 29. 

 

namespace RObjects 

{ 

 public class RObject : MarshalByRefObject 

 { 

  public void SayHelloWorld(string clientName) 

  { 

   Console.Out.WriteLine("Hello world from " + clientName); 

  } 

 

  public long GetSum(int a, int b) 

  { 

   return ((long)a + (long)b); 

  } 

 

  public List<string> ReverseArray(List<string> array) 

  { 

   array.Reverse(); 

   return (array); 

  } 

 } 

} 

  

Figure 25 .NET Remoting remote object implementation 

 

 

using System.Runtime.Remoting; 

using System.Runtime.Remoting.Channels; 

 

namespace Server 

{ 

 class Server 

 { 

  static void Main(string[] args) 

  { 

   RemotingConfiguration.Configure("server.config", false); 

   Console.WriteLine("Server start listening"); 

   Console.ReadLine(); 

  } 

 } 

} 

  

Figure 26 .NET Remoting server code 
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<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

  <system.runtime.remoting> 

    <application> 

      <service> 

        <wellknown mode="Singleton"  

                   type="RObjects.RObject, RObject"  

                   objectUri="RObject.rem" /> 

      </service> 

      <channels> 

        <channel ref="http" port="8989"/> 

        <!--if you want tcp then port would be =8080--> 

      </channels> 

    </application> 

  </system.runtime.remoting> 

</configuration>  

 

Figure 27 .NET Remoting server configuration file 

 

 

using System.Runtime.Remoting; 

using RObjects; 

 

namespace Client 

{ 

 class Client 

 { 

  static void Main(string[] args) 

  { 

   try 

   { 

    RemotingConfiguration.Configure( 

                              "Client.exe.config", false); 

    RObject remoteObject = new RObject(); 

 

    remoteObject.SayHelloWorld("Client"); 

 

                           ...  

 

Figure 28 .NET Remoting client code  

 

 

<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

  <system.runtime.remoting> 

    <application> 

      <client> 

        <wellknown type="RObjects.RObject, RObject"  

                   url="http://localhost:8989/RObject.rem" /> 

      </client> 

    </application> 

  </system.runtime.remoting> 

</configuration> 

 

Figure 29 .NET Remoting client configuration file 
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4.1.3. SOAP Web Services with C# 

In this section we present the example application developed using a web 

services created in C# using Microsoft Visual Studio IDE, which allows programmers to 

define web methods without manually creating a WSDL definition file. The creation of 

the web services application comprised the following steps: 

 

1. In order to develop the server, create a new web services project in Microsoft 

Visual Studio IDE. The wizard will automatically generate the basic code. 

2. Define methods of the web service – see Figure 30. 

3. Deploy the web service to a web server, such as Internet Information Services 

(IIS) server. 

4. In order to create the client, obtain the WSDL definition of the web service from 

the server, and use the wsdl.exe tool to generate a proxy code to access the web 

service – see Figure 31. 

5. Implement the client code, using the generated proxy – see Figure 32. 

 

[WebService(Namespace = "http://yarpc.example.org/")] 

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] 

[ToolboxItem(false)] 

public class WSexample: System.Web.Services.WebService 

{ 

 [WebMethod] 

 public string SayHelloWorld( string clientName ) 

 { 

  return ( "Hello World from " + clientName ); 

 } 

 

 [WebMethod] 

 public long GetSum(int a, int b) 

 { 

  return ( (long)a + (long)b); 

 } 

 

 [WebMethod] 

 public List<string> ReverseArray(List<string> array) 

 { 

  array.Reverse(); 

  return (array); 

 } 

}  

 

Figure 30 Web service server code in C# 

  



65 

 

 

  // This source code was auto-generated by wsdl utility 

  [System.Web.Services.Protocols. 

  SoapDocumentMethodAttribute("http://yarpc.example.org/SayHelloWorld", 

  RequestNamespace="http://yarpc.example.org/",    

  ResponseNamespace="http://yarpc.example.org/",    

  Use=System.Web.Services.Description.SoapBindingUse.Literal,  

  ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)] 

  public string SayHelloWorld(string clientName) { 

      object[] results = this.Invoke("SayHelloWorld", new object[] { 

                  clientName}); 

      return ((string)(results[0])); 

  } 

 

Figure 31 Auto-generated web service proxy in C# 

 

 

 WSexample webService = new WSexample(); 

 string greetings = webService.SayHelloWorld("C# client"); 

 long sum = webService.GetSum(5, 8); 

  

Figure 32 Web service client code in C# 

Note that the creation of distributed applications using web services in C# is 

greatly simplified thanks to the tools available in Microsoft Visual Studio; manual 

creation of both server and client web service is a much more complicated and error-

prone task. 

4.1.4. SOAP Web Services with Java 

The process of development of web services server and client in Java is very 

similar to the development process in C#; a lot of the application code can be generated 

using wizards available in IDEs such as Netbeans [Nbide]. The development process 

consists of the following steps: 

 

1. In order to develop the server, create a new web services project in Netbeans. 

The wizard will automatically generate the basic code. 

2. Define methods of the web service – see Figure 33. Netbeans offers another 

wizard to help a developer to get the annotations right. 

3. Deploy the web service to a web server, such as Apache Tomcat server. 

4. In order to create the client, obtain the WSDL definition of the web service from 

the server, and use the Java API for XML Web Services (jax-ws) [Jaxws] to 

generate a proxy code to access the web service – see Figure 34. 
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5. Implement the client code, using the generated proxy methods – see Figure 35. 

 

 

@WebService() 

public class WSExample { 

 

    @WebMethod(operationName = "sayHelloWorld") 

    public String sayHelloWorld(@WebParam(name = "clientName") 

    String clientName) { 

        return "WSJava: hello world from: " + clientName; 

    } 

 

    @WebMethod(operationName = "getSum") 

    public long getSum(@WebParam(name = "a") 

    int a, @WebParam(name = "b") 

    int b) { 

        return ( (long) a + (long) b ); 

    } 

 

    @WebMethod(operationName = "reverseArray") 

    public List<String> reverseArray(@WebParam(name = "array") 

    List<String> array) { 

        Collections.reverse(array); 

        return (array); 

    } 

} 

 

Figure 33 Web service server code in Java 

 

 

    private static String sayHelloWorld( String clientName ) 

    { 

        javaclientws.WSexample service = new javaclientws.WSexample(); 

        javaclientws.WSexampleSoap port = service.getWSexampleSoap(); 

        return port.sayHelloWorld( clientName ); 

    } 

 

    private static long getSum( int a, int b ) 

    { 

        javaclientws.WSexample service = new javaclientws.WSexample(); 

        javaclientws.WSexampleSoap port = service.getWSexampleSoap(); 

        return port.getSum( a, b ); 

    } 

 

Figure 34 Web service auto-generated proxy methods in Java 

 

 

    public static void main(String[] args)  

    { 

        String sayHelloWorld = sayHelloWorld( "Java client" ); 

        long sum = getSum( 10, 15 ); 

        ... 

 

Figure 35 Web service client code in Java 
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4.1.5. YaRpc with YNP in C# 

In this section we show how to implement an equivalent distributed application 

with YaRpc middleware, YNP protocol, and C# programming language. The 

development process consists of the following steps: 

 

1. Define the communication interface, shared by both client and server – see 

Figure 36.  

2. Implement the methods of the communication interface on the server, and 

activate the server – see Figure 37. 

3. Create the client code, using a runtime-generated proxy – see Figure 38. 

 

 public interface IRObject 

 { 

   [YaRpcMethod] string SayHelloWorld(string clientName); 

   [YaRpcMethod] long GetSum(int a, int b); 

   [YaRpcMethod] List<string> ReverseArray(List<string> array); 

 } 

 

Figure 36 YaRpc+YNP communication interface definition in C# 

 

 public class RObjectStub : YaRpcStub<IRObject>, IRObject 

 { 

    public RObjectStub(string objectKey) : base(objectKey)  

    { } 

 

   

    public string SayHelloWorld(string clientName) 

    { 

      return "Hello world from " + clientName; 

    } 

 

    public long GetSum(int a, int b) 

    { 

      return (long) a + (long) b; 

    } 

 

    public string[] ReverseArray( string[] array ) 

    { 

      Array.Reverse( array ); 

      return array; 

    } 

  } 

 

  ... 

  YaRpcManager.StartListening("ynp://127.0.0.1:1234"); 

  RObjectStub stub = new RObjectStub("robject"); 

  stub.RegisterToYaRpc(); 

  ... 

 

Figure 37 YaRpc+YNP server code in C# 
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  ... 

  IYaRpcConnection con = YaRpcManager.Connect("ynp://127.0.0.1:1234"); 

  IRObject proxy = YaRpcProxy<IRObject>.Generate( con, "robject" );  

 

  string greeting = proxy.SayHelloWorld("YaRpc C# client"); 

  long sum = proxy.GetSum(5, 8); 

  ... 

 

Figure 38 YaRpc+YNP client code in C# 

The Java equivalent of the example application looks very much the same  

as the C# version, so we skipped it. Clearly, the development of the application using 

YaRpc only requires three trivial steps that can easily be performed manually, without 

need of any external tool or wizard. In our opinion, YaRpc enables developers to create 

new distributed applications rapidly, even if they have limited or no knowledge of the 

underlying infrastructure or distributed computing in general, which is not the case with 

the other RPC technologies presented in this section. 
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5. Conclusion & Future Work 

In this thesis we have presented a specification of an extensible RPC 

middleware, which can support virtually any network transport layer and RPC protocol. 

Additionally, we have designed a new light-weight communication protocol, the YaRpc 

Native Protocol (YNP), which is an interesting alternative to existing RPC protocols 

thanks to features such as high performance due to a binary message format,  

server-initiated callbacks, customizable serialization, asymmetric serialization and 

nested method calls. As a proof of concept, we provide an implementation of the YaRpc 

middleware specification in both Microsoft .NET Framework (with C#) and Java 

programming languages, including the support of the YNP protocol. The 

implementations try to bring high-performance distributed computing to the fingertips  

of application developers, by utilizing advanced data structures and capabilities of the 

underlying operating systems, while still offering a simple to use application 

programming interface (API). 

The main contribution of the thesis is a proof that an RPC middleware can be 

made simple and generally usable, and still offer a rich set of features. We have shown 

how the capabilities of modern high-level programming languages can be leveraged  

to encapsulate a complex functionality into an easy-to-use API. Also, to the best of our 

knowledge, YaRpc is the only middleware that aims to fully support a wide range  

of existing RPC protocols under a single API. Some of the features provided by YNP, 

such as nested method calls or asymmetric serialization, are not readily available in any 

other RPC middleware.  

We need to note that both implementations of the YNP protocol in C# and Java 

are currently in a state of a prototype, and cannot be used in a production environment  

as is, without additional testing and debugging. We believe, however, that in 

forthcoming weeks both implementations will reach a sufficient level of maturity that 

will allow us to release the source code to the public. We also believe that soon after the 

release YaRpc will attract an open source development community that will drive 

further extension of YaRpc with other RPC protocols and features. If we succeed in this 
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effort, YaRpc has a potential to become a popular tool used by distributed application 

developers world-wide. 

In a longer term, besides adding support for new transport layers and RPC 

protocols, we plan to introduce a range of unique features such as connection pooling 

and transparent network failover. After a final release of Java 7 platform we want  

to provide a YaRpc implementation for Java that would take advantage of the new 

asynchronous I/O API provided by the JSR 203 [Jsr203], and thus enabled developers  

to create high-performance distributed applications in Java with a little effort. Also,  

a new version of the YNP protocol is being planned, that would allow serialization  

of remotable object references by generating appropriate proxy objects, and intelligent 

handling of proxy-to-proxy chains.   

 

 

 



71 

References & Annexes 

[Bcel] The Byte Code Engineering Library Project, http://jakarta.apache.org/bcel/ 

[Bhkk06] J.W. Berry, B.A. Hendrickson, S. Kahan, P. Konecny: Graph Software 

Development and Performance on the MTA-2 and Eldorado, 2006 

[Bir83] A.D. Birrell, B.J Nelson: Implementing Remote Procedure Calls, XEROX 

CSL-83-7, 1983 

[Dce80] D. Cohen: On Holy Wars and a Plea for Peace, IEN 137, 1980 

[Dcom98] The Open Group (1998): The COM/DCOM Reference, Documentation for 

ActiveX Core Technology 

[Etch08] The Etch Project, https://cwiki.apache.org/ETCH/ 

[Ft07] The Thrift Project, http://thrift.apache.org/ 

[Gpb08] The Google Protocol Buffers Project, http://code.google.com/p/protobuf/ 

[Java06] Sun Microsystems, Inc.: JavaTM Platform, Standard Edition 6, API 

Specification, 2006 

[Javass] The Java Programming Assistant Project, http://www.javassist.org/ 

[Jaxws] The JAX-WS Project, http://jax-ws.java.net/ 

[Jc07] J. Čurn: Distribution for Open Modeling Interface and Environment, 

Master thesis, MFF UK, 2007 

[Jon02] A. Jones, J. Ohlund: Network Programming for Microsoft Windows, 

Second Edition, 2002 

[Jsr203] Java Specification Requests: More New I/O APIs for the JavaTM Platform 

("NIO.2"), http://jcp.org/en/jsr/, 2007 

[Mono] The MONO Project, http://www.mono-project.com/ 

[Msdn] Microsoft Corporation: The Microsoft Developer Network library, 

http://msdn.microsoft.com/ 

[Msil00] Microsoft Corporation: MSIL Instruction Set Specification, 2000 

[Mwgs07] M. Wilson, Gathering Scattered I/O, 2007 

[Net07] Microsoft Corporation: .NET Framework Reference, 2007 

[Omg04] Object Management Group, Inc.: Common Object Request Broker 

Architecture: Core Specification, 2004 

http://jakarta.apache.org/bcel/
https://cwiki.apache.org/ETCH/
http://thrift.apache.org/
http://code.google.com/p/protobuf/
http://www.javassist.org/
http://jax-ws.java.net/
http://jcp.org/en/jsr/
http://www.mono-project.com/
http://msdn.microsoft.com/


72 

[Rest07] L. Richardson, S. Ruby: RESTful Web Services, Web services for the real 

world, O'Reilly Media, 2007 

[Rfc1057] Sun Microsystems, Inc.: Remote Procedure Call, Version 2, 1988 

[Rfc1831] R. Srinivasan: RPC: Remote Procedure Call Protocol Specification Version 

2, Sun Microsystems, Inc., 1995 

[Rfc707] J. E. White: A High-Level Framework for Network-Based Resource 

Sharing, Stanford Research Institute, 1976 

[Rfc793] J.Postel: Transmission Control Protocol, USC/Information Sciences 

Institute, 1981 

[Ssl94] Hickman, Kipp: The SSL Protocol, Netscape Communications Corp., 1994 

[Web04] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, D. 

Orchard: Web Services Architecture, W3C Working Group Note, 2004 

[Win07] Microsoft Corporation: Windows API Reference, 2007 

[Ws97] Microsoft Corporation: Windows Sockets 2 API specification, 1997 

[Xml99] Dave Winer: XML-RPC Specification, 1999 



73 

List of Tables 

Table 1 RPC technologies comparison ....................................................................... 19 

Table 2 YaRpcManager class methods ....................................................................... 25 

Table 3 IYaRpcConnection interface methods ............................................................ 27 

Table 4 YaRpcRequest class properties....................................................................... 28 

Table 5 YaRpcResponse class properties .................................................................... 29 

Table 6 IYaRpcTransport interface methods .............................................................. 30 

Table 7 IYaRpcRemotable interface methods ............................................................. 32 

Table 8 IYaRpcWorker interface methods .................................................................. 33 

Table 9 YaRpcSmartStream class methods ................................................................. 36 

Table 10 YaRpcWriter class methods ........................................................................... 38 

Table 11 YaRpcReader class methods .......................................................................... 39 

Table 12 YaRpcStub class methods............................................................................... 41 

Table 13 YaRpcProxy class methods ............................................................................ 41 

Table 14 Abstract methods of the YaRpcConnectionBase class ................................... 42 

Table 15 YNP protocol message header ....................................................................... 43 

Table 16 YNP protocol REQUEST message body....................................................... 44 

Table 17 YNP protocol RESPONSE message body..................................................... 44 

Table 18 YNP protocol EXCEPTION message body .................................................. 44 

Table 19 Serialized value signature byte ...................................................................... 45 

Table 20 Signature type code ........................................................................................ 46 

Table 21 The YaRpcNativeSerializer class methods .................................................... 47 

 

  



74 

List of Figures 

Figure 1 Local procedure call vs. remote procedure call ............................................... 5 

Figure 2 CORBA architecture ........................................................................................ 8 

Figure 3 Microsoft .NET Remoting architecture ......................................................... 10 

Figure 4 Java RMI architecture .................................................................................... 11 

Figure 5 Web services architecture .............................................................................. 13 

Figure 6 XML-RPC architecture .................................................................................. 15 

Figure 7 Etch architecture ............................................................................................ 16 

Figure 8 Thrift architecture .......................................................................................... 18 

Figure 9 YaRpc architecture ........................................................................................ 23 

Figure 10 Causality of remote method calls in YNP (Source: [Jc07]) ....................... 49 

Figure 11 A communication interface, shared by both client and server ................... 51 

Figure 12 An implementation of a server in .NET ..................................................... 51 

Figure 13 Client code, with a manually created proxy in .NET ................................. 52 

Figure 14 Client code, with a dynamically generated proxy in .NET ........................ 53 

Figure 15 A method delegate in Java ......................................................................... 54 

Figure 16 A token to an asynchronous operation in Java ........................................... 54 

Figure 17 Implementation of an asynchronous operation in Java .............................. 55 

Figure 18 Definition of a communication interface in Java ....................................... 56 

Figure 19 An implementation of a server in Java ....................................................... 57 

Figure 20 Client code, with manually created proxy in Java ..................................... 58 

Figure 21 Client code, with a dynamically generated proxy in Java .......................... 58 

Figure 22 Java RMI communication interface ........................................................... 60 

Figure 23 Java RMI server code ................................................................................. 61 

Figure 24 Java RMI client code .................................................................................. 61 

Figure 25 .NET Remoting remote object implementation ......................................... 62 

Figure 26 .NET Remoting server code ....................................................................... 62 

Figure 27 .NET Remoting server configuration file .................................................. 63 

Figure 28 .NET Remoting client code ........................................................................ 63 

Figure 29 .NET Remoting client configuration file ................................................... 63 



75 

Figure 30 Web service server code in C# ................................................................... 64 

Figure 31 Auto-generated web service proxy in C# ................................................... 65 

Figure 32 Web service client code in C# .................................................................... 65 

Figure 33 Web service server code in Java ................................................................ 66 

Figure 34 Web service auto-generated proxy methods in Java .................................. 66 

Figure 35 Web service client code in Java ................................................................. 66 

Figure 36 YaRpc+YNP communication interface definition in C# ........................... 67 

Figure 37 YaRpc+YNP server code in C# ................................................................. 67 

Figure 38 YaRpc+YNP client code in C# .................................................................. 68 



76 

Definitions and Abbreviations 

API Application Programming Interface 

ASCII American Standard Code for Information Interchange 

COM Component Object Model 

CORBA Common Object Request Broker Architecture 

DCOM Distributed Component Object Model 

DoS Denial of Service attack 

GIOP General Inter-ORB Protocol 

GUI Graphical user interface 

GUID Globally Unique Identifier 

HTTP Hypertext Transfer Protocol 

HTTPS Hypertext Transfer Protocol Secure 

I/O Input/Output 

IDE  Integrated development environment 

IDL Interface description language 

IEEE  Institute of Electrical and Electronics Engineers 

IIOP Internet Inter-ORB Protocol 

J2EE Java 2 Enterprise Edition 

JDK Java Development Kit 

JRMP Java Remote Method Protocol 

JSON JavaScript Object Notation 

JVM Java Virtual Machine 

MSIL Microsoft Intermediate Language 

MVC Model View Controller 

NFS Network File System 

OMA Object Management Architecture 

OMG Object Management Group 

ONC Open Network Computing 

ORB Object Request Broker 

RMI Remote Method Invocation 



77 

RPC Remote Procedure Call 

SOA Service Oriented Architecture 

SOAP Simple Object Access Protocol 

SSL Secure Sockets Layer 

STA Single Thread Apartment model 

TCP Transmission Control Protocol 

TCP/IP Transmission Control Protocol / Internet Protocol 

TIDL Thrift Interface Description Language 

UCS Universal Character Set 

UDDI Universal Description, Discovery and Integration 

UDP User Datagram Protocol 

URI Uniform Resource Identifier 

URL Uniform Resource Locator 

UTF-8 UCS Transformation Format 

WSIL Web Services Inspection Language 

XML Extensible Markup Language 

YaRpc Yet Another Remote Procedure Call 

YNP YaRpc Native Protocol 

 


