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ABSTRACT 
 
Category theory provides very useful tools for studying mathematical structures and 
phenomena. One of the structures that is studied in a category-theoretical manner are fuzzy 
sets. If we consider fuzzy sets as objects and set up certain kind of structure preserving 
mappings as morphisms, we can obtain a suitable category for our purposes. Goal of this work 
is to give an overview of preferably all important category-theoretical approaches to fuzzy 
sets that were done throughout relatively short history of category-theoretical modelling of 
fuzzy sets. 
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1. INTRODUCTION 
 
It is evident from the title of this work that the main area of our interest in the next chapters 
lies at the intersection of category theory and fuzzy set theory. We attempt to give an 
overview of preferably all important category-theoretical approaches to fuzzy sets. 
Let us say (informally) a little more about the two fields and their interconnection now.  
 
1.1 CATEGORY THEORY 
 
Category theory was introduced by Samuel Eilenberg and Saunders Mac Lane in the early 
1940´s [ref. 3, 4] in connection with algebraic topology. Briefly speaking, it is a general 
theory of mathematical structures and relationships between them and it provides a unifying 
notion and theory for these structures. Fundamental conceps of the theory are objects, 
morphisms, categories, functors, natural transformations, diagrams, limits, etc. Eminency of 
category theory consits in its generality, high degree of abstraction and mainly in its simple 
and synoptical language. 
Categories occur in every part of mathematics and also in related fields such as computer 
science, theoretical physics and logic. Such entities as sets, groups, vector spaces, ordered 
sets, topological spaces, automata, formal languages, etc., all naturally give rise to categories. 
Category theory allows us to uncover general properties of mathematical structures and to 
understand how (apparently) different structures are interrelated and what they have in 
common. 
Category theory provides a conceptual framework for mathematics and thus can be seen as an 
alternative to set theory as a foundational theory for mathematics. 
 
1.2 FUZZY SET THEORY 
 
The concept of fuzzy set was introduced by Lotfi A. Zadeh in his pioneering work from 1965 
[ref. 30]. Since then it has become an important concept in applied mathematics and 
engineering. The idea is quite simple and straightforward. For classical sets (often called crisp 
sets in fuzzy context) characteristic functions take values from {0, 1}. Zadeh´s generalization 
of classical sets consists in the fact that characteristic functions of fuzzy sets (then called 
membership functions) take values in the real unit interval [0, 1]. Fuzzy sets are uniquely 
characterized by their membership functions. In fact, they are directly identified with their 
membership functions generally.     
Another important generalization was done by Zadeh´s student Joseph A. Goguen in his 
1967 paper [ref. 6]. Goguen generalized Zadeh´s idea in the sense that membership functions 
could take values not only in the real unit interval but in some kind of ordered structure 
generally. Usually it is required that this structure be at least a poset or a lattice. Examples of 
the most commonly used target structures are (beside the real unit interval) completely 
distributive lattices, complete Heyting algebras, various kinds of ordered monoids, various 
kinds of quantales, etc.  
One can see that just the membership function´s target structure presents itself to be one of the 
main criteria for classification of fuzzy sets. For purely fuzzy-set-theoretical purposes it 
actually is, but later we will see that for our category-theoretical purposes there are some 
more suitable criteria which arise directly out of category-theoretical concepts. 
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1.3 CATEGORY-THEORETICAL APPROACHES TO FUZZY SETS 
 
Goguen´s contribution does not consist only in the fact of generalization of target structures, 
but it also (we would like to say “above all“, for our purposes) consists in the fact that he 
introduced category-theoretical approach to fuzzy sets. In his work from 1967, which was 
mentioned above, he introduced the first category of fuzzy sets ever, category S(L). It is a 
category of L-fuzzy sets and L-fuzzy relations, where L signifies the generalization of target 
structure mentioned above. In case of category S(L), L stands for a complete lattice ordered 
semigroup. In his 1967 paper, Goguen did not give any particular results about S(L) (except 
the main one that S(L) constitutes a category). Later, in his 1974 article [ref. 8], he considered 
another category of L-fuzzy sets, category Set(L). Here L stands for some completely 
distributive lattice. Some interesting results about category Set(L) were given by Goguen 
himself and also by other authors, mainly by L. N. Stout [ref. 25, 26, 27]. 
Goguen´s early works have become a starting point for other authors. Various kinds of target 
structures have been considered, objects, morphisms and composition of morphisms have 
been defined in many different ways, thus many different categories of fuzzy sets (or fuzzy 
relations) have been obtained throughout the years. 
As our aim is to give an overview of these categories, we need to choose some criteria for 
their classification in an effort to keep this work well-arranged. As mentioned above, the type 
of target structure of membership functions seems to be a good criterion for this classification. 
But there are more suitable criteria, for our category-theoretical purposes, which put similar 
categories to the same class. Thus we have decided to classify categories in this work by the 
facts whether objects are fuzzy sets or objects are fuzzy relations and whether morphisms are 
(fuzzy) functions or morphisms are (fuzzy) relations. Thereby we have the following classes 
of categories now: 
• Categories of fuzzy sets (as objects) and (fuzzy) functions (as morphisms). 
• Categories of fuzzy sets (as objects) and (fuzzy) relations (as morphisms). 
• Categories of fuzzy relations (as objects) and (fuzzy) functions (as morphisms). 
• Categories of fuzzy relations (as objects) and (fuzzy) relations (as morphisms). 
Categories of the same type (in the same class) will be ordered by resemblance. Very similar 
categories will be put together. 
We believe that this classification is suitable for category-theoretical purposes and that it will 
keep the work well-arranged from categorical point of view at least.                 
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2. PRELIMINARIES 
 
In this chapter we present some necessary category-theoretic, (fuzzy) set-theoretic and 
algebraic concepts, which we will be dealing with in the next chapter. These definitions and 
concepts are primarily taken over from [ref. 1, 9, 18] for category-theoretic section and from 
[ref. 2, 21, 29] for (fuzzy) set-theoretic and algebraic section. We also recommend these 
works for more detailed study of the fields. 
 
2.1 CATEGORY-THEORETIC BASICS 
 
Category theory was introduced by Samuel Eilenberg and Saunders Mac Lane in the 
1940´s [ref. 3, 4]. It deals with mathematical structures and relationships between them and 
provides a unifying theory and terminology for these structures. 
 
Definition 2.1.1 
A category C is a quadruple C = (Ob(C), HomC, ∘, 1) consisting of: 
1) A class Ob(C), whose members are called (C-)objects. 
2) For each pair (A, B) of objects, a set HomC(A, B), whose members are called 
    (C-) morphisms from A to B. The sets HomC(A, B) are pairwise disjoint. 
3) A binary operation from HomC(A, B) × HomC(B, C) to HomC(A, C) called composition of  
    morphisms. Let f : A ⟶ B and g : B ⟶ C be morphisms. Then their composition is   
    denoted by f ∘ g. Composition of morphisms is associative, i.e. for all morphisms 
    f : A ⟶  B, g : B ⟶ C and h : C ⟶ D   (f ∘ g) ∘ h = f ∘ (g ∘ h) holds. 
4) For every object B, there exist a morphism 1B : B ⟶ B called the identity morphism such  
     that for all f : A ⟶ B and g : B ⟶ C, f ∘ 1B = f and 1B ∘ g = g. 
Remark: 
If f ∈ HomC(A, B) (denoted by f : A ⟶ B), then A is called a domain of f (denoted by  
A = dom(f)) and B is called a codomain of f (denoted by B = cod(f)). The class of all 
C-morphisms (denoted by Hom(C)) is defined to be the union of all the sets HomC(A, B). 
 
We can also take a more global viewpoint and consider categories themselves as objects. 
Then the "morphisms" between categories are called functors. More precisely: 
 
Definition 2.1.2 
 Let C and D be categories. Then a functor F from the category C to the category D is a 
function that assigns to each C-object A an D-object F(A) and to each C-morphism f : A ⟶ B 
a D-morphism F(f) : F(A) ⟶ F(B) in such a way that: 
1) F preserves composition of morphisms, i.e. F(f ∘ g) = F(f) ∘ F(g) for all C-morphisms  
    f ∈ HomC(A, B) and g ∈ HomC(B, C) 
2) F preserves the identity morphisms, i.e. F(1A) = 1F(A) for all C-objects A ∈ Ob(C). 
 
Examples of categories commonly used in mathematics: 
The category Set of all sets (as objects) and all functions (as morphisms). 
The category Rel of all sets and binary relations. 
The category Ord of all preordered sets and monotonic functions. 
The category Grp of all groups and group homomorphisms. 
The category Top of all topological spaces and continuous functions. 
The category Met of all metric spaces and metric functions. 
The category Vect of all vector spaces and linear functions. 
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Let us consider the following situation. Let category C be given and let us consider category 
D which has the same objects as category C and there are also morphisms between the same 
objects as in C, but these morphisms are of the opposite direction. Category D is called the 
dual (or opposite) category of C. More precisely: 
 
Definition 2.1.3 
Let C  = (Ob(C), Hom(C), ∘, 1) be a category. Then the dual (or opposite) category of C is 
the category Cop = (Ob(Cop), Hom(Cop), ∘op, 1op) such that: 
1) Ob(Cop) = Ob(C) 
2) HomC

op(A, B) = HomC(B, A), for all A, B ∈ Ob(Cop) 
3) f ∘op g = g ∘ f, for all f, g ∈ Hom(Cop) 
4) 1A

op = 1A, for all A ∈ Ob(Cop). 
 
Thanks to the definition 2.1.3 each concept P gives rise to its dual concept Pop, which is often 
denoted by coP (co-P), for example equalizers and coequalizers, products and coproducts, 
wellpowered and co-wellpowered, etc. 
 
Definition 2.1.4 
Let C be a category. We say that C is a small category iff Ob(C) is actually set, not proper 
class. A category which is not small is called large category. 
  
Definition 2.1.5 
Let C be a category. Then D is a subcategory of C iff: 
1) Ob(D) ⊆ Ob(C). 
2) HomD(A, B) ⊆ HomC(A, B) , for all A, B ∈ Ob(C). 
If HomD(A, B) = HomC(A, B) , for all A, B ∈ Ob(C) we say that D is a full subcategory of C. 
 
Definition 2.1.6 
Let f : B ⟶ C be a morphism. Then f is a monomorphism iff for all morphisms  
g1 and g2 : A ⟶ B the following holds: if g1 ∘ f = g2 ∘ f, then g1 = g2. 
 
Definition 2.1.7 
Let f : A ⟶ B be a morphism. Then f is an epimorphism iff for all morphisms  
g1 and g2 : B ⟶ C the following holds: if f ∘ g1 = f ∘ g2, then g1 = g2. 
 
Definition 2.1.8 
Let f : A ⟶ B and g : B ⟶ A be morphisms. Then g is called an inverse morphism of f  
iff f ∘ g = 1A and g ∘ f = 1B. If there exists an inverse morphism of f, then f is called an 
isomorphism.  
 
Definition 2.1.9 
Let A be an object of a given category C. We say that the pair (B, f) is a subobject of an 
object A iff B ∈ Ob(C) and f : B ⟶ A is a monomorphism. Dually, we say that the pair (B, f) 
is a quotient object of an object A iff B ∈ Ob(C) and f : A ⟶ B is an epimorphism. 
Remark: 
An inclusion relation between subobjects of a given object A is defined by the following way. 
Let (B, f) and (C, g) be subobjects of A. We put (B, f) ⊆ (C, g) iff there exists a morphism 
h : B ⟶ C such that f = h ∘ g. (Such morphism h will always be a monomorphism).    
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Definition 2.1.10 
Let C be a category. We say that C is a balanced category iff every morphism in C which is 
both monomorphism and epimorphism has an inverse morphism in C. 
 
At this point, it is suitable to introduce a very important and useful concept of category 
theory. It is one of the most fundamental concepts of the theory and it describes many basic 
constructions in mathematics. It is the concept of a limit (and dually a colimit) of a diagram. 
 
Definition 2.1.11  
Let C be a category. Then a diagram in the category C is a functor D : I ⟶ C. The domain of 
D, category I, is called the index category or the scheme of the diagram D. 
Remark: 
Let I be a preorder, i.e. a category in which there is at most one morphism between two 
objects and in which a reflexive and transitive binary relation ≤ on objects is defined as 
follows: A ≤ B iff there is a morphism between A and B. If every pair of objects of I has a 
lower bound, then I is called down-directed. Dually, if every pair of elements of I has an 
upper bound, then I is called up-directed. A diagram D is called finite iff its scheme I is 
finite, i.e. I has a finite number of objects and a finite number of morphisms between them. 
 
Definition 2.1.12  
Let D : I ⟶ C be a diagram in a category C. Then a cone over the diagram D is an object  
A ∈ Ob(C), called a vertex, together with a family of morphisms fi : A ⟶ D(i) ∈ Hom(C) 
for each i ∈ Ob(I) such that fi ∘ D(g) = fj for each morphism g : i ⟶ j ∈ Hom(I), i.e. such that 
the following triangle commutes: 
 
                                    A 
 
 
                   fi                                fj   
 
 
                                   D(g) 
       D(i)                                                  D(j) 
 
Definition 2.1.13 
Let D : I ⟶ C be a diagram in a category C. Then a co-cone under the diagram D is an object 
A ∈ Ob(C) together with a family of morphisms fi : D(i) ⟶ A ∈ Hom(C) for each i ∈ Ob(I) 
such that D(g) ∘ fj = fi for each morphism g : i ⟶ j ∈ Hom(I), i.e. such that the following 
triangle commutes: 
                                   D(g)    
      D(i)                                                  D(j)                                                                                   
  
 
 
 
                  fi                                fj    
 
 
 
                                  A 
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Definition 2.1.14 
Let D : I ⟶ C be a diagram in a category C and let A ∈ Ob(C) together with a family of 
morphisms fi : A ⟶ D(i) ∈ Hom(C) for each i ∈ Ob(I) be a cone over the diagram D. Then 
this cone is a limit of the diagram D iff for any other cone (B ∈ Ob(C), {hi : B ⟶ D(i) ∈ 
Hom(C) | for each i ∈ Ob(I)}) over the digram D there exists a unique morphism k : B ⟶ A 
such that k ∘ fi = hi for all i ∈ I, i.e. such that the following picture commutes: 
 
                                                     B 
 
 
                                                          
 
                                                       k 
                                                           
                                hi                                         hj                             
                                                                   
                                                     A                                           
                 
                                    fi                                 fj 
 
 
                                                   D(g)        
               D(i)                                                                      D(j)                                                                                                           
 
 
Definition 2.1.15 
Let D : I ⟶ C be a diagram in a category C and let A ∈ Ob(C) together with a family of 
morphisms fi : A ⟶ D(i) ∈ Hom(C) for each i ∈ Ob(I) be a co-cone under the diagram D.  
Then this co-cone is a colimit of the diagram D iff for any other co-cone  
(B ∈ Ob(C), {hi : B ⟶ D(i) ∈ Hom(C) | for each i ∈ Ob(I)}) under the digram D there exists a 
unique morphism k : B ⟶ A such that k ∘ fi = hi for all i ∈ I, i.e. such that the following 
picture commutes: 
  
                                                      D(g)      
               D(i)                                                                       D(j) 
 
 
 
                                     fi                               fj       
 
 
 
                                                     A  
                                  hi                                      hj                    
 
 
                                                       k 
 
 
                                                     B 
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Definition 2.1.16 
Let D : I ⟶ C be a diagram in a category C. If I is a down-directed poset (considered as a 
category), then (co)limits of diagrams with scheme I are called inverse (or projective) 
(co)limits. Dually, if I is an up-directed poset (considered as a category), then (co)limits of 
diagrams with scheme I are called direct (co)limits. 
 
Definition 2.1.17 
Let f, g : A ⟶ B be (parallel) morphisms. Then an object E together with a morphism 
eq : E ⟶ A is an equalizer of f and g iff eq ∘ f = eq ∘ g and for any other object C together 
with a morphism h : C ⟶ A such that h ∘ f = h ∘ g there exists a unique morphism j : C ⟶ E 
such that j ∘ eq = h, i.e. such that the following picture commutes: 
 
                            eq                           f  
             E                              A                        B          
                                                           g 
                 
                j                                                                                                    
                             h       
                 
             C  
 
Remark: equalizers are limits of diagrams with scheme • ⇉ •. If the two arrows are replaced 
by an arbitrary set of arrows, then limits of diagrams with such schemes are called multiple 
equalizers.    
 
Definition 2.1.18 
Let f, g : A ⟶ B be (parallel) morphisms. Then an object E together with a morphism 
coeq : B ⟶ E is an coequalizer of f and g iff f ∘ coeq = g ∘ coeq and for any other object C 
together with a morphism h : B ⟶ C such that f ∘ h = g ∘ h there exists a unique morphism 
j : E ⟶ C such that coeq ∘ j = h, i.e. such that the following picture commutes: 
 
                             f                         coeq  
             A                            B                          E 
                             g        
 
                                                                            j 
                                                          h       
 
                                                                          
                                                                         C        
 
Remark: coequalizers are colimits of diagrams with scheme • ⇉ •. If the two arrows are 
replaced by an arbitrary set of arrows, then colimits of diagrams with such schemes are called 
multiple coequalizers. 
 
Definition 2.1.19 
Let I ∈ Ob(C). We say that I is an initial object of a category C iff for every object  
X ∈ Ob(C), there exists precisely one morphism from I to X. Dually, we say that T ∈ Ob(C) is 
a terminal object of a category C iff for all X ∈ Ob(C), there exists precisely one morphism 
from X to T. 
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Definition 2.1.20 
Let X1 ∈ Ob(C)  and X2 ∈ Ob(C). Then a product of X1 and X2 is an object  
X1 × X2 ∈ Ob(C) together with a pair of morphisms π1 : X1 × X2 ⟶ X1 and  
π2 : X1 × X2 ⟶ X2 such that for any Y ∈ Ob(C) together with a pair of morphisms  
f1 : Y ⟶ X1 and f2 : Y ⟶ X2 there exist a unique morphism f : Y ⟶ X1 × X2 such that 
f1 = f ∘ π1 and f2 = f ∘ π2, i.e. such that the following picture commutes: 
 
                                      Y 
                                       
 
                  f1                   f               f2 
 
 
                    π1                            π2 

     X1                       X1 × X2                       X2        
 
Definition 2.1.21 
Let X1 ∈ Ob(C)  and X2 ∈ Ob(C). Then a coproduct of X1 and X2 is an object  
X1 + X2 ∈ Ob(C) together with a pair of morphisms i1 : X1 ⟶ X1 + X2 and i2 : X2 ⟶ X1 + X2 
such that for any Y ∈ Ob(C) together with a pair of morphisms f1 : X1 ⟶ Y and f2 : X2 ⟶ Y 
there exist a unique morphism f : X1 + X2 ⟶ Y such that f1 = i1 ∘ f and f2 = i2 ∘ f, 
i.e. such that the following picture commutes: 
 
                                    Y 
 
 
               f1                    f                f2     
               
 
                   i1                               i2 
   X1                       X1 + X2                        X2 
 
 
Definition 2.1.22 
Let C be a category with products for every pair of objects and let Y ∈ Ob(C) and Z ∈ Ob(C).  
Then an object ZY together with a morphism eval : ZY × Y ⟶ Z is an exponential of Y and Z 
iff for any object X and a morphism g : X × Y ⟶ Z there is a unique morphism λg : X ⟶ ZY 
such that the following picture commutes: 
 
       X                                 X × Y  
         
 
 
    λg                           λg × 1Y                            g 
 
 
 
                                                                eval 
       ZY                              ZY × Y                                      Z                                       
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Definition 2.1.23 
Let C be a category. Then C is called a Cartesian closed category iff the following properties 
hold: 
1) C has a terminal object. 
2) For any two objects X and Y of C, there exist a product X × Y in C. 
3) For any two objects X and Y of C, there exist an exponential YX in C. 
 
Definition 2.1.24 
Let C be a category and let A ∈ Ob(C) be given. Then the slice category C↓A of C-objects 
over A has as objects all C-morphisms with codomain A. Let f : B ⟶ A and g : C ⟶ A be an 
objects of the category C↓A. Then a C↓A-morphism from f to g is a C-morphism h : B ⟶ C 
such that f = h ∘ g. 
 
Definition 2.1.25     
A category C is called locally Cartesian closed iff all of its slice categories are Cartesian 
closed. 
 
Definition 2.1.26 
Let f : X ⟶ Z and g : Y ⟶ Z be morphisms. Then a pullback of f and g is an object P 
together with two morphisms p1 : P ⟶ X and p2 : P ⟶ Y such that p1 ∘ f = p2 ∘ g, i.e. such 
that the following picture commutes, and which moreover has the universal property, i.e. 
                                                      for any other such triple (Q, q1, q2) there exists a unique  
               p2                                                     morphism u : Q ⟶ P such that q1 = u ∘ p1 and q2 = u ∘ p2,  
P                             Y                    i.e. such that the following picture commutes:                    
                                                        
                                                       Q  
  p1                                          g                     
                                                                          u                       q2 
                                                                                           
                f                                                                              
X                             Z                                                                      p2        
                                                                                               P                                       Y 
 
 
                                                                        q1 
                                                                                                 p1                                      g 
 
 
 
                                                                                                                   f 
                                                                                               X                                       Z  
 
 
 
 
 
 
Definition 2.1.27 
A morphism m : A ⟶ B is called a regular monomorphism iff it is an equalizer of some 
pair of morphisms. 
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Definition 2.1.28 
Let C be a category with a terminal object 1. Then we say that a C-object Ω together with a 
C-morphism true : 1 ⟶ Ω is a (regular) subobject classifier for C if the following property 
holds: for each (regular) monomorphism j : U ⟶ X there is a unique morphism 휒j : X ⟶ Ω 
such that the following commutative picture represents a pullback: 
        
     U                                       1 
 
 
        j                                        true   
 
                                                
                         χj 
     X                                      Ω 
 
Definition 2.1.29  
Let C be a category. Then category C is a complete category iff every diagram D : I ⟶ C, 
where I  is a small category has a limit in C (we also say that all small limits exist in C). 
Dually, C is a cocomplete category iff every diagram D : I ⟶ C, where I  is a small category 
has a colimit in C (we also say that all small colimits exist in C). Category C is called finitely 
(co)complete iff every finite diagram has a (co)limit in C. 
 
Definition 2.1.30 
A category C is an (elementary) topos iff the following properties hold: 
1) C is finitely complete category. 
2) C is finitely cocomplete category.   
3) For any two objects X and Y of C, there exist an exponential YX in C. 
4) C has a subobject classifier. 
 
Definition 2.1.31 
A category C is a quasitopos iff the following properties hold: 
1) C is finitely complete category. 
2) C is finitely cocomplete category. 
3) C is locally Cartesian closed category. 
4) C has a regular subobject classifier. 
 
Definition 2.1.32 
Let C be a category. Then category C is cdl-ordered iff for each object A in C its class P(A) 
of subobjects is a complete distributive lattice with respect to subobject inclusion. Category C 
is disjointedly cdl-ordered iff it is cdl-ordered and each cdl P(A) is pseudo-complemented 
and has for any two (different) atoms the universal upper bound as lattice join of their  
pseudo-complements. 
 
Definition 2.1.33 
Let C be a category and let P be an object of C. Then P is an atomic monic iff each morphism 
f : P → A is a monomorphism, for each non-initial A there exist a morphism g : P → A and 
each subobject f : P → A is atomic in the lattice P(A). An object P of a category C is a 
projective generator iff each morphism h : P → B factors through every epimorphism 
f : A → B and for every two different morphisms f , g : A → B there is a morphism h : P → A 
such that h ∘ f ≠ h ∘ g. 
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Definition 2.1.34 
Let f : X ⟶ Y be a morphism. A monomorphism h : I ⟶ Y is the image of f iff the following 
properties are satisfied: 
1) There exist a morphism g : X ⟶ I such that f = g ∘ h. 
2) For any object Z with a morphism k : X ⟶ Z and a monomorphism l : Z ⟶ Y such that  
    f = k ∘ l there exist a unique morphism m : I ⟶ Z such that k = g ∘ m and h = m ∘ l, i.e.       
    such that the following diagram commutes: 
 
                                     f 
X                                                                        Y 
 
              g                                  h 
 
 
                           I    
           k                                          l 
 
                            m 
 
 
                           
                          Z 
 
 
Definition 2.1.35 
Let C be a category. Then category C has images iff each C-morphism has an image in C. 
Let f : A ⟶ B and g : B ⟶ C be C-morphisms and let h = f ∘ g be their composition.  
Let us denote by i the image of f and by j the image of h = f ∘ g. Then category C has 
associative images iff for each such morphisms i ∘ g = j holds. That is iff the following 
diagram commutes: 
 
                                     h = f ∘ g               
                                      
A                                    B                               C  
              f                                   g 
 
                   
                  i                          j 
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Definition 2.1.36 
Let C be a category with a terminal object 1. An object N together with morphisms o : 1 ⟶ N 
and s : N ⟶ N is called a natural number object (NNO) iff for any other object A and 
morphisms f : 1 ⟶ A and g : A ⟶ A there exist a unique morphism h : N ⟶ A such that 
o ∘ h = f and s ∘ h = h ∘ g, i.e. such that the following diagram commutes: 
 
                                                      s 
                                  N                                    N 
                                                                                  
            o                                                                        
                                                                                        
1                                  h                                     h               
                                                                                     
           f                                                                           
                                                      g                           
                                  A                                    A     
 
 
 
Definition 2.1.37 
Let C and D be categories. Then the product category C × D of categories C and D is 
defined as follows: 
1) Objects are pairs (A, B), where A ∈ Ob(C) and B ∈ Ob(D). 
2) Morphisms from (A1, B1) to (A2, B2) are pairs (f, g), where f : A1 ⟶ A2 ∈ Hom(C) and 
    g : B1 ⟶ B2 ∈ Hom(D). 
3) Composition of two (composable) morphisms (f1, g1) and (f2, g2) is defined as 
    (f1, g1) ∘ (f2, g2) = (f1 ∘ f2, g1 ∘ g2). 
4) Identity morphism on an object (A, B) is defined as 1(A, B) = (1A, 1B). 
 
Definition 2.1.38 
Let C and D be categories, let F be a functor from C to D and let B ∈ Ob(D). Then an 
F-structured arrow with domain B is a pair (f, A), where A ∈ Ob(C) and 
f : B ⟶ F(A) ∈ Hom(D). An F-structured arrow (f, A) with domain B is called  
F-universal for B iff for each F-structured arrow (f´, A´) with domain B there exists a unique 
C-morphism g : A ⟶ A´ such that f´ = f ∘ F(g), i.e. such that the following diagram 
commutes: 
 
                                                      f                          
                             B                                         F(A) 
 
                                                                                                      
                                             f´                             F(g)         
 
 
                                                                        F(A´) 
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Definition 2.1.39 
Let C and D be categories and let F be a functor from C to D. We say that F is an adjoint 
functor iff for every D-object B there exist an F-universal arrow with domain B.    
Remark: 
Dual notion of adjoint functor is that of co-adjoint functor. A functor F : C ⟶ D is co-
adjoint iff for every D-object B there exist an F-co-universal arrow with codomain B. Every 
adjoint functor has a unique co-adjoint functor. Conversely, if a functor F has a  
co-adjoint functor, then F is an adjoint functor. Dually, a functor is co-adjoint iff it has an 
(unique) adjoint. Thus adjoint functors and co-adjoint functors naturally come in pairs. Let  
F : C ⟶ D and G : D ⟶ C are functors such that F is adjoint functor of G and G is co-adjoint 
functor of F. Then F is (also) called a right adjoint of G and G is (also) called a left adjoint 
of F. 
 
Definition 2.1.40 
Led C and D be categories and let F : C ⟶ D be a functor from C to D. The functor F induces 
a function FA, B : HomC(A, B) ⟶ HomD(F(A), F(B)) by FA, B (f) = F(f) for all morphisms 
f ∈ HomC(A, B). Then F is called a faithful functor iff FA, B  is an injective function. 
 
Definition 2.1.41 
Let X  be a category. Then a concrete category over X  is a pair (C, U), where C is a category 
and U : C ⟶ X  is a faithful functor. A concrete category over Set is called simply a concrete 
category (also a construct). 
 
Definition 2.1.42 
Let (C, U) be a concrete category over a category X. Then a fibre of an X-object X is the 
preordered class of all C-objects A such that U(A) = X ordered by: 
A ≤ B iff 1X : U(A) ⟶ U(B) is a C-morphism. A fibre is called small if it is a (preordered) 
set. 
 
Definition 2.1.43 
Let F : A ⟶ B be a functor. We say that F is an amnestic functor iff each A-isomorphism f is 
an identity whenever F(f) is an identity. 
 
Definition 2.1.44 
Let (C, U) be a concrete category over a category X. We say that (C, U) is an amnestic 
category iff U is an amnestic functor. 
 
Definition 2.1.45  
Let F be a functor from a category C  to a category D. We say that F is topological iff for 
each D-cone (A ∈ Ob(D), {fi : A ⟶ F(B(i)) ∈ Hom(D) | B(i) ∈ Ob(C), for each i ∈ Ob(I)}) 
there exists a unique C-cone (A´ ∈ Ob(C), {fi´: A´ ⟶ B(i) ∈ Hom(C) | for each i ∈ Ob(I)}) 
such that for any other C-cone (D ∈ Ob(C), {gi : D ⟶ B(i) ∈ Hom(C) | for each i ∈ Ob(I)}) 
and each D-morphism h : F(D) ⟶ F(A´) such that F(gi) = h ∘ F(fi´) holds for all i there exists 
a unique C-morphism h´ : D ⟶ A´ such that gi = h´ ∘ fi´ holds for all i and h = F(h´), and 
moreover whenever the D-cone (A ∈ Ob(D), {fi : A ⟶ F(B(i)) ∈ Hom(D) | B(i) ∈ Ob(C), for 
each i ∈ Ob(I)}) is a limit of D ∘ F for an arbitrary diagram D : I ⟶ C over the category C, 
then the C-cone (A´ ∈ Ob(C), {fi´: A´ ⟶ B(i) ∈ Hom(C) | for each i ∈ Ob(I)}) is a limit of D 
such that F[(A´ ∈ Ob(C), {fi´: A´ ⟶ B(i) ∈ Hom(C) | for each i ∈ Ob(I)})] = (A ∈ Ob(D), {fi : 
A ⟶ F(B(i)) ∈ Hom(D) | B(i) ∈ Ob(C), for each i ∈ Ob(I)}). 
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Definition 2.1.46  
Let (C, U) be a concrete category over X. We say that (C, U) is a topological category over X 
iff U is topological. If (C, U) is a concrete category (over Set) then (C, U) is called simply a 
topological category.  
 
Definition 2.1.47 
Let C be a category. We say that category C is wellpowered iff for each A ∈ Ob(C) the class 
of its (pairwise non-isomorphic) subobjects is a set. Dually, we say that category C is 
co-wellpowered iff for each A ∈ Ob(C) the class of it´s (pairwise non-isomorphic) quotient 
objects is a set.  
 
Definition 2.1.48 
Let C be a category with objects (called 0-cells) A, B, C,... and morphisms (called 1-cells) 
f, g, h,... A 2-category 2-C on the category C has, additionally, a class of 2-cells α : f ⟶ g 
with domain f and codomain g, where f, g : A ⟶ B are parallel morphisms in the category C. 
These 2-cells have two different kinds of composition. Let α : f ⟶ g and α´ : f´ ⟶ g´ be  
2-cells, where f, g : A ⟶ B and f´, g´ : B ⟶ C are 1-cells. Then there is a horizontal 
composition of 2-cells α ∘ α´ : f ∘ f´ ⟶ g ∘ g´. We require that 2-cells form a category under 
this horizontal composition. This means that for each object B there is an identity 2-cell 
11B : 1B ⟶ 1B such that for each 2-cells α : f ⟶ g, where f, g : A ⟶ B, and α´ : f´ ⟶ g´, 
where f´, g´ : B ⟶ C, α ∘ 11B = α and 11B ∘ α´ = α´ hold. Horizontal composition of 2-cells is 
associative due to associativity of composition of morphisms (1-cells) in C. Second kind of 
composition of 2-cells is called a vertical composition, denoted by •. Let α : f ⟶ g and 
β : g ⟶ h be 2-cells, where f, g, h : A ⟶ B are parallel 1-cells. Then a vertical composition 
of α and β is given by α • β : f ⟶ h and is associative. There are also vertical identity 2-cells 
1f : f ⟶ f, for each 1-cell f : A ⟶ B, for this composition. Moreover, there are two additional 
axioms relating the horizontal compositon to the vertical one. First, we require that the 
horizontal composition of two vertical identities is itself a vertical identity. Let 1f : f ⟶ f, 
where f : A ⟶ B, and 1g : g ⟶ g, where g : B ⟶ C, be (horizontally composible) vertical 
identities. Then 1f ∘ 1g = 1fg, where 1fg is the vertical identity on f ∘ g : A ⟶ C. Second, let 
α : f ⟶ g, β : g ⟶ h, where f, g, h : A ⟶ B are parallel 1-cells, and α´ : f´ ⟶ g´, 
β´ : g´ ⟶ h´, where f´, g´, h´ : B ⟶ C are parallel 1-cells, be 2-cells. Then the following 
equation must be satisfied: (α ∘ α´) • (β ∘ β´) = (α • β) ∘ (α´ • β´) : f ∘ f´ ⟶ h ∘ h´, where 
f ∘ f´ : A ⟶ C and h ∘ h´ : A ⟶ C are the compositions of 1-cells f, f´ and h, h´ respectively.         
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2.2 (FUZZY) SET-THEORETIC AND ALGEBRAIC BASICS 
 
The concept of fuzzy set was introduced by Lotfi A. Zadeh in 1965 in [ref. 30] as a 
generalization (extension) of the classical concept of a set. Zadeh defined fuzzy sets as 
follows:  
 
Definition 2.2.1 
Let X be an ordinary (crisp) set. Then a fuzzy set A on the set X is defined as a (membership) 
function A : X ⟶ [0, 1]. 
 
An important generalization of the concept was done by Joseph A. Goguen, who was a 
student of Zadeh, in 1967 in [ref. 6]. Goguen´s generalization consists in the fact that he 
considered ordered sturctures beyond the unit interval, in which the membership functions 
take values. His definition of fuzzy sets (L-fuzzy sets) is as follows: 
 
Definition 2.2.2 
An L-fuzzy set A on a set X is a function A : X ⟶ L, where X is an ordinary (crisp) set and  
L is an ordered structure (set). 
 
Usually it is required that L be at least a poset [def. 2.2.3] or a lattice [def. 2.2.8]. 
The structure of L in the previous definition is actually one of the main criteria for 
classification of fuzzy sets. So now we present some of the algebraic structures which 
we will be working with. 
 
Definition 2.2.3 
Let P be a set and let ≤ be a binary relation over P such that the following conditions hold for 
all a, b and c ∈ P: 
1) a ≤ a (reflexivity) 
2) if a ≤ b and b ≤ a then a = b (antisymmetry) 
3) if a ≤ b and b ≤ c then a ≤ c (transitivity). 
Then ≤ is called a partial order and the pair (P, ≤) is called a partially ordered set  
(or a poset). 
 
Definition 2.2.4 
Let S be a set and let ∗ : S × S ⟶ S be an associative binary operation on S. Then the pair  
(S, ∗) is called a semigroup. 
 
Definition 2.2.5 
Let (M, ∗) be a semigroup. We say that (M, ∗) is a monoid iff there exist e ∈ M such that 
a ∗ e = e ∗ a = a holds for all a ∈ M (e is called the unit element of the monoid). 
A monoid (M, ∗) is called commutative (or Abelian) iff x ∗ y = y ∗ x holds for all 
x, y ∈ M. 
A structure (M, ≤, ∗), where ≤ is a partail order is called an ordered monoid iff the 
following conditions hold: 
1) if x ≤ y then z ∗ x ≤ z ∗ y 
2) if x ≤ y then x ∗ z ≤ y ∗ z, for all x, y, z ∈ M. 
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Definition 2.2.6 
Let (P, ≤) be a partially ordered set and let A ⊆ P. Then p ∈ P is called: 
1) An upper bound of A iff a ≤ p holds for all a ∈ A.      
2) A lower bound of A iff p ≤ a holds for all a ∈ A. 
3) The greatest element of A iff a ≤ p holds for all a ∈ A and p ∈ A. 
4) The least element of A iff p ≤ a holds for all a ∈ A and p ∈ A. 
 
Definition 2.2.7 
Let (P, ≤) be a partially ordered set and let A ⊆ P. Then p ∈ P is called: 
1) The supremum of A iff p is the least element of the set of all upper bounds of A (shortly: 
     p is the least upper bound of A). 
2) The infimum of A iff p is the greatest element of the set of all lower bounds of A (shortly:   
     p is the greatest lower bound of A). 
 
Definition 2.2.8 (algebraic) 
Let L be a set and let ∧ and ∨ be binary operations on L satisfying the following axioms for 
all x, y, z ∈ L: 
1) x ∧ (y ∧ z) = (x ∧ y) ∧ z , x ∨ (y ∨ z) = (x ∨ y) ∨ z   (associativity) 
2) x ∧ y = y ∧ x , x ∨ y = y ∨ x   (commutativity) 
3) x ∧ (x ∨ y) = x , x ∨ (x ∧ y) = x   (absorption). 
Let us define the canonical ordering of L as follows: 
x ≤ y iff x ∧ y = x iff x ∨ y = y. Then the relation ≤ is a partial order.  
Then the quadruple (L, ∧, ∨, ≤) is called a lattice. 
 
Definition 2.2.9 (set-theoretic) 
Let (L, ≤) be a poset. We say that (L, ≤) is a lattice iff the following conditions hold for all 
x, y ∈ L: 
1) The set {x, y} has a supremum in L, denoted by x ∨ y 
2) The set {x, y} has an infimum in L, denoted by x ∧ y. 
 
Remark: definitions 2.2.8 and 2.2.9 are equivalent. 
 
Definition 2.2.10 
Let L be a lattice. We say that L is a complete lattice if for every subset A ⊆ L the following 
conditions hold : 
1) A has a supremum in L, denoted by ⋁A 
2) A has an infimum in L, denoted by ⋀A. 
 
Definition 2.2.11 
Let (M, ≤, ∗) be an ordered monoid. We say that (M, ≤, ∗) is a lattice-ordered monoid iff 
the following properties hold: 
1) (M, ≤) is a lattice 
2) x ∗ (y ∨ z) = (x ∗ y) ∨ (x ∗ z) and (x ∨ y) ∗ z = (x ∗ z) ∨ (y ∗ z) hold for all x, y, z ∈ M. 
A lattice-ordered monoid (M, ≤, ∗) is called a completely lattice-ordered monoid iff 
the following properties hold:   
3) (M, ≤) is a complete lattice 
4) x ∗ (⋁i yi) = ⋁i (x ∗ yi) holds for all x, y ∈ M, i ∈ I some index set. 
An ordered monoid (M, ≤, ∗) is called integral iff the unit element of (M, ∗) is also the 
universal upper bound of (M, ≤). 
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Definition 2.2.12 
Let L be a lattice. We say that L is a distributive lattice if the following conditions of 
distributivity hold for all x, y, z ∈ L : 
1) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) 
2) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). 
 
Definition 2.2.13    
Let L be a complete lattice. Then L is called a completely distributive lattice iff for any 
doubly indexed family {xj, k | j ∈ J, k ∈ Kj} of elements of L the following equation holds: 
 
⋀j ⋁k xj, k = ⋁f ⋀j xj, f(j)  
 
for all j ∈ J, k ∈ Kj, f ∈ F, where F is a set of choice functions f choosing for each index j ∈ J 
some index f(j) ∈ Kj.     
 
Definition 2.2.14 
Let L be a lattice. We say that L is a bounded lattice if there exist the greatest and the least 
element (with respect to ≤) in L (denoted by 1 and 0, or ⊤ and ⊥, respectively).  
 
Definition 2.2.15 
Consider an algebra L = (L, ∧, ∨, ∗, ⟶, 0, 1). We say that L is a residuated lattice iff the 
following conditions hold: 
1) (L, ∧, ∨, 0, 1) is a lattice with the greatest element 1 and the least element 0 (with respect to   
     the lattice ordering ≤). 
2) (L, ∗, 1) is a commutative monoid. 
3) ∗ and ⟶ form an adjoint pair, i.e. z ≤ (x ⟶ y) iff x ∗ z ≤ y holds for all x, y, z ∈ L.  
 
Definition 2.2.16 
Let H be a bounded lattice with the gratest element 1 and the least element 0 and let ⟶ be a 
binary operation on H satisfying the following conditions for all x, y, z ∈ H : 
1) x ⟶ x = 1 
2) x ∧ (x ⟶ y) = x ∧ y 
3) y ∧ (x ⟶ y) = y 
4) x ⟶(y ∧ z) = (x ⟶ y) ∧ (x ⟶ z). 
Then we say that H is a Heyting algebra. An element x ⟶ y of H is called  
the relative pseudo-complement of x with respect to y.  
A Heyting algebra is complete iff H is a complete lattice. 
 
Definition 2.2.17 
Let L = (L, ∧, ∨, ∗, ⟶, 0, 1) be a residuated lattice. Then L is called an MV-algebra iff  
(x ⟶ y) ⟶ y = x ∨ y holds for all x, y ∈ L. 
An MV-algebra is complete iff L is a complete lattice. 
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Definition 2.2.18 
Consider the triple M = (L, ≤, ∗). We say that M = (L, ≤, ∗) is a GL-monoid if the following 
conditions hold: 
1) M is a lattice-ordered commutative monoid. 
2) (L, ≤) is a complete and bounded lattice. 
3) The greatest element in L (with respect to ≤) is the unit element of the semigroup (L, ∗). 
4) The least element in L (with respect to ≤) is the zero element of the semigroup (L, ∗). 
5) For all a, b ∈ L there is a c ∈ L such that a = b ∗ c (divisibility). 
6) The semigroup operation ∗ has an adjoint, i.e. a residuation ⟶ such that a ∗ b ≤ c iff  
     a ≤ b ⟶ c holds for all a, b, c ∈ L. 
 
Definition 2.2.19 
Consider a structure Q = (Q, ≤, ∗). We say that Q is a quantale if the following conditions 
hold: 
1) (Q, ≤) is a complete lattice 
2) (Q, ∗) is a semigroup satisfying the following additional properties: 
    2.1) (⋁i xi) ∗ y = ⋁i (xi ∗ y) 
    2.2) y ∗ (⋁i xi) = ⋁i (y ∗ xi) for all xi, y ∈ Q, i ∈ I any index set.   
Remark: 
1) Each quantale has, because of the completness of its lattice structure, a universal lower 
    bound ⊥ which is the zero element of a semigroup (Q, ∗). A quantale also has a universal    
    upper bound ⊤, but this need not be the unit element of the semigroup.  
2) Every quantale is left- and right-residuated, i.e. there exist binary operations ⟶l and ⟶r   
    satisfying the adjointness conditions: 
    x ∗ y ≤ z iff x ≤ y ⟶l z 
    x ∗ y ≤ z iff y ≤ x ⟶r z 
 
Definition 2.2.20 
A quantale is called commutative iff ∗ is commutative operation. 
A quantale is called unital iff it has an identity element for the operation ∗. 
An element e of a quantale Q is called a quasi-unit of Q iff x ∗ e ∗ y = x ∗ y holds for all 
x, y ∈ Q. 
A quantale Q is called involutive iff it is endowed with an order preserving involution • 
provided with the property (a ∗ b)• = b• ∗ a• for all a, b ∈ Q. 
We say that ⊤ is right-extensive resp. left-extensive iff x ≤ x ∗ ⊤ resp. x ≤ ⊤ ∗ x hold for all 
x ∈ Q. If ⊤ is right-extensive and left-extensive, then ⊤ is called extensive. 
A quantale Q is called (strictly) right-sided resp. (strictly) left-sided iff x ∗ ⊤ ≤ (=) x resp. 
⊤ ∗ x ≤ (=) x hold for all x ∈ Q. Quantales which are (strictly) right-sided and (strictly) 
left-sided are called (strictly) two-sided.  
A quantale Q is called right-symmetric resp. left-symmetric iff x ∗ (y ∗ z) = x ∗ (z ∗ y) resp. 
(x ∗ y) ∗ z = (y ∗ x) ∗ z hold for all x, y, z ∈ Q. 
A quantale Q is called bi-symmetric iff (a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d) holds for all 
a, b, c, d ∈ Q. 
A right-sided quantale Q is called a right Gelfand quantale iff (Q, ∗) is an idempotent 
semigroup, i.e. x ∗ x = x holds for all x ∈ Q. 
A right-sided and right-symmetric quantale Q is called a right GL-quantale iff the following 
conditions hold: 
i) (x ⟶l x) ∗ x = x for all x ∈ Q. 
ii) the subquantale of all two-sided elements of Q is a GL-monoid.  
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Definition 2.2.21 
Let L be a lattice. Then L is called a projectorial lattice iff each element a ∈ L is equipped 
with a functor a ⊓ (−) : L ⟶ L called a-projection, such that the following properties hold, 
for all x ∈ L: 
1) a ⊓ x ≤ a. 
2) if x ≤ a then a ⊓ x = x. 
3) x ⊓ a = ⊥ iff a ⊓ x = ⊥. 
If in addition we are given a right adjoint functor a ⇓ (−) to a ⊓ (−), then L is called a 
projectale.    
 
Definition 2.2.22 
Let A and B be sets. Then their Cartesian product A × B is defined as the set of all pairs  
(a, b) with a ∈ A and b ∈ B, i.e. A × B = {(a, b) | a ∈ A and b ∈ B}. 
 
Definition 2.2.23 
Let A and B be nonempty sets. Then an L-fuzzy relation between A and B is defined as a 
function A × B ⟶ L, where L is an ordered structure (set).  
 
Definition 2.2.24 
Let R: A × B ⟶ L and S: B × C ⟶ L be L-fuzzy relations. 
Then their (sup-min-) composition R ∘ S is defined as follows: 
(R ∘ S) (a, c) = ⋁b {R(a, b) ∧ S(b, c)}, where a ∈ A, b ∈ B and c ∈ C. 
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3. CATEGORIES OF FUZZY SETS 
 
3.1 CATEGORIES OF FUZZY SETS (AS OBJECTS) AND (FUZZY) FUNCTIONS 
      (AS MORPHISMS) 
 
Category S(V) (J. A. Goguen, 1969) [ref. 7] 
 
Objects: 
Objects are V-sets, i.e. the pairs (X, A), where X is a crisp set and A : X ⟶ V is a function. 
Here V = (P, ≤) is fixed partially ordered set [def. 2.2.3]. 
 
Morphisms: 
Let (X, A) and (Y, B) be objects. Morphisms f : (X, A) ⟶ (Y, B) are defined as the functions 
f : X ⟶ Y such that A(x) ≤ B(f(x)) holds for all x ∈ X. 
 
Composition of morphisms: 
Let f : (X, A) ⟶ (Y, B) and g : (Y, B) ⟶ (Z, C) be morphisms. Then their composition  
f ∘ g : (X, A) ⟶ (Z, C) is defined as the composition of functions. Let h = f ∘ g, then  
h ∈ Hom((X, A), (Z, C)) due to transitivity of ≤. 
 
Associativity of composition: 
Let f : (X, A) ⟶ (Y, B), g : (Y, B) ⟶ (Z, C) and h : (Z, C) ⟶ (W, D) be morphisms. 
Then (f ∘ g) ∘ h = f ∘ (g ∘ h) holds due to associativity of composition of functions. 
 
Identity morphisms: 
Let (X, A) be an object. Then the identity morphism on (X, A) is defined as the identity 
function 1X : X ⟶ X and is an element of Hom((X, A), (X, A)) due to reflexivity of ≤. 
 
Main results (properties): 
• If V has just one point, then S(V) ≅ Set. 
 
• If V = {0,1}, where 0 < 1, then S(V) is the category of pairs (X, A) of sets, where A ⊆ X. 
 
• If V is complete, then S(V) is a complete category [def. 2.1.29]. 
 
• If V is complete, then S(V) is a cocomplete category [def. 2.1.29]. 
 
• If V is complete, then S(V) has an exponential object [def. 2.1.22]. 
 
• If V is complete, then S(V) has a natural number object [def. 2.1.36]. 
 
Remark: 
There are (at least) another four categories which are based on the category S(V). Objects, 
morphisms, composition of morphisms and identity morphisms in these categories are defined 
in the same manner as in S(V). Differences between the particular categories are given by 
different target structures of membership functions of their objects (i.e. fuzzy sets). The 
categories are as follows: 
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Category Set(L) (J. A. Goguen, 1974) [ref. 8, cited according to ref. 10, 25, 26] 
 
Target structure of membership functions is a completely distributive lattice [def. 2.2.13]. 
 
Main results (properties): 
• Category (categories of the form Set(L)) Set(L) is characterized by these axioms: 
  
  1. Set(L) has an initial object 0 and a terminal object 1 [def. 2.1.19]. 
 
  2. Set(L) has associative images [def. 2.1.35].  
 
  3. Set(L) is disjointedly cdl-ordered [def. 2.1.32]. 
      
  4. Set(L) has coproducts [def. 2.1.21] which are disjoint unions. 
 
  5. Set(L) has an atomic monic projective generator P [def. 2.1.33]. 
 
  6. P + P is not isomorphic to P. 
 
• Category Set(L) is a quasitopos [def. 2.1.31]. 
 
• Category Set(L) is a topos [def. 2.1.30] iff L is {0}, in which case Set(L) ≅ Set. 
 
• Category Set(L) is a Cartesian closed category [def. 2.1.23] iff L is a complete Heyting 
   algebra [def. 2.2.16]. 
 
• Category Set(L) is balanced [def. 2.1.10] iff L is a one point lattice [def. 2.2.8] with 0 = 1. 
 
 
 
Category Set(Q) (L. N. Stout, 1995) [ref. 27] 
 
Target structure of membership functions is a quantale [def. 2.2.19]. 
Stout studies previous Goguen´s category Set(L). He shows what happens when we add in 
other operations on the lattice L. For details see [ref. 27]. 
 
 
 
Category Set(L) (L. N. Stout, 1995) [ref. 27] 
 
Target structure of membership functions is a projectale [def. 2.2.21]. 
In [ref. 27, p. 230] Stout gives the following upshot: 
"Category Set(L) has a propositional logic which can be thought of as being based on    
  quantum logic. When we move up to internal first order logic we get either a fragment 
  because of the absence of existential quantifiers or a much more complicated structure 
  because the existential quantifier is the left adjoint to a different substitution functor than the 
  universal quantification is right adjoint to. The category does have the higher order internal 
  logic given by weak representation of unbalanced subobjects, as do all categories of lattice 
  valued fuzzy sets." 
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Category Setdc(H) (O. Wyler, 1995) [ref. 28] 
 
Index dc in Setdc refers to the fact that objects are discrete fuzzy sets and morphisms are crisp 
mappings. 
Target structure of membership functions is a complete Heyting algebra [def. 2.2.16]. 
 
Main results (properties): 
• Category Setdc(H) is a topological category over [def. 2.1.46] Set with small fibres 
   [def. 2.1.42]. 
 
• Category Setdc(H) is a complete category [def. 2.1.29]. 
 
• Category Setdc(H) is a cocomplete category [def. 2.1.29]. 
 
• Category Setdc(H) is a quasitopos [def. 2.1.31]. 
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Category Set(JCPos) (S. A. Solovyov, 2006) [ref. 22] 
 
Category Set(JCPos) is a concrete category over [def. 2.1.41] the product category 
[def. 2.1.37] Set × JCPos. It is the category of lattice-valued subsets of sets. Category JCPos 
is the category of complete lattices [def. 2.2.10] and join-preserving maps. 
 
Objects: 
Objects are lattice-valued subsets of sets, i.e. maps X : X´ ⟶ LX , where  
(X´, LX) ∈ Ob(Set × JCPos), i.e. X´ is a set and LX  is a complete lattice [def. 2.2.10]. 
 
Morphisms: 
Let X : X´ ⟶ LX and Y : Y´ ⟶ LY be objects. Then morphisms from X to Y are pairs 
f = (fS, fJ) such that (X ∘ fJ)(x) ≤ (fS ∘ Y)(x) for all x ∈ X´, where fS ∈ HomSet(X´, Y´) and  
fJ ∈ HomJCPos(LX, LY).  
 
Composition of morphisms: 
Let f = (fS , fJ) and g = (gS , gJ) be morphisms such that cod(fS) = dom(gS) and 
cod(fJ) = dom(gJ). Then their composition is defined as usual product category composition, 
i.e. f ∘ g = (fS ∘ gS , fJ ∘ gJ). 
 
Associativity of composition: 
Let f = (fS , fJ), g = (gS , gJ) and h = (hS , hJ) be morphisms such that cod(fS) = dom(gS), 
cod(gS) = dom(hS), cod(fJ) = dom(gJ) and cod(gJ) = dom(hJ). Then (f ∘ g) ∘ h = f ∘ (g ∘ h) 
holds due to associativity of composition of morphisms in Set and in JCPos.  
 
Identity morphisms: 
Let X : X´ ⟶ LX be an object and let 1X´ and 1LX  be the identity morphisms of X´ in Set and 
of LX in JCPos respectively. Identity morphism 1X is defined as the pair (1X´ , 1LX ), i.e. the 
usual product category identity morphism. 
 
Main results (properties): 
• Category Set(JCPos) is an amnestic category [def. 2.1.44]. 
 
• Category Set(JCPos) is a topological category [def. 2.1.46]. 
 
• Category Set(JCPos) is a complete category [def. 2.1.29]. 
 
• Category Set(JCPos) is a cocomplete category [def. 2.1.29]. 
  
• Category Set(JCPos) is a wellpowered category [def. 2.1.47]. 
 
• Category Set(JCPos) is a co-wellpowered category [def. 2.1.47]. 
 
• Category Set(JCPos) is not a cartesian closed category [def. 2.1.23]. 
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Category X(A) (S. A. Solovyov, 2006) [ref. 23, 24] 
 
Category X(A) is a generalization of the category Set(JCPos) [page 28]. Suppose (A, U) is a 
concrete category over X [def. 2.1.41] such that the following conditions hold: 
1) A is a 2-category [def. 2.1.48] 
2) U is an adjoint functor [def. 2.1.39]. 
 
Objects: 
Objects are triples (X, α, A), where X ∈ Ob(X), A ∈ Ob(A) and α : X ⟶ U(A) ∈ Mor (X). 
Convention: Objects will be identified with α : X ⟶ U(A). 
 
Morphisms: 
Let α : X ⟶ U(A) and β : Y ⟶ U(B) be objects. Let f : X ⟶ Y ∈ Hom(X) and  
g : A ⟶ B ∈ Hom(A). Then morphisms from α : X ⟶ U(A) to β : Y ⟶ U(B) are the  
X × A morphisms (f, g) such that α ∘ U(g) ⊑ f ∘ β, where ⊑ is defined as follows: 
Take any two objects α1 : X ⟶ U(A) and α2 : X ⟶ U(A). Due to adjointness of U we have 
α1  ́: F(X) ⟶ A and α2  ́: F(X) ⟶ A ∈ Hom(A), where F is an adjoint functor of U. 
Define α1 ⊑ α2 iff there exist a 2-cell τ : α1  ́⟶ α2 .́   
 
Composition of morphisms: 
The fact that X(A)-morphisms are closed under composition can be easily checked with the 
help of the following condition: 
Suppose f : X ⟶ Y, α : Y ⟶ U(A), β : Y ⟶ U(A) and U(φ) : U(A) ⟶ U(B) are 
X-morphisms. If α ⊑ β, then f ∘ α ⊑ f ∘ β and α ∘ U(φ) ⊑ β ∘ U(φ).  
 
Associativity of composition: 
Composition of morphisms is associative due to associativity of composition of 2-cells  
in 2-category A. 
 
Identity morphisms: 
Let α : X ⟶ U(A) be an object and let 1X be the identity morphism of the object X in the 
category X and 1A be the identity morphism of the object A in the category A. Then the 
identity morphism of α : X ⟶ U(A) is defined as the X × A identity morphism (1X, 1A)  
such that α ∘ U(1A) ⊑ 1X ∘ α, which holds evidently due to the fact that α ⊑ α.  
 
Main results (properties): 
• Category X(A) is an amnestic category [def. 2.1.44]. 
 
• Category X(A) is a topological category over [def. 2.1.46] the product category [def. 2.1.37] 
   X × A. 
 
• In [ref. 23, p. 853] Solovyov gives the following upshot: 
   "By analogy with the notion of a lattice-valued set one can introduce the notion of an  
     A-valued object in a category as follows: Given a concrete category (A, U) over X, define 
     an A-valued object in the category X to be an U-structured arrow f : X ⟶ U(A). In such a 
     way X(A) becomes the category of A-valued objects. The definition of X(A) allows one to 
     consider different realizations of the category A, for example, such categories as the 
     category Top or the category Grp." 
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3.2 CATEGORIES OF FUZZY SETS (AS OBJECTS) AND (FUZZY) RELATIONS  
      (AS MORPHISMS) 
 
Category S(L) (J. A. Goguen, 1967) [ref. 6] 
 
Objects: 
Objects are L-fuzzy sets, i.e. the pairs (X, A), where X is a crisp set and A : X → L is an  
L-fuzzy subset of X. Here L is a complete lattice-ordered semigroup [def. 2.2.4, 2.2.5, 2.2.11] 
(L, ∧, ∨, ∗) satisfying the complete distributive laws: 
a ∗ (⋁i bi) = ⋁i (a ∗ bi) and (⋁i bi) ∗ a = ⋁i (bi ∗ a), for all a, b ∈ L, i ∈ I. 
 
Morphisms: 
Let A = (X, A) and B = (Y, B) be objects. Let p be an arbitrary fixed element (of some crisp 
set). Then we let A also denote the L-relation {p} × X ⟶ L defined by A(p, x) = A(x) for all 
x ∈ X. Let R be an L-fuzzy relation [def. 2.2.23] from X to Y. Then the composition A ∘ R is 
given by (A ∘ R) (p, y) = ⋁x {A(p, x) ∗ R(x, y)} (so called sup-∗-composition), for all x ∈ X 
and y ∈ Y. Finally, morphisms from A to B are triples (A, B, R), where R is an L-fuzzy 
relation such that (A ∘ R) (p, y) ≤ B(y) holds for all y ∈ Y. 
 
Composition of morphisms: 
Let (A, B, R) ∈ Hom(A, B) and (B, C, S) ∈ Hom(B, C). Then their composition  
(A, B, R) ∘ (B, C, S) is defined to be (A, C, R ∘ S) where R ∘ S is a sup-∗-composition of 
L-fuzzy relations R and S, i.e. (R ∘ S) (x, z) = ⋁y {R(x, y) ∗ S(y, z)} holds for all x ∈ X, y ∈ Y 
and z ∈ Z. (A, C, R ∘ S) ∈ Hom(A, C) iff (A ∘ (R ∘ S)) (p, z) ≤ C(z) holds for all z ∈ Z. This 
holds due to the following property [ref. 6, p. 168] (and due to the transitivity of ≤): 
A ∘ (R ∘ S) = (A ∘ R) ∘ S. 
 
Associativity of composition: 
Let (A, B, R) ∈ Hom(A, B), (B, C, S) ∈ Hom(B, C) and (C, D, T) ∈ Hom(C, D). Then  
(A, C, R ∘ S) ∘ (C, D, T) = (A, B, R) ∘ (B, D, S ∘ T) holds due to the associativity of 
composition of L-fuzzy relations: 
((R ∘ S) ∘ T) (x, w) = ⋁z {⋁y {R(x, y) ∗ S(y, z)} ∗ T(z, w)} 
                                = ⋁y, z {R(x, y) ∗ S(y, z) ∗ T(z, w)} 
                                = ⋁y {R(x, y) ∗ ⋁z {S(y, z) ∗ T(z, w)}} 
                                = (R ∘ (S ∘ T)) (x, w) 
holds for all L-fuzzy relations R from X to Y, S from Y to Z, T from Z to W and for all x ∈ X, 
y ∈ Y, z ∈ Z and w ∈ W. 
 
Identity morphisms: 
Let A = (X, A) be an object. Then the identity morphism on A = (X, A) is defined as an  
L-fuzzy relation (A, A, 1X) ∈ Hom(A, A), where 1X is the identity function from X to X. 
 
Main results (properties): 
• Category S(L) is thus the category of L-fuzzy sets (as objects) and L-fuzzy relations  
   (as morphisms). Goguen also considered (also in [ref. 6]) the subcategory [def. 2.1.5] F(L)   
   whose morphisms involve only functional relations. Category F(L) is thus the category of  
   L-fuzzy sets (as objects) and L-fuzzy functions (as morphisms).   
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Category Fuz(H) (M. Eytan, 1981) [ref. 5]  
 
Objects: 
Objects are H-valued fuzzy sets, i.e. the pairs (X, A), where X is a crisp set and                      
A : X → H is a map from X to a complete Heyting algebra H [def. 2.2.16]. 
 
Morphisms: 
Let (X, A) and (Y, B) be H-valued fuzzy sets. Morphisms f : (X, A) ⟶ (Y, B) between these 
fuzzy sets are defined as maps f : X × Y ⟶ H satisfying: 
1) f(x, y) ≤ A(x), f(x, y) ≤ B(y) for all x ∈ X, y ∈ Y. 
2) A(x) ≤ ⋁y∈Y f(x, y) for all x ∈ X. 
3) f(x, y) ∧ f(x, y´) ≤ e(y, y´), where e(y, y´) = ⊤ if y = y´ and e(y, y´) = ⊥ if y ≠ y´ for all 
x ∈ X and y, y´∈ Y. 
 
Composition of morphisms: 
Let f : (X, A) ⟶ (Y, B) and g : (Y, B) ⟶ (Z, C) be morphisms. Then their composition is 
defined to be a map f ∘ g : X × Z ⟶ H with (f ∘ g)(x, z) = ⋁y∈Y (f(x, y) ∧ g(y, z)) for all 
x ∈ X, z ∈ Z. 
 
Associativity of composition: 
Let f : (X, A) ⟶ (Y, B), g : (Y, B) ⟶ (Z, C) and h : (Z, C) ⟶ (W, D) be morphisms. 
Then (f ∘ g) ∘ h = f ∘ (g ∘ h) holds due to the following identities: 
((f ∘ g) ∘ h)(x, w) = ⋁z∈Z ((f ∘ g)(x, z) ∧ h(z, w)) 
                             = ⋁z∈Z (⋁y∈Y (f(x, y) ∧ g(y, z)) ∧ h(z, w)) 
                                          = ⋁z∈Z ⋁y∈Y (f(x, y) ∧ g(y, z) ∧ h(z, w)) 
                             = ⋁y∈Y ⋁z∈Z (f(x, y) ∧ g(y, z) ∧ h(z, w)) 
                             = ⋁y∈Y (f(x, y) ∧ ⋁z∈Z (g(y, z) ∧ h(z, w)))    
                             = ⋁y∈Y (f(x, y) ∧ (g ∘ h)(y, w)) 
                             = (f ∘ (g ∘ h))(x, w), for all x ∈ X, w ∈ W.       
 
Identity morphisms: 
Let (X, A) be an object. Then the identity morphism on (X, A) is defined to be the map  
i : X × X ⟶ H with i(x, x´) = A(x) ∧ A(x´) ∧ e(x, x´) for all x, x´ ∈  X. 
 
Main results (properties): 
• Eytan claimed in his 1981 paper [ref. 5] that the category Fuz(H) is a topos [def. 2.1.30], 
   but it is not. According to Stout´s 1991 paper [ref. 26], the crucial point seems to be that in  
   the category Fuz(H) there is no graded equality relation available. 
 
• According to Stout´s 1984 paper [ref. 25], the category Fuz(H) is a logos, i.e. a category in   
   which first order theories have natural models. 
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3.3 CATEGORIES OF FUZZY RELATIONS (AS OBJECTS) AND (FUZZY)  
      FUNCTIONS (AS MORPHISMS) 
 
L. N. Stout, 1991 [ref. 26] 
 
Objects: 
Objects are pairs (A, α), where A is a set and α : A × A ⟶ [0, 1] is a map satisfying  
α(a, a´) = α(a´, a), for all a, a´∈ A.  
 
Morphisms: 
Let (A, α) and (B, β) be objects. Morphisms between (A, α) and (B, β) are defined as 
functions f : A ⟶ B satisfying α(a, a´) ≤ β(f(a), f(a´)), for all a, a´∈ A. 
 
Composition of morphisms: 
Let f : (A, α) ⟶ (B, β) and g : (B, β) ⟶ (C, γ) be morphisms. Then their composition 
f ∘ g : (A, α) ⟶ (C, γ) is defined as the composition of functions. Let h = f ∘ g, then  
h ∈ Hom((A, α), (C, γ)) due to transitivity of ≤. 
 
Associativity of composition: 
Let f : (A, α) ⟶ (B, β), g : (B, β) ⟶ (C, γ) and h : (C, γ) ⟶ (D, δ) be morphisms. 
Then (f ∘ g) ∘ h = f ∘ (g ∘ h) holds due to associativity of composition of functions. 
 
Identity morphisms: 
Let (A, α) be an object. Then the identity morphism on (A, α) is defined as the identity 
function 1A : A ⟶ A and is an element of Hom((A, α), (A, α)) due to reflexivity of ≤. 
 
Main results (properties): 
• This category is a cartesian closed category [def. 2.1.23]. 
 
• Products [def. 2.1.20] are given by (A, α) × (B, β) = (A × B, α ∧ β). 
 
• The exponential [def. 2.1.22] is given by (B, β)(A, α) = ({f : A ⟶ B}, ζ), 
   where ζ(f, g) = inf{α(a, a´) ⟹ β(f(a), g(a´))}, where a ⟹ b = max{h | h ∧ a ≤ b}.   
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Category Ω-Set (U. Höhle, L. N. Stout, 1991) [ref. 17] 
 
Objects: 
Objects are Ω-valued sets, i.e. the pairs (X, E), where X is a set and E : X × X ⟶ Ω is a map 
to a complete Heyting algebra Ω [def. 2.2.16] satisfying the following conditions: 
1) E(x, y) = E(y, x)   (symmetry) 
2) E(x, y) ∧ E(y, z) ≤ E(x, z)   (transitivity), 
for all x, y, z ∈ X.  
 
Morphisms: 
Let (X, E) and (Y, F) be objects. Then morphisms between (X, E) and (Y, F) are defined as 
the mappings f : X ⟶ Y satisfying these conditions: 
1) F(f(x), f(x)) ≤ E(x, x)   (strictness) 
2) E(x1, x2) ≤ F(f(x1), f(x2))   (preservation of equality), 
for all x, x1, x2 ∈ X.  
 
Composition of morphisms: 
Let f : (X, E) ⟶ (Y, F) and g : (Y, F) ⟶ (Z, G) be morphisms. Then their composition is  
the usual composition of functions and f ∘ g ∈ Hom((X, E), (Z, G)) due to transitivity of ≤.     
 
Associativity of composition: 
Let f : (X, E) ⟶ (Y, F), g : (Y, F) ⟶ (Z, G) and h : (Z, G) ⟶ (W, H) be morphisms. 
Then (f ∘ g) ∘ h = f ∘ (g ∘ h) holds due to the associativity of composition of functions. 
 
Identity morphisms: 
Let (X, E) be an object. Then the identity morphism on (X, E) is defined as the usual identity 
function 1(X, E) : X ⟶ X and 1(X, E) ∈ HomM-Set((X, E), (X, E)) due to the reflexivity of ≤. 
 
Main results (properties): 
• The authors give particular results about the Kleisli category (Ω-Set)T and the  
   Eilenberg-Moore category (Ω-Set)T. These results, as well as the concepts of Kleisli  
   category and Eilenberg-Moore category, are out of the scope of this work already. For  
   details see [ref. 17]. 
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Category SM-Set (U. Höhle, L. N. Stout, 1991) [ref. 17] 
 
Objects: 
Let M = (L, ≤, ∗) be an integral, commutative, completely lattice-ordered monoid with zero 
[def. 2.2.11] satisfying the following additional property: 
If a ∈ L is idempotent with respect to ∗ and if A ⊆ L such that a ≤ ⋁A, then 
a ≤ ⋁{b ∗ b | b ∈ A}. 
Objects are strong M-valued sets, i.e. the pairs (X, E) where X is a set and E : X × X ⟶ L 
is a map satisfying the following conditions: 
1) E(x, x) ∗ E(x, y) ∗ E(y, y) = E(x, y)   (strong strictness) 
2) E(x, y) = E(y, x)   (symmetry) 
3) E(x, y) ∗ E(y, z) ≤ E(x, z)   (strong transitivity), 
for all x, y, z ∈ X. 
 
Morphisms: 
Let (X, E) and (Y, F) be objects. Then morphisms from (X, E) to (Y, F) are defined as the 
maps f : X ⟶ Y satisfying the following conditions: 
1) F(f(x), f(x)) ≤ E(x, x)   (strictness) 
2) E(x1, x2) ≤ F(f(x1), f(x2))   (preservation of equality), 
for all x, x1, x2 ∈ X. 
 
Composition of morphisms: 
Let f : (X, E) ⟶ (Y, F) and g : (Y, F) ⟶ (Z, G) be morphisms. Then their composition  
f ∘ g is defined as the usual composition of functions and f ∘ g ∈ HomSM-Set((X, E), (Z, G)) 
due to the transitivity of ≤. 
 
Associativity of composition: 
Let f : (X, E) ⟶ (Y, F), g : (Y, F) ⟶ (Z, G) and h : (Z, G) ⟶ (W, H) be morphisms. 
Then (f ∘ g) ∘ h = f ∘ (g ∘ h) holds due to the associativity of composition of functions. 
 
Identity morphisms: 
Let (X, E) be an object. Then the identity morphism on (X, E) is defined as the usual identity 
function 1(X, E) : X ⟶ X and 1(X, E) ∈ HomM-Set((X, E), (X, E)) due to the reflexivity of ≤. 
 
Main results (properties): 
• Category SM-Set is a strong form of the preceding category Ω-Set [page 33]. 
 
• The authors give particular results about the Kleisli category (SM-Set)T. These results, 
   as well as the concept of Kleisli category, are out of the scope of this work already. For  
   details see [ref. 17]. 
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Category M-Set (U. Höhle, L. N. Stout, 1991) [ref. 17] and (U. Höhle, 1992) [ref. 14]  
 
Objects: 
Let M = (L, ≤, ∗) be a GL-monoid [def. 2.2.18]. 
Objects are separated M-valued sets, i.e. the pairs (X, E), where X is a set and E : X × X ⟶ L 
is a map satisfying the following axioms: 
1) E(x, y) ≤ E(x, x) ∧ E(y, y)   (strictness) 
2) E(x, y) = E(y, x)   (symmetry) 
3) E(x, y) ∗ (E(y, y) ⟹ E(y, z)) ≤ E(x, z)   (transitivity)  
4) E(x, x) ∨ E(y, y) ≤ E(x, y) ⟹ x = y   (separation), for all x, y, z ∈ X. 
 
Morphisms: 
Let (X, E) and (Y, F) be separated M-valued sets. Then morphisms between (X, E) and (Y, F) 
are mappings f : X ⟶ Y satisfying the following axioms: 
1) F(f(x), f(x)) ≤ E(x, x)   (strictness) 
2) E(x, y) ≤ F(f(x), f(y))   (preservation of equality), for all x, y ∈ X. 
 
Composition of morphisms: 
Let f : (X, E) ⟶ (Y, F) and g : (Y, F) ⟶ (Z, G) be morphisms. Then their composition f ∘ g 
is defined as the usual composition of functions and f ∘ g ∈ HomM-Set((X, E), (Z, G)) due to 
the transitivity of ≤. 
 
Associativity of composition: 
Let f : (X, E) ⟶ (Y, F), g : (Y, F) ⟶ (Z, G) and h : (Z, G) ⟶ (W, H) be morphisms. 
Then (f ∘ g) ∘ h = f ∘ (g ∘ h) holds due to the associativity of composition of functions. 
 
Identity morphisms: 
Let (X, E) be an object. Then the identity morphism on (X, E) is defined as the usual identity 
function 1(X, E) : X ⟶ X and 1(X, E) ∈ HomM-Set((X, E), (X, E)) due to the reflexivity of ≤. 
 
Main results (properties): 
• Category M-Set has an initial object [def. 2.1.19] 0 = (∅, ∅) and a terminal object 
   [def. 2.1.19] 1 = (L, ∧), where L is an underlying lattice [def. 2.2.8] of the GL-monoid 
   [2.2.18] and ∧ is the meet operation in L. 
 
• Category M-Set has set-indexed products [def. 2.1.20]. 
 
• Category M-Set has set-indexed coproducts [def. 2.1.21]. 
 
• Category M-Set has multiple equalizers [def. 2.1.17]. 
 
• Category M-Set has multiple coequalizers [def. 2.1.18]. 
 
• Category M-Set has inverse limits [def. 2.1.16]. 
 
• Category M-Set has direct limits [def. 2.1.16]. 
 
• Category M-Set is a complete category [def. 2.1.29]. 
 
• Category M-Set is a cocomplete category [def. 2.1.29]. 
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Category Settc(H) (O. Wyler, 1995) [ref. 28] 
 
Index tc in Settc refers to the fact that objects are totally fuzzy sets (relations) and morphisms 
are crisp mappings. 
 
Objects:  
Objects are H-valued totally fuzzy sets, i.e. the pairs (A, α), where A is a crisp set and α is a 
fuzzy equality mapping A × A ⟶ H, where H is a complete Heyting algebra [def. 2.2.16], 
satisfying these two conditions of symmetry and transitivity: 
1) α(x, y) = α(y, x) 
2) α(x, y) ∧ α(y, z) ≤ α(x, z), 
for all x, y, z ∈ A. 
 
Morphisms: 
Let (A, α) and (B, β) be H-valued totally fuzzy sets. Morphisms between (A, α) and (B, β) 
are defined as the crisp mappings f : A ⟶ B, satisfying α(x, y) ≤ β(f(x), f(y)), for all x, y ∈ A. 
 
Composition of morphisms: 
Let f : (A, α) ⟶ (B, β) and g : (B, β) ⟶ (C, γ) be morphisms. Then their composition  
f ∘ g : (A, α) ⟶ (C, γ) is a crisp mapping f ∘ g : A ⟶ C, satisfying 
α(x, y) ≤ γ(g(f(x)), g(f(y))), for all x, y ∈ A. 
 
Associativity of composition: 
Let f : (A, α) ⟶ (B, β), g : (B, β) ⟶ (C, γ) and h : (C, γ) ⟶ (D, δ) be morphisms. 
Then (f ∘ g) ∘ h = f ∘ (g ∘ h) holds due to associativity of composition of functions. 
 
Identity morphisms: 
Let (A, α) be an object. Then the identity morphism on (A, α) is defined as the identity 
function 1A : A ⟶ A and is an element of Hom((A, α), (A, α)) due to reflexivity of ≤. 
 
Main results (properties): 
• Category Settc(H) is a concrete category over Set [def. 2.1.41]. 
 
• Category Settc(H) is a topological category over Set [def. 2.1.46]. 
 
• Category Settc(H) has the category Setdc(H) [page 27] as a full concrete subcategory 
   [def. 2.1.5, 2.1.41]. 
 
• Category Settc(H) is a cartesian closed category [def. 2.1.23], but not a quasitopos 
   [def. 2.1.31].  
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Category Sette(H) (O. Wyler, 1995) [ref. 28] 
 
Index te in Sette refers to the fact that objects are totally fuzzy sets (relations) and morphisms 
are extensional maps. 
 
Objects: 
Objects are H-valued totally fuzzy sets, i.e. the pairs (A, α), where A is a crisp set and α is a 
fuzzy equality mapping A × A ⟶ H, where H is a complete Heyting algebra [def. 2.2.16], 
satisfying the two conditions of symmetry and transitivity: 
1) α(x, y) = α(y, x) 
2) α(x, y) ∧ α(y, z) ≤ α(x, z), 
for all x, y, z ∈ A. 
 
Morphisms: 
Let (A, α) and (B, β) be H-valued totally fuzzy sets. Let f and g be morphisms between 
(A, α) and (B, β) as defined in the category Settc(H) [page 36], i.e. the crisp mappings 
f : A ⟶ B and g : A ⟶ B, satisfying α(x, y) ≤ β(f(x), f(y)) and α(x, y) ≤ β(g(x), g(y)) 
respectively, for all x, y ∈ A. We say that the maps f and g are extensionally equal if the 
following condition holds: α(x, x) ≤ β(f(x), g(x)), for all x ∈ A. 
Extensional equality is an equivalence relation. We define an extensional map [f] : A ⟶ B as 
an equivalence class of a map f : A ⟶ B for this relation. Finally, the extensional morphisms 
from (A, α) to (B, β) are defined as these extensional maps, i.e. the equivalence classes of 
extensionally equal morphisms from (A, α) to (B, β) in the sense of category Settc(H) 
[page 36]. 
 
Composition of morphisms: 
Let f : (A, α) ⟶ (B, β) and g : (B, β) ⟶ (C, γ) be morphisms in the sense of category Settc(H) 
[page 36]. Then their composition in category Sette(H) is given by [f] ∘ [g] = [f ∘ g].  
 
Associativity of composition: 
Let f : (A, α) ⟶ (B, β), g : (B, β) ⟶ (C, γ) and h : (C, γ) ⟶ (D, δ) be morphisms in the sense 
of the category Settc(H) [page 36]. Then the composition of morphisms in Sette(H) is 
associative due to the equivalence of the following identities: 
([f] ∘ [g]) ∘ [h] = [f] ∘ ([g] ∘ [h]) 
([f ∘ g]) ∘ [h] = [f] ∘ ([g ∘ h]) 
[f ∘ g ∘ h] = [f ∘ g ∘ h]. 
 
Identity morphisms: 
Let (A, α) be an object and let 1A be the identity morphism on (A, α) in the sense of the 
category Settc(H) [page 36]. Then the identity morphism on (A,α) is defined as [1A], i.e. 
the equivalence class of the map 1A for the extensional equality relation.  
 
Main results (properties): 
• Category Sette(H) is a quasitopos [def. 2.1.31] with H-valued internal logic. 
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Category Q-Set (U. Höhle, 1998) [ref. 15] 
 
Objects: 
Q = (L, ≤, ∗) is a right GL-quantale [def. 2.2.20]. 
Objects are Q-valued sets, i.e. the pairs (A, α), where A is a crisp set and α : A × A ⟶ L 
is a map satisfying these conditions: 
1) α(x, x) ∗ (α(x, x) ⟶r α(x, y)) = α(x, y)) ≤ ⊤ ∗ α(y, y)   (strictness) 
2) (α(y, y) ⟶l α(y, y)) ∗ α(x, y) ≤ α(y, x)   (right symmetry) 
3) α(x, y) ∗ (α(y, y) ⟶r α(y, z)) ≤ α(x, z)   (transitivity), 
for all x, y, z ∈ A. 
 
Morphisms: 
Let (A, α) and (B, β) be objects. Then morphisms between (A, α) and (B, β) are mappings 
f : A ⟶ B satisfying the following conditions: 
1) α(x, y) ≤ β(f(x), f(y))   (preservation of equality) 
2) α(x, x) ≤ β(f(x), f(x))   (strictness), 
for all x, y ∈ A. 
  
Composition of morphisms: 
Let f : (A, α) ⟶ (B, β) and g : (B, β) ⟶ (C, γ) be morphisms. Then their composition f ∘ g is 
defined as the usual composition of functions and f ∘ g ∈ HomQ-Set((A, α), (C, γ)) due to the 
transitivity of ≤. 
 
Associativity of composition: 
Let f : (A, α) ⟶ (B, β), g : (B, β) ⟶ (C, γ) and h : (C, γ) ⟶ (D, δ) be morphisms. 
Then (f ∘ g) ∘ h = f ∘ (g ∘ h) holds due to the associativity of composition of functions. 
 
Identity morphisms: 
Let A = (A, α) be an object. Then the identity morphism on A = (A, α) is defined as the usual 
identity function 1A : A ⟶ A and is an element of HomQ-Set((A, α), (A, α)) due to the 
reflexivity of ≤. 
 
Main results (properties): 
• Category Q-Set is a generalization of the category M-Set mentioned above [page 35]. 
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Category CΩ-Set (V. Novák, I. Perfilieva, J. Močkoř, 1999) [ref. 20] 
 
Objects: 
Let H = (Ω, ∨, ∧, →) be a complete Heyting algebra [def. 2.2.16]. 
Let A = (A, α), where A is a set and α : A × A ⟶ Ω is a function satisfying these conditions: 
1) α(x, y) = α(y, x)   (symmetry) 
2) α(x, y) ∧ α(y, z) ≤ α(x, z)   (transitivity), 
for all x, y, z ∈ A, be an Ω-set, i.e. an object of the category Ω-Set defined below [page 45]. 
We define a singleton in A as a function s : A ⟶ Ω such that the following conditions hold: 
1) s(x) ∧ α(x, y) ≤ s(y) 
2) s(x) ∧ s(y) ≤ α(x, y), 
for all x, y ∈ A. We say that A = (A, α) is a complete Ω-set if for any singleton s there exists 
the unique a ∈ A such that s(x) = α(x, a), for all x ∈ A. Finally, the objects are these complete 
Ω-sets. 
 
Morphisms: 
Let A = (A, α) and B = (B, β) be complete Ω-sets. Then morphisms between A = (A, α) and 
B = (B, β) are defined as the maps f : A ⟶ B satisfying the following conditions: 
1) α(x, y) ≤ β(f(x), f(y))  
2) β(f(x), f(x)) ≤ α(x, x), 
for all x, y ∈ A. Morphisms with these properties are called the strong morphisms. 
 
Composition of morphisms: 
Let f : (A, α) ⟶ (B, β) and g : (B, β) ⟶ (C, γ) be strong morphisms. Then their composition 
f ∘ g is defined as the usual composition of functions and f ∘ g ∈ HomCΩ-Set((A, α), (C, γ)) due 
to the transitivity of ≤. 
 
Associativity of composition: 
Composition of morphisms is associative due to the associativity of composition of functions. 
 
Identity morphisms: 
Let A = (A, α) be an object. Then the identity morphism on A is defined as the usual identity 
function 1A : A ⟶ A and 1A ∈ HomCΩ-Set((A, α), (A, α)) due to the reflexivity of ≤. 
 
Main results (properties): 
• Category CΩ-Set is a topos [def. 2.1.30]. 
 
• Category CΩ-Set is equivalent to the category Ω-Set mentioned below [page 45]. 
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Category Ω - FSet (V. Novák, I. Perfilieva, J. Močkoř, 1999) [ref. 20] 
 
Objects: 
Let Ω = (L, ∨, ∧, ∗, ⟶) be a complete MV-algebra [def. 2.2.17]. 
Objects are Ω-fuzzy sets, i.e. the pairs (A, α), where A is a set and α : A × A ⟶ L is a map 
satisfying these conditions: 
1) α(x, y) ≤ α(x, x) ∧ α(y, y) 
2) α(x, y) = α(y, x) 
3) α(x, y) ∗ (α(y, y) ⟶ α(y, z)) ≤ α(x, z), 
for all x, y, z ∈ A. 
 
Morphisms: 
Let (A, α) and (B, β) be Ω-fuzzy sets. Then morphisms between (A, α) and (B, β) are defined 
as the functions f : A ⟶ B satisfying these conditions: 
1) α(x, y) ≤ β(f(x), f(y)) 
2) α(x, x) = β(f(x), f(x)), 
for all x, y ∈ A. 
 
Composition of morphisms: 
Let f : (A, α) ⟶ (B, β) and g : (B, β) ⟶ (C, γ) be morphisms. Then their composition f ∘ g is 
defined as the usual composition of functions and f ∘ g ∈ HomΩ-FSet((A, α), (C, γ)) due to the 
transitivity of ≤. 
 
Associativity of composition: 
Composition of morphisms is associative due to the associativity of composition of functions. 
 
Identity morphisms: 
Let A = (A, α) be an object. Then the identity morphism on A is defined as the usual identity 
function 1A : A ⟶ A and 1A ∈ HomΩ-FSet((A, α), (A, α)) due to the reflexivity of ≤. 
 
Main results (properties): 
• Category Ω - FSet is a complete category [def. 2.1.29]. 
 
• Category Ω - FSet is not a topos [def. 2.1.30] since there does not exist a subobject classifier  
   [def. 2.1.28] in the category Ω - FSet.  
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Category Q-Set (U. Höhle, T. Kubiak, 2008) [ref. 16] 
 
Objects: 
Let Q = (Q, ≤, ∗, •) be a bi-symmetric and involutive quantale in which the universal upper 
bound is extensive and a quasi-unit [def. 2.2.20]. 
Objects are Q-valued sets, i.e. the pairs (X, E), where X is a set and E is a Q-valued equality 
on X, i.e. E is a map X × X ⟶ Q satisfying the following conditions: 
1) E(x, y) ≤ E(x, x) ∧ E(y, y)   (strictness) 
2) E(x, x) ∗ (E(x, x) ⟶r E(x, y)) = E(x, y)   (divisibility) 
3) E(x, y) = E(y, x)•   (symmetry) 
4) E(x, y) ∗ (E(y, y) ⟶r E(y, z)) ≤ E(x, z)   (transitivity), 
for all x, y, z ∈ X. 
 
Morphisms: 
Let (X, E) and (Y, F) be Q-valued sets. Then morphisms between (X, E) and (Y, F) are 
defined as structure preserving maps f : X ⟶ Y satisfying these conditions: 
1) E(x, x) = F(f(x), f(x))   (invariance of extent) 
2) E(x1, x2) ≤ F(f(x1), f(x2))   (preservation of equality), 
for all x, x1, x2 ∈ X. 
 
Composition of morphisms: 
Let f : (X, E) ⟶ (Y, F) and g : (Y, F) ⟶ (Z, G) be morphisms. Then their composition  
f ∘ g is defined as the usual composition of functions and f ∘ g ∈ HomQ-Set((X, E), (Z, G)) due 
to the transitivity of ≤. 
 
Associativity of composition: 
Let f : (X, E) ⟶ (Y, F), g : (Y, F) ⟶ (Z, G) and h : (Z, G) ⟶ (W, H) be morphisms. 
Then (f ∘ g) ∘ h = f ∘ (g ∘ h) holds due to the associativity of composition of functions. 
 
Identity morphisms: 
Let (X, E) be an object. Then the identity morphism on (X, E) is defined as the usual identity 
function 1(X, E) : X ⟶ X and is an element of HomQ-Set((X, E), (X, E)) due to the reflexivity 
of ≤. 
 
Main results (properties): 
• Category Q-Set is a complete category [def. 2.1.29]. 
 
• Category Q-Set is a cocomplete category [def. 2.1.29]. 
 
• The authors give particular results about the Kleisli category (Q-Set)T and the  
   Eilenberg-Moore category (Q-Set)T. It is also shown that the category Q-Set is biclosed.   
   These results, as well as the concepts of Kleisli category and Eilenberg-Moore category, 
   are out of the scope of this work already. For details see [ref. 16]. 
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3.4 CATEGORIES OF FUZZY RELATIONS (AS OBJECTS) AND (FUZZY)  
      RELATIONS (AS MORPHISMS) 
 
Category Set(H) (D. Higgs, 1973) [ref. 12, 13, cited according to ref. 5, 26] 
 
Objects: 
Objects are H-valued fuzzy sets, i.e. the pairs (A, α), where A is a set and α : A × A ⟶ H is a 
mapping to a complete Heyting algebra H [def. 2.2.16] satisfying the following conditions: 
1) α(a, a´) = α(a´, a)   (symmetry) 
2) α(a, a´) ∧ α(a´, a´´) ≤ α(a, a´´)   (transitivity), 
for all a, a´, a´´ ∈ A. 
 
Morphisms: 
Let (A, α) and (B, β) be objects. Then morphisms between (A, α) and (B, β) are defined as the 
mappings f : A × B ⟶ H satisfying the following conditions: 
1) α(a, a´) ∧ f(a, b) ≤ f(a´, b)   (f respects equality on A) 
2) β(b, b´) ∧ f(a, b) ≤ f(a, b´)   (f respects equality on B) 
3) ⋁b∈B (f(a, b)) = α(a, a)   (f is total) 
4) f(a, b) ∧ f(a, b´) ≤ β(b, b´)   (f is single-valued), 
for all a, a´∈ A and b, b´ ∈ B. 
 
Composition of morphisms: 
Let f : (A, α) ⟶ (B, β) and g : (B, β) ⟶ (C, γ) be morphisms. Then their composition 
f ∘ g : (A, α) ⟶ (C, γ) is given by the following equality: 
(f ∘ g)(a, c) = ⋁b∈B (f(a, b) ∧ g(b, c)), 
for all a ∈ A and c ∈ C. 
 
Associativity of composition: 
Let f : (A, α) ⟶ (B, β), g : (B, β) ⟶ (C, γ) and h : (C, γ) ⟶ (D, δ) be morphisms. 
Then (f ∘ g) ∘ h = f ∘ (g ∘ h) holds due to the following identities: 
((f ∘ g) ∘ h)(a, d) = ⋁c∈C ((f ∘ g)(a, c) ∧ h(c, d)) 
                            = ⋁c∈C (⋁b∈B (f(a, b) ∧ g(b, c)) ∧ h(c, d)) 
                            = ⋁c∈C ⋁b∈B (f(a, b) ∧ g(b, c) ∧ h(c, d)) 
                            = ⋁b∈B ⋁c∈C (f(a, b) ∧ g(b, c) ∧ h(c, d)) 
                            = ⋁b∈B (f(a, b) ∧ ⋁c∈C (g(b, c) ∧ h(c, d)))    
                            = ⋁b∈B (f(a, b) ∧ (g ∘ h)(b, d)) 
                            = (f ∘ (g ∘ h))(a, d), for all a ∈ A, d ∈ D. 
 
Identity morphisms: 
Let A = (A, α) be an object. Then the identity morphism on (A, α) is defined by taking α itself 
as the identity morphism on (A, α). 
 
Main results (properties): 
• Category Set(H) is a topos [def. 2.1.30]. Due to this fact the category Set(H) is widely 
   known as the Higgs topos and it has become a paradigm for other authors. 
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Category Settf(H) (O. Wyler, 1995) [ref. 28] 
 
Index tf in Settf  refers to the fact that objects are totally fuzzy sets (relations) and morphisms 
are fuzzy functions (relations). 
 
Objects: 
Objects are H-valued totally fuzzy sets, i.e. the pairs (A, α), where A is a crisp set and α is a 
fuzzy equality mapping A × A ⟶ H, where H is a complete Heyting algebra [def. 2.2.16], 
satisfying these two conditions of symmetry and transitivity: 
1) α(x, y) = α(y, x) 
2) α(x, y) ∧ α(y, z) ≤ α(x, z), 
for all x, y, z ∈ A. 
 
Morphisms: 
Let (A, α) and (B, β) be H-valued totally fuzzy sets. Binary fuzzy relation on a set 
(A, α) × (B, β) is defined as a mapping R : A × B ⟶ H, satisfying these conditions: 
1) R(x, y) ≤ α(x, x) ∧ β(y, y) 
2) R(x, y) ∧ α(x, x´) ∧ β(y, y´) ≤ R(x´, y´), 
for all x, x´ ∈ A and y, y´ ∈ B. 
If R also satisfies: 
3) R(x, y) ∧ R(x, y´) ≤ β(y, y´) 
4) α(x, x) = ⋁y R(x, y), 
for all x ∈ A and y, y´ ∈ B, then R is called a fuzzy function from (A, α) to (B, β). 
Morphisms are defined as fuzzy functions. 
 
Composition of morphisms: 
Let R : (A, α) ⟶ (B, β) and S : (B, β) ⟶ (C, γ) be morphisms. Then their composition  
R ∘ S : (A, α) ⟶ (C, γ) is a fuzzy function R ∘ S : A × C ⟶ H, satisfying 
(R ∘ S)(x, z) = ⋁y∈B (R(x, y) ∧ S(y, z)), 
for all x ∈ A, z ∈ C. 
 
Associativity of composition: 
Let f : (A, α) ⟶ (B, β), g : (B, β) ⟶ (C, γ) and h : (C, γ) ⟶ (D, δ) be morphisms. 
Then (f ∘ g) ∘ h = f ∘ (g ∘ h) holds due to the following identities: 
((f ∘ g) ∘ h)(x, w) = ⋁z∈Z ((f ∘ g)(x, z) ∧ h(z, w)) 
                             = ⋁z∈Z (⋁y∈Y (f(x, y) ∧ g(y, z)) ∧ h(z, w)) 
                             = ⋁z∈Z ⋁y∈Y (f(x, y) ∧ g(y, z) ∧ h(z, w)) 
                             = ⋁y∈Y ⋁z∈Z (f(x, y) ∧ g(y, z) ∧ h(z, w)) 
                             = ⋁y∈Y (f(x, y) ∧ ⋁z∈Z (g(y, z) ∧ h(z, w))) 
                             = ⋁y∈Y (f(x, y) ∧ (g ∘ h)(y, w)) 
                             = (f ∘ (g ∘ h))(x, w), for all x ∈ X, w ∈ W. 
 
Identity morphisms: 
Let (A, α) be an object. Then the identity morphism on (A, α) is defined as an identity fuzzy 
function, i.e. 1A : A × A ⟶ H satisfying the conditions 1) - 4) in the definiton of morphisms. 
 
Main results (properties): 
• Category Settf(H) is a topos [def. 2.1.30] with H-valued internal logic. 
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Category Q-Sets (C. J. Mulvey, M. Nawaz, 1995) [ref. 19] 
 
Objects: 
Objects are quantal sets over Q, i.e. the triples A = (A, E, [ . = . ]), where A is a set,  
E : A ⟶ Q and [ . = . ] : A × A ⟶ Q are mappings to a right Gelfand quantale Q 
[def. 2.2.20] satisfying the following conditions: 
1) E(a) ∗ E(a) ≤ [ a = a ] 
2) [ a = b ] ≤ E(a) ∗ E(b) 
3) E(a) ∗ [ b = a ] ≤ [ a = b ] 
4) [ a = b ] ∗ [ b = c ] ≤ [ a = c ], 
for all a, b, c ∈ A. 
The objects E(a) and [ a = b ] of the quantale Q will be called respectively the extent and the 
equality of the quantal set A. 
 
Morphisms: 
Let A and B be objects. Then morphisms from A to B are defined as the maps f : A × B ⟶ Q 
satisfying the following conditions: 
1) f(a, b) ≤ E(a) ∗ E(b) 
2) [ a = a´] ∗ f(a´, b) ≤ f(a, b) 
3) f(a, b) ∗ [ b = b´] ≤ f(a, b´) 
4) E(b) ∗ E(b´) ∗ f(a, b) ∗ f(a, b´) ≤ [ b = b´] 
5) E(a) ≤ ⋁b f(a, b), 
for all a, a´ ∈ A and b, b´ ∈ B. 
 
Composition of morphisms: 
Let f : A ⟶ B and g : B ⟶ C be morphisms. Then their composition f ∘ g : A ⟶ C is 
defined by setting (f ∘ g)(a, c) = ⋁b∈B (f(a, b) ∗ g(b, c)), for all a ∈ A and c ∈ C. 
 
Associativity of composition: 
Let f : A ⟶ B, g : B ⟶ C and h : C ⟶ D be morphisms. Then (f ∘ g) ∘ h = f ∘ (g ∘ h) holds 
due to the following identities: 
((f ∘ g) ∘ h)(a, d) = ⋁c∈C ((f ∘ g)(a, c) ∗ h(c, d)) 
                            = ⋁c∈C (⋁b∈B (f(a, b) ∗ g(b, c)) ∗ h(c, d)) 
                            = ⋁c∈C ⋁b∈B (f(a, b) ∗ g(b, c) ∗ h(c, d)) 
                            = ⋁b∈B ⋁c∈C (f(a, b) ∗ g(b, c) ∗ h(c, d)) 
                            = ⋁b∈B (f(a, b) ∗ ⋁c∈C (g(b, c) ∗ h(c, d)))    
                            = ⋁b∈B (f(a, b) ∗ (g ∘ h)(b, d)) 
                            = (f ∘ (g ∘ h))(a, d), for all a ∈ A, d ∈ D. 
 
Identity morphisms: 
Let A be an object. Then the identity morphism 1A : A ⟶ A is given by the equality relation  
[ . = . ] : A × A ⟶ Q. 
 
Main results (properties): 
• The authors also consider the categories Complete Q-Sets (with so called complete quantal  
   sets as objects), Presheaves/Q and Sheaves/Q and show their mutual relationships. 
   For details see [ref. 19].    
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Category Ω-Set (V. Novák, I. Perfilieva, J. Močkoř, 1999) [ref. 20] 
 
Objects: 
Let H = (Ω, ∨, ∧, →) be a complete Heyting algebra [def. 2.2.16]. 
Objects are Ω-sets, i.e. the pairs A = (A, α), where A is a set and α : A × A ⟶ Ω is a function 
satisfying the following conditions: 
1) α(x, y) = α(y, x)   (symmetry) 
2) α(x, y) ∧ α(y, z) ≤ α(x, z)   (transitivity), 
for all x, y, z ∈ A. 
 
Morphisms: 
Let A = (A, α) and B = (B, β) be Ω-sets. Then morphisms between A = (A, α) and B = (B, β) 
are defined as the maps f : A × B ⟶ Ω satisfying the following conditions: 
1) α(x, x´) ∧ f(x, y) ≤ f(x´, y) 
2) β(y, y´) ∧ f(x, y) ≤ f(x, y´) 
3) f(x, y) ∧ f(x, y´) ≤ β(y, y´) 
4) α(x, x) = ⋁{f(x, y) : y ∈ B}, 
for all x, x´ ∈ A and y, y´ ∈ B.  
 
Composition of morphisms: 
Let f : (A, α) ⟶ (B, β) and g : (B, β) ⟶ (C, γ) be morphisms. Then their composition 
(so called sup-max-composition) is defined as the function f ∘ g : A × C ⟶ Ω such that 
(f ∘ g)(x, z) = ⋁y∈B (f(x, y) ∨ g(y, z)) holds, for all x ∈ A and z ∈ C. 
 
Associativity of composition: 
Let f : (A, α) ⟶ (B, β), g : (B, β) ⟶ (C, γ) and h : (C, γ) ⟶ (D, δ) be morphisms. Then 
(f ∘ g) ∘ h = f ∘ (g ∘ h) holds due to the following identities: 
((f ∘ g) ∘ h)(x, w) = ⋁z∈C ((f ∘ g)(x, z) ∨ h(z, w)) 
                             = ⋁z∈C (⋁y∈B (f(x, y) ∨ g(y, z)) ∨ h(z, w)) 
                             = ⋁z∈C ⋁y∈B (f(x, y) ∨ g(y, z) ∨ h(z, w)) 
                             = ⋁y∈B ⋁z∈C (f(x, y) ∨ g(y, z) ∨ h(z, w)) 
                             = ⋁y∈B (f(x, y) ∨ ⋁z∈C (g(y, z) ∨ h(z, w)))    
                             = ⋁y∈B (f(x, y) ∨ (g ∘ h)(y, w)) 
                             = (f ∘ (g ∘ h))(x, w), for all x ∈ A, w ∈ D. 
 
Identity morphisms: 
Let A = (A, α) be an object. Then the identity morphism on A = (A, α) is defined as a map 
1A : A × A ⟶ Ω satisfying the conditions in the definition of morphisms. 
 
Main results (properties): 
• Category Ω-Set is a topos [def. 2.1.30]. 
 
• Category Ω-Set is equivalent to the category CΩ-Set mentioned above [page 39]. 
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4. CONCLUSION 
 
Goal of this work was to give an overwiev of preferably all important category-theoretical 
approaches to fuzzy sets that were done throughout relatively short history of category-
theoretical modelling of fuzzy sets. This intention predetermines the character of this work to 
be a survey. But it is not a historical survey, it is a thematic one. Categories are sorted by their 
"shape" and properties. One of the main criteria of selection of relevant papers was an affinity 
of there modeled fuzzy sets with these occurring in formal fuzzy logic. The most important 
and interesting categories for our purposes were these equipped with some kind of monoidal 
operation on a membership functions structure.   
One of the main problems which we were dealing with was an extent of this work. Which 
categories and which of their properties are “elementary enough“ to be mentioned here and 
which are outside of the scope of the work already? We have decided to present here every 
category we have met with in our sources and list its the most fundamental and important 
category-theoretical properties like completness (cocompletness), cartesian closedness, if it is 
a topos (quasitopos), existence of basic category-theoretical constructions, limits (colimits), 
etc. Thus reader can find here categories from Goguen´s early works to Solovyov´s and 
Höhle´s works from recent years. 
It is not possible to unambiguously say in which way the development of category-theoretical 
approaches to fuzzy sets will proceed. Author´s opinion is that especially Solovyov´s recent 
works [ref. 22, 23, 24] provide very interesting themes for subsequent research.     
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