
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Matúš Gažo

Behaviour-based Control
of Autonomous Robots

Department of Software and Computer Science Education

Supervisor: RNDr. Frantǐsek Mráz, CSc

Study program: Informatics, Programming

2009

Univerzita Karlova v Praze

Matematicko-fyzikálńı fakulta

BAKALÁŘSKÁ PRÁCE

Matúš Gažo

Riadenie autonómnych robotov
založené na chovańı

Kabinet software a výuky informatiky

Vedoućı bakalářské práce: RNDr. Frantǐsek Mráz, CSc.

Studijńı program: Informatika, Programováńı

2009

Pod’akovanie patŕı v prvom rade vedúcemu tejto práce RNDr. Frantǐskovi
Mrázovi CSc., bez ktorého nekonečnej trpezlivosti a pomoci by tu tento text
nebol, a takisto mojim rodičom, bez ktorých by som tu nebol ja. Zásluhy
má i nekonečná studnica vedomost́ı – Google a open-source komunita, ktorá
v niektorých miestach vôbec umožnila, aby sa táto práca pohla d’alej. V ne-
poslednom rade kolega, spolubojovńık a motivátor Jaroslav Fibichr vytvoril
krásne ilustrácie za čo mu d’akujem.

Prohlašuji, že jsem svou bakalářskou práci napsal(a) samostatně a výhradně
s použit́ım citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce a jej́ım
zveřejňováńım.

V Praze dne 28. 5. 2009 Matúš Gažo

Názov práce: Riadenie autonómnych robotov založené na chovańı
Autor: Matúš Gažo
Katedra (ústav): Kabinet software a výuky informatiky
Vedúci bakalárskej práce: RNDr. Frantǐsek Mráz, CSc.
e-mail vedúceho: mraz@ksvi.mff.cuni.cz
Abstrakt: Ciel’om bakalárskej práce bola implementácia frameworku v ja-
zyku C++, ktorý bude slúžit’ na kompaktneǰśı vývoj umelej inteligencie
(UI) autonómnych robotov založenej na chovańı (behaviour-based robotics).
Táto UI je založená na pravidlách, parametroch a rôznych “chovaniach” ro-
bota, v našom pŕıpade vopred definovaných heuristicky. Platforma umožňuje
posunút’ t’ažisko vývoja takejto UI na definovanie týchto chovańı a pravidiel
namiesto programovania. Súčast’ou platformy sú taktiež genetické algoritmy,
ktoré umožňujú optimalizáciu parametrov heuristického riešenia.
Funkčnost’ konceptu bola overená na konkrétnom simulovanom pokuse s via-
cerými robotmi, ktorým bola zadaná jednoduchá konštrukčná úloha. Všetky
simulácie boli uskutočnené pomocou simulačného softvéru Player/Stage.
Kl’́učové slová: robotika založená na chovaniach, robot, genetické algoritmy,
simulácia

Title: Behaviour-based Control of Autonomous Robots
Author: Matúš Gažo
Department: Department of Software and Computer Science Education
Supervisor: RNDr. Frantǐsek Mráz, CSc.
Supervisor’s e-mail address: mraz@ksvi.mff.cuni.cz
Abstract: The aim of this bachelor’s thesis was an implementation of a li-
brary, which should enable to develop controllers for autonomous mobile
robots. The controllers are based on ideas of Behaviour-based robotics. This
means that such a robot has a set of elementary behaviours and its control
system consists of a set of parametrized rules, which decide according to the
state of its sensors which one of the pre-defined elementary behaviours the
robot has to use. This program shifts the substantial part of a robot con-
trol development from programming to defining such elementary behaviours
and sets of rules. It includes a genetic algorithm that can help to optimize
parameters of the rules used and/or the behaviours used in a controller.
As a proof-of-concept a simulated experiment with multiple agents was con-
ducted, in which the robots were assigned a simple construction task. All
simulations were done in the Player/Stage simulator.
Keywords: behaviour-based robotics, robot, genetic algorithms, simulation

Contents

1 Introduction 2

2 Research 4
2.1 Overview of available Software 4

2.1.1 Enki . 4
2.1.2 Pyro . 4
2.1.3 Breve . 5
2.1.4 Player/Stage . 5

2.2 Background . 5
2.3 Behaviour-based Robotics 6
2.4 Evolutionary Robotics . 8
2.5 Genetic Algorithms . 8

2.5.1 Representation of an Individual 9
2.5.2 Initialization . 9
2.5.3 Fitness Function . 10
2.5.4 Selection . 10
2.5.5 Elitism . 11
2.5.6 Crossover . 11
2.5.7 Mutation . 11

3 Solution and Implementation 13
3.1 Requirements . 13
3.2 Solution . 14
3.3 External Libraries . 17

4 Users Manual 18
4.1 Introduction . 18
4.2 Prerequisites . 19
4.3 Player/Stage . 19

1

4.3.1 Using Player/Stage 20
4.4 Overview . 23
4.5 Built-in Sensors . 24
4.6 Basic Behaviours . 25
4.7 Defining Behaviours . 25
4.8 Using Variables . 28
4.9 Basic Example . 28
4.10 Advanced Behaviours and Sensor Evaluation 31
4.11 Using Genetic Algorithms 32

5 Programmer’s Reference 35
5.1 Introduction . 35
5.2 Overview . 35
5.3 Installation . 36

5.3.1 Prerequisites . 36
5.3.2 Installing the Software 36
5.3.3 Compiling the Library 38

5.4 Creating custom Sensors . 39
5.5 Creating advanced Behaviours 43
5.6 Building Control Programs and Experiments 46

5.6.1 Creating a Standard Behaviour based Controller . . . 46
5.6.2 Creating an Experiment 48

5.7 Results & Logging . 50

6 Experiments 53
6.1 Experimental Design . 53

6.1.1 The Controller . 54
6.1.2 Optimizing the Controller 57
6.1.3 The Fitness Function 58

6.2 Experimental Results . 58

7 Conclusion 65

A Contents of the CD 67

Literature 68

2

Chapter 1

Introduction

This work, the Bebal-library, focuses on a simplified design of behaviour
based controllers for autonomous robots. For non-involved readers, an au-
tonomous robot is an intelligent machine capable of carrying out tasks with-
out the help of humans. The most significant part of an autonomous robot,
without regard to its form, size or capabilities, is his controller, that gives
it the ability to respond to changes in its environment perceived by its sen-
sors. It is possible to refer to the controller as to artificial intelligence (AI).
However, only a specific subset of all possible robotic AIs is implemented
in this library, the so-called Behaviour-Based AI (BBAI), which is based on
a modular heuristic decomposition of intelligence and results in displaying
and clear identification (in the controller program code) of human-like be-
haviour, e.g. wander around, find object, return to base etc.
A behaviour-based controller consists of a set of pre-defined behaviours and
a mechanism that decides which behaviour should be currently the active
one. The decision is done solely on the sensor input of the robot and the en-
tered rules for when to trigger a specific behaviour. The Bebal-library takes
care of the essential part of a controller and is capable of understanding
behaviours and rules defined by the user by extracting them from text files.
Therefore it shifts the focus from classical programming to defining such
behaviours and rules. Furthermore it is capable of optimizing the controller
with the use of genetic algorithms, if possible or desired. These were also
the reasons for writing this bachelor thesis.

In order to show the functionality of the Bebal-library an experiment has
been conducted. Multiple homogenous (uniform) robots in a virtual envi-

3

ronment (a simulator) were given a construction task. The controller was
built only by using the library, at first only with human heuristic input, in
the second step genetic algorithms are used to increase performance and to
show the usability of this library.

This thesis is divided into seven chapters. In the first, a short introduc-
tion to behaviour-based robotics is made, the second gives an overview of
available robot simulators and gives insight to genetic algorithms and other
theoretical background. The third chapter describes the final solution and
implementation of the Bebal-library and explains some algorithms used in
it. The fourth and fifth chapter contain a user manual and a programmer’s
reference, that together with attached examples give a manual on how to
use the library. Finally in chapter six the experiment is evaluated. Ending
with chapter seven, conclusions are made and possible follow-ups are listed.

4

Chapter 2

Research

Discussed in this chapter is software that is similar to the Bebal-library or
could be used as a part of it. Furthermore, necessary terms and concepts
used are explained.

2.1 Overview of available Software

The Bebal-library in its current form is tightly coupled with the Player/Stage
robot simulator [1] [2]. This was however a design choice as other software
is also available.

2.1.1 Enki

Enki is a robot simulator able to simulate large groups of robots. It provides
collision and physics support for robots on a flat surface and faster than
real-time simulations. Advantages of Enki are also that it is open source
and written in C++, the preferred programming language for the Bebal-
library. Various hardware robots are supported, currently implemented is
the Khepera, ePuck, Alice and S-Bot robot.

2.1.2 Pyro

Pyro is short for Python Robotics and as the name suggests it is a library
written in Python, an interpreted programming language. It focuses on pro-
viding a simple environment for experimenting with artificial intelligence and
robotics. The low-level hardware and software beneath it is shielded from

5

the user, but Pyro offers an interface through which it can be programmed
in Python. Pyro includes a robot simulator but uses also third-party simula-
tors such as Robocup Soccer, the Khepera simulator and even Player/Stage.
Nevertheless it is able to control a variety of hardware robots.
The Bebal-library stands partially in competition with Pyro as it offers meth-
ods for evolutionary robotics (see 2.4) too, however the main goals of the
projects differ.

2.1.3 Breve

Breve is a free software package that makes it easy to build simulations
of artificial life. Users can define behaviours of multi-agent systems in a 3D
world with Python or a simple language called steve. It also features plug-ins
for evolutionary computation.

2.1.4 Player/Stage

Player/Stage is a project for researching robots and sensor systems. It con-
sists actually of two standalone parts, Player and Stage, but they are devel-
oped simultaneously and are complementary to each other.
Player is a server for robot control, providing an interface to robot sensors
and actuators over the network. It does not distinguish between simulated
and real hardware robots. Stage is the backend for Player (amongst vari-
ous others such as Gazebo) and simulates a population of mobile robots in
a two-dimensional environment along with their sensors and other objects.
Therefore Stage is responsible for the simulation of the robots interactions in
an environment while Player provides an interface for controlling the robots
actions.
Player/Stage was selected as the cornerstone for the Bebal-library because
of the projects maturity, software stability and simplicity as Player/Stage
offers only plain functions for robot control and simulation.

2.2 Background

A variety of robot simulators does exist (see previous section) but only a few
– if any – are designed for a high-level abstraction programming of their con-
troller. The original motivation for creating the Bebal-library was to choose
a slightly different approach for creating robot controllers which had to fulfil

6

several requirements:
Create an easy, efficient and clean way of defining a robots controller with
the ability to parametrize all vital variables of it. The definition has to
be hardware independent and abstract while preserving the possibility of
low-level access for finer control. Also should be already existing software
used as much as possible (re-inventing the wheel is almost always a bad
idea. . .). And finally follow the principles of Evolutionary robotics by pro-
viding functionality of Genetic algorithms to further optimize and evaluate
the parameters or the created controller.
All this comes not without a prize, which in our case is the limitation to
be able to create only behaviour-based controllers and the obligatory use of
Player/Stage.

The following sections will expand the theoretical background on topics
needed to take advantage of the functionality the Bebal-library provides.

2.3 Behaviour-based Robotics

Behaviour-based robotics is a branch of robotics that utilizes BBAI (Ch.
1) and is heavily based on reactive systems. “A reactive robotic system
tightly couples perception to action without the use of intervening abstract
representations or time history” is the definition from R.C. Arkin [12]. In
addition he also assigns four main characteristics to reactive systems and
hence to Behaviour-based robotics:

1. “Behaviours serve as the basic building blocks for robotic actions.”

2. “Use of explicit abstract representational knowledge is avoided in the
generation of a response.”

3. “Animal models of behaviour often serve as a basis for these systems.”

4. “These systems are inherently modular from a software design per-
spective.”

This definition requires no enhancement as it captures all important traits
of Behaviour-based robotics and is still valid.

A typical behaviour-based robot controller is composed of behaviours and

7

the corresponding thresholds for the sensors. By comparing the thresholds
and the actual sensor readings it determines which behaviour is executed.
The determination process can differ based on what type of a behaviour-
controller is used. We can basically distinguish controllers that are organized
vertically or horizontally.
In controllers with a horizontal alignment of behaviours the behaviours are
equal to each other. Then in each controller loop all behaviours are evaluated
and assigned a “truth” value based on the extent the sensor readings meet
the defined thresholds. The truth-value ranges so from 0 (sensor readings
do not match at all) to 1 (perfect match). The resulting actions are blended
together from all behaviours but weighted with the truth-value of each be-
haviour.
On the other hand, vertically aligned controllers prioritize behaviours. The
first behaviour defined in order has the highest priority, the last one has
lowest priority. The controller loops then through the behaviours ordered
by their priority starting with the highest. If the sensor readings match
the defined thresholds the behaviour is executed, otherwise it evaluates the
behaviour with the nearest lower priority. The Bebal-library uses this orga-
nization of behaviours for its controller.

A good example of a behaviour-based controller is a controller that con-
tains only two behaviours:

• Avoid obstacle: If the robots sensors detect an obstacle it is avoided
by changing course.

• Wander: When the path in front of the robot is clear it just moves
forward.

This very simple controller ensures that the robot avoids any detected object
without any knowledge of the environment he is situated in. Behaviour-based
robotics is suited for situations and tasks where fast responses from the robot
are required. It however has limitations in planning or coordination with
other robots and some tasks may be unsolvable with only a behaviour-based
AI.

8

2.4 Evolutionary Robotics

Evolutionary robotics (ER) is a methodology used to develop robot con-
trollers based on ideas of natural evolution and Darwin’s theory – the fittest
survive [11]. For this purpose, genetic algorithms are used as they provide
functions to simulate a population of individuals, in which each individual
can be understood as a setting of the robot controller.
Alternatives for robot learning are artificial neural networks or reinforcement
learning.

2.5 Genetic Algorithms

Genetic algorithms (GA) are basically a heuristic method of finding solutions
to complex problems, that have no exactly defined solving algorithms. GA,
or in general all evolutionary algorithms are based on evolutionary principles
as seen in nature and use methods observed in genetics – heredity, selection,
crossover and mutation – in order to find or improve the initial solution.

The genetic algorithm starts with a population of randomly generated in-
dividuals and happens in generations. Each individual is defined by a chro-
mosome and represents a solution of the given problem. The chromosome
contains the individuals genes, typically encoded in binary numbers, but
other notations are possible (a matrix, strings, etc.). In each generation,
the fitness of every individual in the population is evaluated. The fitness is
computed by the so-called fitness function which estimates the quality of
a solution/individual. Based on their fitness individuals are stochastically
selected to form a new generation in a process called Selection. This is mo-
tivated by a hope, that the new population will be better than the old one.
The selected individuals are also altered by applying Crossover and Mu-
tation methods that cause random changes to the genetic pool. This new
population is then used in the next iteration of the algorithm. A final condi-
tion determines when the GA ends. Commonly this condition is the number
of generations the GA is allowed to work. Occasionally a fitness value can
be set and the algorithm proceeds until this value is reached, but it may
happen that such a solution is never found.

The following pseudocode illustrates how the GA proceeds:

9

create initial population

while final condition not met do

evaluate all individuals and assign each a fitness value

while not enough individuals in new population do

Selection

Crossover on selected chromosomes

Mutation

end while

end while

Individual genetic operators are explained in detail in following subsections.

2.5.1 Representation of an Individual

In our case the individual is actually a list of values used as parameters
for the behaviour-based controller. The parameters to be evolved by the
genetic algorithm are chosen by the experimenter and can be looked at as
“genes”. A set of N genes is in terms of GA a “chromosome”. An individual
is represented by a vector of B-bit wide binary numbers (genes), where each
number is a parameter of the controller. We use numbers of the C++ data
type double capable of storing real numbers. The size of B is fixed and
depends only on the computer architecture of the used computer.

Figure 2.1: A chromosome representing an individual with five genes (N=5).
B marks a B-bit wide binary block.

2.5.2 Initialization

Initially in the genetic algorithm many individuals are randomly generated
to form a starting population. This should ensure the covering of most of the
range of possible solutions in the search space. Occasionally, the solutions
may be seeded in areas where optimal solutions are likely to be found.
In the Bebal-library the algorithm replicates the initial solution provided by
the user until the designated population size is reached. Additionally each
replicate is randomly altered as described in the mutation process in Section
2.5.7.

10

2.5.3 Fitness Function

The fitness function assigns each individual (or chromosome/solution) a pos-
itive value based on how well the individual performed in its environment.
It should reward positive results and penalize unsuccessful individuals. This
requires a function that is fast to compute as the GA iterates many time,
especially in evolutionary robotics, leading to a sometimes not straightfor-
ward definition of the function.
It is possible to look at the genetic algorithm as an attempt to find max-
ima in a fitness landscape, where a fitness landscape is the evaluation of the
fitness function for all candidate solutions.

2.5.4 Selection

Selection is a process of choosing parent chromosomes from the population
for creating an offspring, on which then further genetic operations are ap-
plied. The offspring is transferred into the new population and so it belongs
to the next generation.
Selection can be achieved in various ways, however tournament selection
has been proven to be effective in terms of quality and computing require-
ments. Tournament selection consists of a series of duels. In each duel of n

genomes randomly selected from the current population. With a probability
p the individual with higher fitness is chosen to continue to the next round
of the tournament. After evaluating all rounds the winner is chosen as the
offspring.
This type of selection has certain advantages compared to others, e.g. roulette-
wheel selection in which the probability of selecting an individual is propor-
tional to its fitness and the sum of fitness of all individuals in the generation.
The advantages of tournament selection are:

• Efficiency of code, ability to work on parallel architectures

• No need to evaluate the whole population, it only need to know the
fitness of individuals selected into the the tournament

• It is not influenced by the absolute values of the fitness function. This
is important, as typically the optimal fitness value is unknown.

• The selection pressure can be easily adjusted (by setting n and p).

11

It has also been proved that the tournament size of 2 is sufficient and it
increases the overall speed of the genetic algorithm.

2.5.5 Elitism

To ensure that the so far best solution found is not lost in progress of gen-
erations, a certain amount of the best (fittest) individuals is always copied
without change or the application of genetic operators into the new genera-
tion. However this can be disabled by setting the number of elite individuals
to zero.

2.5.6 Crossover

Changes to the population are brought in by genetic recombination opera-
tors – crossover and mutation. Crossover (or recombination) in its simplest
form takes two chromosomes that represent two individuals and are therefore
called “parent” chromosomes, and produces as a result two “child” chromo-
somes, or offsprings. With a pre-defined probability the parent and offspring
chromosomes are not the same, but the parents genes are exchanged at a
crossover point. As previously defined, a chromosome consists of N genes,
where a gene is a B-bit wide binary represented number. The crossover point
is the point beyond which all genes are swapped between the two parent chro-
mosomes. The resulting chromosomes are the children. The crossover point
is selected randomly on both parents’ organisms but always between two
B-bit wide number blocks so the binary representation of data stays intact
(Fig. 2.2).

2.5.7 Mutation

The purpose of the mutation process is to bring in small random changes into
the genetic code of the population in order to extend the search space of the
genetic algorithm. In a standard binary representation of the genome each
bit is altered with a probability P

m
. This is however not suited for altering

B-bit wide number types used as parameters for the robot controller. The
reason is that a change in a single bit may change the represented value
significantly. This drawback can be solved by either encoding the numbers
in Gray code (where two successive values differ in only one bit) or simpler,
by using creep mutation. Creep mutation is fundamentally equal to the

12

Figure 2.2: Example of a single point crossover between the second and third
gene. B marks a B-bit wide binary block.

basic version, but instead of checking each bit, the B-bit wide blocks are
converted to real numbers. Each number is then altered with a probability p

by adding or substracting a (uniformly distributed) random number chosen
from a interval. The interval is calculated from a user-defined range in which
the appropriate gene value has to stay. After processing all numbers they are
converted back to their binary representation and written to the genome.

13

Chapter 3

Solution and Implementation

This chapter focuses on the requirements put on the the library and the way
they were solved while explaining the main architectural choices made.

3.1 Requirements

The main requirements for the Bebal-library were:

1. read user-defined behaviours and constraints for the BBR-controller
and create one,

2. execute the simulation with one or multiple robots in the Player/Stage
simulator,

3. log the results for later evaluation,

4. if enabled by option, perform an experiment based on ideas of evo-
lutionary robotics, that is perform a series of test runs to optimize
the controller constraints until the desired results are achieved (or any
other condition is met, such as the maximum number of generations)

In addition the library was expected to fulfil so called “Software Quality
Attributes” such as:

1. Usability – easy and fast to configure and use.

2. Modularity and extendability – the user should be allowed to extend
the software with his own interfaces or modules.

14

3. Portability – it has to be possible to run it everywhere where
Player/Stage can be run.

4. Performance – in general the hardware requirements of this software
should be low and it should be executable on every computer that is
capable of running the Player/Stage simulator without delaying the
simulation process.

3.2 Solution

The following hierarchical structure of the solution provides an overview of
the architecture of the library. Each part contains a description, the desired
output and the functional requirements for it.
In short, the library acts as a layer between the low-level Player library
(libplayerc++) and the user providing so additional functionality, see also
Fig. 4.2.

1. Construction of the BBR Controller

(a) Description:
This part creates the BBR Controller that is used later on for
managing the robots actions.

(b) Output:
It creates a controller on start-up from constraints and behaviours
the user has to provide as input (XML and plain-text configura-
tion files).

(c) Functional Requirements:

• Read user input: It reads and processes user input in order to
create a BBR-controller. The input should be a XML-file with
the behaviours and an optional plain-text file with variables
that are used as constraints for the sensor input evaluation.
If the user chooses to use genetic algorithms to tweak his
solution, then these variables are optimized.

• Behaviours: Individual behaviours have to be listed, repre-
sented and accessible from the controller. A behaviour con-
sists of:

15

– Conditions for the sensor input (Rules) – thresholds (con-
straints) for one or more sensors and when it should be
triggered. An evaluation function then determines if a
behaviour should be activated or not based on the input.

– Calls (Actions) – In case a behaviour is marked as active,
what it should do with actuators in sequence.

Behaviours in our perception can be divided into two types.

i. Behaviours with conditions.

ii. Behaviours without conditions. These behaviours will not be
taken into account when evaluating the current active be-
haviour and are of two kinds

A. custom behaviours meaning their actions are programmed
in modules

B. list of actions to be executed when called (similar to a
procedure).

2. BBR Controller

(a) Description:
The controller is responsible for reading the robots sensor input,
evaluating it and to act according to its behaviours.

(b) Output:
The BBR controller is a so called homogenous controller – it
is replicated as many times as there are robots defined. Each
copy manages the actions of a single robot, thus the output is a
sequence of actions in each step of the simulation.

(c) Functional Requirements:

• Interface with robot sensors: Interfaces to all available sensors
(or ClientProxies as they are called in the Player interface)
are present along with capabilities to retrieve data from the
environment.

• Main controller loop: The “heart” of the controller evaluates
in each step conditions of the behaviours and executes corre-
sponding actions on the robot’s actuators.

16

3. Player/Stage Controller

(a) Description:
Means of controlling the simulator have to be present with the
possibility of retrieving and influencing the environment (position
of robots, obstacles, . . .).

(b) Output:
Spawns a Player/Stage process for each simulation and connects
to it.

(c) Functional Requirements:

• Run Player/Stage server: Player/Stage has to be spawned in
a separate thread or process in order to work properly. Then
it is also possible to control the process (to start/end it).

• Player/Stage interface: This is solved with a little trick as
the libplayerc++ library provides a SimulationSensor that
interfaces with the Stage simulator allowing so to influence
the simulator data.

4. Genetic Algorithms and Evolutionary Experiments

(a) Description:
This module ensures that the software is capable of conducting
a series of simulation runs in order to optimize the controller (or
more exactly, its rules and parameters) using genetic algorithms.

(b) Output:
When a configuration file describing the experiment, containing
at least the rules for the robot controller, variables for the GA
(mutation rate, . . .) and other needed properties (minimum fit-
ness, maximum number of generations, etc.) is used as input, the
experiment should start. The output is a set of optimized param-
eters for the controller and informations about the progress of the
experiment (average/maximal fitness, time taken, etc.).

(c) Functional Requirements:

• BBR Controller: See previous section. The robot controller
part is reused.

• Representation of individuals: Each individual is represented
through a chromosome holding the genes, or more specific
their values, that are to be evolved.

17

• Genetic Algorithms: Methods of evolving individuals in time
(selection, crossover, mutation to name the most important)
are needed to successfully complete an evolutionary experi-
ment. Also methods for extracting settings for the experiment
are required.

5. Logging

(a) Description:
If enabled by the user a logger ensures that a simulation is re-
traceable even without running it again. It should provide enough
data at the end of an experiment or simulation to use it for eval-
uation and comparison (e.g. progress of a population in time).
Eventually it can be used to develop and debug robot controllers
during their design.

(b) Output:
Various log-files, see 5.7.

(c) Functional Requirements:

• Logger configuration: It has to be possible to set what and
where to is going to be logged. For the console output a log-
ging library is used (log4cxx).

• Output data has to be saved in a compatible wide-spread file
format, therefore .csv and other “simple” text-only output
formats were taken into consideration.

3.3 External Libraries

Parts of the implementation include 3rd-party libraries, namely the boost-
libraries [9], libxml2 [8] and log4cxx [10]. These were chosen for reasons of
efficiency, quality and time saving, allowing to set the focus on the develop-
ment of essential parts of the Bebal-library.
Of course the libplayerc++ [3] library was used as a cornerstone as the whole
purpose of the Bebal-library is to interact with Player/Stage.

18

Chapter 4

Users Manual

4.1 Introduction

Behaviour-based robot control is a method of controlling robots built upon
several modular behaviours and a mechanism that decides which of the be-
haviours will be triggered according to the actual input from the sensors of
the robot. Behaviour-based control is therefore reactive – the current action
of the robot does not depend on its previous actions, but solely on its sensor
inputs. Each behaviour is activated when certain conditions in its input are
met and of course, it does matter in which order this behaviours are defined,
as they are linearly evaluated and executed. This is also due to the so-called
vertical organisation of behaviours the Bebal-library uses (in contrast to the
horizontal organisation the Pyro simulator (see 2.1.2) can utilize).
The Bebal-library focuses on easy design of control programs for autonomous
robots based on behaviours. This chapter is a guideline on how to use this li-
brary and to create control programs for your robot, either real or simulated
in the Stage simulator. As the library can be used in two ways – as a classical
behaviour based controller or to optimize an existent controller with genetic
algorithms, the manual is divided in several sections. Sections 4.2 – 4.9 are
relevant for both approaches and give a basic introduction on how to use
this library. Sections 4.10, 4.11 and the Programmer’s reference in Chapter 5
explain advanced control mechanisms and contain a guide for using genetic
algorithms to optimize the controller. All important steps include simple
examples that can also be found on the attached CD.

19

4.2 Prerequisites

The library itself uses a couple of external libraries and tools, which have
to be installed on your system in order to successfully run and compile
control programs. A Linux distribution or a comparable environment (such
as Cygwin on Windows, Solaris or *BSD), is essential as the Player/Stage
software is only available on this platform(s). Before installing the simulator
software the following packages are needed:

• The OpenCV library[7] – dependency for Player, collection of algo-
rithms for computer vision.

• The libXML2 library[8] – necessary for reading XML–configuration
files.

• Boost C++ libraries[9] – required by the library for many operations.

• The log4cxx library[10] – for logging and debugging.

For help on how to install appropriate libraries please see the Programmer’s
reference.

4.3 Player/Stage

Player/Stage is the environment for all simulations and experiments con-
ducted using this library. It consists of two independent, but cooperating
programs:

Player is a network server for robot control, providing an interface to the
robot sensors and actuators over the TCP/IP network. It also does not make
a distinction between real and simulated robots (or types of robots for that
matter) allowing so to rapidly develop and test control programs in a simula-
tion and apply them on real robots, usually with none or minor adjustments.

Stage simulates a population of mobile robots along with a variety of sensors,
actuators and other objects placed into a two-dimensional environment. It
also provides a commonly used plugin (libstageplugin) which is used to map
the simulated sensors to Players virtual devices. The control program, or in
this case also the library, then utilizes this interface.

20

The detailed installation process of Player/Stage can be found in the Pro-
grammer’s reference.

4.3.1 Using Player/Stage

The first step before even to try to develop a robot controller is to define the
environment the robot will have to operate. Stage allows the (re)creation
of low-fidelity, two-dimensional worlds by importing them from a bitmap
image and/or defining models through just one configuration file, usually
ending with a .world file suffix. This file also sets other vital properties of
the simulation such as speed or the number of robots along with their sensor
capabilities.
A .world file has a pretty straightforward syntax, as shown in the following
avoid example.world file:

defines Pioneer-like robots

include "include/pioneer.inc"

defines ’map’ object used for floorplans

include "include/map.inc"

defines sick laser scanner for the robot

include "include/sick.inc"

size of the world in meters

size [16 16]

set the resolution of the underlying raytrace model in meters

resolution 0.02

update the screen every 10ms

gui_interval 10

or uncomment the following line to disable the Stage GUI

#gui_disable 1

the amount of real-world (wall-clock) time the simulator

will attempt to spend on each simulation cycle.

interval_real 100

the length of each simulation update cycle in milliseconds

interval_sim 100

configure the GUI window

window

(

size [591.000 638.000]

center [-0.010 -0.040]

21

scale 0.028

)

load an environment bitmap

map

(

bitmap "bitmaps/cave.png"

size [16 16]

name "cave"

)

create a robot

pioneer2dx

(

name "robot1"

color "red"

pose [-6.5 -6.5 -90]

)

Lines beginning with a hash key (#) are comments, otherwise the line sets a
property. The most important sections are the “map” and the “pioneer2dx”
properties. “map” contains information about the image-file the world has
to be created from, the size of the world (in meters) and assings this world a
name (id). “pioneer2dx” describes the robot model and its available sensors,
in this case a red robot named “robot1” with only a ring of sonar sensors
and a motor added by default. An actual picture of the Pioneer 2DX robot
can be seen in Fig. 4.1.
For speeding up experiments or test runs of the control program it is pos-
sible to set the simulation speed by adjusting the “interval real” and “in-
terval sim” properties. Setting the real interval smaller than the simulation
interval boosts the simulation speed, although the “interval real” property
should never be zero, so the Player software has time to process all messages,
and should be adjusted very carefuly.
Additionaly the GUI may be disabled by setting the “gui disable” property
to 1. This works in the current version of Player/Stage (2.x) only after ap-
plying an attached patch (see section Troubleshooting in the Programmer’s
reference).

In order to connect the simulated world with the Player server providing
drivers (proxies) that the library accesses, another configuration file (usu-
ally ending with .cfg) for Player is required. To load and use the world

22

Figure 4.1: The original Pioneer 2DX robot.

created in Stage into Player, this file (avoid example.cfg) should look like
this:

load the Stage plugin simulation driver

driver

(

name "stage"

provides ["simulation:0"]

plugin "libstageplugin"

load the Stage world file into the simulator

worldfile "avoid_example.world"

)

create the environment

driver

(

name "stage"

provides ["map:0"]

model "cave"

)

Create a Stage driver and attach position2d and

laser interfaces to the model "robot1"

driver

(

name "stage"

provides ["6665:position2d:0" "6665:sonar:0"]

model "robot1"

23

)

It uses the same syntax as the Stage configuration file, but each section has to
be named “driver”, as everything in Player is represented as a driver/proxy.
The proxies this configuration file would provide are “simulation”, “map”
that relate to the properties of the world and the simulation and “posi-
tion2d”, sonar” that apply to our previously defined “robot1”, allowing the
library and the controller to gain control over the robots motor and sonar
sensor on port 6665.
Multiple robots can be defined similarly as “robot1” by only adjusting the
ports Player will listen on (e.g. 6666, 6667, . . .).

As the full possibilities and configuration options of Player/Stage would
go beyond the scope of this manual, they can be found in Player/Stage
documentation [3].

4.4 Overview

The main goal of the Bebal-library is to simplify development of behaviour
based robot controls and minimize the amount of low-level programming
code to be written so the experimenter can focus on the substantial part of
the controller. The library takes care of:

• processing defined behaviours,

• merging them into a controller that interacts with Player and

• providing visual feedback in an environment simulated by Stage

as shown schematically in Figure 4.2.

All behaviours used are to be stored in an XML-file with a specified struc-
ture, from which the library then extracts all informations it needs to create a
controller. The resulting function of the designed controller can be described
as a loop with the following body:

1. Take the first behaviour defined.

2. Evaluate sensor conditions associated to this behaviour.

24

Figure 4.2: Schematics of the library

3. If all conditions comply with their constraints, execute associated ac-
tions (basically by calling other behaviours such as ”move”) and con-
tinue with the next iteration from step 1.

4. If not, take the next behaviour in order (if possible) and go to step 2.

4.5 Built-in Sensors

The Bebal-library by default provides interfaces to the most common subset
of sensors/actuators offered by Player/Stage. A list of them follows along
with a description what they do, if attached to a robot:

• Sensors:

– laser – measures distance to objects that reflect a laser beam,

– sonar – measures distance to objects that reflect IR or ultrasonic
waves,

– blobfinder – provides simple visual input, tracks colored objects,

25

• Actuators:

– gripper – handles objects (e.g. for foraging pucks),

– motor – moves the robot (in 2D-space).

Additionally there is a “simulation” sensor that serves as an interface for
dynamical setting and reading properties of the simulated world.
All sensors can be evaluated (with the exception of the motor, but it is free
to implement a custom evaluation function) with appropriate commands
and bound with conditions to a behaviour.

More sensors and actuators can be easily implemented should they be needed,
see the Programmer’s reference chapter for more information on that sub-
ject.

4.6 Basic Behaviours

There are two basic behaviours already in the library that can be used right
from the start and need not to be defined. The adjective “basic” roots in
the fact that these behaviours are more or less just an interface to their ac-
tuator counterpart and that from this behaviours more complex behaviours
can emerge.

The move behaviour causes the robot to move in two–dimensional space. It
takes two arguments: speed (ranging from 0.0 to 1.0) and angular speed (in
degrees per second).

The gripper behavior commands the gripper device on the robot (if present),
usually used to grab and carry objecs. It requires one argument, whether to
open or close the gripper. It can also be used as an input sensor to determine
whether the gripper paddles are open or closed.

4.7 Defining Behaviours

The very substantial part of creating a behaviour based controller is defining
behaviours.
All behaviours are to be stored in an XML-file following the listed DTD
template:

26

<!ELEMENT bbl (Robots,Behaviours)>

<!ELEMENT Robots (Robot+)>

<!ELEMENT Robot (#PCDATA)>

<!ATTLIST Robot name CDATA #REQUIRED>

<!ATTLIST Robot host CDATA #REQUIRED>

<!ATTLIST Robot port CDATA #REQUIRED>

<!ATTLIST Robot log_movement CDATA #IMPLIED>

<!ATTLIST Robot timeout CDATA #IMPLIED>

<!ATTLIST Robot max_cycles CDATA #IMPLIED>

<!ELEMENT Behaviours (Behaviour*)>

<!ELEMENT Behaviour (Argument*,Conditions?,Calls?)>

<!ATTLIST Behaviour name CDATA #REQUIRED>

<!ATTLIST Behaviour type CDATA #IMPLIED>

<!ELEMENT Argument (#PCDATA)>

<!ATTLIST Argument value CDATA #REQUIRED>

<!ELEMENT Conditions (Condition*)>

<!ELEMENT Condition (Constraint*)>

<!ATTLIST Condition type CDATA #REQUIRED>

<!ELEMENT Constraint (#PCDATA)>

<!ATTLIST Constraint value CDATA #REQUIRED>

<!ELEMENT Calls (Call*)>

<!ELEMENT Call (Argument*)>

<!ATTLIST Call behaviour CDATA #REQUIRED>

In other words, there has to be exactly one Robots section and one Be-
haviours section, encapsulated in the bbl root-node.
The Behaviours section should contain all defined behaviours. Each be-
haviour has a name and contains a Conditions and a Calls section. In the first
section, individual conditions for sensor inputs are listed. If all condtitions
are met, calls from the Calls-section are executed, when not, the controller
of the library evaluates the next behaviour in order.

27

Each condition is bound to an input sensor (by the property type, see Sec-
tion 4.5 for available sensors) and will most likely require parameters (Con-
straints), e.g. if the laser sensor returns a distance value smaller than 5.
Arguments (and their order) for each built-in behaviour and sensor are de-
scribed in the attached Doxygen-documentation under the Namespace ref-
erence - section Variables. The number of conditions and calls (actions) is
theoretically unlimited.
It is possible to call not just basic behaviours such as “move”, but also other
user-defined behaviours. The name of the called behaviour has to be passed
as an argument. In this case the conditions of the execution of the according
behaviour are not evaluated but it causes only the execution of all actions of
the called behaviour. This is similar to calling a (stored) procedure in func-
tional programming, thus supporting the reuse of call-orders and emerging
more complex behaviours.

The Robots section declares the connection settings for a Robot by setting to
which Player-server the controller has to connect (host and port) and some
other useful properties:

• name must hold the name of the robot as defined in the Player/Stage
configuration files,

• log movement is a boolean value, which when set to true enables log-
ging of the path the robot travelled to a text-file,

• timeout sets the timeout in seconds the robot is allowed to interact
within the simulation,

• max cycles is the amount of simulational cycles (steps) the robot is
allowed to execute within the simulation.
In case both timeout and max cycles is set the controller stops on the
condition that occurs first.

The XML-file serves then as input for the library and should be tested be-
fore actually used with the xmllint utility (usually part of the libxml2-utils
package) with the following command:

xmllint --valid --noout --dtdvalid \
[path-to-installed-library]/behaviours.dtd \
[behaviours-file-to-be-checked].xml

28

For details on DTD templates and XML syntax see [4].

4.8 Using Variables

It is preferable to create a text-file with a .var extension to hold variables
for sensor constraints, that might be used when creating rules to behaviours,
instead of plain numbers for sake of code clarity, centralization, faster ac-
cess or even optimalization by genetic algorithms. The file structure is kept
simple:
Each line has to consist of an unique variable name and a value, sepa-
rated by an arbitrary number of whitespaces (space, tabulator), e.g. a file
avoid example.var contains the following:

VAR_AVOID_SONAR_MIN 1.0

VAR_AVOID_LEFT_MOVE_SPEED 0.2

VAR_AVOID_LEFT_MOVE_ANGLE 15.0

VAR_AVOID_RIGHT_MOVE_SPEED 0.2

VAR_AVOID_RIGHT_MOVE_ANGLE -15.0

4.9 Basic Example

Assuming the use of the variables-file from the previous section, a very simple
example behaviour file (avoid example.xml) could look like this:

<?xml version="1.0" encoding="UTF-8"?>

<bbl>

<Robots>

<Robot name="robot1" host="localhost" port="6665" />

</Robots>

<Behaviours>

<Behaviour name="avoid_left">

<Conditions>

<Condition type="sonar">

<Constraint value="SONAR_DIRECTION_NW" />

<Constraint value="SONAR_MIN_RANGE_SMALLER_THAN" />

<Constraint value="VAR_AVOID_SONAR_MIN" />

</Condition>

29

</Conditions>

<Calls>

<Call behaviour="move">

<Argument value="VAR_AVOID_LEFT_MOVE_SPEED" />

<Argument value="VAR_AVOID_LEFT_MOVE_ANGLE" />

</Call>

</Calls>

</Behaviour>

<Behaviour name="avoid_right">

<Conditions>

<Condition type="sonar">

<Constraint value="SONAR_DIRECTION_NE" />

<Constraint value="SONAR_MIN_RANGE_SMALLER_THAN" />

<Constraint value="VAR_AVOID_SONAR_MIN" />

</Condition>

</Conditions>

<Calls>

<Call behaviour="move">

<Argument value="VAR_AVOID_RIGHT_MOVE_SPEED" />

<Argument value="VAR_AVOID_RIGHT_MOVE_ANGLE" />

</Call>

</Calls>

</Behaviour>

<Behaviour name="wander">

<Conditions>

<Condition type="sonar">

<Constraint value="SONAR_DIRECTION_FRONT" />

<Constraint value="SONAR_MIN_RANGE_GREATER_THAN" />

<Constraint value="VAR_AVOID_SONAR_MIN" />

</Condition>

</Conditions>

<Calls>

<Call behaviour="move">

<Argument value="1.0" />

<Argument value="0.0" />

</Call>

</Calls>

</Behaviour>

30

</Behaviours>

</bbl>

This XML-file defines a simple controller that is not very robust and the
robot might get stuck, but is sufficient for demonstrational purposes. Us-
ing this behaviour definitions the robot evaluates the sonar (infrared) sen-
sors in front of it. If the sensors readings cross a threshold defined by the
VAR AVOID SONAR MIN variable (with the value of 1.0 specified in the var-file
mentioned in section 4.8), meaning effectively the robot approaches a wall
or an another obstacle that reflects IR to a distance of less than 1.0, the
avoid left or avoid right behaviour becomes active. It causes then the robot
to avoid it, either by turning left or right, depending on either which be-
haviour was defined first or is the only behaviour to be evaluated as active
(this could happen for example if the obstacle is registered only on the left
side).
Note that the “move” behaviour is called directly with numerical parame-
ters, but it is preferable to set them in the variables-file in the same way as
for the “avoid” behaviours.

To start the simulation run the compiled bebal-controller program by typing
the following into a console or shell (in the directory where the examples are
located in):

./avoid_example -c avoid_example.cfg \

-b avoid_example.xml -v avoid_example.var

or in general

./my bebal program -c player-configuration-file.cfg \
-b behaviours-file.xml -v variables-file.var [-d 1]

where:
my bebal program is the compiled executable of the controller program,
-c is the path to the player configuration file,
-b is the path to the behaviours-file,
-v is the path to the variables-file,
-d 1 enables optional debugging output when set.

A properly launched program should show up a window like in Fig. 4.3
and the robot should start moving and avoiding walls. The (not so clear)

31

red circle is the moving robot and the line depicted in the image is the trail
of the way the robot has traveled. The trail has to be enabled manually in
the Stage simulator by selecting View – Show trails from the menu or by
pressing the “T” hotkey.

Figure 4.3: The Stage simulator window with the running example.

4.10 Advanced Behaviours and Sensor Eval-

uation

With the exception of some basic control programs or simple sensor input
the need for more complex sensor evaluation and robot control raises. As it is
not realistic to cover everything within textual configuration files, classical
controller programming can not be omitted. However, it is limited to im-
plementing interfaces the library provides, both for sensors and behaviours.
Refer to the Programmer’s reference on this topic.

32

4.11 Using Genetic Algorithms

For optimizing the behaviur of a robot, it is possible to fine-tune the vari-
ables used by the controller by conducting experiments based on genetic
algorithms. To do so, a text-file with a .exp suffix has to be created, where
the values can be set by the user. The file contains a list of key-value pairs
describing the experimental setup:

CROSSOVER_RATE 0.8

MUTATION_RATE 0.5

NUM_ELITE 2

POPULATION_SIZE 12

PLAYER_CONFIG gripper.cfg

BEHAVIOURS-FILE gripper.xml

VAR-FILE gripper.var

GENES VAR_APPROACH_BLOCK_SPEED_COEF

GENE_RANGES 10.0-10000.0

TOURNAMENT_SIZE 2

GENERATIONS 50

LOG_FOLDER log/gripper

SIM_INTERVAL_REAL 20

SIM_INTERVAL_SIM 100

PLAYER-EXECUTABLE player

For explanation of what each term or property means review the Genetic
Algorithms section [2.5]. A brief description of each parameter follows:

• CROSSOVER RATE sets the probability of a crossover between two
parental chromosomes.

• MUTATION RATE sets the probability of a creep mutation of each
gene in an offsprings chromosome.

• NUM ELITE defines how many of the best individuals (the “elite”
sorted by fitness) will be copied into a new generation.

• POPULATION SIZE is the number of individuals in one generation
to be tested.

33

• PLAYER CONFIG relative path to the Player configuration file. A
Stage configuration file must be also defined as referenced in the Player
config.

• RULES-FILE is the relative path to the .xml file containing defined
robots and behaviours.

• VAR-FILE is the relative path to the .var file containing the variables
used in the behaviours–file.

• GENES lists all selected variables that should be used as “genes” and
therefore be optimized by the GA (at least one or all from the file).
The variables are to be separated by a colon, e.g.:
VAR1:VAR2:VAR3:. . .
Also they have to be defined in the VAR-FILE.

• GENE RANGES sets the limits for the creep mutation for each
gene/variable using the following syntax:
VAR1 MIN-VAR1 MAX:VAR2 MIN-VAR2 MAX:. . .
Each section separated by a colon represents the minimal (VAR1 MIN)
and the maximal value (VAR1 MAX) the corresponding variable (e.g.
VAR1) can reach in the mutation process.

• GENERATIONS is the maximum number of generations the GA can
reach.

• SIM INTERVAL REAL is the value of the interval real variable
from the Player configuration file. It has to be the exact same value!

• SIM INTERVAL SIM is the value of the interval sim variable from
the Player configuration file. It has to be the exact same value!

• LOG FOLDER is the path to a folder, where the results of the exper-
iment are to be saved. The parent directory has to be present on the
system (e.g. “log” in this case).

34

• PLAYER-EXECUTABLE is the name of the Player executable on the
installed system (usually “player”, but can be e.g. “robot-player” on
Ubuntu when installed from the repository).

This experiment-file is used in a prepared experiment (as described in Section
5.6.2) and can be found on the CD. It can be started (after compiling) with

./gripper -e gripper.exp

or in general by

./my bebal experiment -e name-of-the-experiment- \
configuration-file.exp

where my bebal experiment is the compiled executable of the Bebal-controller
with settings for this specific experiment.

35

Chapter 5

Programmer’s Reference

5.1 Introduction

This reference contains all information needed to install and use the Bebal-
library with its full potential. It will not go into deep details of every class
and function, please refer to the included HTML documentation generated
by Doxygen ([5]) for that.

5.2 Overview

The Bebal-library is composed of 4 essential classes:

• Behaviour: defines a standard Behaviour containing sensor bound con-
ditions and a list of actions.

• Sensor: serves as an interface to the Playerc++ library ClientProxies,
providing sensor evaluation or execution (for actuators).

• bLib: the actual brain and interface to the library, merges behaviours
into a controller, reads configuration files, holds variables and so on.

• Genetics: used for experiments, implements genetic algorithms and
uses them to optimize variables of the controller.

36

5.3 Installation

5.3.1 Prerequisites

The following software is needed in order to use and compile the library and
your own control programs or modules.

• A Linux distribution (or comparable environment, such as Cygwin on
Windows, *BSD or Solaris) [6]

• Player Robot Device Interface [1]

• Stage Robot Simulator [2]

• The OpenCV library [7]

• The libXML2 library [8]

• Boost C++ libraries [9]

• The log4cxx library [10]

Various additional libraries or software may be required to satisfy package
dependencies, depending on what is already installed on the target system.
Of course a C++ compiler, like GCC, is required to build the library, but it
is installed on the most linux distributions by default.

5.3.2 Installing the Software

As by far not all distributions provide packages for the Player/Stage soft-
ware and for the universality of this reference, a description of a manual
installation follows. This assumes that the user is familiar with basic linux
shell commands and software installation from source packages on *NIX–like
environments.

The packages must be installed exactly in this order to compile and work
correctly, as they are dependent on each other:

• OpenCV 1.0

• Player 2.x

• Stage 2.x

37

A rudimentary guide to installing software from source packages from the
linux (root) shell follows:

cd path-to-extracted-package

./configure

make install

Troubleshooting

Installing this software from source packages can be a little tricky, as some
parts of it are not maintained anymore.

At first, it is likely the OpenCV compilation will fail, as it is incompati-
ble with newer versions of ffmpeg, which it is dependant upon. This can
be resolved by patching the OpenCV library before compilation with the
attached patch file:

cd path-to-extracted-opencv-package /otherlibs/highgui/

cp path-to-patch /opencv-cvcap ffmpeg-img convert.patch

patch cvcap ffmpeg.cpp opencv-cvcap ffmpeg-img convert.patch

rm opencv-cvcap ffmpeg-img convert.patch

It is also vital to configure the software with the following parameters, oth-
erwise the linking will fail.

./configure --with-ffmpeg --enable-shared --without-quicktime

For the Player/Stage installation it may also be required to set various paths
and environment variables, depending on the local settings. Assuming the
default installation location (/usr/local/) this can be solved by exporting
them:

export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:\

/usr/local/lib/pkgconfig/

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib/

For allowing the user to disable the Stage simulator GUI by setting gui disable

in the configuration file, another patch is required (applying to Stage version
2.0.4/2.1.1 and the use of the blobfinder):

38

cd path-to-extracted-stage-package /src/

cp path-to-patch /stage disable gui.patch

patch model blobfinder.c stage disable gui.patch

rm stage disable gui.patch

This patch is to be applied at own risk, as it is not modifies the software.
Functionality is even then not guaranteed as Stage officialy does not support
the option of disabling the GUI.
Unexpected behaviour (memory exceptions, failing to read the entire config
file, etc.) was encountered when compiling Player and Stage along with al-
ready installed Boost libraries, so it may be recommended to install them
only afterwards.

5.3.3 Compiling the Library

To install the Bebal-library into the users system, it has to be compiled.
There is a makefile attached as usual for Linux-software, therefore it should
be sufficient to execute the following commands to install the library:

cd path-to-bebal-library-source-files

./configure

make && make install

For sake of completeness a list of needed settings (flags) for the g++ compiler
follows:

• Includes:
-I/usr/local/include/player-2.1/ -I/usr/include/libxml2

-I/usr/include/boost-1 37

• Library search path:
-L/usr/local/lib -L/usr/lib/boost-1 37

• Link with libraries:
-lplayerc++ -lxml2 -llog4cxx -lboost filesystem

The library installs by default into /usr/local/lib. A successful installation
of the library creates static and dynamic libraries named libbebal-1.0* in
that folder. C++ header files are located in /usr/local/include/bebal-1.0.

39

5.4 Creating custom Sensors

The Bebal-library provides interfaces only to the most commonly and widely
used fraction of all drivers (proxies) available in Player (or libplayerc++
respectively). Some simulations may require additional sensor input or, more
probably, custom evaluation of the sensor data. For example the blob–sensor
is a good candidate, as almost every simulation created is likely to differ in
the way the blob–data has to be handled, depending on what the controller
will require, e.g. only a single line of visual input or the center of a colored
object.
Programming a custom sensor interface consists in general of eight steps:

1. Creating a derived class from the Sensor-class.

2. Creating a default constructor MyCustomSensor(). Most of the time
it should be sufficient to call the Sensor()–constructor here.

3. Creating a copy–constructor MyCustomSensor(const MyCustomSen-
sor& cs). Call the default Sensor() copy–constructor here with the
reference to MyCustomSensor as a parameter. If the custom sensor
has some extra data structures, copy them also here.

4. Implementing the function void createSensor(PlayerCc::PlayerClient*
Robot). This function should construct and initialize the appropriate
ClientProxy from the libplayerc++ library.

5. Implementing the function bool eval(arg list t* arguments). Can do
nothing if not applicable (mostly if the proxy is an actuator), or put
custom data evaluation function here. It should return true or false
based on whether the evalution succeeded or not. The parameter ar-
guments is a vector of boost::any values that can hold anything, de-
signed to pass commands or constraints to the evaluation function.
Unbox them to C++–data types by using the BOOST::unboxValue()
function defined in the library.

6. Implementing the function void execute(arg list t* arguments). Can do
nothing if not applicable (mostly if the proxy is a passive sensor), or put
custom commands for the ClientProxy here. The parameter arguments
is to be used similar as in the eval(arg list t* arguments) function.

40

7. Implementing the function PlayerCc::ClientProxy* getDevice(). Should
return a pointer to the created device/proxy.

8. Implementing the function Sensor* clone(). Should return a copy of
the current MyCustomSensor–class by creating a new one using the
copy–constructor. Usually it is sufficient to write something like:

return new MyCustomSensor(*this);

This is necessary for cloning robot controllers when multiple agents
are to be simulated at once.

9. Optionally implement void getVariables() that should register custom
variables in the library. Custom variables can be used as commands
for execution or evalution in the behaviours-file.

After including the custom sensor header files to your controller program, it
is necessary to register the custom sensor under a name it will be recognized
when defining behavioural rules. To register the sensor use the function

registerSensor("custom_sensor_name", new bbl::MyCustomSensor());

A practical example can be found in bebal/proxies/BlobSensor.cpp. This
sensor is customized to detect blobs of the color it gets passed as an argument
and optionally test the distance to the blob. Included is an excerpt of the file
with the most important functions and parts along with their description:

// Sets to which robot the BlobSensor should be attached to.

void BlobSensor::createSensor(PlayerCc::PlayerClient* Robot)

{

this->pRobot = Robot;

blobfinder = new PlayerCc::BlobfinderProxy(this->pRobot);

}

/**

* Sets the variables to use as comparators for the distance to

* the blob (smaller or greater than a distance).

*/

void BlobSensor::getVariables()

{

41

if(blib == NULL) return;

blib->registerVariable("BLOB_MIN_RANGE_GREATER_THAN",

BLOB_MIN_RANGE_GREATER_THAN);

blib->registerVariable("BLOB_MIN_RANGE_SMALLER_THAN",

BLOB_MIN_RANGE_SMALLER_THAN);

// ... truncated

}

/**

* Evaluates the blobfinder with a given command.

* Takes 0/1/3 arguments packed in a list.

* @param[in] color Color: a long integer that defines the

color (0x00RRGGBB)

* @param[in] compare Comparator: see also getVariables();

* @param[in] range A double value with the user-defined range to

compare against

* @return TRUE if the condition is met, FALSE otherwise

*/

bool BlobSensor::eval(arg_list_t* arguments)

{

if((*arguments).size() > 0)

{

int color;

BOOST::unboxValue((*arguments)[0], color);

if(color<0) color = -color;

bool seeing_color = false;

int blob_index = -1;

float range_min = 65000;

// find our color

for(uint i=0; i< blobfinder->GetCount(); i++)

{

blob = (*blobfinder)[i];

if(blob.color == (unsigned int)color

&& blob.range < range_min)

{

range_min = blob.range;

blob_index = i;

42

seeing_color = true;

}

}

// check for distance?

if((*arguments).size() > 1)

{

int cmp;

int range;

BOOST::unboxValue((*arguments)[1], cmp);

BOOST::unboxValue((*arguments)[2], range);

// we have to see the color

if(cmp == BLOB_MIN_RANGE_GREATER_THAN

|| cmp == BLOB_MIN_RANGE_SMALLER_THAN)

{

// ... truncated for demonstrational purposes

}

}

else if(seeing_color) return true;

}

// ... truncated

return false;

}

//! Get the BlobfinderProxy.

PlayerCc::ClientProxy* BlobSensor::getDevice()

{

return blobfinder;

}

//! Clones this Sensor

Sensor* BlobSensor::clone()

{

return new BlobSensor(*this);

}

43

This custom sensor will be also reused in an example later in Section 5.6.2.
The most important function in this sensor is the eval() function which
determines whether a condition of a behaviour is evaluated as true or not.
It takes several parameters that can be understood as commands accessible
when defining behaviour conditions in the XML-behaviours-file. In general
the user is free to determine what commands or parameters his custom
sensor will accept, but it is a good practice to register the commands as
variables in the library so the conditions or actions in the behaviours-file
are more understandable. Sensors that are implemented in the Bebal-library
have their commands documented in the programmer’s reference generated
by Doxygen.

5.5 Creating advanced Behaviours

Complex robot tasks may require precise coordination or be dependent on
more sensor inputs than the standard functions in the Bebal-library pro-
vide. Because of this custom behaviours can be defined. They can be also
seen as procedures that temporarily take over the control of a robot for ex-
ecuting specialized tasks, e.g. approaching a coloured block or to do some
random avoiding, but in principle their limit is the designers imagination
only. However custom behaviours should not be misused as a replacement
for conventional robot controllers but used only when the task is too dif-
ficult or impossible to express as a set of rules and actions in the .XML
behaviours-file. Therefore they also should take over control only for a short
period so the Bebal-controller can function as intended.

Programming a custom behaviour takes in general of five steps:

1. Create a derived class from the Behaviour-class

2. Creating a default constructor MyCustomBehaviour(). Most of the
time it should be sufficient to call the Behaviour()-constructor here.

3. Creating a copy-constructor MyCustomBehaviour(const MyCustomBe-
haviour& cb). Call the default Behaviour() copy-constructor here with
the reference to MyCustomBehaviour as a parameter. If the custom
behaviour has some extra data structures, copy them also here.

4. Implementing the function void execute(arg list t* arguments). Put
custom commands or procedures here. The parameter arguments is

44

a vector of boost::any values that can hold anything, designed to pass
on commands or parameters. Unbox them to C++-data types by using
the BOOST::unboxValue() function defined in the library.

5. Implementing the function Behaviour* clone(). Should return a copy
of the current MyCustomBehaviour-class by creating a new one using
the copy-constructor. Usually it is sufficient to write something like:

return new MyCustomBehaviour(*this);

After including the custom behaviour header files to your controller, it is
possible to register the custom behaviour under a name it will be recognized
later on when defining behaviours (with the type=“custom” property of a
<Behaviour> section, see 4.7). To register the behaviour in the library use
the function

registerCustomBehaviour("custom_behaviour_name",

new MyCustomBehaviour());

An example of such a behaviour is the ApproachBlockBehaviour. Basically it
locates the nearest green block through the blob-sensor and approaches it.
This will be necessary in order to complete a foraging task in the experiment
described in Section 5.6.2. An extract from the
customBehaviours/ApproachBlock.cpp file:

// Takes no arguments, approaches the block.

void ApproachBlockBehaviour::execute(arg_list_t* arguments)

{

blobfinder =

(PlayerCc::BlobfinderProxy*) blib->Sensors["blob"]->getDevice();

int nearest = -1;

float range_min = 65000;

// find the nearest green block

for(uint i=0; i< blobfinder->GetCount(); i++)

{

blob = (*blobfinder)[i];

if(blob.color == 65280 && blob.range < range_min)

{ // color == green

range_min = blob.range;

nearest = i;

45

}

}

// found a block!

if(nearest >= 0)

{

boost::any speed, angle;

double angle_d, speed_d, coef;

double center = blobfinder->GetWidth()/2;

blob = (*blobfinder)[nearest];

// calculate a new angle, so the block is in the center

// of the camera

BOOST::unboxValue(

blib->gVariables["VAR_APPROACH_BLOCK_SPEED_COEF"], coef);

speed_d = blob.range/coef;

angle_d = (center - blob.x);

if(angle_d > 90.0 || angle_d < -90.0) angle_d = 0;

if(speed_d > 1.0) speed_d = 1.0;

angle = angle_d;

speed = speed_d;

arg_list_t* args = new arg_list_t();

args->clear();

args->push_back(speed);

args->push_back(angle);

blib->Sensors["motor"]->execute(args);

}

}

// Clones this behaviour.

Behaviour* ApproachBlockBehaviour::clone()

{

return new ApproachBlockBehaviour(*this);

}

46

5.6 Building Control Programs and Experi-

ments

The Bebal-library can be used in two ways, either as a standard behaviour-
based controller or in addition, conduct series of experiments with the aim
of optimizing the controller with genetic algorithms.
On the basis of simple examples principles of writing own controllers are
presented. In the first section a controller for a robot is described who’s task
is to avoid obstacles (see 4.9). The second section shows the program used in
a simple evolutionary experiment in which the robots had to forage a green
block with its gripper in a small arena (4.11).

5.6.1 Creating a Standard Behaviour based Controller

The following code is the controller for the example in Section 4.9 and shows
the necessary steps in order to create a simple controller:

// File on the CD: examples/avoid_example.cpp

// include needed header files, we need them always

#include <libplayerc++/playerc++.h>

#include <bebal/args.h>

#include <bebal/bebal.h>

using namespace PlayerCc;

using namespace bbl;

int main(int argc, char **argv)

{

bLib* lib;

// parse arguments given to the program

parse_args(argc,argv);

try

{

// create a new controller and we may want to debug it

lib = new bLib(gDebug);

// start Player and Stage

StartPlayerServer(gPlayerConfigFile);

47

// add a robot that connects to the Player server

lib->addRobot(new PlayerClient(gHostname, gPort));

// attach the robots sensors and actuators

lib->attachSensor("motor", new bbl::MotorSensor());

lib->attachSensor("sonar", new bbl::SonarSensor());

// load the behaviours and variables that

// define the controller

lib->loadVariables(gBebalVariablesFile);

lib->loadConfig(gBebalBehavioursFile);

// and finally start

lib->start();

// stop the Player server

StopPlayerServer();

}

catch (PlayerCc::PlayerError e)

{

delete lib;

return -1;

}

return 0;

}

The directive #include <bebal/args.h> provides a function called parse args

that eases the parsing of parameters passed to the controller. After calling
this method several variables are available:

• gHostname holds the adress of the Player server the controller should
connect to (localhost by default). Set with the -h switch.

• gPort defines the port for the connection (6665 by default) (-p).

• gDebug is a boolean value that if passed to the controller enables de-
bugging output (-d).

• gBebalBehavioursFile contains the path to the .xml behaviours-file
(-b).

• gBebalVariablesFile contains the path to the .var variables-file (-
v).

48

• gPlayerConfigFile contains the path to the .cfg Player configura-
tion file (-c).

• gExperiment contains the path to the .exp experiments-file (-e).

In order to be able to build the program, flags for the linker have to be set.
It is necessary to link the controller with the bebal-library (libbebal-1.0),
usually by adding the -lbebal-1.0 flag to the arguments of the compiler.
Setting appropriate include paths to the header files of the Bebal-library
may be necessary, depending on the configuration of the system. Usually
this would be /usr/local/include/bebal-1.0 together with the include flags
as from Section 5.3.3.

5.6.2 Creating an Experiment

In contrast to the simple controller presented in the previous section, the
experimental part of the library needs in addition a fitness function to eval-
uate individuals. Also the class Genetics is used as an encapsulating control
structure. The controller part (the bLib class) is still present, however as a
part of the latter class. A controller for the gripper experiment as described
in Section 4.11 looks following (file examples/gripper.cpp):

// We need a behaviour responsible for approaching the block

#include "customBehaviours/ApproachBlock.h"

// We need to have a fitness function. This function ranks

// individuals with the inverse amount of time it took to

// reach the green block. In gRuntime is always stored the

// runtime of the bebal-controller.

unsigned int fitness_function(Genetics* gen)

{

int ms_runtime = gen->blib->gRuntime.tv_sec*1000

+ std::floor(gen->blib->gRuntime.tv_nsec/1000000);

return (unsigned int) std::floor(1000000/ms_runtime);

}

// A custom abort condition for the simulation. The simulation

// ends when the gripper closes and holds the block.

bool gripper_check_abort(bLib* blib)

49

{

arg_list_t* args = new arg_list_t();

args->push_back(GRIPPER_HOLDING_OBJECT);

return !(blib->Sensors["gripper"]->eval(args));

}

int main(int argc, char **argv)

{

// our experiment

Genetics* exp;

parse_args(argc,argv);

try

{

// same as before, but encapsulated into Genetics

exp = new Genetics();

exp->blib->registerCustomBehaviour("approach_block",

new ApproachBlockBehaviour());

exp->blib->registerSensor("blob", new bbl::BlobSensor());

exp->blib->registerSensor("motor", new bbl::MotorSensor());

exp->blib->registerSensor("sonar", new bbl::SonarSensor());

exp->blib->registerSensor("gripper", new bbl::GripperSensor());

// set the abort condition

exp->blib->setAbortCondition(&gripper_check_abort);

// set the fitness function

exp->setFitnessFunction(&fitness_function);

// load the experiment configuration file (gripper.exp)

exp->loadExperiment(gExperiment);

// begin!

exp->startExperiment();

}

catch (PlayerCc::PlayerError e)

{

delete exp;

return -1;

}

return 0;

}

50

Note that it is not needed to start the Player server manually, the Bebal-
library takes care of that now.
After running this program multiple simulations will be run according to
the settings specified in Section 4.11.
The abort function bool gripper check abort(bLib* blib) is nonobligatory in
general, but in this case required as the fitness function measures the time
it took to forage the block, so all individuals would get the same fitness if
the simulation would end only on a robots timeout. It is possible to define
custom abort conditions by defining a function following this template:

bool my_custom_abort_function(bbl::bLib* b){

// returns true if the simulation should be aborted

}

and setting it in the experiment by calling
setAbortCondition(bool (*custom abort condition)(bLib* blib)).

Directions on how to build the controller are unchanged.

5.7 Results & Logging

To draw conclusions from simulations various data can be logged. This could
be used to optimize the controller or reviewing the progress of average fitness
of the population. For this purpose for every experimental run a folder named
run xxxx is created in a parent folder that is set with the LOG FOLDER
variable in the experiment configuration file as described in Section 4.11.
xxxx stands for a four-digit number that is automatically incremented with
every run. The folder contains three types of files:

1. A file named results.csv, which is a common .csv (comma-separated
values) file that can be imported into OpenOffice or MS Excel. After
the experiment ends, it should contain five columns with altogether as
many rows as many GENERATIONS were defined in the configuration
file:

(a) generation – a generation counter.

(b) min fitness – the minimal fitness encountered in the current gen-
eration.

51

(c) average fitness – the average fitness calculated of all individuals
in the current generation.

(d) max fitness – the maximal fitness encountered in the current gen-
eration.

(e) time – sum of the durations that it took to simulate all individuals
in the current generation.

2. The run.log file contains a copy of the output the program has written
to the console, formatted in log4cxx [5.7] style.

3. Moreover for each generation a file called xxxx.gen is created, that logs
for each individual the time (in milliseconds) needed to evaluate it, the
resulting fitness and the genetic code used in following manner:
i:time, i:fitness, i:GENE 1,i:GENE 2,...i:GENE N
where i ∈ 0, ..., POPULATION SIZE.
GENE 1 to GENE N are the values of the variables/genes that were
selected to evolve over time as defined in Section 4.11.

The resulting folder-tree structure with LOG FOLDER set to “log/test”
will have the following form:

log/test

|- run_0001

|- 0001.gen

|- 0002.gen

|- 0003.gen

|- ...

|- nnnn.gen

|- results.csv

|- run.log

|- run_0002

|- 0001.gen

|- 0002.gen

|- 0003.gen

|- ...

|- nnnn.gen

|- results.csv

|- run.log

|- run_0003

...

52

log4cxx

Interaction with the user after launching a Bebal-control program is done
through the log4cxx library, which is similar to the popular log4j library
for Java. It serves for displaying the progress of the experiment and other
various informational and warning/error messages as text in the console. A
variety of options can be set in a configuration file logging.properties, all of
them documented in detail in [10]. The logging.properties file has to be in
the same directory as the executables home-folder or, if omitted, the Bebal-
library defaults to standard settings.

53

Chapter 6

Experiments

The Bebal-library offers a variety of functions for designing vertical behaviour-
based controllers and optimizing them with genetic algorithms. As a proof-
of-concept an advanced experiment was conducted aside of the more or less
trivial examples listed in the previous chapters. The experiment had two
goals – proving that it is possible with the Bebal-library to create a complex
behaviour-based controller with a minimal amount of programming and that
it can be taken a step further by letting the genetic algorithm to optimize its
parameters. Results are shown in the next sections together with a detailed
description of the experiment.

6.1 Experimental Design

The experimental setup was based on the work of the authors in [13]. Figure
6.1 depicts an arena of 24×24 meters simulated by Player/Stage. In that
arena the robots were given a task of constructing a (preferably straight)
wall from solid green blocks they had to find first. A total amount of 10
blocks was seeded in the location of the arena (marked by the number 1
in Fig. 6.1) opposite to the building site (number 3). The building site was
marked with a yellow rectangle on the wall. A single green seed block posi-
tioned just in front of the middle of the rectangle signalized the wall-building
location.
Robots were equipped with a laser scanner, a ring of sonar sensors, a gripper
for grabbing blocks and a color camera. The number of robots in the setup
varied from 1, 2 up to 4. For each of these numbers the genetic algorithm
tried to optimize certain controller parameters (see 6.1.2) so the interference

54

between the robots would be minimal and they would build the wall faster.
The genetic algorithm was set to terminate after 50 generations.
To sort out slow individuals in the genetic pool of the population a simulation
run was limited to 180 second of real time, corresponding to about 15 min-
utes of simulated time. The trials with one and two robots have had a limit
of 260 seconds (about 17 minutes of simulated time) as the 180 second limit
was insufficient for usable results. This was also due to the weaker hardware
configuration of the computer the latter trials were performed on, where the
ratio of simulated to real time could not be set as high as on the faster com-
puter. This ratio is set by the interval real and interval sim variables
for the Stage simulator as discusses in Section 4.3.1. It was found out, that
a dual-core processor clocked at 2.33 GHz can handle four simultaneously
simulated robots at a interval real setting of 15 (a speedup of factor 6),
whereas a single-core processor at 1.6GHz managed only two robots at the
ratio of 20 (speedup factor of 5). The interval sim value was left at 100.
Setting lower values resulted in erroneous behaviour of Player/Stage and
sensor readings.

6.1.1 The Controller

Figure 6.1 with a progressing experimental trial shows the basic idea of the
solution of the construction task: We let the robot find a block in the area
they are seeded (number 1) by wandering more or less randomly through
the arena. After a block is foraged the robot tries to find a wall and follows
it in a clockwise direction (2) until the construction site is reached and rec-
ognized. Finally the robot gets into position and approaches the tail of the
wall to be constructed (3). The block the robot is carrying is then dropped
and the construction site is left, beginning againg with the first step.
The controller defines behaviours that can be seen as tasks a robot can per-
form. The following list explains briefly what each behaviour is responsible
for:

• The wander behaviour does nothing more than causing the robot to
drive straight until an obstacle or an object of interest is found.

• Avoid obstacles is triggered whenever the robot is on a collision
course with an obstacle.

• Approach block behaviour – if the robot spots a green block with his
camera, he tries to collect it (as long as he is not carrying one already).

55

• Find and Follow wall behaviours are responsible for bringing the
robot to the construction site by following the walls of the arena in a
clockwise direction.

• The On construction site behaviour recognizes when the robot ar-
rived at the construction site driving him in a position from where he
can comfortably attach the block to the wall.

• With the robot in position, the Build wall drops the block and calls
the Leave site behaviour that navigates the robot away from the
construction site.

This list is simplified and does not represent the position of a behaviour in
the vertical behaviour hierarchy of the controller. The actual detailed con-
troller consists of the files construction.xml and construction.var and
can be found on the CD in the corresponding folder.

Common problems experienced while constructing the controller were to
make a distinction between a wall and a green block and the robots getting
stuck as they tried to approach a wall in a clockwise direction. The first
problem was solved by dividing the sonar sensors facing left (as seen from
the robot) into a western and a north-western section. The follow wall be-
haviour was triggered only if the sonar detected an obstacle in both sections
at the same time. The green block was too small to be detected by more
than one sonar sensor. The wall-approach problem was resolved easily by
setting the threshold for the sonar sensors on the right side slightly higher
than on the left side.
Also robots currently not carrying a block were trying to “steal” another
robots block, resulting mostly in a crash. This was solved by detecting the
red grippers attached to the robots with the camera. If a green block was
spotted in the vicinity of a red object, it was forbidden and rather avoided
than approached.
In trials with multiple robots the interference between them grew and they
were hindering each other when following a wall or on the construction site.
Therefore when a robot detected with the laser scanner another robot in
front of him a random waiting interval helped to decrease the interference.

56

Figure 6.1: A running experiment in Player/Stage with four robots. The
number 1 marks the origin of green blocks used for construction, 2 shows
robots following the wall clockwise, 3 is the construction site with a wall
being built in progress. The rays originating at the robots body are a visu-
alization of its sonar sensors readings.

57

6.1.2 Optimizing the Controller

Since the original controller was handmade with a heuristic approach, a
good performance under all circumstances is not guaranteed. Settings that
function well for one or two robots may deliver poor performance with an
increased amount of robots. This is due to the increased interaction between
them as the probability of meeting a co-working robot rises. Part of the
experiment was to enhance the controllers performance for a growing number
of robots by letting a genetic algorithm optimize its parameters for each
setting.
The parameters chosen to represent the genetic code of an individual were
selected by determining on how much a parameter influences overall speed
and conflict resolution, e.g. two robots following the same wall with a short
distance in-between. Parameters of the controller selected from the variables-
file of the experiment (construction.var) were:

• VAR BUILD SITE SPEED: Responsible for how fast the robot approaches
the construction site.

• VAR APPROACH BLOCK SPEED COEF: Determines the speed when approach-
ing a green block by dividing the distance to the block with the coeffi-
cient (therefore a smaller coefficient causes the robot to approach the
block faster and the other way around).

• VAR WANDER SPEED: Defines the speed of the robot when in wandering
behaviour.

• VAR FOLLOW WALL LEFT SPEED: Sets the speed when following a wall
and the robot gets too near to it.

• VAR FOLLOW WALL LEFT ANGLE: Sets the angular speed when following
a wall and the robot gets too near to it.

• VAR FOLLOW WALL RIGHT SPEED: Sets the speed when following a wall
and the robot gets too far from it.

• VAR LASER AVOID ROBOT DIST1: The distance at which the robot de-
tects other robots in front of him when carrying a block. When a fellow
robot is detected the robot waits a random time and tries to avoid the
other one.

58

• VAR RANDOM WAIT MIN1: Sets the minimal duration of the waiting in-
terval (see previous variable).

• VAR RANDOM WAIT MAX1: Sets the maximal duration of the waiting in-
terval.

6.1.3 The Fitness Function

The fitness function (2.5.3) was defined as follows:

fitness =
MAXIMAL RUNTIME

ACTUAL RUNTIME
∗ 100 ∗ NR OF BLOCKS DROPPED

This ensured an evaluation of individuals based on how many blocks they
collected (represented by NR OF BLOCKS DROPPED) and built the wall from.
Each successfully transferred block was rated with 100 “points” . The ratio
of the maximal runtime of a simulation trial (MAXIMAL RUNTIME) and the
actual time taken (ACTUAL RUNTIME) could give the fitness a boost in case
the individual managed to forage all blocks within the time limit (fitness
values of 1000 and better). Bringing in the time in the equation creates a
pressure on finding a better solution even if all blocks were collected.

6.2 Experimental Results

The simulated experiment showed that the Bebal-library is capable of en-
hancing a behaviour-based controller by using a genetic algorithm to find
optimal values for the parameters of the controller. This is based on the
results of the wall construction experiment, which will be analysed in detail
in the following subsections.
Figures 6.2, 6.3 and 6.4 contain charts with the evolving fitness values of 1,
2 and 4 simultaneously working robots in progress of generations. All graphs
have three plotted curves representing the minimal (dashed light grey curve),
average (black curve) and maximal fitness (dashed dark grey curve) values
of individuals in each generation. In addition trend lines (in corresponding
colors) were inserted for a better display of the momentum of the fitness
evolution.

1Does not apply to trials with only one robot.

59

Table 6.1 summarize the fitness of the first and last ten generations for all ex-
perimental setups. Evaluated was the minimal, average and maximal fitness
reached by average for each amount of robots.

Trials with one Robot

This trial served as a reference point to how many blocks a single robot can
forage in a given time (about 15 simulated minutes) when no interference
from other robots occurs. From log files created during the experiment and
data in Figure 6.2/Table 6.1 we can see that the maximal amount an indi-
vidual in the late phase of the experiment has managed to build a wall from
is on average nearly 4 blocks (3.78). This is an improvement of almost 50%
compared to the 2 blocks (2.38) in the first ten generations. The average
performance however improved only slightly over 50 generations, from 1.8
blocks to 2.5. This is due to the limitation on how fast the robot can move
at all and the time limit set.

Trials with two Robots

In this experiment interestingly the average number of collected blocks did
not change at all (3.5 in early generation to 3.4 in the end). This can be
explained with an almost non-existent interference between the robots as
there were only two, so basically just the performance of two robots was
totaled. Individuals evolved that were able to collect a correctly deliver 6
blocks. Measured values for the trials with two robots are depicted in Fig.
6.3.

Trials with four Robots

The four robot trial was interesting to observe as for the first time some
individuals were able to collect and correctly deliver all ten blocks to the
construction site, represented by fitness values of ±1000 and higher) in Fig.
6.4. Furthermore the genetic algorithm worked as supposed. It evolved over
time settings for the controller which minimize the interference between
robots and increase the average amount of block from 6.6 to over 8 (see Table
6.1). More importantly there were individuals in almost each generation
that collected all 10 blocks and over the generations the best of them even
finished about 3 (simulated) minutes before the time limit of 15 minutes

60

Average fitness values
of robots First 10 gen. Last 10 gen.

1
min 79.2 135.0
avrg 180.17 253.8
max 237.6 368.64

2
min 198.0 108.0
avrg 350.34 340.71
max 475.2 531.0

4
min 261.1 378
avrg 665.56 802.04
max 1098.3 1254.64

Table 6.1: Measured results of each trial. Compared is the average fitness of
the first and last ten generations. A succesfully transferred block was rated
with 100 points (see 6.1.3).

expired. They got gradually better (the maximal-curve in the graph) over
the generations and reached in the end fitness values of over 1400.
It is worth noting that signs of a new behaviour emerged in most of the best
individuals evolved by the genetic algorithm. These individuals exhibited
a “bouncing” behaviour when following a wall as depicted in Figure 6.5
caused by setting the escape angular speed (defined by the VAR FOLLOW -

WALL LEFT ANGLE variable) to almost the allowed maximum of 20 degrees.
Obviously it allowed them to proceed faster and avoid other robots. This
behaviour was also partly observed in trials with one and two robots.

Conclusion of the Experiment

The three experiment variatons delivered useful results and it was shown
that an increasing number of robots improves the performance of the system.
Better controllers were evolved, best observed in the experiment with four
robots. It may be possible to further increase the performance of the used
controller by modifying the controller and/or using other settings for the
genetic algorithm. This is left open to further reserach as it was not the aim of
this experiment to bring the controller to perfection, but to prove a concept
and show that the Bebal-library can be used in such experiments while
producting useful results. Beyond that expectations, indication of evolving
behaviours was discovered.

61

Figure 6.2: Results of trials with one robot.

62

Figure 6.3: Results of trials with two robots.

63

Figure 6.4: Results of trials with four robots.

64

Figure 6.5: Player/Stage with four robots. The black line illustrates the
movement along a wall of some succesfull individuals evolved by the genetic
algorithm.

65

Chapter 7

Conclusion

The goal of the thesis was an implementation of a software library that al-
lows to develop behaviour-based controllers for autonomous mobile robots
simulated by Player/Stage. The controller design process had to be simple,
efficient and preferably avoid programming whenever possible in order to
shift the focus into defining behaviours and rules for them. In addition the
library should implement genetic algorithms. Functionality had to be exhib-
ited by performing an evolutionary experiment with multiple robots.

All the above objectives were completed, including the experiment that
validates this approach to user-friendly creation of robot controllers. The
Bebal-library allows the user to design controllers in its simplest form by
creating only one XML-file in which behaviours of a robot are described.
Parametrization of such rules and behaviours enables further to use another
functionality of the library – genetic algorithms – for optimizing these pa-
rameters in order to improve the controllers. If needed, interfaces to write
behaviours and sensor evaluation routines as modules in C++ are present.

The ability to function was illustrated by a series of experiments as de-
scribed in Chapter 6. At first a nontrivial robots controller was created to
solve a construction assignment in which the robots had to collect blocks
and build a straight wall at a specified location. In the second phase we let
the genetic algorithm optimize the controllers parameters for one, two and
four robots working at the same time. The results of the experiment show
that the library is capable of evolving parameters of a controller and achieve
higher performance of the controller than its performance with original pa-

66

rameter values set manually. The average amount of wall-blocks collected
increased from 6 to 8. Solutions that managed to forage all 10 blocks before
the time limit of 15 (simulated) minutes have been found. It was even pos-
sible to observe an emerging behaviour as the genetic algorithm progressed.

This work could be further enhanced in various ways, such as by enabling to
evolve not only parameters of certain behaviours but the behaviours them-
selves or by adding a selection of behaviour-based controller types (vertical
versus horizontal, cooperative versus competitive). Experiments on hard-
ware robots could be performed to see how the library can cope with noise
and other real world problems. From a more technical point of view it is
possible to support not only the Player/Stage simulator but other simula-
tors, too. Various additional sensor interfaces that Player provides can be
implemented. Also a graphical interface (GUI) could be proven useful for
even easier management of settings and definition of behaviours.

67

Appendix A

Contents of the CD

The attached CD contains the following files and folders:

• /construction experiment results – Contains the results and log
files of the experiment conducted in Chapter 6.

• /doc – Contains this thesis in digital form as well a programmer’s
reference generated by Doxygen.

• /examples – In this folder there are source and configurations files of
the examples used through the text.

• /software – Contains the necessary software to install and run the
Player/Stage simulator.

• libbebal-0.1.0.tar.gz – This is the software package of the Bebal-
library that can be installed. When extracted it contains makefile rou-
tines needed to build the library and the source code.

68

Bibliography

[1] http://playerstage.sourceforge.net/index.php?src=player

[2] http://playerstage.sourceforge.net/index.php?src=stage

[3] http://playerstage.sourceforge.net/index.php?src=doc

[4] http://www.w3.org/XML/

[5] http://www.stack.nl/∼dimitri/doxygen/

[6] http://www.linux.com

[7] http://sourceforge.net/projects/opencvlibrary/

[8] http://xmlsoft.org

[9] http://www.boost.org

[10] http://logging.apache.org/log4cxx/

[11] Floreano D., Nolfi S.: Evolutionary Robotics: Exploiting the full power
of selforganization, MIT Press, 2000.

[12] Arkin R.C.: Behavior-Based Robotics, MIT Press, 1998.

[13] Jens Wawerla, Gaurav S. Sukhatme, Maja J. Matarić: Collective Con-
struction with Multiple Robots. In Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS 2002),
2002.

69

