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Název diplomové práce: 

 

Cílené mutace lidského histaminového H4 receptoru: Postavení Arg-341 

za vzájemného působení H4R agonistů cyanoguanidinového typu 

 

Lidský histaminový H4 receptor (hH4R) byl objeven v roce 2000. Předpokládá se, že 

H4R zaujímá postavení v imunologických pochodech a může tak být potenciálním 

cílem vývoje nových léků v terapii zánětlivých onemocnění. Naklonování a exprese 

hH4Ru odstartovaly hledání selektivních agonistů a antagonistů. Nedávno byl v sérii 

agonistů cyanoguanidinového typu identifikován vysoce účinný a receptorově selektivní 

H4R agonista, UR-PI376, (2-cyano-1-[4-(1-H-imidazol-4-yl)butyl]-3-[(2-fenylthio)ethyl] 

guanidin), s jasnými preferencemi k hH4Ru před H4Rem myšovitých (mH4R). Dle 

molekulárních modelových studií, UR-PI376 tvoří dvě vodíkové vazby mezi 

cyanoguanidinovým zbytkem a argininem 341 hH4Ru, což vedlo k doměnce, že 

Arg-341 je důvodem, proč je UR-PI376 selektivnější k hH4Ru než k lidskému 

histaminovému H3 receptoru (hH3R) a proč upřednostňuje hH4R před mH4Rem. 

Abychom objasnili roli této aminokyseliny ve vzájemné interakci s cyanoguanidiny, 

vytvořili jsme tři mutanty: Arg-341 byl nahrazen serinem, glutamátem a alaninem 

pomocí tzv. „overlap-extension PCR“. Ve srovnání s hH4Rem, u H4Ru potkana a myši 

je Arg-341 nahrazen serinem, zatímco glutamát odpovídá psímu H4Ru a hH3Ru. H4R 

mutanti byly exprimováni společně s Gαi2 a Gβ1γ2 proteiny ve Sf9 hmyzích buňkách 

a charakterizováni prostřednictvím funkčních studií. Účinek agonistů histaminu 

a UR-PI376 a aktivita antagonisty thioperamidu byly měřeny metodou „steady-state 

GTPase activity assay“. Nicméně, žádné významné rozdíly v chování přirozeného 

hH4Ru a jeho mutantů nebyly zaznamenány. Je tedy zřejmé, že receptorově a druhově 

specifický Arg-341 není zásadní pro vazbu UR-PI376 k hH4Ru. 
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Charles University in Prague 

Faculty of Pharmacy in Hradec Králové 
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Doc. RNDr. Lenka Skálová, Ph.D. 

 

Title of diploma thesis: 

 

Site-directed mutagenesis of the human histamine H4 receptor: The role of 

Arg-341 in the interaction with cyanoguanidine-type H4R agonists 

 

The human histamine H4 receptor (hH4R) was discovered in 2000. The H4R is 

supposed to be involved in immunological processes and is considered a potential drug 

target, e. g., for the treatment of inflammatory diseases. Cloning and expression of the 

hH4R inspired to the search for selective agonists and antagonists. Recently, UR-PI376 

(2-cyano-1-[4-(1H-imidazol-4-yl)butyl]-3-[(2-phenylthio)ethyl]guanidine) was identified 

within a series of cyanoguanidines as a highly potent and subtype-selective H4R 

agonist with pronounced preference for the human over the murine H4R (mH4R). 

According to molecular modelling studies, the cyanoguanidine moiety of UR-PI376 

forms charge-assisted hydrogen bonds with Arg-341 of the hH4R, suggesting 

this amino acid brings about selectivity for the hH4R over the hH3R and is the reason 

for the preference of UR-PI376 for hH4R over mH4R as well. 

To elucidate the role of this amino acid in the interaction with cyanoguanidines, three 

mutants were generated: Arg-341 was replaced by serine, glutamate or alanine, 

respectively, using overlap-extension PCR. Compared to the hH4R, in the H4Rs of rat 

and mouse, Arg-341 is replaced with Ser, whereas Glu is the corresponding amino acid 

in both, the canine H4R and the human histamine H3 receptor (hH3R). The mutant H4Rs 

were co-expressed with Gαi2 and Gβ1γ2 in Sf9 insect cells and characterized in 

functional studies. The potencies and efficacies of histamine and UR-PI376 (agonists) 

and the antagonistic activity of thioperamide were determined in steady-state GTPase 

activity assays. However, relevant differences between the wildtype and the mutant 

hH4Rs were not observed. Obviously, Arg-341 can be eliminated to account for the H4R 

subtype selectivity of UR-PI376 as well as for species selectivity. 
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1 ABBREVIATIONS 

 

Arg   arginine 

ADP   adenosine diphoshate 

Ala   alanine 

ATP   adenosine triphosphate 

Bmax   the maximal specific binding of a ligand 

bp   base pair 

BSA   bovine serum albumine 

cAMP   cyclic 3’, 5’-adenosine monophosphate 

cDNA   complementary DNA 

cHxR   canine histamine Hx receptor (x = 1, 2, 3 or 4) 

CNS   central nervous system 

DAG   diacylglycerol 

DAO   diamine oxidase 

DMSO   dimethylsulfoxide 

EC50 molar concentration of the agonist causing 50 % of the maximal 

response 

ECL   extracellular loop or enterochromaffin-like cells 

EDTA   ethylendiaminetetraacetic acid 

Emax   maximal response relative to histamine (1.00) 

G-protein  guanidine nucleotide binding protein 

GABA   γ-aminobutytic acid 

GDP   guanosine diphosphate 

GPCR   G-protein coupled receptor 

gp   guinea pig 

gpHxR   guinea pig histamine Hx receptor (x = 1, 2, 3 or 4) 

GDP   guanosine diphosphate 

GERD   gastroesophageal reflux disease 

Glu   glutamate 

GTP   guanosine triphosphate 

h   hour(s) or human 

HDC   histidine decarboxylase 

HNMT   histamine N-methyltransferase 

HR   histamine receptor 

hHxR   human histamine Hx receptor (x = 1, 2, 3 or 4) 
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H1R, H2R, H3R, H4R histamine receptor subtypes 

ICL   intracellular loop 

IP3   inositol-1,4,5-trisphosphate 

kb   kilo base pairs 

MAPK   mitogen-activated protein kinase 

mHxR   murine histamine Hx receptor (x = 1, 2, 3 or 4) 

min   minute(s) 

Pi   inorganic phosphate 

PCR   polymerase chain reaction 

PIP2   phosphatidylinositol-4,5-bisphosphate 

PKA   protein kinase A 

PKC   protein kinase C 

PLCβ   phospholipase Cβ 

PPI   proton pump inhibitor 

pEC50 negative decadic logarithm of the molar concentration of the 

agonist causing 50 % of the maximal response 

R   inactive state of a GPCR 

R*   active state of a GPCR 

RGS   regulator of G-protein signalling 

rHxR   rat histamine Hx receptor (x = 1, 2, 3 or 4) 

RhoGEF  Ras homology guanine nucleotide exchange factor 

rpm   revolutions per minute 

s   second(s) 

SEM   standard error of the mean 

Ser   serine 

Sf9   Spodoptera frugiperda insect cell line 

Tm   melting temperature 

TM   transmembrane domain 

Tris   tris(hydroxymethyl)aminomethane 

t.v.   total volume 
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2 INTRODUCTION  

 

Histamine is an important biological mediator implicated in various physiological and 

pathophysiological processes in the body by way of four histamine receptor subtypes. 

All these receptors belong to the class A of the superfamily of G-protein coupled 

receptors (GPCR). Histamine H1 receptor (H1R) antagonists are widely used in allergic 

ailments whereas histamine H2 receptor (H2R) antagonists serve as antiulcer drugs. 

The third subtype of histamine receptor is mainly expressed in CNS. H3R ligands have 

not been established in pharmacotherapy so far but they are under the clinical 

investigation, for instance, for the treatment of CNS disorders (e. g. schizophrenia) or 

obesity. 

In contrast to the other histamine receptors, which were defined by pharmacological 

characterisation long before the cloning, the H4 receptor (H4R) was first cloned and 

reported as an orphan receptor and later on identified as a histamine receptor because 

of high sequence homology with the H3R. Several research groups discovered the H4R 

subtype independently in the years 2000 and 2001. It is known that the H4R is 

expressed in cells of immune system suggesting a role in inflammation and immune 

response. Selective H4R ligands, agonists and antagonists, are required for the 

investigation of that role of the H4R. On the other hand, such compounds may be 

promising drugs, for instance, for the therapy of bronchial asthma, rheumatoid arthritis, 

pruritus and allergic rhinitis (see references in the text below). 

The research group of Prof. Dr. A. Buschauer (University of Regensburg) identified the 

human H3R and H4R ligands among series of NG-acylated imidazopropylguanidines. 

A considerable increase in the selectivity for H4R over H3R was achieved by structural 

modifications, particularly by replacement of the basic acylguanidine with 

a cyanoguanidine group. The compound UR-PI376 suggested the putative binding 

mode of cyanoguanidines with the hH4R: UR-PI376 is in an energetically favourable 

conformation - in the given Z configuration - when the cyano group creates two 

additional charge-assisted hydrogen bonds with the guanidine moiety of Arg-341 

residue in the hH4R. As Arg-341 is characteristic of the hH4R, this model can possibly 

explain the selectivity of UR-PI376 for the human over the murine H4R and for the 

hH4R over the hH3R (Igel et al. 2009). To substantiate or falsify this working 

hypothesis, the relevance of Arg-341 had to be proven by exchange of Arg with other 

amino acids. 

This thesis is divided into two parts – theoretical and experimental part. The first one is 

focused on characteristics of G-protein coupled receptor family, interactions of 
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receptors with ligands, the histamine receptor subtypes and, with respect to the 

intended modifications of the H4R, principles of crucial methods used in site-directed 

mutagenesis (overlap-extension PCRs) and pharmacological investigation of ligands, 

i. e. functional studies in the steady-state GTPase activity assay. The experimental part 

describes the procedure and the evaluation of generated H4R mutants, in which 

Arg-341 was replaced with serine (as in rat and mouse H4R), glutamate (as in dog H4R 

and hH3R) and alanine, including expression of mutants in Sf9 insect cell system, 

immunoblotting and functional characterisation of the obtained mutants expressing 

membranes with agonists, histamine and UR-PI376, and inverse agonist thioperamide. 
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3 THEORETICAL PART 

 

3.1 G-protein coupled receptors (GPCRs) 

 

GPCRs represent a large protein family of transmembrane receptors, also named by 

some authors as a family of 7 transmembrane receptors, serpentine-like receptors or 

heptahelical receptors (Pierce et al. 2002, Kristiansen 2004). They take part in the 

communication between cell and outside world. The GPCR superfamily can be 

subgrouped in receptors for various endogenous ligands (about 400 “endo-GPCRs”) 

such as amines, peptides, glycoproteins, prostanoids, fatty acids, phospholipids, 

nucleosides, nucleotides, Ca2+ ions, and sensory receptors (about 400 “exo-GPCRs”) 

for diverse exogenous ligands such as odorants, bitter and sweet tastants, 

pheromones and photons of light. GPCRs include receptors for many hormones, 

paracrines, neurotransmitters or neuromodulators (Kristiansen 2004). As function and 

dysfunction of such receptors are associated with numerous human diseases, GPCRs 

represent the most important class of biological targets of marketed drugs and are 

considered promising targets for the development of new drugs as well. 

Total number of identified GPCRs continually raises (Lagerström and Schiöth 2008) 

and comprises about 800 members, corresponds to about 2 % of the human genome 

(Jacoby et al. 2006, Lagerström and Schiöth 2008). Numerous different methods are 

used to identify, study and functionally characterise GPCRs including, for instance, 

cloning and expression, protein engineering, molecular modelling, site-directed 

mutagenesis, use of antibodies against of receptor epitopes, affinity labelling, chemical 

labelling, molecular pharmacology, determination ligand binding and functional activity 

of wildtype and mutant receptors, and so on (Kristiansen 2004). 

Less than 150 genes are designated as orphans, proteins having similarity to receptors 

but whose endogenous ligands or function have not been conclusively identified yet 

(Wise et al. 2004). The effort to identified ligands for orphan GPCRs revealed, for 

instance, the existence the histamine H4-receptor (Oda et al. 2000). 

 

Members of the GPCR family share a common membrane topology: extracellular 

N-terminus, a cytoplasmatic C-terminus and seven -helical transmembrane domains 

(TM1 - TM7) connected by three intracellular and extracellular loops (ICL 1 - 3 and ECL 

1 - 3) (Figure 1, Ballesteros and Weinstein 1995, Kristiansen 2004).  
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Figure 1. Snake plot of the human H4-receptor (Nguyen et al. 2001). It represents seven 

transmembrane helices (TM I-VII), three extracellular loops and three intracellular loops with an 

extracellular N-terminal and an intracellular C-terminal peptide. N-linked glycosylation sites are 

indicated in blue. Amino acids in red represent residues shared with the histamine H3 receptor. 

 

The list of GPCRs has been maintained by the International Union of Pharmacology 

(IUPHAR, cf. http://www.iuphar-db.org/index.jsp) as well as by Kolakowski who created 

A - F classification system (Kolakowski 1994). GPCRs are grouped into 5 classes 

(GRAFS) based on homology and functional similarity. The 5 classes are named 

glutamate, rhodopsin (the largest group), adhesion, frizzled/taste2 and secretin 

receptor family (Fredriksson et al. 2003). We are interested in the largest family, which 

comprises hundreds of receptors including the histamine receptors. The rhodopsin 

family contains most of the GPCR drug targets, mainly amine and peptide receptors 

(Lagerström and Schiöth 2008). 

 

GPCRs are coupled to heterotrimeric guanine nucleotide binding proteins, called 

G-proteins, which are composed of a Gα-subunit and a Gβγ-complex (Figure 2, Gilman 

1987, Offermanns 2003). The Gα-subunit, an intrinsic GTPase, obviously differs from 

other subunits and performances as an individual (Gilman 1987). The activity of 

Gα proteins is regulated according to a functional cycle by release of GDP and binding 

of GTP, interaction of the activated (GTP-loaded) form with effectors, hydrolysis of GTP 

to GDP and Pi, thereby restoring the inactive state. The Gα-subunit is bound to GDP in 
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basal state. Activation of GPCR, which can be agonist-free (constitutively active) or 

agonist occupied (stabilized by an agonist), leads to the conformational changes of the 

G-protein and results in dissociation of the Gα-subunit from GDP. This step appears to 

be the rate-limiting step of the G-protein cycle (Gilman 1987, Seifert et al. 2005). Then 

the ternary complex, typical for its high agonist affinity, is formed. The ternary complex 

consists of the agonist-bound receptor and nucleotide-free Gαβγ heterotrimer. Both 

agonist-free and agonist-bound GPCR advance the binding of the GTP to the 

Gα-subunit. Now G-protein is in the active state. The binding of GTP to the Gα-subunit 

induces a conformational change in the subunit and the dissociation of the heterotrimer 

into GαGTP and Gβγ and in GPCR uncoupling from G-protein. Last item results in 

decrease in agonist affinity of the receptor, while the G-protein subunit, GαGTP and Gβγ, 

increase or reduce the activity of effector systems. Way back to the basal state is 

mediated by the intrinsic GTPase activity of the Gα-subunit which cleaves GTP into 

GDP and Pi, followed by the re-association of GαGDP and the Gβγ complex, allowing the 

next G-protein cycle (Seifert et al. 2005). Besides GPCRs, the activity of G-proteins is 

also receptor independently modulated by a family of proteins named regulators of 

G-protein signalling (RGS) (Kimple 2009). 

 

 

Figure 2. The G-protein cycle (Milligan and Kostenis 2006). See the text for explanation. 
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Gα-subunits are divided into four classes, named Gs, Gi/o, Gq/11, G12/13 based on their 

structure and signalling pathway. Gα-subunits are not transmembrane polypeptides as 

GPCRs but based on their cDNA sequence would appear to be essentially soluble 

proteins (Kristiansen 2004, Milligan and Kostenis 2006). Widely expressed members of 

Gs-subfamily activate membrane-bound adenylyl cyclase that generates the second 

messenger 3´,5´-cyclic adenosine monophosphate (cAMP). In contrast, Gi/o-subfamily 

Gα-subunits are inhibitors of adenylyl cyclase (Kimple 2009, Milligan and Kostenis 

2006). The second messenger cAMP exerts various effects on effector proteins, for 

instance, activation of the protein kinase A (PKA) or the mitogen-activated protein 

kinase (MAPK) pathway both modulating gene expression (Marinissen and Gutkind 

2001). Phosphodiesterases inactivate cAMP and terminate the signal transduction. 

Gq/11 proteins are potent activators of phospholipase-Cβ (PLCβ) isoforms that cause 

a hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2) and generate the second 

messengers inositol-1,4,5-trisphosphate (PI3) and diacylglycerol (DAG). IP3 binds to the 

IP3 receptor (ligand-gated Ca2+-ion channel), which is located in the membrane of the 

endoplasmatic reticulum and promotes the release of Ca2+-ions from its intracellular 

store into the cytoplasm (Kimple 2009, Mokoshiba 2007). DAG activates the protein 

kinase C (PKC) and modulates the function of cellular proteins by phosphorylation. IP3 

is inactivated by dephosphorylation, whereas DAG is degraded by lipases or 

inactivated by phosphorylation (Berridge 1987, Payrastre et al. 2001). The 

G12/13 subfamily plays a role in the activation Ras homology guanine nucleotide 

exchange factors (RhoGEFs) (Kimple 2009, Milligan and Kostenis 2006). The duration 

of GPCR signalling is controlled by the time when GTP remains bound to the 

Gα-subunit before its hydrolysis to GDP. RGS proteins are key modulators of GPCR 

signalling because they are able to accelerate the intrinsic GTP hydrolysis activity of 

Gα-subunits. (Kimple 2009) In addition, there are at least five different β- and twelve 

γ-subunits and it is known that the βγ complex plays a more important role than only 

being a binding partner for the Gα-subunit. Generally, they are considered to interact 

with effectors including a variety of ion channel subunits. Probably, the βγ-dimers 

cannot bind both an effector and the α-subunit concurrently. The Gα-subunits of 

individual G-proteins are substrates for ADP-ribosylation catalysed by bacterial toxins. 

Such toxins have been key tools in the discovery and classification of the G-proteins 

and are still used in many studies of G-protein function (Milligan and Kostenis 2006). 

Best characterized are the reactions carried out by toxins elaborated by Vibrio cholerae 

and Bordetella pertussis (Gilman 1987). There are also some diseases associated with 

G-protein activity. Cholera and a number of other bacterial exotoxins produce similar 

effects via the same mechanism, up-regulation of Gαi-subunits is found in heart failure, 
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various cardiovascular phenotypes and aspects of metabolic syndrome are linked with 

polymorphic variants of the Gβ-subunit (Milligan and Kostenis 2006). 

 

The influence of a ligand on a GPCR can be explained by the two-state model of 

GPCR activation (Figure 3A,B, Leff 1995). GPCR can occur in an active receptor state 

R* and an inactive receptor state R, which are in equilibrium. The ratio between R* and 

R describes the degree of constitutive activity of a GPCR. The inactive receptor state is 

able to isomerise to an active receptor state independently from agonist binding. Then 

the active receptor state can bind G-proteins and promote GDP/GTP exchange. 

Agonists stabilize the active conformation of the receptor. Full agonists bind and 

stabilize R*, which leads to a maximal biological response (efficiency). Inverse agonists 

particularly bind and stabilize R and reduce constitutive activity. Partial agonists and 

partial inverse agonists less stabilize the active and the inactive receptor state, 

respectively. Neutral (“silent”) antagonists do not alter the equilibrium but only block the 

binding site of the natural ligand. Nevertheless, pure “neutral antagonists” are probably 

few in numbers. Many compounds earlier believed to be antagonists turned out to be 

inverse agonists (Kenakin 2003) depending on the used pharmacological assay and 

the degree of constitutive GPCR activity in the respective system. All in all, as 

demonstrated experimentally, the two-state model is not able to explain perfectly the 

real stage of GPCR activation. There can be many levels of constitutive activity and 

structurally different ligands versus their stabilization of relevant receptor state resulting 

in diverse biological responses (Seifert and Wenzel 2002). 
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Figure 3A,B. The two-state model of GPCR activation (Seifert and Wenzel 2002). See text for 

explanation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B 



11 
 

3.2 Histamine and its receptor subtypes 

 

3.2.1 Histamine 

 

Histamine is a biogenic amine and is known to be an important biological mediator. It 

has influences on different physiological and pathophysiological processes in the body 

and can cause a wide variety of pharmacological effects of varying intensity mediated 

by four histamine receptor subtypes (H1R, H2R, H3R, H4R). The biological responses 

range from CNS effects of histamine as a neurotransmitter and physiological 

stimulation of gastric acid secretion to pathophysiological reactions due to histamine 

release from mast cells or basophiles, e. g., from mild irritation and itching to 

anaphylactic shock and eventual death (Hough 2001, Igel et al. 2009, Mainitz and 

Novak 2007). 

 

Figure 4. Structure of histamine. 

 

Histamine, 2-(1H-imidazol-4-yl)ethanamine (Figure 4) was synthesized by Windaus 

and Vogt in 1907 (Windaus and Vogt 1907) and isolated from the mould ergot in 1910 

by Sir Henry Dale and his colleagues at the Wellcome Laboratories from Secale 

cornutum (Barger and Dale 1910). This group and others carried out a series of 

experiments to explore its biological actions, but not until 1927 histamine was found by 

Best et al. to be a natural constituent of the body (Parsons and Ganellin 2006) and was 

identified as a mediator of anaphylactic reaction in 1932 (Mainitz and Novak, 2007). 

Nowadays this biogenic amine is known to produce a broad variety of effects on 

numerous organs, including contraction of smooth muscles (e. g. bronchi), 

vasodilatation, increased vascular permeability and mucus secretion, stimulation of 

gastric acid secretion and cardiac contractility, tachycardia, alterations of blood 

pressure, inhibition of autonomic transmitter release etc. (Mainitz and Novak 2007, 

Parsons and Ganellin 2006, Zhu et al. 2001). Histamine plays role in 

immunomodulation, haematopoiesis, wound healing, circadian rhythm and the 

regulation of histamine- and polyamine-induced cell proliferation and angiogenesis in 

tumor models and intestinal ischemia (Mainitz and Novak 2007). The regulation of 

sleep order, feeding and memory processes are connected with histamine localization 

in the brain, one of the last organs, where histamine was discovered. The existence of 

histaminergic neurones, located in tuberomammillary nucleus of the hypothalamus and 
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projected to all major areas of the brain, was confirmed in 1984 by Watanabe et al. 

(Parsons and Ganellin 2006, Watanabe et al. 1984). 

Histamine is synthesized by the decarboxylation of the naturally occurring amino acid 

L–histidine by the enzyme histidine decarboxylase (HDC) and can be found in all 

human tissues with the largest concentration located in the lungs, the skin, connective 

tissues and at partially high concentrations in the gastrointestinal tract (Parsons and 

Ganellin 2006). It is stored in the vesicles of mast cells and basophilic leukocytes as an 

inactive form bond to heparin and a protein into a storage complex (Code and Mitchell 

1957, Riley and West 1953). Additional sources are blood basophiles, blood platelets, 

enterochromaffin-like (ECL) cells in the stomach, endothelial cells and also in neurons 

(Mainitz and Novak 2007, Parsons and Ganellin 2006). The degradation of histamine is 

rapid and occurs by two main catabolic pathways via methylation by histamine 

N-methyltransferase (HNMT) and oxidative deamination by diamine oxidase (DAO), 

formerly called histaminase. The preferential metabolic pathway depends on 

localization of histamine. DAO is mainly specific for small intestine, colon ascendens, 

placenta and kidney, HNMT is widely expressed in liver and kidney, spleen, colon, 

prostate, ovary, spinal cord cells, bronchi and trachea, where HNMT is the key enzyme 

for histamine metabolism (Mainitz and Novak 2007, Ogasawara et al. 2006). The 

half-life of histamine is very short with less than 10 s in the rat and 20 – 30 s in the dog 

(Parsons and Ganellin 2006). 

 

3.2.2 Classical antihistamines, histamine H1-receptor subtype 

 

Because of the evidence that histamine plays a very important and active role in allergy 

and anaphylaxis research in this field was initially focused on compounds capable of 

antagonising the pathophysiological effects caused by histamine (Parsons and Ganellin 

2006). The first histamine receptor antagonists (known as classical antihistamines but 

now called H1-receptor antagonists) were already synthesized in the 30s of last 

century, i. e. over 20 years after the discovery and description of some of these effects 

of histamine (Hill et al 1997). In 1942 phenbenzamine was the first antihistamine used 

in patients. Subsequently, this compound was replaced by mepyramine (Figure 5), 

which is still in use against some topical skin disorders. Others antihistamines followed, 

such as diphenhydramine, chlorpheniramine and promethazine. Their use took place 

widely in the treatment of various allergic ailments like hay fever, allergic rhinitis and 

urticaria. We do not have to forget the use as hypnotics and as antiemetics, e. g., for 

the treatment of travel sickness, where side effects of antihistamines were employed 

(Parsons and Ganellin 2006). The hH1R was cloned from the cattle in 1991 (Yamashita 
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et al. 1991) and from humans in 1993 (de Backer et al. 1993). It is a 56 kDa protein 

with 487 amino acids, coupling to the Gq-mediated signalling pathway, i. e. PIP2 

metabolism by phospholipase C, resulting in IP3, DAG and an increase in calcium 

mobilization (Nakamura et al. 2000). 

 

 

Figure 5. Mepyramine, classical antihistamine. 

 

The H1-receptor antagonists are divided into the first and the second generation (or 

“non-sedating”) antagonists and they are used therapeutically. By contrast, H1R 

agonists are only used as pharmacological tools to study the H1R at the molecular level 

(Straßer et al. 2009). Antagonists reduce the effects of histamine on many tissues, 

notably vascular and extravascular smooth muscle, but it became apparent that some 

of the effects of histamine are refractory to inhibition by these drugs. For example, 

histamine stimulated gastric secretion was shown to be unresponsive to three different 

antihistamines (Hill et al. 1997). In 1966, Ash and Schild suggested the presence of 

two distinct histamine receptor subtypes based on the pharmacological effects of 

known histaminergic ligands (Leurs et al. 2009): “The specific antagonism of some 

actions of histamine by low concentrations of antihistamine drugs characterizes one 

type of receptor for which we suggest symbol H1. Such receptors occur in guinea-pig 

ileum and bronchi. Several other actions of histamine, for example, stimulation of 

gastric acid secretion, inhibition of rat uterus and stimulation of isolated atria, cannot be 

specifically antagonized. These actions are likely to be mediate by other histamine 

receptors.” (Ash and Schild 1966) Nowadays the favourite H1R antagonists are second 

generation drugs such as cetirizine and fexofenadine (Figure 6) because of their 

reduced side effects such as sedation (Hill et al. 1997). The selective radioligand 


3Hmepyramine has been used to detect the distribution of H1-receptors in body. 

H1-receptors were found, for instance, in the brain, in smooth muscle from airways, in 

the gastrointestinal and the genitourinary system, the cardiovascular system, the 

adrenal medulla, endothelial cells and lymphocytes (Hill et al. 1977). 
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Figure 6. Structure of the “non-sedating” H1R antagonists cetirizine and fexofenadine (down). 

 

3.2.3 Histamine H2-receptor subtype 

 

The discovery of the first histamine H2-receptor antagonists in the 1970s confirmed the 

existence of a second class of histamine receptors which can not be blocked by the 

“classical antihistamines”, i. e. the H1R antagonists (Parsons and Ganellin 2006). 

Between the years 1964 to 1972 were synthesized around 700 novel compounds 

including burimamide, the first antagonist used as a pharmacological tool for the 

definition of the H2R (Black et al. 1972). Unfortunately this substance did not find 

a place in clinical field because of insufficient potency and lack of oral activity (Arrang 

et al. 1983). The development of the first clinically useful H2R antagonist was continued 

with the thiourea metiamide, which was withdrawn due to the induction of 

agranulocytosis, and was finally successful with the cyanoguanidine cimetidine (Figure 

7), the first H2R antagonists launched onto the market mid of the 1970s. Cimetidine is 

a competitive antagonist of histamine in right atrium, uterus and parietal cells. The drug 

represents a success story in medicinal chemistry and a milestone in the treatment of 

gastric acid acid-related diseases such as gastric and duodenal ulcer as well as 

gastroesophageal reflux disease (GERD). After cimetidine, the more potent H2R 

antagonists ranitidine (Figure 7), famotidine, nizatidine and roxatidine entered clinical 

use. Nowadays, the H2R antagonists are widely replaced with blockers of the 

H+/K+-ATPase, the co-called proton pump inhibitors (PPIs).  
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Figure 7. From the left, up, cimetidine, ranitidine and famotidine representing the group of H2R 

antagonists. 

 

Most H2R antagonists are rather polar compounds, which do not enter the brain to 

a significant extent. By contrast, zolatidine, an experimental drug is a potent and 

selective brain-penetrating H2R antagonist (Hill et al. 1997, Parsons and Ganellin 

2006), which can be, in principle, used to investigate the role of H2Rs in the CNS. H2R 

agonists are not clinically used so far. 4-Methylhistamine (Figure 8, shown as 

5-methylhistamine according to contemporary nomenclature, Black et al. 1972) was the 

first (weak) agonist described as H2R–selective. However, recently this compound was 

reported to be much more potent and selective for the H4R. Structurally different, highly 

potent H2R agonists are compounds such as impromidine (Figure 8) and arpromidine 

(Buschauer 1989, Parsons and Ganellin 2006, Preuss et al. 2007c). Such 

imidazolylpropylguanidines achieve up to 400-fold higher H2R agonistic potency than 

histamine and were developed as positive ionotropic vasodilators for the treatment of 

severe congestive heart failure, as agents inducing cell differentiation in acute 

myelogenous leukemia, and as anti-inflammatory drugs (Buschauer 1989, Dove et al. 

2004, Mörsdorf et al. 1990, Preuss et al. 2007b).  

 

  

 

Figure 8. H2R agonists (from the left): 5-methylhistamine and impromidine. 

 

The human H2R consists of 359 amino acids and is coupling to Gs-proteins, resulting in 

stimulation of adenylyl cyclase (Preuss et al. 2007b). The H2R was first cloned from 
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canine gastric parietal cDNA by Gantz and colleagues (Gantz et al. 1991). The four 

H2R species isoforms, human (hH2R), canine (cH2R), rat (rH2R) and guinea pig 

(gpH2R), are closely related to each other, sharing about 80 % identity of the amino 

acid sequences. H2R mediated effects are, for instance, stimulation of gastric acid 

secretion by parietal cells (Black et al. 1972), increase in cardiac contractility and 

myeloid cell differentiation (Preuss et al. 2007b). The H2R has also been identified in 

airway, uterine, vascular smooth muscle cells, neurons and finally, it can inhibit 

a variety of functions within the immune system. H2-receptors on basophils and mast 

cells have been shown to block the release of histamine, inhibit antibody synthesis, 

T-cell proliferation, cell-mediated cytolysis and cytokine production. In the CNS, H2Rs 

inhibit the long-lasting after-hyperpolarization and the accommodation of firing (Hill 

et al. 1997). 

 

3.2.4 Histamine H3-receptor subtype 

 

The histamine H3-receptor plays a role as a presynaptic autoreceptor, inhibiting 

synthesis and release of histamine from histaminergic neurones in the CNS (Arrang 

et al. 1983). Histaminergic neurones are located in the tuberomammillary nucleus of 

the hypothalamus and project to all major areas of the brain. In addition, the H3R acts 

as a heteroreceptor on non-histaminergic neurones where it modulates the release of 

other neurotransmitters, such as acetylcholin, dopamine, GABA, 5-hydroxytryptamine, 

substance P and noradrenaline in the CNS and also in the periphery, for instance, in 

gastrointestinal tract, airways and cardiovascular system (Leurs et al. 2005, Parsons 

and Ganellin 2006, Sander et al. 2008). Studies on the effects of histamine and ligands 

of H1- and H2-receptors in the CNS revealed that burimamide, the H2R antagonist, 

competitively inhibited the release of histamine in the brain, but other antagonists were 

less active, H1R antagonists even ineffective (Parsons and Ganellin 2006). The 

existence of another histamine receptor subtype was suggested in 1983 (Arrang et al. 

1983), further substantiated by pharmacological characterization in 1987 by Arrang and 

colleagues (Arrang et al. 1987) and proven by cloning in 1999 by Lovenberg and 

colleagues (Lovenberg et al. 1999). The H3R contains an open reading frame of 445 

amino acids and shows very low sequence similarity with the other two receptors, 22 % 

with H1R and 20 % with H2R, which explains why the H3R gene was not cloned in the 

same time as previous receptors (Lovenberg et al. 1999). An additional member of 

histamine receptor family, the H4-receptor, was soon discovered by similarity searching 

through genomic databases. The H4R and the H3R share about 60 % identity. This 

explains why many known H3R ligands are active at the H4R, too (Leurs et al. 2005). 
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Histamine acts as an agonist at all four receptors with lowest affinities for H1R (pKi=4.2) 

and H2R (pKi=4.3) and highest affinities at H3R (pKi=8.0) and H4R (pKi=7.8) (Lim et al. 

2005). There is a large variety of H3R isoforms. About 20 isoforms have been 

described, which vary in four regions of the receptor protein and show different 

pharmacological profiles. For instance, deletions in the third intracellular loop result in 

distinct agonist potencies, signalling properties and constitutive activity. It is also 

evident that H3R isoforms are linked with genetic polymorphism. For example, at the 

position 280 can be found alanine or valine and this substitution is characteristic for 

patients with Shy-Drager syndrome, neurological orthostatic hypotension, which means 

neuronal degeneration and autonomic failure (Leurs et al. 2005). The H3-receptor 

couples Gi/o proteins, which is negatively coupled to adenylyl cyclase. Adenylyl cyclase 

stimulates the formation of cyclic AMP (cAMP), then activates protein kinase A and 

subsequently cAMP-responsive-element-binding protein to modulate the gene 

transcription. Furthermore, H3R activation of Gi/o proteins might result in the activation 

of other effector pathways, including mitogen-activated protein kinase (MAPK) and 

phospholipase A2 to induce the release of arachidonic acid, the lowering of intracellular 

Ca2+ levels, and the inhibition of the Na+/H+ exchanger (Leurs et al. 2005). 

(R)--Methylhistamine (Figure 9) was the first compound reported as a potent and 

selective H3R agonist (S isomer is less potent), whereas thioperamide (Figure 10) was 

described as a selective and competitive antagonist, which is active in the nanomolar 

range and is able to cross the blood brain barrier (Arrang et al. 1987). The prodrug of 

(R)--methylhistamine, BP 2-94 (Figure 9), which showed improved oral bioavailabilty 

and pharmacokinetic properties compared to the parent compound, was the first H3R 

agonist investigated in man. All H3R agonists have a similar structure with histamine, 

containing a 4(5)-imidazolyl moiety. Agonists, such as imetit and immepip, show only 

limited selectivity for the H3R over the related, later discovered H4-receptor (Leurs e al. 

2005). 

  

Figure 9. From the left side: H3R agonist (R)--methylhistamine and the prodrug BP 2-94. 

 

Thioperamide (Figure 10) is a high affinity antagonist for the investigations of H3R but 

is not suitable for studies in patients because of potential liver toxicity. Moreover, 

thioperamide shows also high activity at the human H4-receptor. H3R antagonists are 

supposed to be of potential value in therapy of obesity, nasal decongestion and many 
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CNS disorders, for example memory and learning problems, Alzheimer´s disease, 

epilepsy, schizophrenia, sleep disturbance (Gemkow et al. 2009, Leurs et al. 2005, 

Parsons and Ganellin 2006). Many H3R ligands (e. g., clobenpropit, proxyfan, 

ciproxifan, cipralisant) have been developed and several compounds entered clinical 

investigations, for instance, tiprolisant is currently in clinical trials for the treatment of 

schizophrenia (Gemkow et al. 2009). 

 

Figure 10. H3R and H4R antagonist/inverse agonist thioperamide. 

 

3.2.5 Histamine H4-receptor subtype 

 

The investigation of histamine receptors by molecular biology brought first results in 

1991 when the genes encoding for the bovine H1- (Yamashita et al. 1991) and canine 

H2- (Gantz et al. 1991) receptors were cloned (Parsons and Ganellin 2006). The 

molecular architecture of the third subtype was discovered few years later, in 1999 by 

the team of T. Lovenberg. They identified and cloned about 30 orphan GPCRs via 

expressed-sequence tags (ESTs) with the aim to discover new drug targets and to 

identify novel neurotransmitters and peptides. The GPCR97 cDNA, expressed 

abundantly in CNS, encodes the H3R (Lovenberg et al. 1999). The cloning of the H3R 

gene marked the entry of the novel histamine receptor subtype into the G-protein 

coupled receptor family (Leurs et al. 2009). This was already predicted by team of D. 

G. Raible in 1994, who characterized a novel histamine receptor on human eosinophils 

(Raible et al. 1994). Screening of human libraries and databases confirmed this idea in 

the years 2000 and 2001 and led several research groups independently to the cloning 

and identification of the fourth subtype of histamine receptors (Coge et al. 2001, Liu 

et al. 2001a, Morse et al. 2001, Nakamura et al. 2000, Nguyen et al. 2001, Oda et al. 

2000, Zhu et al. 2001) which is closely related to the H3R (Gbahou et al. 2006). 

The histamine H4R has about 40 % sequence homology with the H3R (58 % in 

transmembrane domains) (Gbahou et al. 2006, Liu et al. 2001a, Morse et al. 2001, 

Nakamura et al. 2000, Nghuyen et al. 2001, Oda et al. 2000, Zhu et al. 2001). 

Homology with the other histamine receptors is lower, only about 19 %. That is why we 

had to wait for its discovery until the structure of the H3R gene was found (Leurs et al. 

2009, Oda et al. 2000). The size of the open reading frame of the H4R cDNA is 
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1173 bp, consisting of 390 amino acids and one stop codon (Morse et al. 2001). It is 

presented in a single copy on chromosome 18q11.2. and is interrupted by two introns 

(7867 bp and more than 17 500 bp lenght). Introns divide the coding region into three 

parts, encoding amino acids number 1 - 65, 66 - 119 and 120 - 390 (Coge et al. 2001, 

Nakamura et al. 2000, Oda e al. 2000). The H4R has an aspartate residue in the third 

transmembrane helix, which is supposed to interact with an amino group of the 

endogenous ligands (Shin et al. 2002). In addition, a glutamate in the fifth 

transmembrane helix presented in both H3R and H4R has been demonstrated to play 

an essential role in histamine binding as determined by site-directed mutagenesis 

analysis (Shin et al. 2002, Uveges et al. 2002). Meanwhile, two splice-isoforms have 

been identified, designated as H4 (67) and H4 (302) (van Rijn et al. 2008). There are 

deviations at three positions in the H4R amino acid sequence in human population, 

which was also a reason for differences in the structure of the novel histamine receptor 

published by different laboratories: Val instead of Ala at position 138, Arg instead of His 

at position 206 and Arg instead of Gln at position 253 (Leurs et al. 2009, Morse et al. 

2001, Zhu et al. 2000). The characterization of the human H4R led to the cloning of 

animal cDNA of the H4R, such as mouse, rat, guinea pig and pig, with only moderate 

homology (67 - 72 %) in protein sequence. The bovine and rabbit H4R could not be 

cloned using the hH4R cDNA in analysis because of their low homology with the human 

receptor; on the contrary, the monkey H4R displays significantly higher homology: 

about 92 % of the human variant (Liu et al. 2001b, Oda et al. 2005). The H4R species 

variants can differ in the response to numerous H4R ligands, revealing differences in 

potencies and qualities of action and making ligand development very complicated. On 

the other hand, the H4R shows similar tissue distribution in the different species 

variants (Lim et al. 2010). The H4 receptor is the most distributed in bone marrow and 

peripheral blood, in smaller amount in spleen, thymus, small intestine, colon, heart and 

lung (Liu et al. 2001a, Morse et al. 2001, Nakamura et al. 2000, Nguyen et al. 2001, 

Oda et al. 2000, Zhu et al. 2001). However, there are still some conflicting reports 

about these localizations. The H4R is preferentially expressed in various cells of the 

immune system, such as basophils, eosinophils, neutrophils, T-cells, dendritic cells, 

and mast cells (Leurs et al. 2009, Liu et al. 2001a, Morse et al. 2001, Oda et al. 2000, 

Parsons and Ganellin 2006, Zhu et al., 2001), suggesting an important role in 

inflammation and immune response (Gbahou et al. 2006). Therefore, H4R antagonists 

are considered promising drugs for the treatment of bronchial asthma, allergic rhinitis, 

rheumatoid arthritis and pruritus (Lim et al. 2006). Furthermore, the H4R can be found 

in the central nervous system (Connelly et al. 2009). The H4R couples to pertussis 

toxin sensitive Gi/o protein. Thereby, the H4R activation inhibits the formation of cAMP, 
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which modulates protein kinase A and subsequently, cAMP-responsive-

element-binding protein to modulate the gene transcription (Liu et al. 2001, Oda et al. 

2000, Zhu et al. 2001). Moreover, stimulation of the H4R leads to an increase in 

mitogen-activated protein kinase phosphorylation (Morse et al. 2001) as well as to 

calcium mobilization and thereby actin polymerisation, cell shape change, migration of 

mast cells, eosinophils and monocyte dendritic cells (Buckland et al. 2003, Hofstra et 

al. 2003). Pertussis toxin sensitive intracellular calcium increase in eosinophils induced 

by histamine, which can be blocked by the presumed selective H3R antagonist 

thioperamide (but it is known, H3R is not expressed in eosinophils as well as in the 

mast cells) as already reported by Raible et al. in 1994, suggested the existence of 

new histamine receptor subtype as mentioned above. At the beginning, due to lack of 

selective H4R ligands, compounds known to interact more or less selectively with the 

other histamine receptor subtypes, were used to investigate the pharmacology and 

(patho)physiology of the H4R. It was soon confirmed that most imidazole-containing 

H3R ligands have affinity for the H4R as well. For example, the H3R antagonists, 

thioperamide and clobenprobit, showed antagonistic and agonistic activity, respectively 

(Morse et al. 2001, Nakamura et al. 2000, Oda et al. 2000, Zhu et al. 2001). 

OUP-16 was the first agonist reported to show some selectivity for H4R over H3R 

(Figure 11, Hashimoto et al. 2003). Later on, 4-methylhistamine (Figure 8), which was 

originally used as an agonist to define the H2-receptor, turned out to be at least 

100-fold more potent at the H4R (Lim et al. 2005). Clozapine (Figure 11), used in the 

treatment of schizophrenia, shows that an imidazole ring is not necessary for H4R 

agonism. Most imidazole-containing H3R ligands were found to have significant affinity 

for the H4R. For example, 4-methylhistamine shows only 40-fold selectivity for H3R as 

well as immepip. Small structural changes of the ligands can deeply influence the 

binding to other histamine receptor subtypes (Smits et al. 2009). Structural 

modifications of the non-imidazole H2R agonist dimaprit led to the development of 

VUF8430 (Figure 11, Lim et al. 2009), which has been used as an H4R agonist in vivo, 

despite of some affinity to other histamine receptor subtypes, in particular, at higher 

concentrations. 
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Figure 11. H4R agonists (from the left, up): OUP-16, clozapine and VUF8430. 

 

The first and potent H4R antagonist (can also perform as a partial inverse agonist), the 

indole derivative JNJ7777120 (Figure 12), developed by Johnson and Johnson 

Pharmaceuticals, was demonstrated to be active on human, mouse and rat H4Rs 

(Jablonowski et al. 2003).  

 

 

Figure 12. H4R antagonist JNJ777120. 

 

The investigation of numerous H4R ligands, which were optimised for the human 

receptor, on H4R of other species (e. g., in the mouse revealed) revealed considerable 

differences (up to 3 - 4 orders of magnitude) in potency. In addition to such 

discrepancies in potency, species dependent differences in HR subtype selectivities 

may contribute to misleading conclusions when such compounds are pharmacological 

studied in animals, for instance, in mice. This is one of the major problems with the 

currently known H4R agonists. 

Among a series of NG-acylated imidazolylpropylguanidines, originally designated as 

histamine H2R agonists, several ligands with a high affinity to the H3R and H4R were 

identified at the University of Regensburg. It was made an effort to increasing the 
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selectivity for the H4R by chemical modification of the lead structures, among others, 

resulting in a series of cyanoguanidines. Within this group, 2-cyano-1-[4-(1H-imidazol-

4-yl)butyl]-3-[(2-phenylthio)ethyl]guanidine, UR-PI376 (Figure 13) was identified as the 

most potent hH4R agonist. This compound lacks agonistic activities at the hH2R and 

hH3R, has negligible activity at the hH1R (Igel et al. 2009) and is one of the most potent 

and selective H4R agonists known so far. 

 

Figure 13. Structure of cyanoguanidine-type hH4R agonist UR-PI376 and suggested model of 

the H4R binding site (Igel et al 2009). A: Space fill representation of UR-PI376 within a tube 

model of the backbone. B, C: Detailed model of the binding modes of UR-PI376. For clarity of 

presentation, the labeling of amino acids in panel C is restricted to key and extra contacts. 

 

A model of the H4R binding site was suggested as shown in Figure 13 (for details Igel 

et al. 2009). The molecular modelling studies (Igel et al 2009) reveal the possibility, that 

cyanoguanidine moiety of UR-PI376 forms two charge-assisted hydrogen bonds with 

the carboxylate oxygens of Asp-94 and two additional charge-assisted hydrogen bonds 

with the guanidine moiety of Arg-341. It was suggested that the latter brings about 

selectivity for the hH4R over the hH3R and is the reason for the preference of UR-PI376 

for hH4R over mH4R as well. Compared to the hH4R, in the H4Rs of rat and mouse, 
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Arg-341 is replaced with Ser, whereas Glu is the corresponding amino acid in both, the 

canine H4R, and the human histamine H3 receptor (hH3R). 

 

3.3 Polymerase chain reaction (PCR) 

 

Nowadays is PCR the most important reaction of the molecular biology, the molecular 

pharmacology respectively. This technique allows amplification of DNA generating 

millions of copies of a particular DNA sequence. The heat-stable DNA polymerase, 

DNA as a template, two oligonucleotideprimers (sense and antisense), nucleotides and 

buffer containing e. g., magnesium and manganese, are all for one PCR. PCR 

amplification is performed according to repeated cycles (denaturation, annealing, 

elongation) of incubation at different temperatures. Within the denaturation the 

temperature climb up around 92 ˚C to separated strands of the template DNA. Then 

the temperature descends to 55 ˚C to allow annealing (hybridisation of the primers with 

complementary sequences flanking the DNA template), before elongation occurs again 

at elevated temperature (72 °C). This is the temperature optimum of the respective 

DNA-polymerase. Primers are extended in both directions and a new double-strand 

DNA is formed. Therefore this phase is called extension or elongation phase. The cycle 

is repeated depending on the amount of required product. The PCR is commonly 

carried out in a reaction volume of 10 – 200 μl in small reaction tubes (0.2 – 0.5 ml 

volumes) in a thermal cycler. The thermocycler is a microprocessor-controlled device 

heating and cooling the reaction mixture to achieve the temperatures required at each 

step of the reaction. Most thermocyclers have heated lids to prevent condensation at 

the top of the reaction tube. Older thermocyclers lacking a heated lid require a layer of 

oil on top of the reaction mixture or a ball of wax inside the tube. 

 

Initial denaturation proceeds at 94 ˚C. Even higher temperatures can be used 

depending on the termostability of both the DNA-polymerase and the used DNA. For 

most templates 30 seconds are recommended. Some templates may require longer 

initial denaturation up to a few minutes because of their high complexity. 

Denaturation is a very fast process. As well as the initial denaturation the temperature 

can start from 70 ˚C depend on the type of the enzyme. For example, the common 

Taq-DNA-polymerase is stable till 74 ˚C. Other DNA-polymerases (Phusion 

DNA-polymerase) are enzymatically active up to 98 ˚C. However, to minimize thermal 

deactivation and decomposition the denaturation time should be kept as short as 

possible. Five to ten seconds are usually enough for separation of strands. 
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Primer annealing critically depends on the sequence, reflected by the “melting 

temperature” (Tm). The Tm should be calculated with the nearest-neighbour method as 

results from primer Tm calculations can vary significantly depending on the method 

used. As a rule, primers longer than 20 nucleotides anneal at Tm +3 °C of the Tm short 

of primers. Melting temperatures give an orientation for the selection of the annealing 

temperature although experimental optimisation is usually required. The annealing time 

is recommended from 10 to 30 seconds. 

Elongation is complete in usually 15 – 60 seconds per 1 kb of product. At too short 

elongation periods extension is insufficient, whereas too long exposure time may result 

in undesired products and thermal denaturation of the polymerase. 

Final elongation is occasionally performed at a temperature of 70 – 74 °C for 5 to 

15 minutes after the last PCR cycle to ensure that any remaining single-stranded DNA 

is fully extended. Final hold proceeds at 4 to 15 °C for an indefinite time, which may be 

employed for short-term storage of the reaction. 

 

Template has to be the highest quality as possible because then the whole reaction 

works in the best way and we get high quality results. Theoretically, one DNA molecule 

is enough for PCR but in practice at least 1 x 105 DNA molecules are required to avoid 

errors. For image, 1 x 105 molecules correspond to approximately 0.5 pg plasmid-DNA, 

300 ng human genomic DNA or cDNA of 1 μg entire RNA. There are different 

templates, which could be used for PCR: plasmid-DNA, cosmid-DNA, phage-DNA, 

DNA from last PCRs, genomic DNA, cDNA etc. 

Efficiency of amplification determines how much new DNA is obtained. Ideally, in each 

cycle DNA molecules are doubled. During thirty cycles there are about one billion DNA 

molecules, after forty cycles one trillion molecules (1 μg 1 kb long DNA). The 

amplification factor is 1.6 to 1.7 per cycle. 

Buffer solution provides a suitable chemical environment for optimum activity and 

stability of the DNA polymerase. 

Divalent cations, generally Mg2+, are used. Excessive Mg2+ stabilizes DNA double 

strand and prevents complete denaturation of DNA. It can also stabilize spurious 

annealing of primer to incorrect template sites and decrease specificity. Conversely, 

inadequate Mg2+ may lead to lower product yield. The concentration of cations is 

chosen between 0.5 to 2.5 mM. 

In addition, PCR can require other substances such as dimethylsulfoxide (DMSO) in 

case of a complex DNA-template with high contents of guanine and cytosine bases or 

supercoiled plasmids to relax for denaturation. Subsequently, after the addition DMSO, 

annealing temperature must be decrease. For bigger yield salts as KCl or NH4SO4 can 
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be use. The quality of nucleotides does not have substantial influence on PCR. Usually 

it is used the concentration 200 M of each dNTP (10 mM dNTP mix) except 

dUTP-derivates and dITP. 

PCR-primers complementary to the 3´-end of each of the sense and antisense DNA 

strand are normally 18 – 30 bp long and consist of 40 – 60 % guanidine and cytosine 

(G+C) with one, two, highly three G or C at the beginning for sufficient binding. Primers 

for “extra long” products should be 25 – 35 bp long. They would not have more than 

four same bases in a row (e.g. AAAA) to avoid frameshifts. The melting temperature of 

primers lies in the range 55 – 80 °C. It is necessary to prevent formation of secondary 

structures of primers, so called hair pins because it increases the probability of “wrong” 

hybridizations. This can be controlled by given computer programmes. Optimal 

concentration for 50 μl of total volume is 10 pM. 

The polymerase, the typical enzyme for PCR is Taq-DNA-polymerase from 

a termophilic bacterium, Thermus aquaticus. It has an optimum of activity 

(5´,3´-DNA-polymerase and 5´,3´-exonuclease activity) around 74 °C at pH = 8 

(Mülhardt 2006). 

 

3.4 Steady-state GTPase activity assay 

 

Steady-state GTPase activity assay is a very efficient method for functional 

characterisation of GPCR agonists, antagonists and inverse agonists. The Sf9 

expression cell system has been shown to be a highly sensitive model system for 

analysis of constitutive activity of GPCRs. Steady-state GTPase activity assay monitors 

the outcome of receptor activation at the G-protein level, i. e. the result of GDP/GTP 

exchange and GTP hydrolysis, and enables comparison of various receptors with each 

other independently of the expression level. In the GTPase assay is possible to use 

various Gi/Go-coupled GPCRs expressed in recombinant mammalian and insect cells. 

In case of insect cells, it is necessary to co-express GPCRs with Gi/Go-proteins 

because insect cells do not express G-proteins capable of coupling to mammalian 

GPCRs. GTPase assays with Gs-coupled GPCRs were demonstrated to be more 

efficient with GPCR-Gαs fusion proteins than with co-expressed proteins. Gq-coupled 

GPCRs are provided with RGS proteins. 
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Figure 14. The G-protein cycle (Milligan and Kostenis 2006). The active state of the receptor 

interacts with the G-protein. Subsequently, GDP is released, radioactively labeled GTP 

([γ-
33

P]GTP) associates with the Gα-subunit, induces conformational changes and induces the 

dissociation of G from Gβγ subunits and uncoupling from the GPCR. The intrinsic GTPase 

activity of the Gα-subunit mediates the cleavage of GTP into GDP and 
33

Pi. GDP-loaded Gα 

re-associates with Gβγ to allow the next G-protein cycle. The degradation of [γ-
33

P]GTP is 

determined by liquid scintillation counting of 
33

Pi. 
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A procedure for the steady-state GTPase assay is described in detail in chapter 

Material and methods. Assays are performed (at least) in triplicate, and it is preferred to 

include as many ligands as possible in one run with respect to comparison of 

pharmacological data. Unlabeled GTP (1 mM) is added in some tubes to evaluate 

non-enzymatic degradation of radioactively labeled GTP. Results are analyzed by 

nonlinear regression in the given computer program. GTPase activity, expressed as 

pmoles of Pi released per mg of membrane protein per min, is calculated in following 

way:  

 

 

 

 

 

Explanation: 

cpm total radioactivity of 33Pi from binding tubes, except from tubes 

containing  unlabeled 1 mM GTP 

cpm GTP radioactivity of 33Pi from binding tubes containing unlabeled 1 mM 

GTP 

pmol GTP/tube concentration of unlabeled GTP 

cpm total added the radioactivity of [γ- 33P]GTP added to each tube 

mg protein  absolute amount of membrane protein added per tube 

min incubation reaction mixture incubated with [γ-33P]GTP, usually for 20 min 

1000   100 μl of reaction mixture + 900 μl of charcoal = 1000 μl 

600   600 μl of supernatant added to Scinti-Vital coctail  

 

(Seifert and Wieland 2005).  
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4 AIM OF STUDY 

 

Arg-341 of the human H4R was recently suggested to play a crucial role in H4R 

species- and receptor subtype-selectivity of cyanoguanidine-type H4R agonists such as 

UR-PI376. The aim of this diploma thesis was to substantiate or falsify this working 

hypothesis by: 

 

1. Site-directed mutagenesis of the human histamine H4R: the exchange Arg-341 

with alanine, serine (as in rat and mouse H4R) or glutamate (as in dog H4R and 

hH3R) and expression of mutants in Sf9 insect cells  

 

2. Functional of wildtype and mutant H4Rs by investigation of histamine, UR-PI376 

and thioperamide in the steady-state GTPase activity assay 
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5 EXPERIMENTAL PART 

 

5.1 Materials and methods 

 

5.1.1 Materials 

 

5.1.1.1 Overlap – extension PCR (polymerase chain reaction) 

 

5x Phusion HF Reaction Buffer from Finnzymes (contains MgCl2); dNTP-Mix from 

Fermentas; DMSO; Phusion DNA Polymerase from Finnzymes; PCR–termocycler 

Biometra; pcDNA 3.1 plasmid with the hH4R sequence from the UMR cDNA 

Resource Center at the University of Missouri-Rolla (Rolla, MO) used as a template for 

the generation of pVL1392-SF-hH4R-His6; DNA primers were synthesized by MWG 

Biotech (Ebersberg, Germany) 

 

Primers with given mutations and a new PstI site were constructed: 

 

hH4R → hH4R-R341A* 

 

Primer 1A/2-forward: 

    24 bp, GC-content = 45.8 %, Tm = 55.2 ºC 

    5´- GAT TAT TCA TAC CGT CCC ACC ATC -3´ 

Primer 1A-reverse: 

    26 bp, GC-content = 38.5 %, Tm = 55.1 ºC (44 bp, GC-content = 40.9 %, Tm = 64.5 ºC) 

    5´- CAG CCA AAA TGC AAT AGC ATA CCA AAC TGA TTT AGG ACC TGT TG -3´ 

Primer 1B-forward: 

    25 bp, GC-content = 40.0 %, Tm = 54.7 ºC (43 bp, GC-content = 41.9 %, Tm = 65.3 ºC) 

    5´- GCT ATT GCA TTT TGG CTG CAG TGG TTC AAT TCC TTT GTC AAT C -3´ 

Primer 1B/2-reverse: 

    22 bp, GC-content = 50.0 %, Tm = 55.4 ºC 

    5´- GTA ACA ACG GTT GGG TCT AGT G -3´ 
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hH4R → hH4R-R341S 

 

Primer 1A/2-forward: 

    24 bp, GC-content = 45.8 %, Tm = 55.2 ºC 

    5´- GAT TAT TCA TAC CGT CCC ACC ATC -3´ 

Primer 1A-reverse: 

    26 bp, GC-content = 38.5 %, Tm = 55.1 ºC (44 bp, GC-content = 38.6 %, Tm = 63.2 ºC) 

    5´- CAG CCA AAA TGC AAT ACT ATA CCA AAC TGA TTT AGG ACC TGT TG -3´ 

Primer 1B-forward: 

    25 bp, GC-content = 40.0 %, Tm = 54.7 ºC (43 bp, GC-content = 39.5 %, Tm = 64.9 ºC) 

    5´- AGT ATT GCA TTT TGG CTG CAG TGG TTC AAT TCC TTT GTC AAT C -3´ 

Primer 1B/2-reverse: 

    22 bp, GC-content = 50.0 %, Tm = 55.4 ºC 

    5´- GTA ACA ACG GTT GGG TCT AGT G -3´ 

 

hH4R → hH4R-R341E 

 

Primer 1A/2-forward: 

    24 bp, GC-content = 45.8 %, Tm = 55.2 ºC 

    5´- GAT TAT TCA TAC CGT CCC ACC ATC -3´ 

Primer 1A-reverse: 

    26 bp, GC-content = 38.5 %, Tm = 55.1 ºC (44 bp, GC-content = 38.6 %, Tm = 63.8 ºC) 

    5´- CAG CCA AAA TGC AAT TTC ATA CCA AAC TGA TTT AGG ACC TGT TG -3´ 

Primer 1B-forward: 

    25 bp, GC-content = 40.0 %, Tm = 54.7 ºC (43 bp, GC-content = 39.5 %, Tm = 64.6 ºC) 

    5´- GAA ATT GCA TTT TGG CTG CAG TGG TTC AAT TCC TTT GTC AAT C -3´ 

Primer 1B/2-reverse: 

    22 bp, GC-content = 50.0 %, Tm = 55.4 ºC 

    5´- GTA ACA ACG GTT GGG TCT AGT G -3´ 

 

*Given mutations, where arginine-341 (R341) was replaced with alanine (A), serine (S) 

and glutamate (E), are demonstrated with red italics in the yellow field; black letters in 

the yellow field demonstrate a nucleotide recognised with enzyme PstI. 
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5.1.1.2 Electrophoresis 

 

Agarose from Lonza; Ethidium Bromide; TAE-Buffer (40 mM Tris-Acetate, 1 mM 

EDTA); DNA Ladder and 6x Loading Dye from Fermentas; Biometra Bio Doc Analyze 

2.0 digital 

 

5.1.1.3 DNA purification 

 

QIAquick Gel extraction Kit from QIAGEN: QIAquick Spin Columns, Buffer QG, Buffer 

PE (concentrate), Buffer EB (10 mM Tris/HCl, pH = 8.5), Collection tubes (2 ml), 

Loading Dye; Ethanol (96 - 100 %); Microcentrifuge; Isopropanol (100 %); VWR Digital 

Heatblock 

 

5.1.1.4 Restriction enzymes 

 

BSA 10x from New England BioLabs; 10x Buffers NEB 1-4 from New England BioLabs; 

Enzymes SacI, XbaI, Xhol, PstI (20000 U/ml) from New England BioLabs; 

Minicentrifuge; VWR Digital Heatblock 

 

5.1.1.5 Ligation and transformation 

 

CIP-vector: pVL1392 (c = 22 ng/μl); 10x Ligation Buffer and T4 DNA Ligase from New 

England BioLabs; LB medium pH = 7.5 (Tryptone, Yeast extract, NaCl); Agar-plates 

(Tryptone, Yeast extract, NaCl, Agar); Ampicillin (100 mg/ml); Escherichia coli (TOP 

10, stored at -80 °C); SOC medium pH = 7.0 (Tryptone, Yeast extract, NaCl, KCl, 

Glucose); Minicentrifuge; VWR Digital Heatblock 

 

5.1.1.6 Mini/Maxiprep 

 

QIAprep Spin Miniprep Kit: Buffer P1 (50 mM Tris/HCl, pH = 8.0; 10 mM EDTA in 100 

μg/ml Rnase A), Buffer P2 (200 mM NaOH; 1 % SDS (w/v)), Buffer N3, Buffer PB, 

Buffer PE (concentrate), Buffer EB (10 mM Tris/HCl, pH = 8.5), Ethanol (96 - 100 %), 

Microcentrifuge, QIAprep spin column, 1.5 ml microcentrifuge tubes 

 

QIAprep Spin Maxiprep Kit: Buffer P1 (50 mM Tris/HCl, pH = 8.0; 10 mM EDTA in 100 

μg/ml Rnase A), Buffer P2 (200 mM NaOH; 1 % SDS (w/v)), Buffer P3 (1 M potassium 
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acetate, pH = 5.0), Buffer QBT (750 mM NaCl; 50 mM MOPS, pH = 7.0; 15 % 

Isopropanol (v/v); 0.15 % Triton X-100 (v/v)), QIAgen-tip, Tip holder, Buffer QC (1 M 

NaCl; 50 mM MOPS, pH = 7.0; 15 % Isopropanol (v/v)), Buffer QF (1.25 M NaCl; 50 

mM Tris/HCl, pH = 8.5; 15 % Isopropanol (v/v)), tubes or vessels with suitable capacity, 

refrigerated centrifuge capable of 20000 x g 

 

5.1.1.7 Protein expression and membrane preparation 

 

BaculoGoldTM Transfection Kit (BD Biosciences, San Diego, CA): pVL1392 Baculovirus 

Transfer Vector, Transfection Buffer A, Transfection Buffer B, Spodoptera frugiperda 

(Sf9) insect cells; Baculovirus encoding Gαi2 from Department of Pharmacology, 

University of Southwestern Medical Center, Dallas, TX; Baculovirus encoding Gβ1γ2 

from Department of Pharmacology and Toxicology, University Ulm, Germany  

Membrane preparation: PBS-Buffer (100 mM NaCl; 80 mM Na2HPO4; 20 mM Na 

H2PO4), Lysis-Buffer (10 mM Tris/HCl pH = 7.4; 1 mM EDTA; 10 μg/ml Benzamidine; 

10 μg/ml Leupeptin; 200 μM PMSF), 10x Binding-Buffer (Tris base 454 g/5l; MgCl2 x 

H20 127.5 g/5l; EDTA 18.8 g/5l, pH = 7.4) 

 

5.1.1.8 Protein determination – Lowry assay 

 

Reagents for the assay from Bio Rad (Bio Rad, Hercules, CA), Biophotometer (Lowry 

measurement); Bovine Serum Albumine (BSA) 2 mg/ml; 10x Binding-Buffer (Tris base 

454 g/5l; MgCl2 x H20 127.5 g/5l; EDTA 18.8 g/5l, pH = 7.4) 

 

5.1.1.9 Western blot analysis 

 

Gel-electrophoresis equipment from Bio Rad (Bio Rad, Hercules, CA); Anti-Flag M1 

antibody (1:1000) from Sigma, Gαi1/2 (1:1000) and Gβ common (1:1000) antibodies 

from Calbiochem; Antimouse (1:2000), Antirabbit (1:10000) antibodies from Sigma 

Gel (12 %): Buffer A (Tris; 10 % SDS, pH = 8.0), Buffer B (Tris; 10 % SDS; pH = 6.8), 

Acrylamide, 50 % Glycerol, TEMED, 10 % APS; Running-Buffer (Tris; Glycin; SDS; pH 

= 8.3); Blotting-Buffer (Tris; Glycin; Methanol); TBS-Buffer (NaCl; 1 M Tris/HCl 

pH = 7.6); TWEEN; Low-fat milk in TBS-Buffer; Ponceau S dye; Film wrap and imaging 

densitometer from Bio Rad 
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5.1.1.10 Steady-state GTPase activity assay 

 

Ligands (10 μl in 100 μl t. v.): Histamine 1 mM (dissolved in Millipore water) diluted in a 

row 1:10 to 1 nM; Thioperamide 1 mM (dissolved in Millipore water) diluted in a row 

1:10 to 1 nM; UR-PI376 1 mM (dissolved in 20 % DMSO) diluted in a row 1:10 in 20 % 

DMSO to 1 nM 

Rea-Mix (30 μl in 100 μl t. v.): 1M Tris/HCl pH = 7.4, 10 mM EDTA pH = 7.4, 500 mM 

MgCl2, 1 M NaCL, 10 mM AppNHp, 10 μM GTP, 10 mM ATP, Creatine phosphate (CP) 

from Sigma, Creatine kinase (CK) from Sigma; 6.7 % BSA 

20 mM Tris/HCl pH = 7.4 (20 μl in 100 μl t. v.); Membranes (15 μg protein/20 μl); 

10 mM Tris/HCl pH = 7.4; [γ-33P]GTP prepared in Department of pharmacology and 

toxicology, University Regensburg, Germany using GDP and [33P]phosphoric acid, 

(15,15 mCi/ml, obtained from Perkin Elmer) using an enzymatic labelling procedure; 

Active coal (NaH2PO4/HCl pH = 2.0; Active coal from Sigma); VWR Digital Heatblock; 

Centrifuge 13000 rpm; Scinti-Vials; Radioactive samples were counted in Perkin Elmer 

Tricarb 2800TR liquid scintillation analyzer; GraphPadPrism Software from GraphPad, 

USA for data analysis 
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5.1.2 Methods and conditions 

 

5.1.2.1 Overlap - extension PCR 

 

The point mutations in the sequence of the hH4R were generated by sequential 

overlap-extension PCR with pVL1392-SF-hH4R-His6 as the template. PCR 1A was 

used to amplify a DNA fragment consisting of the cleavable signal peptid from influenza 

hemagglutinin (S), the Flag epitope (F) recognized by the M1 monoclonal antibody, and 

the N-terminal part of the hH4R. The sense primer (primer 1A/2-forward) annealed on 

pVL1392 prior to the 5´-end of SF. The antisense primer (primer 1A-reverse) encoded 

the sequence according to the given mutation and a new PstI site. In PCR 1B, the DNA 

sequence for the C-terminal part of the hH4R and a hexahisitdine tag was amplified 

using pVL1392-SF-hH4R-His6 as the template. The hexahistidine tag allows future 

purification and provides additional protection against proteolysis. The sense primer 

(primer 1B-forward) encoded the sequence according to the given mutation and a new 

PstI site. The antisense primer (primer 1B/2-reverse) annealed on pVL1392 vector after 

the stop codon of the hH4R. In PCR 2, the products of PCR 1A and PCR 1B annealed 

in the region of new created point mutations and the new PstI site. The sense primer of 

PCR 1A and the antisense primer of PCR 1B were used. 

 

PCR_1A for hH4R → hH4R-R341A (Product length: 1211 bp) 

 

The reaction ran in 50 μl t. v.; 10 μl 5x Phusion HF-Buffer, 1 μl dNTP-Mix (10 mM), 2.5 

μl primer 1A/2-forward (10 μM), 2.5 μl primer 1A-reverse (10 μM), 0.5 μl 

DNA-Polymerase in each 0.5 ml PCR-tube; DNA pVL1392-SF-hH4R-His6 (0.1 μg/μl) 

was added in amount of 0.5 l with 1.5 μl DMSO, 0.5 μl without DMSO, 1 μl with 1.5 μl 

DMSO and 1 μl without DMSO; refilled with Millipore water. Initial denaturation: 98 °C 

30 s; 30 cycles of denaturation: 98 °C 8 s, annealing: 58 °C 20 s and elongation 72 °C 

18 s; final elongation: 72 °C 5 min; final hold: 4 °C. 

 

PCR_1A for hH4R → hH4R-R341S (Product length: 1211 bp) 

 

The reaction ran in 50 μl t. v.; 10 μl 5x Phusion HF-Buffer, 1 μl dNTP-Mix (10 mM), 2.5 

μl primer 1A/2-forward (10 μM), 2.5 μl primer 1A-reverse (10 μM), 0.5 μl 

DNA-Polymerase in each 0.5 ml PCR-tube; DNA pVL1392-SF-hH4R-His6 (0.1 μg/μl) 

was added in amount of 0.5 l with 1.5 μl DMSO, 0.5 μl without DMSO, 1 μl with 1.5 μl 
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DMSO and 1 μl without DMSO; refilled with Millipore water. Initial denaturation: 98 °C 

30 s; 30 cycles of denaturation: 98 °C 8 s, annealing: 58 °C 20 s and elongation 72 °C 

18 s; final elongation: 72 °C 5 min; final hold: 4 °C. 

 

PCR_1A for hH4R → hH4R-R341E (Product length: 1211 bp) 

 

The reaction ran in 50 μl t. v.; 10 μl 5x Phusion HF-Buffer, 1 μl dNTP-Mix (10 mM), 2.5 

μl primer 1A/2-forward (10 μM), 2.5 μl primer 1A-reverse (10 μM), 0.5 μl 

DNA-Polymerase in each 0.5 ml PCR-tube; DNA pVL1392-SF-hH4R-His6 (0.1 μg/μl) 

was added in amount of 0.5 l with 1.5 μl DMSO, 0.5 μl without DMSO, 1 μl with 1.5 μl 

DMSO and 1 μl without DMSO; refilled with Millipore water. Initial denaturation: 98 °C 

30 s; 30 cycles of denaturation: 98 °C 8 s, annealing: 58 °C 20 s and elongation 72 °C 

18 s; final elongation: 72 °C 5 min; final hold: 4 °C. 

 

PCR_1B for hH4R → hH4R-R341A (Product length: 458 bp) 

 

The reaction ran in 50 μl t. v.; 10 μl 5x Phusion HF-Buffer, 1 μl dNTP-Mix (10 mM), 2.5 

μl primer 1B/2-reverse (10 μM), 2.5 μl primer 1B-forward (10 μM), 0.5 μl 

DNA-Polymerase in each 0.5 ml PCR-tube; DNA pVL1392-SF-hH4R-His6 (0.1 μg/μl) 

was added in amount of 0.5 μl with 1.5 μl DMSO, 0.5 μl without DMSO, 1 μl with 1.5 μl 

DMSO and 1 μl without DMSO; refilled with Millipore water. Initial denaturation: 98 °C 

30 s; 30 cycles of denaturation: 98 °C 8 s, annealing: 57.7 °C 20 s and elongation 

72 °C 7 s; final elongation: 72 °C 5 min; final hold: 4 °C. 

 

PCR_1B for hH4R → hH4R-R341S (Product length: 458 bp) 

 

The reaction ran in 50 μl t. v.; 10 μl 5x Phusion HF-Buffer, 1 μl dNTP-Mix (10 mM), 2.5 

μl primer 1B/2-reverse (10 μM), 2.5 μl primer 1B-forward (10 μM), 0.5 μl 

DNA-Polymerase in each 0.5 ml PCR-tube; DNA pVL1392-SF-hH4R-His6 (0.1 μg/μl) 

was added in amount of 0.5 μl with 1.5 μl DMSO, 0.5 μl without DMSO, 1 μl with 1.5 μl 

DMSO and 1 μl without DMSO; refilled with Millipore water. Initial denaturation: 98 °C 

30 s; 30 cycles of denaturation: 98 °C 8 s, annealing: 57.7 °C 20 s and elongation 

72 °C 7 s; final elongation: 72 °C 5 min; final hold: 4 °C. 
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PCR_1B for hH4R → hH4R-R341E (Product length: 458 bp) 

 

The reaction ran in 50 μl t. v.; 10 μl 5x Phusion HF-Buffer, 1 μl dNTP-Mix (10 mM), 2.5 

μl primer 1B/2-reverse (10 μM), 2.5 μl primer 1B-forward (10 μM), 0.5 μl 

DNA-Polymerase in each 0.5 ml PCR-tube; DNA pVL1392-SF-hH4R-His6 (0.1 μg/μl) 

was added in amount of 0.5 μl with 1.5 μl DMSO, 0.5 μl without DMSO, 1 μl with 1.5 μl 

DMSO and 1 μl without DMSO; refilled with Millipore water. Initial denaturation: 98 °C 

30 s; 30 cycles of denaturation: 98 °C 8 s, annealing: 57.7 °C 20 s and elongation 

72 °C 7 s; final elongation: 72 °C 5 min; final hold: 4 °C. 

 

PCR_2 for hH4R → hH4R-R341A (Product length: 1652 bp) 

 

The reaction ran in 50 μl t. v.; 10 μl 5x Phusion HF-Buffer, 1 μl dNTP-Mix (10 mM), 2.5 

μl primer 1A/2-forward (10 μM), 2.5 μl primer 1B/2-reverse (10 μM), 0.5 μl 

DNA-Polymerase in each 0.5 ml PCR-tube; product from PCR_1A and product from 

PCR_1B were added in amount of 2 μl with 1.5 μl DMSO, 2 μl without DMSO 5 μl with 

1.5 μl DMSO, 5 μl without DMSO; refilled with Millipore water. Initial denaturation: 

98 °C 30 s; 28 cycles of denaturation: 98 °C 8 s, annealing: 59 °C 20 s and elongation 

72 °C 20 s; final elongation: 72 °C 5 min; final hold: 4 °C. 

 

PCR_2 for hH4R → hH4R-R341S (Product length: 1652 bp) 

 

The reaction ran in 50 μl t. v.; 10 μl 5x Phusion HF-Buffer, 1 μl dNTP-Mix (10 mM), 2.5 

μl primer 1A/2-forward (10 μM), 2.5 μl primer 1B/2-reverse (10 μM), 0.5 μl 

DNA-Polymerase in each 0.5 ml PCR-tube; product from PCR_1A and product from 

PCR_1B were added in amount of 2 μl with 1.5 μl DMSO, 2 μl without DMSO 5 μl with 

1.5 μl DMSO, 5 μl without DMSO; refilled with Millipore water. Initial denaturation: 

98 °C 30 s; 28 cycles of denaturation: 98 °C 8 s, annealing: 59 °C 20 s and elongation 

72 °C 20 s; final elongation: 72 °C 5 min; final hold: 4 °C. 

 

PCR_2 for hH4R → hH4R-R341E (Product length: 1652 bp) 

 

The reaction ran in 50 μl t. v.; 10 μl 5x Phusion HF-Buffer, 1 μl dNTP-Mix (10 mM), 2.5 

μl primer 1A/2-forward (10 μM), 2.5 μl primer 1B/2-reverse (10 μM), 0.5 μl 

DNA-Polymerase in each 0.5 ml PCR-tube; product from PCR_1A and product from 

PCR_1B were added in amount of 2 μl with 1.5 μl DMSO, 2 μl without DMSO 5 μl with 

1.5 μl DMSO, 5 μl without DMSO; refilled with Millipore water. Initial denaturation: 
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98 °C 30 s; 28 cycles of denaturation: 98 °C 8 s, annealing: 59 °C 20 s and elongation 

72 °C 20 s; final elongation: 72 °C 5 min; final hold: 4 °C. 

 

5.1.2.2 Electrophoresis 

 

Control electrophoresis: 

10 μl of 1 kb DNA Ladder 

18 μl of mixture consisting of 3 μl PCR product, 3 μl Loading Dye and 12 μl water 

150 V, 40 min 

 

Electrophoresis before DNA purification: 

15 μl of 1 kb DNA Ladder 

56 μl of mixture consisting of 9 μl Loading Dye and 47 μl PCR product 

150 V, 40 min 

 

5.1.2.3 Restriction enzymes  

 

Control digestion: 20 μl t. v., incubation for 1 h 

 

Digestion for following use: digest enzymes SacI and XbaI (2 μl each) were used 

before ligation to cleave PCR_2 products in 50 μl t. v., incubation for 2 h 

 

5.1.2.4 Ligation and transformation 
 

Ligation was provided with relevant carrier – vector, which was cut in the same sides 

like DNA-fragments (inserts). The vector pVL1392 (9600 bp) was dephosphorylated 

(CIP vector) by calf intestine alkaline phosphatase to prevent interaction between its 

two compatible ends. Phosphate was removed from 5´-end of a vector. The ligation ran 

in 20 μl t.v.: 50 ng pVL1392, 2 μl 10x Ligation Buffer and insert: 

 

massinsert ng = 5 x massvector ng x lengthinsert bp / lengthvector bp 

 

The mixture was firstly warmed up to 45 °C for 5 min and secondly incubated with 1 μl 

of T4 DNA-ligase over night at 4 °C. Next day the ligation enzyme was deactivated by 

65 °C for 10 min. The ligation product was transformed into E.coli to amplify the 

plasmid: 4 μl of product after ligation in 100 μl cell-suspension and 900 μl SOC medium 

inoculated onto agar plates in the presence of selective antibiotic and incubated over 
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night at 37 °C. Bacterial cultures were grown from a single colony picked from a freshly 

streaked selective agar plates. A single colony was then inoculated in 3 ml 

Luria-Bertani (LB) medium containing the appropriate selective antibiotic and incubated 

over night at 37 °C by vigorous shaking. More than 16 h of incubation was not 

recommended because of possible cell lysis and thereby lower plasmid yield. The next 

day the bacterial cells were harvested by centrifugation at 13000 rpm for 3 min and 

pellets were treated in miniprep/maxiprep kit. 

 

5.1.2.5 Miniprep/Maxiprep 
 

Miniprep and maxiprep kits are based on alkaline lysis of bacterial cells followed by 

adsorption of DNA onto the silica membrane in the presence of high salt. The relevant 

buffers ensure that only DNA is adsorbed, whereas RNA, cellular proteins and 

metabolites do not remain on the membrane and are found in the flow-through. 

Endonucleases were efficiently removed by a wash step with Buffer PB, salts were 

removed by washing with Buffer PE and DNA was eluted from column with Buffer EB. 

The method was followed according to QIA Spin miniprep/maxiprep kit instructions. 

 

5.1.2.6 Sequencing 

 

Sequencing was provided by Entelechon, the synthetic genes company, Regensburg, 

Germany. 

 

5.1.2.7 Protein expression and membrane preparation 

 

Sf9 cells were cultured in 250 ml Erlenmayer flasks at 28 °C and 150 rpm. Cells were 

maintained at a density of 0.5 – 6.0 x 106 cells per ml and were suspended in fresh 

medium at each passage (three times weekly) and for each infection. The 

BaculoGoldTM transfection Kit was used according to the manufacture´s instructions to 

generate recombinant baculoviruses encoding mutants hH4R-R341A, hH4R-R341S or 

hH4R-R341E. After transfection of Sf9 cells (4 x 106 cells per 3 ml) with pVL1392 

plasmids encoding for mutants and incubation for 7 days (→P1), virus stocks were 

generated by two amplifications. In the first amplification cells were seeded at 2 x 106 

cells per ml (t.v. 50 ml) and infected with 1 ml of the supernatant of the initial culture. 

Cells were cultured for 7 days. The supernatant was harvested at 3000 rpm for 15 min 

and stored at 4 °C (→P2).  Five millilitres of P2 supernatant were cultured with 3 x 106 

cells per ml (t.v. 100 ml) for 48 h and the supernatant was harvested as previously 
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(→P3). For membrane preparation, cells were seeded at 3 x 106 cells per ml in 50 ml of 

cell suspension, infected with 1:100 dilutions of P3 amplification baculovirus stocks and 

cultured for 48 h (hH4R and mutants were always expressed together with G-protein 

subunits Gαi2 and Gβ1γ2). Sf9 cells were harvested at 1000 rpm for 10 min and 

membrane preparation (all steps at 4 °C) followed. Cells were washed in PBS-Buffer 

and centrifuged at 1000 rpm for 10 min, lysed in Lysis-Buffer and centrifuged at 500 

rpm for 5 min. The supernatant was removed and centrifuged at 18000 rpm for 20 min, 

resuspended in Lysis-Buffer and re-centrifuged. Membranes were homogenized in 

Binding-Buffer and stored at -80 °C. 

 

5.1.2.8 Protein determination – Lowry assay 

 

Protein determination was provided with Lowry assay: BSA 2 mg/ml was diluted (in 

Millipore water) in a row: 2000 μg/ml, 1000 μg/ml, 500 μg/ml, 250 μg/ml, 125 μg/ml. 

Reagents were prepared according to manual instructions. In 1.5 ml tubes were added 

following compounds (Table 1), mixed and after 15 min incubation at room temperature 

protein concentration was determined using BSA-calibration curve. Absorbance was 

measured at 750 nm. 

 

Table 1. Scheme of preparation for protein determination 

 

 
Sample* Standard Blank 

Sample 20 μl --- --- 

Standard --- 20 μl --- 

Binding-Buffer --- --- 20 μl 

Reagent A´ 100 μl 100 μl 100 μl 

Reagent B 800 μl 800 μl 800 μl 

* Columns: the hH4R or mutants as a sample, BSA in given concentrations as a standard and 

Binding-Buffer as a blank. In lines there are components required for measurement. 
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5.1.2.9 Western blot analysis 

 

The protein expression level was investigated by Western blot analysis. For this assay 

membranes were diluted with 10 mM Tris/HCl pH = 8.0 to the concentration 2 μg/μl and 

after homogenization with 2x Lämli-Buffer to the concentration 1 μg/μl. Samples were 

loaded into wells in the gel. The first lane was reserved for a standard, a commercially 

available mixture of proteins having defined molecular weights and forming visible, 

coloured bands. The last lane was filled with 2x Lämli-Buffer that ensures the right run 

in the gel. Membrane proteins were separated on SDS polyacrylamid gel containing 

12 % (w/v) total acrylamide, at constant voltage (120 V) for 150 min and after that 

transferred onto nitrocellulose (0.45 μm) membrane and ran at constant current (250 

mA) for 120 min. The uniformity of protein transferred from gel to the membrane was 

checked by staining the membrane Ponceau S dye. Membranes were incubated with 

anti-Flag M1, Gαi1/2 or Gβ common antibodies over night at 4 °C. The next day 

imunnoreactive bands were visualized by enhanced chemoluminescence using goat 

antimouse IgG or donkey antirabbit IgG coupled to peroxidase. Immunoblots were 

scanned with imaging densitometer. 

 

5.1.2.10 Steady-state GTPase activity assay 

 

Membranes were thawed, sedimented at 13000 rpm for 10 min at 4 °C and 

resuspended in 10 mM Tris/HCl pH = 7.4. Reaction mixtures contained 20 μl of 

suspended membranes, 10 μl ligands at various concentrations (each concentration 

performed in triplicate), 20 μl 20 mM Tris/HCl pH = 7.4 and 30 μl Rea-Mix. Enzyme 

activities were corrected for spontaneous degradation of [γ-33P]GTP via unlabeled GTP 

1 mM which was added in last three tubes instead of ligands. Reaction mixtures (80 μl) 

were incubated for 2 min at 25 °C before addition of 20 μl of [γ-33P]GTP (1.7 - 2.0 

μCi/μl). Reaction ran 20 min at 25 °C and was terminated by the addition of 900 μl of 

active coal to absorb nucleotides. Mixtures with active coal were centrifuged for 7 min 

at 4 °C at 13000 rpm. Six hundreds microlitres of the supernatant fluid were removed 

and 33Pi was determined by liquid scintillation counting. The experimental conditions 

chosen ensured that no more than 10 % of total amount of [γ-33P]GTP added was 

converted to 33Pi. Sigmoid concentration-response curves of agonists and inverse 

agonists were analyzed by nonlinear regression using the built-in function in the 

GpaphPadPrism program. 

GTPase assay have been performed for each mutant in three repetitions. 
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5.2 Results 

 

5.2.1 Site-directed mutagenesis 

 

The given mutations were prepared through the sequential overlap-extension PCRs 

according to suggestions based on molecular modelling studies (Igel et al. 2009). We 

obtained three point mutants of the hH4R: 

 

hH4R → hH4R-R341A 

 

Arginine-341 in the hH4R was replaced by the conserved amino acid alanine according 

to the suggestion how this exchange may by involved in the interaction of the hH4R 

with cyanoguanidine-type agonists. 

 

hH4R → hH4R-R341S 

 

Arginine-341 in the hH4R was replaced by serine. In the mouse and rat H4R serine is 

placed instead of arginine at the position 341 and therefore the mutant was the interest 

of study the species selectivity of cyanoguanidine-type agonists. 

 

hH4R → hH4R-R341E 

 

Arginine-341 in the hH4R was replaced by glutamate. Glutamate is present in the dog 

H4R and in the hH3R and therefore the mutant was the interest of study the species 

selectivity and histamine receptor subtype selectivity of cyanoguanidine-type agonists. 

 

All these mutants were successfully coexpressed with Gαi2 and Gβ1γ2 using Sf9 insect 

cell expression system and further detected by immunoblotting. The hH4R or its three 

mutants were investigated in steady-state GTPase activity assay. 
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5.2.2 Protein determination – Lowry assay 

 

Table 2. The protein concentration in membranes expressing the hH4R or its mutants 

using Lowry method of protein determination 

  

Concentration [μg/ml] 

 

 

hH4R 

 

hH4R-R341A 

 

hH4R-R341S 

 

hH4R-R341E 

 

1141 

 

1139 

 

1329 

 

1183 
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5.2.3 Western blot analysis 

 

Expression of the hH4R, hH4R-R341A, hH4R-R341S or hH4R-R341E was investigated 

by immunoblotting with M1 anti-Flag, Gαi1/2 and Gβ common antibodies. In 

immunoblotting with M1 anti-Flag antibody we obtained bands of the hH4R and 

receptor mutants located at ~45 kDa (Figure 15). Immunoblotting using Gαi1/2 and Gβ 

common antiobodies also confirmed the expression of Gαi2 and Gβ1γ2 proteins (Figures 

16, 17). 

 

 

 

 

 

 

Figure 15. Western blot analysis of membranes expressing the hH4R or its mutants with Gαi2 

and Gβ1γ2 using M1 anti-Flag antibody. (1) hH4R, (2) hH4R-R341A, (3) hH4R-R341E, (4) 

hH4R-R341S. Numbers on the left side of the immunoblot indicate molecular masses of marker 

proteins in kDa. 
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Figure 16. Western blot analysis of membranes expressing the hH4R or its mutants with Gαi2 

and Gβ1γ2 using Gαi1/2 antibody. (1) hH4R, (2) hH4R-R341A, (3) hH4R-R341S, (4) hH4R-R341E. 

Numbers on the left side of the immunoblot indicate molecular masses of marker proteins in 

kDa. 
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Figure 17. Western blot analysis of membranes expressing the hH4R or its mutants with Gαi2 

and Gβ1γ2 using Gβ common antibody. (1) hH4R, (2) hH4R-R341A, (3) hH4R-R341S, (4) 

hH4R-R341E. Numbers on the left side of the immunoblot indicate molecular masses of marker 

proteins in kDa. 
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5.2.4 Steady-state GTPase activity assay 

 

The potencies and efficacies of three ligands (histamine, UR-PI376 and thioperamide) 

at the wildtype and mutant H4Rs were determined in steady-state GTPase activity 

assay. The efficacies of tested ligands were referred to the efficacy of the full agonist 

histamine (HIS). Efficacies and potencies of the selected ligands at the hH4R can be 

compared with efficacies and potencies of the same ligands at three mutants. 

Comparing the hH4R with hH4R-R341A, hH4R-R341S or hH4R-R341E did not show 

differences in the GTPase activity by tested ligands (Table 3). Figures 18, 19 and 20 

show representative concentration-response curves of HIS, UR-PI376 and THIO for 

each mutant. Efficacies and potencies of tested ligands at the hH4R were kindly 

provided by Irena Brunskole, Department of Pharmaceutical/Medicinal Chemistry II, 

University Regensburg (unpublished data).  
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Table 3. Potencies (pEC50 ± SEM) and efficacies (Emax ± SEM) of tested ligands at the hH4R or its point mutants in the GTPase activity assay 

 

 

Histamine* 

pEC50 Emax 

HH4R 

 

hH4R-R341A 

 

hH4R-R341S 

 

hH4R-R341E 

7.60 ± 0.12 

 

7.45 ± 0.19 

 

7.52 ± 0.16 

 

8.02 ± 0.48 

1.00 

 

1.00 

 

1.00 

 

1.00 

 

 

 

UR-PI376 

pEC50 Emax 

HH4R 

 

hH4R-R341A  

 

hH4R-R341S 

 

hH4R-R341E 

7.33 ± 0.10 

 

7.20 ± 0.34 

 

7.53 ± 0.04 

 

7.43 ± 0.32 

0.98 ± 0.04 

 

1.40 ± 0.20 

 

1.25 ± 0.20 

 

1.09 ± 0.13 
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Table 3. (continued) 

 

 

Thioperamide 

pEC50 Emax 

hH4R 

 

hH4R-R341A 

 

hH4R-R341S 

 

hH4R-R341E 

6.87 ± 0.14 

 

7.27 ± 0.09 

 

7.07 ± 0.11 

 

7.15 ± 0.21 

-0.87 ± 0.08 

 

-1.11 ± 0.08 

 

-1.08 ± 0.21 

 

-1.79 ± 0.01 

* In steady-state GTPase activity assay the agonists, histamine and UR-PI376, and inverse agonist, thioperamide were investigated as described under 

Methods and Conditions. Reaction mixtures contained membranes (15 μl protein/tube) and ligands ranging from 1 nM to 10 μM. All data are presented as 

mean of three independent experiments in triplicate ± SEM. Agonist potencies were given as pEC50 values (negative decadic logarithm of the molar 

concentration of the agonist causing 50 % of the maximal response). Maximal responses were expressed as Emax values. The Emax value of histamine was set 

to 1.00, Emax values of other compounds were referred to this value. 
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Figure 18. Concentration-response curves for hH4R agonists, histamine (blue curve) and UR-PI376 

(red curve), and inverse agonist, thioperamide (green curve) at hH4R-R341A in steady-state GTPase 

activity assay. 
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Figure 19. Concentration-response curves for hH4R agonists, histamine (blue curve) and UR-PI376 

(red curve), and inverse agonist, thioperamide (green curve) at hH4R-R341S in steady-state GTPase 

activity assay. 
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Figure 20. Concentration-response curves for hH4R agonists, histamine (blue curve) and UR-PI376 

(red curve), and inverse agonist, thioperamide (green curve) at hH4R-R341E in steady-state GTPase 

activity assay. 
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5.3 Discussion 
 

High affinity ligands for the human H4R often show pronounced discrepancies in terms of 

potency (up to several orders of magnitude), selectivity (in particular H4R versus the closely 

related H3R) and even the quality of action (agonism vs. antagonism), when studied in a 

different species. This is one of the major problems with the currently known H4R agonists. 

Therefore, in view of the relatively wide divergence in amino acid sequence among the 

various H4R species orthologs (Figure 21), conclusions drawn from results of experiments in 

animals, for instance, performed to validate the target in a disease model in the mouse, may 

be misleading. However, the investigation of “natural mutants”, i. e. the species variants, of 

a receptor may be very efficient to identify crucial amino acids for ligand binding, receptor 

activation and receptor subtype selectivity and species selectivity (Lim et al. 2010). Usually, 

such studies include modifications of the receptor proteins, e. g., preparation of chimeric 

GPCRs and site-directed mutagenesis, to verify the respective hypothesis. 

 

 

Figure 21. Percent homology of amino acid sequences of the histamine H4-receptor among different 

species. Hm: human, Mk: monkey (M. fascicularis), Pg: pig, Dg: dog, Gp: guinea pig, Rt: rat; and Ms: 

mouse (Lim et al. 2010). 

 

Although the homology of the human and mouse H4R is only in the range of 67 % (Figure 

22), investigations revealed that single amino acids play a major role in different agonist 

binding. Phenylalanine 169 in the second extracellular loop of the hH4R was identified as 

a key amino acid, responsible for different agonist affinity between the human and mouse 

H4Rs (Lim et al. 2008). 
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Figure 22. Snake plot of the human H4R protein (Lim et al. 2008). The residues of the human H4R 

identical with those of the mouse H4R are demonstrated as open circles; filled circles indicate 

differences between two species homologues. 

 

It may be assumed that imidazolylbutylcyanoguandines, bearing a space-filling substituent as 

in UR-PI376 (2-cyano-1-[4-(1H-imidazol-4-yl)butyl]-3-[(2-phenylthio)ethyl]guanidine), may 

adopt a similar orientation as histamine. The potent H4R agonist UR-PI376 is devoid of 

agonistic activities at the other histamine receptors including the hH3R (Igel et al. 2009) and 

is therefore one of the most potent and selective H4R agonists known so far. In addition, 

UR-PI376 is up to 100 times less potent at the murine H4R (P. Igel, personal 

communication). This phenomenon stimulated speculations about a potential role of Arg-341 

in both, receptor subtype selectivity and species selectivity and gave rise to molecular 

modelling studies, suggesting the binding mode shown in Figure 24. 

 

 

Figure 24. Suggested binding mode of UR-PI376 in the wildtype hH4R, possible role of Arg-341 in 

position 7.36 of the H4R and (highlighted in arrow) corresponding amino acid in mouse/rat H4R and 

human H3R, respectively (modified from Igel et al. 2009; graphic provided by Prof. Dr. A. Buschauer). 

The cyanoguanidine moiety of UR-PI376 is suggested to form forms two charge-assisted hydrogen 
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bonds with the carboxylate oxygens of Asp-94 and two additional charge-assisted hydrogen bonds 

with the guanidine group of Arg-341. 

 

In the present diploma work the Arg-341 residue present in the hH4R was replaced by 

site-directed mutagenesis with Ser, which is found in that position in rat and mouse H4Rs, 

with Glu, which is the corresponding amino acid in the cH4R and the hH3R, and with Ala. The 

receptors were expressed in Sf9 cells and functionally investigated in GTPase activity 

assays. The expression of the hH4R was detected with M1 anti-Flag antibody (Figure 15). 

For nonfused hH4R two bands have already been reported. A relatively weak band exhibited 

the molecular mass ~46 kDa and a very intense band was located at ~43 kDa. The bands at 

30 - 35 and 26 kDa were described as probably atypically migrating H4R species (Schneider 

et al. 2008). Gαi2 protein was detected with Gαi1/2 antibody (Figure 16). We also detected 

Gβ1γ2 protein with Gβ common antibody (Figure 17). 

UR-PI376 is a potent agonist (pEC50 = 7.47) with almost full intrinsic activity (Emax = 0.93) at 

the hH4R in the steady-state GTPase activity assay in Sf9 insect cell membranes expressing 

the hH4R-RGS19 fusion protein plus Gαi2 plus Gβ1γ2 (Igel et al. 2009).  By contrast, the 

GTPase assays performed with membrane preparations of H4R mutants expressing Sf9 cells 

revealed no relevant difference compared to the data obtained with wildtype hH4R. This was 

true in view of the potencies and intrinsic activities of the agonists, histamine and UR-PI376, 

as well as for the antagonist/inverse agonist thioperamide, although, according to the 

suggested model, Arg-341 was expected to play a different role in the interactions of these 

ligands with the H4R. Therefore, the results of the investigations performed in the diploma 

work do not support the hypothesis that charge-assisted hydrogen bonds between the 

cyanoguanidine group and Arg-341 (see Figure 13) are involved in the differential binding of 

this class of H4R agonists. Very recently, molecular determinants of agonist and antagonist 

binding to H4R species variants were suggested by Lim et al. (Lim et al. 2010) on the basis of 

pharmacological studies using chimeric receptors and site-directed mutagenesis. Although 

cyanoguanidine-type agonists were not included in this study, future investigations should 

take into account residues in positions 4.57 and 5.39 as well as Phe-169 in the second 

extracellular loop as suggested previously (Lim et al. 2008). 
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6 SUMMARY AND CONCLUSION 

 

Pharmacological data of cyanoguanidine-type H4R agonists and molecular modelling studies 

of the hH4R suggested Arg-341 to be a key amino acid in terms of potency, receptors 

selectivity and species selectivity. Based on this model, the hH4R was subjected to 

site-directed mutagenesis and the mutant receptors were pharmacologically characterized 

with the aim to test the working hypothesis. Arg-341 was replaced by serine (as in rat and 

mouse hH4R), glutamate (as in dog hH4R and human H3R) and alanine. The synthesized 

mutant receptors were expressed using Sf9 insect cell system and recombinant proteins 

were determined in immunoblot analysis and steady-state GTPase activity assay. The potent 

and selective cyanoguanidine-type hH4R agonist, UR-PI376, as well as histamine and the 

H4R inverse agonist thioperamide were investigated at mutant versus wildtype H4Rs. 

Overlap-extension PCR was used to obtain the point mutations of the hH4R. PCR products 

were then restricted with digestion enzymes and ligated with the new vector suitable for 

transformation in E. coli. Sequencing after Maxi preparation confirmed the correctness of the 

whole newly created plasmids. Plasmids pVL1392 were transfected into Sf9 insect cells and 

membranes were prepared for further detection. Protein determination using Lowry assay 

and Western blot analysis confirmed that expression in Sf9 insect cells was successfully 

done. The molecular masses of the hH4R and receptor mutants were ~45 kDa. 

In steady-state GTPase activity assay, efficacies and potencies of histamine, UR-PI376 and 

thioperamide did not differ between the hH4R and its point mutants. These data can conclude 

that Arg-341 is neither the key amino acid in terms of histamine receptor subtype selectivity 

of UR-PI376 and related compounds nor a molecular determinant of ligand binding to H4R 

species variants. It is obvious that further work should focus on other amino acids than 

Arg-341 to explain the differences in potency and selectivity of cyanoguanidine-type H4R 

agonists. Suggestions, based on very recently published data collected from the investigation 

of a structurally distinct set of compounds on chimeric and point mutant receptors of a large 

variety of H4R species variants should be considered. The identification of the molecular 

determinants of species-selective H4R binding are very important with respect to the design 

of new drugs avoiding the problems with the currently known H4R agonists in terms of target 

validation in animals. 
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7 SUMMARY IN CZECH 
 

Histamin je důležitý biologický mediátor, který ovlivňuje nejrůznější fyziologické 

a patofyziologické pochody v těle prostřednictvím čtyř histaminových receptorů. Všechny tyto 

receptorové podtypy patří do třídy A nadrodiny receptorů spřažených s G-proteinem (GPCR). 

Klasická antihistaminika (dnes H1 antagonisté, H1R) našla uplatnění jako antialergika, 

zatímco antagonisté H2-receptoru (H2R) jsou účinní v terapii peptidického vředu 

a gastroesofageální refluxní choroby (GERD). Třetí podtyp histaminových receptorů je 

exprimován v převážné míře v centrální nervové soustavě (CNS) a jeho využití potenciálně 

spadá do oblasti léčby onemocnění CNS a obezity. Zatím však není dostatek informací 

o ligandech H3-receptoru (H3R), které by našly uplatnění v klinické praxi (Parsons and 

Ganellin 2006). V letech 2000 a 2001 byl objeven nezávisle několika vědeckými skupinami 

čtvrtý podtyp histaminový receptorů (H4R), a to na základě vysoké homologie se třetím 

subtypem (Coge et al. 2001, Liu et al. 2001a, Morse et al. 2001, Nakamura et al. 2000, 

Nguyen et al. 2001, Oda et al. 2000, Zhu et al. 2001). H4R je exprimován v buňkách 

imunitního systému (Leurs et al. 2009, Liu et al. 2001a, Morse et al. 2001, Oda et al. 2000, 

Parsons and Ganellin 2006, Zhu et al., 2001), což předpovídá jeho úlohu v léčbě zánětu a 

nemocí imunitního systému, např. astma bronchiale, revmatoidní artritidy, dny či alergické 

rýmy (Gbahou et al. 2006, Lim et al. 2006). 

Tým Prof. Dr. A. Buschauera na Univerzitě Regensburg identifikoval lidské histaminové H3R 

(hH3R) a H4R (hH4R) komponenty v sérii NG-acylovaných imidazopropylguanidinů, původně 

vyvinutých jako H2R agonisté. Pomocí strukturálních modifikací s cílem zjistit selektivitu ke 

čtvrtému subtypu byl získán agonista cyanoguanidinového typu, UR-PI376, 2-cyano-1-[4-(1-

H-imidazol-4-yl)butyl]-3-[(2-fenylthio)ethyl]guanidin. UR-PI376 je prototypem agonistů 

cyanoguanidinového typu v komplexu s hH4R, kdy se tvoří vodíkové vazby mezi cyano 

skupinou a guanidinovým zbytkem aminokyseliny Arg-341. Na místě Arg-341 u H4R myši a 

potkana se vyskytuje serin, u psa a u hH3R se nachází glutamát (Igel et al. 2009). Naskytla 

se tedy otázka, jakou roli hraje Arg-341 v interakci s H4R cyanoguanidinovým typem 

agonistů. 

 

Pomocí polymerázové řetězové reakce (PCR) jsem vytvořili tři mutanty hH4Ru, kde jsme 

Arg-341 nahradili serinem (Ser), glutamátem (Glu) a jako konzervativní aminokyselina byl 

zvolen alanin (Ala). PCR produkty jsme dále nastřihli restrikčními endonukleázami a ligovali 

s vektorem vhodným pro transformaci do buněk E. Coli. Sekvenování potvrdilo správnost 

nukleotidových sekvencí nově vzniklého plazmidu. Mutanty hH4Ru jsme co-exprimovali 

s Gαi2 and Gβ1γ2 proteiny prostřednictvím Sf9 hmyzích imunitních buněk a po membránové 

preparaci následovala měření proteinové koncentrace Lowryho metodou a zjištění relativní 
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molekulové hmotnosti mutantů (Western blot). Relativní molekulová hmotnost všech 

exprimovaných mutantů se pohybovala okolo ~ 45 kDa. 

Vzájemné interakce hH4R ligandů s mutanty hH4R jsme testovali metodou „steady-state 

GTPase aktivity assay“. Do reakce jsme použili plného agonistu (histamin), agonistu 

cyanoguanidinového typu (UR-PI376) a inverzního agonistu (thioperamid). Účinnost, 

vyjádřená jako záporný logaritmus molární koncentrace agonisty, který způsobí 50 % 

maximální odpovědi (pEC50), a jako maximální odpověď relativní k histaminu (Emax) byly 

srovnávány s účinností nezmutovaného hH4R. Získaná data bohužel nepotvrdila, že by 

Arg-341 byl klíčovou aminokyselinou pro receptorovou a druhovou specifitu ligandy 

UR-PI376. Je zřejmé, že budoucí práce budou zaměřeny na jiné aminokyseliny, které by 

vysvětlily rozdíly v účinnosti a selektivitě H4R agonistů cyanoguanidinového typu. 
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