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V Praze dne 30.8.2009 Benjamin Vejnar

2



Contents

Preface 5

1 Homogeneous mappings 7

2 Lattice structure 10

3 Countable, discrete and Euclidean spaces 13
3.1 Discrete spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Countable metrizable spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Euclidean spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Products of omega and Euclidean space . . . . . . . . . . . . . . . . . . . . . 25

4 Characterization using algebras of continuous functions 35

5 Small H-compactifications 37

Bibliography 40

3
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Abstrakt: V předložené práci studujeme kompaktifikace, na které je možné spojitě rozš́ı̌rit
homeomorfismy základńıho prostoru. Takové nazýváme H-kompaktifikacemi. Charakterizu-
jeme je pomoćı několika ekvivalentńıch podmı́nek a dokážeme, že H-kompaktifikace daného
prostoru tvoř́ı úplný horńı polosvaz, který je úplným svazem v př́ıpadě, že výchoźı pros-
tor je lokálně kompaktńı. Dále popisujeme všechny H-kompaktifikace diskrétńıch prostor̊u
a spočetných lokálně kompaktńıch prostor̊u. Ukazujeme, že jediné H-kompaktifikace Eukli-
dovských prostor̊u dimenze alespoň dvě jsou jednobodová a Čechova-Stonova kompaktifikace.
Následně obdrž́ıme, že existuje přesně 11 H-kompaktifikaćı spočetné sumy Euklidovských
prostor̊u dimenze alespoň dvě a přesně 26 H-kompaktifikaćı spočetné sumy reálných př́ımek.
Ty jsou všechny popsány a je dán Hasseho diagram svazu, který tvoř́ı.
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Title: Homogeneity of topological structures
Author: Bc. Benjamin Vejnar
Department: Department of Mathematical Analysis
Supervisor: Prof. RNDr. Miroslav Hušek, DrSc.
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Abstract: In the present work we study those compactifications such that every autohomeo-
morphism of the base space can be continuously extended over the compactification. These
are called H-compactifications. We characterize them by several equivalent conditions and we
prove that H-compactifications of a given space form a complete upper semilattice which is a
complete lattice when the given space is supposed to be locally compact. Next, we describe
all H-compactifications of discrete spaces as well as of countable locally compact spaces. It
is shown that the only H-compactifications of Euclidean spaces of dimension at least two are
one-point compactification and the Čech-Stone compactification. Further we get that there
are exactly 11 H-compactifications of a countable sum of Euclidean spaces of dimension at
least two and that there are exactly 26 H-compactifications of a countable sum of real lines.
These are all described and a Hasse diagram of a lattice they form is given.
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Preface

This thesis is focused on a notion of an H-compactification. It is a compactification such
that all autohomeomorphisms of the base space can be continuously extended over the com-
pactification. We note that the notion was partially studied by several authors in the papers
[Smi94] where it is called equivariant extension, in [dGM60] it is called G-compactification, or
in [vD79] where the author used a name topological compactification. The last one is probably
the most suitable name since it express that the compactification is defined only with respect
to the topology of the base space and does not depend on the concrete representation of the
space. However, this collocation of words is too long so that it could be used frequently.

It is already known that Sorgenfrey line as well as spaces of rational and irrational num-
bers admit only one H-compactification and that there are exactly three H-compactifications
of the real line [vD79]. In the same paper it is noted that there are at least eleven H-
compactifications of a countable sum of real lines. We proceed in this work when studying
Euclidean spaces of heigher dimension and their countable sums. In the last chapter we
continue in a research of a paper [dGM60], where it is proved that under some conditions a
metric space possess a metric H-compactification.

Next, we describe several conventions which may be helpful for better reading of this
thesis and for elimination of misunderstandings.

Letters i and j are used mainly as indeces. Whenever e : X → Y and f : Y → Z are
mappings we denote by fe : X → Z their composition. The symbol ‘idX ’ or just ‘id’ means
the identity function on the set X. For any collection of mappings fi : X → Yi for i ∈ I
a diagonal mapping ∆i∈Ifi : X →

∏
i∈I Yi is given by ∆fi(x) =

(
fi(x)

)
i∈I . When dealing

with ordinal numbers we usually use Greek letters δ or ε. For cardinal numbers we reserve
letters κ, λ and µ. Cardinal successor of κ is denoted by κ+. The least infinite ordinal is
labeled by the letter ω and its elements by k, l,m, n. It turns out that using a shortcut
{0, . . . , n− 1} = n is efficient.

By letters X, Y and Z we usually mean topological spaces and we denote by E,F and
G,H,U, V their closed and open subsets respectively. Closure and interior of a set A in

X are denoted by A
X

and intXA, or just by A and int A. The symbol H(X) means the
group of all autohomeomorphisms of the space X. The fact that two spaces X and Y are
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homeomorphic is symbolically abbreviated by X ∼= Y . Letters g and h are reserved for
homeomorphisms. For an equivalence ∼ on X we write X/∼ for the corresponding quotient
space. When this quotient arise simply by shrinking a set A ⊆ X we write just X/A. For the
set of all continuous mappings from X to Y we use C(X, Y ) and its elements are denoted by
e and f . Then C(X) stands for all real-valued continuous functions and C∗(X) for bounded
real-valued continuous functions.

A compact space is automatically supposed to be Hausdorff. By γX and δX we denote
some compactifications of a Tychonoff space X. We accept commonly used notation for the
embedding γ : X → γX. We hope, it is always clear, what the symbol ‘γ’ means. Alexandroff
one-point compactification of a non-compact locally compact space X is signed by αX. By
βX we denote Čech-Stone compactification. For a given continuous mapping f : X → Y
of Tychonoff spaces we denote by βf : βX → βY the only continuous extension of f . For
simplification we define X∗ to be the Čech-Stone remainder βX \X.

When working with metric spaces, we use dist(A,B) for the distance of two sets and
diamA to denote diameter of a set. Note that dist(A,B) is by definition equal to infinity
whenever A or B is empty and diam A equals zero whenever A is empty. The bold letters Z,
Q and R stand for integers, rationals and real numbers respectively. The symbol Sn is used
for the n-dimensional sphere, not for a power. Thus S1 = S is just a circle.

For a given space X and a given point x ∈ X a set
{
h(x) : h ∈ H(X)

}
is called orbit of

the point x. Remind that a space X is said to be homogeneous if for every pair of points
x, y ∈ X there is a homeomorphism h ∈ H(X) for which h(x) = y. In other words there
is at most one orbit. On the other hand a space X is called rigid whenever H(X) contains
only identity. This means every single point in X forms an orbit. Moreover a space X is
said to be bihomogeneous if for every pair of points x, y ∈ X there exists a homeomorphism
h ∈ H(X) such that h(x) = y and h(y) = x.

For all common notions and topological ideas used in this thesis we refer to [Eng89]. Note
that some of them are used implicitly. Lot of facts about compactifications can be found in
[Cha76].
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Chapter 1

Homogeneous mappings

In this chapter we are going to define a strong and helpful notion of a homogeneous mapping.
We prove a statement concerning relationship with rigidity and homogeneity. Further we
establish some simple but useful facts about homogeneous mappings.

Definition 1.1. We say that a continuous mapping f : X → Y is homogeneous if for every
h ∈ H(X) there exists g ∈ H(Y ) such that fh = gf .

Let us emphasize that currently defined notion depends essentially on the codomain of
the mapping f . It is easy to verify that identity as well as constant mappings are always
homogeneous and that a composition of two homogeneous mappings is again homogeneous.
Neither products nor sums of homogeneous mappings are in general homogeneous. To see
this consider a pair of inclusion mappings ω → ω+1 and ω → ω+1 sum and product of which
is not homogeneous. On the other hand we prove that diagonal mapping of homogeneous
mappings is homogeneous. As can be easily shown a homogeneous mapping defined on a
bihomogeneous space is either one-to-one or constant.

Proposition 1.2. There exist a T0 (resp. Tychonoff) space Y such that for every T0 (resp.
Tychonoff) space the following are equivalent.

(i) A space X is rigid.

(ii) Every continuous mapping f : X → Y is homogeneous.

Proof. Clearly every continuous mapping of a rigid space into arbitrary space is homogeneous.
Thus it remains to prove (ii) → (i). We define Y to be the Sierpiǹski space

(
2, {2, 1, ∅}

)
(resp. closed interval [0,2]). Suppose for contradiction that there exists a homeomorphism
h ∈ H(X) and two distinct points x, y ∈ X for which h(x) = y. Since the space X is T0
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there exists an open set G containing the point x and not containing y (or vice versa – but
the same argumentation can be used then). Define a mapping f : X → Y by the rule

f(z) =

{
0, z ∈ G
1, z /∈ G

(resp. to be any continuous mapping into [0, 2] for which f(x) = 0 and f�X\G = 1). Clearly
the mapping f is not homogeneous because there is no homeomorphism of Y sending the
point f(x) to f(y). That is a contradiction.

Remark 1.3. The assumption for a spaceX in Proposition 1.2 to satisfy at least any separating
axioms is essential since one can realize that indiscrete space X containing two points is not
rigid but every continuous mapping f : X → Y is homogeneous for an arbitrary space Y .

Moreover the assumption for X and Y being T0 (resp. Tychonoff) in Proposition 1.2
cannot be replaced neither by T1, T2 nor T3. Thus suppose for contradiction there is a T1

space Y such that for every T3 space X we have that X is rigid if and only if every continuous
mapping f : X → Y is homogeneous. By Herrlich result noted in [Eng89, p. 119] there exists
a T3 space Z with at least two points such that C(Z, Y ) consists of constant mappings only.
If we put X = Z × Z we get a non-rigid T3 space such that every continuous mapping
f : X → Y is constant, hence homogeneous. This contradicts our assumptions.

The following proposition give reason for the notion of a homogeneous mapping.

Proposition 1.4. An image of a homogeneous space under a homogeneous mapping is again
homogeneous.

Proof. Let f : X → Y be a homogeneous mapping of a homogeneous space X onto Y . Take
any two points y, y′ in Y . There exists x, x′ ∈ X for which f(x) = y and f(x′) = y′.
Since X is homogeneous there exists a homeomorphism h ∈ H(X) such that h(x) = x′. By
homogeneity of the mapping f there is a homeomorphism g ∈ H(Y ) such that fh = gf .
Thus g(y) = gf(x) = fh(x) = f(x′) = y′.

Lemma 1.5. Diagonal mapping f = ∆fi : X →
∏
Yi is homogeneous provided that all the

mappings fi : X → Yi are homogeneous.

Proof. Take arbitrary h ∈ H(X). For each i there exists gi ∈ H(Yi) such that fih = gifi.
Now g =

∏
gi ∈ H

(∏
Yi
)

satisfies fh(x)i = fih(x) = gifi(x) for every i and every x ∈ X.
Hence fh = gf and so the diagonal mapping is homogeneous.

Lemma 1.6. Let f : X → Y be a homogeneous mapping. Than its corestrictions f : X →
f(X) and f : X → f(X) are homogeneous too.
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Proof. For any h ∈ H(X) there exists g ∈ H(Y ) such that fh = gf . From this we derive
that g�f(X) is a homeomorphism of f(X) onto f(X). Thus f : X → f(X) is homogeneous.

Since the mappings g and g−1 are continuous and gf(X) = f(X) we get that g
(
f(X)

)
=

f(X). Thus g�f(X) is a homeomorphism onto f(X). Thus the mapping f : X → f(X) is
homogeneous too.
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Chapter 2

Lattice structure

In this chapter we define first a notion of an H-compactification. Further we prove that
H-compactifications of one fixed space behave well in the sense that their supremum and
infimum (if it exists) is again an H-compactification. Moreover we give a characterization
of an H-compactification using bounded continuous functions which are extendable over the
compactification.

Definition 2.1. A compactification γX of a Tychonoff space X is said to be an H-compac-
tification provided that the inclusion mapping γ : X → γX is homogeneous.

This means every homeomorphism h ∈ H(X) can be extended to a homeomorphism
g ∈ H(γX). It can be equivalently reformulated to the condition that every h ∈ H(X) is
continuously extendable over γX. Čech-Stone compactification βX is an H-compactification
because every h ∈ H(X) can be extended continuously to a mapping βh : βX → βX. One-
point compactification αX = X ∪ {∞} is an H-compactification for non-compact locally
compact space X too. One can namely take for every h ∈ H(X) the only bijection g : αX →
αX extending h and verify that g is a homeomorphism because open neighbourhoods of the
point ∞ are exactly complements in αX of compact subsets of X.

Informally, a compactification is an H-compactification if and only if it can be defined
only in dependence on topological properties of the given space. It is easy to verify that
every reflection of a full subcategory of topological spaces into its subcategory consists
of homogeneous mappings. Thus we can derive that e.g. Banaschewski compactification
(the biggest zero-dimensional compactification) of a zero-dimensional space is always an H-
compactification.

Recall that for a Tychonoff space X we can consider a set of all (up to equivalence) com-
pactifications of X with natural order which assigns to this set a complete upper semilattice
structure. When the space X is taken to be locally compact we get even a complete lattice.
For more details see [Cha76, p. 16].

10



Proposition 2.2. The semilattice of all H-compactifications of a Tychonoff space X is a com-
plete subsemilattice of the semilattice of all compactifications of X.

Proof. For H-compactifications γiX we denote by γi : X → γiX the inclusion mappings.
Least upper bound of these compactifications is given by γ(X) where γ = ∆γi. Now this
new compactification is an H-compactification because the mapping γ and its corestriction
γ : X → γ(X) are homogeneous by Lemmas 1.5 and 1.6.

Theorem 2.3. Let γX be a compactification of a Tychonoff space X, let U be the only
uniformity on γX and let γX = βX/∼. Then the following conditions are equivalent.

(i) γX is an H-compactification.

(ii) For every h ∈ H(X) and x, y ∈ βX such that x ∼ y we have that βh(x) ∼ βh(y).

(iii) Every homeomorphism h ∈ H(X) is uniformly continuous with respect to the uniformity
U .

(iv) For every f ∈ C∗(X) which is continuously extendable over γX and for every h ∈ H(X)
the function fh can be continuously extended over γX.

Proof. (i)→ (ii) Take h ∈ H(X) and x, y ∈ βX. Denote by ϕ : βX → γX the only extension
of identity on X. Note that x ∼ y iff ϕ(x) = ϕ(y). By (i) there is a homeomorphism
g ∈ H(γX) extending h from which we get that ϕβh = gϕ since left and right side of
this equality are the same on a dense subset of βX. Thus if ϕ(x) = ϕ(y) we get that
ϕβh(x) = gϕ(x) = gϕ(y) = ϕβh(y) and hence βh(x) ∼ βh(y).

(ii) → (iii) For any h ∈ H(X) define g ∈ H(βX/∼) by a condition g
(
[x]∼

)
=
[
βh(x)

]
∼.

The mapping g is uniformly continuous and extends h. Thus h is uniformly continuous too.
(iii) → (iv) Take any h ∈ H(X) and f ∈ C∗(X) which is continuously extendable

into a mapping f̄ : γX → R. Since h is uniformly continuous by (iii) and f̄ is uniformly
continuous too, the composition fh is uniformly continuous. Thus by Theorem 8.3.10 from
[Eng89, p. 447] we get that there is a continuous extension of the mapping fh over γX.

(iv) → (i) Let h ∈ H(X) be given. We want to show that h is continuously extendable
into a mapping γX → γX. Let us remind Theorem 3.2.1 from [Eng89, p. 136].

A continuous mapping h : X → Z, where X is a dense subset of a space Y and Z is
compact, can be continuously extended over X if and only if for every pair E, F of disjoint
closed subsets of Z the preimages h−1(E) and h−1(F ) have disjoint closures in Y .

In this situation we set Y = γX = Z. In order to verify the condition let us fix two
disjoint closed subsets E and F of γX. There exists a continuous function f ∈ C(γX) such
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that E ⊆ f−1(0) and F ⊆ f−1(1). Because of the condition (iv) there exists a continuous
function e ∈ C(γX) such that fh = e�X . Finally we have

h−1(E) ∩ h−1(F ) ⊆ (fh)−1(0) ∩ (fh)−1(1) ⊆ e−1(0) ∩ e−1(1) = ∅.

Thus by the cited theorem we are done.

Using the previous theorem we get the following result.

Proposition 2.4. The lattice of all H-compactifications of a locally compact space X is
a complete sublattice of the lattice of all compactifications of X.

Proof. For given H-compactifications γiX denote by Ci the sets of all continuous functions
from C∗(X) that are extendable over γiX. Let C =

⋂
Ci. The greatest lower bound of com-

pactifications γiX is given by γ(X) where γ : X → RC is defined by the equality f(x)e = e(x).
We are going to verify the fourth condition from the characterization of H-compactifications
in Theorem 2.3. Let h ∈ H(X) and f ∈ C∗(X) be continuously extendable over γ(X). Then
f ∈ C. Consequently fh ∈ Ci for every i because γiX are H-compactifications. Hence
fh ∈

⋂
Ci = C is continuously extendable over γ(X).
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Chapter 3

Countable, discrete and Euclidean
spaces

How do look like all H-compactifications of a given topological space? This question seems
to be hard to answer in some cases. For example when a rigid space is selected then every
compactification is an H-compactification and there can be a huge number of them (e.g.
when a dense rigid subset of the real line is taken there exist at least continuum many of
them). However, we describe all H-compactifications of discrete, Euclidean and countable
locally compact spaces. This is possible since these spaces possess a lot of homeomorphisms.
Finally we prove that a sum of countable many copies of the real line admits exactly 26
H-compactifications.

3.1 Discrete spaces

Let us settle two lemmas that will be used when proving Theorem 3.3.

Lemma 3.1. Let X be a Tychonoff space and γX and δX be two compactifications such
that δX is an H-compactification of X and there exists a continuous mapping f : δX → γX
extending identity on X. If f is homogeneous mapping then γX is an H-compactification of
X.

Proof. The inclusion γ : X → γX is just a composition of two homogeneous mappings.

Note that the opposite implication in the previous lemma is not true in general. Just
consider a space X = βω⊕ ω and continuous mapping f : βX → αX which extends identity
on X. Note that βX = βω ⊕ βω is an H-compactification of X and observe that f is not
a homogeneous mapping.
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Lemma 3.2. Let ∼ be an equivalence relation on a space X. Suppose moreover that equiv-
alence classes are either singletons or unions of some orbits. Then the quotient mapping
q : X → X/∼ is homogeneous.

Proof. Fix arbitrary h ∈ H(X). And define g : X/∼ → X/∼ by the rule g
(
[x]
)

=
[
h(x)

]
,

where [x] denotes the equivalence class containing x. This definition is correct because
equivalence classes are either singletons or unions of some orbits. The mapping g is a bijection
satisfying qh = gq. For an open set G ⊆ X/∼ we can see that H = h−1q−1(G) is open. If
x ∈ H then [x] ⊆ H. Hence q(H) is open. The equality q(H) = g−1(G) implies that g is
continuous. Similarly g−1 is continuous too and consequently g is required homeomorphism.

Theorem 3.3. The only H-compactifications of a discrete space D of cardinality κ ≥ ω are
βD/Fλ where ω ≤ λ ≤ κ+ and

Fλ = βD \
⋃{

A : A ⊆ D, |A| < λ
}
.

Proof. Remind that the system
{
A : A ⊆ D

}
is clopen bases of βD. Hence the sets Fλ are

closed and βD/Fλ are compactifications of D. These are all H-compactifications by Lemma
3.1 because quotient mappings qλ : βD → βD/Fλ are homogeneous by Lemma 3.2. Note
that Fω = βD \D, Fκ+ = ∅ and hence βD/Fω = αD and βD/Fκ+ = βD.

Let f : βD → γD be a continuous mapping onto γD extending the identity on D. And
suppose the compactification γD is not equivalent to any βD/Fλ. This means that for every
ω ≤ λ ≤ κ+ the inequality |f(Fλ)| ≥ 2 holds or the restriction f�βD\Fλ is not one-to-one.
Now let λ be the least cardinal such that the restriction f�βD\Fλ is not one-to-one. Clearly
ω < λ ≤ κ+. Because of minimality of λ we derive that λ = µ+ is cardinal successor and
|f(Fµ)| ≥ 2.

This proof is completed by the following lemma.

Lemma 3.4. Let D be a discrete space of cardinality κ ≥ ω. Suppose f : βD → γD is
the only continuous extension of identity on D onto some compactification γD. If there
exists ω ≤ µ ≤ κ for which |f(Fµ)| ≥ 2 and f�βD\Fµ+

is not one-to-one then γD is not an

H-compactification of D.

Proof. There exist two points u, v ∈ Fµ such that f(u) 6= f(v) and two distinct points
x, y ∈ βD \ Fµ+ such that f(x) = f(y). Let U , V be open neighbourhoods of u and v
respectively satisfying f(U) ∩ f(V ) = ∅. We can find A,B ⊆ D such that u ∈ A ⊆ U and
v ∈ B ⊆ V . Note that |A|, |B| ≥ µ. From the fact that x, y /∈ Fµ+ we can derive the existence
of disjoint subsets M,N ⊆ D of cardinalities less than µ+ such that x ∈M , y ∈ N . We can
also require |D \ (M ∪N)| = κ.
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It is easy to realize that there exists a bijection b ∈ H(D) so that b(M) ⊆ A and b(N) ⊆ B.
Let h ∈ H(βD) be the only continuous extension of b. Note that h(x) ∈ A and h(y) ∈ B.
Suppose for contradiction that γD is an H-compactification and find g ∈ H(γD) extending b.
Two continuous mappings fh and gf are equal on D and because D is dense in βD we derive
fh = gf . On the other hand we have fh(x) ∈ f(U) and fh(y) ∈ f(V ) and gf(x) = gf(y).
But f(U) and f(V ) were disjoint hence fh(x) 6= fh(y) and this is contradiction with the
equality fh = gf .

Corollary 3.5. The only H-compactifications of ω are αω and βω.

3.2 Countable metrizable spaces

As mentioned in a paper of de Groot and McDowell [dGM60], ‘it is of interest to ask for con-
ditions under which every autohomeomorphism of a given space can be extended to a suitable
metric compactification’. In this section we study such a problem in the class of countable
metrizable spaces. Let us recall frequently used fact that Alexandroff one-point compactifi-
cation of a non-compact separable locally compact metrizable space is always metrizable.

Proposition 3.6. A countable metrizable space admits a metrizable H-compactification if
and only if it is locally compact. In this case the only metrizable H-compactification is the
one-point compactification.

Proof. Suppose that X is a countable metrizable space and γX an arbitrary metrizable H-
compactification. Denote by Y the set of all isolated points of X. We claim that the set Y is
dense in X. Suppose this is not true. Hence we get an open non-empty set X \ Y no points
of which are isolated. We can find a non-empty clopen set Q ⊆ X \ Y . Since Q is a non-
empty countable metrizable space without isolated points we obtain that it is homeomorphic
to rational numbers Q (see [vE86, p. 17]). By a result of van Douwen [vD79] there exists
exactly one H-compactification of Q, namely βQ. The inclusion Q → X is homogeneous
which implies that the closure of Q in γX is homeomorphic to βQ. This is a contradiction
with the assumption that γX is metrizable. So the claim is proved.

For arbitrary pair of points x, y ∈ γX \X we can fix two sequences xn, ym ∈ Y converging
to x and y respectively because γX is metrizable and isolated points of X are dense in γX
. We can assume moreover that all the points xn, ym are distinct. We are allowed to define
a homeomorphism h ∈ H(X) for which

h(z) =


xn, if z = yn and n is odd,

yn, if z = xn and n is odd,

z, otherwise,
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because the sets {xn : n ∈ ω} and {ym : m ∈ ω} are clopen and discrete. There is an extension
g ∈ H(γX) of h for which necessarily x = h(x) = y. Thus γX \ X contains at most one
point. Therefore X is locally compact.

Since one-point compactification of a locally compact separable metrizable space is again
metrizable, we are done.

In the sequel, it is of particular interest that every countable locally compact space is
metrizable. To see this remind that a network weight is the same as weight for compact spaces
[Eng89, p. 127] and thus any countable locally compact space is first countable. Moreover
by the Urysohn metrization theorem [Eng89, p. 260] we get that such a space is metrizable
because it is second countable and regular.

Let us recall some generally known facts about Cantor-Bendixson derivative and Cantor-
Bendixson rank that can be found in [HNV04, p. 350]. These will be helpful for a description
of all H-compactifications of any countable locally compact space.

For any topological space X we can define its derivative X ′ to be the subspace of X which
consists of all non-isolated points ofX. Clearly, the spaceX ′ can contain some isolated points,
so it make sense to repeat the derivative. This can be done transfinitely for all ordinals. For
an isolated ordinal δ we let Xδ to be the derivation of the predecessor and for a limit ordinal
δ we define Xδ to be the intersection of the preceding chain. Thus we get a sequence indexed
by ordinal numbers. Note that all the sets Xδ are closed in X. Since this process has to stop
we can define so called Cantor-Bendixson rank of X to be the smallest ordinal δ for which
Xδ = Xδ+1. It will be simply denoted by rank X. The space X is called scattered provided
that the sequence Xδ is eventually empty set. Note that a countable locally compact space
is always scattered.

For any space X define top X = Xδ if rank X = δ + 1 and top X = ∅ otherwise. Notice
that for any scattered compact space its Cantor-Bendixson rank cannot be a limit ordinal.
This follows easily from the fact that intersection of a chain of non-empty compact subspaces
is non-empty. Thus we get rank X = δ + 1 for some ordinal δ. Since Xδ is a compact space,
whose derivative is empty set, we get that top X = Xδ is finite.

For our next work it is helpfull to define an ordinal rankcX associated to every scattered
space X. It is the least ordinal number δ for which Xδ is compact. Note that rankcX ≤
rank X.

Below we give a series of statements most of which are needed to a proof of Theorem
3.11.

Lemma 3.7 (Mazurkiewicz – Sierpiński [MS20]). Let K and L be countable and compact
spaces. Then K is homeomorphic to L if and only if rank K = rank L and top K ∼= top L.
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Corollary 3.8. The orbits of a countable locally compact space X are precisely the sets Xδ \
Xδ+1 where δ < rank X. Moreover for any points x, y ∈ Xδ\Xδ+1 there is a homeomorphism
h ∈ H(X) such that h(x) = y and h�Xδ+1 is equal to identity.

Proof. Clearly the sets Xδ \ Xδ+1 are preserved by all homeomorphisms since Cantor-Ben-
dixson derivative is a topological notion. On the other hand suppose we have two distinct
points x, y ∈ Xδ \ Xδ+1. There exist disjoint compact clopen neighbourhoods P and Q of
x and y respectively for which P ∩ Xδ = {x} and Q ∩ Xδ = {y}. The sets P and Q are
homeomorphic by Lemma 3.7 and since they are clopen we can extend this homeomorphism
into a homeomorphism of the whole space by identity.

Proposition 3.9. Let X and Y be two countable locally compact spaces. Then X is homeo-
morphic to Y if and only if rank X = rank Y , rankcX = rankcY and top X ∼= top Y .

Proof. The direct implication is clear. If one of the two spaces is compact the second one is
too, since rankcX = rankcY , and by Lemma 3.7 we get desired result. Thus suppose they
are both non-compact and consider their one-point compactifications αX = X ∪ {∞x} and
αY = Y ∪ {∞y}. There are three possibilities.

• rank X = rankcX. This implies that rank αX = rank X + 1 = rank Y + 1 = rank αY
and top αX = {∞x} ∼= {∞y} = top αY .

• rank X = rankcX + 1. In this case rank αX = rank X = rank Y = rank αY and
top αX = top X ∪ {∞x} ∼= top Y ∪ {∞y} = top αY .

• rank X > rankcX + 1. Then rank αX = rank X = rank Y = rank αY and top αX =
top X ∼= top Y = top αY .

In all cases the assumptions of Lemma 3.7 are satisfied hence there exists a homeo-
morphism h : αX → αY . It is not always the case that h(∞x) = ∞y so we need to find
a homeomorphism g ∈ H(αY ) for which g

(
h(∞x)

)
= ∞y. However its existence is a

consequence of the corollary 3.8 for δ = rankcX since ∞x ∈ (αX)δ \ (αX)δ+1 and thus
h(∞x),∞y ∈ (αY )δ \ (αY )δ+1.

Finally gh�X is the required homeomorphism.

The following proposition, although more or less unrelated to H-compactifications, is
an interesting result.

Proposition 3.10. Let X be a countable locally compact space and δ arbitrary ordinal num-
ber. Then the inclusion mapping Xδ → X is homogeneous.

17



Proof. Let h ∈ H(Xδ) be a given homeomorphism we want to extend over X. Suppose first
that the space X is compact. Assume ρ is a compatible metric. The notions such as diameter
and distance are derived from this metric.

We claim that there exists a disjoint system Cx for x ∈ Xδ \Xδ+1 of clopen sets satisfying⋃
Cx = X \Xδ+1, Cx ∩Xδ = {x} and diam Cx tends to zero.
Since the space X is compact and zero-dimensional we are able to find a pairwise disjoint

non-empty clopen sets On such that
⋃
On = X \Xδ, diam On tends to zero and dist(On, X

δ)
too. Now, for every n we can find yn ∈ Xδ whose distance from On is the least. Since
Xδ \ Xδ+1 is dense in Xδ there exists a point xn ∈ Xδ \ Xδ+1 for which ρ(xn, yn) < 2−n.
It remains to put Cx = {x} ∪

⋃
{On : xn = x}. Now it is straightforward to verify that the

system satisfies conditions mentioned in the claim.
Realize that for any pair y, z ∈ Xδ \ Xδ+1 we have rank Cy = δ + 1 = rank Cz and

top Cy = {y} ∼= {z} = top Cz. Thus according to Lemma 3.7 there exists a homeomorphism
ϕy,z : Cy → Cz. Clearly ϕy,z(y) = z. Define a mapping g : X → X by the rule

g(x) =

{
h(x), if x ∈ Xδ,

ϕy,h(y)(x), if x ∈ Cy.

The mapping g is a correctly defined bijection and it is continuous at the points from⋃
Cy. Now take an arbitrary point x ∈ Xδ+1 and let us verify continuity of g at this point.

Clearly g�Xδ = h is continuous at the point x. Thus it is enough to verify continuity of g
with respect to the set X \Xδ. Let xn ∈ X \Xδ be a sequence which tends to x. For every
n ∈ ω we are able to find yn ∈ Xδ \ Xδ+1 such that xn ∈ Cyn . Since diam Cyn tends to
zero we get that the sequence yn tends to x. Further since h is continuous we derive that
h(yn) = g(yn) tends to h(x) = g(x). Moreover we know that g(xn) ∈ Ch(yn) and thus g(xn)
converges to g(x) since the diameters of Ch(yn) tend to zero.

Hence we have just proved that g is a continuous one-to-one mapping of X onto X ex-
tending the mapping h. Since the space X is compact we deduce that g is a homeomorphism.

It remains to deal with the case of a non-compact space X. We consider its one-point
compactification αX = X ∪ {∞} and distinguish two cases.

• (αX)δ = Xδ. Then we can extend given homeomorphism h ∈ H(Xδ) into a homeomor-
phism g ∈ H(αX) because of the previous step. By Lemma 3.8 there is a homeomor-
phism g′ ∈ H(αX) such that g′

(
g(∞)

)
= ∞ and which equals to identity on (αX)δ.

Consequently g′g�X ∈ H(X) extends h.

• (αX)δ = Xδ ∪ {∞}. Thus we can extend homeomorphism h ∈ H(Xδ) into a homeo-
morphism h′ ∈ H

(
(αX)δ

)
simply by h′(∞) =∞ and use the preceding step to obtain

a homeomorphism g ∈ H(αX) extending h′. Finally g�X ∈ H(X) is the desired home-
omorphism extending h.
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Theorem 3.11. Let X be a countable locally compact space. Then the only H-compactifica-
tions of X are of the form βX/Fδ where

Fδ =
⋂{

Xε : ε < δ
}
∩X∗

for 1 ≤ δ ≤ rankcX + 1.
Thus the lattice of all H-compactifications of X forms a chain isomorphic to an ordinal

rankcX + 1 when rankcX is finite and to an ordinal rankcX + 2 when rankcX is infinite.

Proof. Realize that the Čech-Stone compactification of X is obtained as βX/F δ for δ =
rankcX+1. Suppose γX is an H-compactification distinct from βX and denote by f : βX →
γX the only extension of identity on X. Let δ be the least non-zero ordinal number for which
there exists two distinct points x ∈ βX \Xδ and y ∈ βX such that f(x) = f(y). Note that
both x and y are elements of the remainder and clearly δ ≤ rankcX since XrankcX ⊆ X. Our
aim is to prove that γX is equivalent to βX/Fδ.

Lets take any point z ∈ Fδ distinct from x and y. We would like to show that arbitrary
neighbourhood U of z contains a point which is mapped to f(y) by f . Thus take a clopen
neighbourhood O of the point x such that O ∩Xδ = ∅ and y, z /∈ O and a clopen neighbour-
hood P of the point z which is a subset of U and does not contain y neither intersects O.
Distinguish two possibilities in order to define a sequence Z = {zn : n ∈ ω}.

• If δ = ε+ 1 define {zn : n ∈ ω} to be a sequence contained in P ∩ (Xε \Xδ) whose limit
is ∞ ∈ αX. This is possible since P ∩Xε is closed and noncompact subset of X and
Xε \Xδ is dense in Xε.

• When δ is a supremum of ordinals {δn : n ∈ ω} less than δ it is possible to find a sequence
{zn : n ∈ ω} whose limit is ∞ ∈ αX and such that zn ∈ P ∩Xδn \Xδn+1.

At this moment let us mention that

∅ 6= Z \ Z ⊆
⋂
ε<δ

Xε \Xδ. (3.12)

Since Z and Xδ are two disjoint closed subsets of X there exists a clopen set N ⊆ X
containing the sequence Z and being disjoint from Xδ. Let us denote by M the clopen
set O ∩ X. It follows that rank M = rankcM = δ = rankcN = rank N . Moreover if δ is
an isolated ordinal number we get that top M ∼= ω ∼= top N otherwise top M = ∅ = top N .
Thus by Proposition 3.9 we get that the sets M and N are homeomorphic. Since they
are clopen and disjoint we can define a homeomorphism h ∈ H(X) such that h(M) = N ,
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h(N) = M and h is equal to identity on the complement of M ∪N . Since x ∈M we get that
βh(x) ∈ U and βh(y) = y. There exists an extension g ∈ H(γX) of the homeomorphism
h, because γX is an H-compactification. It holds that gf = fβh and since f(x) = f(y) we
get that f

(
βh(x)

)
= f

(
βh(y)

)
= f(y). Consequently βh(x) is a point contained in U which

is mapped by f to f(y). Remember that the U was arbitrary neighbourhood of z thus by
continuity of f we get f(z) = f(y).

We have just proved that γX ≤ βX/Fδ. If we assume this inequality is strict we get
a contradiction with the minimality of δ.

In order to prove that all mentioned H-compactifications are mutually distinct we have to
verify that Fε 6= Fδ for 1 ≤ ε < δ ≤ rankcX + 1. To do this is remains to verify that Xδ \X
is a proper subset of

⋂
ε<δX

ε \X for 1 ≤ δ ≤ rankcX which is a consequence of 3.12.

Example 3.13. The space ω × (ω + 1)n admits exactly n+ 2 H-compactifications.

Remark 3.14. When dealing with countable non-locally compact spaces the situation seems
to be more complicated even in the range of metrizable spaces.

3.3 Euclidean spaces

Van Douwen proved in [vD79] that there exist only three H-compactifications of the real line.
Now, we will continue in this research. We show that there are only two H-compactifications
of Euclidean spaces of heigher dimension.

Theorem 3.15 (van Douwen [vD79]). There are exactly two H-compactifications of the space
[0,+∞).

Corollary 3.16 (van Douwen [vD79]). The only H-compactifications of the real line R are
αR, [−∞,+∞] and βR.

The following definitions are given in order to express Lemma 3.19 in a shorter way.
The lemma and Theorem 3.21 are formulated for a general space X which satisfies certain
conditions instead of the Euclidean space Rn. This is mainly because of the fact that the
proof seems to be more transparent then.

Definition 3.17. If U is a collection of subsets of a metric space X then the mesh of U is
the number

mesh U = sup{diam U : U ∈ U} ∈ [0,+∞].

Definition 3.18. We say that an open set U of a space X satisfies property (∗) if whenever
we take a set E ⊆ U closed in X and V ⊆ U open and non-empty, there is a homeomorphism
h ∈ H(X) such that h(E) ⊆ V and h is equal to identity on the complement of U .
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Lemma 3.19. Let X be a separable locally compact metric space and suppose that there
exists N ∈ ω such that for every ε > 0 there is an open cover U which can be expressed as
a union of N discrete subsystems with mesh less than ε, where every set U ∈ U has property
(∗). Let M = 2N . Then

(i) for every closed set F contained in an open set H there exist a closed discrete set
C ⊆ F and closed sets F0, . . . , FM−1 such that F =

⋃
Fi and for every i < M and open

neighbourhood G of C there is a homeomorphism h ∈ H(X) such that h(Fi) ⊆ G and h is
equal to identity on the complement of H.

(ii) for every pair of disjoint closed sets F, F ′ ⊆ X there exist disjoint closed discrete sets
C,C ′ ⊆ X and closed sets F0, . . . , FM−1, F ′0, . . . , F

′
M−1 such that F =

⋃
Fi, F

′ =
⋃
F ′j and

for arbitrary i, j < M and neighbourhoods G and G′ of C and C ′ respectively there exists
a homeomorphism h ∈ H(X) such that h(Fi) ⊆ G and h(F ′j) ⊆ G′.

Proof. (i) Fix a closed set F and an open set H containing F . Our first claim is that there
exists an open cover V of F in H which can be expressed as a union of M discrete systems
which consist of sets with property (∗).

Let us find a chain of compact sets {Kn : n ∈ ω} where every set Kn is contained in the
interior of Kn+1 and K0 = ∅. This can be done since the space X is locally compact and of
countable weight. Denote by dn the distance of Kn from Kn+2 \ int Kn+1 and by εn arbitrary
positive number less than 1

3
min{d0, . . . , dn} and dist(F ∩Kn, X \H). There exists an open

cover Un = Un0 ∪ · · · ∪ UnM−1 of X of mesh less than εn, consisting of sets with property (∗)
where every system Uni is discrete. Define now

Vi =
⋃

n is odd

{
U ∈ Un+1

i : U ∩ F ∩ (Kn+1 \ int Kn) 6= ∅
}

for i < N and
Vi =

⋃
n is even

{
U ∈ Un+1

i−N : U ∩ F ∩ (Kn+1 \ int Kn) 6= ∅
}

for N ≤ i < M .
The systems Vi are discrete and consist of sets with property (∗). A collection V =⋃

i<M Vi is the required cover of F contained in H. Thus the claim is proved.
Since metrizable spaces are paracompact according to Stone theorem [Eng89, p. 300] we

can find closed indexed refinement {E(V ) : V ∈ V} whose union is F , because by Remark
5.1.7 from [Eng89, p. 301] every open cover of a regular paracompact space has a closed
indexed refinement. Observe that a set Fi =

⋃
{E(V ) : V ∈ Vi} is closed, because it is

a union of a discrete system of closed sets. Suppose that C is a selecting set from the system
{E(V ) : V ∈ V}. This is a closed discrete set.
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Suppose that G is an open neighbourhood of C and fix i < M . For every V ∈ Vi there
exists a homeomorphism hV ∈ H(X) which sends the set E(V ) into G∩V and which is equal
to identity on the complement of the set V . This is because V has the property (∗).

The fact that the collection Vi is discrete allows us to construct a homeomorphism h ∈
H(X) which is roughly speaking a composition of all these hU . Consequently h sends the set
Fi into G.

(ii) For given disjoint closed sets F and F ′ we are able to find open sets H and H ′ whose
closures are disjoint and which contain F and F ′ respectively. By part (i) which is used
twice there exists closed discrete sets C and C ′ and closed sets F0, . . . , FM−1, F

′
0, . . . , F

′
M−1

such that whenever we take i, j < M and neighbourhoods G and G′ of C and C ′ respectively
there exist homeomorphisms h, h′ ∈ H(X) such that h(Fi) ⊆ G, h′(F ′j) ⊆ G′, h�X\H = id
and h′�X\H′ = id. It suffices to put h′′ = h′h which is the required homeomorphism.

Definition 3.20. Let X be a topological space and suppose that P is a collection of some
subspaces of X. A topological space X is called n-homogeneous with respect to P if for any
sets Ci, Di ∈ P for i < n satisfying Ci ∼= Di and Ci ∩Cj = ∅ = Di ∩Dj for i 6= j there exists
a homeomorphism h ∈ H(X) such that h(Ci) = Di for every i < n.

When n = 1 we omit the number and we write just homogeneous with respect to P . Note
that for example homogeneity with respect to points is equivalent to the classical notion of
homogeneity.

Theorem 3.21. Let X be a non-compact space satisfying assumptions of Lemma 3.19 which
is 2-homogeneous with respect to closed discrete sets. Then αX and βX are the only H-
compactifications of X.

Proof. Suppose that γX is an H-compactification of X distinct from the one-point compact-
ification. Let us take arbitrary disjoint closed sets F and F ′ in X. Our aim is to prove that
their closures in γX are disjoint too, because then we get that γX is equivalent to βX.

By Lemma 3.19 there exist closed discrete sets C, C ′ and closed sets F0, . . . , FM , F ′0, . . . , F
′
M

with properties mentioned above. Since F =
⋃
Fi and F ′ =

⋃
F ′j it is enough to prove that

for arbitrary i, j < M the closures of Fi and F ′j are disjoint in γX.
Realize that there exist two countable infinite closed discrete sets D and D′ of X whose

closures in γX are disjoint because the compactification γX has remainder containing at
least two points. Since the space X is 2-homogeneous with respect to closed discrete sets and
since γX is an H-compactification we get that closures of C and C ′ in γX are disjoint too.
Hence we can separate them by open sets G and G′ in X whose closures in γX are disjoint.

Because of Lemma 3.19 we can find a homeomorphism h ∈ H(X) for which h(Fi) ⊆ G
and h(F ′j) ⊆ G′. Consequently the closures of h(Fi) and h(F ′j) in γX are disjoint and since
γX is an H-compactification we get that the closures of Fi and F ′j are disjoint too.

Thus we have just proved that γX is equivalent to βX.
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What we need to show is that Euclidean spaces of dimension at least two satisfy assump-
tions of Theorem 3.21. This is partially done in Proposition 3.23. The following notion will
be useful when dealing with proof.

Definition 3.22. A space X is called strongly locally homogeneous if for every point x ∈ X
and arbitrary neighbourhood U of x there exists a neighbourhood V of x in U such that for
every y ∈ V we can find a homeomorphism of X which sends the point x to y and is equal
to identity on the complement of V .

Note that if we have an open connected set U in a strongly locally homogeneous space
X and two points x, y ∈ U , there is always a homeomorphism h ∈ H(X) for which h(x) = y
and which equals to identity on the complement of U . This is because the set {g(x) : g ∈
H(X), g�X\U = id} is clopen in U and thus it has to be equal to the set U .

It is a well-known fact that Euclidean spaces are strongly locally homogeneous (see [vM01,
p. 64]).

Proposition 3.23. Let n ≥ 2. Then every bijection of closed discrete subsets of the space
Rn can be extended to a homeomorphism of the whole space.

Proof. Let C and D be the given closed discrete subsets of cardinality m ≤ ω of the space Rn

and b : C → D a bijection. Next we will use the structure of a normed linear space
(
Rn, ‖·‖

)
.

The words span and conv mean linear and convex hull respectively. Let S be a set consisting
of those points from Rn either which lies on a line determined by two points from C ∪ D
or whose distance from two distinct points from C ∪D is the same. This set is a countable
union of nowhere dense sets thus S is a set of the first category in Rn. Hence by the Baire
theorem there is a point in the difference Rn \S and we can without loss of generality assume
that 0 ∈ Rn \ S.

Enumerate now the set C as {ci : i < m} and denote ri = ‖ci‖, ϕi = ci
‖ci‖ ∈ Sn−1, di = b(ci)

and si = ‖di‖. Because of the first paragraph we get that ri 6= rj, ϕi 6= ϕj and si 6= sj for
i < j < m. Let us fix i < m for a while. Denote by εi the positive distance of the set⋃
{span(0, c) : c ∈ C, ‖c‖ < ri} ∪ C \ {ci} from the segment conv(ci, siϕi). Denote by Ui the

set of all points whose distance from conv(ci, siϕi) is less than 1
3
εi. Since the space Rn is

strongly locally homogeneous and the open set Ui is connected it follows that there exists
a homeomorphism hi ∈ H(Rn) such that hi(ci) = siϕi and which equals to identity on the
complement of Ui. Since the system {Ui : i < m} is discrete we can define a homeomorphism
h ∈ H(Rn) for which

h(x) =

{
hi(x), if x ∈ Ui,
x, otherwise.

We proceed by a similar method to find a homeomorphism h′. Let ε′i be a positive
distance of the point si from the set {sj : j 6= i} and denote by U ′i the set of all points whose
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distance from siSn−1 is less than 1
3
ε′i. We can find a homeomorphism h′i ∈ H(Rn) such that

h′i(siϕi) = di and which is equal to identity at the complement of the set U ′i . Since the system
{U ′i : i < m} is discrete it is correct to define a homeomorphism h′ ∈ H(Rn) by a formula

h′(x) =

{
h′i(x), if x ∈ U ′i ,
x, otherwise.

Now it is enough to define h′′ as a composition h′h to get the desired homeomorphism for
which h′′(ci) = h′h(ci) = h′(siϕi) = di = b(ci).

Remark 3.24. The proof of Proposition 3.23 can be done more easily for Euclidean spaces
of dimension at least three. In the plane the situation is more complicated. Note that this
proposition fails to be true for n = 1 obviously.

Corollary 3.25. There are exactly two H-compactifications of Rn for n ≥ 2. Namely αRn

and βRn.

Proof. It is enough to realize that the assumptions of Theorem 3.21 are satisfied. The fact
that Rn is 2-homogeneous with respect to closed discrete sets follows easily from Proposition
3.23. For verification of the assumptions of Lemma 3.19 consider a maximum metric ρ of the
space Rn and denote by Bρ(x, r) an open ball with center x and diameter r. Put N = 2n.
For arbitrary ε > 0 we can take a cover U =

⋃
{Uj : j ∈ 2n} of Rn where

Uj =
{
Bρ

( ε
3
i,
ε

4

)
: i ∈ Zn, ik ≡ jk (mod 2)

}
.

All collections Uj are discrete and they consist of sets with property (∗), because every ball
Bρ(x, r) in Rn has property (∗).

For completeness we should add that the two H-compactifications are distinct which
is however an immediate consequence of the fact that there exists a continuous bounded
function which hasn’t limit at infinity.

Suppose now that γX is an H-compactification of a space X. The property of X being
homogeneous with respect to closed discrete sets implies that there is at most one point in
γX \X with countable character in γX. Especially, we get the following result.

Proposition 3.26. Let X be a non-compact Tychonoff space which is homogeneous with
respect to closed discrete sets. Then X admits at most one first countable H-compactification
and that is one-point compactification.
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Proof. When two points x and y from the remainder of a first countable H-compactification
γX are given, we are able to find sequences xn and yn in X whose limits are x and y
respectively. Thus the sets {xn : n ∈ ω} and {yn : n ∈ ω} are infinite closed in X and
discrete. Since the space X is homogeneous with respect to sets of this type there exists
a homeomorphism h ∈ H(X) sending a set {xn : n ∈ ω} onto a set {xn, yn : n ∈ ω}. Suppose
now that g ∈ H(γX) is a continuous extension of h. From continuity we get that x = g(x) =
y. Thus we have just proved that γX \X contains at most one point.

3.4 Products of omega and Euclidean space

In this section we are going to describe all H-compactifications of a product ω × Rn. It
is shown that there is always finitely many of them, but the situation is different in case
n = 1 from the case n ≥ 2. Some of these H-compactifications can be obtained via applying
compactifications α, β and ϕ, where ϕ denotes so called Freudenthal compactification which
is the largest compactification with zero-dimensional remainder. For a locally compact space
X it always exists and can be described as a quotient of βX where all components of βX \X
shrink into points. Some additional notes concerning Freudenthal compactification can be
found in [Dom03].

We use Hasse diagrams in order to describe a lattice or a partially ordered set. Here, two
objects are connected with a line if the upper one is a minimal element strictly bigger than
the lower one. For more information about Hasse diagrams we refer to the first chapter of
[Bir67, p. 4].

The following result can be applied to X = Rn where n ≥ 2 since the assumptions were
verified in the proof of Corollary 3.25.

Theorem 3.27. Let X be a non-compact connected space satisfying the same assumptions as
in Lemma 3.19 which is 2-homogeneous with respect to closed discrete sets. Then the space
Y = ω ×X admits exactly eleven H-compactifications which form a lattice described below.
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βY

βW3

β(ω×αX) βW2

.....
ϕ(ω×βX)

βW1

......
......

....

ϕ(ω×αX) α(ω×βX)

..............

βW0 α(ω×αX)

αY

Here W0 is a quotient space ω×αX/
(
ω×{∞}

)
. A space W1 is obtained via addition of one

point ∞ to a space ω × αX where base neighbouhoods of ∞ are of the form

{∞} ∪
⋃
n>m

{n} ×
(
αX \Kn

)
where Kn are compact subsets of X and m ∈ ω. A space W2 arise by adjunction of a point
∞ to the space Y . Base neighbourhoods of ∞ are of the form

{∞} ∪
⋃
n>m

{n} ×
(
X \Kn

)
where Kn are compact subsets of X and m ∈ ω. Finally a space W3 is given by Y ∪ω∗ where
Y is an open set in W3 and base neighbourhoods of a point x ∈ ω∗ are of the form(

ω∗ ∩Mβω) ∪ ⋃
n∈ω

{n} ×
(
X \Kn

)
where M ⊆ ω, x ∈Mβω

and Kn are compact subsets of X.

Notation 3.28. We will use a consequence of Theorem 2.3 that all H-compactifications of
the (locally compact) space Y are in a natural one-to-one correspondence with those closed
equivalences E ⊆ (βY \ Y )2 such that for every homeomorphism h ∈ H(Y ) we have βh ×
βh(E) = E. Equivalences with this property are called invariant equivalences. Note that
closed invariant equivalences of a locally compact space form a lattice antiisomorphic to the
lattice of all H-compactifications.
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Denote by π : Y → ω the projection onto the first coordinate, by Xn a set {n} ×X, by
C a closed set

βY \
⋃{

K
βY

: K ⊆ Y, for every n the set K ∩Xn is compact
}

and by ∆ a diagonal of the square (βY \ Y )2.
Moreover, define three equivalences on Y ∗, indexed by symbols from a set {C, ∗,=}, as

follows.

EC = ∆ ∪ {(x, y) ∈ C × C}
E∗ = ∆ ∪ {(x, y) ∈ Y ∗ × Y ∗ : βπ(x), βπ(y) ∈ ω∗}
E= = ∆ ∪ {(x, y) ∈ Y ∗ × Y ∗ : βπ(x) = βπ(y)}

It can be verified that these equivalences are closed. Since the space X is connected we
get that the mapping π is homogeneous. Consequently all the three equivalences above are
invariant.

Proof. It is interesting to mention that in fact those four equivalences EC , E∗, E= and ∆
generate the lattice of all closed invariant equivalences on Y ∗, as will be shown. We denote
for any S ⊆ {C, ∗,=} by ES a closed invariant equivalence

∧
i∈S Ei. Our claim is that the

only closed one-generated invariant equivalences are these ES except E=. Thus take a pair
(x, y) ∈ (βY \ Y )2 and realize that if x = y then this pair generates ∆, otherwise we have to
distinguish following possibilities. We give a precise proof only in case of equivalence EC∗=
since other cases are very similar.

• x, y ∈ C
• βπ(x), βπ(y) ∈ ω∗

• βπ(x) = βπ(y) In order to prove that the pair (x, y) generates the equivalence
EC∗= take arbitrary couple (x′, y′) ∈ EC∗= \ ∆ and arbitrary neighbourhood G × H
of the point (x′, y′) in βY × βY . We want to find a homeomorphism h ∈ H(Y ) for
which

(
βh(x), βh(y)

)
∈ G×H. Since x′, y′ ∈ C and βπ(x′) = βπ(y′) ∈ ω∗ there exists

an infinite set K ∈ βπ(x′) such that for every n ∈ K the closures of the sets G ∩ Xn

and H ∩ Xn in Y are non-compact. We can assume that ω \ K is infinite. Suppose
that E and F are disjoint closed subsets of L ×X for which x ∈ E and y ∈ F where
L is an infinite subset of ω such that ω \ L is infinite. Let b : ω → ω be an arbitrary
bijection for which b(L) = K.
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For fixed n ∈ L apply Lemma 3.19 to the space Xn and closed sets E ∩Xn and F ∩Xn

in order to get closed discrete sets Cn, Dn ⊆ Xn and closed sets En
i , F

n
j ⊆ Xn where

i < M with certain properties. Since

E =
⋃
i<M

⋃
n∈ω

En
i and F =

⋃
j<M

⋃
n∈ω

F n
j ,

there exist indeces i, j < M such that x ∈
⋃
{En

i : n ∈ ω} and y ∈
⋃
{F n

j : n ∈ ω}.
Since the space X is 2-homogeneous with respect to closed discrete sets we can find
a homeomorphism hn : Xn → Xb(n) such that hn(Cn) ⊆ G ∩ Xb(n) and hn(Dn) ⊆
H∩Xb(n). When we use the result of Lemma 3.19 we get that there are homeomorphisms
gn ∈ H(Xn) such that gn(En

i ) ⊆ h−1
n

(
G ∩Xb(n)

)
and gn(F n

j ) ⊆ h−1
n

(
H ∩Xb(n)

)
.

For n ∈ ω \ L we put hn to be the natural homeomorphism Xn → Xb(n) and gn to be
the identity on Xn. Now h =

⋃
{hngn : n ∈ ω} ∈ H(Y ) is the desired homeomorphism.

• βπ(x) 6= βπ(y). In this case the pair (x, y) generates EC∗.

• βπ(x) ∈ ω or βπ(y) ∈ ω
• βπ(x) = βπ(y). Consequently (x, y) generates EC=.

• βπ(x) 6= βπ(y). The pair (x, y) generates EC .

• x /∈ C or y /∈ C
• βπ(x), βπ(y) ∈ ω∗

• βπ(x) = βπ(y). This implies that the pair (x, y) generates E∗=.

• βπ(x) 6= βπ(y). Then it can be shown that (x, y) generates E∗.

• βπ(x) ∈ ω or βπ(y) ∈ ω
• βπ(x) = βπ(y). This can not happen.

• βπ(x) 6= βπ(y). Then (x, y) generates E∅.

Using the previous claim we conclude that arbitrary closed invariant congruence can be
obtained as a join of some subset of equivalences ES and ∆. Thus there exist at most 29 = 512
of them. However there are obvious inclusions ∆ ⊆ ES ⊆ ET for T ⊆ S ⊆ {C, ∗,=} which
reduce this number rapidly.

Observe that E∗ = E∗= ∨ EC∗, because if we take (x, y) ∈ E∗ \∆ we can find x′, y′ ∈ C
such that βπ(x) = βπ(x′) and βπ(y) = βπ(y′) and thus (x, x′) ∈ E∗=, (x′, y′) ∈ EC∗ and
(y′, y) ∈ E∗=, hence (x, y) ∈ E∗=∨EC∗. Similarly it can be shown that E= = E∗=∨EC= and
E∅ = EC ∨ E∗=. If we put together these equalities and the obvious inclusions we get that
the lattice of all closed invariant equivalences is given by the following Hasse diagram.
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E∅

E∗ ∨ E= EC

E= E∗ EC∗ ∨ EC=

E∗= EC=

......
......

................
EC∗

EC∗=

.....

∆

It remains to verify that this lattice corresponds to the lattice mentioned in the statement,
but this is just a routine work.

Remark 3.29. Below we give a characterization of all H-compactifications of the space ω×X
from Theorem 3.27 using corresponding rings of continuous functions. For simplicity we
denote by fk the restriction f�{k}×X whenever f is an element of C∗(ω × X). The symbol
lim fk means lim

x→∞
fk(x) where X ∪ {∞} is the one-point compactification of the space X.

The symbols lim and lim denote limes superior and limes inferior respectively.
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C∗(ω ×X)

{f : lim
k→∞

(limfk − limfk) = 0}

{
f : (∀k ∈ ω)(∃ lim fk)

} {
f : lim

k→∞
limfk = lim

k→∞
limfk

}
........... {

f : lim
k→∞

(sup fk − inf fk) = 0
}

{
f : (∀k ∈ ω)(∃ lim fk),
∃ lim
k→∞

lim fk
} .......

.......
.......

......

{
f : (∀k ∈ ω)(∃ lim fk),

lim
k→∞

(sup fk − inf fk) = 0
} {

f : lim
k→∞

sup fk = lim
k→∞

inf fk
}

..........................................

{
f : (∀k ∈ ω)(∃ lim fk),

lim fk = lim f0

} {
f : (∀k ∈ ω)(∃ lim fk),

lim
k→∞

sup fk = lim
k→∞

inf fk
}

{
f : (∀k ∈ ω)(∃ lim fk),

lim fk = lim f0,
lim
k→∞

sup fk = lim
k→∞

inf fk
}

Corollary 3.30. The only H-compactifications of the space Z = ω × Sn for n ≥ 2 are
Alexandroff one-point compactification αZ, Freudenthal compactification ϕZ and Čech-Stone
compactification βZ.

Proof. Since there is a homogeneous embedding of the space ω × Rn onto a dense subspace
of the product ω × Sn, we get that every H-compactification of the space ω × Sn is at the
same time an H-compactification of the space ω × Rn. From Theorem 3.27 we derive that
this is possible only in three described cases.

This situation is different in case n = 1. Van Douwen noted in [vD79] that there exist at
least eleven H-compactifications of the product ω × R. In fact there is exactly 26 of them.
However it would be a long-distance run to prove it completely, because there is a lot of
routine work. Thus we omit some details in the proof.
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Theorem 3.31. There exist exactly 26 H-compactifications of the space ω × R. They form
a lattice described in diagram 3.33.

Proof. Let us use notation described in 3.28 where the space X is substituted by R. Moreover,
for any pair E,F of closed subsets of R define o(E,F ) to be infimum of all k ∈ ω such
that there exist intervals (i.e. connected sets) I0, . . . , Ik covering E and not intersecting F .
Note that o(E,F ) = +∞ whenever E and F have non-empty intersection. By a simple
consideration we derive that numbers o(E,F ) and o(F,E) are either both infinite or they are
both finite and their difference is at most one. For any pair x, y ∈ βY denote

over(x, y) = inf
{

sup
n∈ω

o(E ∩Xn, F ∩Xn) : x ∈ E, y ∈ F ,E, F ⊆ Y
}

and define the following one closed invariant equivalenceE∞ = {(x, y) ∈ Y ∗×Y ∗ : over(x, y) =
∞}. For any set S ⊆ {C, ∗,=,∞} put ES =

∧
i∈S Ei. Thus we get in this way at most sixteen

equivalences but it is easily seen that E∞ ⊆ E=. Hence there are only twelve of them.
Our claim is that all one-generated closed invariant equivalences are of the form ES for

some set S ⊆ {C, ∗,=,∞} and ∆. To verify this take arbitrary pair (x, y) ∈ Y ∗ × Y ∗ and
denote by E a closed invariant equivalence generated by this couple. If x = y we get E = ∆.
Otherwise if x 6= y we distinguish these possibilities. An argumentation at each step is
necessary, but it is omited.

• x, y ∈ C

• βπ(x), βπ(y) ∈ ω∗

• βπ(x) = βπ(y)

• over(x, y) =∞: E = EC∗=∞

• over(x, y) <∞: E = EC∗=

• βπ(x) 6= βπ(y): E = EC∗

• βπ(x) ∈ ω or βπ(y) ∈ ω
• βπ(x) = βπ(y)

• over(x, y) =∞: E = EC=∞

• over(x, y) <∞: E = EC=

• βπ(x) 6= βπ(y): E = EC

• x /∈ C or y /∈ C

• βπ(x), βπ(y) ∈ ω∗

• βπ(x) = βπ(y)
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• over(x, y) =∞: E = E∗=∞

• over(x, y) <∞: E = E∗=

• βπ(x) 6= βπ(y): E = E∗

• βπ(x) ∈ ω or βπ(y) ∈ ω
• βπ(x) = βπ(y): This cannot happen.

• βπ(x) 6= βπ(y): E = E∅

Next, a partially ordered set of all one-generated closed invariant equivalences is given
(this is not a lattice).

E∅

E∗ EC

E∗= EC∗ EC=

E∗=∞ EC∗= EC=∞

EC∗=∞

∆

(3.32)

Remember that every closed invariant equivalence is a join of some collection of those 11
equivalences from diagram 3.32. It can be counted by hand that there is 15 (unordered) pairs
of equivalences in 3.32 that are not comparable, only 5 incomparable triples and clearly no
such quadruples. By virtue of three equalities E∗ = EC∗∨E∗= and E∅ = EC ∨E∗ = EC ∨E∗=
we get that there is in fact at most 12 = 15− 3 two-generated invariant closed congruences
that are not one-generated and at most 3 three-generated that are not two-generated. Thus
there is at most 11 + 12 + 3 = 26 H-compactifications.

Finally, we get a Hasse diagram of the lattice of all H-compactifications of the space ω×R.
For shortness we write for example ‘C=’ instead of βY/EC=.
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βY

C∗=∞

C=∞ C∗=

......

∗=∞

.......
.......

.......
....

C∗

......

................

C= .......
.......

.......
......

............

............
................ ∗=

......
......

......
......

......

.......
.......

.......
.......

......

............

................... ∗

...............

C .......
.......

.......
.......

.......................

∅

(3.33)

It remains just to verify that all these compactifications are pairwise non-equivalent. This
is however a lot of routine work only.

Remark 3.34. When dealing with the problem of finding all H-compactifications of ω×R, one
starts with compactifications obtained in a natural way in the form γ(ω× δR) where γ and δ
are substituted by α, β or ϕ. Even if we add α(ω×R) we obtain only 10 H-compactifications
in this way.

Corollary 3.35. There exist exactly four H-compactifications of the space Z = ω×S. These
are (from the least to the biggest) αZ, Freudenthal compactification ϕZ, a compactification
γZ described below and βZ.

The compactification γZ can be described as βZ/∼ where x ∼ y iff sup{o(En, Fn) : n ∈
ω} = +∞ for every pair of closed sets E,F ⊆ Y such that x ∈ E and y ∈ F . In this
situation An = A∩ {n}×S, for A ⊆ Z and o(En, Fn) is infimum of all k ∈ ω for which there
exist connected sets I0, . . . , Ik ⊆ Zn such that En ⊆ I0 ∪ · · · ∪ Ik ⊆ Zn \ Fn.

Proof. There is a homogeneous embedding ω × R → ω × S onto a dense subset and thus
every H-compactification of the space ω × S forms at the same time an H-compactification
of ω ×R. These were clasified in Theorem 3.31 from which it follows that only four of them
are available.
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Corollary 3.36. The lattice of all H-compactifications of the space Z = ω × [−∞,+∞]
contains eight elements and is given by a Hasse diagram as follows.

βZ

αZ

Proof. This is a consequence of Theorem 3.31 since there is a homogeneous embedding of ω×R
onto a dense subset of Z. Exactly eight compactifications from the lattice 3.33 agree.
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Chapter 4

Characterization using algebras of
continuous functions

Recall that the Čech-Stone compactification can be characterized among all compactifica-
tions of X in the language of correspondent rings of bounded continuous functions. Namely
a compactification γX is Čech-Stone compactification iff the naturally defined mapping
ϕ : C(γX) → C∗(X) for which ϕ(f) = fγ is surjective. Is it possible to characterize H-
compactifications in terms of rings? We have the following proposition obtained simply by
applying a contravariant functor C∗(−). Let us call a ring homomorphism ϕ : R→ S invari-
ant if for every automorphism χ : S → S there exists an automorphism ψ : R→ R such that
ϕψ = χϕ.

Proposition 4.1. Let γX be a compactification of a Tychonoff space X and denote by
ϕ : C(γX) → C∗(X) a ring homomorphism for which ϕ(f) = fγ. If ϕ is invariant then γX
is an H-compactification.

Proof. Suppose we are given f ∈ C∗(γX) and h ∈ H(X). Define χ by the rule χ(g) = gh
which is clearly an automorphism of the ring C∗(X). Because of the assumption the function
χϕ(f) = fh is an element of image of ϕ and thus can be extended over γX. Hence by 2.3
we are done.

Example 4.2. Note that opposite implication in the previous proposition is no more true
even for locally compact spaces. Choose X to be an open subset of βω \ {x, y} containing ω
properly where x and y are two distinct points from ω∗. If we apply contravariant functor
C∗ and realize that C∗(ω) is isomorphic to C∗(X) we obtain the following diagram.
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ω
C∗
- C∗(ω) ===== C∗(X) �

C∗
X

αX
? C∗

- C(αX)

ψ

6

===== C(αX)

ϕ

6

�
C∗

αX
?

Since αX is not an H-compactification of the space ω the mapping ψ is not invariant. The
square in the middle of the diagram is commutative and that is why neither ϕ is invariant
in spite of that αX is an H-compactification of X.
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Chapter 5

Small H-compactifications

It is a natural question whether small spaces possess small compactifications. For example, it
is well-known that a Tychonoff space of weight κ has a compactification of the same weight. Is
it possible to find even an H-compactification of weight κ? As the space of rational numbers,
which admits only one H-compactification [vD79], shows it is not possible in general. We have
to add some other assumptions so that we could find an H-compactification of weight κ. To
do this remind that compact spaces admit exactly one uniformity and that Čech uniformity
of a Tychonoff space X is the uniformity inherited from βX.

Theorem 5.1. Let X be a Tychonoff space of weight κ. Consider the space H(X) with
uniform convergence topology with respect to Čech uniformity on X and suppose that its
density doesn’t exceed κ. Then there exists an H-compactification of the space X of weight κ.

Proof. Without loss of generality suppose that the space X is a subset of a Tychonoff cube
T = [0, 1]κ. Let M be a dense subset of H(X) of cardinality at most κ. We can assume
moreover that M forms a group. Denote by γ : X → TM a mapping for which γ(x) =(
h(x)

)
h∈M. Clearly γ is an embedding. Our aim is to show that γ(X) is the desired H-

compactification.
First of all for any h ∈M we define a mapping h̄ : γ(X)→ γ(X) by the rule h̄

(
(ag)g∈M

)
=

(agh)g∈M. The mapping h̄ is well defined homeomorphism of γ(X). Moreover for any x ∈ X
we get

h̄γ(x) = h̄
(
g(x)g∈M

)
=
(
gh(x)

)
g∈M = γh(x).

Thus we get h̄γ = γh.
Now we use density of M in H(X) to show that every h ∈ H(X) can be continuously

extended over the compactification. By Theorem 3.2.1 in [Eng89, p. 136] it is enough to show
that closures of h−1(E) and h−1(F ) in γX are disjoint for disjoint closed sets E and F in γX.
Denote by U the only uniformity on γX and note that U�X is coarser then the Čech uniformity
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on X. There exists a neighbourhood of diagonal U ∈ U for which U [E]∩U [F ] = ∅. From the
density of M we get that there exists a homeomorphism g ∈ M for which

(
h(x), g(x)

)
∈ U

for every x ∈ X. Then we obtain that

h−1(E) ∩ h−1(F ) ⊆ g−1(U [E]) ∩ g−1(U [F ]) ⊆ ḡ−1(U [E]) ∩ ḡ−1(U [F ]) = ∅.

A special case of Theorem 5.1 for metric spaces was proved in [dGM60]. The proof is
done using metrics so there is no direct way to modify it to the non-metrizable case.

Does every Tychonoff space possess an H-compactifications of the same dimension? First
we have to clarify what kind of dimension we mean. For normal spaces and covering dimension
dim an answer can be found in Theorem 3.1.25 from [Eng95, p. 176] where it is settled that
dim βX = dimX. But we emphasize that covering dimension is mostly defined for normal
spaces only. The next proposition gives an answer in case of zero-dimensional spaces which
need not to be normal.

Proposition 5.2. Every zero-dimensional space X possess a zero-dimensional H-compacti-
fication.

Proof. It is enough to take the biggest zero-dimensional (so called Banaschewski) compacti-
fication of X.
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