
Univerzita Karlova v Praze
Matematicko-fyzikálńı fakulta

DIPLOMOVÁ PRÁCE

Jakub Malý

Evoluce XML schémat

Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce: RNDr. Irena Mlýnková, Ph.D.

Studijńı program: Informatika, softwarové systémy

2010

I would like to thank to my supervisor RNDr. Irena Mlýnková, Ph.D. for her
helpful suggestions, thorough notes and provided related research material. I
would also like to thank to Mgr. Martin Nečaský, Ph.D. for his suggestions and
comments.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně s
použit́ım citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce.

I hereby declare that I have elaborated this master thesis on my own and
listed all used references. I agree with making this thesis publicly available.

In Prague on April 12, 2010 Jakub Malý

3

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 XML Schema . 10
1.3 Aim of the Thesis . 11
1.4 Structure of the Thesis . 11

2 Related Work 13
2.1 X-Evolution . 14

2.1.1 Evolution Primitives . 14
2.1.2 Validation . 15
2.1.3 Document Adaptation . 16
2.1.4 Discussion . 17

2.2 XEM: XML Evolution Management 18
2.2.1 Evolution Primitives . 18
2.2.2 Implementation . 18
2.2.3 Discussion . 20

2.3 CoDEX . 20
2.3.1 Conceptual Model . 21
2.3.2 Schema Evolution . 21
2.3.3 Discussion . 22

2.4 Evolution using UML Class Diagrams 22
2.4.1 Discussion . 23

3 XSem 24
3.1 Conceptual Modeling . 24
3.2 XSEM . 25
3.3 Platform-Independent Model – UML Class Diagrams 27
3.4 Platform-Specific Model . 32

4

4 XSem Evolution 49
4.1 Overview . 49
4.2 Approaches to Change Detection 51
4.3 Version Links . 52
4.4 Approaches to Revalidation . 56

5 Changes Between Versions 58
5.1 Changes Categorization . 58

5.1.1 Diagram Changes . 59
5.1.2 Subordinate Node Changes 61
5.1.3 Superordinate Node Changes 63
5.1.4 Changes of Association Target 64
5.1.5 Changes of Classes . 68
5.1.6 Content Container Changes 71
5.1.7 Attribute Changes . 72
5.1.8 Changes in Attribute Collections 79
5.1.9 Class Union Changes . 80
5.1.10 Association Changes . 81

5.2 Changes Summary . 83
5.3 Changes Not Affecting Validity 84

5.3.1 Changes Applied During Creation 86
5.3.2 Changes Giving More Choices 86
5.3.3 Changes Broadening Cardinality Interval 88
5.3.4 Changes Adding Optional Content 89
5.3.5 Utilizing Any Attribute Flag 90
5.3.6 Changes Caused by Differences between XSem Model and

XML Model . 90
5.4 Generating Content . 91

5.4.1 User-Provided Content . 91
5.4.2 Default Content . 93
5.4.3 Utilization of PIM Links 96

5.5 Oracle In-Place XML Schema Evolution 96
5.6 Detection Algorithm . 98

6 Revalidation 101
6.1 XSL Specifics . 102
6.2 Nodes Categorization . 102
6.3 Revalidation Script Overview . 104

5

6.4 XPath Expressions for XSem-H Nodes 105
6.5 Green Nodes Processing . 106
6.6 Blue Nodes Processing . 107
6.7 Red Nodes Processing – Simplified Diagrams 107

6.7.1 Red Node Template – Foundations 109
6.7.2 Leaf (Attribute) Nodes . 110
6.7.3 Inner Nodes – Gathering XML Elements 111
6.7.4 Inner Nodes – Gathering XML Attributes 112
6.7.5 Inner Node Template Body 113
6.7.6 Example . 121

6.8 Group Nodes . 127
6.8.1 Motivational Example . 127
6.8.2 Content Group Nodes Processing 129
6.8.3 Group Node Template . 130
6.8.4 Referencing Group Templates 131
6.8.5 Verification . 138

6.9 Content Choices and Class Unions 138
6.9.1 Gathering XML Elements 139
6.9.2 Gathering XML Attributes 141
6.9.3 Updated Inner Red Node Template 142
6.9.4 Content Choice Reference 142
6.9.5 Class Union Reference . 145

6.10 Structural Representatives . 151
6.10.1 Gathering XML Elements/Attributes 151
6.10.2 Templates for Structural Representative 154

7 Implementation and Experiments 158
7.1 Implementations . 158
7.2 Experiments . 159

8 Conclusion 161
8.1 Future Work . 162

8.1.1 Generating Content . 163
8.2 Version Links for Imported Schemas 164
8.3 Generalizations and Extensions 165

A CD Contents 166

6

B Sample XML Document and XML Schema Translation for Di-
agram 3.14 167

C Sample XML Document for Diagram 6.13 169

7

Název práce: Evoluce XML schémat
Autor: Jakub Malý
Katedra (ústav): Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce: RNDr. Irena Mlýnková, Ph.D.
e-mail vedoućıho: mlynkova@ksi.mff.cuni.cz

Abstrakt: V předložené práci studujeme evoluci XML dat, a předevš́ım d̊uvody
a dopady evoluce XML schémat. Práce obsahuje přehled existuj́ıćıch př́ıstup̊u.
Př́ıstup prezentovaný v této práci rozšiřuje konceptuálńı model XSem o pod-
poru v́ıce verźı systému. Dı́ky tomuto rozš́ıřeńı lze definovat sadu změn mezi
dvěma verzemi. Dále práce obsahuje popis algoritmu, který porovnáńım dvou
verźı schématu vytvoř́ı revalidačńı skript v jazyce XSL.

Kĺıčová slova: XML, modelováńı XML dat, evoluce XML dat, XSem

Title: Evoluce XML schémat
Author: Jakub Malý
Department: Katedra softwarového inženýrstv́ı
Supervisor: RNDr. Irena Mlýnková, Ph.D.
Supervisor’s e-mail address: mlynkova@ksi.mff.cuni.cz

Abstract: In the presented work we study the XML data evolution, reasons and
consequences of XML schema evolution in particular. The thesis contains a sur-
vey of the existing approaches to this problem. The approach presented in this
work extends the XSem conceptual model with the support for multiple versions
of the model. Thanks to this extension, it is possible to define a set of changes
between two versions of a schema. The thesis contains a description of an algo-
rithm that compares two versions of a schema and produces a revalidation script
in XSL.

Keywords: XML, modeling XML data, XML data evolution, XSem

8

Chapter 1

Introduction

1.1 Motivation

With the number of computer and Internet users growing every day the amount
of data created, sent, interchanged and stored grows in an adequate rate. Be-
side storing the data in relational database management systems, the eXtensible
Markup Language (XML) [30] is getting notable attention among the developers.

Relational databases still rule in the field of efficiency, but the records and
tables are less suitable for message and data exchange. On the other hand, the
XML format is easy to understand both to human users as well as parsers and
applications regardless the platform and environment and can be easily trans-
mitted over any protocol.

These are some of the reasons that lead many software designers to choose
a relational database as a data storage and XML as the message format. The
format of the messages is usually specified in the form of an XML schema using
one of the languages mentioned in Section 2. Documents compliant with a certain
schema are valid.

The XML applications are usually dynamic. During a system’s life cycle and
growing group of users, requests for changes in the system emerge, usually for
one of the following reasons:

• changes (additions) at the conceptual level are required when a system is
expanding

• existing interface needs to be extended or modified (for example to comply
with a third party interface or standard)

9

• there are flaws in the current design that need to be corrected

These changes usually enforce changes in the structure and content of the
messages used in the system and will be reflected in the changes of the XML
schemas. This process is called XML schema evolution.

Transition to a new set of schemas can be complicated.

• If the old interface is no longer supported

– other parties communicating with the evolved systems have to modify
their components to accept messages/documents valid against evolved
schemas,

– existing documents must be modified to become valid against the new
schema (and these documents may be distributed among the system
users, not easily accessible for the evolved system).

• If the system maintains support for the old interface (which is usually a
necessity at least for some period of time),

– the system must be able to handle both versions of documents and
messages which impairs maintainability of the system and increases
its complexity.

It can be seen that system evolution can be a costly process but some of the
difficulties can be significantly reduced when using a convenient tool.

1.2 XML Schema

When two participants decide to share data and communicate via XML mes-
sages, they have to agree on a certain contract defining the syntax and semantics
of the messages.

The types of requirements on the structure of XML documents (or so called
schema of the document) do not differ very much from application to application
and that is why designated languages were defined to describe these require-
ments. DTD [33] or XML Schema [32] are the most common ones, the latter
being a preferred choice where more thorough description or type awareness is
desired. The abbreviation XSD (XML Schema Definition) is used for concrete
schema definition (instance) in XML Schema language.

Having a separate language for XML schema definition is useful for several
reasons:

10

• It allows using generic parsers and validators to be created. These valida-
tors can validate any document against any schema.

• Knowledge of the schema of the document can be used to optimise the
strategy for storing and querying documents with query (XPath [35], XQuery
[36]) and update languages (XQuery Update Facility [37]).

• One part of the XML Schema language is the definition of built-in data
types and a set of rules to create user-defined types. This type system is
used in other XML-related standards e.g. XPath or XSLT [15].

1.3 Aim of the Thesis

When required schema evolution is performed, document revalidation may be
the harder part of the task. The näıve approach to document revalidation would
be using a generic XML schema validator and checking each document one by
one.

This approach can be considerably time-consuming, and furthermore many
manual corrections can be performed automatically thanks to knowing the nature
of the changes and the fact that the document was valid against the old schema.
Besides, many changes may not require any revalidation at all.

The aim of this thesis is to design an algorithm that will be able to

• detect the set of changes between two versions of a schema,

• categorize the detected changes,

• decide, whether documents valid against the old schema stay valid against
the new schema or whether they have to be revalidated,

• if the documents have to be revalidated, suggest a transformation stylesheet
or script that will revalidate the documents.

1.4 Structure of the Thesis

The thesis is organized as follows. In Chapter 2, we examine existing approD-
BLP:conf/dexa/2005aches and systems for XML schema evolution. In Chapter
3 we describe the XSem framework and its constructs for modeling platform-
independent and platform-specific diagrams. In Chapter 4 we show how to iden-
tify differences between two versions of a schema. Chapter 5 contains formal

11

definitions of all types of differences that can be detected between two versions
of a schema. Chapter 6 describes an algorithm that produces a revalidation
script. Chapter 7 briefly describes the current state of the implementation and
DBLP:conf/dexa/2005describes experiments with the real-world schemas. Fi-
nally, Chapter 8 concludes and provides future research directions.

12

Chapter 2

Related Work

In this chapter existing approaches to XML schema evolution will be described
and categorized.

One way to categorize is based on the level where the changes are made by the
designer and detected by the algorithm as suggested by Mlynkova and Necasky
[21]. Existing approaches can be then classified into three groups according to
whether changes are executed and detected:

• in the XML schemas (written in one of the XML schema languages), so-
called logical level. At the logical level changes are detected directly in the
evolved schema (in one of the XML schema languages, typically DTD or
XML Schema), they are analyzed and the algorithm decides, whether it is
necessary to revalidate the documents.

• in the diagrams visualizing the XML schema (diagrams directly visualizing
constructs of a specific XML schema language). Some kind of visualization
of the schema is used in order to simplify orientation in the schema and to
avoid errors in schema definitions written manually. Changes are detected
in the visualization.

• in a UML diagram used to model an XML format (usually annotated using
comments or stereotypes to specify the translation to an XML schema).
Changes are detected in the UML diagram and in the applications of the
stereotypes and annotations on the UML constructs.

13

2.1 X-Evolution

X-Evolution proposed by G. Guerrini and M. Mesiti in [12] is an example of
a system built upon graphical editor for creating schemas in the XML Schema
language [32].

2.1.1 Evolution Primitives

At first the authors defined a set of evolution primitives divided into three cat-
egories – insertion, modification and deletion and three contexts where these
primitives can be executed – simple type, complex type and element.

Insertion Modification Deletion

Simple Type
insert glob simple type*

change restriction

remove type*
insert new member type*

change base type

remove member type*
rename type*
change member type
global to local*
local to global*

Complex Type

insert glob complex type*
rename local elem

remove element◦

insert local elem◦
rename type*

remove operator◦

insert ref elem◦
change type local elem◦

remove substructure◦

insert operator◦
change cardinality◦

remove type*change operator◦

global to local*
local to global*

Element insert glob elem

rename glob elem*

remove glob elem*
change type glob elem
ref to local*
local to ref*

Table 2.1: Evolution Primitives within X-Evolution

The primitives are categorized as per their effect on the documents. Primi-
tives marked with * in Table 2.1 do not alter validity of documents, those marked
with ◦ operate on the structure of an element.

The set of all primitives is denoted P , the set of all primitives not altering
validity of documents is denoted P∗, the set of XML schemas is denoted SX and
the set of XML documents is denoted DOC.

Some primitives are also associated with applicability conditions - conditions
that guarantee consistency of the updated schema (e.g. referenced type can not
be deleted).

14

X-Evolution system provides the user with a visualization of an XML Schema
where he/she can select a construct to evolve. Based upon the selected construct,
he/she is given a set of available primitives from which he/she can choose. Be-
fore the evolving operation is executed, the user may specify some additional
arguments based on the type of the primitive.

2.1.2 Validation

To achieve document re-validation, the authors introduce a recursive function
validS, which checks, whether a sequence of elements adheres to a type structure
t (prescribed subelements). Relation t1 ⊑ST t2 is introduced for type structures
symbolizing that the legal values of t1 are known to be contained among the
legal values of t2.

Algorithm 1 Revalidate

Input: p ∈ P , d ∈ DOC, sx ∈ SX
Output: true ⇔ d is valid for the updated schema
1: if (p ∈ P∗) then
2: return true
3: else if (p ∈ {rename glob/local elem}) then
4: let l be the element tag to remove/rename
5: return (getElems(getPaths(l, sx), d) = ∅)
6: else if (p = change type glob/local elem(l, τN , sx) ∧ τN ∈ CT) then
7: let tN be the structure of τN
8: return (∀e ∈ getElems(getPaths(l, sx), d) :

validS(children(e), init(tN), tN))
9: else if (p ∈ {change restrict, change base/member type,

change type glob/local elem}) then
10: let τO be the old simple type and τN the updated one
11: if (τO ⊑ τN) then
12: return true
13: end if
14: return (∀e ∈ getElems(getPaths(τO, sx), d) : content(e) ∈ ∥τN∥)
15: end if

The Revalidate algorithm (see Algorithm 1) takes as an input an evolution
primitive p ∈ P , XML schema sx ∈ SX and XML document d ∈ DOC valid
against sx and returns true when document d remains valid after applying p on
sx.

15

Thanks to the categorization of primitives the algorithm is able to determine
whether revalidation of XML documents is needed after the schema evolution by
examining the type of the primitive p. In the case when p ∈ P∗, the XML doc-
ument d itself does not need to be examined at all. In other cases the algorithm
must continue with examining the document d, but only the affected part of the
document needs to be revalidated, not the document as a whole.

Function getElems(E , d) evaluates a set of XPath expressions E of certain
format (containing only child axis steps) on document d and returns the corre-
sponding elements. Function getPaths(e, t) returns an XPath expression consist-
ing of steps along the child axis from the root of the schema, passing through
e, reaching an element of type, structure, or tag t. Function content(e) returns
value of XML attribute/element with simple content e.

2.1.3 Document Adaptation

In the next step the authors introduce the function adaptS, which is an extension
to validS. This function alters the list of subelements that is not valid for the type
structure. Parameter opt controls whether the list is altered by adding and/or
removing new subelements.

When a new subelement is added by adaptS, the minimal structure for the
subelement is created (minimal XML fragment conforming to the desired struc-
ture with default values for data content elements - leaves in XML tree).

The algorithm Adapt utilizes the adaptS function which takes as an input
a primitive p ∈ P , d ∈ DOC and sx ∈ SX . The result is a document d′ valid
against sxN (sxN being the XML Schema obtained by application of p on sx).

Authors conclude with two propositions:

valid(d, sxN) ≡ revalidate(p, d, sx)

valid(adapt(p, d, sx), sxN) = true

In another article [11] G. Guerrini and M. Mesiti describe XSchemaUpdate
language1. XSchemaUpdate statements follow the pattern:

UPDATE SCHEMA ObjectSpec
UpdateSpec
AdaptSpec?

1not to be confused with XQuery Update Facility language [37]

16

ObjectSpec being the set of nodes in an XML Schema to be updated, Update-
Spec the update operation and AdaptSpec the optional document adaptation
statement performed for each document valid against the evolved schema.

With document adaptation statement new content can be created with non-
default values as opposed to content created by adaptS function only.

2.1.4 Discussion

X-Evolution system provides the user with a narrow set of evolution primi-
tives that can be performed upon XML schemas of a certain format. XML doc-
uments are restricted to elements and subelements; without attributes. Simi-
larly, the XML schemas can contain only basic constructs of XML Schema lan-
guage: simple and complex types and operators <xs:choice>, <xs:sequence>
and <xs:all>.

There are no links to the conceptual model which could be utilized when new
content needs to be added during document revalidation; thus it is up to the user
to write the adaptation clauses or update the documents after revalidation.

Some very common real-world evolution operations are not considered in P ,
e.g. moving content, adding a wrapping element for elements or transforming
attributes to subelements and vice versa.

On the other hand, some primitives concerning purely technical changes are
added into the set of primitives P (e.g. changing global type to local and vice
versa or referenced element to local and vice versa).

All algorithms and operations expect a single evolution primitive p ∈ P as
an input. Only one change is supported in each evolution cycle and evolution
with multiple changes is not elaborated.

17

2.2 XEM: XML Evolution Management

XML Evolution Management, XEM [13] is an approach to manage schema evo-
lution where DTD is used as a schema language. It deals both with changes in
DTD and XML documents (instance documents).

2.2.1 Evolution Primitives

The proposed primitives are divided into two categories:

• changes in DTD

• changes in instance documents

Both DTD and instance XML documents are represented in the system as
directed acyclic graphs and the primitives are defined as operations on these
graphs. Table 2.2 lists primitives from both groups.

Each primitive comes with a description of its semantics and a set of precon-
ditions, that must be satisfied before the primitive can be executed. The effect
of each primitive on the DTD and instance documents is described.

It is proven that the set of DTD primitives is complete meaning any possible
change in DTD can be expressed as a sequence of application of the primitives.
This is done by defining four operations on a DTD graph and finding equiva-
lents for these operations in the set of change primitives. Table 2.3 shows the
operations together with their equivalents.

It is apparent that any DTD can be created from an empty DTD solely by
executing create-ver and add-edge operations. Likewise, any DTD can be reduced
to an empty DTD solely by executing delete-ver and remove-edge. Combining
the previous statements, given two arbitrary DTD graphs G and G′, there is a
finite sequence of operations listed in Table 2.2 that transforms G to G′. Thus
the set of evolution primitives listed in Table 2.2 is complete.

2.2.2 Implementation

XEM-Tool, which implements XEM, uses object-oriented mapping for manip-
ulating DTDs and instance XML documents. The input DTD is processed by
DTD Manager component which builds a DTD graph and then generates Java
classes (ELEMENT definitions are translated to classes, attribute definitions
to properties, parent-child relationships are stored in a children vector of each
class).

18

DTD Operation Description
1 createDTDElement(s t) Create target element type with name s and

content type t
2 destroyDTDElement() Destroy target element type
3 insertDTDElement(e, i, q, v) Add element type e with quantifier q and de-

fault value v at DTD position i to target ele-
ment type

4 removeContentParticle(i) Remove content particle at DTD position i in
target element type

5 changeQuant(i, q) Change quantifier of content particle at DTD
position i in target element type to q

6 convertToGroup(start, end, t) Group content particles from DTD position
start to end in target element type into a
group of type t

7 flattenGroup(i) Flatten group at DTD position i in target ele-
ment type

8 addDTDAttr(s, t, d, v) Add attribute type with name s with type t,
default type d, and default value v to target
element type

9 destroyDTDAttr(s) Destroy attribute type with name s from tar-
get element type

XML Data Operation Description
10 createDataElement(e, v) Create target element node with type e and

value v
11 addDataElement(e, i) Add element node e at position i in target

element node
12 destroyDataElement() Destroy target element node
13 addDataAttr(s, v) Add an attribute with name s and value v to

target element node
14 destroyDataAttr(s) Destroy attribute with name s in target ele-

ment node

Table 2.2: Evolution Primitives within XEM

Operation Description Taxonomy Equivalent
(see Table 4.2)

create-ver Creates new dangling vertex 1, 6, 8
add-edge Adds an edge between two vertices 3, 6, 8
delete-ver Deletes vertex with zero out-degree and re-

moves all incoming edges
2, 7, 9

remove-edge Removes the edge between two vertices 4, 7, 9

Table 2.3: The DTD Graph Operations and Their Equivalent XEM Primitives

19

Instance XML documents are processed by an XML Document Manager com-
ponent, that converts XML data to objects - instances of classes generated by
DTD Manager.

When a DTD changing evolution primitive is executed in the system (e.g.
addDTDAttr), some of the classes generated by DTD Manager need to be re-
generated (this includes creating and compiling new Java source files, creating
instances of the new classes, copying the existing contents from the instances of
the old classes in memory and removing the old classes and source files).

2.2.3 Discussion

XEM deals with DTD which is much simpler than XML Schema or the XSem-H
model used in this thesis (3). The set of proposed primitives is proven to be
sound and complete in the terms of being able to transform any DTD to any
other DTD, but for a large portion of common evolution changes this often leads
to removing a significant part of the XML document and recreating it again.
E.g. when an element is renamed, it must be removed and then added under
new name; if the root element is removed, the whole XML document is first
deleted and its structure recreated again. The same holds for moving content.
In this process, the structure is created properly by the algorithm, but the data
is lost.

Again, as in the case of X-Evolution, the conceptual model is not considered
and thus cannot be utilized when new content is added in the instance docu-
ments. While X-Evolution provides the option of Adapt clauses for altering the
content after the evolution primitive is executed, XEM allows only specifying
default values for newly created content.

2.3 CoDEX

CoDEX, Conceptual Design and Evolution of XML schemas [17], is an example
of an approach to schema evolution built upon a conceptual model.

The approach is implemented in CoDEX-tool software. It enables a user to
design a conceptual model for an XML schema (and also the conceptual model
can be created for already existing schemas following some design rules) and
conduct the evolution changes in the conceptual model. The changes made in

20

the model are logged and when the evolution process is finished, the result-
ing changes are performed in the XML schema. Documents associated with the
evolved schema are then updated according to the XML schema evolution steps.

2.3.1 Conceptual Model

The conceptual model is a graph with nodes of four classes - elements, types,
groups and modules together called basic components. In addition, Each compo-
nent has in addition a set of key-value pairs of properties.

Conceptual model can be translated to an XSD, where elements are mapped
to <xs:element> constructs, types to <xs:complexType> and <xs:simpleType>

and groups to <xs:all>, <xs:sequence>, <xs:choice> respectively; using the
Venetian blind design pattern [8] (which is also required for importing existing
schemas).

2.3.2 Schema Evolution

The evolution process is conducted by the user via a graphical interface in the
conceptual model. Each user’s single action (called design step by the authors, in
previously described system these were called evolution primitives) is recorded
by the logging component.

When the user is satisfied with the new version of the model the recorded
design steps are minimized and normalized. This is due to the design process
conducted by the user often not being straightforward. When design steps are
grouped according to the point in the schema where they were conducted, some
groups of design steps may exhibit mutually annulling (adding and removing the
same element), other groups of design steps can be reduced (adding and renaming
an element can be replaced by adding the element with the final name).

There are 53 simple rules for combining and reducing design steps. The fol-
lowing rule combining creating and renaming an element can serve as an example:

create element(id, name, content) + rename element(id, name, name′)

→ create element(id, name′, content)

The minimized set of design steps is translated into XML evolution steps
through which the original schema is evolved to the evolved schema.

21

In such a case where the documents valid against the original schema are no
longer valid for the the evolved schema XML update operations are generated.

2.3.3 Discussion

In contrast to previous approaches, CoDEX allows the user to make a quantity
of changes in each evolution cycle (both XEM and X-Evolution allowing only a
single primitive).

Process of handling existing XML schemas is also elaborated in this approach.
In general, the proposed conceptual model is closer to a visualization of an

XML Schema language than to a platform-independent model. The lack of con-
ceptual model is directly responsible for a problem mentioned in [17] (Limits of
conceptual schema evolution). An example is given where the user moves ele-
ment address from element owner to element producer. The structure of both
the elements address is the same (they would probably refer to the same type),
but semantically the meaning is different (the address of the producer is not the
same as the address of the owner) and moving the contents of address from ele-
ment owner to element producer would create valid, yet semantically incorrect
document. This problem is declared to be in-built and detecting these changes
unsolvable without user interaction. In the subsequent text we will show that
the approach proposed in this thesis can handle these situation satisfyingly.

2.4 Evolution using UML Class Diagrams

The Unified Modeling Language [26, 27], UML, is nowadays widely used for
platform independent modeling of system infrastructure and data. XML Schema
derivation from UML class diagrams is supported by commercial tools [29]. The
schema derivation can be fully automatic or adjusted by applying stereotypes
provided in a UML profile.

Adding support for schema evolution is proposed in [10]. The authors utilize
UML class diagrams for the conceptual model. Mapping between building blocks
of class diagrams and XML Schema constructs is described in the Table 2.4, the
translation is fully automatic.

22

UML block XML item(s)
class element, complex type with ID attribute and key
attribute subelement of the corresponding class complex type
association reference element, with IDREF attribute referencing the associ-

ated class and keyref for type safety (key/keyref references)
generalization complex type of the subclass is defined as an extension of the

complex type of the superclass

Table 2.4: Mapping Between UML and XML Schema Constructs

Output of the translation operation is the XSD and also a set of translation
rules that store correspondence between UML and XML constructs.

The evolution operations are conducted upon the class diagram instead upon
the (visualized) XML schema. The set of evolution primitives consists of basic
operations for working with UML diagrams (i.e. addition or deletion of classes,
attributes and associations).

The propagation of changes proceeds in several steps. First, the translation
rules keeping correspondence between UML and XML constructs are updated
to reflect the changes. Deduced changes in the set of translation rules serve as an
input for the next step – propagation of changes to the XML schema and XML
documents.

Each change triggers one or more XSL transformations [16], both for XML
schema and XML documents.

2.4.1 Discussion

UML class diagrams are very suitable for platform independent modeling. The
authors decided to provide a straightforward translation of the UML diagram
without any means to adjust and tailor the shape of the resulting XSD.

Potential necessity in some larger systems of having more schemas derived
from one conceptual diagram is not considered.

23

Chapter 3

XSem

3.1 Conceptual Modeling

Conceptual modeling is a top-down approach to system and data design, which
concentrates on correct depicting the problem domain - defining the particular
concepts comprising the system and relationships between these concepts.

Conceptual model emerges from user requirements analysis and is defined
using a modeling language sufficiently universal and independent of the imple-
mentation language. It serves as an interconnecting foundation for the individual
components of the system (and these components can be implemented using var-
ious technologies and languages).

In the implementation phase of the system development, concepts from the
conceptual model serve as drafts for corresponding constructs in the respective
implementation language (e.g. classes in object oriented programming or tables
in relational database design). Some design tools provide features of automatic
generation of the implementation constructs from the conceptual model.

Conceptual modeling language should be also reasonably comprehensible to
the customer and serve to ease the clarification and specification of the user
requirements during each iteration of system specification.

The most frequent conceptual models in use are the Unified Modeling Lan-
guage (UML) [27] [26] class diagrams and the Entity Relationship model [31].

24

3.2 XSEM

XSem is an approach to modeling XML data using Model Driven Architecture
(MDA) [20]. A prototype implementation of XSem in a CASE1 tool called XCase
[7] is available.

The model has two interconnected layers – platform-independent model (PIM)
which utilizes UML class diagrams and platform-specific model (PSM) which
again utilizes UML class diagrams but extended with XSem profile.

The reason for having two layers for modeling is to separate the layers of
system design. Platform-independent layer is used to thoroughly and completely
describe the problem domain without redundancies. PIM can be then used to
design the data storage and provides a complete definition of each concept.

Different parts of the problem domain are then used by individual compo-
nents of the systems, usually each component does not work with all the concepts,
but only with a subset. On the other hand, some concepts are used by several
(or all) system components.

If we move to XML data modeling, each component may have individual
requirements on the portion of the used data and their structure and layout in
the XML document – XML format. Although the XML formats may differ, they
all concern the same problem domain and reference the concepts described at
the platform-independent level, but each format contains different subset of the
concepts and different parts of the concepts. Each XML format is a kind of an
XML view over the data.

For example, the component of the system that matches accepted payments
to the orders in the system will only need in its incoming message the identifier
of the order and the amount of money paid to locate the order and verify the
price, whereas the component that realizes the shipping will need the list of
items in the order and the identifier of the customer who issued the order. See
platform-independent diagram in Figure 3.1 and two derived platform-specific
diagrams in Figure 3.2.

1Computer-aided software engineering

25

Figure 3.1: Simple Platform-Independent Diagram

(a) Order Diagram (b) Payment Diagram

Figure 3.2: Platform-Specific Diagrams

As a result, a complex system will contain many XML formats where various
concepts appear repeatedly in different forms and structure. Changes in one
XML format may cause necessary changes in other formats to keep the model
consistent.

That is why XSem uses two-layer model with the two interconnected layers.
The platform-specific model is comprised of several diagrams, each being a model

26

for one specific XML format.
Changes at the specific layer are verified against the independent layer and

vice-versa. The user is offered with propagation of changes from one layer to the
other one or notified that the action can not be performed, because it would put
the model in an inconsistent state (e.g. deleting a concept at the independent
level can not be accomplished unless all references of the concept at the specific
level are removed).

With the two layer system, the user is provided with sufficient level of free-
dom when designing the individual XML formats, but is prevented from making
changes that would render the model inconsistent.

3.3 Platform-Independent Model – UML Class

Diagrams

UML class diagrams are part of the Unified Modeling Language. They are used
to model classes in object-oriented programming and also for data modeling.
The following class diagram constructs are used in PIM2:

• classes3 (the set of all PIM classes will be denoted Cpim)

• class attributes (the set of all PIM attributes will be denoted Attpim)

• types (the set of all types will be denoted T)

• association ends (the set of all association ends will be denoted Epim)

• associations (the set of all PIM associations will be denoted Apim)

Definition 3.3.1 (PIM Model). A PIM Model is a union:

Mpim = Cpim ∪ Attpim ∪ T ∪ Epim ∪ Apim

Figure 3.3 contains a metamodel of PIM constructs. A construct referencing
another construct is shown as an association between the two.

2PIM model can be further extended with additional constructs, namely association classes
and generalizations, which are both available in XCase.

3When necessary, we will use notions PIM classes and PSM classes to distinguish constructs
on PIM and PSM level (and similarly for other constructs).

27

Figure 3.3: PIM Metamodel

In the following text we also assume a finite set of finite-length strings L.

Class An instance of a class construct is intended to model one particular
kind of real-world objects that all share the same features and semantics. In
PIM diagrams, classes are depicted as boxes with their name in bold-face and
list of attributes below. Diagram in Figure 3.1 contains six classes: Customer,
Address, Payment, Order, Item and Product.

Definition 3.3.2 (Class). A class C ∈ Cpim is a 2-tuple:

C = (n,Att)

where:

• n ∈ L is a string called class name

• Att ⊆ Attpim is a list of attributes of C, Att can be empty.

Class attributes Class attributes model characteristics, features and proper-
ties of classes. A data type is assigned to each attribute and each instance of
the attribute is assigned with a value belonging to the type’s domain. In PIM
diagrams attributes are listed inside the class box. Diagram in Figure 3.1 con-
tains attributes customer-no, name, account in class Customer, number in class
Order etc.

Definition 3.3.3 (Attribute). An attribute a ∈ Attpim is a 6-tuple:

a = (C, n,Type, d, l, u)

where:

28

• C ∈ Cpim is a class to which this attribute belongs to

• n ∈ L is a string called attribute name

• Type ∈ T is the type assigned to the attribute

• d ∈ Type.domType is the default value assigned to the new instances of a;
d can be omitted – in that case new instances of a are assigned the default
value defined for type Type

• l ∈ N0 denotes lower cardinality of the attribute a

• u ∈ N ∪ {∗} denotes upper cardinality of the attribute a, value ∗ denotes
unlimited upper cardinality

and following conditions must be satisfied:

∀a ∈ Attpim : a.l ≤ a.u ∧
∃K ∈ Cpim : a ∈ K.Att ∧
a.C = K ↔ a ∈ K.Att

Type A type can be interpreted as a named set of possible values. Types are
usually firmly defined in the implementation languages (with a possibility to de-
rive new types from the built-in ones). It is thus problematic to provide a set of
types at the platform-independent level. Either the platform-independent types
must be some generic types that can be translated into each implementation lan-
guage (e.g. platform-independent type string can be translated into xs:string
when XML Schema is the implementation language and into varchar when the
implementation language is SQL).

The other solution is to adopt a type system of a selected implementation
language at the platform-independent level. Since we are concerned with XML
data evolution, we will adopt a type system of the XML Schema language (see
[28]).

The above mentioned specification defines 19 built-in types (see Figure 3.4)
and rules for deriving user-defined types.

29

Figure 3.4: XML Schema Built-in Datatype Hierarchy (taken from [28])

Definition 3.3.4 (Type). A type T is defined as:

T = (n, domT)

where:

• n ∈ L is the name of data type T

30

• domT is a set of all allowed values for type T called domain of type T.
Domains of built-in types are firmly specified and domains of user derived
types are defined by the rules of the type system.

Association Figure 3.5 contains another example of a PIM diagram that
demonstrates associations and association ends.

Figure 3.5: Example of a Simple PIM Diagram

Associations model relations between real-word concepts. An association can
connect an arbitrary amount of classes, each class then participates in the as-
sociation with certain role and cardinality. In PIM diagrams associations are
depicted as lines connecting classes. One class can participate in one association
under multiple roles. Class Category in Figure 3.5 participates under two roles
– parent and child with multiplicities (0, 1) and (0..*) respectively – in an
association (each category can have an arbitrary amount of child categories, and
each child category has one parent category). Auxiliary construct association end
models the role and cardinality of each participation of a class in an association.

Definition 3.3.5 (Association). An association A ∈ Apim is defined as:

A = (n,Ends)

where:

• n ∈ L is the name of the association; n is optional.

31

• Ends ⊆ Epim is a list of association ends.

Association end is an auxiliary construct modeling participation of the class
in the association.

Definition 3.3.6 (Association End). An association end E ∈ Epim is defined
as:

E = (A,C, r, l, u)

where:

• A ∈ Apim is an association of which E is part of

• C ∈ Cpim is a class to which this association end belongs to

• r ∈ L is the role of C in the association A; r can be omitted.

• l ∈ N0 denotes lower cardinality of the participation of C in A

• u ∈ N∪{∗} denotes upper cardinality of the participation of C in A, value
∗ denotes unlimited upper cardinality

3.4 Platform-Specific Model

For the purposes of modeling XML data, UML class diagrams were extended with
a profile named XSem containing one stereotype for Association and Property
constructs and several stereotypes for Class construct. This extension to original
UML class diagrams named XSem-H is used as the platform-specific model.

A visual notation for PSM diagrams was created to transparently display
models of XML data with emphasis on the two significant features of XML data
model – hierarchical character and nesting.

XSem-H diagrams contain following constructs:

• PSM classes (the set of all PSM classes will be denoted Cpsm)

• PSM attributes (the set of all PSM attributes will be denoted Attpsm)

• PSM associations (the set of all PSM associations will be denoted Apsm)

• attribute containers (the set of all attribute containers will be denoted AC)

• content containers (the set of all content containers will be denoted CC)

32

• class unions (the set of all class unions will be denoted CU)

• content choices (the set of all content choices will be denoted CH)

Figure 3.6: PSM Metamodel

Definition 3.4.1 (PSM Model). PSM Model is a union:

Mpsm = Cpsm ∪ Attpsm ∪ Apsm ∪ AC ∪ CC ∪ CU ∪ CH

Since XSem-H diagram is a tree (or a forest of trees), we will call PSM classes,
attribute containers, content containers, class unions and content choices nodes.

For purposes of definition we further need two abstract constructs:

• superordinate node (the set of all superordinate nodes will be denoted Csup)

Csup = Cpsm ∪ CH ∪ CC

33

• subordinate node (the set of all subordinate nodes will be denoted Csub)
Csub = Apsm ∪ CH ∪ CC ∪ AC

Figure 3.6 contains a metamodel of PSM constructs. The diagram also shows
three PIM constructs (PIMClass, PIMAttribute and Type) that are referenced
from PSM constructs.

Figure 3.7 contains an example of a PSM diagram using all types of constructs
mentioned above.

Figure 3.7: PSM Diagram Constructs

Significant Node

Superordinate Superordinate abstract construct is a node that can contain
other constructs (subordinate constructs).

Definition 3.4.2 (Superordinate Node). A superordinate node P ∈ Csup is
defined as:

P = (Sub)

where:

• Sub ⊆ Csub called components is an ordered sequence of subordinate con-
structs; Sub can be an empty sequence

34

Subordinate A subordinate abstract construct is a type of construct that can
occur among components of superordinate nodes.

Definition 3.4.3 (Subordinate Construct). A Subordinate construct S ∈ Csub
is defined as:

S = (Parent)

where:

• Parent ∈ Csup is a superordinate node called parent of S; when Parent is
not specified (this will be indicated by a special value null, similarly with
properties of other constructs), then S is one of the roots of the XSem-H
forest

The following invariant joins superordinate and subordinate constructs:

(∀P ∈ Csup)((∀s ∈ P.Sub)→ s.Parent = P)

PSM Class A PSM class is the most important construct at the platform-
specific level, because it brings the concepts modeled at the platform-independent
level to the platform-specific level.

Each class is derived from exactly one PIM class and the link to the PIM class
is maintained during the whole existence of the PSM class to ensure consistency
between the two layers and allow mutual propagation of changes.

The diagram in Figure 3.1 contains one root PSM class Purchase and several
other PSM classes (Customer, Address etc.).

Definition 3.4.4 (PSM Class). A PSM class C ∈ Cpsm is a superordinate node

C = (R, n, label, A, U,Att, Sub,Represented, a)

where:

• R ∈ Cpim is the represented class of C, i.e. the PIM class which C was
derived from

• n ∈ L is the name of C, it is initialized to R.n but can be changed

• label ∈ L is the element label of C; label is optional

• A ∈ Apsm is the the association leading to C; A can be empty

• U ∈ CU is the the class union to which this C belongs; U can be empty

35

• Att ⊂ Attpsm is an ordered sequence of PSM attributes of C; Att can be
empty

• Sub is an ordered sequence of components of C; Sub can be empty

• Represented ∈ {P : Cpsm|P.R = C.R} is a link to the represented PSM
class; it can be empty; when C.R is not empty, C is called a structural
representative of Represented. Notion structural representative is explained
in paragraph Structural Representative in this section, p. 46.

• a ∈ (true, false) is a boolean flag denoting that XML element modeled by
C can contain any XML attribute, even when it is not defined in the model.

The following invariants must hold (D being an XSem-H diagram):

∀C ∈ Cpsm : C.A ̸= null→ c.U = null ∧ C.A = null→ c.U ̸= null

∀C ∈ Cpsm ∩ D : C.A = null ∧ c.U = null → C ∈ D.roots

PSM class is depicted the similar way as PIM class with the element label
above the class box. Components are arranged as children of the class node in
the XSem tree (see class Purchase an its three components: content container
customer-info, class union and content container items in Figure 3.7).

A PSM class construct models two different scenarios, depending on the value
of label .

Classes with element labels model a subtree in an XML document. Let us
denote E as the root XML element of the subtree modeled by C. The name of
element E is equal to C.label, attributes of the class model XML attributes of
E. Class Eshop in Figure 3.7 with an element label "eshop" and one attribute
"url" thus models following XML subtree:

<eshop url="..."></eshop>

(The node is empty, because the class has no components)
If class C is a class without an element label, it models subelements and/or

attributes of an element modeled by the first ancestor of C in the path from C
to root of the diagram. For instance, class Product in Figure 3.7 has no element
label. Its first ancestor that models an XML element is class Item. Product has
two attributes (code and subcode) and a single component (attribute container
with three attributes) which models the following fragment:

36

<title>...</title>

<weight>...</weight>

<weight>...</weight>

Both attributes and components of Product are inlined among the compo-
nents and attributes of its parent Item. This principle is called propagation.
Nodes that model XML elements (content containers and classes with element
labels) will be called significant nodes and the first significant node in the path
from a class C without element label to root will be called closest significant
node to C. The content modeled by class C without element label is propagated
to its closest significant node.

The whole subtree modeled by Item is then:

<item code="..." subcode="...">

<amount>...</amount>

<unit-price>...<unit-price>

<title>...</title>

<weight>...</weight>

<size>...</size>

<item>

PSM Attribute In a similar way as a PSM class, also a PSM attribute is
derived from a PIM construct - PIM attribute.

Definition 3.4.5 (PSM Attribute). A PSM Attribute a ∈ Attpsm is defined as

a = (R,C,Container, i, n, alias,Type, d, l, u)

where:

• C ∈ Cpsm is the PSM class to which this PSM attribute belongs

• R ∈ C.Att is a PIM attribute of class C from which a is derived

• Container ∈ Cpsm∪ AC is the construct where a is placed; it is initialized to
C ∈ Cpsm but can be changed to an attribute container AC ∈ AC. Placing
attributes inside attribute containers is a way to adjust the form of modeled
document.

• i ∈ N0 is the index of a in the collection a.Container.Attpsm

37

• n ∈ L is a string called attribute name; it is initialized to R.n and cannot
be changed

• alias ∈ L is an alias of this attribute, the name under which this attribute
will appear in the modeled XML documents; alias can be omitted, in that
case, value of n is used instead

• Type ∈ T is the type assigned to the attribute; it is initialized to R.Type
and cannot be changed

• d ∈ domType is the default value of a

• l ∈ N0 and u ∈ N ∪ {∗} denote lower and upper cardinality

and the following conditions must be satisfied:

∀a ∈ Attpsm : a.l ≤ a.u ∧
∃K ∈ Cpsm ∪ AC : a ∈ K.Att ∧
a.Container = K ↔ a ∈ K.Att

Meanings of d, l and u are variants of the definitions for PIM property con-
struct and their values are initialized to the values of the appropriate properties
of R.

In an XML document, a PSM attribute a models an attribute of the closest
significant node when it is placed in a PSM class (a.Container ∈ Cpsm). A PSM
attribute can be also placed inside an attribute container (a.Container ∈ AC,
see paragraph Attribute Container, p. 40), in that case it models an element
with a simple content. See Figure 3.9 for an example of different usages of PSM
attribute.

PSM Association PSM associations are derived from PIM associations, but
unlike PSM classes and attributes, a PSM association does not represent a single
PIM association. To give user the more freedom when creating the PSM diagram,
a PSM association can be derived from a sequence of PIM associations. This
enables the user to create a PSM association between two PSM classes whose
respective PIM classes are not connected by a PIM association, but are connected
through one or more other classes.

The PSM association is therefore linked to one or more PIM associations
and the consistency must be maintained in the model (e.g. it is not possible to
remove a PIM association which participates in a PSM association).

38

The exact rules for deriving a PIM association are described thoroughly in
[24]. For the purposes of this work, the following simplified definition of a PSM
association will suffice.

We will use notion Nchild = Cpsm ∪ CU . Nodes in Nchild are the nodes that
can participate in associations as target nodes.

Definition 3.4.6 (PSM Association). A PSM Association A ∈ Apsm is a sub-
ordinate construct defined as:

A = (Parent,Child, l, u)

where:

• Parent ∈ Csup is the parent of A, i.e. the node where association A starts

• Child ∈ Nchild is the second node participating in the association A, i.e.
the node to which association A leads to (its target node)

• l and u denote lower cardinality and upper cardinality of the association,
i.e. the interval of possible repetitions of Child

Unlike PIM associations, PSM associations are always binary and each end
can participate only once in the association.

PSM associations are always created associating two PSM classes
({Parent,Child} ⊂ Cpsm), but during the design process, association can be put
into a superordinate container (either content container or content choice). So
Parent can be changed to a content container or content choice construct (see
Figure 3.7, where associations Purchase-Customer and Purchase-Address were
put into a content container customer-info).

Associations can also be joined into the class union, so Child can be
changed too (to a class union node) (see Figure 3.7, where associations
Purchase-SalesAssistant and Purchase-Eshop were joined to a single associ-
ation leading to a class union of classes SalesAssistant and EShop).

In XSem-H diagrams PSM associations are depicted as arrows and form edges
in the XSem-H tree - Parent being the start node and Child being the target
node.

In XML documents PSM association model nesting/propagation:

• when A.Child is a class with an element label, subtree modeled by this class
will be a subtree of an element modeled by the closest significant node to
A.Child

39

• when A.Child is a class without an element label, content modeled by
A.Child is inlined in the content modeled by the closest significant node to
A.Child

• when A.Child is a class union, the principle passes to its child nodes (see
paragraph Class Union in this section, p. 44)

Figure 3.8 contains two examples of PSM associations. The one between
classes Purchase and Customer leads to a class without label, so the child node
is propagated upwards. The other one leads to a class with element label, so new
element (Item) must exist for each occurrence of the child node. The second
association was also moved to the content container items which wraps the
child nodes in the XML element items.

(a) Example for usages of PSM associations.

<Purchase purchase-no="###"

issue-date=###"

customer-no="###">

<items>

<Item amount="#"

product-id="#" />

<Item amount="#"

product-id="#" />

<Item amount="#"

product-id="#" />

</items>

</Purchase>

(b) Corresponding XML fragment

Figure 3.8: PSM Associations and a Corresponding XML Fragment

Attribute container An Attribute container is one of the constructs created
in order to give the user a wider set of options when turning problem domain con-
cepts into the model of XML documents. Content container is another example
of such a construct.

40

Attribute container is convenient when the demand is to have attributes of
classes in the form of XML elements (with simple content) instead of XML
attributes.

Although the choice between the two possible representations of PSM at-
tributes – XML elements or XML attributes – can in some cases be just a
matter of the user’s preference, when a.u > 1 for an attribute a, the form of
XML element is the only correct choice (since XML data model does not allow
multiple occurrence of the same attribute in one node).

Definition 3.4.7 (Attribute Container). An attribute container AC ∈ AC is a
subordinate node

AC = (Parent,Att)

where:

• Parent ∈ Csup is the parent of AC

• Att ⊆ Attpsm is an ordered sequence of PSM attributes of AC; Att can be
empty

And the following condition must hold

∀AC ∈ AC, a ∈ Attpsm : a.Container = AC ↔ a ∈ AC.Att

In XSem-H diagrams, attribute containers are depicted as rectangles with the
list of attributes inside. Each attribute in AC.Att models an XML element with
simple content in the content of the closest significant node of AC (with correct
cardinality). Figure 3.9 shows different usages of PSM attributes and an attribute
container. In this example, attributes of both classes Customer and Address

model XML attributes of XML element Customer, because class Address does
not have the element label and, therefore, its attributes are propagated to the
closest significant node. Attribute email is placed in an attribute container, that
is why it models XML elements email, which can appear 1-3 times inside the
content of element Customer.

41

(a) Example for usages of PSM attributes.

<Customer customer-no="###"

name="###"

street="###"

postcode="###"

city="###">

<email>###</email>

<email>###</email>

</Customer>

(b) Corresponding XML fragment

Figure 3.9: PSM Attributes, an Attribute Container and a Corresponding XML
Fragment

Content Container A content container is a simple construct for model-
ing of wrapping elements; i.e. elements that are not modeled at the platform-
independent level. In other words, they are not a representation of a concept.

One of the convenient usages is to wrap cardinality content in a single node
to enhance clarity of the XML document.

Definition 3.4.8 (Content Container). A content container CC ∈ CC is a sub-
ordinate and superordinate node defined as:

CC = (n,Parent, Sub)

where:

• n ∈ L is the name of CC and models the name of the XML element

• Parent ∈ Csup is the parent of C

• Sub is an ordered sequence of components of CC; Sub can be empty

In XSem-H diagrams content container is depicted as a grey box with round
corners and with the value of CC.n inside the box. The components in Sub are
arranged as children of the content container node in the XSem tree. See Figure
3.10.

42

(a) Example of content container.

<Customer customer-no="###"

name="###">

<Emails>

<email>###</email>

<email>###</email>

</Emails>

</Customer>

(b) Corresponding XML fragment

Figure 3.10: Usage of Content Container and a Corresponding XML Fragment

Content Choice A content choice is the first construct that models possibil-
ities and options. It is used when the set of XML documents conforming to the
modeled XML format is irregular. The content choice is a construct composed
of options. The corresponding fragment of each conforming XML document con-
forms to one of these options.

Definition 3.4.9 (Content Choice). A content choice CCh ∈ CH construct is a
superordinate and subordinate node

CCh = (Parent, Sub)

where:

• Parent ∈ Csup is the parent of CCh

• Sub is an ordered sequence of components of CCh; Sub can theoretically be
empty, but in that case it is redundant

In XSem-H diagrams, content choice is depicted as a grey circle with vertical
line going through the center. The components in Sub are arranged as children
of the content choice node in the XSem-H tree. See Figure 3.11. In an XML
document the node itself does not have a matching construct, but exactly one of
the subtrees under the choice node does. In the example the XML node Book can
contain either the subelement ID or the subelement ISBN (we suppose a book

43

can be identified either by its internal identifier in the system or by its assigned
ISBN).

(a) Example of content choice.

<Book>

<ID>###</ID>

</Book>

or

<Book>

<ISBN>###</ISBN>

</Book>

(b) Corresponding XML fragment

Figure 3.11: Usage of Content Choice and a Corresponding XML Fragment

Class Union A class union is a construct related to content choice, because
it is also used to model irregularities in the set of XML documents conforming
to the modeled format by allowing more types of content.

The difference is that a class union is created by merging two or more asso-
ciations with common parent. The associations leading to respective classes are
removed and replaced by a new association leading from the common parent to
the class union. Figure 3.12 shows a diagram before and after introducing new
class union node. Two associations Author-Article and Author-Book are re-
placed by an association Author-union(Article, Book), classes Article and
Book became components of the new union node.

44

Figure 3.12: PSM Metamodel

Definition 3.4.10 (Class Union). A class union construct is a node

CU = (A,Comp)

where:

• A ∈ Apsm is a PSM association leading to CU

• Comp ⊂ Cpsm is an ordered sequence of PSM classes called components of
the node

Class union models a selection among a set of options how a particular part
of XML document can be structured. Each component (a PSM class) models
one of the options.

An association leading to a class union can have a non-default cardinality
((l, u) ̸= (1, 1)) – this means that the selection can be undertaken multiple times
(when u > 1) or the whole subtree is optional (when l = 0).

In XSem-H diagrams, a class union is depicted as a grey circle with a hori-
zontal and vertical line going through the center and its components arranged in
the subtree of the node. Figure 3.13 shows an example of a class union. In this
example the modeled node LogReport can contain unbounded amount of either
Error or Warning nodes.

45

(a) Example of class union.

<LogReport>

<Error severity="#" text="#" />

<Warning text="#" />

<Error severity="#" text="#" />

</LogReport>

or

<LogReport>

<Error severity="#" text="#" />

<Error severity="#" text="#" />

</LogReport>

or

<LogReport />

(b) Corresponding XML fragment

Figure 3.13: Usage of Class Union and a Corresponding XML Fragment

Structural Representative In system modeling it is a common requirement
to provide constructs for reuse of parts already designed in the model. At the
platform-specific layer of XSem this can be achieved by the structural represen-
tative construct.

Structural representative C is a PSM class that, besides its own attributes
and components, references attributes defined in another PSM class in the model.
This class is called represented class and must be derived from the same PIM
class as C (this relation is expressed in the condition C.Represented ∈ {P :
Cpsm|P.R = C.R} in the definition of PSM class). When C.Represented is empty,
C is an ordinary PSM class.

Structural representatives can be useful when:

• a part of the modeled structure is used at several places in the diagram
(when the XSem-H diagram is translated to XML Schema language, this
situation can be expressed by defining a XML Schema complex type and
using it for several nodes).

• a part of modeled structure is recursive (since the XSem-H model is a tree,
it does not allow cycles of PSM associations).

In XSem-H diagrams, PSM classes that are structural representatives have

46

blue background instead of orange and the name of represented PSM class
(C.Represented.n) is shown above the name of the class.

Figure 3.14 provides an example of both of the types of usage of structural
representative. For this model, we will show not only an example of an XML
document conforming to this model, but also a possible translation of this model
to the XML Schema language. Both can be found in Appendix B.

Figure 3.14 shows a whole XSem-H diagram modeling a book catalog. Each
book has an author and a title. This structure we need in two places in the
diagram – in the listings of books inside a category and for the element best-
seller for each category (containing the best selling book in the category). To
avoid redefining the structure several times, we use a PSM class BookType and
reference it from two other PSM classes (with element labels best-seller and
book).

The book catalogue is a hierarchical structure starting with catalog element,
serving as the “root” category, which has subcategories in category element and
again each category can have subcategories. Each category also has a textual de-
scription and a list of books in the category. To model this hierarchical structure,
we again utilize structural representative construct.

Figure 3.14: Usage of Structural Representative Construct

XSem Tree To conclude this chapter we will formally define the XSem tree.

Definition 3.4.11 (XSem Tree). An XSem tree TPSM is a rooted, ordered,
directed tree

TPSM = (r,N , E)

47

where

• r ∈ N is the root node

• N is the set of nodes

• E is the set of edges

N ⊆ Cpsm ∪ AC ∪ CC ∪ CH ∪ CU

E =
(
{(p, c) : p ∈ Csup, c ∈ Nchild |

∃ A ∈ Apsm : p = A.Parent ∧ c = p.Child } ∪
{(p, c) : p ∈ Csup, c ∈ Csub | c.Parent = p ∧ c ∈ p.Sub\Apsm } ∪
{(u, c) : u ∈ CU , c ∈ Nchild | c ∈ u.Comp }

)
∩ {(p, c) | p, c ∈ N }

The ordering of children of each node is defined by the ordering of collections
p.Sub where p ∈ Csup and u.Comp where u ∈ CU which are both defined as ordered
sequences.

Nodes in the XSem tree correspond to PSM classes, attribute containers,
content containers, content choices and class unions. Edges correspond to PSM
associations and also pairs of superordinate nodes and their components and
pairs of class unions and their components (these edges are depicted as simple
lines, whereas PSM associations are depicted as arrows).

An XSem-H diagram is comprised of one or more XSem trees.

Definition 3.4.12 (XSem-H Diagram). An XSem-H diagram D is defined as

D = (roots,N , E)
where roots ⊂ Cpsm ∪ CC are root nodes of the XSem trees in the diagram.

Each node N ∈ N in D determines a subtree which will be denoted N̂ .

Each significant node in roots (content container or PSM class with element
label) models one allowed root node of a conforming XML document. PSM
classes without element labels can not model root XML nodes, but can be ref-
erenced from other XSem subtrees via structural representative construct.

Structural representatives can only reference classes from the same diagram,
i.e. the following condition must hold:

∀C ∈ D.N ∩ Cpsm : C.Represented ̸= null → C.Represented ∈ D.N

48

Chapter 4

XSem Evolution

4.1 Overview

By schema evolution we mean conducting certain operations upon the existing
schema until reaching the desired final state – new version of the schema.

Every XSem-H diagram can be translated into a regular tree grammar GD
[23]. Grammar GD can be obtained for instance by translating D to XSD [24]
and the XSD into regular tree grammar [23].

XSem-H diagram D is a model for a set of XML documents that are generated
by grammar GD.

Definition 4.1.1 (Set of Conforming Documents, Validity). For a diagram D,
the set of conforming documents S(D) equals to the language L(GD) generated
by grammar GD. We will say that XML document D is valid against D if D ∈
S(D) = L(GD).

In the following text we will use apostrophes to mark the evolved model, e.g.
D′ for the new version of XSem diagram D.

The degree of difference between the two versions can vary greatly – the newer
version can only fix some names, change the arrangement of elements or tweak
the data types to be more accurate. On the other hand, the new version of the
system can bring new attributes and concepts at the platform-independent level
and these will probably emerge also in the updated versions of platform-specific
diagrams.

Two special situations can be observed (we will define both at the level of a
single PSM diagram):

49

Definition 4.1.2 (Backward Compatibility). Let D be an XSem diagram and D′

new version of D. D′ is called backwards-compatible when all documents valid
against D are also valid against D′, i.e. S(D) ⊆ S(D′).

Definition 4.1.3 (Forward Compatibility). Let D be an XSem diagram and
D′ new version of D. D is called forward-compatible when all documents valid
against D′ are also valid against D, i.e. S(D′) ⊆ S(D).

However, sets S(D) and S(D′) are in general incomparable.
Testing validity of a document D against D can be carried out directly, but

it is more convenient to translate D into one of the XML schema languages and
use this translation to verify validity1.

A translation algorithm that produces schemas in XML Schema language
was proposed in [24] and implemented in XCase [7]. Modifications of this al-
gorithm and also algorithms for other XML schema languages are subject of
contemporary studies.

Translation of XSem diagrams to an XML schema does not serve only to ver-
ify validity of documents but the resulting schemas can also be used in different
parts of the system (e.g. to provide descriptions for web service interfaces [9] or
to design optimal storage for XML documents in a relational database [2]).

The fundamental problem of the system and in our case schema evolution is
integration with those components accustomed to the old version of the system.
The first part of the problem is deciding, whether the changes in the schema
may cause problems with these components.

Definition 4.1.4 (Invalidated Set of Conforming Documents). We say that the
set of conforming documents S(D) of diagram D was invalidated in the new
version (or just invalidated) if:

∃D ∈ S(D) : D /∈ S(D′)

If no such D exists, then D′ is backwards-compatible.

Definition 4.1.5 (Revalidation). For an invalidated set of conforming docu-
ments the process of adjusting the invalid documents to the new version is called
revalidation:

∀D ∈ S(D), D /∈ S(D′) : revalidate(S(D)) ∈ S(D′)

1Each XML schema language has its own specifics, some aspects of the XSem model can
not be utterly translated to the means of the schema language (e.g. XSem allows to model an
element having either attribute a or attribute b but not both, which can not be expressed in
XML Schema language).

50

4.2 Approaches to Change Detection

For the goal of determining whether S(D) was invalidated, the system must
recognize and analyze the differences between D and D′. There are two possible
ways to recognize changes

a) recording the changes as they are conducted during the design process

b) comparing the two versions of the diagram

Recording Changes An evolution system that uses the first technique usually
provides some kind of command that initiates the recording and after issuing
this command all operations carried out by a user over the schema are recorded.
The user starts with schema S and initiates recording. All conducted operations
leading to S ′ are recorded until the user is satisfied with the new schema. When
the desired schema S ′ is reached, user finishes recording and the system has all
the information about the changes made – the sequence of performed operation.

When the recording is finished, the system can optimize the sequence for
example by eliminating operations that cancel each other or by replacing groups
of operations by other groups that lead to the same result but in a more straight
way. These optimizing rules must be defined in the system. This approach is
used in CoDEX [17].

The main problem of this approach is the insufficient versatility. The following
issues may arise:

• Once the evolution process is started, the old version can not be easily
changed.

• A user may want to interrupt his/hers work at some point and continue in
another session. The sequence of recorded changes would have to be stored
and recording resumed later.

• When the user wants to retrieve the sequence for reverse process, he will
have to either start with the new version and record the operations needed
to go back to the old version again, or the system will have to be able to
create inverse sequence for each sequence of operations.

• When the evolved schema comes from an outer source, the sequence of
operation changes can not be retrieved directly; the user must start with
his/hers old version of the schema and manually adjust it to match the
new schema.

51

Schema comparison An alternative approach, used in this work, is to base
the change detection on comparison of the two versions. The user can work with
both schemas independently until he/she is satisfied with them. The change
detection algorithm then takes the two schemas as input and compares them.
The result of the comparison is a list of differences between the schemas.

This approach has the following advantages:

• No need to look for redundancies; the set of changes is always minimal.

• Both old version and new version can be edited without limitations.

• The process of evolution can be arbitrarily stopped and resumed.

• The reverse operation can be easily handled by the same algorithm, only
with the two schemas on the input swapped.

• A schema from an outer source can be imported into the system2 and serve
as an input to the change detection algorithm.

The approach assumes the two version of the schema to be linked. The algo-
rithm requires constructs from one version of the schema be linked to constructs
to the other version. These links are created and kept as user edits the schema,
but do not exist when one or both versions of the schema are imported. In such
case, the links must be created either by the user or heuristically by another
algorithm comparing the two versions.

4.3 Version Links

Detecting changes in an XML schema or a model of an XML schema is not
always straightforward; some differences in between the old and new version can
be interpreted in more than one way. Consider the following excerpt from two
versions of an XSem diagram:

Figure 4.1: Example for Ambiguity

2Experimental implementation of import from XSD to PSM diagram is available in XCase.

52

There are at least two possible interpretations:

• attribute ID was removed and new attribute security-number was added

• attribute ID was renamed to security-number

When deciding which interpretation is the correct one, links to PIM diagram
can be taken into account. If [ID].r = p1 and [security − number].r = p2 and
both p1 and p2 ∈ Attpim such that p2 is the new version of p1, we could assume,
that the second interpretation is correct and attribute was only renamed. But
still, it is only a heuristic.

If we do not want to settle for heuristics, it is the user who must make the
final decision. XCase evolution framework (XSem-Evo) allows to define version
links to interconnect constructs in the XSem model which are different versions
of the same construct.

Definition 4.3.1 (ver, version link, getInVer, version projection). Let V be the
set of versions for the modelM.

Function

ver :M→ V
returns to which version each construct belongs. Instead of writing ver(e) we will
use the notion e.version.

Notion S[v], where S ⊆M is an arbitrary set of model constructs and v ∈ V,
is called version projection and returns elements of S for whose the condition
e.version = v holds.

En equivalence relation of version links

VL ⊂M×M
contains pairs of constructs that are different versions of the same construct.
Function getInVer returns a construct in a desired version (or null if the

element does not exist in the desired version)

getInV er : (M×V)→M ∪ null

getInV er(e, v) =

{
e′ if ∃ e′ ∈M : (e, e′) ∈ VL ∧ e′.version = v
null otherwise

If (e, e′) ∈ VL, both e and e′ must both be constructs of the same kind (e.g.
both classes, attributes, PSM associations...).

53

In the following text we will assume |V| = 2, unless explicitly stated otherwise
(i.e. we expect there are two versions in the system - old version (v ∈ V) and
new version (v′ ∈ V)).

Values of ver function form the input of the change detection algorithm (and
so does the relation VL). In XCase, values of ver are assigned automatically by
the system during the process of editing the new version. Pairs for VL are added
during the branch operation (a new version v′ is created from version v), which
adds new version to V and creates a copy of each construct from the source
version.

Branch is an operation upon model with the following results (v ∈ VL is the
source version):

• new version v′ is added to V

• ∀e ∈M[v]:

– a duplicate construct e′ is created in the model

– e′.version is set to v′

– (e, e′) is added to VL

• ∀e′ ∈ M[v′] all references to other construct in the model are replaced by
references to new versions of each construct (e.g. if e′ is a content container ,
each c ∈ e′.Sub is replaced by c′ = getInV er(c, v′))

When the new version of the schema is imported into the system, i.e. the new
version was not initiated by performing branch operation upon the model, the
relation VL is empty and version links must be added before change detection.
This can be either done manually (ie. we let the user map new versions of the
elements to their old versions) or with the help of heuristics – the system can
try to match the pairs of elements based on their types, names and placement
in the diagram.

In conclusion, an XSem model with multiple versions contains two kinds of
links – inter-layer links connecting PIM and PSM constructs (in the form of
properties of PSM constructs that reference PIM constructs) and version links
connecting different versions of the same construct. Figure 4.2 illustrates this.

54

Figure 4.2: Model Links

In this figure there is one PIM construct (c1) and one PSM construct (c2,
derived from c1) in two versions, PIM-PSM links are drawn as vertical arrows,
version links as dotted lines, VL would for this model be {(c1, c′1), (c2, c′2)}.

The version link between c2 and c′2 may seem to be redundant, but without
it some situations could be misinterpreted. See Figure 4.3 for an example. In
this example, the PIM remained unchanged but in the PSM model, PSM class
Employee was removed and replaced by a new class (also named Employee but
with different element label and cardinality). This is indicated by the absence
of version link between the pair of Employee classes. The old diagram modeled
Department element with sub-element head-of-department. The new version
models department with a list of all employees. If we did not rely on the version
links at the platform-specific layer but only on the version links at the platform-
independent layer, it would not be possible to distinguish this situation (i.e. a
class was removed, another class was added) from the situation, where the class
is an adjusted version of the class from the previous version.

55

Figure 4.3: Version Links

4.4 Approaches to Revalidation

When the new version D′ of the diagram D is created, in general case it will inval-
idate the set S(D′). After examining the set of changes, the evolution algorithm
can

• decide, whether S(D) was invalidated

• alternatively provide a revalidation instruction

Definition 4.4.1 (revalidation script). Revalidation script is a script or se-
quence of commands that, when executed upon any document D ∈ S(D), pro-
duces a document D′ ∈ S(D′).

As regards the implementation language for the revalidation script, there are
several options:

• Instruction for DOM API [34]; the document is loaded into memory and
the instruction executed by a tool implementing the DOM API.

56

• XQuery Update Facility script [38]; An XQuery Update Facility processor
performs the update commands from revalidation script on D leaving D′

as a result.

• XSL transformation [16], An XSLT processor performs the transformation
(the revalidation script) with D as input and D′ as output.

• SQL and SQL/XML script [14] – when the documents in S(D) are stored
in a relational database and obtained by SQL/XML, the script could take
form of SQL data definition language commands and SQL data manipula-
tion language commands to reflect the changes in the database and then
the SQL/XML scripts that were used to retrieve the documents in the old
version will be replaced by SQL/XML scripts ready for the new version.

XSem-Evo uses XSLT as revalidation script implementation language due
to the wide support for XSLT among the tools working with XML data and,
especially, the database systems supporting XML Schema evolution.

57

Chapter 5

Changes Between Versions

In this chapter we will specify changes that can occur between two versions of
a PSM diagram, examine their impact on validity of documents and propose a
correction in the cases where validity is violated.

A Change detection algorithm is responsible for comparing the two versions
of an XSem-H diagram and finding the set of changes between them.

Changes are defined as predicates, each having certain amount of parameters,
the first parameter always corresponds to one of the scopes enumerated above.
For an n-tuple of constructs satisfying a change predicate c we will use a notation
c̃ and call it an instance of a change predicate c. The list of instances of predicates
is the output of the change detection algorithm.

5.1 Changes Categorization

We will divide the set of changes into four groups according to the character of
a change (classification is similar to [21]):

• addition – new construct was added

• removal – a construct was removed from the model

• migratory – a construct (and its subtree in the XSem-H tree) was moved
to another part of the XSem-H tree

• sedentary – an existing construct was adjusted in place, but not moved

58

Change Scope For each change there is also defined a type of construct, where
it could be detected (e.g. PSM class construct for class name change), called
scope. Here is the list of all scopes, each scope with a list of XSem constructs:

• diagram: XSem diagram

• subordinate: association, attribute container, content choice, content con-
tainer

• superordinate: class, content choice, content container

• construct with attributes: class, attribute container

• association target: class, class union

• class: class

• association: association

• class union: class union

• attribute: attribute

Changes defined for scope s will be denoted changess. Some constructs act as
several types of scope (e.g. class construct must be examined by change detection
algorithm as superordinate, construct with attributes, association target and
class scope).

In the following text we assume v, v′ ∈ V to be the two compared versions
and D′ the new version of the diagram D. Constructs marked with apostrophe
belong toM[v′], constructs without the apostrophe mark belong toM[v].

Each of the following sections is devoted to the changes in respective scopes
listed above. Description of each change predicate contains explanations the
parameters of the predicate parameters, the definition of the predicate definition
and a list of actions required to revalidate the document when the change occurs.

5.1.1 Diagram Changes

Diagram Root Added A new root is added in the diagram using an addition
change with the following parameters:

• C ′ ∈ D′.roots : root added in version v′

• i′ ∈ N0 : index of C ′ in D′.roots collection

59

Definition(
C ′ ∈ D′.roots ∧ getInV ersion(C ′, v) = null∧

i′ = D′.roots.index(C ′)
)
↔ diagramRootAdded(C ′, i′)

Revalidation Adding a new diagram root does not violate validity, see
Section 5.3.

Diagram Root Removed A root was removed from the diagram using a
removal change with the following parameters:

• C ∈ D.roots : root removed in version v′

Definition

C ∈ D.roots ∧ getInV ersion(C, v′) = null ↔ diagramRootRemoved(C ′)

Revalidation To revalidate a diagram with removed root, a new root must
be selected. It must be one of the significant nodes from D′.roots. Before the root
class was removed, the user may have moved some constructs to a different XSem-
H tree and, thus, some parts of the existing content may be preserved (removing
a diagram root does not necessary result in discarding the whole document).

Diagram Root Index Change The index of a root node in the roots sequence
changed using a migratory change with the following parameters:

• C ′ ∈ D′.roots: root whose index changed

• i′ ∈ N0: new index of C ′ in the collection D′.roots

Definition(
C ′ ∈ D′.roots ∧ getInV ersion(C ′, v) ̸= null ∧ i′ = D′.roots.index(C ′) ∧

i′ ̸= D.roots.index(getInV ersion(C ′, v))
)

↔ diagramRootIndexChange(C ′, i′)

Revalidation Order of the nodes in roots sequence does not violate validity
of the document since only one of the root nodes can represent the root XML
element of the XML document, see Section 5.3.

60

5.1.2 Subordinate Node Changes

Subordinate abstract construct has a meta-property Parent pointing to its parent
node in the XSem-H tree. This parent can be a subject of change when the
construct is moved either to another node or to another position within the same
superordinate node. In the following text, let S ′ be the examined subordinate
construct (and S its previous version, if it exists).

Subordinate Component Index Change The order of S within collection
S.Parent.Sub was changed in version v′ using a migratory change with the fol-
lowing parameters:

• S ′ ∈ Csub: examined subordinate node

• i′ ∈ N0: new index of S in the collection S ′.Parent.Sub

Definition (
getInV ersion(S ′, v) ̸= null ∧

getInV ersion(S ′.Parent, v) = getInV ersion(S.Parent, v′) ∧
i′ = S ′.Parent.Sub.index(S ′) ∧ i′ ̸= S.Parent.Sub.index(S)

)
↔ subordinateComponentIndexChange(S ′, i′)

Revalidation The situation again differs greatly from the case where S ′.Parent
is a content choice. If so, no revalidation is needed, because the order of compo-
nents under content choice has no impact on validity of documents.

When S ′.Parent is a class or a content container, it is crucial, whether S ′ or
its subtree models any XML elements (S ′ is a significant node or subtree of S ′

contains at least one significant node). As long as S ′ and its subtree only models
attributes, validity is not impaired, because XML data model specifies that the
order of attributes of an XML node is unimportant and no application should
rely on attributes being defined in some particular order.

Thus only when S ′.Parent is not a content choice and S ′ is or its subtree
contains any significant nodes, revalidation is needed. In that case, all content
modeled by S ′ and its subtree must be moved to its correct position i among the
content modeled by other constructs (siblings) in S ′.Parent.Sub.

61

Subordinate Component Moved Subordinate component S was moved
from its parent P = S.Parent (and P ′ is its new version, if it exists) to an-
other superordinate node Q′ = S ′.Parent using a migratory change with the
following parameters:

• S ′ ∈ Csub: examined subordinate node

• Q′ ∈ Csup: new parent of S (superordinate node) in version v′, S ′ ∈ Q′.Sub

• i′ ∈ N0: new index of S ′ in the collection of Q′.Sub

Definition (
getInV ersion(S ′, v) ̸= null ∧

getInV ersion(S ′.Parent, v) ̸= getInV ersion(S.Parent, v′) ∧
Q′ = S ′.Parent ∧ i′ = Q′.Sub.index(S ′)

)
↔ subordinateComponentMoved(S ′, Q′, i′)

Revalidation All content modeled by S ′ must be removed from P ′ (re-
gardless S ′ being a content container, content choice or class). The way of in-
corporating this content into the content of Q′ depends on the type of construct
Q.

If Q′ is a class or a content container, content is copied.
If Q′ is a content choice and if there exists some content modeled by another

construct in Q′.Sub, there are two semantically correct solutions. Since Q′ is a
content choice, there can be only one such construct, let it be O′. See Figure 5.1
for an example.

Figure 5.1: Moving a Construct to Content Choice

62

Figure 5.1 depicts a simple PSM diagramDc of a book purchase XML format.
Subelement book is required to have a subelement id and one of the subelements
isbn or full-name. In the new version, id is no longer required and is now one
of the options under content choice (so exactly one of the three subelements can
appear).

Each XML document D ∈ S(Dc) will have the id attribute and one of the
attributes in the content choice. Since the user decided to move the id attribute
under the content choice, it is now equally correct to either preserve the id

attribute or one of the other two.
The revalidation algorithm must either choose which solution it will prefer:

• Always preserve the content modeled by the construct newly moved to
choice (S ′) – in the example attribute id. But if there are more components
moved to the same choice, this rule is still not decisive enough.

• Conversely, prefer the construct that already was in the choice (O′).

• Set the priorities in the order of the components of the content choice – in
the example this order would be isbn, full-name, id)

or leave the decision up to the user.

5.1.3 Superordinate Node Changes

A Superordinate node is an abstract construct defined to involve a collection of
subordinate components Sub. Changes detectable in the scope of a superordinate
node concern changes in the collection as well. In the following text, let P ′ be
the examined superordinate node (and P its previous version, if it exists).

Component Added New component was added into collection P ′.Sub. using
an addition change with the following parameters:

• P ′ ∈ Csup: examined superordinate node

• C ′ ∈ P ′.Sub: component added in the new version to P ′.Sub

• i′ ∈ N0: new index of C ′ in the collection of components of P ′

Definition(
C ′ ∈ P ′.Sub ∧ getInV ersion(C ′, v) = null ∧ i′ = P ′.Sub.index(C ′)

)
↔ subordinateComponentAdded(P ′, C ′, i′)

63

Revalidation In general, when a component was added, the content mod-
eled by this component has to be created and inserted into each document
D ∈ S(D). The following alternatives can emerge:

• P ′ is a content choice – in this case, adding a component can be completely
ignored, because the new component for content choice provides the user
with more options, but does not force him/her to use them all (see Section
5.3).

• P ′ is a PSM class or a content container – in this case, the change can not
be ignored in general (but still can be in some special cases, e.g. when C ′

is an association with l = 0), C ′ including its subtree must be examined
and the respective content must be created in the closest significant node
to C ′.

Component Removed Component C was removed from the collection P ′.Sub
using a removal change with the following parameters:

• P ′ ∈ Csup: examined superordinate node

• C ∈ P.Sub: component removed from P ′.Sub

Definition (
C ∈ P.Sub : getInV ersion(C, v′) = null

)
↔ subordinateComponentRemoved(P ′, C)

Revalidation Removal of a construct from the model must be always
solved by removal of the content modeled by the removed construct from the
documents ∈ S(D).

However, the content modeled by the whole subtree of C can not be instantly
removed from the document, because some other changes may move parts of this
content to other parts of the document.

5.1.4 Changes of Association Target

Set Nchild = Cpsm ∪ CU contains nodes that can be targets of PSM associations –
classes and class unions. Similarly to subordinate constructs, these can be moved
either from/to a class union or (theoretically) from one association to another.
Also the order of components under the class union can change.

64

Change of Class Index The order of class C within C.U.Comp changed in
version v′ using a migratory change with the following parameters:

• C ′ ∈ Cpsm: examined class

• U ′ ∈ CU : class union to which C ′ belongs

• i′ ∈ N0: new index of C in the union components collection U ′.Comp

Definition (
getInV er(C ′, v) ̸= null ∧

U ′ = C ′.U ̸= null ∧ getInV er(U ′, v) ̸= null ∧
getInV er(U ′, v) = getInV er(C ′, v).U

i′ = U ′.Comp.index(C ′) ∧ i′ ̸= C.U.Comp.index(C)
)

↔ classIndexChange(C ′, U ′, i′)

Revalidation Similarly to reordering components of a content choice, re-
ordering components of a class union requires no revalidation, see Section 5.3.

Class Moved to a Class Union Class C that is a target node of an asso-
ciation A is moved to a class union node U ′ using a migratory change with the
following parameters:

• C ′ ∈ Cpsm: examined class

• U ′ ∈ CU : class union to which C ′ is moved

• i′ ∈ N0: new index of C ′ in the components collection U ′.Comp of the union

Definition(
C = getInV er(C ′, v) ̸= null ∧ U ′ = C ′.U ̸= null ∧

i′ = U ′.Comp.index(C ′) ∧
(C.A ̸= null ∨ C.A = C.U = null ∨ C.U ̸= getInV er(U ′, v) ̸= null)

)
↔ classMovedToClassUnion(C ′, U ′, i′)

65

Revalidation Moving a class to a class union requires a similar action as
moving a subordinate construct to a content choice (see paragraph Subordinate
Component Moved on page 62). The content of C and its subtree must be re-
moved from components of A.Parent (if A is not empty) and either added to the
contents of the closest significant node to U ′ or discarded completely (the pos-
sibilities are identical to those for moving subordinate component to a content
choice).

Class Moved out of a Class Union In version v, class C was among the
components of a class union U . In version v′ class C ′ is changed into a target
node of an association A′ or a root class using a migratory change with the
following parameters:

• C ′ ∈ Cpsm: examined class

• A′ ∈ Apsm: association leading to C ′ in version v′ of the diagram (empty
when C ′ is a root class)

Definition(
C = getInV er(C ′, v) ̸= null ∧ C.U ̸= null ∧ A′ = C ′.A ∧

(C ′.A ̸= null ∨ C ′.A = C ′.U = null)
)

↔ classMovedOutOfClassUnion(C ′, A′)

Revalidation When a class C is moved out of a class union U in the new
version, there are two possible situations for each documentD ∈ S(D) (providing
that | U.Comp | ≥ 2 which is presumable):

• the corresponding part of D is valid against the subtree modeled by C (the
component C of U is used by the document)

• the corresponding part of D is valid against another subtree modeled by
O ∈ U.Comp : O ̸= C (the component C is not used by the document).

In the first case, the content modeled by Ĉ is removed from the closest signifi-
cant node of U and moved to the closest significant node ofA′. If getInV er(U, v′) ̸=
null (U was not completely removed in the new version), content modeled by

Ĉ must be replaced by content modeled by a selected Ô′, O′ ∈ U ′.Comp. This
content can be retrieved either from some other part of document D (when O′

was moved into the class union in the new version):

66

∃A2s.t. classMovedToClassUnion(O′, U ′, A2, i
′) ∈ CD,D′,v,v′ : A2 ̸= null

→ use O′

If no suitable O′ can be found, new content must be generated to revalidate
the document.

In the second case, there is no content modeled by Ĉ in D, so the content
for Ĉ ′ must be generated.

Cardinality There are two associations participating in this change – as-
sociation A′ which leads to C ′ and the association that leads to U , let us denote
it Au. Both of these associations can have non-default (̸= (1, 1)) cardinality. The
cardinality values for both associations must be respected in the revalidation
process, which means that

• some data may have to be discarded (when Au.u > A′.u);

• some data may have to be generated (when Au.l < A′.l).

The situation depends on the contents of each individual D ∈ S(D) and the
revalidation script must be ready for all alternatives.

Class Moved To Another Association Class C was a target node of an as-
sociation B ̸= getInV er(A′, v) in version v, but in version v′ it was changed into
a target node of an association A′ using a migratory change with the following
parameters:

• C ′ ∈ Cpsm: examined class

• A′ ∈ Apsm: association leading to C ′ in version v′ of the diagram

Definition(
A′ = C ′.A ̸= null ∧ C = getInV er(C ′, v) ̸= null ∧ C.A ̸= null ∧

A′ ̸= C.A
)
↔ classMovedToAnotherAssociation(C ′, A′)

Revalidation Content modeled by C ′ must be removed from its old loca-
tion (closest significant node to B.Parent) and moved to the contents modeled
by A′.Parent.

67

Class Moved To Roots Class C ′ is a root class, but in version v it was a
target node of some association A or among components of some class union U .
using a migratory change with the following parameters:

• C ′ ∈ Cpsm: examined class

• i′ ∈ N0: new index of C ′ in the collection D′.roots

Definition(
C ′ ∈ D′.roots ∧ C = getInV er(C ′, v) ∧ i′ = D′.roots.index(C ′) ∧
(C.A ̸= null ∨ C.U ̸= null)

)
↔ classMovedToRoots(C ′, i′)

Revalidation If C ′.label ̸= null, moving an existing class C to roots col-
lection of a diagram triggers making the instance of class C the root element of
the XML document. If C ′.label = null, instance of class C is removed from its
old location. If C.U ̸= null, it must be taken into account that there may not
be an existing instance of C in the document.

5.1.5 Changes of Classes

In the following text, let C ′ ∈ Cpsm be a PSM class (and C its previous version,
if it exists).

Class Given an Element Label C ′ was assigned with an element label, in
the previous version, C did not have an element label using a sedentary change
with the following parameters:

• C ′ ∈ Cpsm: class assigned with an element label in the new version

• label ′ ∈ L: new element label of class C ′

Definition(
getInV er(C ′, v) ̸= null ∧ getInV er(C ′, v).label = null ∧

label ′ = C ′.label ̸= null
)

↔ classGivenElementLabel(C ′, label ′)

68

Revalidation Attributes and elements modeled by a class without an ele-
ment label are propagated to the closest significant node. Let be P ′ be the closest
significant node of C.Parent′ and Q the closest significant node of C (not nec-
essarily getInV er(P ′, v) = Q). When C is assigned with an element label, new
XML element N must be created as a subelement of P ′ (its name will be the

value of C ′.label), attributes modeled by Ĉ ′ will model XML attributes of element

N and elements modeled by Ĉ ′ will become subelements of N .

Cardinality Association A′ leading to C ′ or association leading to the class
union U ′ (when C ′ ∈ U ′.Comp) can have non-default cardinality. In this case,

each instance of Ĉ ′ in XML document D must be treated separately, i.e. new
subelement Ni is created for the instance i. See Figure 5.2 – A′ is between
Purchase and Item, C ′ is Item. Each instance of Îtem – pair of amount and
unit-price elements – is wrapped in the new element Item.

69

(a) Adding element label

<Purchase purchase-no="1"

issue-date="1993-03-17">

<amount>2</amount>

<unit-price>

9.27

</unit-price>

<amount>4</amount>

<unit-price>

11.34

</unit-price>

</Purchase>

(b) Document valid for v

<Purchase purchase-no="1"

issue-date="1993-03-17">

<Item>

<amount>2</amount>

<unit-price>9.27</unit-price>

</Item>

<Item>

<amount>4</amount>

<unit-price>11.34</unit-price>

</Item>

</Purchase>

(c) Document revalidated for v’

Figure 5.2: Example – Adding of an Element Label

Element Label of a Class Removed In version v C had an element label, in
version v′ the element label was removed from class C ′ using a sedentary change
with the following parameters:

• C ′ ∈ Cpsm, class from which element label was removed

70

Definition(
getInV er(C ′, v) ̸= null ∧ getInV er(C ′, v).label ̸= null ∧ C ′.label = null

)
↔ classElementLabelRemoved(C ′)

Revalidation The needed revalidation is an exact opposite of revalidation
of classGivenElementLabel change. The wrapping XML element corresponding
to C (its name being the value of C.label) is removed, its subelements inlined
and its attributes moved to the closest significant node of C ′. The example in
Figure 5.2 can be used for illustration, only with the versions v and v′ swapped.

Element Label of Class Changed The element label of class C was changed
using a sedentary change with the following parameters:

• C ′ ∈ Cpsm, class with changed element label

• label ′ ∈ L: new element label of class C ′

Definition (
getInV er(C ′, v) ̸= null ∧

getInV er(C ′, v).label ̸= null ∧ C ′.label ̸= null

label ′ = C ′.label ∧ label ′ ̸= getInV er(C ′, v).label
)

↔ classElementLabelChanged(C ′, label ′)

Revalidation For each instance of content modeled by C, the XML ele-
ment (name being the value of C.label) must be renamed to label′ (attributes and
subelements are left intact).

5.1.6 Content Container Changes

The content container construct has a meta-property name (n) modeling the
name of the XML element wrapping contents of the content container. Changes
in the other meta-properties – Parent and Sub – were covered earlier in this
chapter in subsections Subordinate Node Changes (p. 63) and Superordinate
Node Changes (p. 61).

In the following text, let CC ′ be the examined subordinate construct (and
CC its previous version, if it exists).

71

Content Container Name Change Content container CC was renamed us-
ing a sedentary change with the following parameters:

• CC ′ ∈ CC: examined content container

• n′ ∈ L: new content container name

Definition (
getInV ersion(CC ′, v) ̸= null ∧

n′ = CC ′.n ∧ n′ ̸= getInV ersion(CC ′, v).n
)

↔ contentContainerNameChange(CC ′, n′)

Revalidation Revalidation for this change is simple - each XML element
modeled by CC named CC.nmust be renamed to CC ′.n in the XML document.

5.1.7 Attribute Changes

In the following text, let a′ be the examined PSM attribute (and a its previous
version, if it exists).

Attribute Alias or Name Change A PSM attribute has two different meta-
properties that influence the name of the modeled XML attribute – n and alias.
Name is acquired from PIM (∀(a1, a2) ∈ Attpsm × Attpsm : a1.R = a2.R ↔
a1.n = a2.n = a1.R.n) and unchangeable; that is why the optional alias property
is provided and alias (if specified) overrides n.

We will define auxiliary function aliasOrName:

Definition 5.1.1 (aliasOrName).

aliasOrName : Attpsm ↔ L

aliasOrName(a) =

{
alias if alias ̸= null

n otherwise

and use the notion a.aliasOrName for aliasOrName(a).

The change is a sedentary change with the following parameters:

• a′ ∈ Attpsm: examined attribute

• n′ ∈ L: new attribute name

• alias ′ ∈ L: new attribute alias

72

Definition (
getInV ersion(a′, v) ̸= null ∧

(alias ′ = a′.alias ∧ alias′ ̸= getInV ersion(a′, v).alias ∨
n′ = a′.n ∧ n′ ̸= getInV ersion(a′, v).n)

)
↔ attributeAliasOrNameChange(a′, n′, alias ′)

Revalidation Revalidation for this change is simple – each XML attribute
modeled by a (named a.aliasOrName) must be renamed to a′.aliasOrName in the
XML document. In the case of a.alias being defined and a.alias = a′.alias ̸= null,
revalidation in the XML documents is not needed (only n was changed, but the
property n is overridden by alias).

Attribute Index Change In the XSem-H model, collections of PSM at-
tributes are ordered sequences and the index of the attribute a (a.i) can vary
from version to version.

The change is a migratory change with the following parameters:

• a′ ∈ Attpsm: examined attribute

• i′ ∈ N0: new index of the attribute

Definition (
getInV ersion(a′, v) ̸= null ∧

getInV ersion(a′, v).Container = a′.Container

i′ = a′.i ∧ i′ ̸= getInV ersion(a′, v).i
)

↔ attributeIndexChange(a′, i′)

Revalidation Revalidation depends on the type of construct a′.Container.
If it is a PSM class, then a′ models XML attribute and since the order of at-
tributes in an XML element is insignificant and applications must not rely on
the order of attributes, no revalidation is needed.

On the other hand, if a′.Container is an attribute container, the order of
PSM attributes determines the order of XML subelements, which is significant.
Reordering PSM attributes in an attribute container thus requires reordering of
the subelements modeled by the attributes with respect to the new order.

73

Attribute Default Value Change Default value a′.d is changed in version
v′ using a sedentary change with the following parameters:

• a′ ∈ Attpsm: examined attribute

• d′ ∈ doma′.T : new default value of the attribute

Definition (
getInV ersion(a′, v) ̸= null ∧

d′ = a′.d ∧ d′ ̸= getInV ersion(a′, v).d
)

↔ attributeDefaultV alueChange(a′, d)

Revalidation Changing a default value requires no revalidation. The new
default value can be used when generating new content during revalidation.

Moving Attribute Attribute a′ was moved to an attribute container A′ or
class C ′ (in the previous version it was in class Co or another attribute container
Ao). This change does not cover moving an attribute to another position within
the same class or attribute container (see paragraph Attribute Index Change (p.
73)).

The change is a migratory change with the following parameters:

• a′ ∈ Attpsm: examined attribute

• C ′ ∈ Cpsm ∪ AC: attribute container into which a′ was added

• i′ ∈ N0: index of a′ in A′.Attpsm

Definition(
getInV ersion(a′, v) ̸= null ∧ i′ = a′.Container.Att.index(a′) ∧
C ′ = a′.Container ∧ C ′ ̸= getInV ersion(a′, v).Container

)
↔ attributeMoved(a′, C ′, i′)

74

Revalidation Moving a PSM attribute a requires:

• deleting the instance of a from its previous location (it can be either an
XML attribute – if a.Container ∈ Cpsm, or an XML element with simple
content – if a.Container ∈ AC).

• create a new XML node of the respected type in the new location (either
a new XML attribute – if a′.Container ∈ Cpsm or an XML element – if
a′.Container ∈ AC).

Figure 5.3 shows an example of moving attributes from a class to an attribute
container (street, postcode, city) and from an attribute container to a class
(name, email). In version v′ element label of class Address is removed, thus the
subelements are propagated to the element Customer.

75

(a) Moving attributes

<Customer customer-no="12">

<name>John Smith</name>

<email>john@smith.org</email>

<Address street="Sunset Blvd."

postcode="12345" city="LA"/>

</Customer>

(b) Document valid for v

<Customer customer-no="12"

name="John Smith"

email="john@smith.cz">

<street>Sunset Blvd.</street>

<postcode>12345</postcode>

<city>LA</city>

</Customer>

(c) Document Revalidated for v’

Figure 5.3: Example – Moving Attributes Between Classes and Attribute Con-
tainers

Attribute Type Change The new version can specify a different type T ′ for
an attribute instead of the former type T using a sedentary change with the
following parameters:

• a′ ∈ Attpsm: examined attribute

• T ′ ∈ T : new type of the attribute

76

Definition (
getInV ersion(a′, v) ̸= null ∧

T ′ = a′.Type ∧ T ′ ̸= getInV ersion(a′, v).Type
)

↔ attributeTypeChanged(a′, a′.Type)

Revalidation Revalidation of documents may be skipped in the case where
domT ⊆ domT ′ . This condition is guaranteed if T is a type derived from T ′ using
restriction. The condition means that the requirements for the documents were
relaxed and more general set of values is allowed.

Such a situation may occur, but the reverse direction in the development is
more frequent. Instead of a general set of values, the requirements are made more
strict and only a specific subset of values is allowed. E.g. instead of an arbitrary
string for email attribute in the old version, only strings valid against a regular
expression describing all the possible email addresses are allowed in the evolved
version.

In such case, either

domT ⊇ domT ′

or the two sets are incomparable. Let us denote [a][S(D)] the set of all values of
attribute a in all documents in S(D), we can extend the previous approach if:

[a][S(D)] ⊆ domT ′

In this case no revalidation is needed again. Verifying this condition can not
be possible in every case, however in some situations, it can be done easily.
When we return to the email example, the XML schema may define email as
an arbitrary string, but the system contains another component that verifies
each email more strictly, before it can occur in a document D ∈ S(D). The
applicability of this approach can be decided by the user.

If revalidation is really necessary, a revalidating function conva:

conva : domT ↔ domT ′

or

conva : [a][S(D)] ↔ domT ′

must be provided for the revalidation algorithm. The function conva can be
either shared for the pairs of types (∀(a, a′) ∈ Attpsm ×Attpsm ∩ VL : a.Type =

77

T ∧ a′.Type = T ′ ↔ conva = convT,T ′ , convT,T ′ being the shared revalidation
function for types T and T ′) or defined separately for each attribute a.

Attribute Cardinality Change A cardinality interval (a.l, a.u) is changed
to (a′.l, a′.u). using a sedentary change with the following parameters:

• a′ ∈ Attpsm: examined attribute

• l′ ∈ N0: new lower cardinality

• u′ ∈ N0 ∪ {∗}: new upper cardinality

Definition(
getInV ersion(a′, v) ̸= null ∧ l′ = a′.l ∧ u′ = a′.u ∧

(getInV ersion(a′, v).l ̸= l′ ∨ getInV ersion(a′, v).u ̸= u′)
)

↔ attributeCardinalityChanged(a′, l′, u′)

Revalidation For cardinality changes, there are two revalidation actions,
from which none, one or both must be undertaken to revalidate a document
(varying from document to document).

• if a′.l > a.l, new content may have to be added for some documents

• if a′.u < a.u, content may have to be removed from some documents

For each document D ∈ S(D), the number of XML nodes (elements or at-
tributes, depending on a.Container being a PSM class or an attribute container)
that are instances of a differs (unless a.l = a.u), therefore the amount of XML
nodes that need to be added/removed differs too.

When removing nodes, the algorithm must either choose which nodes to keep
and which to delete (one solution can be always keep those nodes that occur
earlier in the document) or leave this choice up to the user.

When adding nodes, the values for these nodes must be assigned. In real
world applications, raising the lower cardinality from a.l ≥ 1 to a′.l > a.l is
rare, but yet possible. On the other hand, making an optional subelement/at-
tribute mandatory is a routine practice (from a.l = 0 to a′.l > a.l). That is
why approaches to generating values of attributes need to be discussed (for this
example, a suitable solution would be using a default value of the attribute –
a.d).

78

5.1.8 Changes in Attribute Collections

A collection of PSM attributes is a part of XSem-H constructs PSM class and
Attribute container. Attributes and elements can be added/removed to/from
the collection. In the following text, let N ′ ∈ Cpsm ∪ AC be a PSM class or an
attribute container (and N its previous version).

Attribute Added A new attribute was added into the collection (attribute
did not exist in the previous version) using an addition change with the following
parameters:

• N ′ ∈ Cpsm ∪ AC: examined construct

• a′ ∈ N ′.Att: new attribute added in version v′

• i ∈ N0: index of attribute a′ in the owner collection

Definition (
a′ ∈ N ′.Attpsm ∧ getInV ersion(a′, v) = null ∧

i′ = a′.Container.Att.index(a′)
)

↔ attributeAdded(N ′, a′, i′)

Revalidation If attribute a′ is not added as optional (a′.l = 0), new content
must be added into the document – either an XML element with simple content
(if a.Container ∈ AC) or an XML attribute (if a.Container ∈ Cpsm). More about
generating content can be found in Section 5.4.

Attribute Removed An attribute was removed from the model completely
using a removal change with the following parameters:

• N ′ ∈ Cpsm ∪ AC: examined construct

• a ∈ N.Att: removed attribute

Definition

a ∈ N.Attpsm ∧ getInV ersion(a′, v′) = null

↔ attributeRemoved(N ′, a)

79

Revalidation All instances of attribute a must be removed from the doc-
ument (XML attributes or XML elements with simple content).

5.1.9 Class Union Changes

Classes can be added or removed from a class union. In the following text, let
CU ′ ∈ CU be a class union (and CU its previous version).

Class Added to a Class Union A new component was added into the col-
lection (the component did not exist in the previous version) using an addition
change with the following parameters:

• CU ′ ∈ CU : examined class union

• C ′ ∈ Cpsm: new class added to the union in version v′

• i′ ∈ N0: index of class C ′ in the union

Definition(
C ′ ∈ CU ′.Comp ∧ getInV ersion(C ′, v) = null ∧

i′ = C ′.U.Comp.index(C ′)
)
↔ classAddedToUnion(CU ′, C ′, i′)

Revalidation Adding a class to a class union does not require revalidation
of documents, but only gives more choices when creating new documents.

Class Removed from Class Union A class in a class union was removed
from the model using a removal change with the following parameters:

• CU ′ ∈ CU : examined class union

• C ∈ Cpsm: removed PSM class

Definition (
C ∈ CU.Comp ∧ getInV ersion(C, v′) = null

)
↔ classRemovedFromUnion(N ′, C)

80

Revalidation If CU ′.A.l = 0 (where CU.A is the association leading to
class union), the content modeled by the union is optional and its simple remov-
ing is sufficient to revalidate the document.

If CU ′.A.l > 0 and there is an instance of C in the XML document, it must
be removed and replaced by an instance of another component O′ ∈ CU ′.Comp.
In some cases, the content modeled by O′ can be retrieved from some other part
of the document. It is possible when O – the old version of O′ – was moved to
the union CU ′ in this version (O /∈ CU.Comp) and there exists an instance of
CU . In other cases, content must be generated.

Class Union Moved A class union node is moved from one place in the
diagram to another using a migratory change with the following parameters:

• CU ′ ∈ CU : examined class union

• A′ ∈ Apsm: association leading to CU ′ in version v′

Definition (
getInV ersion(CU ′, v) ̸= null ∧ A′ = CU ′.A

getInV er(A′, v) ̸= getInV er(CU ′, v).A
)

↔ classUnionMoved(CU ′, A′)

Revalidation Since union nodes themselves do not have corresponding
content in the XML documents (only their components have), revalidation is
discussed with the changes in the union components collection.

5.1.10 Association Changes

In the following text, let A′ be a PSM association (and A its previous version).

Association Cardinality Change A cardinality interval (A.l,A.u) is changed
to (A′.l, A′.u). using a sedentary change with the following parameters:

• A′ ∈ Apsm: examined PSM association

• l′ ∈ N0: new lower cardinality

• u′ ∈ N0 ∪ {∗}: new upper cardinality

81

Definition

(getInV ersion(A′, v) ̸= null ∧ l′ = A′.l ∧ u′ = A′.u

(getInV ersion(A′, v).l ̸= l′ ∨ getInV ersion(A′, v).u ̸= u′))

↔ associationCardinalityChanged(A′, l′, u′);

Revalidation Similarly as with attribute cardinality change, there exist
two revalidation actions, from which none, one or both must be undertaken to
revalidate a document (varying from document to document).

• if A′.l > A.l, new content may have to be added for some documents

• if A′.u < A.u, content may have to be removed from some documents

In case of PSM attributes, the content added or deleted involves either XML
attributes or leaf XML elements with simple content. With PSM association, the
revalidation actions have to deal with whole XML subtrees.

For each document D ∈ S(D), the number of instances of A.Child differs
(unless A.l = A.u), therefore the amount of instances of A that need to be
added/removed differs too.

When removing, the algorithm must either choose which instances to keep
and which to delete (one solution can be always keep those that occur earlier in
the document) or leave this choice up to the user.

When adding, the content for the new instances must be generated (this
involves generating a whole XML subtree). More about generating content can
be found in Section 5.4.

A Node Added Under Association A new class or class union node is
added into the diagram using an addition change with the following parameters:

• A′ ∈ Apsm: examined PSM association

• C ′ ∈ CU ∪ Cpsm: added node

Definition

getInV er(A′, v) ̸= null ∧ C ′ = A′.Child ∧ getInV er(C ′, v) = null

↔ associationChildAdded(A′, C ′)

82

Revalidation Adding a node under a PSM association requires creating
new content (the amount of instances required is determined by A′.l).

A Node Removed Under Association A Class or class union node is re-
moved from the diagram using a removal change with the following parameters:

• A′ ∈ Apsm: examined PSM association

• C = A.Child ∈ CU ∪ Cpsm: removed node

Definition (
getInV er(A′, v) ̸= null ∧

C = A.Child ∧ getInV er(C, v′) = null
)

↔ associationChildRemoved (A′, C)

Revalidation Removal of a node under a PSM association requires com-
plete removal of all the content modeled by the node.

5.2 Changes Summary

Definition 5.2.1 (Set of Changes). The set of all changes between the two
versions v and v′ of a diagram (D and D′) will be denoted CD,D′,v,v′.

Table 5.1 lists all changes with their respective types grouped by scope.

83

Scope Name Type
Diagram diagramRootAdded Addition

diagramRootRemoved Removal
diagramRootIndexChange Migratory

Subordinate subordinateComponentIndexChange Migratory
subordinateComponentMoved Migratory

Superordinate subordinateComponentAdded Addition
subordinateComponentRemoved Removal

Association target classIndexChange Migratory
classMovedToClassUnion Migratory
classMovedOutOfClassUnion Migratory
classMovedToRoots Migratory

Class classGivenElementLabel Sedentary
classElementLabelRemoved Sedentary
classElementLabelChanged Sedentary
classAnyAttributeAllowed Sedentary
classAnyAttributeForbidden Sedentary

Content container contentContainerNameChange Sedentary
Attribute attributeAliasOrNameChange Sedentary

attributeIndexChange Migratory
attributeDefaultValueChange Sedentary
attributeMoved Migratory
attributeTypeChange Sedentary
attributeCardinalityChange Sedentary

Construct with attributes attributeAdded Addition
attributeRemoved Removal

Class Union classAddedToUnion Addition
classRemovedFromUnion Removal

Association associationCardinalityChange Sedentary
associationChildAdded Addition
associationChildRemoved Removal

Table 5.1: Changes Summary

5.3 Changes Not Affecting Validity

One set of changes consists of changes that do not affect validity of the existing
documents. It may seem futile to be concerned with these changes and we can
simply ignore them, but being able to detect any changes in the XSem tree can
be useful for purposes other than translating to XML schema.

Even though a change c̃ ∈ CD,D′,v,v′ does not violate validity of S(D), it will

84

affect the translation algorithm, which implies that the XML schema translated
from the diagram D will differ from the schema translated from D′.

E.g. reordering components of content choice has no effect on validity, because
in a valid XML document only one of the possible choices will be selected. Still,
the translated schemes will differ in the order of declarations in the content of
appropriate <xs:choice> (assuming the XML Schema language is utilized for
translation). Addition of a new component into content choice also has no effect
on validity, but the change is in this case very significant. Assuming that the
XML documents are shredded into a set of tables of a relational database, this
set must be altered to handle storing those documents that will use the newly
added component in content choice in the future.

Familiarity with changes not affecting validity can significantly simplify the
process of revalidation. Of course, if we are sure that all changes made in the
evolved schema belong to the set of changes not affecting validity, it is correct
to skip the revalidation of S(D), because validity against the new schema is
guaranteed.

Changes not affecting validity can be divided into these groups:

• changes applied only during creation of new elements/attributes in the
XML document

• changes giving more options and possibilities than the old schema

• changes broadening cardinality interval

• changes adding optional content

• changes caused by differences between XSem model and XML model.

For the set of changes not affecting validity of the documents in S(D) we
will use the notion CNI

D,D′,v,v′ . Each type of changes not affecting validity will
be defined as a set or subset of instances of one or more change predicate. For
example, the following statement:

∀ attributeDefaultV alueChange c̃ : c̃ ∈ CNI
D,D′,v,v′

says that each instance c̃ of attributeDefaultValueChange is a change not
affecting validity. The following statement:

∀ subordinateComponentAdded c̃, c̃.P ′ ∈ CH : c̃ ∈ CNI
D,D′,v,v′

85

says that only those instances of subordinateComponentAdded change modi-
fying a content choice are changes not affecting validity.

5.3.1 Changes Applied During Creation

If a change creates structures that are taken into account only for newly created
elements/attributes, validity of the set of existing documents is not violated.

Assigning/Modifying Default Value

∀ attributeDefaultV alueChange c̃ : c̃ ∈ CNI
D,D′,v,v′ (5.1)

XSem data model allows to assign default values to attributes. Attributes
in XSem model either attributes of elements (when declared in PSM classes) or
elements with simple content (when defined inside an attribute container).

When a default value is assigned to an attribute that did not have a default
value in the original schema, all affected elements/attributes from the set of
existing documents must already have their values specified. The change does
not violate validity of the set of existing documents.

If an attribute had a default value in the original schema and it was modified
in the evolved schema, the value of the affected elements/attributes in the set of
existing documents that do not have their values specified changes. This change
is not expressed in the XML documents themselves, but in the XML schema so
no revalidation is needed.

5.3.2 Changes Giving More Choices

Adding a new member to a set from which members are selected in the XML
document gives users creating and modifying documents more choices in the
future, but does not violate validity of the documents already created. Several
changes can be put into this category

86

Adding more classes to class union/adding more components to con-
tent choice

∀ classAddedToUnion c̃ : c̃ ∈ CNI
D,D′,v,v′

∀ subordinateComponentAdded c̃, c̃.P ′ ∈ CH : c̃ ∈ CNI
D,D′,v,v′ (5.2)

A new class in Class Union allows for more possible types of content in an
XML element. All previous possibilities are preserved and thus validity of the
set of existing documents is not violated. Analogously for adding components to
Content Choice.

Allowing more top level elements

∀ diagramRootAdded c̃, c̃.C ′ ∈ CC ∪ {C ∈ Cpsm : C.label = null} :
c̃ ∈ CNI

D,D′,v,v′ (5.3)

XSem subtrees with roots being content containers or PSM classes having an
element label are added in the PSM diagram.

Adding an XSem-H subtree with content container or PSM Class having
an element label as a root allows another root element in the valid documents.
Newly created documents can be created following the new XSem subtree, but
the set of existing documents remains valid.

Until some component of the new subtree is referenced from one of the sub-
trees existing in the previous versions (e.g. via means of structural representative
construct), the presence of a new subtree has no effect on existing documents
(new documents can of course be created as instances of the new subtree).

Adding XSem subtrees with a root class without an element label

∀ diagramRootAdded c̃, c̃.C ′ ∈ CC ∪ {C ∈ Cpsm : C.label ̸= null} :
c̃ ∈ CNI

D,D′,v,v′ (5.4)

Adding an XSem-H subtree with a root being a PSM class without label defines
new type of content that can not appear in any document in the set of existing
documents.

87

Until some component of the new subtree is referenced from one of the sub-
trees existing in the previous versions (e.g. via means of structural representative
construct), the presence of a new subtree has no effect on existing documents.

Changing the type of an attribute to a more general type

∀ attributeTypeChange c̃, domgetInV er(c̃.a′,v).Type ⊆ domc̃.T ′ :

c̃ ∈ CNI
D,D′,v,v′ (5.5)

If type T of attribute a is changed to T ′ in D′ and domT ⊆ domT ′ , then all
values used in S(D) valid against D remain valid against D′ and D′ is backwards
compatible.

Depending on tghe particular storage of XML documents, some additional
changes can be also declared non-invalidating. If documents in the set of existing
documents are stored as text (e.g as XML files or in a CLOB column in a
relational database), values of all attributes are stored as text. In that case any
type can be changed to string (or normalizedString and possibly user-defined
types derived from string) without invalidating S(D).

In other scenarios (e.g. when values of an attribute typed integer are stored
in a NUMBER column in a relational database), changing a type of an attribute
to string may invalidate the set of existing documents.

5.3.3 Changes Broadening Cardinality Interval

∀ associationCardinalityChange c̃,

getInV er(c̃.A′, v).l ≥ c̃.l′ ∧ getInV er(c̃.A′, v).u ≤ c̃.u′ : c̃ ∈ CNI
D,D′,v,v′

∀ attributeCardinalityChange c̃,

getInV er(c̃.a′, v).l ≥ c̃.l′ ∧ getInV er(c̃.a′, v).u ≤ c̃.u′ : c̃ ∈ CNI
D,D′,v,v′ (5.6)

XSem defines the cardinality of PSM associations as a pair (l, u), where l ∈ N0

and u ∈ N∪ {∗} and inequality l ≤ u always holds (∗ being greater than any l).
Cardinality of attributes is defined in a similar manner.

The cardinality interval (l, u) can be changed in the evolved schema to (l′, u′).
If conditions:

88

l′ ≤ l

u′ ≥ u (5.7)

hold, it is guaranteed that the XML fragments valid against the original schema
remain valid for the evolved schema.

If one of the conditions in 5.7 is violated, it is impossible to decide whether
some of the documents from S(D) will become invalid. Even narrowing the
cardinality interval can still leave all the documents in S(D′) valid (e.g. when
l = 5 and l′ = 4 for an attribute a in an attribute container c, but the element
<a> does not occur for five times in any document D ∈ S(D)).

5.3.4 Changes Adding Optional Content

It is possible to view the changes that add optional content as a special case of
changes broadening the cardinality interval (using the same terms as above, it
means that l = 0, u = 0, l′ = 0 and u′ > 0) but this perspective can be rather
unnatural to the user, so we will discuss them separately.

When XML schema evolution takes a form of adding new content and back-
ward compatibility is desired, adding new content as optional is a recommended
approach (for more recommendation on writing backward and forward compat-
ible schemas and queries see [22]).

The whole set of existing documents will lack the newly added content, but
will remain valid due to the content being declared as optional.

Adding optional attribute, association

∀ attributeAdded c̃, c̃.a′.l = 0 : c̃ ∈ CNI
D,D′,v,v′

∀ subordinateComponentAdded c̃, c̃.C ′ ∈ Apsm ∧ c̃.C ′.l = 0 : c̃ ∈ CNI
D,D′,v,v′

(5.8)

Each attribute a′ and association A′ in XSem model has its cardinality (l′, u′).
If a new attribute/association is added having l′ = 0, it will model an optional
content. In case of attributes, the form being either attribute of an element or an
element with simple content depending on whether the attribute is inside a PSM
class or an attribute container respectively. In case of associations the modeled
content is either a PSM subtree when A.Child is a significant node or a part of
the content of the closest significant node of A.Child.

89

5.3.5 Utilizing Any Attribute Flag

∀ classAnyAttributeAdded c̃ : c̃ ∈ CNI
D,D′,v,v′

∀ attributeAdded c̃, c̃.Container′ ∈ Cpsm ∧
getInV er(c̃.Container′, v).a = true : c̃ ∈ CNI

D,D′,v,v′ (5.9)

Adding Any Attribute flag to a PSM Class or adding an attribute where Any
Attribute is declared belong to this category.

Allowing Any Attribute allows the user to add an arbitrary attribute to the
significant ancestor of the class. Validity of the set of existing documents is not
impaired.

Allowing Any Attribute for a PSM Class can be an efficient way to give the
users a certain level of extensibility when working with the schema and achiev-
ing the forward-compatibility. When Any Attribute was defined in the original
schema, attributes can be added arbitrarily in the evolved schema and the set
of existing documents will remain valid.

5.3.6 Changes Caused by Differences between XSemModel
and XML Model

Some properties of the constructs in the XSem model do not directly influence
the content of the set S(D).

Reordering Attributes in PSM Classes

∀ attributeIndexChange c̃, c̃.a′.Container′ ∈ Cpsm : c̃ ∈ CNI
D,D′,v,v′ (5.10)

Since attributes in PSM classes model XML attributes and the order of XML
attributes in an XML element is insignificant, this change does not violate va-
lidity.

90

Reordering Classes in Class Unions/Components in Content Choic-
es/Diagram roots

∀ diagramRootIndexChange c̃ : c̃ ∈ CNI
D,D′,v,v′

∀ classIndexChange c̃ : c̃ ∈ CNI
D,D′,v,v′

∀ subordinateComponentIndexChange c̃, c̃.S ′ ∈ CH : c̃ ∈ CNI
D,D′,v,v′ (5.11)

Reordering collections of content choice/class union nodes has no effect on
the validity of XML data.

5.4 Generating Content

Certain modifications in the diagram may require new content to be added into
some (or all) documents in S(D) to revalidate the documents:

• new non-optional construct is added in the diagram (subordinateCompo-
nentAdded, attributeAdded)

• cardinality interval was extended from (l, u) to (l′, u′) where l < l′ (at-
tributeCardinalityChange, associationCardinalityChange)

• a construct was moved or deleted from content choice or non-optional class
union and its instance in the XML document must be replaced by instance
of one of the other components in the content choice/classes in the class
union (subordinateComponentMoved, classMovedOutOfClassUnion).

This section will propose solutions to this issue.

5.4.1 User-Provided Content

Leaving the issue up to the user to solve it can be very convenient and in some
cases the only correct solution. The revalidation script for evolution from version
v to v′ can be generated by the system with some “blanks” left for the user to
fill or take a form of a parameterized script with the values of parameters to be
filled when executing the script.

91

Figure 5.4 contains a simple example and Figure 5.5 shows a revalidation
script that references additional document (in Figure 5.6) to provide the neces-
sary data. New attribute email was added to element customer and a document
CustomerData.xml contains list of emails of all customers.

Figure 5.4

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="2.0"

xmlns:xsl="..">

<xsl:output method="xml" indent="yes" />

<xsl:variable name="cl"

select="document(’CustomerList.xml’)/Customers" />

<xsl:template match="/Customer">

<Customer>

<xsl:copy-of select="@name" />

<xsl:copy-of select="@customer-no" />

<xsl:variable name="cn" select="@customer-no" />

<xsl:copy-of select="$cl/Customer[@customer-no = $cn]/email" />

</Customer>

</xsl:template>

</xsl:stylesheet>

Figure 5.5: Revalidation stylesheet

92

<?xml version="1.0"?>

<Customers>

<Customer customer-no=’34’>

<email>john.doe@example.org</email>

<email>john.doe@company.com</email>

</Customer>

...

<Customer customer-no=’77’>

<email>martin.smith@domain.org</email>

</Customer>

</Customers>

Figure 5.6: Document Referenced from Revalidation Stylesheet

5.4.2 Default Content

The revalidation script can also create the missing content itself – the structure
of the internal nodes is given, the values for leaf nodes and attributes can be
supplied with the default values of PSM attributes (if defined) or the default
values for the given type of each PSM attribute (an empty string for xs:string
type etc.). Where choices/unions are present, the first component/class is always
selected. Such a content will be called default instance.

Here we will describe an algorithm that returns a default instance of an
XSem-H subtree with root N . Each time a content is needed to be generated,
the default instance can be created for the particular subtree.

First, we will show how to obtain a default instance grammar Gdef
D from an

arbitrary XSem-H diagram D. Then, with this grammar, a default instance of
any subtree in diagram D can be generated from a particular nonterminal node.

For grammar Gdef
D letN be the set of nonterminals and T the set of terminals.

T ={l|∃ PSM class C ∈ D.N : C.label = l} ∪
{n|∃ content container CC ∈ D.N : CC.n = n} ∪

{an|∃ PSM attribute a ∈
∪

H:Cpsm∪ AC

H.Attpsm : a.n = an} ∪

{ad|∃ PSM attribute a ∈
∪

H:Cpsm∪ AC

H.Attpsm : a.d = ad} ∪

{Td|∃ type T ∈ T : Td is a default value for T} ∪
{<,/ >, , attribute=}

93

The terminals are labels of all classes, names of all content containers and
attributes, default values for all attributes and types and the set of strings in
the last line.

The set of nonterminals N will consists of:

• N̂ , N̂ elm, N̂att where
N ∈ Cpsm ∪ AC ∪ CC ∪ CH ∪ CU

• Âelm, Âatt where A ∈ Apsm

• â for each PSM attribute a

• Âelm
exp for each association A ∈ Apsm and âelmexp for each PSM attribute a

Productions then follow the structure of XSem-H tree:
For each class Cl with element label, attributes a1, ..., ak and components S1, ..., Sm

add rules:

Ĉl → < Cl.label â1...âk Ŝ1

att
...Ŝm

att
> Ŝ1

elm
...Ŝm

elm
< /Cl.label >

Ĉl

elm
→ Ĉl

For each class Cnl without element label, attributes a1, ..., ak and components
S1, ..., Sm add rules:

Ĉnl

att
→ â1...âk Ŝ1

att
...Ŝm

att

Ĉnl

elm
→ Ŝ1

elm
...Ŝm

elm

Ĉnl → Cnl
elm Cnl

att (∗)

For each content container CC with components S1, ..., Sm add rules:

ĈC → < CC.n Ŝ1

att
...Ŝm

att
> Ŝ1

elm
...Ŝm

elm
< /CC.n >

ĈC
elm
→ ĈC

For each content choice CCh with components S1, ..., Sm add rules:

94

ĈCh
att
→ Ŝ1

att

ĈCh
elm
→ Ŝ1

elm

ĈCh → CChelm CChatt (∗)

For each class union CU with class C1, ..., Cm add rules:

ĈU
att
→ Ĉ1

att

ĈU
elm
→ Ĉ1

elm

ĈU → CU elm CUatt (∗)

For each attribute container AC with class a1, ..., ak add rules:

ÂC
att
→ λ

ÂC → â1...âk

ÂC
elm
→ ÂC

For each association A with target N add rules:

Â
elm
→ Âelm

exp ...Â
elm
exp (where Âelm

exp is repeated A.l times)

Â
att
→ N̂att

Âelm
exp → N̂ elm

For each attribute a inside an attribute container add rules:

â → âelmexp ...â
elm
exp (where âelmexp is repeated a.l times)

if a.d ̸= null :

âelmexp →< a.aliasOrName > a.d < /a.aliasOrName >

otherwise :

âelmexp →< a.aliasOrName > Td < /a.aliasOrName >

95

For each attribute a of a PSM class add rules:

if a.d ̸= null :

â→ attribute=‘a.d’ otherwise :

â→ attribute=‘Td’

The last two rules generate an XML attribute with value. Note that there are
only nonterminals on the right-hand side of the rules.

To generate an instance of an XSem-H subtree with root N , which is a
significant node, just start with the nonterminal N̂ . For each nonterminal, there is
only one rule with the given nonterminal on the left-hand side, thus the grammar
Gdef

D is deterministic.
When N is not a significant node, the result of generation will be a set of

attribute definitions (as a result of propagation to significant nodes) and an
XML fragment (rules marked with (∗) are the beginning rules when the starting
nonterminal corresponds to nonsignificant node).

5.4.3 Utilization of PIM Links

When a new XSem-H construct is added, it also has links to the new version of
the platform-independent model. These links can be used to obtain the correct
data when content is generated for the new construct.

One example could be the situation where data is stored in a relational
database. The content for XSem-H construct can be then retrieved from the
data in the database. This would be possible if there is a model of a relational
database linked to the PIM. This approach will be a subject of future work.

5.5 Oracle In-Place XML Schema Evolution

This section shows the relation of XSem changes non-invalidating to In-Place
evolution operations in Oracle Database 11g.

Oracle Database 11g uses two different approaches to XML Schema evolution
[3]:

• Copy-based approach – all stored documents valid against the old schema
are reinserted into the evolved storage; this approach is slower, but there
are no restrictions on the type of changes

96

• In-place evolution – changes in the schema are applied to update the stor-
age, but the stored documents are not reinserted; this approach is faster,
but the new schema must be backwards-compatible and the set of allowed
evolution operations is limited

The previous section summarized the backwards-compatible changes between
the two versions of an XSem-H diagram. When the evolved diagram is translated
into an XSD, this new XSD can be used for in-place evolution. However, not all
types of changes are supported by Oracle in-place evolution. Table 5.2 shows
a list of all operations on the XSD and their counterpart changes in XSem-H
diagrams as described in the previous section, in some cases, with other appli-
cability conditions. If all changes in CD,D′,v,v′ are instances of changes in Table
5.2 and all applicability conditions are met, in-place evolution approach can be
used

97

XSD operation XSem-H change
Add an optional element/attribute to a
complex type or group/attribute group

attributeAdded (5.8)
subordinateComponentAdded (5.8)

Convert an element from a simple type
to a complex type with simple content

no counterpart in XSem-Evo

Increase the value attribute of an exist-
ing maxLength element

attributeTypeChange (5.5)1

Add an enumeration value (only to the
end of an enumeration list)

attributeTypeChange (5.5)2

Add a global element diagramRootAdded (5.3)
Add a global attribute no counterpart in XSem-Evo
Add or delete a global complex type diagramRootAdded (5.3)

diagramRootAdded (5.4)
diagramRootRemoved (5.4)3

Add or delete a global simple type no counterpart in XSem-Evo
Decrease minOccurs/increase maxOc-
curs attribute value (increase maxOc-
curs only for data stored as binary
XML)

attrbiuteCardinalityChange (5.6)
associationCardinalityChange (5.6)

Add or delete a global group or an at-
tributeGroup

diagramRootAdded (5.4)
diagramRootRemoved (5.4)4

Add, modify, or delete a comment or
processing instruction

no counterpart in XSem-Evo

Change the xdb:defaultTable attribute
value

no counterpart in XSem-Evo

1. Both the old and the new type must be the same types except for the increased
maxLength.

2. Both the old (T) and the new type (T ′) must be enumeration types and the list of
values of T must be a prefix of the list of values of T ′.

3. Only if the removed root or any part of its subtree is not referenced from any structural
representative in the diagram.

4. Only if the removed root or any part of its subtree is not referenced from any structural
representative in the diagram.

Table 5.2: In-place Evolution Operations and their Counterparts in XSem-Evo

5.6 Detection Algorithm

Possible changes that can occur between two versions of a PSM diagram were
all defined in the previous section. The detection algorithm – see Algorithm 2 –
looks for combinations of parameters satisfying the change predicates.

The output of Algorithm 2 is CD,D′,v,v′ – set of combinations of parameters

98

satisfying a change predicate.

Algorithm 2 Change Detection

Input: old and new version v, v′ ∈ V , XSem diagram D, new version of the
XSem diagram D′

Output: CD,D′,v,v′ – set of changes between the two versions of the diagram D.
1: CD,D′,v,v′ ← ∅
2: for all N in D′.N ∪Apsm ∪ Attpsm do
3: for all scope type s of all scopes of N do
4: for all change type c of changess do
5: for all combinations of parameters c̃ satisfying detected change of

type c on N do
6: CD,D′,v,v′ ← CD,D′,v,v′ ∪ {c̃}
7: end for
8: end for
9: end for
10: end for

Invariants for the Set of Changes

Definition 5.6.1 (Subsets of CD,D′,v,v′). We will denote Caddition
D,D′,v,v′, Cremoval

D,D′,v,v′,

Cmigratory
D,D′,v,v′ ⊆ CD,D′,v,v′ the sets of detected addition, removal and migratory changes.

Each of these sets can be factorized by the construct the change addds/removes/-
moves:

Adde′ = {c̃ ∈ Caddition
D,D′,v,v′ : c̃ adds construct e’}

Reme = {c̃ ∈ Cremoval
D,D′,v,v′ : c̃ removes construct e}

Move′ = {c̃ ∈ Cmigratory
D,D′,v,v′ : c̃ moves construct e’}

Sede′ = {c̃ ∈ Csedentary
D,D′,v,v′ : c̃ is a sedentary change of construct e’}

The following conditions hold for the detected set of changes CD,D′,v,v′ :

99

∀e ∈Mpsm :

|Adde′ | ≤ 1 ∧ |Reme| ≤ 1 ∧ |Move′| ≤ 1 ∧
|Adde′ |+ |Reme|+ |Move′ | ≤ 1 ∧
|Sede′|+ |Move′| = 0 ∨ |Adde′ |+ |Reme| = 0 ∧
|Sede′|+ |Move′|+ |Reme| > 0→ getInV er(e′, v) ̸= null∧
|Sede′|+ |Move′| > 0→ getInV er(e′, v′) ̸= null ∧
|Reme| > 0→ getInV er(e, v′) = null ∧
|Adde′ | > 0→ getInV er(e′, v) = null ∧

100

Chapter 6

Revalidation

This chapter describes an algorithm producing a revalidation script that pro-
duces a revalidated document D′ ∈ S(D′) when applied on XML document
D ∈ S(D).

In the previous chapter we defined how to obtain the set of changes CD,D′,v,v′ .
Because changes are defined as changes in the XSem model, similarly as XSem
model can be translated to an XML schema in any XML schema language,
the set of changes can be used to generate a revalidation script in any kind of
implementation language.

Assuming that the XQuery Update Facility is the implementation language,
each change c̃ ∈ CD,D′,v,v′ would be translated to an XQuery Update com-
mand(s):

• addition changes to insert commands

• removal changes to delete commands

• migratory changes would generate first insert command referencing some
part of the document and thus copying the content and delete command
to remove the content from its old location

• sedentary changes would generate rename command or again insert or
delete commands

Each command would then be executed upon the revalidated document. The
procedure when using DOM API would be analogous.

XSem-Evo uses XSL stylesheets as implementation language due to the wide
support for XSLT among the tools working with XML data and especially the
database systems supporting XML Schema evolution.

101

6.1 XSL Specifics

The procedure described in the previous part is not directly applicable when
generating revalidation XSL stylesheet for the following reasons:

No Removal XSL does not have any means of explicit removing a content
from a document. Removal is achieved by not putting the particular part of
content to the output. This is achieved either by the composing the instructions
so that the processor never reaches the particular part of content, or by letting
the processor go through the content without sending anything to the output.

Processing of Unchanged Content When DOM or XQuery Update Fa-
cility is used, an unchanged content does not need to be processed – it will just
remain in the document. On the other hand, XSLT must process all content that
should be sent to the output.

Output Definitiveness When XSLT processor sends a content to the out-
put, it can not be changed during the same transformation. With XQuery or
DOM, several separate changes can be conducted on the same nodes. With
XSLT the changes have to be grouped and conducted together.

6.2 Nodes Categorization

Definition 6.2.1 (Imprint changes). Migratory changes that move a construct
from one node to another node, attribute cardinality change and changes that
model renaming an XML node will be called imprint changes. For imprint change
c̃ we define the affected node in the following table and denote it c̃.affected. We
will say c̃ is an imprint change for a construct N if c̃.affected = N . Table 6.1
lists all types of the imprint with their respective affected nodes.

From now on we will consider PSM attributes in attribute containers as nodes
because they represent XML elements. In the following text, let v and v′ be an
old version and new version in the model, and D′ new version of diagram D.
Considering the features of XSL, we will divide the nodes and attributes in the
diagram D′ into these subsets of D′.N ∪Attpsm:
D′

base,D′
red,D′

blue,D′
green,D′

group ⊆ D′.N ∪Attpsm.

102

Change type Affected node
classMovedToClassUnion former parent association/class union
classMovedOutOfClassUnion former parent association/class union
attributeMoved (to attribute container) former parent class/attribute container
attributeCardinalityChange parent class/attribute container
attributeIndexChange parent class/attribute container
classElementLabelRemoved parent association/class union
classElementLabelAdded parent association/class union
classElementLabelChanged parent association/class union
contentContainerNameChange parent superordinate node
subordinateComponentIndexChange parent superordinate node
subordinateComponentMovedChange parent superordinate node

Table 6.1: Imprint Changes

Definition 6.2.2 (Group Nodes). The set D′
group is defined as:

D′
group = {C ′ ∈ Cpsm|getInV er(C ′, v) = null ∧ C ′.label = null ∨

getInV er(C ′, v).label = null}

Elements of D′
group will be called group nodes.

Definition 6.2.3 (Significant Nodes, Base Nodes). Let D′
sign be the set of all

significant nodes in the diagram. D′
base is defined as:

D′
base = D′

sign ∪ D′
group

Elements of D′
base will be called base nodes.

Definition 6.2.4 (CD,D′,v,v′ [N]). CD,D′,v,v′ [N] ⊆ CD,D′,v,v′ is the set of changes
detected for node N ∈Mpsm and is defined as:

CD,D′,v,v′ [N] ={c̃ ∈ CD,D′,v,v′|c̃ is detected for N} ∪
{c̃ ∈ CD,D′,v,v′|c̃ is imprint change for N}

Notion Cbase
D,D′,v,v′ [N] will be used for the set of all changes belonging to a base

node N.

Cbase
D,D′,v,v′ [N] =

∪
N ′:CSN(N ′)=N

CD,D′,v,v′ [N]

103

Definition 6.2.5 (Green Nodes). The set D′
green ⊆ D′

base is the set of those
base nodes that were not changed between versions v and v′ and neither was any
node in their subtree.

D′
green = {M ′ ∈ D′

base | ∀N ′ ∈ M̂ ′ : Cbase
D,D′,v,v′ [N] = ∅}

Elements of D′
green will be called green nodes.

Definition 6.2.6 (Red Nodes). The set D′
red ⊆ D′

base is the set of those base
nodes that were changed between versions v and v′.

D′
red = {N ′ ∈ D′

base | Cbase
D,D′,v,v′ [N] ̸= ∅}

Elements of D′
red will be called red nodes.

Definition 6.2.7 (Blue Nodes). The set D′
blue ⊆ D′

base is the set of those
base nodes that were not changed between versions v and v′ but some of their
descendant nodes were.

D′
blue = {M ′ ∈ D′

base | Cbase
D,D′,v,v′ [M

′] = ∅ ∧

∃N ′ ∈ M̂ ′ : Cbase
D,D′,v,v′ [N] ̸= ∅}

Elements of D′
blue will be called blue nodes.

The following conditions join the previous definitions:

D′
base = D′

green ∪ D′
blue ∪ D′

red

D′
green ∩ D′

blue = D′
red ∩ D′

blue = D′
green ∩ D′

red = ∅

6.3 Revalidation Script Overview

In XSL, as in other languages, stylesheets producing the same output can be
written in several forms. To keep it transparent, comprehensible and easily mod-
ifiable, the revalidation stylesheet generated by XSem-Evo takes the following
form:

104

• It is a one-pass stylesheet.

• It follows the navigational stylesheet pattern described in [15]. It is output
oriented and relies on a detailed knowledge of the input document. XPath
expressions used for name and match attributes of all top-level templates
are always absolute.

• A top-level template is created for each red node.

• Each top-level template describes attributes and direct subelements of the
processed red node.

• One common top-level template is added to process all green nodes and
another to process all blue nodes.

• Implicit XSLT stylesheets are never used, because they do not serve the
desired purpose.

• The stylesheet grows (counting the number of top-level templates) with
the amount of changes made in the diagram, not with the complexity of
the diagram.

6.4 XPath Expressions for XSem-H Nodes

In this section we define an XPath expression for each XSem-H construct in a
diagram D.

Definition 6.4.1 (T.XPath). For every XSem-H construct T in diagram D we
define an XPath expression T.XPath as :

T.XPath =



T.Parent.XPath

if T ∈ Apsm ∪ AC ∪ CU ∪ CH
T.Container.XPath + "/" + T.aliasOrName

if T ∈ Attpsm ∧ T.Container ∈ AC
T.Container.XPath + "/@" + T.aliasOrName

if T ∈ Attpsm ∧ T.Container ∈ Cpsm
T.Parent.XPath + "/" + T.n

if T ∈ CC ∧ T.Parent ̸= null

105

N.XPath =



"/" + T.n

if T ∈ CC ∧ T.Parent = null

"/" + T.label

if T ∈ Cpsm ∧ T.label ̸= null ∧ T ∈ D.roots
T.Parent.XPath + "/" + T.label

if T ∈ Cpsm ∧ T.label ̸= null ∧ T /∈ D.roots
T.Parent.XPath

if T ∈ Cpsm ∧ T.label = null ∧ T /∈ D.roots
"<virt-root>"

if T ∈ Cpsm ∧ T.label = null ∧ T ∈ D.roots

The text "<virt-root>" is used as a substitute for a root expression "/" for
root classes without element labels.

6.5 Green Nodes Processing

Nodes in the set D′
green are to be left unchanged and the same applies for their

subtrees. XSLT construct <xsl:copy-of> can be used for these subtrees. The
whole subtree is copied as is to the output without the need to process the nodes
in the subtree by the XSLT processor.

Template 6.1 is used to process all significant green nodes and will be denoted
greenNodesTemplateD′ . The value of match attribute {green-nodes-paths} is an
expression that returns the set of all the instances of the green nodes in the
diagram. It takes the form of absolute paths (N.XPath of green node N) joined
by the | operator, e.g. ‘/Customer/Purchase | /Customer/Address’.

<xsl : template match=‘{green-nodes-paths}’>
<xsl : copy−of select= ‘. ’ />

</xsl : template>

Template 6.1: Green Nodes Template

106

6.6 Blue Nodes Processing

Nodes in set D′
blue are unchanged, but for each node M ′ ∈ D′

blue there is a least
one red node N ′ in M̂ ′. This implies that <xsl:copy-of> can not be used for
blue nodes, because the XSLT parser would not process the instance of node N ′.

Instead of <xsl:copy-of>, <xsl:copy> is used to create the XML element
and two diagram-independent templates copyAttributes and processContent

are called. Attributes can be copied, because the script never contains top-
level templates processing attributes. Template processContent calls apply-
templates for all subelements. The complete definition of these two named tem-
plates can be found on the attached CD together with other definitions of
diagram-independent templates (see Apendix A).

Template 6.2 will be denoted blueNodesTemplateD′ and is used to process all
significant blue nodes. XPath expression {blue-nodes-paths} is obtained analo-
gously as the expression for green nodes.

<xsl : template match=”{blue-nodes-paths}”>
<xsl : copy>

<xsl : cal l−template name=‘ copyAttr ibutes ’ />
<xsl : cal l−template name=‘processContent ’ />

</xsl : copy>
</xsl : template>

Template 6.2: Blue Nodes Template

6.7 Red Nodes Processing – Simplified Diagrams

To start off, we will assume a restricted set of constructs for diagrams D and D′:

∀N ∈ D.N ∪D′.N : N is PSMClass→
N.label ̸= null ∧N.Represented = null

{D.N ∪D′.N} ∩ {CH ∪ CU} = ∅ (6.1)

I.e. no classes without element labels, no structural representatives, content
choices and class unions.

By definition 6.2.3 and due to diagram restriction, all red nodes are significant
nodes (PSM classes with element labels, content containers and attributes in

107

attribute containers). For each red node N ′, a top level template nodeTemplateN ′

is created in the stylesheet.
The type of the template is determined by the state of node N ′ – whether it

was added in version v′ or existed in the version v. If it existed in the previous
version, we can expect an instance ofN ′ in the documents ∈ S(D). To distinguish
these two cases, we will use the following definition:

Definition 6.7.1 (Node State). Node state of node N ′ ∈ D′.N has one of the
following values:

N ′.state =

{
existing if AddN ′ = ∅ ⇔ getInV er(N ′, v) ̸= null

added if AddN ′ ̸= ∅ ⇔ getInV er(N ′, v) = null

Depending on N ′.state, nodeTemplateN ′ will be either:

• appliedNodeTemplateN ′ (existing nodes) or

• namedNodeTemplateN ′ (added nodes).

Context of Generator

XSLT generator keeps a limited state information called context. Here is the first
part of context attributes:

• context.BodyNode ∈ D′
base – base node currently being processed

• context.ProcessedPath – XPath expression belonging to the currently pro-
cessed node (in the old version of the diagram)

• context.ForceCallable ∈ {true, false} – flag indicating, that the state of
nodes (see Definition 6.7.1) is ignored and even existing nodes should be
treated as added

Relative XPath Context attribute context.ProcessedPath is used to obtain
relative path from context.BodyNode to another node.

Value of context.ProcessedPath is a simple XPath expression – it
contains only names of elements/attribute delimited by child axis e.g.
‘/Customer/Purchase/Item/@amount’. Obtaining a relative XPath for con-
text.ProcessedPath and another node is rather straightforward. Common prefix

108

is stripped and necessary upward steps are added if need be. This operation will
be denoted relativeXPath(a, context.ProcessedPath) where a ∈ D′

sign.
Some examples of relativeXPath:

context.ProcessedPath path to node a relative path
/Purchase /Purchase/Item/@amount Item/@amount

/customer-info/Customer /customer-info/Address/city ../Address/city

GenValue function In situations where new instance of a PSM attribute a′

must be generated, we will expect the existence of a function genValue(a′), which
returns a correct new value for the generated instance.

6.7.1 Red Node Template – Foundations

For each existing nodeN ′
e, template appliedNodeTemplateN ′

e
with match attribute

will be created:

<xsl : template match=‘{Ne.XPath}’>
{

generate red node template body with
context.ProcessedPath = Ne.XPath ,
context.BodyNode = N ′

e

}
</xsl : template>

Note that the value of match attribute, which returns an XPath expression
(see Definition 6.4.1) for the old version of the node N ′

e. It matches the instances
of N ′

e in the documents valid against the old version.
For added node N ′

a, a named template namedNodeTemplateN ′
a
is created.

Name of the template must be unique, name function is used to return a unique
name. To make the script transparent, the returned name indicates the location
of the node N ′

a in the XSem-H tree e.g. ‘Customer-Purchase’:

<xsl : template name=‘{name(N ′
a)}’>

{
generate red node template body with

context.ProcessedPath = existingAncestor(N ′
a).XPath ,

context.BodyNode = N ′
a

}
</xsl : template>

109

The function existingAncestor(N ′
a) returns the first node A

′ on the path from
N ′

a that existed in the previous version (getInV ersion(A′, v) ̸= null). For sig-
nificant root nodes "/" expression is used instead of existingAncestor(N ′

a). For
root classes without element labels the algorithm uses an auxiliary expression
"<virt-root>".

The template body is generated as follows:

• if the red node N ′ is a significant node (which we now assume for restricted
diagrams), an XML element E modeled by N ′ is added

• if N ′ is a PSM attribute inside an attribute container, its value is added,
otherwise:

– attributes of element E are added (if there are any)

– subelements of element E are added (if there are any)

6.7.2 Leaf (Attribute) Nodes

For a red node a′, that is a PSM attribute inside an attribute container, the
whole template leafNodeTemplatea′ for existing node is specified as:

<xsl : template match=‘{a.XPath}’>
<{a′.aliasOrName}>

<xsl : value−of
select=‘{convxa′(relativeXPath(a, context.ProcessedPath))} ’ />

</{a′.aliasOrName}>
</xsl : template>

and for added node (or when in force callable context) as:

<xsl : template name=‘{name(a′)}’>
<{a′.aliasOrName}>

{genValue(a′)}
</{a′.aliasOrName}>

</xsl : template>

In the first template, notice the usage of function relativeXPath that re-
turns an XPath expression – relative path from the path currently being in
context.ProcessedPath to the instance of attribute a in the old document.

In the second template, the function genValue is used to generate value of
attribute a′.

110

Verification The following changes were defined for attributes (not-
invalidating changes are omitted): attributeAliasOrNameChange, attributeType-
Change, attributeMoved , attributeIndexChange, attributeCardinalityChange, at-
tributeAdded and attributeRemoved . The migratory changes attributeMoved
and attributeIndexChange and also attributeCardinalityChange, attributeAdded
and attributeRemoved are targeted in part of the stylesheet where template
leafNodeTemplatea′ is called. Thus template leafNodeTemplatea′ only deals with
attributeAliasOrNameChange and attributeTypeChange.

• attributeAliasOrNameChange is solved by using the a′.aliasOrName for the
name of the XML element

• attributeTypeChange is solved by applying the revalidation function convxa′

that expects an XPath expression returning the value of an attribute and
converts it to the new type (when type of a was not changed, i.e. if

{c̃ ∈ CD,D′,v,v′ [N]a′ | c̃ is attributeTypeChange} = ∅

convxa′(xpath) can be replaced by xpath

6.7.3 Inner Nodes – Gathering XML Elements

To define complete body of a template for a red node N ′ (nodeTemplateN ′), the
subtree of N ′ must be examined and all subelements in the subtree that model
XML elements will have their counterparts in the template nodeTemplateN ′ .

To gather all the subelements, an auxiliary abstract construct node element
wrapper and an inherited construct simple node element will be used.

Definition 6.7.2 (Node Element Wrapper). Node element wrapper is an aux-
iliary construct used by the algorithm to wrap XSem-H diagram nodes modeling
XML elements.

Definition 6.7.3 (Simple Node Element). Simple node element is a subtype of
node element wrapper used to wrap a single significant node.

simple node element = (Element) (6.2)

where Element ∈ D′
sign is the wrapped significant node.

111

Algorithm 3 shows how a list of node element wrappers is obtained for a node.
Since we now assume a restricted XSem-H diagrams, the algorithm is simple, but
will be extended later.

Algorithm 3 Gather Subelements (1)

1 function GetSubtreeElements (N ′ ∈ D′.N)
2 returns subelementsN ′– ordered sequence of node element wrapper s.
3 {
4 subelementsN ′ ← ∅
5 foreach node C ′ ∈ child nodes of N ′

6 getSubtreeElementsInc lRoot (N ′ , var subelementsN ′)
7 return subelementsN ′

8 }
9
10 procedure getSubtreeElementsInc lRoot (N ′ ∈ D′.N , var subelementsN ′)
11 {
12 i f N ′ ∈ {C ′ ∈ Cpsm|C ′.label ̸= null} ∪ CC
13 subelementsN ′ � new node element wrapper(N ′)
14 i f N ′ ∈ AC
15 foreach attribute a′ ∈ N ′.Attpsm
16 subelementsN ′ � new node element wrapper(a′)
17 }

6.7.4 Inner Nodes – Gathering XML Attributes

The approach for gathering attributes is similar to gathering subelements. An
auxiliary abstract construct node attribute wrapper and an inherited construct
simple node attribute will be used.

Definition 6.7.4 (Node Attribute Wrapper). A Node Attribute Wrapper is
an auxiliary construct used by the algorithm to wrap XSem-H diagram nodes
modeling XML attributes.

Definition 6.7.5 (Simple Node Attribute). A Simple Node Attribute is a sub-
type of is a subtype of node attribute wrapper used to wrap a single attribute of
a PSM class.

simple node attribute = (Attribute) (6.3)

where Attribute ∈ Attpsm is the wrapped attribute.

112

Algorithm 4 shows how a list of node attribute wrappers is obtained for a
node.

Algorithm 4 Gather Attributes (1)

1 function GetAttr ibutes (N ′ ∈ D′.N)
2 returns attributesN ′– ordered sequence of node attribute wrappers.
3 {
4 attributesN ′ ← ∅
5 getAttributesUnderNode (N ′ , false , var attributesN ′)
6 return attributesN ′

7 }
8
9 procedure getAttr ibutesUnderNode (N ′ ∈ D′.N ,bool f i r s t C a l l ,
10 var attributesN ′)
11 {
12 i f (N ′ ∈ Cpsm)
13 i f (firstCall or N ′.label = null))
14 foreach (attribute a′ ∈ N ′.Attpsm)
15 attributesN ′ � new node attribute wrapper(a′)
16 else return
17 i f (N ′ ∈ Cpsm ∪ CC)
18 foreach (node C ′ ∈ N ′.Sub)
19 getAttributesUnderNode (C ′ , false , var attributesN ′)
20 }

6.7.5 Inner Node Template Body

For a red inner node N ′, the template adds one XML element when N ′ is a
significant node. The function name returns the appropriate name of the XML
element modeled by N ′. Then template body has two parts: attributes section
and elements section.

113

// red node temp la te
{ i f (N ′ ∈ D′

sign) }
<{name(N ′)}> // f o r s i g n i f i c a n t nodes , i n c l ude an opening tag

{ end i f }
// a t t r i b u t e s e c t i on (subrou t ine i s in t roduced . .)

{ process attributes(GetAttributes(N ′)) }
// element s e c t i on

{ process elements(GetSubtreeElements(N ′)) }
{ i f (N ′ ∈ D′

sign) }
</{name(N ′)}> // f o r s i g n i f i c a n t nodes , c l o s e the tag

{ end i f }

// process a t t r i b u t e s subrou t ine
process attributes(att : list of node attribute wrappers)
{

foreach node attribute wrapper aw ∈ att
{

i f aw i s simple node attribute
generate attribute reference with

context.CurrentAttribute = aw
}

}

// process e lements subrou t ine
process elements(elm : list of node element wrapper)
{

foreach node element wrapper nw ∈ elm
{

i f nw i s simple node element
generate element reference with

context.CurrentElement = nw

}
}

Template 6.3: Inner Red Node Template

114

{ i f (a′.state = added ∧ a′.l ̸= 0) ∨ (context.ForceCallable) } // added a t t r i b .
<xsl : attribute name=‘{a′.aliasOrName}’>

{genValue(a′)}
</xsl : attribute>

{ else i f CD,D′,v,v′ [N]a′ = ∅} // a t t r i b u t e was not changed
<xsl : copy−of select=‘{relativeXPath(a, context.ProcessedPath)} ’ />

{ else } // a t t r i b u t e was changed
{ var relXPatha = relativeXPath(a, context.ProcessedPath) }
{ i f a.l = 0 ∧ a′.l = 1 }

// a t t r i b u t e must be pre sen t
<xsl : choose>

<xsl :when test=‘{relXPatha}’>
<xsl : attribute name=‘{a′.aliasOrName}’>

<xsl : value−of select=‘{convxa′(relXPatha)} ’ />
</xsl : attribute>

</xsl :when>
<xsl : otherwise>

<xsl : attribute name=‘{a′.aliasOrName}’>
{genValue(a′)}

</xsl : attribute>
</xsl : otherwise>

</xsl : choose>
{ else i f a.l = 0 ∧ a′.l = 1 }

// a t t r i b u t e added only when i t was pre sen t
<xsl : i f test=‘{relXPatha}’>

<xsl : attribute name=‘{a′.aliasOrName}’>
<xsl : value−of select=‘convxa′(relXPatha) ’ />

</xsl : attribute>
</xsl : i f>

{ else }
// a t t r i b u t e was pre sen t
<xsl : attribute name=‘{a′.aliasOrName}’>

<xsl : value−of select=‘{convxa′(relXPatha)} ’ />
</xsl : attribute>

{ end i f }
{ end i f }

Template Fragment 6.4: Generating Attribute Reference

115

Definition 6.7.6 (Function name). Function name is defined as follows:

name : D′
sign → L

name(N) =


N.label if N ∈ Cpsm
N.n if N ∈ CC
N.aliasOrName if N ∈ Attpsm

Template Fragment 6.4 contains the definition of generate attribute refer-
ence subroutine and Template Fragment 6.5 the definition of generate element
reference subroutine.

Generating Attribute References

Template Fragment 6.4 shows how attribute references are generated.
Subroutine generate attribute reference (where a′ is used as a shortcut

for context.CurrentAttribute.Attribute and a as a shortcut for its previous version
in the last block) has three main blocks. The first block is used by attributes
added in the version v′ – new attribute is added with generated value. The second
block is used for attributes that were not changed between versions v and v′ and
can be copied. The last block is used by attributes whose definition changed
between versions v and v′.

Verification The following changes were defined for attributes (not-
invalidating changes are omitted): attributeAliasOrNameChange, attribute-
Moved , attributeTypeChange, attributeCardinalityChange, attributeAdded and
attributeRemoved . The attributeMoved change is solved by using the Gather
Attributes algorithm – all attributes relevant for the node are included. The
attributeAdded change is solved in the first block of the subroutine, attribute-
Removed can be ignored (Gather Attributes will omit removed attributes). Thus,
only attributeAliasOrNameChange, attributeTypeChange and attributeCardinal-
ityChange need to be aimed at:

• attributeAliasOrNameChange is solved by using the a′.aliasOrName inside
the <xsl:attribute> construct.

• attributeTypeChange is solved by applying the revalidation function convxa′

that expects an XPath expression returning the value of an attribute and

116

converts it to the new type. When the type of a was not changed, i.e. if

{c̃ ∈ CD,D′,v,v′ [N]a′ | c̃ is attributeTypeChange} = ∅

convxa′(xpath) can be replaced by xpath.

• attributeCardinalityChange is solved by checking the cardinality. The only
expected cardinality intervals are (0, 1), (1, 1) – an XML attribute can be
either optional or mandatory.

Inner Node Elements

Template Fragment 6.5 shows how attribute references are generated.

Element Reference Subroutine generate element reference (where N ′ is
used as a shortcut for context.CurrentElement.Element) distinguishes two cases.
The first one proceeds to generating code that handles cardinality changes and
iterated additions (when new construct is added with cardinality > 1). The
second one solves cases where cardinality of element N ′ need not to be dealt
with. This happens when either the cardinality did not change from the previous
version or the element was added with upper cardinality 1.

{ i f lowerElementCardinality(N ′) = 0 ∧
(N ′.state = added ∨ context.ForceCallable) }
exit ; // an op t i ona l e lement need not to be added

{ end i f }
{ i f (N ′.state = existing ∧ cardinalityChanged(N ′)) ∨

(N ′.state = added ∧ lowerElementCardinality(N ′) > 1) ∨
(context.ForceCallable ∧ lowerElementCardinality(N ′) > 1) }
generate element cardinality reference

{ else }
generate element single reference

{ end i f }

Template Fragment 6.5: Generating Element Reference

117

Element Single Reference Subroutine generate element single ref-
erence in Template Fragment 6.6 calls forceCallableNodeTemplateN ′ if
in force callable mode (context.ForceCallable). If the called template
forceCallableNodeTemplateN ′ was not generated yet, it is generated now. If not
in force callable mode, the template follows the state of node N ′.

For newly added nodes namedNodeTemplateN ′ is called. Thanks to nodes
categorization, we can be sure that namedNodeTemplateN ′ will be a part of
the resulting stylesheet because (added nodes are always red nodes and named
templates are always generated for added nodes).

For existing nodes, <xsl:apply-templates> is called and the expres-
sion that is the value of select attribute will either match against
appliedNodeTemplateN ′ (if N ′ is a red node) or greenNodesTemplateD′ (if N ′

is a green node) or blueNodesTemplateD′ (if N ′ is a blue node). The optional
condition parameter of the routine can restrict the set of the processed exist-
ing nodes. This parameter is not used by generate element reference, but
will be used later.

{ parameter : c ond i t i on (XPath expression, optional)
{ i f context.ForceCallable }

{ i f forceCallableNodeTemplateN ′ not generated yet
generate forceCallableNodeTemplateN ′ }

<xsl : cal l−template name=‘{forceCallableNodeTemplateN ′ } ’ />
{ else }

{ i f N ′.state = added }
<xsl : cal l−template name=‘{namedNodeTemplateN ′ } ’ />

{ else }
{ var xpath ← relativeXPath(N ′, context.ProcessedPath) }
{ i f condition i s set }

<xsl : apply−templates select=‘xpath [cond i t i on] ’ />
{ else }

<xsl : apply−templates select=‘xpath ’ />
{ end i f }

{ end i f }
{ end i f }

Template Fragment 6.6: Generating Element Single Reference

Force Callable Templates Force callable templates are created in those
cases, where a node N ′ is an existing node (thus appliedNodeTemplateN ′ will
be created for it), but also a named template creating new content without
referencing the existing one is needed.

118

The generating routine is identical (starts at Template 6.3), but the control
flow is overridden in appropriate branches by context.ForceCallable flag.

Force callable templates generate default instance of an XSem-H subtree. If
this is not the desired behavior, the user can replace the content of force callable
templates in the script with custom code.

In the examples, force callable templates will have ”-FC” suffix.

Element Cardinality Reference Subroutine generate element cardinal-
ity reference in Template Fragment 6.7 deals with cardinality of node N ′.

The first part concentrates on instances already present in the document
(and is therefore skipped for added elements or when in force callable mode).
Existing instances are processed again by the single reference subroutine – either
all existing instances (when the upper cardinality of node N was not decreased
i.e. all existing instances can remain in the document) or the first k instances,
where k is the new upper cardinality. The condition parameter of single ref-
erence subroutine with built-in XPath function position is utilized to restrict
the number of instances processed.

The purpose of the second part is to add new instances ofN ′ to the document.
Adding several instances may be needed for two reasons:

• N ′ is a new node and its lower cardinality is > 1

• the lower cardinality of N ′ changed from l to l′ > l.

New instances are again created via calling the template
forceCallableNodeTemplateN ′ (which is now generated if it was not gener-
ated already). Using the XSLT built-in function count, the existing instances
are counted (for existing nodes). For added nodes, the generating template must
be called k times, k being the lower cardinality of the added node. For nodes
where cardinality has changed, the difference between the count of the existing
instances and the lower cardinality of N ′ is used.

119

/∗ rou t ine c a l l e d e i t h e r when c a r d i n a l i t y o f e lement N changed
or N’ was added wi th lower c a r d i n a l i t y > 1 ∗/

{ i f ¬context.ForceCallable ∧N ′.state = existing
// c a r d i n a l i t y o f N’ changed , dea l wi th e x i s t i n g nodes
var c̃← getCardinalityChange(N ′, CD,D′,v,v′ [N])
i f ¬(c̃ may require deleting)

generate element single reference
else

generate element single reference with
condition = ’position() ≤ c̃.u′’

end i f
end i f
i f context.ForceCallable ∨ (N ′.state = added ∧

getCardinalityChange(N ′, CD,D′,v,v′ [N]) may require generating)
// new nodes need to be crea t ed

i f forceCallableNodeTemplateN ′ not generated yet
generate forceCallableNodeTemplateN ′

var countExpr
var lower ← lowerElementCardinality(N ′)
i f (N ′.state = added ∧ context.ForceCallable)

countExpr ← lower
else

var e x i s t i n g ← relativeXPath(N ′, context.ProcessedPath)
countExpr ← ‘{ lower } − count ({ e x i s t i n g }) ’ }
<xsl : for−each select=‘1 to {countExpr}’>

<xsl : cal l−template
name=‘{forceCallableNodeTemplateN ′ } ’ />

</xsl : for−each>
{ end i f }

{ end i f }

Template Fragment 6.7: Generating Element Cardinality Reference

Verification Now we will show how the templates defined in this section reval-
idate changes defined in Chapter 5 (we still assume a restricted XSem-H diagram
defined in Section 6.7). The following changes relate to this part of the algorithm
(non-invalidating changes are omitted): diagramRootRemoved , subordinate-
ComponentIndexChange, subordinateComponentMoved , subordinateComponen-
tAdded , subordinateComponentRemoved , classElementLabelChanged , content-
ContainerNameChange, associationCardinalityChange, associationChildAdded ,

120

associationChildRemoved , classMovedToAnotherAssociation, attributeMoved ,
attributeCardinalityChange, attributeAdded , attributeRemoved , attributeIndex-
Change (in this part we are concerned only with attribute changes for attributes
in attribute containers).

Gather Subelements algorithm (Algorithm 3) ignores removed components
of superordinate nodes (thus subordinateComponentRemoved , associationChil-
dRemoved , diagramRootRemoved and attributeRemoved is solved). It also in-
cludes newly added nodes, which solves subordinateComponentAdded , associa-
tionChildAdded and attributeAdded . New components/attributes have state =
added and new content is generated for them if necessary. All subelements are
returned in the correct order and their references in the inner node template
(Template 6.3) are created in the same order, so subordinateComponentIndex-
Change and attributeIndexChange are solved.

• classElementLabelChanged/contentContainerNameChange is solved by us-
ing the name to name the XML elements.

• attributeMoved , subordinateComponentMoved and classMovedToAnotherAs-
sociation changes are solved by Gather Subelements algorithm (which will
include them among the sequence of subelements) and using the relativ-
eXPath function that will locate them in the old document.

• associationCardinalityChange/attributeCardinalityChange are solved in the
generate cardinality element reference subroutine.

6.7.6 Example

To conclude the first part of the revalidation algorithm, we will show an example
of an evolved diagram and a revalidation stylesheet. Figures 6.1 and 6.2 show
the old and new version of the diagram.

121

Figure 6.1: Evolution Example 1 - Old Version

Figure 6.2: Evolution Example 2 - Evolved Version

122

These are the changes performed between version v and v′

• subordinateComponentAdded (Purchase, items)

• subordinateComponentRemoved (customer-info, customer-info→ Address), subordinate-
ComponentAdded (customer, association Customer → Address)

• classMovedToAnotherAssociation (Address, Customer→ Address) – subelement address
of element customer is now replaced by subelement delivery-address of element
customer.

• classElementLabelChanged (Address, ’delivery-address’)

• attributeIndexChange (city, 0), attributeIndexChange (street, 1), attributeIndexChange
(postcode, 2) – attributes were reordered in the attribute container

• subordinateComponentIndexChange (attribute container in Customer, 1) – as a result
of adding new component preceding the attribute container

• attributeCardinalityChange (email, 1, 5) – email was made mandatory (it was optional
in previous version), but the total count of emails is now limited to 5

• subordinateComponentAdded (attribute container in SalesAssistant

• attributeAdded (attribute container in SalesAssistant, name, 0) – new attribute, not
present in the previous version

• attributeMoved (attribute container in SalesAssistant, emp-no, 1) – attribute was moved
from class to an attribute container – in the new version, the instance will be an XML
element instead of XML attribute

• associationCardinalityChange (Purchase-Item, 1, 5)

• subordinateComponentMoved (Item, Purchase to items) – list of purchased items is now
wrapped in items element

• subordinateComponentRemoved (Product, attribute container in Product) – attribute
container removed together with attributes weight and size; attribute title was
moved to the class Product and will represent XML attribute in the new version

• attributeMoved (title, Product, 2)

Stylesheets 6.8, 6.9, 6.10 and 6.11 contain the revalidation stylesheet.

123

The first part of the revalidation stylesheet deals with changes in the left
subtree of class Purchase. It relocates content modeled by Address and adds
element email when needed. Force callable template is generated for email at-
tribute, which generates an empty element email.

Template appliedNodeTemplateCustomer (match=‘/purchase-request
/customer-info/customer’) also restricts the list of email to the maximal
length of 5 (using position function).

<xsl : template match=‘/purchase−request ’>
<purchase−request>

<xsl : cal l−template name=‘ copyAttr ibutes ’ />
<xsl : apply−templates select=‘customer−i n fo ’ />
<xsl : apply−templates select=‘ a s s i s t an t ’ />
<xsl : cal l−template name=‘purchase−request−items ’ />

</purchase−request>
</xsl : template>
<xsl : template match=‘/purchase−r eque s t /customer−i n fo ’>

<customer−i n fo>
<xsl : apply−templates select=‘customer ’ />

</customer−i n fo>
</xsl : template>
<xsl : template

match=‘/purchase−r eques t /customer−i n f o /customer ’>
<customer>

<xsl : cal l−template name=‘ copyAttr ibutes ’ />
<xsl : cal l−template name=‘customer−de l i v e ry−address ’ />
<xsl : copy−of select=‘ emai l [p o s i t i o n () &l t ;= 5] ’ />
<xsl : for−each select=‘1 to 1 − count (emai l) ’>

<xsl : cal l−template name=‘customer−email−FC’ />
</xsl : for−each>

</customer>
</xsl : template>
<xsl : template name=‘customer−email−FC’>

<email></email>
</xsl : template>
<xsl : template name=‘customer−de l i v e ry−address ’>

<de l i v e ry−address>
<xsl : apply−templates select = ‘ . . / address / c i ty ’ />
<xsl : apply−templates select = ‘ . . / address / s t r e e t ’ />
<xsl : apply−templates select = ‘ . . / address / postcode ’ />

</de l i v e ry−address>
</xsl : template>

Stylesheet 6.8: Revalidation Stylesheet for Example 1 – Part 1

124

The second part of the revalidation stylesheet deals with the changes in the
middle subtree of class Purchase. It converts instances of PSM attribute emp-no
to XML elements and also adds element name (empty).

<xsl : template match=‘/purchase−r eque s t / a s s i s t an t ’>
<a s s i s t an t>

<xsl : apply−templates select=‘@emp−no ’ />
<xsl : cal l−template name=‘purchase−rq−a s s i s t an t−name ’ />

</a s s i s t an t>
</xsl : template>
<xsl : template match=‘/purchase−r eque s t / a s s i s t a n t /@emp−no’>

<emp−no>
<xsl : value−of select= ‘. ’ />

</emp−no>
</xsl : template>
<xsl : template name=‘purchase−rq−a s s i s t an t−name’>

<name></name>
</xsl : template>

Stylesheet 6.9: Revalidation Stylesheet for Example 1 – Part 2

The third part (Stylesheet 6.10) shows templates for the blue and green
nodes.

<!−− b l u e nodes temp la te blueNodesTemplateD′ −−>
<xsl : template match=‘/purchase−r eque s t / item ’>

<xsl : copy>
<xsl : cal l−template name=‘ copyAttr ibutes ’ />
<xsl : cal l−template name=‘processContent ’ />

</xsl : copy>
</xsl : template>

<!−− green nodes temp la te greenNodesTemplateD′ −−>
<xsl : template

match=‘/purchase−r eques t /customer−i n f o / customer/ emai l
| /purchase−r eques t / item/amount
| /purchase−r eques t / item/unit−p r i c e
| /purchase−r eques t /customer−i n f o / address / c i t y
| /purchase−r eques t /customer−i n f o / address / s t r e e t
| /purchase−r eques t /customer−i n f o / address / s t r e e t ’>

<xsl : copy−of select= ‘. ’ />
</xsl : template>

Stylesheet 6.10: Revalidation Stylesheet for Example 1 – Part 3

125

The last part of the revalidation stylesheet (see Stylesheet 6.11) deals with
changes in the right subtree of class Purchase.

<xsl : template name=‘purchase−request−items ’>
<items>

<xsl : apply−templates select=‘ item [po s i t i o n () &l t ;= 5] ’ />
<xsl : for−each select=‘1 to 1 − count (item) ’>

<xsl : cal l−template name=‘item−FC’ />
</xsl : for−each>

</items>
</xsl : template>
<xsl : template name=‘item−FC’>

<item>
<xsl : cal l−template name=‘item−product−FC’ />
<xsl : cal l−template name=‘item−amount−FC’ />
<xsl : cal l−template name=‘item−unit−pr i ce−FC’ />

</item>
</xsl : template>
<xsl : template name=‘item−product−FC’>

<product>
<xsl : attribute name=‘code ’>0</xsl : attribute>
<xsl : attribute name=‘subcode ’>0</xsl : attribute>
<xsl : attribute name=‘ t i t l e ’></xsl : attribute>

</product>
</xsl : template>
<xsl : template name=‘item−amount−FC’>

<amount>0</amount>
</xsl : template>
<xsl : template name=‘item−unit−pr i ce−FC’>

<unit−pr i ce>0</unit−pr i ce>
</xsl : template>

<xsl : template match=‘/purchase−r eque s t / item/product ’>
<product>

<xsl : copy−of select=‘@code ’ />
<xsl : copy−of select=‘@subcode ’ />
<xsl : attribute name=‘ t i t l e ’>

<xsl : value−of select=‘ t i t l e ’ />
</xsl : attribute>

</product>
</xsl : template>

Stylesheet 6.11: Revalidation Stylesheet for Example 1 – Part 4

The first template namedNodeTemplateitems adds the wrapping item element

126

and restricts the list of items to the maximum length of five and also adds
one mandatory item in documents where the list is empty (using force callable
templates).

The last template namedNodeTemplateproduct converts title from element to
attribute.

6.8 Group Nodes

Up to now we only considered classes with element labels. Allowing classes with-
out element labels requires introduction of group nodes processing. We will start
with an example.

6.8.1 Motivational Example

Figure 6.3 shows an example of a diagram where an element Catalogue contains
a list of books. Each books has three attributes ISBN, name and author. For all
the books in the catalogue, these attributes are all sequentially placed directly
in the Catalogue element. Figure 6.4 shows a revalidation script that would be
generated by the algorithm described in the previous sections.

Figure 6.3: Groups Motivational Example

127

<xsl:template match="/Catalogue"> <!-- green nodes -->

<Catalogue> <xsl:template match="

<xsl:apply-templates select="name" /> /Catalogue/name

<xsl:apply-templates select="author" /> | /Catalogue/author

<xsl:apply-templates select="ISBN" /> | /Catalogue/ISBN |" >

</Catalogue> <xsl:copy-of select="." />

</xsl:template> </xsl:template>

Figure 6.4: Groups Motivational Example – Incorrect Script

It is evident that applying this template on any document with more than
one instance of Book would not have the desired effect, as can be seen in Figure
6.5. It shows document valid against the old version and the same document
after applying the template in Figure 6.4.

<Catalogue> <Catalogue>

<ISBN>123456789<ISBN> <name>Idiot</name>

<name>Idiot</name> <name>1984</name>

<author>F. Dostoyevsky</author> <author>F. Dostoyevsky</author>

<ISBN>987654321<ISBN> <author>G. Orwell</author>

<name>1984</name> <ISBN>123456789<ISBN>

<author>G. Orwell</author> <ISBN>987654321<ISBN>

</Catalogue> </Catalogue>

Figure 6.5: Groups Motivational Example – Effect of revalidation

What happened is that the script violated the separation of the instances of
Book. To maintain the overall structure of the revalidation script, wee need a
mechanism to process only one instance each time inside a template.

For each red group node G′ (see Definition 6.2.2), a respective template
groupTemplateG′ will be created. It will always be a named template and will
have one parameter cg (current group).

This template will be called for each instance (using the XSLT construct
xsl:for-each-group) of the node G′ and this instance will be passed to the
template as the value of cg . Figure 6.6 shows the correct revalidation template
(greenNodesTemplateD′ was omitted, it stays the same).

128

<xsl:template match="/Catalogue">

<Catalogue>

<xsl:for-each-group select="name | author | ISBN"

group-starting-with="ISBN">

<xsl:call-template name="Catalogue-GROUP-Book">

<xsl:with-param name="cg" select="current-group()" />

</xsl:call-template>

</xsl:for-each-group>

</Catalogue>

</xsl:template>

<xsl:template name="Catalogue-GROUP-Book">

<xsl:param name="cg" />

<xsl:apply-templates select="$cg[name() = ‘name’]" />

<xsl:apply-templates select="$cg[name() = ‘author’]" />

<xsl:apply-templates select="$cg[name() = ‘ISBN’]" />

</xsl:template>

Figure 6.6: Groups Motivational Example – Correct Script

6.8.2 Content Group Nodes Processing

To process group nodes, we will add another type of node element wrapper - a
content group.

Definition 6.8.1 (Content Group). Construct content group is a subtype of
node element wrapper used to wrap nodes modeling elements that are children of
a content group node.

content group = (C,Components)

where C ∈ D′
group is the group node – PSM Class without an element label –

and Components is a sequence of node element wrapper constructs – the grouped
elements.

We can now include this construct into Gather Subelements algorithm (for
the previous version see Algorithm 3):

129

Algorithm 5 Gather Subelements (2)

1 function GetSubtreeElements (N ′ ∈ D′.N)
2 returns subelementsN ′– ordered sequence of node element wrapper s.
3 // s t a y s the same
4
5 procedure getSubtreeElementsInc lRoot (N ′ ∈ D′.N , var subelementsN ′)
6 {
7 i f N ′ ∈ {C ′ ∈ Cpsm|C ′.label ̸= null} ∪ CC
8 subelementsN ′ � new node element wrapper(N ′)
9 i f N ′ ∈ AC
10 foreach attribute a′ ∈ N ′.Attpsm
11 subelementsN ′ � new node element wrapper(a′)
12 i f N ∈ D′

group

13 {
14 var components
15 foreach node C ′ ∈ child nodes of N ′

16 getSubtreeElementsInc lRoot (C ′ ,var components)
17 subelementsN ′ � new content group(N ′, components)
18 }
19 }

6.8.3 Group Node Template

For each node G′ ∈ D′
group ∩ D′

red, new top-level named template is added to
the stylesheet – groupTemplateG′ , see Template 6.12.

Group templates always have the parameter $cg in which the currently pro-
cessed group is passed. This parameter is later used in all references to nodes
laying in the subtree of G.

Notice the assignment of context.ProcessedPath in Template 6.12. For node
templates, context.ProcessedPath was assigned with value N ′.XPath. In the case
of group templates, it is assumed, that the ‘currently processed’ node is inside
the parameter cg. For this reason, the value of context.ProcessedPath will now
end with $cg. Parameter cg contains a sequence of XML element nodes. Func-
tion relativeXPath must slightly modified to correctly reference nodes in this
sequence.

130

<xsl : template name=‘{groupName(G′)}’>
{ i f ¬context.ForceCallable }

<xsl :param name=‘cg ’ />
{ end i f }
{ i f G′.label ̸= null }

<{G′.label}> // inc l ude an opening tag
{ end i f }
{ process elements(G′.Components) with

context.ProcessedPath = G′.groupPath
context.CurrentContentGroup = content group (G′) }

{ i f G′.label ̸= null }
</{G′.label}> // c l o s e the wrapping tag

{ end i f }
</xsl : template>

Template 6.12: Group Node Template

Some examples of relativeXPath with content groups (the first example is
taken from the motivational example – see Figure 6.3), assuming that element
author is among the components of the group:

context.ProcessedPath path to node relative path
/Catalogue/$cg /Catalogue/Author $cg[name() = ‘Author’]

/Book/$cg /Book/Author/@ID $cg[name() = ‘Author’]/@ID

6.8.4 Referencing Group Templates

Now we can add processing of content groups to the process elements subrou-
tine via call to generate group reference (processing of simple node elements
remains the same). Template 6.13 contains process elements subroutine.

Group Reference Subroutine generate group reference (Template Frag-
ment 6.14) is similar to generate element reference. The first block handles
cardinality changes and iterated additions, the second block is designated for
those situations, where cardinality does not need to be dealt with. G′ is used as
a shortcut for context.CurrentContentGroup.C.

131

// process e lements subrou t ine
process elements(elm : list of node element wrappers)
{

foreach node element wrapper nw ∈ elm
{

i f nw i s simple node element
generate element reference with

context.CurrentElement = nw

i f nw i s content group
generate group reference with

context.CurrentContentGroup = nw

}
}

Template 6.13: Updated Process Elements Subroutine – Group Nodes

{ i f lowerElementCardinality(G′) = 0 ∧
(G′.state = added ∨ context.ForceCallable) }
exit ; // op t iona l , group need not to be added

{ end i f }
{ i f (G′.state = existing ∧ cardinalityChanged(G′)) ∨

(G′.state = added ∧ lowerElementCardinality(G′) > 1) ∨
(context.ForceCallable ∧ lowerElementCardinality(G′) > 1 }
generate group cardinality reference

{ else }
generate group single reference

{ end i f }

Template Fragment 6.14: Generating Group Reference

Group Single Reference Subroutine generate group single reference
in Template Fragment 6.15 again calls forceCallableGroupTemplateG′ if in force
callable mode.

For newly added groups groupTemplateG′ is called (group templates are al-
ways named templates). Nothing is passed as ‘current group’ to $cg leaving its
value to the default empty sequence, but this is parameter will never be used
inside a template for a newly added group.

Group is not invalidated even when some of the nodes below the group have
been invalidated, but it is not necessary to process the group as a whole. If the
group was not invalidated, xsl:apply-templates is used for all the components
in group. Function getGroupPopulation returns an XPath expression that returns

132

the set of all nodes in the group. In the motivational example this expression is
"name | author | ISBN".

{ parameter : c ond i t i on (XPath expression , optional)
{ i f context.ForceCallable }

// c a l l the f o r c e c a l l a b l e temp la te
{ i f forceCallableGroupTemplateG′ not generated yet

generate forceCallableGroupTemplateG′ }
<xsl : cal l−template name=‘{forceCallableGroupTemplateG′ } ’ />

{ else i f G′.state = added }
// group i s new −− j u s t c a l l the group temp la te
<xsl : cal l−template name=‘{groupTemplateG′ } ’ />

{ else i f G′ /∈ D′
red ∧ cond i t i on is not set

// group i s e x i s t i n g , but not i n v a l i d a t e d
var populat ion = getGroupPopulation(context.CurrentContentGroup) }
<xsl : apply−templates match=‘{ populat ion } ’ />

{ else
var populat ion = getGroupPopulation(context.CurrentContentGroup)
<xsl : for−each−group select=‘populat ion ’
{groupDistributingAttribute(context.CurrentContentGroup)} >
{ i f cond i t i on i s set}

<xsl : i f test=‘{ cond i t i on } ’ >
<xsl : cal l−template name=‘{groupTemplateG′ } ’

<with−param name=‘cg ’
select=‘current−group () ’ />

</xsl : cal l−template>
</xsl : i f>

{ else }
<xsl : cal l−template name=‘{groupTemplateG′ } ’

<with−param name=‘cg ’
select=‘current−group () ’ />

</xsl : cal l−template>
{ end i f }

</xsl : for−each−group>
{ end i f }

Template Fragment 6.15: Generating Group Single Reference

The last block is used when the group itself is invalidated and each group
must be processed separately, but as a whole (e.g. when components of the group
are reordered).

XSL for-each-group construct is utilized to distribute the subelements in
population (nodes returned by the XPath expression in the value of select at-
tribute) into distinct groups. XSLT provides several ways of determining in which

133

group each element belongs, each applicable in different situation. Each way is
expressed in the form of an attribute of element for-each-group. Function
groupDistributingAttribute returns a string containing the appropriate attribute
and its value, (for example group-starting-with="ISBN" in the motivational
example – see Figure 6.6). The different ways of distributing content to groups
will be explained in the next paragraph.

Inside for-each-group, function current-group() is used to assign the
value of parameter $cg of the called group template groupTemplateG′ .

The subroutine again has parameter condition which, if specified, is used
to restrict the amount of existing instances processed (using XSL if construct).

Separating Group Instances In XSL, for-each-group can use one of fol-
lowing attributes for separating population into groups [15]:

name value meaning
group-by XPath expr. Grouping key. Items with common val-

ues for the grouping key are to be allo-
cated to the same group.

group-adjacent XPath expr. Grouping key. Items with common val-
ues for the grouping key are to be al-
located to the same group if they are
adjacent in the population.

group-starting-with Pattern A new group will be started for each
item in the population that matches
this pattern.

group-ending-with Pattern A new group will be started following
an item in the population that matches
this pattern.

Function groupDistributingAttribute selects the appropriate way to allocate
population to groups. Several situations can be identified.

Starts of Groups Construct group-starting-with with value that matches
the first member F ′ of Components can be used safely when F ′ is not optional and
either (a) upper cardinality of F ′ is 1 or (b) there is another non-optional mem-
ber H ′ ∈ Components : H ′ ̸= F ′. In the (b) case, value of group-starting-with
must be adjusted to start new groups only with the first instance of F ′. Figure
6.7 contains examples for different situations.

134

Figure 6.7: Model Examples of Groups

• In the first example, attribute a1 has cardinality (1,1) and thus can be
used to identify starts of groups without complications – groupDistributin-
gAttribute would return group-starting-with="a1".

• In the second example, attribute a3 has cardinality (1,4), but there
is another attribute a4 among components of the group,. Thus the
group always starts with an instance of a3 (and the following in-
stances belong to the same group) – groupDistributingAttribute would
return group-starting-with="a3[not(preceding-sibling::a3[1] is

preceding-sibling::*[1])]".

• For the third example, both the previous approaches fail because the first
component – attribute a5 – is optional. However, this situation can be
solved by using an analogous approach with "group-ending-with=a6".

• The last example is solved neither by group-starting-with nor with
group-ending-with, because from the XSem-H model, it is not clear what
separates groups from one another.

Ends of Groups Attribute group-ending-with can be used in a com-
pletely analogous manner to group-ending-with with previously stated condi-
tions now applied on the last component in the group.

Size of Groups If the amount of elements in each group is known to be
equal for all groups, this information can be exploited when allocating elements

135

to groups. Instances of group G1 in Figure 6.8 will always contain two elements
– one for a1 or a2 and a3.

In this case, group-adjacent="(position()-1) idiv 2" can be a
correct result of groupDistributingAttribute. In general: group-adjacent=

"(position()-1) idiv size" where size is the fixed size of each group and
idiv is an XPath integer division operator.

Figure 6.8: Group with Fixed Size

Other Criteria In some cases, the algorithm can not decide how to allocate
elements to groups by itself and an input from the user is needed (group G4 in
Figure 6.7 is one example). The user can utilize some internal knowledge of the
problem domain (for example some integrity constraints) that is not represented
in the XSem-H model.

Group Cardinality Reference Subroutine generate group cardinality
reference in Template Fragment 6.16 fulfills the same task as generate ele-
ment cardinality reference in the previous section, only for group nodes.

The first part concentrates on instances already present in the document (and
is therefore skipped for added groups or when in force callable mode). Existing
instances are processed again by the single reference subroutine – either all ex-
isting instances (when the upper cardinality of group G′ was not decreased i.e.
all existing instances can stay in the document) or the first k instances, where k
is the new upper cardinality. The condition parameter of single reference sub-
routine with built-in XPath function position is utilized to restrict the number

136

of instances processed.

/∗ rou t ine c a l l e d e i t h e r when c a r d i n a l i t y o f content group
changed or group was added wi th lower c a r d i n a l i t y > 1 ∗/

{ i f ¬context.ForceCallable ∧G′.state = existing
// c a r d i n a l i t y o f G’ changed , dea l wi th e x i s t i n g nodes
var c̃← getCardinalityChange(G′, CD,D′,v,v′ [G])
i f ¬(c̃ may require deleting)

generate group single reference
else

generate group single reference with
condition = ’position() ≤ c̃.u′’

end i f
end i f
i f context.ForceCallable ∨ (G′.state = added ∧

getCardinalityChange(G′, CD,D′,v,v′ [N]) may require generating)
// new nodes need to be crea t ed

i f forceCallableGroupTemplateG′ not generated yet
generate forceCallableGroupTemplateG′

var countExpr
var lower ← lowerElementCardinality(N ′)
i f (N ′.state = added ∧ context.ForceCallable)

countExpr ← lower
else

var e x i s t i n g ← countGroupsExpr(G)
countExpr ← ‘{ lower } − count ({ e x i s t i n g }) ’ }
<xsl : for−each select=‘1 to {countExpr}’>

<xsl : cal l−template
name=‘{forceCallableGroupTemplateN ′ } ’ />

</xsl : for−each>
{ end i f }

{ end i f }

Template Fragment 6.16: Generating Group Cardinality Reference

The purpose of the second part is again to add new instances of G′ to the
document.

New instances are again created via calling the force callable template
(forceCallableGroupTemplateG′). For added groups, the generating template
must be called k times, k being the lower cardinality of the added group; for
nodes where cardinality has changed, the difference between the number of the

137

existing instances and the lower cardinality of G′ is used. The number of exist-
ing instances is obtained via call to countGroupsExpr function, which returns an
XPath expression.

Counting groups is a problem very similar to separating groups (it is evident
that when the algorithm knows how to allocate elements into groups, it can
also count them) which as discussed above. When group-starting-with (or
group-ending-with) is used to allocate elements to groups, the same expres-
sion as is the value of this attribute (as returned by groupDistributingAttribute)
function can be used to count existing groups.

6.8.5 Verification

Most of the changes related to group nodes are solved again by the revised
Gather Subelements algorithm (Algorithm 5). Group cardinality reference again
solves associationCardinalityChange, addition and removal changes are solved in
the same manner as for simple node elements.

What remains are element label changes:

• classGivenElementLabel classes that do not have element label’s in version
v are group nodes by Definition 6.2.2. As such, group node reference identi-
fies existing instances using for-each-group and each instance is wrapped
in the new element when executing the template groupTemplateG′ .

• classElementLabelChanged does not involve group nodes and was already
discussed for simple node elements.

• classElementLabelRemoved does not involve group nodes (class did have
an element label in version v therefore it does not belong among group
nodes, see Definition 6.2.2). Node template will be generated for such class
and the template will remove the wrapping element.

6.9 Content Choices and Class Unions

In this section, we will allow content choices and class unions in the diagram.
First, we have to modify algorithms Gather Subelements/Attributes to cope

with these two constructs.

138

6.9.1 Gathering XML Elements

Up to now, we used simple node element and content group constructs for all
nodes. For content choice/class union nodes, we add abstract choice base ele-
ments wrapper and specialized choice elements and union elements auxiliary
constructs.

Definition 6.9.1 (Choice Base Elements Wrapper). Abstract construct choice
base elements wrapper is a subtype of node element wrapper

choice base elements wrapper = (Options)

where Options is a sequence of choice element option constructs.

Definition 6.9.2 (Choice Element Option). Construct choice element option is
a subtype of node element wrapper

choice element option = (Items)

where Items is a sequence of node element wrapper constructs.

Definition 6.9.3 (Choice Elements). Construct choice elements is a subtype of
choice base elements wrapper

choice elements = (CCh, Items)

where Items is a sequence of node element wrapper constructs and CCh is a
content choice node.

Definition 6.9.4 (Union Elements). Construct union elements is a subtype of
choice base elements wrapper .

union elements = (CU, Items)

where Items is a sequence of node element wrapper constructs and CU is a class
union node.

Now we can add new block to Gather Subelements algorithm that collects
choice/union nodes:

139

Algorithm 6 Gather Subelements (3)

1 function GetSubtreeElements (N ′ ∈ D′.N)
2 // s t a y s the same
3
4 procedure getSubtreeElementsInc lRoot (N ′ ∈ D′.N , var subelementsN ′)
5 {
6 i f N ′ ∈ {C ′ ∈ Cpsm|C ′.label ̸= null} ∪ CC // s imple e lement
7 subelementsN ′ � new node element wrapper(N ′)
8 i f N ′ ∈ AC // s imple e lements
9 foreach attribute a′ ∈ N ′.Attpsm
10 subelementsN ′ � new node element wrapper(a′)
11 i f N ∈ D′

group // groups
12 {
13 var components
14 foreach node C ′ ∈ child nodes of N ′

15 getSubtreeElementsInc lRoot (C ′ ,var components)
16 subelementsN ′ � new content group(N ′, components)
17 }
18 i f N ′ ∈ CH ∨N ′ ∈ CU // choices , unions
19 {
20 var options // each c h i l d w i l l become one opt ion
21 foreach node O′ ∈ child nodes of N ′

22 {
23 var items // each opt ion has i t s own conten t s
24 getSubtreeElementsInc lRoot (O′ ,var items)
25 i f | items | > 0 // empty l i s t s are d i scarded
26 options � new choice element option (Items = items)
27 }
28 i f | options | > 0 // empty l i s t s are d i s carded
29 i f N ′ ∈ CH // content cho ice
30 subelementsN ′ � new choice elements
31 (CCh = N ′,Options = options)
32 else // c l a s s union
33 subelementsN ′ � new union elements
34 (CU = N ′,Options = options)
35 }
36 }

140

6.9.2 Gathering XML Attributes

In a similar manner as Gather Subelements, algorithm Gather Attributes also
needs to be extended (see Template 6.17).

// process a t t r i b u t e s subrou t ine
process attributes(att : list of node attribute wrappers)
{

foreach node attribute wrapper aw ∈ att
{

i f aw i s simple node attribute
generate attribute reference with

context.CurrentAttribute = aw
else i f aw i s choice attributes

generate choice attributes reference with
context.CurrentChoiceAttributes = aw

else i f aw i s union attributes
generate union attributes reference with

context.CurrentUnionAttributes = aw
}

}

// process e lements subrou t ine
process elements(elm : list of node element wrappers)
{

foreach node element wrapper nw ∈ elm
{

i f nw i s simple node element
generate element reference with

context.CurrentElement = nw

else i f nw i s content group
generate group reference with

context.CurrentContentGroup = nw

else i f nw i s union elements
generate choice elements reference with

context.CurrentChoiceElements = nw

else i f nw i s choice elements
generate union elements reference with

context.CurrentUnionElements = nw

}
}

Template 6.17: Updated Process Elements / Process Attributes Subroutines

Analogously to choice base elements wrapper , choice element option, choice

141

elements and union elements we will use choice base attributes wrapper , choice
attribute option, choice attributes and union attributes .

6.9.3 Updated Inner Red Node Template

Now we can modify subroutines process attributes and process elements
first introduced in Template 6.3 (process elements was already extended once
in Template 6.13) – we add processing for the new constructs. The result is
Template 6.17

6.9.4 Content Choice Reference

Elements

Template Fragment 6.18 shows how algorithm handles elements under content
choice.

{ i f context.ForceCallable
i f mustHaveInstance(CCh′n)

var choiceToGenerate← getChoiceToGenerate(CCh′n)
process elements(choiceToGenerate.Items)

else i f choiceInvalidated(CCh′n) }
<xsl : choose>

{ foreach choice element option o ∈ CCh′n.Options
var test← relativeXPath(o.Items, context.ProcessedPath) }
<xsl :when test=‘{test}’>

{ process elements(o.Items) }
</xsl :when>

{ end foreach}
{ i f mustHaveInstance(CCh′n) ∧ canRequireGenerating(CCh′n) }

<xsl : otherwise>
{ var choiceToGenerate← getChoiceToGenerate(CCh′n)

process elements(choiceToGenerate.Items) with
context.ForceCallable }

</xsl : otherwise>
{ end i f }

</xsl : choose>
{ else }

process not invalidated elements(CCh′n.Options)
{ end i f }

Template Fragment 6.18: Generating Content Choice Elements Reference

142

The first bock is used when in force callable context. Function mustHaveIn-
stance returns true if the content choice must have an instance in the document
i.e. it is not true that all options of the choice are optional1 . If mustHaveIn-
stance returns true, one of the choices is selected and the content for the choice
is generated using process elements subroutine.

The function choiceInvalidated returns true if the choice was modified in
such a way that the changes can not be solved at the level of its components (in
templates for the respective components). This is necessary when some of the
components were removed, the whole choice was added in version v or multiplic-
ity of some of the components have changed.

The middle block generates the full choice template which uses the construct
xsl:choose. A separate xsl:when block is created for each option. The value
for test attribute is a relative path (obtained by combining the relative paths
of respective CCh′n.Items).

The xsl:otherwise block is added when a) the content choice must have an
instance in the document (mustHaveInstance returns true) and b) the changes
between versions v and v′ may require the instance to be generated. This case
occurs when for example some of the components of CCh′nwas removed – the
instance of this component can not be used in the new version, but CCh′n’ must
have an instance, thus it must be generated. Another case is when some options
were optional in the old version and they are not in the new version. See example
in Figure 6.9.

The last block is designated for the situations where no revalidation for the
actual choice node is needed (all nodes under the choice node are green or blue
nodes).

Attributes

Subroutine for generating content choice attributes reference is analogous
to content choice elements reference (Template Fragment 6.18). The sub-
routine uses appropriate attribute constructs mentioned in Gathering Attributes
(choice attributes etc., see p. 141) instead of the constructs defined for elements.

Example

Figure 6.9 contains an example of usage of a content choice.

1An example of an optional option is a simple node element e where e.Element is a PSM
attribute (inside an attribute container) with lower cardinality = 0.

143

Figure 6.9: Adding a Content Choice

<xsl:template match="/purchase-request"> <xsl:template name="eshop-FC">

<purchase-request> <eshop>

<xsl:call-template name="copyAttributes" /> <xsl:attribute name="url"/>

<xsl:choose> </eshop>

<xsl:when test="eshop"> </xsl:template>

<xsl:apply-templates select="eshop" />

</xsl:when> <!--green nodes template-->

<xsl:when test="assistant">

<xsl:apply-templates select="assistant" /> <xsl:template match=

</xsl:when> "/purchase-request/eshop

<xsl:otherwise> | /purchase-request/assistant">

<xsl:call-template name="eshop-FC" /> <xsl:copy-of select="." />

</xsl:otherwise> </xsl:template>

</xsl:choose>

</purchase-request>

</xsl:template>

Figure 6.10: Revalidation Script for Diagram in Figure 6.9

The diagram in Figure 6.9 introduces content choice in version v′ instead of
two optional subtrees in version v. For both options a when block is added and
the otherwise block is added too, because the document must now contain one
of the subtrees, but in the old version it could have contained none of them.
Thus, if D ∈ S(D) contains neither eshop nor assistant, default instance of
the first (eshop) subtree is generated.

Verification

This section focused on the changes of the content choice:

144

• subordinateComponentAdded , subordinateComponentRemoved , subordinate-
ComponentIndexChange, subordinateComponentMoved where the content
choice is in the role of the subordinate component and the superordinate
node is another node

• changes in the collection of components of a content choice (i.e. the same
changes, but content choice is now in the role of the superordinate node)

The first set of changes is solved completely by the revised Gather Subele-
ments/Attributes algorithm (see Algorithm 6). This algorithm considers content
choices when creating the template for its parent.

Changes in the collection of the components of the content choice will all be
handled when the Options collection is initialized. Because the order of compo-
nents of a content choice is not significant, subordinateComponentIndexChange
can be ignored completely.

6.9.5 Class Union Reference

Elements

Unlike content choice construct, class unions have an association. This associ-
ation can have arbitrary cardinality interval and thus cardinality changes need
to be addressed also with possible iterated generation (similar to simple node
elements and content groups).

Procedure generate union elements reference can be found in Template
Fragments 6.19, 6.20 and 6.21.

Treatment of union nodes differs for nodes with leading association with
upper cardinality > 1 and for class unions containing classes without an element
label (content group nodes).

Definition 6.9.5 (Union Complexity). Auxiliary attribute complexity of a class
union node CU is defined as:

CU.complexity =


single if CU.A.u ≯ 1

withoutGroups if ∀ C ∈ CU.Comp : C.label ̸= null

withGroups if ∃ C ∈ CU.Comp : C.label = null

Template Fragment 6.19 processes content already existing in the document.

145

{ i f (context.ForceCallable ∨ CU′
n.state = added) ∧

lowerElementCardinality(CU′
n) = 0

return
else i f ¬context.ForceCallable

i f choiceInvalidated(CU′
n)

i f CU′
n.complexity = single

generate union choices(fa l se)
else

var populat ion = getUnionPopulation(CU′
n)

var d i s t r i b u t i o n = getUnionDistribution(CU′
n)

var r e s t r i c t = cardinalityChanged(CU′
n) ∧

getCardinalityChange(CU′
n, CD,D′,v,v′ [CU′

n]) may require deleting
var l′ = lowerElementCardinality(CU′

n) }
{ i f CU′

n.complexity = withoutGroups }
<xsl : for−each select=‘{ populat ion }’>

{ else }
<xsl : for−each−group select=‘{ populat ion } ’
{ d i s t r i b u t i o n } >

{ end i f }
{ i f r e s t r i c t }

<xsl : i f test=‘ po s i t i o n () <= {l′}>
{ end i f

generate union choices(CU′
n.complexity = withGroups)

i f r e s t r i c t }
</xsl : i f>

{ end i f }
{ i f CU′

n.complexity = withoutGroups }
</xsl : for−each>

{ else }
</xsl : for−each−group>

{ end i f
end i f

else
process not invalidated elements(

context.CurrentUnionElements.Options)
end i f

{ end i f }

Template Fragment 6.19: Class Union – Elements (Part 1.)

In the following text, we will use CU′
n as a shortcut for

context.CurrentUnionElements. If there are no changes in the collection
CU′

n.Comp itself or in the cardinality of any of the components, there is no need
for any explicit processing of the class union node and the potential changes

146

will be solved in the templates of the respective components (process not
invalidated elements is used again). Otherwise, the union node must be
processed.

For unions with complexity = single, the algorithm can directly proceed
to processing of the individual components (generate union choices call).
Otherwise, instances of respective components are separated first (in order to
be counted) using for-each or for-each-group construct (depending on the
complexity of the union node) and then the algorithm again proceeds to process-
ing individual components.

If the number of instances is restricted (due to cardinality change in the
association leading to the union node), if construct and position function are
used.

Function getUnionPopulation returns an XPath expression that covers all the
existing instances of all the components in CCh′n.Comp. Function distribution
returns an attribute that allocates each component instance into a group (in
the same way as group instances are separated, see paragraph Separating Group
Instances, p. 134).

{ i f choiceInvalidated(CU′
n)

var countExpr
var d i s t r i b u t i o n ← getUnionDistribution(CU′

n)
i f (d i s t r i b u t i o n not empty)

countExpr ← ‘{ lower } − count ({ d i s t r i b u t i o n }) ’
else

countExpr ← ‘{ lower }
end i f
i f forceCallableUnionTemplateCU′

n
not generated yet

generate forceCallableUnionTemplateCU′
n

<xsl : for−each select=‘1 to {countExpr}’>
<xsl : cal l−template name={forceCallableUnionTemplateCU′

n
}>

{ i f processing group ∧¬context.ForceCallable }
<xsl :with−param name=‘cg ’ value=‘$cg ’ />

{ end i f }
<xsl : cal l−template/>

</xsl : for−each>
{ end i f }

Template Fragment 6.20: Class Union – Elements (Part 2.)

The second part of the template in Template Fragment 6.20 generates content
when needed. This may be necessary either when lower cardinality of association

147

CCh′n.A is increased or when a component of the union is removed. Removal of a
component results in removing of all its instances and thus decreasing the total
number of instances in the document.

Force callable template is again used for generating content. Expression re-
turned by getUnionDistribution is used to count the existing instances.

// genera te union cho i c e s subrou t ine
generate union choices(group : bool)
{
{ i f group }
{ i f CU′

n.complexity = withoutGroups }
<xsl : variable name=‘cg ’ select=‘current () ’ />

{ else }
<xsl : variable name=‘cg ’ select=‘current−group () ’ />

{ end i f }
{ end i f }
<xsl : choose>
{ foreach choice element option o ∈

context.CurrentUnionElements.Options
// always |o.Items | = 1
var nw ← o.Items[1]
i f nw i s simple node element

i f getInV er(nw.Element, v) = null
continue

var test = ← relativeXPath(nw.Element, context.ProcessedPath) }
<xsl :when test=‘{ t e s t }’>

{ generate element single reference(o.Items) }
</xsl :when>

else i f nw i s content group
i f getInV er(nw.C, v) = null

continue
var test = ← getGroupPopulation(nw) }
<xsl :when test=‘{ t e s t }’>

{ generate group single reference(o.Items) }
</xsl :when>

{ end i f }
{ end foreach }

</xsl : choose>
}

Template Fragment 6.21: Class Union – Elements (Part 3.)

The last part of this template on Template Fragment 6.21 contains defini-
tion of generate union choices, a subroutine referenced earlier in Tempate

148

Fragment 6.19.
This subroutine creates choose and when blocks for the class union and its

respective components. In case of class unions (unlike with content choices),
options in Options collection always have only one item which is either a simple
node element (wrapping class with element label) or content group (wrapping
class without label).

The added content is skipped and depending on the particular option, either
generate element single reference or generate group single reference is
called.

Attributes

Subroutine generate union attributes reference is again analogous to gen-
erate union elements reference (Template Fragment 6.19 – 6.21). The sub-
routine again uses appropriate attribute constructs mentioned in Gathering At-
tributes (choice attributes etc., see p. 141) instead of the constructs defined for
elements.

Example

Figure 6.11 contains an example of usage of a class union, the revalidation script
is depicted in Figure 6.12. As we can see, a new class union node was introduced
in version v′ which encompasses classes article and book. This effectively allows
for interleaving of article and book elements, whereas version v required all
book elements after all article elements.

After examining the diagram in Figure 6.11, we can see that S(D) ⊆ S(D′),
but adding a check to the algorithm that would recognize these particular situ-
ations would excessively complicate the algorithm. That is why this is ignored
and a union reference is created as if revalidation is needed (but the processing
is correct, the revalidation will not change the document).

Revalidation can use for-each construct, because the union is without con-
tent groups. For both components article and book a when block is created.
Since both components are green nodes, their contents can be copied using
copy-of.

149

Figure 6.11: Class Union Example

<xsl:template match="/author">

<author>

<!--Copy attributes-->

<xsl:call-template name="copyAttributes" />

<!--Content of Author - ’author’-->

<xsl:for-each select="article | book">

<xsl:variable name="cg" select="current()" />

<xsl:choose>

<xsl:when test="$cg[name() = ’article’]">

<xsl:copy-of select="$cg[name() = ’article’]" />

</xsl:when>

<xsl:when test="$cg[name() = ’book’]">

<xsl:copy-of select="$cg[name() = ’book’]" />

</xsl:when>

</xsl:choose>

</xsl:for-each>

</author>

</xsl:template>

<!--green nodes template-->

<xsl:template match="/author/article | /author/book">

<xsl:copy-of select="." />

</xsl:template>

Figure 6.12: Class Union Example – Revalidation Script

Verification

This section focused on the changes of a class union:

• associationChildAdded , associationChildRemoved and classUnionMoved
where the node is a class union

150

• changes in the collection of components of a class union (classAdded-
ToUnion, classRemovedFromUnion, classMovedToClassUnion, class-
MovedOutOfClassUnion, classIndexChange)

The first set is of changes is solved completely by the revised Gather Subele-
ments/Attributes algorithm (see Algorithm 6). This algorithm considers class
unions when creating the template for its parent.

Changes in the collection of the components of the content choice will all be
handled when the Options collection is initialized. Because the order of com-
ponents of a class union is not significant, classIndexChange can be ignored
completely.

6.10 Structural Representatives

Finally, we add support for structural representatives in the evolved diagram. We
again have to extend algorithms Gather Subelements/Attributes to cope with
these two constructs.

6.10.1 Gathering XML Elements/Attributes

We add two new auxiliary construct derived from node element wrapper resp.
node attribute wrapper .

Definition 6.10.1 (Structural Representative Elements). Abstract construct
structural representative elements is a subtype of node element wrapper

structural representative elements = (C,Represented)

where C is a PSM class and Represented is another PSM class linked to the same
PIM class as C and C.Represented = Represented.

Definition 6.10.2 (Structural Representative Attributes). Abstract construct
structural representative attributes is a subtype of node attribute wrapper

structural representative attributes = (C,Represented)

where C is a PSM class and Represented is another PSM class linked to the same
PIM class as C and C.Represented = Represented.

151

Content inherited from a represented class can occur in two situations: either
(a) directly in the content of PSM class when it is a structural representative and
it has an element label or (b) when the structural representative does not have
an element label, the content is propagated upwards to the closest significant
node.

Figure 6.13: Structural Representatives – Propagation

Figure 6.13 contains a simple diagram with several structural representatives.
The base type is LogMessageType with a single attribute id. This is referenced
from structural representative classes LogMessageTypeDesc and LogMessage (in
container Unassgined). LogMessageTypeDesc is referenced from classes with
labels Error and Warning.

Classes with labels Error and Warning respectively fall the category (a) –
the content inherited from LogMessageTypeDesc will be a part of the content of
Error and Warning XML nodes. Class LogMessage on the left-hand side does
not have an element label and thus the inherited content is propagated upward
to the content of node Unassigned.

Appendix C.1 contains a sample document for the diagram in Figure 6.13.
Algorithm Gather Subelements (Algorithm 7) creates structural representa-

tive elements constructs for (a) (line 6) and (b) (line 25). Algorithm Gather
Attributes is modified in a similar manner.

152

Algorithm 7 Gather Subelements (4)

1 function GetSubtreeElements (N ′ ∈ D′.N)
2 returns subelementsN ′– ordered sequence of node element wrapper s.
3 {
4 subelementsN ′ ← ∅
5 i f N ′ ∈ Cpsm ∧ N ′.label ̸= null ∧ N ′.Represented ̸= null
6 subtreeElements � new structural representative elements(N ′,
7 N ′.Represented)
8
9 foreach node C ′ ∈ child nodes of N ′

10 getSubtreeElementsInc lRoot (N ′ , var subelementsN ′)
11 return subelementsN ′

12 }
13
14 procedure getSubtreeElementsInc lRoot (N ′ ∈ D′.N , var subelementsN ′)
15 {
16 i f N ′ ∈ {C ′ ∈ Cpsm|C ′.label ̸= null} ∪ CC // s imple e lement
17 subelementsN ′ � new node element wrapper(N ′)
18 i f N ′ ∈ AC // s imple e lements
19 foreach attribute a′ ∈ N ′.Attpsm
20 subelementsN ′ � new node element wrapper(a′)
21 i f N ∈ D′

group // groups
22 {
23 var components
24 i f N is structural representative
25 components � new structural representative elements(N ′,
26 N ′.Represented)
27 foreach node C ′ ∈ child nodes of N ′

28 getSubtreeElementsInc lRoot (C ′ ,var components)
29 subelementsN ′ � new content group(N ′, components)
30 }
31 i f N ′ ∈ CH ∨N ′ ∈ CU // choices , unions
32 {
33 // same as in Algorithm 6
34 . . .
35 }
36 }

153

6.10.2 Templates for Structural Representative

The main purpose of structural representatives is to reuse parts of the model.
This reusability should also be reflected in the revalidation script. If there are
changes in the reused part of the model, it would be unsuitable to create the
same revalidation instructions in each location where the particular part of the
model is referenced.

To achieve reusability, templates for a red node N ′ that is referenced from
structural representative(s) is slightly modified – its attributes and subelements
are created in two separate templates srAttTemplateN ′ and srElmTemplateN ′

respectively. These templates are then called from the node itself and from all
the structural representatives. Template 6.22 shows a templates for a red node
referenced from structural representatives and Template 6.23 the definition of
srElmTemplateN ′ (srAttTemplateN ′ is analogous).

<xsl : template . . . >
{ i f (N ′ ∈ D′

sign) }
<{name(N ′)}> // wrapping tag f o r s i g n i f i c a n t nodes

{ end i f }
{ i f N ′ ∈ D′

group }
<xsl : cal l−template name=‘{srAttTemplateN ′}’>

<xsl :with−param name=‘cg ’ select=‘$cg ’ />
</xsl : cal l−template>
<xsl : cal l−template name=‘{srElmTemplateN ′ } ’ />

<xsl :with−param name=‘cg ’ select=‘$cg ’ />
</xsl : cal l−template>

{ else }
<xsl : cal l−template name=‘{srAttTemplateN ′ } ’ />
<xsl : cal l−template name=‘{srElmTemplateN ′ } ’ />

{ end i f }
{ i f (N ′ ∈ D′

sign) }
</{name(N ′)}> // f o r s i g n i f i c a n t nodes , c l o s e the tag

{ end i f }
</xsl : template>

Template 6.22: Template for Nodes Referenced from Structural Representatives

154

<xsl : template name=‘{srElmTemplateN ′ } ’ >
{ i f N ′ ∈ D′

group }
<xsl :parameter name=‘cg ’ />

{ end i f }
{ process elements(GetSubtreeElements(N ′)) }

</xsl : template>

Template 6.23: Templates for Elements of a Referenced Node

Since we added new types of node attribute wrapper/node element wrap-
per , subroutinesprocess elements/attributes must be again updated. The
updated version of process elements is depicted in Template Fragment 6.24,
subroutine generate sr elements reference (generating a reference of elements
from structural representative) is depicted in Template Fragment 6.25. Subrou-
tine process attributes is modified analogously and calls and generate sr
attributes reference analogous to generate sr elements reference.

// process e lements subrou t ine
process elements(elm : list of node element wrappers)
{

foreach node element wrapper nw ∈ elm
{

i f nw i s simple node element
generate element reference with

context.CurrentElement = nw

else i f nw i s content group
generate group reference with

context.CurrentContentGroup = nw

else i f nw i s union elements
generate choice elements reference with

context.CurrentChoiceElements = nw

else i f nw i s choice elements
generate union elements reference with

context.CurrentUnionElements = nw

else i f nw i s structural representative elements
generate sr elements reference with

context.CurrentUnionElements = nw

}
}

Template Fragment 6.24: Templates for Elements and Attributes of a Referenced
Node

155

{ i f context.ForceCallable
i f forceCallableSrElmTemplateN ′ not generated yet

generate forceCallableSrElmTemplateN ′ }
<xsl : cal l−template name=‘{forceCallableSrElmTemplateN ′ } ’ />

{ else }
<xsl : cal l−template name=‘{srElmTemplateN ′}’>

{ i f in group }
<xsl :with−param name=‘cg ’ select=‘$cg ’ />

{ end i f }
</xsl : cal l−template>

{ end i f }

Template Fragment 6.25: Generating SR Elements Reference

The process of creating force callable templates for attributes and elements –
forceCallableSrElmTemplateN ′ and forceCallableSrAttTemplateN ′ is identical to
creating force callable templates for nodes and groups.

The last step to complete the support of structural representatives is to ex-
tend values of match attributes of the top level templates (i.e. all templates of
type appliedNodeTemplate and also of the two diagram templates greenNodesTemplateD′

and blueNodesTemplateD′).
The idea is that for each nodeM ′ that is in a subtree of a class referenced from

a structural representative, the node models content at several locations in the
document. The value of match attribute must be ready to accept all locations.
Example in Figure 6.14 demonstrates this.

Figure 6.14: Match Attribute of Top Level Templates

156

<xsl:template match="/X/p1"> <xsl:template match="/X/p2/s2 | /X/p1/s2">

<p1> <s2>

<xsl:call-template name="X-p1-SR-ATT" /> <xsl:attribute name="a2" />

<xsl:call-template name="X-p1-SR-ELM" /> </s2>

</p1> </xsl:template>

</xsl:template> <xsl:template name="X-p1-a1">

<a1></a1>

<xsl:template name="X-p1-SR-ATT"> </xsl:template>

<xsl:attribute name="b1" />

</xsl:template> <xsl:template match="/X/p2">

<xsl:template name="X-p1-SR-ELM"> <p2>

<xsl:apply-templates select="s1" /> <xsl:call-template name="X-p1-SR-ATT" />

<xsl:apply-templates select="s2" /> <xsl:call-template name="X-p1-SR-ELM" />

<xsl:call-template name="X-p1-a1" /> </p2>

</xsl:template> </xsl:template>

<xsl:template match="/X/p2/s1 | /X/p1/s1"> <!--blue nodes template-->

<s1> <xsl:template match="/X">

<xsl:attribute name="a1" /> // usual blue node template body

</s1> </xsl:template>

</xsl:template>

Figure 6.15: Example Document for Diagram in Figure 6.14

The revalidation script in Figure 6.15 shows how match attribute was ex-
tended for nodes s1 and s2 in order to match the instances not only under node
p1 but also under the structural representative node p2. The template for node
p2 shows how templates (srAttTemplatep1 and srElmTemplatep1) are called from
a structural representative node.

157

Chapter 7

Implementation and
Experiments

7.1 Implementations

The prototype implementation of the XSem model – XCase was presented in
[18].

• XCase is a full-fledged CASE tool for creating PIM and PSM diagrams
using the XSem model.

• It implements the basic translation algorithm proposed in [24] for transla-
tion from an XSem-H PSM diagram into an XSD.

• It contains an experimental implementation proposed in [19] for importing
an existing SD into an empty PSM diagram and creating a PIM diagram
for this PSM diagram.

• It contains a simple generator of random XML documents valid against a
PSM diagram.

As a part of this thesis, XCase was extended with following features:

• The ability to maintain several versions of the model.

• A branch function that duplicates a selected version of a model and con-
nects the source and branched version of the model with version links (fills
the relation VL).

158

• Basic means of editing the relation VL.

• A prototype implementation of the algorithm proposed in Chapter 6.

The prototype implementation generates a revalidation script following the
revalidation algorithm (with several exceptions – changes of attribute types are
ignored in the current implementation, as well as the changes of the any attribute
flag and conversions from a regular PSM class into a structural representative
and vice versa).

The revalidation script can be tested in XCase on random data (Saxon XSLT
processor [6] is used for XSLT processing).

7.2 Experiments

Since there are no real-world projects that use the multi-version extension of
XCase, experiments can be conducted only on the existing specifications in XML
Schema language thanks to the possibility to import an XSD into a PSM dia-
gram.

By importing two different versions of the same XSD and connecting the
created constructs via version links, our approach can be used for generating
evolution scripts even for the existing specifications.

RSS specification A smaller example is the specification of RSS, versions
0.90 and 2.0 [4] [5]. Although both versions model a similar XML structure,
the structure of the PSM diagrams for the respective versions is different. The
algorithm generates a correct revalidation script.

OpenTravel specification To test the approach on a larger example, two
versions of the schema FS OTA CancelRQ.xsd that is a part of the OpenTravel
Specification [1] (namely the versions 2008A and 2009A) were imported into the
program using the XSD to PSM feature.

Most of the version links were created using the trivial matching algorithm
that is able to connect unchanged constructs. Version links for the changed
constructs were added manually.

Among open specifications, it is a common practice to create the new versions
of the specifications backwards-compatible and the OpenTravel specification is
also the case (OpenTravel schemas provide a large amount of freedom to the user
in general, for example by declaring all the elements and attributes optional).

159

Nonetheless, the nature of the changes is too complex for the algorithm to recog-
nize the backward-compatibility, so a non-empty revalidation script is created.
However, the revalidation script is correct and outputs a valid document.

160

Chapter 8

Conclusion

The aim of the thesis was to propose an approach to XML schema evolution
built upon a conceptual model for XML schemas. It should identify changes in
the schema, determine the impact of the changes on the existing documents valid
against the old version and produce a revalidation script when revalidation of
the existing documents is necessary.

We began by naming the scenarios in which the existing systems using XML
schemas evolve and what are the consequences of the evolution process (see
Chapter 1). A survey of the existing approaches to the XML schema evolution
followed in Chapter 2. In Chapter 3 we formally defined a conceptual model
XSem for platform-independent and platform-specific modeling.

In Chapter 4 we extended the XSem conceptual model with the ability to
model multiple versions of the model at once. Using version links, each construct
in the model is correctly connected with its counterpart constructs in all other
versions, where the construct exists.

Adding the version links allowed us to define changes (Chapter 5) that can
occur between two versions v and v′ of a diagram D and an algorithm that
detects these changes. With each change we examined its impact on the validity
of the documents valid against version v (S(D)) and identified the set of changes
that do not violate validity of documents in S(D).

A set of changes CD,D′,v,v′ between versions v and v′ of a diagram D, which
is the output of Algorithm 2, does not expect any particular implementation
language for revalidation.

In Chapter 6 we proposed an algorithm that produces an XSLT script that
revalidates a valid document D ∈ S(D) and produces a new document document
D′ ∈ S(D′) valid for version v′. The revalidated document preservers semantical

161

meaning of the constructs thanks to utilizing the version links defined in Chapter
4.

The main contribution of our approach is the ability to maintain an arbitrary
number of different versions of each diagram with the ability to quickly generate
the revalidation script for any two different versions. The revalidation script
translates a document valid against the first version into a document valid against
the second version.

In contrast to the “recording” approaches (where only the new version can
be edited during the evolution process), the different versions can be edited
separately. The editing can also be suspended and resumed any time, separate
branches of any version can be created on demand and unlimited amount of
versions can be maintained in the model.

Thanks to version links, the algorithm is able to correctly distinguish mov-
ing operations from adding/deleting, correctly handle renaming, reordering and
complex composite changes in the structure of the document. The version links
solve several issues inherent in algorithms discussed in Chapter 2.

The algorithm takes into account a large number of possible constructs at
the platform-specific layer and thus covers a wide set of modeled XML schemas.
Another advantage of the algorithm is that it can be applied regardless of the
particular XML schema language. The XSem-H platform-specific diagram mod-
els a set of XML documents, it is not a visualization of an XML schema in
any particular XML schema language. The revalidation algorithm examines the
versioned XSem-H PSM diagrams, not the schemas themselves, therefore the
independence of the XML schema language is preserved.

Integration with the XSem model with its PIM and PSM levels leaves an
open field for further enhancements of the system. The PIM level can be further
utilized for generating content (see Section 8.1.1 for details), new features can
be added to the PSM constructs to further tweak the evolution process.

An experimental implementation of the algorithm was integrated into XCase
and is available on the attached CD.

8.1 Future Work

Our approach takes into account almost all constructs defined in [24] and usefully
extends the XSem model. To further extend its practical applicability, the future
research can examine the following areas.

162

8.1.1 Generating Content

The revalidation script generated by the revalidation algorithm proposed in
Chapter 6 is able to supply new content when needed. This content is always a
default instance of some part of the XSem-H diagram (see Section 5.4).

Adding the default instance into the document makes the document valid, but
does not contain any semantic value. However, the approach could be extended
to add semantically correct content into the new document. For this purpose,
PIM links could be utilized. A possible solution would be to generate the content
based on the data retrieved from the database. The database query could be also
automatically generated, if the database structure would correspond to the PIM
model.

Figure 8.1: Adding Content

Consider the model in Figure 8.1. It contains a PIM class Customer in version
v and v′ and PSM class derived from it in a PSM diagram. The attribute name

was removed and replaced by attributes first-name and sure-name in version
v′. The revalidation script generated by the current algorithm would be:

<xsl:template match="/Customer">

<Customer>

<xsl:copy-of select="@id" />

<xsl:attribute name="first-name" />

<xsl:attribute name="sure-name" />

</Customer>

</xsl:template>

163

If we extended the algorithm with considering PIM linked to a relational
database, it could produce a revalidation script like1:

<xsl:variable name="first-name">

{select [FIRST-NAME] from CUSTOMER where ID="/Customer/@id"}

</xsl:variable>

<xsl:variable name="last-name">

{select [FIRST-NAME] from CUSTOMER where ID="/Customer/@id"}

</xsl:variable>

<xsl:template match="/Customer">

<Customer>

<xsl:copy-of select="@id" />

<xsl:attribute name="first-name">

<xsl:value of select="$first-name" />

</xsl:attribute>

<xsl:attribute name="sure-name">

<xsl:value of select="$last-name" />

</xsl:attribute>

</Customer>

</xsl:template>

The most appropriate solution would be to add another type of platform-
specific model – a model of a relational database. This model would be linked
to the PIM model in a similar way as XSem-H diagrams are and the required
queries could be inferred from the links between XSem-H and PIM and PIM and
the relational database model.

8.2 Version Links for Imported Schemas

XCase contains an experimental implementation of an algorithm proposed in
[19] for importing an existing XSD into an XSem-H diagram. Combined with the
algorithm proposed in Chapter 4, the system can be used to generate revalidation
scripts in those scenarios, where we already have both old and new version of
the XSD. The old schema is imported into diagram D, new schema into D′.

The only missing part for the successful run of the algorithm are the contents
of relation VL (version links joining the previous and the evolved version of each
construct). This relation can be created manually by the user, but it is a time-
consuming process.

1We use a symbolic notation for incorporating SQL queries into XSLT script. The correct
notation is vendor-specific.

164

It would be useful to extend the system with a heuristic that could create a
larger part of VL automatically and ask for user input only in the unresolved
cases. A trivial matching algorithm is already a part of XCase, but now it can
only connect constructs in unchanged parts of the diagram.

There exists a lot of methods for finding similarities and patterns among two
XML schemas (a survey can be found in [25]). Outcomes of these methods can
be transferred into finding similarities between two XSem-H diagrams.

8.3 Generalizations and Extensions

XSem model defined in Chapter 3 lacks support for inheritance. However, trans-
lation of inheritance at the level of platform-specific XSem-H diagrams to XML
Schema constructs was proposed in [24]. Adding support for inheritance into
revalidation involves two tasks:

• handling generalization already present in the diagram in both versions v
and v′ (changes occurred either in the general or in the specific class)

• handling generalizations added/removed in version v′.

165

Appendix A

CD Contents

The attached CD contains:

• PDF version of this thesis - thesis.pdf

• XCase installer (includes a prototype implementation of the algorithm de-
scribed in Chapter 6)

• Examples for diagram evolution

• Definitions of the diagram-independent auxiliary templates - auxiliary-
templates.xslt

Running the Examples Examples are stored in the folder Evolution examples.
Each example is an .XCase project file. When the file is opened in XCase, select
the new version of the diagram and click Find changes in the main toolbar1 to
start the change detection algorithm and display the changes. To generate the
revalidation stylesheet, click Evolve and then XSLT from changes.

The generated revalidation stylesheet can be tested in the same window on
some random input files (generated after clicking Another sample).

Examples 1-5 are described in this thesis (Figures 6.1, 6.3, 6.9, 6.11 and 6.14).
Example 6 contains two versions of a schema for RSS - version 0.90 [4] and

2.0 [5]. Both versions were obtained first by translating the DTD into the XSD
(via Visual Studio 2008) and then importing the XSD into XCase.

Example 7 contains two versions of schema FS OTA CancelRQ.xsd that is a
part of the OpenTravel Specification [1] (namely the versions 2008A and 2009A).

1On machines with smaller display resolution, the button may be hidden and accessible
after clicking the arrow on the right of the toolbar.

166

Appendix B

Sample XML Document and
XML Schema Translation for
Diagram 3.14

XML Schema Translation and a valid document for diagram from Figure 3.14
(p. 47).

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="catalog" type="CategoryType"/>

<xs:complexType name="BookType">

<xs:sequence>

<xs:element name="author" type="xs:string"/>

<xs:element name="title" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="CategoryType">

<xs:sequence>

<xs:element name="description" type="xs:string" />

<xs:element name="category" type="CategoryType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="books">

<xs:complexType>

<xs:sequence>

<xs:element name="book" type="BookType"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

167

</xs:element>

<xs:element name="best-seller" type="BookType"

minOccurs="0"/>

</xs:sequence>

<xs:attribute name="code" type="xs:string" />

<xs:attribute name="title" type="xs:string" />

</xs:complexType>

</xs:schema>

<?xml version="1.0"?>

<root-category code="1" title="Main">

<category code="1.1" title="Fiction">

<description>All fiction books</description>

<category code="1.1.1" title="History">

<description>History books</description>

<books>

<book>

<title>#</title>

<author>#</author>

</book>

...

</books>

<best-seller>

<author>#</author>

<title>#</title>

</best-seller>

</category>

<category code="1.1.2" title="Drama">

<description>Drama books</description>

....

</category>

...

<books />

</category>

<category code="1.2" title="Non-fiction">

<description>All non-fiction books</description>

...

</category>

<books />

</root-category>

168

Appendix C

Sample XML Document for
Diagram 6.13

<Log>

<Unassigned>

<id>1</id>

<id>2</id>

</Unassigned>

<Error>

<id>1</id>

<text>Missing ’;’.</text>

<severity>1</severity>

</Error>alg:change-detection

...

<Error>

<id>2</id>

<text>Method named ’Create’ already exists</text>

<severity>1</severity>

</Error>

<Warning>

<id>3</id>

<text>Method Show() is obsolete.</text>

<severity>5</severity>

</Warning>

</Log>

Figure C.1: Sample Document for Diagram from Figure 6.13

169

Bibliography

[1] OpenTravel Specification. http://www.opentravel.org/.

[2] Oracle XML DB Developer’s Guide - Oracle XML Schema Annotations.
http://download-uk.oracle.com/docs/cd/B28359_01/appdev.111/b28369/

xdb05sto.htm#i1030452.

[3] Oracle XML DB Developer’s Guide - XML Schema Evolution. http://download-uk.

oracle.com/docs/cd/B28359_01/appdev.111/b28369/xdb07evo.htm#BCGFEEBB.

[4] RSS 0.90 Specification. http://www.rssboard.org/rss-0-9-0.

[5] RSS 2.0 Specification. http://cyber.law.harvard.edu/rss/rss.html.

[6] Saxon XSLT Processor. http://saxon.sourceforge.net/.

[7] XCase - tool for XML data modeling. http://xcase.codeplex.com/.

[8] A. Khan, M. Sum. Introducing Design Patterns in XML Schemas. http:

//developers.sun.com/jsenterprise/archive/nb_enterprise_pack/reference/

techart/design_patterns.html.

[9] D. Booth, C. K. Liu. Web Services Description Language (WSDL) Version 2.0 Part 0:
Primer. W3C, June 2007. http://www.w3.org/TR/wsdl20-primer/.

[10] E. Domı́nguez, J. Lloret, A. L. Rubio, and M. A. Zapata. Evolving xml schemas and
documents using uml class diagrams. In K. V. Andersen, J. K. Debenham, and R. Wag-
ner, editors, DEXA, volume 3588 of Lecture Notes in Computer Science, pages 343–352.
Springer, 2005.

[11] G. Guerrini, M. Mesiti. XML Schema Evolution and Versioning: Current Approaches and
Future Trends.

[12] G. Guerrini, M. Mesiti, and M. A. Sorrenti. Xml schema evolution: Incremental validation
and efficient document adaptation. In D. Barbosa, A. Bonifati, Z. Bellahsene, E. Hunt,
and R. Unland, editors, XSym, volume 4704 of Lecture Notes in Computer Science, pages
92–106. Springer, 2007.

[13] Hong Su, D. K. Kramer, E. A. Rundensteiner. XEM: XML Evolution Management.

[14] ISO. ISO/IEC 9075-14:2008 - SQL – Part 14: XML-Related Specifications
(SQL/XML). http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_

detail_ics.htm?csnumber=45499.

170

[15] M. Kay. XSLT 2.0 and XPath 2.0 4th Edition. Wrox, 2008.

[16] M. Kay. XSL Transformations (XSLT) Version 2.0. W3C, January 2007. http://www.
w3.org/TR/xslt20/.

[17] M. Klettke. Conceptual xml schema evolution — the codex approach for design and
redesign. In M. Jarke, T. Seidl, C. Quix, D. Kensche, S. Conrad, E. Rahm, R. Klamma,
H. Kosch, M. Granitzer, S. Apel, M. Rosenmüller, G. Saake, and O. Spinczyk, editors,
Workshop Proceedings Datenbanksysteme in Business, Technologie und Web (BTW 2007),
pages 53–63, Aachen, Germany, March 2007.

[18] J. Kĺımek, L. Kopenec, P. Loupal, and J. Malý. XCase - A Tool for Conceptual XML
Data Modeling. In Advances in Databases and Information Systems, volume 5968/2010
of Lecture Notes in Computer Science, pages 96–103. Springer Berlin / Heidelberg, March
2010.

[19] J. Kĺımek. Xml Schema Evolution, 2009.

[20] J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Object Management Group, 2003.
http://www.omg.org/docs/omg/03-06-01.pdf.

[21] I. Mlynkova and J. Pokorny. Five-level multi-application schema evolution. 2009.

[22] M. M. Moro, S. Malaika, and L. Lim. Preserving xml queries during schema evolution. In
WWW ’07: Proceedings of the 16th international conference on World Wide Web, pages
1341–1342, New York, NY, USA, 2007. ACM.

[23] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of xml schema languages
using formal language theory. ACM Trans. Internet Technol., 5(4):660–704, 2005.

[24] M. Necasky. Conceptual Modeling for XML, volume 99 of Dissertations in Database and
Information Systems Series. IOS Press/AKA Verlag, January 2009.

[25] M. Nečaský and I. Mlýnková. Exploitation of similarity and pattern matching in xml
technologies. In DATESO 2009, volume 471 of CEUR Workshop Proceedings, pages 90–
104. MatfyzPress, 2009.

[26] Object Management Group. UML Infrastructure Specification 2.1.2, nov 2007.
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/.

[27] Object Management Group. UML Superstructure Specification 2.1.2, nov 2007.
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/.

[28] A. M. P. V. Biron, K. Permanente. XML Schema Part 2: Datatypes (Second Edition).
W3C, October 2004. http://www.w3.org/TR/xmlschema-2/.

[29] S. Systems. Enterprise Architect. http://www.sparxsystems.com.au/products/ea/.

[30] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau. Extensible Markup
Language (XML) 1.0 (Fourth Edition). W3C, September 2006. http://www.w3.org/TR/
REC-xml/.

[31] B. Thalheim. Entity-Relationship Modeling: Foundations of Database Technology.
Springer Verlag, Berlin, Germany, 2000.

171

[32] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part 1: Struc-
tures (Second Edition). W3C, October 2004. http://www.w3.org/TR/xmlschema-1/.

[33] C. M. S.-M. Tim Bray, Jean Paoli. Document type declaration. 2000.

[34] W3C. Document Object Model (DOM) specification. http://www.w3.org/DOM/.

[35] W3C. XML Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20/.

[36] W3C. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/.

[37] W3C. XQuery Update Facility 1.0 specification. http://www.w3.org/TR/

xquery-update-10/.

[38] W3C. XQuery Update Facility 1.0 specification. http://www.w3.org/TR/

xquery-update-10/.

172

