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a transparentnost použití. Pro dosažení těchto cílů knihovna mj. používá nástroj GCCXML,
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ve formátu XML, čehož knihovna využívá pro napodobení reflexe.

Práce se zabývá také novými vlastnostmi objektově-relačních databázových systémů. Těch
je využito pro zavedení nového typu mapování objektů do databází.

Implementace knihovny vychází ze tří podobných předchůdců - z knihoven POLiTe,
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používat v několika konfiguracích, poskytujících různé podmnožiny implementovaných služeb
- databázový přístup, reflexe a objektově-relační mapování.
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GCCXML helps the library to get description of the class model used in the user application
and to simulate the reflection.
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Chapter 1

Introduction

Today, object-oriented languages represent standard instruments for business application and
information system development. These systems usually operate with large amounts of
persistent data stored in relational database management systems (RDBMS). Data in RDBMSs
are however represented differently from data in the application layer. Developers need to do
a lot of programming overhead to deal with this so-called impedance mismatch every time they
want to move data between relational databases and application-level object models.

Object-oriented database management systems (OODBMS) try to mitigate the impedance
mismatch for example by providing navigation using pointers instead of using joins as in the
relational databases. Despite their advantages the object-oriented databases are not as widely
used as the relational databases. Mostly because of the lack of various tools like reporting, or
OLAP1 and due to the industry standards pushed by the big players - Oracle, Microsoft and
IBM. Moreover many of RDBMS creators already addressed the impedance mismatch issue
by incorporating object-oriented features into their products. Doing it a new kind of database
management system, object-relational database management systems (ORDBMS), were
created.

Another approach to bypassing the impedance mismatch is to isolate the developer from
direct database data manipulation at application level. This goal can be accomplished by using
an object-relational (O/R) mapping layer. This layer transparently maps relational data into
application object model and vice versa. The O/R tools usually offer additional services like
object querying or caching.

Current information systems are often written in high-level languages like Java or C#. There
exist established O/R mapping tools for these environments. Well-known is Hibernate2 for Java
and nHibernate3 relatively new ADO.NET Entity Framework from Microsoft4 for C#.

O/R mapping tools for such languages can use their feature called reflection. Reflection
allows a program to find out information about its own data model and to modify it at run-time.
The O/R mapping layer then can easily inspect the structure of the classes being mapped, and
based on this information, it can transparently load or save data from/to the underlying database.
Languages that support reflection are often referred to as reflective languages.

Another frequently used language in this area is C++. Unfortunately, C++ is not a reflective
language, so the building of O/R mapping layer is a bit more difficult. The goal of this thesis
is to develop such a mapping library, which should work as transparently as possible. Second

1see [1]
2http://www.hibernate.org/
3http://www.nhibernate.org/
4http://msdn.microsoft.com/en-us/library/bb399572.aspx
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goal is to examine possibilities the ORDBMSs can provide to an O/R mapping library.
The resulting library implemented as part of this thesis uses advantages of three previous

projects. Their common predecessor, the POLiTe library5, was developed as a part of doctoral
thesis [2]. Two follow-ups came after this work as master theses focusing on different areas
of the O/R mapping concept:

• Master thesis [3] (called POLiTe 2 in further text) addressed mainly the performance and
notably enhanced functionality of the object cache. It also added multithreading support
and made the interface of the library safer to use.

• Master thesis [4] (IOPC6) designed a new persistence layer. The main advantage of this
new layer is transparent application development without the need to additionally describe
classes in it. It uses OpenC++ source-to-source translator to analyze and prepare the
source code for object-relational mapping. Even though brand-new interface was created,
the library still supports classes written in the POLiTe-style.

Figure 1.1: IOPC 2 evolution

The IOPC 2 library provided in this thesis not only merges the development back into one
product offering most of previously implemented features without their drawbacks.
Furthermore, the library implements new ideas like standalone reflection mechanism,
additional mapping type using object-relational database abilities and many other.

In the following section we will introduce basic concepts of the object-relational mapping,
discuss new features of ORDBMSs and describe requirements and goals of the IOPC 2
implementation. Then, in the third chapter, evolution of the IOPC/POLiTe libraries will be
presented in the context of requirements placed and their features will be compared with each
other. Chapter 4 describes basic concepts of the IOPC 2 implementation whereas Chapter 5
contains detailed architectural information. In conclusion we will evaluate the achievements
of this thesis and will propose areas for further development. Appendix contains user guide.

Enclosed DVD contains library source code with examples, binary distribution for Linux,
documentation and in the first place a VMWare image with pre-installed environment. The
image contains Ubuntu Linux, freely distributable Oracle XE database, GCCXML and all other
IOPC 2 dependencies. The library source code and source code of the examples is stored
in the image as an Eclipse CDT project. So all the examples can be modified, compiled and run
right away.

5Persistent Object Library Test
6Implementation of Object Persistency in C++
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Chapter 2

Persistence layer requirements

Sections in this chapter analyse the requirements that may be imposed on a O/R mapping library
and that were taken into account during the design and implementation phases of development.

2.1 The identity of persistent objects
In the world of object-oriented programming object identity represents an object property that
helps to distinguish objects from each other. Even if two distinct objects have same values of all
their attributes and so their inner state is identical, they are still different instances with different
identity. A reference to an object is a closely related term to the identity as it uses this identity
to describe the object it is referring to.

If we consider entries in a relational table as objects, the identity of these objects could be
based on any key in the table - usually the primary key. Persistence layer would then use such
a key as a description of object identity on the application level.

In object-oriented systems, where database is used only as a mere storage of the object
model and/or the design focuses on the application-tier, an object identifier (OID) approach is
used. OID is a name for a special table column and for corresponding class attribute which has
no business meaning. On the application level it is usually hidden from users or application
developers. OID contains an identifier, usually a number, UUID1 or a list of numbers, which is
unique for each persistent object within the database scope. Object OID never changes during its
lifetime. OID is mapped into database tables as a surrogate key. Instances of classes containing
an OID attribute are called OID objects further in the text.

Another approach is needed for systems built upon an existing database, for systems where
the use of natural, not surrogate, keys is required or for systems with read-only or no-schema-
changes-allowed databases. The object-relational layer should be able to absorb identity of
persistent objects from keys (even multi-column keys) in existing schema. We will call such
objects as database objects.

In several cases, we may want the object-relational layer to manipulate objects without any
identity. These objects may represent results of aggregation queries, rows from non-updateable
views or rows from tables without any keys. Transience is an important feature of these objects:
their modified state cannot be stored back to the underlying database - origin of the data they
contain may not even be traceable back to particular row or particular table.

The all-purpose O/R mapping layer should support OID objects as well as database objects
and even transient objects for query results.

1A Universally Unique Identifier
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2.2 Database mapping requirements
Persistence layer considered in the context of this thesis should be able to manipulate persistent
instances of certain classes. These classes are called persistent classes, its instances persistent
objects. Storing objects to database implies that the layer should store their attribute values to
underlying database structures. Because all predecessors of this thesis used relational database
systems as their persistent storage, let’s focus first on this area first.

Persistent classes would be represented as tables and their attributes as their columns.
Instances of persistent classes would be inserted into these tables as rows containing instance
attribute values associated with corresponding table columns. Basic requirements on a
persistence library could be:

• Ability to associate persistent classes with database tables

• Ability to map attributes of these classes on columns in associated tables. This means
that the layer should be able to store attributes of certain C++ types (basic numeric types,
strings) into the database as column values.

Classes can also contain attributes of structured types or collections, which are often
mapped into separate tables or split into more columns in the relational model.

Last attribute type to be discussed is an association (C++ pointer/reference). Association
can be modelled using foreign key relationship between matching tables. The persistence
layer should be able to handle single associations as well as collections of associations.

• An optional requirement may be an ability to generate required database schema in form
of a SQL create (or drop) script. The persistence layer may require its own structures in
the underlying database or it may be able to operate upon existing database schema.

• Ability to query subsets of object model content. The layer should provide a query
language that would abstract from the physical representation of the object model in the
database.

Up to now we have considered only single classes without inheritance relations. However,
in C++ classes can form complex inheritance hierarchies and it is a natural requirement to be
able to store descendants of persistent classes too. There are several ways how to store these
hierarchies into a relational database.Figure 2.1 contains an example hierarchy on which we
will demonstrate these mapping types. This hierarchy will also be used and modified further in
the text.

4



Figure 2.1: Example class hierarchy

Vertical mapping is a most common (and natural) way of mapping attributes of persistent
classes in an inheritance hierarchy into tables in a relational database. Each class in this
hierarchy has one associated table in the database. Values from attributes declared in
correspondent classes only are stored into these tables. This means that attributes declared in
current class are mapped into its associated table, attributes from parent class are mapped into
its "parent" table etc. Storing one object invokes a cascade of database inserts. Similar rules
apply for updates, deletes and selects. However, selects can be simplified by using table joins
and database views. This solution offers good performance for shallow hierarchies, which is
getting worse with the inheritance graph getting deeper. It is a best choice for scenarios where
polymorphism does matter - by querying one table we easily get instances of associated class
and its descendants.

Let’s consider following instances of the classes from Figure 2.1:

Student(name: "Richard Doe", age: 22,
studcardid: "WCD-3223")

PhdStudent(name: "Joe Bloggs", age: 27,
studcardid: "PHD-1234", scholarship: 12000)

Employee(name: "Ola Nordmann", age: 45,
salary: 60000)

Person(name: "Mary Major", age: 60)

Vertical mapping will spread data from these instances into four tables as illustrated in the
Figure 2.2. The tables are arranged so that attribute values belonging to one particular class
are displayed in the same row. To be able to join data from the tables we use surrogate OID as
explained in the previous chapter. All rows belonging to one particular object are assigned the
same OID.

5



Figure 2.2: Vertical mapping tables

Horizontal mapping offers better performance for scenarios where we don’t need
polymorphic queries - accessing descendants of specific class. Again, each persistent class in a
hierarchy has one associated table into which its instances store their attributes. The difference
from vertical mapping is that these tables contain even attributes inherited from parent
persistent classes. Rows in these tables contain enough information to load complete persistent
class instances, thus no cascade operations are needed. Every instance of horizontally mapped
class is mapped only into one table row in the database.

Figure 2.3: Horizontal mapping tables

As you can see in Figure 2.3 - queries using polymorphism can be very hard to perform.
Finding a specific object of Person type or its descendants involves looking into all the tables.
However, opposite to the vertical mapping, if we work with objects of specific type (not
including descendants), we don’t need any joins in select statements or cascade inserts/updates.

Filtered mapping assigns only one database table to all persistent classes in one inheritance
hierarchy - see Figure 2.4. This table contains columns that represent all attributes from all
classes in that hierarchy. Filtered mapping doesn’t suffer from disadvantages of two previous
approaches - it performs very well on polymorphic data and doesn’t involve cascaded
operations/joins. A disadvantage of this approach is excessive storage requirement. Most of

6



the rows in the table will contain empty cells in columns that belong to attributes from
descendants or from classes not being in ancestor relationship of the matching class (for
example the column Scholarship in the "Ola Nordmann" row. Second thing is that it is
necessary to add a column telling us which class the rows belong to. As we have all rows in
one table there is no other easy way how to distinguish the instance types.

Figure 2.4: Filtered mapping tables

Combined mapping is a combination of mappings mentioned above. It allows users to use
all kinds of mappings in one inheritance hierarchy. Combined mapping is the most
sophisticated variation that allows users to specify these mappings according to their needs. It
is also quite complex for implementation, it has some constraints how the mapping types can
be used and it is not well maintainable on the database side. Database structures created for
combined mapping would require nontrivial constraints if their content was modified other
way than using the persistence layer that created the structures. The persistence layer should
hide this complexity beyond views to provide at least convenient read-only access. To see how
the combined mapping can be used refer to Figure 2.5.

Figure 2.5: Combined mapping tables

The Employee class uses vertical mapping, the Student class uses horizontal mapping
and the PhdStudent class uses filtered mapping. Classes that use filtered mapping can choose
into which of their ancestors thir attributes will be mapped. Class PhdStudent is mapped to
the table belonging into the Student class.
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2.3 Object-relational databases
Object-relational databases offer higher level of abstraction over the problem domain. They
extend relational databases with object-oriented features to minimise the gap between relational
and object representation of application data, known as the impedance mismatch problem. For
detailed information about user defined types and other features of object-relational databases
refer to [5], [6]. This area is introduced by an 1999 revision of the ISO/IEC 9075 family of
standards, often referred to as SQL3 or SQL: 1999. Because the level of implementation of the
standard varies between available products, you may need to see their manuals too. For Oracle
10g refer to [7]. Main features of the object-relational databases are summarised below.

User-defined types are custom data types which can be created by users using the new fea-
tures of object-relational database systems. These types are used in table definitions the same
way as built-in types like NUMBER or VARCHAR. There are several kinds of UDTs - for ex-
ample - distinct (derived) types, named row types, and most importantly the abstract data types
(ADT), which we will focus on in the following paragraphs.

ADT is a structured, user defined type defined by specifying a set of attributes and operations
much in a similar way to object-oriented languages like C++ or Java. Attributes define the value
of the type and operations its behaviour. ADTs can be inherited from other abstract data types
(in terms of object-oriented programming) and can create type hierarchies. These hierarchies
can reflect the structure of data objects defined in application-tier modules. Instances of ADTs
are called objects and can be persisted in database tables. See Example 2.3.1 for an illustration
how these types are defined and used in Oracle ORDBMS.
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Example 2.3.1 Using object types in Oracle
-- type definitions
CREATE TYPE TPerson AS OBJECT (
name VARCHAR2(50),
age NUMBER(3)
) NOT FINAL;

CREATE TYPE TStudent UNDER TPerson(
studcardid VARCHAR2(20)

) NOT FINAL;
CREATE TYPE TPhdStudent UNDER TStudent(
scholarship NUMBER(10)

) NOT FINAL;
CREATE TYPE TEmployee UNDER TPerson(
salary NUMBER(10)

) NOT FINAL;

-- storage
CREATE TABLE Person OF TPerson;

-- fill it with data
INSERT INTO Person VALUES(
TPerson(’Mary Major’, 60)

);
INSERT INTO Person VALUES(
TStudent(’Richard Doe’, 22, ’WCD-3223’)

);
INSERT INTO Person VALUES(
TPhdStudent(’Joe Bloggs’, 27, ’PHD-1234’, 12000)

);
INSERT INTO Person VALUES(
TEmployee(’Ola Nordmann’, 45, 60000)

);

First, the supertype TPerson and its descendants TStudent, TPhdStudent and
TEmployee are defined. The NOT FINAL keyword allows us to create subtypes of given
types. Then a physical storage table Person is created. This table can hold not only instances
of the TPerson type but also instances of its descendants. Accessing these instances is
demonstrated in the following Example 2.3.2.
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Example 2.3.2 Accessing objects in Oracle
SELECT VALUE(x) FROM Person x;
-- returns:
TPERSON(’Mary Major’, 60)
TSTUDENT(’Richard Doe’, 22, ’WCD-3223’)
TPHDSTUDENT(’Joe Bloggs’, 27, ’PHD-1234’, 12000)
TEMPLOYEE(’Ola Nordmann’, 45, 60000)

-- accessing descendant attributes:
SELECT
TREAT(VALUE(x) AS TStudent).studcardid AS studcardid

FROM Person x
WHERE VALUE(x) IS OF (TStudent);
-- returns:
WCD-3223
PHD-1234

The first select lists all objects stored in the Person table. Second select lists all student
card IDs of all student objects that are stored in the table.

Nested tables. Nested tables violate the first normal form in a way that they allow the
standard relational tables to have non-atomic attributes. Attribute can be represented by an
atomic value or by a relation. Example 2.3.3 illustrates how to create and use nested tables
in Oracle database system. The example modifies the Person type by adding a list of phone
numbers to it. Interesting is the last step in which we perform a SELECT on the nested table. To
retrieve the content of the nested table in a relational form, the nested table has to be unnested
using the TABLE expression. The unnested table is then joined with the row that contains the
nested table.
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Example 2.3.3 Nested tables in Oracle
-- a type representing one phone number
CREATE TYPE TPhone AS OBJECT (
num VARCHAR2(20),
type CHAR(1)
);

-- a type representing a list of phone numbers
CREATE TYPE TPhones AS TABLE OF TPhone;

-- the modified TPerson type
CREATE TYPE TPerson AS OBJECT (
name VARCHAR2(50),
age NUMBER(3),
phones TPhones
) NOT FINAL;

-- storage
CREATE TABLE Person OF TPerson
NESTED TABLE phones STORE AS PhonesTable;

-- fill it with data
INSERT INTO PERSON VALUES(
TPerson(’Mary Major’, 60, TPhones(

TPhone(’123-456-789’, ’W’),
TPhone(’987-654-321’, ’H’)

) ) );

-- obtaining a list of phones of a particular person
SELECT y.num, y.type
FROM Person x, TABLE(x.phones) y
WHERE x.name = ’Mary Major’;

-- returns rows:
123-456-789 W
987-654-321 H

Please note, that the nested table PhonesTable in Example 2.3.3 may need an index on
an implicit hidden column nested_table_id to prevent full table scans on it.

Collection types. SQL3 defines also other collection types like sets, lists or multisets. In ad-
dition to nested tables, Oracle implements the VARRAY construct which represents an ordered
set (list). The main difference is that VARRAY collection is stored as a raw value directly in the
table or as a BLOB2, whereas nested table values are stored in separate relational tables.

Reference types. We can think of the database references as of pointers in the C/C++ lan-
guages. References model the associations among objects. They reduce the need for foreign
keys - users can navigate to associated objects through the reference. In the following Example
2.3.4 we will add a new subtype TEmployee and modify the TStudent type from previous
examples by adding a reference to the student’s supervisor, which is an employee, to it. Note

2Binary large object
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that we need to cast the reference type REF(x) to REF TEmployee in the INSERT statement
because REF(x) refers to the base type TPerson.

Example 2.3.4 References in Oracle
-- type definitions
CREATE TYPE TPerson AS OBJECT (
name VARCHAR2(50),
age NUMBER(3)
) NOT FINAL;

CREATE TYPE TEmployee UNDER TPerson(
salary NUMBER(10)

);
CREATE TYPE TStudent UNDER TPerson(
studcardid VARCHAR2(20),
supervisor REF TEmployee

);

-- storage
CREATE TABLE Person OF TPerson;

-- insert an employee into the Person table
INSERT INTO Person VALUES(TEmployee(’Ola Nordmann’, 45, 60000))
-- insert a student with a reference to his supervisor
INSERT INTO Person
SELECT TStudent(’Richard Doe’, 22, ’WCD-3223’,

TREAT(REF(x) AS REF TEmployee)))
FROM Person x
WHERE x.name = ’Ola Nordmann’;

-- select all students with their supervisors
-- dereferencing uses dot notation
SELECT x.name, TREAT(value(x) as TStudent).supervisor.name
FROM Person x
WHERE VALUE(x) IS OF (TStudent);

-- returns a row:
Richard Doe, Ola Nordmann

2.4 Database mapping requirements continued
As we already know about the object-relational databases, These new features of
object-relational databases can be used to enhance functionality of described mapping types.
They can also be a basis for a new mapping type that will entirely depend on the use of
ORDBMS. First, let’s have a look how the attribute mapping can be improved:

• Collections (C++ containers) can be mapped into single columns as nested tables or in-
stances of one of the SQL3 collection data types.

• Structured attributes (C++ struct or class) can be mapped into single columns as instances
of SQL3 structured data types.
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• Associations (C++ pointers or references) can be mapped as SQL3 references.

Second, let’s discuss the mapping of classes and inheritance hierarchies. It is quite obvious
that user-defined types can be used for this task. Abstract data types can be created for each
class in the inheritance hierarchy by copying its inheritance graph. Instances of the types can be
then inserted into one table. The earlier presented Example 2.3.1 displays structures that may
be generated for classes from Figure 2.1 using such kind of database mapping.

This type of mapping is referred to as ADT mapping in this thesis3. Its benefit is that it moves
most of the responsibilities of the persistence layer to the underlying database system. For
example obtaining a list of fully-loaded instances of specific type and its descendants involves
several joins in the vertical mapping (filtered mappings or other variations using the combined
mapping). This must be "planned" by the persistence layer. All such polymorphic queries
are best performed using the ADT mapping (see the Example 2.4.1), as all these tasks can be
accomplished only using the user-defined types and SQL3 queries or statements.

Example 2.4.1 A polymorphic query using object-relational features of the Oracle database.
SELECT
name, age, TREAT(VALUE(x) AS TPhdStudent).studcardid AS ←↩

studcardid,
TREAT(VALUE(x) as TPhdStudent).scholarship as scholarship

FROM Person x
WHERE VALUE(x) IS OF (TPhdStudent);

A serious problem for a persistence layer using the ADT mapping is that there are major
differences between database systems in the object-relational area. For example DB2 does
not offer any type similar to the Oracle VARRAY data type. Or another example - in DB2
you have to create whole table hierarchy for inherited object types - much like as you would
when creating storage structures for a vertically-mapped data type. These issues imply that the
persistence layer should be flexible and modular enough to be able to support different database
systems.

Another problem is multiple inheritance of ADTs. Although SQL3 standard supports mul-
tiple inheritance, it is not implemented neither in the current version of Oracle nor in the cur-
rent version of DB2.

2.5 Querying
Object-relational systems allow users usually to load data in two ways. Either by traversing
the model of persistent objects through associations and letting the persistence layer to load
missing data into referenced local copies or by exploiting the ability of the underlying DBMS
to execute SQL queries against the data stored in it. The persistence layer can provide direct
access to the database by allowing its users to run SQL queries on tables or views the layer
generated. This approach is not very user friendly as it requires the users to know the internals
of database mapping performed by the persistence layer. The layer should therefore offer its
own query language which will hide the complexity of the database structures. Queries in such

3If not otherwise stated, we will consider the ADT mapping as one of the object-relational mapping types and
the process of storing or loading ADT-mapped instances will also be called object-relational mapping.
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language can be passed as character strings or as objects which represent attributes, values,
comparison criteria etc. Depending on the implementation, users may filter only objects of one
inheritance hierarchy by their attribute values, perform polymorphic queries returning objects
of specified type and its descendants or they may query associations between objects. This
queries represented in natural language would be:

• Find all students older than 26. (Age >=26)

• Find all students including Ph.D. students. (Actually all queries may be modified to
include Ph.D. students).

• Find all students which are supervised by Mrs. Ola Nordmann. (Using the modified
model from Example 2.3.4)

2.6 Caching
The role of caching is to speed up applications that use persistent objects by delaying database
mapping operations. This is generally achieved by taking ownership of these objects when
they are not currently in use by the user application. If the user applications needs an already
released object again, the caching facility4 looks it up in its catalogue and if found, returns it to
the user application, saving the time-consuming database operations. The database operations
for storing, updating or loading persistent objects are controlled by the cache layer, not by the
user application. The layer is therefore responsible for creating and destroying persistent object
instances.

2.7 Reflection
Users of the persistence layer may want to examine the structure of persistent classes at run-
time. This is not of a big issue in reflective languages like Java or C#, but in the C++, which is
not reflective language, this requirement may pose a problem. Yet not necessarily, because the
persistence layer must know about the structure of classes it is mapping to database. So, it only
depends on the particular implementation of a C++ O/R mapping library whether it provides
access to this information and how.

If the library puts these introspection features behind a unified interface and allows to inspect
wider set of classes than only the persistent classes, it may provide at least simpler alternative
to reflection features offered by reflective languages. This may be a big advantage, because
developers tend to include O/R mapping features into their application frameworks and O/R
mapping is often one of the pillars of infrastructural part of business applications. Therefore it
reduces the need for other reflection library.

2.8 Library architecture
Based on the discussion in previous sections, we are able to specify three relatively autonomous
areas a C++ persistence library should cover:

4A Cache. All related structures will be called as the cache layer.
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• Database access. The library should not be database dependent. To achieve this goal,
the database access must be virtualised by providing an interface to other parts of the
library which will hide the differences between databases the users may use. The library
should contain modules called database drivers translating and dispatching requests
from the interface to concrete database instances. Database drivers should be separate
modules allowing users to select between them without the need to recompile the whole
library. The architecture should be flexible enough to be able to handle relational as well
as object-relational database systems. It would be also nice if the whole database access
infrastructure was a stand-alone module as the discussed database interface could be
used as a database access library.

• Reflection. If the reflection capabilities, as described in the previous section, were pro-
vided as a stand-alone module, the library could be used in a reflection library configura-
tion.

• Object-relational mapping. The complete O/R mapping library would need both, the
database access and reflection configurations: The reflection to inspect the structure of
the persistent classes and the database access interface to load and store them from/to a
database. The library should provide a module which will manage and perform the O/R
mapping including related tasks as caching and querying. This O/R mapping module will
depend on the previous two modules.

Figure 2.6: Proposed architecture of the O/R mapping library

2.9 Conclusion
In this chapter, we analyzed basic aspects of an O/R mapping library implementation. Based on
this analysis, we can summarise the requirements on the library. Some of the requirements are
required while some are optional. We list them for further reference.

• Common O/R mapping requirements

– Ability to associate persistent classes with database tables
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– Ability to map attributes of persistent classes to database columns or attributes in
instances of user-defined types

• Ability to use at least one type of O/R mapping (better all of them):

– Horizontal

– Vertical

– Filtered

– Object

– Combination of the mapping types

• Ability to persist references between objects

• Ability to persist collections of objects

• Ability to generate required database schema or ability to work with an existing unmodi-
fiable database schema

• Querying in the object model context.

• Object caching.

• Reflection

• Modular library architecture
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Chapter 3

Evolution of the IOPC 2 library

The following paragraphs outline design and functionality of the IOPC 2 library predecessors.

3.1 POLiTe
The common predecessor of IOPC, IOPC 2 and POLiTe 2 libraries - POLiTe - represents a per-
sistence layer for C++ applications. The library itself is written in C++. Applications incorpo-
rate the library by including its header files and by linking its object code. The library offers
following features:

• Persistence of C++ objects derived from specific built-in base classes. Class hierarchies
are mapped vertically.

• Persistence of all simple numeric types and C strings (char*).

• Query language for querying persistent objects.

• Associations between persistent objects. Ability to combine more associations to manip-
ulate indirectly associated instances.

• Simple database access.

• Common services like logging or locking.

3.1.1 Architecture
Even though the library can be divided to several functional units, it compiles as one shared
library. The architecture of the library is outlined in the Figure 3.1. The main functional units
are discussed in the following sections.

3.1.2 The data access layer
POLiTe contains several classes that provide database access. At the time, the library supports
the Oracle 7 database and the code uses OCI1 7 interface to access it. The classes are accessed
via common interface that can be used for implementing other RDBMs to the library.

1Oracle Call Interface
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Figure 3.1: Architecture of the POLiTe library

The interface consists of a set of abstract classes - Database, Connection and
Cursor. Communication with the database flows exclusively through this interface and its
implementation (OracleDatabase, OracleConnection and OracleCursor). The
interface Database provides a logical representation of a database (e.g. an Oracle instance),
Database can create one or more connections (Connection) to the database. The
Connection interface represents the communication channel with the database. Using the
implementations of the Connection interface it is possible to send SQL statements to
database and receive responses in the form of cursors (Cursor). The response consists of a
set of one or more rows that can be iterated through the Cursor.

3.1.3 Metamodel and object-relational mapping.
Every persistent class maintainable by the POLiTe library has to be described by a set of
pre-processor macro calls. These calls are included directly into the class definitions or near
them. Description of the class attributes and the necessary mapping information has to be
provided together with declaration of every persistent class. Metainformation covers class
name, associated database table, parents, all persistent attributes with their data types and
corresponding table columns and more. For complete list see [8]. Example 3.1.1 displays
definition of our classes Person and Student in the POLiTe library.
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Example 3.1.1 Definition of a class in the POLiTe library
class Person : public PersistentObject {
// Declare the class, its direct predecessor(s) ...
CLASS(Person);
PARENTS("PersistentObject");
// ... and its associated table
FROM("PERSON");
// Define member attributes
dbString(name);
dbShort(age);
// Primary key OID is inherited from PersistentObject
// Map other attributes
MAP_BEGIN

mapString(name,"#THIS.NAME",50);
mapShort(age,"#THIS.AGE");

MAP_END;
};
// Define method returning pointer to the prototype
CLASS_PROTOTYPE(Person);
// Define the solitary prototype instance Person_class
PROTOTYPE(Person);

class Student : public Person {
CLASS(Student);
PARENTS("Person");
FROM("STUDENT");
dbString(studcardid);
MAP_BEGIN

mapString(studcardid,"#THIS.STUDCARDID",20);
MAP_END;

};
CLASS_PROTOTYPE(Student);
PROTOTYPE(Student); // Student_class

class Employee : public Person {
CLASS(Employee);
PARENTS("Person");
FROM("EMPLOYEE");
dbInt(salary);
MAP_BEGIN

mapInt(salary,"#THIS.SALARY);
MAP_END;

};
CLASS_PROTOTYPE(Employee);
PROTOTYPE(Employee); // Employee_class

Because the library needs to keep track of the dirty status of persistent objects, the
programmer has to maintain this flag either by himself or better he should restrict manipulation
with persistent attributes to the use of getter and setter methods defined by the macros. For
every class T described by these macros the library creates an associated template class
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prototype Proto<T>. The solitary instance of this prototype class holds information about
the metamodel described by the macros and provides the actual database mapping. Prototypes
are registered within the ClassRegister. Using ClassRegister, the library and/or
application can search for prototypes by their names, and access methods needed for CRUD2

operations.
Persistent classes inherit their behaviour from one of four base classes defined in the library

- the Object, ImmutableObject, DatabaseObject or PersistentObject class.
Depending on what the parent is, different features of the persistence are supported:

• Object - instances of descendants of this class can be obtained as database query results.
These objects do not have any database identity and can represent results from complex
queries containing aggregate functions. More instances can thus be the same.

• ImmutableObject - instances of this class have a database identity mapped to one or
more column(s) in the associated table (or view) and represent concrete rows in database
tables or views. They can be loaded repetitively, but the ImmutableObject class
descendants still do not propagate changes made to them back to the database. To use
this class as a query result, the query has to return rows that match rows in corresponding
database tables or views.

• The DatabaseObject class is much the same as the ImmutableObject, but
changes are propagated back to the database.

• The PersistentObject class offers the most advanced persistence options. The
PersistentObject defines and maintains a unique attribute OID that holds the
identity of every PersistentObject’s instance within the database. Unlike previous
classes, persistence of whole type hierarchies is expected and supported.

As mentioned before, the library offers vertical mapping for descendants of the
PersistentObject. Tables related to mapped inheritance hierarchies are joined using the
surrogate OID key. If using DatabaseObject descendants, the object model can be created
upon an existing (and in case of ImmutableObject descendants even upon the read-only)
database tables with arbitrary keys. In this case, however, no inheritance between classes is
allowed.

Associations in the POLiTe library are not modelled primarily as references but
as instances of the Relation class. There are five subclasses of this class -
OneToOneRelation, OneToManyRelation, ManyToOneRelation,
ManyToManyRelation and ChainedRelation according to cardinality of the
association. Their names describe which kind of relation between the underlying tables they
manage. ChainedRelation is built from other relations and it can be used to define
relation for indirectly associated objects. Example 3.1.2 demonstrates how a one-to-many
relation between the Employee and Student classes can be created and used.

2Create (insert) / Read (select) / Update / Delete
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Example 3.1.2 Associations in the POLiTe library
OneToManyRelation<Employee, Student> Employee_Student_Supervisor(
"EMPLOYEE_STUDENT_SUPERVISOR", dbConnection

);

// Let’s suggest that the Supervisor variable represents
// a reference to a "Ola Nordmann" Employee persistent object
// and Student represents a reference to a "Richard Doe"
// persistent object.
// Create a supervisor relation between "Ola Nordmann"
// and "Richard Doe".
Employee_Student_Supervisor.InsertCouple(

*Supervisor, *Student
);

The relation can be queried for objects on both of its sides. So we may run queries like
"Which students are supervised by Ola Nordmann?", "Who is the supervisor of Richard Doe?"
or even more complex ones, but that would be out of the scope of this thesis.

The one-to-many relation can be replaced by a reference to s supervisor in the Student
class definition:

...
dbPtr(supervisor);
dbString(studcardid);
MAP_BEGIN
mapPtr(supervisor,"SUPERVISOR");
...

Usage of the references is closer to the object-oriented approach in which we navigate using
pointers or references to gain access to the related objects. The drawback is, that the navigation
is usually one-way and in this case, the retrieval of all supervised students of an employee is not
trivial.

3.1.4 Persistent object manipulation
Persistent objects can enter one of the following states (see the state diagram in Figure 3.2):
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Figure 3.2: POLiTe persistent object states

• Transient - Each new instance of persistent class enters this state. The instance data are
stored only in the application memory and are not persisted.

• Local copy - A persistent image of the transient instance can be created by calling the
BePersistent() method. The method inserts attribute values of the instance to the
database. The memory instance can be deallocated at any time as it is considered as a
cached copy of the inserted database data. This state can be entered also at a later time
when loading a persistent instance which has no local copy in the application memory.

• Locked local copy - To prevent the local copy deallocation, the local copy can be locked
in the application memory. Local copy is not deallocated until its lock is released. After
unlocking, the locked local copy enters the local copy state.

• Persistent instance - A persistent object can enter this state if its local copy is removed
from the application memory. During the state transition, the changes in the local copy
are usually propagated to the database. The object exists now only in the database; it can
be loaded later and enter one of the local copy states.

All local copies and local locked copies are managed by the ObjectBuffer which acts
as a trivial object cache. The buffer is implemented as an associative container between object
identities and local object copies. If the buffer is full, all non-locked local copies are freed and
dirty instances updated in the database.

Because a persistent object can exist in one of those states, library uses indirect references
to access the object’s attributes. Users do not have to know whether the object is loaded into
the object cache or if it exists only in the database. Users can just access it via the Ref<T>
reference type using the overloaded -> operator. The library looks for the requested instance in
the object cache and if not found, it loads it from the database. C++ chains the operator -> calls
until it gets to a type that does not overload the -> operator and there it accesses the requested
attribute or calls the requested function. So if the variable e is of the Ref<Employee> type,
the following expression:

e->salary(65000);
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does not invoke the setter method on the Ref<Employee> instance, but it looks for the object
in the object cache, loads it eventually, and invokes the setter method on it. The process is
illustrated by the Figure 3.3.

Figure 3.3: POLiTe references

POLiTe allows the users to specify several concurrent data access strategies the
ObjectBuffer will use. These strategies are used to influence the safety or speed of
concurrent access and cached data coherence.

• Updating strategy - determines whether changes done to local copies are propagated to
the database immediately or they can be deferred.

• Locking strategy - determines how the rows in the database are locked when they are
loaded into local copies. Shared, exclusive or no locking can be requested.

• Waiting strategy - if the application tries to access a locked database resource (by another
session), this strategy specifies whether the application waits until the resource gets un-
locked or an exception is thrown.

• Reading strategy - determines behaviour of the persistence layer if a local copy is accessed
using the indirect reference Ref<T>. Local copy can be either used right away or it can
be refreshed with the data stored in the database. The refresh option can be speeded up
by comparing timestamps of the local copy and of the stored image.

Object manipulation is illustrated by the Example 3.1.3. Two objects - an employee and
a student which is supervised by that employee are created as transient instances and inserted
into the database. The BePersistent() call returns references to unlocked local copies of
created objects. Then the salary of the employee is modified and the change propagated to the
database. In the end, the student object is deleted from the database and also from the memory.
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Example 3.1.3 Persistent object manipulation
// Create a new employee
Employee* e = new Employee();
e->name("Ola Nordmann");
e->age(45);
e->salary(60000);
Ref<Employee> employee = e->BePersistent(dbConnection);

// Create a new student supervised by the employee created
Student* s = new Student();
s->name("Richard Doe");
s->age(22);
s->studcardid("WCD-3223");
s->supervisor(empl);
Ref<Student> student = s->BePersistent(dbConnection);

// Update the employee’s salary
e->salary(65000);
e->Update(); // Propagates the change to the database
// The change could be propagated immediately if the
// updating strategy was set to the "immediate" setting.

// Delete the new student from the database
s->Delete();
);

3.1.5 Querying
Queries in the POLiTe library search for objects of a specified class. Search criteria restricting
the result set can be specified. Queries are represented as instances of the Query class which
contains only two data fields: The search criteria (in fact the WHERE clause of the final
SELECT statement together with the ORDER BY clause specification) determines what object
will be returned and how the result will be ordered. The search criteria can be written using
SQL (referencing physical table and column names) or using a C++-like syntax. The C++-like
syntax hides the O/R mapping complexity and allows the users to use more convenient class
and attribute names. The query objects can be then combined using the C++ !, && and ||
logical operators. Results of the query execution are accessed using instances of the
Result<T> template class. The template is used similarly to the Ref<T> template.
Example 3.1.4 illustrates how the queries are created, combined and executed.
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Example 3.1.4 Queries in the POLiTe library
// All employees with salary > 40000
Query q1("Employee::salary > 40000")

// All employees with the first name Ola
Query q2("Person::name LIKE ’Ola %’);

// All employees with salary > 40000 having the first name Ola
Query q3 = q1 && q2;

// Order the result by the salary descending.
q3.OrderBy("Employee::salary DESC");

// Execute q3 and iterate through the result
Result<Employee>* result = Employee_class(q3, dbConnection);
while (++(*result)!=DBNULL) {
// members of the current object are accessible
// using (*result)->

};
result->Close();
delete result;

3.1.6 Conclusion
The library provides solid and rich-featured ORM solution. However, there are several areas in
which the library can be improved:

• Transparency - persistent classes have to be precisely described by macros. Typos in
this description may lead to unclear compile time or runtime errors. Attributes must be
accessed via the getter and setter methods.

• Library design - library is one monolithic block and compiles into one shared library.
There is no other way to add additional database drivers or features than changing the
makefile and recompiling the library. Same applies to the library configuration - many
parameters are configured as preprocessor macros. Changing them implies library
recompilation.

• Database dependency - without modifications, the library supports only the Oracle
platform. Adding new database support supposes to derive new descendants of
Database, Connection and Cursor classes, implement their code and recompile
the library. The library also contains several SQL fragments that are not separated into
the database driver layer.

These disadvantages are addressed mostly by the IOPC library [4] and its descendant de-
scribed further in this thesis. But first, we will look at the performance enhancement provided
by the succeeding library POLiTe 2.
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3.2 POLiTe 2
A new version of the POLiTe library focuses on the library performance and on the design of
new rich-featured cache layer. The cache layer replaces the ObjectBuffer interface and
enhances the concept of indirect memory pointers by adding one more indirection level.

3.2.1 Architecture of the POLiTe 2 library
Architecture of the library remained almost unchanged. It is still compiled into one module and
used the same way as the original POLiTe library was. Overview of the architecture can be seen
in the Figure 3.4

Figure 3.4: Architecture of the POLiTe 2 library

Database layer uses OCI 7 to connect to the Oracle 7 database. The layer has been slightly
modified to be able to notify the cache layer of several events like Commit or Rollback.

On the contrary, both the object cache ObjectBuffer and the object references have been
completely replaced by the new cache layer and related infrastructure - database pointers. The
differences are explained in the following sections.

Because the new cache layer may use additional maintenance threads, most parts of the
library have been made thread-safe. Various synchronisation primitives have been added to the
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common services. The main architectural change is that all basic database CRUD operations
are routed through the cache layer which decides when or how to execute them.

3.2.2 The cache layer

Figure 3.5: Caches in the POLiTe 2 library

The biggest part of the cache layer represent the provided cache implementations. Cache im-
plementations may derive from one of two interfaces depending on what features they will pro-
vide (see the Figure 3.5):

• Cache - an interface providing basic synchronous caching functionality.

• ExtendedCache - extends the Cache interface with additional methods that are
needed for asynchronous maintenance of the cache using the cache manager
CacheKeeper (see later).

Concurrent data access strategies as introduced in the original POLiTe library can be used
with caches that implement the ExtendedCache interface.

Caches can be grouped together using the ComposedCache class with the help of
selectors. Selectors are classes whose instances determine which strategy or which cache
should be used based on the given object type, the object itself or based on other custom
criteria. The ComposedCache uses CacheSelector to decide which cache should be
used for the object being processed and then it passes a StrategySelector to the selected
cache as a parameter to each of its operations. Then the cache uses the StrategySelector
to modify its behaviour with selected strategies.

Caches that implement the extended interface can be maintained by the cache manager
called CacheKeeper3. CacheKeeper runs a second thread that scans managed caches
and removes instances considered as ’worst’. If dirty, these instances are written back to the
database. CacheKeeper acts also as a facade for composing caches and specifying strategies.

Following cache implementations are provided with the POLiTe 2 library:

• VoidCache - implements the basic Cache interface. This implementation actually
does not cache anything, it just holds locked local copies. As the copies are unlocked,
changes are propagated immediately to the database and objects are removed from the
cache.

3Caches that implement the basic Cache interface can be maintained too, but the CacheKeeper does not
provide the asynchronous maintenance for them.
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• The LRUCache (multithreaded) and the LRUCacheST (single threaded) implement the
ExtendedCache interface. These classes use the LRU4 replacement strategy. The
multithreaded variant can even be used with the CacheKeepers’ asynchronous
maintenance feature. LRU strategy discards least recently accessed items first. It
maintains the items in ordered list. New or accessed items are added or moved to the top
of the list. Least recently accessed items are pushed towards the bottom from which they
are removed. For more information see [9].

• The ARCCache (multithreaded) and the ARCCacheST (single threaded) use the ARC5

replacement strategy. ARC tries to improve LRU by splitting the cached items into two
LRU lists - one for items that were accessed only once (recent cache entries) and second
for items that were accessed more than once (frequent cache entries). The cache adapts
the size ratio between these two lists. ARC performs in most cases better than LRU,
espetially in cases where a larger set of items is accessed (for example a query result is
iterated). The cache is not polluted as frequently used items remain in the second list. For
more information see [10][11].

3.2.3 Persistent object manipulation
Transient object instances are in the original POLiTe library created using standard C++
dynamic allocation - using the new operator. After making these objects persistent, pointers to
these objects are exchanged for indirect references represented by the Ref<T> template. As
the ownership of these objects is transferred to the object cache, the direct pointers may be
rendered invalid. In the POLiTe 2 library, the creation and destruction of the objects is
managed by the library code and users can access its members by dereferencing indirect
pointers.

The indirect pointer template Ref<T> was replaced by the template DbPtr<T>. Its
instance may be referred to as a database pointer further in the text. DbPtr<T> is used
similarly to the Ref<T> template. Example 3.2.1 demonstrates the creation of a transient
instance and its manipulation analogously to the Example 3.1.3.

4Least Recently Used
5Adaptive Replacement Cache
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Example 3.2.1 Persistent object manipulation in the POLiTe 2 library
// Create a new employee
DbPtr<Employee> e;
e->name("Ola Nordmann");
e->age(45);
e->salary(60000);
e->BePersistent(dbConnection);

// Create a new student supervised by the employee created
DbPtr<Student> s;
s->name("Richard Doe");
s->age(22);
s->studcardid("WCD-3223");
s->supervisor(empl);
s->BePersistent(dbConnection);

// Update the employee’s salary
e->salary(65000);
// There is no Update method as the cache updates the persistent
// image automatically according to the Updating strategy in use.

// Delete the new student from the database
s->DbDelete();
);

The DbPtr<T> can point to instances in several states:

• Transient instances which are present only in memory (and do not have a persistent rep-
resentation yet), the owner of these instances is the pointer.

• In-memory instances owned by a cache (which may or may not have a database represen-
tation. This represents in fact two states of the object).

• Persistent representation of the object. The pointer contains only the identity of the object.

Last object state, the locked local copy, is implemented as an additional level of indirection
when dereferencing the database pointer. By dereferencing it using the * operator, user receives
an instance of a cache pointer (CachePtr<T>). The existence of the cache pointer guarantees
that the object is loaded into the memory and that the memory address of the object will not
change until the instance of the cache pointer is destroyed (unlocked). Such process locks
the objects in the cache so they cannot be removed unless they are unlocked. The transitions
between the object states are displayed in the Figure 3.6.

By using the * operator on a database pointer user receives a reference to a loaded and
locked instance in a cache. Constructor of the created cache pointer asks cache to load relevant
object from the database (if not already present in the cache) and locks the object in the cache.
The cache pointer can be dereferenced again resulting in retrieval of direct pointer to the in-
memory instance. This process can be simplified just by using the -> operator on the database
pointer. An implicit instance of the cache pointer is created and the -> operator invoked on it.
Then the requested member of the instance is accessed. After that, the cache pointer instance
is destroyed and cache lock released. (This may result in significant performance degradation
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Figure 3.6: States of the POLiTe 2 objects

if using the VoidCache, because only locked copies are contained in the cache. Calling the ->
operator causes a persistent object to be loaded from database into the memory, then desired
member is accessed and object - if modified - is written back and removed from cache). The
process is almost the same as if dereferencing the Ref<T> references, the difference is the
additional level - the cache pointer.

If the variable e is of the DbPtr<Employee> type, the following expression:

e->salary(65000);

may trigger a sequence of actions as displayed in the Figure 3.7

3.2.4 Querying
The query language and query classes as described in Section 3.1.5 have not been changed in
the POLiTe 2 library. Just the query is now executed and its results fetched in a slightly different
way:
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Figure 3.7: Dereferencing DbPtr in POLiTe 2

Example 3.2.2 Executing queries in the POLiTe 2 library
// All employees with salary > 40000
Query q("Employee::salary > 40000")

// Execute q and iterate through the result
Result<Employee> result(dbConnection, q);
while (++result) {
// members of the current object are accessible
// using result->

};
result->Close();

3.2.5 Conclusion
New version of the POLiTe library allows users to utilise advanced persistent object caching
features. Unmentioned remained the support for multithreaded environment which includes
encapsulation of several synchronisation primitives.

Disadvantages listed in the Section 3.1.6 also apply to this version of the library as they
were not the point addressed by the thesis [3].

3.3 IOPC
The IOPC library [4] contains a new API for O/R mapping. This new interface coexists with
the old POLiTe-style interface inside one library. The interface is (with few exceptions) clearly
divided into two parts - the IOPC and the POLiTe part. The POLiTe part provides backward
compatibility with the original POLiTe library.

3.3.1 Features of the library
The IOPC library offers all features of the original POLiTe library. We will look only at the
new IOPC interface. New features and main differences are listed below:
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• No need to describe the structure of persistent classes. Persistence works almost trans-
parently.

• All three basic types of class hierarchy mapping are supported - horizontal, vertical and
filtered. Combinations of these types in one class hierarchy are also allowed (with a few
exceptions).

• Database views that join data from all mapping tabes are generated. These views are used
for object loading and they also represent a simple read-only interface for non-library
users.

• Ability to define new persistent data types.

• Loading persistent object attributes by groups. Persistent attributes can be divided into
several groups which can be loaded separately.

• Easy implementation of new RDBMS into the library6.

3.3.2 Architecture of the library
The IOPC library consist of a number of modules, some of them are standalone applications.
The hi-level architecture overview can be best explained on the library workflow displayed in
Figure 3.8.

Figure 3.8: The IOPC library workflow

Three main modules can be observed from the figure:

• IOPC SP uses OpenC++7 parser and source-to-source translator to modify the source
code to add support of the object persistence and generates XML metamodel description
of structure of persistent structure.

• IOPC DBSC generates SQL scripts from the XML metamodel description. The SQL
scripts create required database structured needed for the IOPC object-relational mapping.

6However, recompilation of several IOPC modules is still needed
7http://opencxx.sourceforge.net/
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• IOPC LIB is a library that provides the object persistence services to a program to which it
is linked. It uses the metamodel generated by the IOPC SP module and database structures
created using the IPOC DBSC scripts.

• XML metamodel description loading and storing is performed by two statically-linked
libraries / classes - XMLMetadataLoader and XMLMetadataWriter. Both classes
use the Xerces8 parser to handle the XML files. Other type of metamodel storage can
be implemented by inheriting from the MetadataLoader and MetadataWriter
interfaces.

3.3.3 IOPC SP
One of the most interesting aspects of the IOPC library is a new approach to metamodel
description retrieval. User-created specification of the class structure is not needed. The source
classes are parsed and metamodel description is collected by the IOPC SP module.

IOPC SP is a standalone executable created from patched OpenC++ source code and a
OpenC++ metaclass IopcTranslator. The metaclass affects the source-to-source
translation of persistent classes done by the OpenC++ by performing the following operations:

• Generates the set and get methods for all persistent attributes. Setters modify the dirty
status of the objects and getters ensure that corresponding attribute groups are loaded.

• Modifies every reference to persistent attributes so that they use the generated get and set
methods.

• Generates additional members to the processed classes needed by the IOPC LIB.

• Inspects the processed classes and writes information about their structure to a XML file
by calling the MetadataWriter (its implementation XMLMetadataWriter).

In the end, IOPC SP runs compiler and linker on the translated source code.
As you can see in the Example 3.3.1, persistent classes in IOPC does not need any additional

descriptive macros for the persistence layer to be able to understand their structure. The only
rules are that they need to be descendants of the IopcPersistentObject and that the
attribute types need to be supported by IOPC. For example, IOPC does not understand the
std::string STL type, only the basic C/C++ string representation char* (or its wide
character variant) is supported. If the string is allocated dynamically, it needs to be deallocated
in the desctructor.

8http://xml.apache.org/xerces-c/
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Example 3.3.1 Definition of persistent classes in IOPC
class Person : public IopcPersistentObject {
public:
char* name;
short int age;
Person() {

name = NULL;
}
virtual ~Person() {

if (name != NULL) free(name);
}

};
class Employee : public Person {
public:
int salary;

};
class Student : public Person {
public:
char* studcardid;
Ref<Employee> supervisor;
Student() {

studcardid = NULL;
}
virtual ~Student() {

if (studcardid != NULL) free(studcardid);
}

};

Processed source code generated by the IOPC SP is deleted immediately after compilation.
It is not meant to be modified by developers. Following example displays the processed
Student class. It was stripped by the age attribute because the listing was too long:

class Person : public IopcPersistentObject {
public:
Person() {

set_name ( __null ) ;
}
virtual ~Person() {

Free();
if ( m_name != __null ) free ( m_name ) ;

}
protected:

char * m_name;
bool m_name_isValid;

public:
virtual char * get_name()
{

if (!m_isPersistent || m_name_isValid || !m_classObject-> ←↩
isAttributePersistent(1)) return m_name;

m_classObject->loadAttribute(1, this);
if (!m_name_isValid)
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throw IopcExceptionUnexpected();
return m_name;

}
public:
virtual char * set_name(char * _name) {

m_name =_name;
m_name_isValid = true;
if (m_isPersistent) MarkAsDirty();
return _name;

}
protected:
void iopcInitObject(bool loadingFromDB) {

if (loadingFromDB) {
m_name_isValid = false;

}
else {
m_classObject = IopcClassObject::getClassObject(ClassName(), ←↩

true);
m_name_isValid = true;

}
}
virtual int iopcExportAttributes(IopcImportExportStruct * data, ←↩

int dataLen) {
if (dataLen != 1) return 1;
data[0].valid = m_age_isValid;
if (m_age_isValid) data[0].shortVal = m_age;
return 0;

}

virtual int iopcImportAttributes(IopcImportExportStruct * data, ←↩
int dataLen) {

if (dataLen != 1) return 1;
if (data[0].valid) {
if ((m_name_isValid) && (m_name)) free(m_name);
m_name = strdup(data[1].stringVal);
m_name_isValid = true;

}
return 0;

}
public:
static const char * ClassName() {return "Person";}

public:
static IopcPersistentObject * iopcCreateInstance() {

IopcPersistentObject * object = new Person;
object->iopcInitObject(true);
return object;

}
static RefBase * iopcCreateReference() {

return new Ref<Person>;
}

};
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static IopcClassRegistrar<Person> Person_IopcClassRegistrar(" ←↩
Person");

Rather larger amount of code was inserted into the class definition. IOPC SP generated
setter and getter methods for the attributes, serialisation and deserialisation routines
(iopcExportAttributes and iopcImportAttributes) and other methods needed
by the persistence layer.

Not only the class code was translated. Code that reads or sets attribute values was changed
to use the getter and setter methods (like we would use in the POLiTe library):

// original:
Employee e;
e.age = 45;
// translated assignment operation:
e.set_age(45);

IOPC SP also generates a XML metamodel file describing structure of the classes, see Ex-
ample 3.3.2.
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Example 3.3.2 XML metamodel description file
<iopc_mapping project_name="example">
<class name="Employee">
<base_class>Person</base_class>
<mapping db_table="EMPLOYEE" type="inherited">
<group name="default_fetch_group" persistent="true">
<attribute db_column="SALARY" db_type="NUMBER(10)" name=" ←↩

salary" type="int"/>
</group>

</mapping>
</class>
<class name="Person">
<mapping db_table="PERSON" type="vertical">
<group name="default_fetch_group" persistent="true">
<attribute db_column="AGE" db_type="NUMBER(10)" name="age" ←↩

type="short"/>
</group>
<group name="1st_persistent_group" persistent="true">
<attribute db_column="NAME" db_type="VARCHAR2(4000)" name=" ←↩

name" type="char *"/>
</group>

</mapping>
</class>
<class name="Student">
<base_class>Person</base_class>
<mapping db_table="STUDENT" type="inherited">
<group name="default_fetch_group" persistent="true">
<attribute db_column="SUPERVISOR" db_type="NUMBER(10)" name=" ←↩

supervisor" type="Ref&lt;Employee&gt;"/>
</group>
<group name="1st_persistent_group" persistent="true">
<attribute db_column="STUDCARDID" db_type="VARCHAR2(4000)" ←↩

name="studcardid" type="char *"/>
</group>

</mapping>
</class>

</iopc_mapping>;

As mentioned before, persistent attributes can be divided into several
groups which are handled by IOPC separately. By default, two groups are
generated - a default_fetch_group containing all numeric attributes and a
1st_persistent_group containing attributes of all remaining data types (strings). The
XML metamodel file can be customized by developers before running IOPC DBSC.

3.3.4 IOPC DBSC
IOPC DBSC is a standalone executable that generates SQL scripts for various purposes - in
particular the scripts to create or delete database structures required by the object-relational
mapping. It uses MetadataLoader to load the persistent class metamodel written by the
IOPC SP. SQL script created from the previously generated XML metamodel file follows.
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First it creates database table for the class list and fills it:

CREATE TABLE EXAMPLE_CIDS
(
CLASS_NAME VARCHAR2(64)

CONSTRAINT EXAMPLE_CIDS_PK PRIMARY KEY,
CID NUMBER(10) NOT NULL

CONSTRAINT EXAMPLE_CIDS_UN UNIQUE
);
INSERT INTO EXAMPLE_CIDS VALUES (’Employee’, 1);
INSERT INTO EXAMPLE_CIDS VALUES (’Person’, 2);
INSERT INTO EXAMPLE_CIDS VALUES (’Student’, 3);

Followed by a table (main table) containing OIDs of all persistent objects in the project:

CREATE TABLE EXAMPLE_MT
(
OID NUMBER(10)

CONSTRAINT EXAMPLE_MT_PK PRIMARY KEY,
CID NUMBER(10)

CONSTRAINT EXAMPLE_MT_FK REFERENCES EXAMPLE_CIDS(CID)
);
CREATE INDEX EXAMPLE_MT_CID_INDEX ON EXAMPLE_MT(CID);

Then the mapping tables associated with persistent classes are created (we used the default
vertical mapping):

CREATE TABLE PERSON
(
OID NUMBER(10)

CONSTRAINT PERSON_PK PRIMARY KEY
CONSTRAINT PERSON_CD REFERENCES EXAMPLE_MT(OID) ON DELETE ←↩

CASCADE,
CID NUMBER(10)

CONSTRAINT PERSON_FK2 REFERENCES EXAMPLE_CIDS(CID),
AGE NUMBER(10),
NAME VARCHAR2(4000)

);
CREATE INDEX PERSON_CID_INDEX ON PERSON(CID);
CREATE TABLE EMPLOYEE
(
OID NUMBER(10)

CONSTRAINT EMPLOYEE_PK PRIMARY KEY
CONSTRAINT EMPLOYEE_CD REFERENCES EXAMPLE_MT(OID) ON DELETE ←↩

CASCADE,
SALARY NUMBER(10)

);
CREATE TABLE STUDENT
(
OID NUMBER(10)

CONSTRAINT STUDENT_PK PRIMARY KEY
CONSTRAINT STUDENT_CD REFERENCES EXAMPLE_MT(OID) ON DELETE ←↩

CASCADE,
STUDCARDID VARCHAR2(4000),
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SUPERVISOR NUMBER(10)
);

Finally, two views are created for each persistent class. Simple views (SV suffix) join all
tables needed for loading complete instances of particular persistent classes. Their columns
correspond to attributes of the associated classes. Polymorphic views (PV suffix) have same
structure as simple views: the difference is that they return not only instances of the associated
classes, but also instances of their descendants.

CREATE VIEW Person_sv AS
SELECT OID, AGE, NAME
FROM PERSON
WHERE CID = 2;

CREATE VIEW Person_pv (CID, OID, AGE, NAME) AS
SELECT CID, OID, AGE, NAME
FROM PERSON
WHERE PERSON.CID IN (2, 1, 3);

CREATE VIEW Employee_sv (OID, AGE, NAME, SALARY) AS
SELECT EMPLOYEE.OID, AGE, NAME, SALARY
FROM PERSON, EMPLOYEE
WHERE EMPLOYEE.OID = PERSON.OID;

CREATE VIEW Employee_pv (CID, OID, AGE, NAME, SALARY) AS
SELECT 1, EMPLOYEE.OID, PERSON.AGE, PERSON.NAME, SALARY
FROM PERSON, EMPLOYEE
WHERE EMPLOYEE.OID = PERSON.OID;

CREATE VIEW Student_sv (OID, AGE, NAME, STUDCARDID, SUPERVISOR) AS
SELECT STUDENT.OID, AGE, NAME, STUDCARDID, SUPERVISOR
FROM PERSON, STUDENT
WHERE STUDENT.OID = PERSON.OID;

CREATE VIEW Student_pv (CID, OID, AGE, NAME, STUDCARDID, ←↩
SUPERVISOR) AS

SELECT 3, STUDENT.OID, PERSON.AGE, PERSON.NAME, STUDCARDID, ←↩
SUPERVISOR

FROM PERSON, STUDENT
WHERE STUDENT.OID = PERSON.OID;

3.3.5 IOPC LIB
IOPC LIB is a shared library that represents the core of the IOPC project. It is linked to the
outputs (object files) of IOPC SP and provides the run-time functionality.

IOPC LIB is built on the POLiTe library, it uses some of its components and exposes its new
interface side-by-side with the original POLiTe interface. The result is that the IOPC library
can be used almost the same way as its predecessor. It supports the POLiTe-style persistent
objects as well as new persistent objects inherited from the IopcPersistentObject class
and processed with IOPC SP. Components from the POLiTe library that IOPC LIB uses are
displayed in Figure 3.9.
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Figure 3.9: POLiTe library components used in IOPC LIB

Because the object cache and the object references are reused from the POLiTe library,
persistent object enter same states using same state transitions as in Section 3.1.4. There is,
however, one problem with the current implementation in that it does not implement the locking
correctly and all persistent objects look like unlocked all the time. So the Locked Local Copy
state can be entered only by instances of the POLiTe persistent classes.

The query language and all related classes or templates are also reused, so there is no change
in this area either.

IOPC persistent objets can be associated exclusively using references as described at the
end of the Section 3.1.3. Relations described earlier in that section can be used only for the
POLiTe persistent objects. IOPC adds a new RefList<T> template to the standard POLiTe
Ref<T> reference representing a persistable list of references. The list is stored into a separate
table (one per project) which unfortunately does not have standard many-to-many join table
schema. Each instance of the RefList<T> is stored as a linked list of OIDs of its members.
The table is completely unusable in SQL queries unless we are using its recursive features (if
available) or procedural constructs like cursor iteration. Second issue is that these lists are
always persistent. Every change is immediately propagated to the database regardless of the
state of its owner, object cache is also bypassed. This renders the usage of RefList<T> in
combination with transient objects quite dangerous as orphaned entries are created in the "join"
table. Same problem occurs if persistent object with RefList<T> as a attribute is deleted -
the associated linked list is not removed from the database.

Figure 3.10 displays the structure of the IOPC library and the relationship between new
IOPC- and the original POLiTe interface.
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Figure 3.10: Structure of the IOPC LIB

Database layer uses slightly modified original interface. Along with the
Database, Connection and Cursor classes there is a new interface class -
DatabaseSqlStatements. It serves as an interface for database-dependent SQL
statement generation. IOPC contains Oracle 8i implementation of these interface classes
(using OCI 8).

IOPC persistent classes are created as descendants of the new base class -
IopcPersistentObject. The original base class Object and its descendants
(ImmutableObject, DatabaseObject and PersistentObject) were preserved
and can be used to create POLiTe persistent classes. Note that IopcPersistentObject is
derived from the original Object class allowing it to be used with POLiTe components like
object cache or references.

For each descendant of the IopcPersistentObject class there is one
IopcClassObjectImpl instance. The purpose of this class is very similar to the
concept of prototypes described in the Section 3.1.3 - it contains all data needed for
object-relational mapping of the associated class. IopcClassObjectImpl actually
performs the mapping process. The class is linked to the POLiTe prototype system
using the IopcProtoBaseAdaptor which maps the prototype interface on
the IopcClassObjectImpl instance. Calls invoked on its ProtoBase
interface are delegated back to IopcClassObjectImpl. Public interface to the
IopcClassObjectImpl class is provided by the IopcClassObject class.
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As the name suggests, IopcClassObjectContainer is a place where class object
instances are stored. Its first responsibility is to load list of classes from the MetadataLoader
and compare them with the class list stored in the database. Then it creates and initializes the
IopcClassObjectImpl instances. Similarly to ClassRegister, it provides methods
allowing us to find the class objects by name or by class id.

3.3.6 Conclusion
The main goal of the IOPC library was to make the usage of the POLiTe library simpler and
more transparent. The architecture of the library was redesigned for the sake of these require-
ments. At first glance, the IOPC library looks like a big improvement over the original library,
but if we look further into the source code and used technologies, we come upon several critical
issues that may cause the usage and deployment of this library almost impossible.

IOPC uses the OpenC++ as a way to retrieve information about the structure of persistent
classes. The OpenC++ project seems to be almost dead, last commit to the project CVS
occurred in 2005. OpenC++ cannot handle most of template constructs, processing files that
include GCC STL headers (tested on versions 3.4 and newer) produces a lot of errors. Because
the source-to-source translation is used, users cannot be sure if any of their code translated
with errors or warnings9 will do what was intended. Probably for this reason the IOPC allows
only the C strings (char* and w_char*), not the C++ STL strings (std::string and
std::wstring).

Next, IOPC uses its own modified version of OpenC++ (called 2.6.t.0) and integrates it into
the IOPC SP utility. This approach renders further maintenance of the OpenC++ code difficult.
New changes from the OpenC++ CVS have to be merged manually into the IOPC SP source.

Second point is a question, why there are two parallel interfaces in the IOPC library - one for
the new persistent objects and one for the POLiTe objects. If there is no known implementation
that uses the POLiTe library, there is no need to be backward-compatible. The POLiTe part of
the source code will just remain unmaintained (as no one is supposed to use the POLiTe objects
in new applications). Because several IOPC objects inherit from the POLiTe classes, many
inherited methods do not make sense any more. This makes the API less comprehensible and
can lead to user’s confusion. An example of this situation is the IopcProtoBaseAdaptor
which contains a number of methods commented as "Fake function". Second example is the
mentioned local copy locking problem. Are we supposed to use the locking only on the POLiTe
persistent objects or is it just a bug in the IOPC implementation? The presence of two distinct
APIs makes usage of the library less clear and confusing.

The library itself remained as a monolithic block with only signs of library configurability.
Many parameters are defined as pre-processor macros, enabling other options (like adding a new
database driver) results in library source code modification and recompilation. The design of
the library even makes impossible to use more than one database driver at a time (the currently
used implementation of the DatabaseSqlStatements is stored in a global variable).

Bad design of the program interface. Useful information is hidden in internal structures of
the library, these structures are not visible via its API - for example the data retrieved from the
MetadataLoader. The library could implement some kind of reflection API to be able to
query the metamodel.

The library cannot be used in multithreaded environment. There are shared state-aware data
structures that are reused between persistence layer calls. This prevents to make the library
multithreading-friendly without major modifications.

9Although the IOPC SP states that those errors can be ignored
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Despite good idea behind the IOPC library, the implementation is deeply flawed, unusable
and unmaintainable. For these reasons, the author of this thesis decided not to continue devel-
opment upon the source code of IOPC.

3.4 Library comparison
The following table provides side-by-side library comparison. The IOPC column displays fea-
tures of the IOPC part of the library interface only (not POLiTe).

POLiTe POLiTe 2 IOPC
Transparent usage - Macro descriptions - Macro descriptions + Uses Open C++

Supported
mapping types - Vertical - Vertical

+ Vertical,
horizontal, filtered,
combinations

Associations
between objects

+ Simple reference
and relations -
one-to-many,
many-to-one,
many-to-many,
chained

+ Simple reference
and relations -
one-to-many,
many-to-one,
many-to-many,
chained

+/- Simple reference
and reference list

Caching - Simple object
cache

+ Advanced caching
features.

-- Simple object
cache, no locking

Querying C++-like syntax,
combining queries

C++-like syntax,
combining queries

C++-like syntax,
combining queries

Read-only db or
existing schema
support

+ + -

Library
architecture - Monolithic - Monolithic - Monolithic

Supported
databases Oracle 7 (OCI 7) Oracle 7 (OCI 7) Oracle 8i (OCI 8)

Multithreading
support - + -
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Chapter 4

Basic concepts of the IOPC 2 library

The IOPC 2 library is based on the ideas behind the IOPC library. It implements its features
and adds the best from the POLiTe and POLiTe 2 libraries as well. Based on the discussion in
the previous chapters IOPC 2 focuses on improvements in the following areas:

• Transparent usage - IOPC 2 retrieves description of persistent class metamodel using
similar mechanism as IOPC, so no descriptive macros are needed. Though OpenC++ has
been replaced by GCCXML due to reasons explained in Section 3.3.6 and Section 4.2.

• Reflection - IOPC 2 gives application developers the access to the metamodel through a
simple reflection interface.

• O/R mapping - IOPC 2 offers all mapping types supported by the IOPC library plus the
ADT mapping as presented in Section 2.4. Persistent objects in POLiTe libraries can be
mapped on existing database schemas or read-only databases. IOPC 2 has inherited this
feature.

• Caching - the POLiTe 2 cache layer has been reused in the IOPC 2 library. IOPC 2
supports all features added to the POLiTe library successor including multithreading
support.

• Library architecture - IOPC 2 library can be used in several configurations depending on
the developers’ needs. Database drivers have been separated from the run-time library
and now they can be switched without the need of library source code modification.

• Database access - Support for Oracle 10g database family.

• Removal of obsolete features – the implementation of the IOPC 2 library cuts off all the
interfaces that were replaced by their newer and more complex versions. It simplifies the
work with the library and its maintainability at the cost of lost of backward compatibility.

In the following sections, we will discuss theoretical aspects of the IOPC 2 implementation
- mostly the O/R mapping and transparency of the library usage. Following Chapter 5 provides
more detailed insight into the library architecture and usage.

4.1 Library architecture
As stated earlier, run-time part of the POLiTe, POLiTe 2 or the IOPC libraries consist of one
monolithic block. There is no way how to link the application against only a part of the library,
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it may even be impossible because of the internal library design. One of the goals of the IOPC 2
implementation was to make the run-time part configurable. For example database drivers have
become separate shared libraries. Thus the addition of another database driver does not result
in the run-time library recompilation; drivers do not need to be part of the library source code -
they can be developed separately in independent projects.

Configurability does not concern only the database drivers, but also other parts of the library.
The library can be used in the following configurations:

• Common services - a configuration that provides only basic services like logging, tracing,
thread synchronisation and several other utilities.

• Reflection library - a configuration that exposes an interface allowing application devel-
opers to use the IOPC 2 reflection capabilities.

• Database access library - a configuration that provides basic database access via loaded
database drivers. It does not offer any advanced features as object-relational mapping or
caching.

• Persistence library - a configuration that provides the full functionality of the IOPC 2
library. Its features include object persistence, caching, direct database access, reflection
and all other features listed above.

The configurations are ordered by dependency, so the reflection library configuration
includes features provided by common services. The database access library configuration
provides also features of the reflection library, and - as stated earlier - the persistence library
configuration provides features of all other configurations.

4.2 Obtaining metamodel description
As it was explained in Section 3.1.3, the POLiTe and POLiTe 2 libraries depend on
pre-processor macro calls included in class definitions to obtain metamodel description.

The IOPC library tries to avoid disadvantages of this approach mentioned in Section 3.1.6.
IOPC makes the process of metamodel descriptions retrieval more user-friendly and transparent
by utilizing a modified version of the OpenC++ source-to-source translator. For more on this
topic, see Section 3.3.3. The main point is that OpenC++ is incomplete and is not developed
any more. This leaves users in a bad situation as they cannot use STL data types (because the
OpenC++ does not handle templates very well) or even they cannot be sure if their code was
processed correctly.

However, the idea to employ an external tool to analyze and process the source code is
convenient, so IOPC 2 uses different tool to solve this situation. GCCXML1 was chosen to
replace OpenC++.

GCCXML is a XML output extension to GCC. GCCXML uses GCC to parse the input
source code and then dumps all declarations into a XML file, which can be easily parsed by
other programs. The downside is that it processes only declarations. Therefore it cannot be
used as a source-to-source translator. Yet GCCXML represents ideal out-of-the-box solution
for discussed scenario. GCCXML can handle the C++ language in its entirety and its usage
does not involve the risk of translated source code misinterpretation.

1http://www.gccxml.org
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IOPC 2 uses the generated XML file to gain knowledge of the structure of classes in the
processed source code. This information is then made accessible via reflection interface
provided with the library. User applications can then query the class metamodel and use it in a
way similar to applications written in reflective languages. The reflection mechanism used in
IOPC 2 is outlined in Figure 4.1.

Figure 4.1: Reflection using the GCCXML

Example 4.2.1 illustrates persistent class definition in IOPC 2. No special macros are
needed. However, it presents only a basic, least convenient variant as more features are
provided by using enhanced data types (see Section 5.4.2) and by specifying additional class
metadata (see Section 5.4.3).

Example 4.2.1 Basic persistent class definition in IOPC 2
class Person : public iopc::OidObject {
public:
short int age;
std::string name;

};
class Employee : public Person {
public:
int salary;

};
class Student : public Person {
public:
std::string studcardid;
DbPtr<Employee> supervisor;

};
class PhdStudent : public Student {
public:
short int scholarship;

};

The process performs the following steps:

1. First, the source file is processed by the GCCXML. GCCXML dumps all declarations
from the source file into an easy to parse XML file. An excerpt from the XML file
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containing elements and attributes related to the processed Person class is displayed in
Example 4.2.2

2. The XML file is then processed by the IOPC SP2 utility (a part of the IOPC 2 project).
IOPC SP produces compilable C++ file containing data structures that describe classes
declared in the source file and their attributes (type descriptions). This file, respectively
its compiled version, is called a type catalogue. For translated Person class see Example
4.2.3

3. In the last step, the original source files and created type catalogues are compiled and
linked together into a final application.

Example 4.2.2 GCCXML output
<!-- Class Person
IOPC SP searches for members which are of Field type.
(Other members may be methods, constructors, operators and other ←↩

-->
<Class id="_1319" name="Person" members="_2960 _2961 _2962 _2963 ←↩

_2964 _2965 " bases="_2649 ">
<Base type="_2649" access="public" virtual="0"/>

</Class>

<!-- fields related to the Person class -->
<Field id="_2960" name="age" type="_195" access="public" />
<Field id="_2961" name="name" type="_1608" access="public"/>

<!-- field data types -->
<FundamentalType id="_195" name="short int"/>
<Typedef id="_1608" name="string" type="_1564"/>

Example 4.2.3 IOPC SP output
// Header file .ih
META_BLOCK1(::Person)
META_PARENT1(iopc::OidObject)
META_ATTR1(age, short int, Attribute::VISIBILITY_PUBLIC)
META_ATTR1(name, std::string, Attribute::VISIBILITY_PUBLIC)
META_BLOCK2(::Person)
META_ATTR2(::Person, age)
META_ATTR2(::Person, name)
META_BLOCK3(::Person, Person, )
META_BLOCK4

// Source file .ic
META_REGISTER_TYPE(::Person)

2Although its name matches the name of a IOPC module with similar functionality (see Section 3.3.3), this tool
was written from scratch for the IOPC 2 library.
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The process is flexible and customisable. Developers can integrate it with their favourite
IDEs or build systems. IOPC 2 project contains an example of seamless IDE integration, see
Section 5.4.4. This way the build process is almost transparent and users do not need to take
any additional steps to make the reflection work.

Information stored in the type catalogues are accessible via reflection interface provided by
IOPC 2. It allows developers to query the class metamodel and to execute reflective operations
upon it. IOPC 2 library supports the following:

• Looking up a Type object by class name. The Type class (and its descendants) has
similar purpose to prototypes from the POLiTe library or to IopcClassObjectImpl
from the IOPC library. The difference is that it does not perform any database mapping,
it just provides access to the metamodel.

• Obtaining a list of classes.

• Traversing a class hierarchy.

• Obtaining list of attributes, obtaining a concrete attribute by looking it up by its name,
listing inherited attributes.

• Querying or setting attribute values at run-time.

• Creating object instances.

• Automatic dirty status tracking on an attribute or object level.

4.3 Object relational mapping in the IOPC 2 library
All mapping types offered by the IOPC library are also implemented in the IOPC 2 library -
horizontal, vertical, filtered as well as combinations of them. IOPC 2 library provides as much
freedom combining them within one inheritance hierarchy as the IOPC library does.
Additionally, ADT mapping is available for use with object-relational databases. Developers
can combine ADT mapping with the other mapping types under certain restrictions.

IOPC 2 offers most of its functionality if using a generated schema with surrogate keys
(OID columns) and OID objects. Such schema contains additional views, tables or types which
support the mapping process. IOPC 2 also handles existing schemas with no OID columns or
additional database structures as well. It is able to map data from read-only databases or from
aggregated query results into standard persistent objects.

Detailed aspects of the object-relational mapping implementation are discussed in the fol-
lowing sections.

4.3.1 Base classes
Figure 4.2 displays base class hierarchy for persistent classes defined in IOPC 2. Data classes
in user applications should derive from one of these supertypes. Each of these base classes
provides different level of functionality for its descendants.
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Figure 4.2: IOPC 2 base classes

The Object descendants are capable of reflection. The reflection mechanism inspects de-
scendants (direct or indirect) of this class only. Reflection is database independent and can be
used separately as a standalone part of the IOPC 2 library. This also implies that direct descen-
dants cannot be persisted. Persistence is provided for DatabaseObject and OidObject
descendants.

DatabaseObject descendants are persistent classes that describe identity of their
instances as a list of key attributes. Database objects do not necessarily need to have any
identity defined as they may represent for example aggregate query results as described in
Section 2.1. DatabaseObjects with the key attributes defined can be mapped into database
tables. They even support vertical and horizontal database mapping. However, the subclasses
have to share the same set of key attributes. This enables inheritance, but polymorphism is
somewhat limited as IOPC 2 is not capable of recovering the effective type of an object from a
set of key attribute values. IOPC 2 does not generate structures for classname resolution based
on the key values, so when loading an object identified by its key values, the type of the loaded
object must be specified. That is also the reason why filtered mapping is not supported for
non-OID objects.

Example 4.3.1 DatabaseObject usage
class Person : public iopc::DatabaseObject {
public:
EString name;
EString idcard;
EString country;
static void iopcInit(iopc::Type& t) {

t.getAttribute("idcard")["db.primaryKey"].setBoolValue(true);
t.getAttribute("country")["db.primaryKey"].setBoolValue(true);

}
};
class Student : public Person {
public:
EString studcardid;

};
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Class hierarchy in Example 4.3.1 shares two key attributes - idcard and country. The
IopcInit static method is invoked by the reflection mechanism when the program starts.
Usually it creates class metadata3 modifying the database mapping behaviour of this class or of
its attributes. In this case it tells the library which attributes are parts of the class composite key.
In the generated SQL schema (using the default vertical mapping), all table definitions include
the two corresponding key columns - see Example 4.3.2.

Example 4.3.2 SQL schema generated for DatabaseObject subclasses.
CREATE TABLE Person (
country VARCHAR2(2000), idcard VARCHAR2(2000),
name VARCHAR2(2000),
CONSTRAINT Person_pk PRIMARY KEY (idcard, country));

CREATE TABLE Student (
studcardid VARCHAR2(2000), idcard VARCHAR2(2000),
country VARCHAR2(2000),
CONSTRAINT Student_pk PRIMARY KEY (idcard, country));

OidObject guarantees an identity in form of an internally generated OID to all of its
descendants. Unique OID is assigned to any instance of an OidObject descendant at its creation
time and remains unchanged during its lifetime. OidObject descendants are able to use all
types of database mappings. Oid objects depend on database structures generated by the IOPC 2
library. These structures include simple or polymorphic views (as in the original IOPC library -
see Section 3.3.4) or an Oid - classname catalogue. The catalogue is actually a regular mapping
table associated with the OidObject class. Each OID object in the database is represented
by a row in the catalogue regardless of the mapping type used. The catalogue table has three
columns - OID, CLASSNAME (qualified name of the class this row - OID - belongs to) and
SERIALID (timestamp used by the cache layer).

Example 4.3.3 contains schema generated for the classes from the earlier Example 4.2.1.
Note that code of all SQL examples below is generated by the Oracle 10g driver. Source code
of associated views can be found in Appendix B.

3Similar concept as java annotations. For more on this topic, see Section 5.4.3. Also note that this time we use
the enhanced attribute datatypes, see Section 5.4.2.
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Example 4.3.3 SQL schema generated for OidObject subclasses.
-- the oid - classname catalogue
CREATE TABLE OidObject (
CLASSNAME VARCHAR2(1000), OID NUMBER(10), SERIALID NUMBER(10),
CONSTRAINT OidObject_pk PRIMARY KEY (OID));

-- mapping tables (using vertical mapping)
CREATE TABLE Person (
age NUMBER(5), name VARCHAR2(2000), OID NUMBER(10),
CONSTRAINT Person_OID_fk FOREIGN KEY (OID) REFERENCES OidObject( ←↩

OID)
CONSTRAINT Person_pk PRIMARY KEY (OID));

CREATE TABLE Student (
studcardid VARCHAR2(2000), supervisor NUMBER(10), OID NUMBER(10) ←↩

,
CONSTRAINT Student_OID_fk FOREIGN KEY (OID) REFERENCES OidObject ←↩

(OID)
CONSTRAINT Student_pk PRIMARY KEY (OID));

CREATE TABLE PhdStudent (
scholarship NUMBER(5), OID NUMBER(10),
CONSTRAINT PhdStudent_OID_fk FOREIGN KEY (OID) REFERENCES ←↩

OidObject(OID)
CONSTRAINT PhdStudent_pk PRIMARY KEY (OID));

CREATE TABLE Employee (
salary NUMBER(10), OID NUMBER(10),
CONSTRAINT Employee_OID_fk FOREIGN KEY (OID) REFERENCES ←↩

OidObject(OID)
CONSTRAINT Employee_pk PRIMARY KEY (OID));

4.3.2 ADT mapping
ADT mapping, as described in Section 2.3, is a new type of database mapping introduced in the
IOPC 2 library. It requires the underlying DBMS to support definition of user defined abstract
data types (ADT).

ADT mapping can be used with some restrictions. First, only OID objects can be marked
for use with the ADT mapping type. Because structures required for this kind of mapping are
generated by the library and will surely not be reused from existing schema, there is no reason
why not to use OID objects. Working with OID objects is convenient and also faster than any
other alternative. Second, ADT mapping is meant to be used for whole hierarchies of classes
and thus no other mapping type can be used in any of their descendants. In contrast, ADT
mapping hierarchy can be started at any level of inheritance tree of classes with other mapping
type.

This leads to several ways of how to use ADT mapping, which should be considered when
designing classes and data model.

• One ADT hierarchy for all persistent classes in the application. It also means one table
for all types and all classes. This can be achieved by telling the root of all OID objects
(the OidObject class) to use ADT mapping.
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• One ADT hierarchy per top-level class. Top-level classes (direct descendants of
OidObject) use the ADT mapping type. These classes and all of their descendants are
stored in separate tables and are represented by separate ADT hierarchies. OidObject
is mapped into a separate relational table containing all object OIDs .

• ADT hierarchy started at a lower level of persistent class hierarchy. Ancestors of an
ADT-mapped type can use any other type of database mapping. The base ADT
definition consists of the OID attribute and attributes defined in the corresponding class.
Therefore the base ADT table has same structure as if the class used vertical mapping.
The horizontal approach (all inherited attributes in the ADT definition) can be
considered in the future.

Example 4.3.4 shows how the ADT mapping can be set for the Student and
PhdStudent classes and leaving its parent Person and the class Employee to use the
default vertical mapping. Note, that the ADT mapping type is denoted by the code "object" in
the IOPC 2 library.

Example 4.3.4 Using the ADT mapping.
class Person : public iopc::OidObject {
public:
EShort age;
EString name;

};
class Employee : public Person {
public:
EInt salary;

};
class Student : public Person {
public:
EString studcardid;
DbPtr<Employee> supervisor;
static void iopcInit(iopc::Type& t) {

t["db.mapping.type"].setStringValue("object");
}

};
class PhdStudent : public Student {
public:
EShort scholarship;
static void iopcInit(iopc::Type& t) {

t["db.mapping.type"].setStringValue("object");
}

};

This time we specify the class metadata db.mapping.type to change the mapping type
of the two classes to ADT mapping. Example 4.3.5 displays an excerpt from the generated SQL
schema.

The static methods insert_object, update_object and delete_object are
used by IOPC 2 to insert, modify or delete the ADT instances. Constructors could not be used
because Oracle 10g does not allow specifying their parameters in arbitrary order as required by
the library.
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Example 4.3.5 SQL schema from classes that use ADT mapping.

CREATE TABLE Person (
age NUMBER(5), name VARCHAR2(2000), OID NUMBER(10),
CONSTRAINT Person_pk PRIMARY KEY (OID),
CONSTRAINT Person_OID_fk FOREIGN KEY (OID) REFERENCES OidObject( ←↩

OID));

CREATE OR REPLACE TYPE tStudent AS OBJECT (
OID NUMBER(10), supervisor NUMBER(10), studcardid VARCHAR2(2000) ←↩

,
STATIC PROCEDURE insert_object(

p_OID NUMBER, p_studcardid VARCHAR2),
STATIC PROCEDURE update_object(

p_OID NUMBER, p_studcardid VARCHAR2),
STATIC PROCEDURE delete_object(

p_OID NUMBER)
) NOT FINAL;

CREATE OR REPLACE TYPE tPhdStudent UNDER tStudent (
scholarship NUMBER(5),
STATIC PROCEDURE insert_object(

p_OID NUMBER, p_studcardid VARCHAR2, p_scholarship NUMBER),
STATIC PROCEDURE update_object(

p_OID NUMBER, p_studcardid VARCHAR2, p_scholarship NUMBER),
STATIC PROCEDURE delete_object(

p_OID NUMBER)
) NOT FINAL;

CREATE TABLE Student OF tStudent (
CONSTRAINT Student_pk PRIMARY KEY (OID),
CONSTRAINT Student_OID_fk FOREIGN KEY (OID) REFERENCES OidObject ←↩

(OID));

4.3.3 Mapping algorithm prerequisites
The mapping algorithm operates with several lists of classes and attributes which are pre-created
at the start of a user application. These lists are generated for all persistent classes - descendants
of the DatabaseObject class.

• AllParents - a list of ancestor classes that have a corresponding database table. This
includes only classes that use horizontal or vertical mapping. Classes that use filtered
mapping do not have any associated database table as their columns are inserted into one
of their ancestors. Because ADT-mapped classes are handled in a different way, they
are not inserted into this list either. The list represents tables that will be accessed when
performing a CRUD operation on an instance of the current class. Only one database
operation is needed to modify database data belonging to an instance of any class in an
ADT-mapped class subgraph. See the examples at the end of this section and also refer
to the mapping algorithm description.
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The list is created by level-order walking through the parent hierarchy starting with
parents of the current class first. If the process encounters a horizontally-mapped class,
its parents are not processed (because horizontally-mapped classes store all, even
inherited attributes into one table). If the current class derives from OidObject, and if
OidObject does not use ADT mapping, OidObject is also appended to this list.

• FilteredTypes - list of classes that use table associated with the current class as a
destination for their attributes when filtered mapping is used. Note that there must be at
least one path between the source and destination classes in the inheritance hierarchy that
does not contain a horizontally-mapped class.

• PersistentAttributes - list of persistent attributes declared in the current class.
Developers may declare some of the class attributes as transient. Transient attributes are
ignored by the persistence layer.

• KeyAttributes - list of key attributes that are inherited or declared in the current
class. If the current class derives from OidObject, the OID attribute is included in
the list. A class cannot re-define key attributes if they were already defined in one of its
ancestors.

• InheritedAttributes - list of persistent attributes (retrieved from
PersistentAttributes) inherited from all persistent ancestors.

• AllPersistentAttributes - union of the PersistentAttributes and
InheritedAttributes lists.

• MappedAttributes - list of attributes that are physically mapped into table associated
with the current class. In fact they represent columns of this table. The list may include
attributes from other classes. Attributes are categorized by their origin:

1. Persistent attributes of the current class. (PersistentAttributes)

2. If the current class uses horizontal mapping, the list includes non-key inherited
persistent attributes from the InheritedAttributes list. Attributes inherited
from the OidObject are excluded as the Oid - classname catalogue (a table
associated with OidObject) is accessed even when using horizontal mapping.

3. Persistent attributes from classes that use filtered mapping - persistent attributes
from classes in the FilteredTypes list.

4. Inherited KeyAttributes - even if the class does not employ horizontal
mapping.

This list is not generated for classes that use ADT mapping.

To understand how the lists are generated, see the following examples. First, lists generated
for the default scenario - all persistent classes use vertical mapping. Lists for the Student
class:

• AllParents: Person, OidObject

• FilteredTypes: no members

• PersistentAttributes: studcardid, supervisor
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• KeyAttributes: oid

• InheritedAttributes: oid, serialid, classname (all from OidObject),
name, age

• AllPersistentAttributes: oid, serialid, classname (all from
OidObject), name, age, studcardid, supervisor

• MappedAttributes: oid (key), studcardid, supervisor (regular columns)

Second, the class Student uses horizontal mapping and PhdStudent uses filtered map-
ping to map its attributes to table associated with the Student class. Only the contents of the
AllParents, MappedAttributes and FilteredTypes lists would change:

• AllParents: OidObject

• FilteredTypes: PhdStudent

• PersistentAttributes: studcardid, supervisor

• KeyAttributes: oid

• InheritedAttributes: oid, serialid, classname (all from OidObject),
name, age

• AllPersistentAttributes: oid, serialid, classname (all from
OidObject), name, age, studcardid, supervisor

• MappedAttributes: oid (key), studcardid, supervisor (regular columns),
age, name (inherited columns), scholarship (filtered column)

Schema generated for this scenario would look like this:

Figure 4.3: SQL schema generated from classes using combined mapping

As you may see, there is no PhdStudent table as all its columns were appended to the
Student table. As a result of the horizontal mapping, rows belonging to these two classes do
not have entries in the Person table.
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And the last example - classes from the previous section. ADT mapping is enabled for
Student and its PhdStudent descendant, see Example 4.3.4 for the class model definition.
This time, the lists for the PhdStudent class:

• AllParents: Person, OidObject

• FilteredTypes: no members

• PersistentAttributes: scholarship

• KeyAttributes: oid

• InheritedAttributes: oid, serialid, classname (all from OidObject),
name, age, studcardid, supervisor

• AllPersistentAttributes: oid, serialid, classname (all from
OidObject), name, age, studcardid, supervisor, scholarship

• MappedAttributes: not generated.

4.3.4 The mapping algorithm
In this section, we will describe the algorithm for CRUD operations performed by the IOPC 2
persistence layer. First, the top-level part of the algorithm for inserting, updating and deleting
persistent objects is described.

4.3.4.1 Inserting, updating and deleting persistent objects

Given an object O, the algorithm iterates through its parent class hierarchy (starting with the
class of O itself) and calls one of the Insert_Row() or Insert_Object() methods on
it (depending on which mapping type is used). The Insert_Row method is described in Figure
4.5. Update_Row or Delete_Row methods have similar structure.

if O uses ADT mapping thenx1 Insert_Object(O) // Update_Object or Delete_Object

else if O uses horizontal or vertical mapping (O has a ←↩
corresponding db table) thenx2 Insert_Row(O, class of O) // Update_Row or Delete_Row

end if

foreach class C in AllParents dox3 Insert_Row(O, C) // Update_Row or Delete_Row
end

Figure 4.4: Top-level part of the object-relational mapping algorithm

x1 First, the algorithm handles either the whole subgraph of ADT mapping classes (as they
are stored as one ADT instance at a time)x2 or the class of the object being inserted (if it has its own associated database table).
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x3 Then it iterates through ancestors of the objects’ class and inserts values of attributes
defined in them into a new database row.

Insert_Row(object O, class C):
foreach attr A in C.MappedAttributes

if A is not filtered attribute [category 1, 2, 4]
insert value of O.A into the new db row

else -- filtered attribute [category 3]x1 if class of O is descendant of class containing the ←↩
attribute A

insert value of O.A from O into the new db row
else
insert NULL as attribute A into the new db row

end if
end if

end

Figure 4.5: Description of the Insert_Row method. Not used for ADT mapping.

The method iterates through attributes (or actually columns of the associated table to the
class C) and inserts values to a new row. The process is quite self-explanatory except for filtered
attributes (category 3). If a class has two descendants that use filtered mapping as shown in the
Figure 4.6, a row representing an instance of class A (or its descendant) will contain NULLs in
columns of attributes from class B and vice versa. Condition that solves this issue is marked x1
in the algorithm.

Figure 4.6: Inserting objects using filtered mapping

The table in Figure 4.6 further illustrates the need for classes that use filtered mapping to
derive from OidObject. When loading an object with OID "1", the object-relational layer
has to know which class to instantiate and only OidObject provides such database structures
that provide this information.

Same algorithm as in Figure 4.5 is used for storing changes from objects that already have
a database identity (Update_Row method). Changes are propagated as SQL UPDATEs with
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the WHERE generated from list of KeyAttributes and their values. For OID objects this
means that the WHERE filters only by the objects’ OID value. Condition x1 from the algorithm
is slightly modified in a way that no NULLs are inserted but simply the NULL-attributes are
not updated. Deleting data is a trivial case - Delete_Row sends one SQL DELETE command to
delete the requested row. The DELETE command uses same WHERE clause as the UPDATE
does.

You can see that most of the work is done by correctly pre-generating the lists from the pre-
vious section, in particular the MappedAttributes and AllParents lists. They actually
contain projection of the class model on the database structures according to the mapping types
used.

4.3.4.2 Storing objects that use ADT mapping

As for the ADT mapping, the algorithm for inserting, updating or deleting is even simpler (see
(1) in Figure 4.4). IOPC 2 relies on the object-relational features provided by the underlying
database. Insert operation usually creates a new instance of relevant ADT and inserts it into a
ADT hierarchy base table4. Moreover, due to significant differences between DBMSs in the
area of object-relational features, most of the work is delegated to the database driver side.
IOPC 2 database drivers are responsible for generating the needed database structures including
the ADTs. The library does not take any special steps to support multiple inheritance, so it is
fully in charge of the database driver. If the ORDBMS does not support multiple inheritance of
ADTs, it does not make much sense to bend the database engine to support it.

Example 4.3.5 in Section 4.3.2 discussing ADT mapping illustrates how the needed
database structures may look like. If we assume that these database structures are already
created, inserts, updates and deletes are reduced to simple calls to the database access
layer. If using the Oracle 10g database driver, these calls are only delegated further to
the insert_object, update_object or delete_object static methods of
corresponding ADTs.

The only additional task the ADT mapping requires is to decide which persistent class
attributes will be mapped to ADTs. The simplest scenario is if all of the persistent classes
starting with OidObject use ADT mapping - all attributes will be mapped to corresponding
ADTs and point (3) in the general algorithm (Figure 4.4) will be skipped. However, if the ADT
mapping hierarchy is started at a lower level and derives for example from a class that uses
vertical mapping, the attributes defined in classes "above" the root(s) of the ADT mapping
hierarchy must be skipped and must not be propagated to the corresponding ADTs (as
described in Section 4.3.2).

4.3.4.3 Loading objects from database

Figure 4.7 illustrates how object instances are loaded from database.

4In DB2 the instance would be inserted into a table associated with that ADT [12].
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if O uses ADT mapping
Load_Object(O)

else if O uses horizontal or vertical mapping (O has a ←↩
corresponding db table) then

Load_Row(O, class of O)
end if

foreach class C in AllParents do
Load_Row(O, C)

end

Figure 4.7: Iterative loading algorithm

The algorithm is very similar to the previous one (Figure 4.4). Retrieving instances in such
way - class by class - is quite inefficient. The algorithm can be implemented as pre-generated
views executing queries that join the involved tables. The views (simple and polymorphic
views) are generated for descendants of OidObject. Instead of sending multiple SELECTs
to retrieve data directly form the mapping tables, only one SELECT executed on a simple view
is sufficient. The algorithm just loads values of AllPersistentAttributes from
corresponding simple view. Source code of these views can be found in Appendix B.

Iterative algorithm (without views) is used for classes that derive from DatabaseObject
(and not from OidObject) and for instances that are requested to be exclusively locked in
database. Rows belonging to such instances must be locked one-by-one usually by sending
SELECT FOR UPDATE statements.

Modifying these views to be updatable for inserts, updates and deletes was considered,
but not included into this release. Current DBMSs place many restrictions on the way how
updatable views should be constructed and used. Most of them etirely disallow using joined
tables in updatable views; Oracle for example supports updatable join views, but allows only
columns from one table to be updated at a time5.

4.3.4.4 Loading classes that use ADT mapping

Again, loading instances of classes that use ADT mapping is a very simple task. In both Oracle
and DB2, single SELECT statement can load all attributes of an ADT. If all classes of our
example class model used ADT mapping, a SELECT statement to load a single Student
instance would look like Example 4.3.6.

5see [7] - Database Administrator’s Guide
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Example 4.3.6 Loading objects using ADTs from an Oracle database
SELECT
TREAT(VALUE(X) AS tStudent).OID AS OID,
TREAT(VALUE(X) AS tStudent).CLASSNAME AS CLASSNAME,
TREAT(VALUE(X) AS tStudent).age AS Person_age,
TREAT(VALUE(X) AS tStudent).name AS Person_name,
TREAT(VALUE(X) AS tStudent).studcardid AS Student_studcardid,
TREAT(VALUE(X) AS tStudent).supervisor AS Student_supervisor

FROM OidObject O
WHERE O.OID = 2;

Because, as mentioned before, ADT mapping hierarchies can be started at lower level and its
roots can derive from non-ADT-mapped classes, either iterative algorithm from Section 4.3.4.3
or pre-generated views are used to retrieve object instances from database.

4.4 Conclusion
If we look at the table from Section 3.4 we may see changes, mostly improvements in many of
the listed areas:

• IOPC 2 added another mapping type - the ADT mapping and further enhanced the O/R
mapping capabilities.

• IOPC 2 supports read-only databases, it even supports inheritance between non-OID
classes (tables) if the involved tables share the same set of keys.

• The library is based on a modular design allowing it to be used in several configurations
and with various database drivers.

• IOPC 2 provides a reflection feature which allows users to inspect the structure of reflec-
tion capable classes at run-time. Reflection works almost transparently as it needs no de-
scriptive macros from the application developers.

• Reflection provides metamodel description for the O/R mapping layer which offers
effortless object persistence services to the application developers. However, there are
some limitations when compared to the IOPC predecessor which result from the
exchange of OpenC++ for GCCXML - for example the need to use enhanced data types
in some scenarios. More on this can be found further in the text. See Section 5.4.5

Remaining topics describing the IOPC 2 implementation are discussed in the following
chapters. Thesis conclusion in Chapter 6 contains final library comparison and evaluation.
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Chapter 5

Architecture of the IOPC 2 library

5.1 Architecture overview
Structure of the IOPC 2 project including library dependencies is displayed in Figure 5.1. IOPC
2 consists of a stand-alone application iopcsp and a set of shared libraries that are used at
run-time.

Figure 5.1: Overview of the IOPC 2 architecture

The following list provides a short description of each of the components.

• iopcsp is a stand-alone application that reads GCCXML output, extracts description of
reflection-capable classes and generates compilable source code containing the
metamodel description. These files are later compiled and linked to the user application.

• iopccommon contains shared services for other parts of IOPC 2 including iopcsp.
These services include tools for thread synchronization, tracing, logging or exception
handling.

• iopcmeta is the reflection interface provided by the IOPC 2 library. It is used to de-
scribe metamodel of the source code processed by iopcsp.
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• iopcdb supports the database layer modularity by providing a DriverManager
facility by which loaded database driver register themselves. iopcdb provides access to
these drivers via a unified interface and allows user applications to execute SQL
statements.

• iopcdriver_oracle10g is Oracle 10g database driver for the IOPC 2 library.

• iopcdriverex_oracle10g_or is an extension to the Oracle 10g driver that adds
object persistence capabilities to it.

• iopclib puts everything together into an O/R mapping layer. iopclib implements
the O/R mapping algorithm as described in previous chapter. Further it provides
persistent object caching features (originating from the POLiTe 2 library), script
generation, querying functionalities and more.

There are additional components that are not displayed in Figure 5.1. They are not directly
related to the core functionality, but can be useful in the build process either of the user appli-
cations or of the IOPC 2 library itself:

• iopcsp_compile.sh is a Bourne shell script that can be used with the Eclipse/CDT
IDE1 for managed build using the IOPC 2 library.

• iopcsp.sh is a Bourne shell script for use with standard Makefile to build application
that uses the IOPC 2 library.

• test is a project that tests most of the library functionalities.

Section 4.1 stated that IOPC 2 can be used in various configurations. These configurations
are realised by linking subsets of the presented libraries together with the user application.
Available configurations are:

• Common services - iopccommon.

• Reflection library - iopccommon, iopcmeta. Source code must be processed using
iopcsp (also applies to the following two configurations).

• Database access library - iopccommon, iopcmeta, iopcdb and a database driver -
for example the iopcdriver_oracle10g.

• Object persistence library - iopccommon, iopcmeta, iopcdb,
iopclib, a database driver supporting all required O/R mapping features -
for example the iopcdriver_oracle10g along with its extension
iopcdriverex_oracle10g_or.

5.2 Common services
The iopccommon library contains support classes and utilities that are used by other parts of
the library. The classes can be divided into three groups:

1http://www.eclipse.org/, http://www.eclipse.org/cdt/
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5.2.1 Thread synchronization classes
The thread synchronization classes were taken from the POLiTe 2 library. Synchronization
primitives encapsulated by these classes are:

• Mutex (non-recursive) - the Mutex class.

• Mutex (recursive) - the Lock class.

• Conditional variable - the CondVar class.

• Read-write lock - the RWLock class.

• Read-write-exclusive lock - the RWXLock class.

5.2.2 Class metadata
Although the class metadata container is implemented as a generic structure in the
iopccommon library, it is primarily designed to be used with the reflection features.
Therefore we will provide its description later, in the Section 5.4.3.

5.2.3 Utilities
Utilities offered by the iopccommon library include reference counted pointer, various string
manipulation methods, tracing and logging. Logging is encapsulated by the LogWriter sin-
gleton class.

Log messages have a severity level attached which helps to determine how critical the
message is. Message filtering based on the level is also possible. Tracing macros defined in the
same file as the LogWriter class are used through the IOPC 2 library allowing developers to
dump detailed debugging information in case of application crash or malfunction. These
macros can be enabled or disabled by setting appropriate filter in the LogWriter class or by
(un)commenting macro options IOPC_DEBUG, IOPC_TRACE in the same file and by
recompiling the whole IOPC 2 library. This way a diagnostic version of the library can be
created.

5.3 Database access
One of the IOPC 2 library basic requirements is database independence. This can be achieved
by separating the database access logic behind a shared interface.

The original POLiTe and the POLiTe 2 libraries access the database via such interface. The
problem is that they contain several SQL statements outside the database layer code. These SQL
statements are written for the Oracle 7 RDBMS and porting the library to another database
system means to find and to update them. At the end, recompilation of the whole library is
required.

The IOPC library tried to solve this issue by providing a new interface - the
DatabaseSqlStatements class. Implementation of this interface encapsulates all SQL
fragments needed by the library. Moving the library to another RDBMS became quite easy, but
not as easy as it could be, because whole library needs to be recompiled every time a new
driver is added or updated.
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In the IOPC 2 library, database drivers are separated into shared libraries. The library pro-
vides a facility for managing and accessing these drivers. Adding or updating a database driver
does not involve any modifications in the library code or its recompilation. Users can use more
than one driver at a time. Even all SQL code is separated into the drivers.

If the user application needs to communicate with a database, it must be linked with
the iopcdb library and with at least one driver. Currently, only Oracle 10g driver
iopcdriver_oracle10g is implemented. Application can however use any number of
linked drivers at a time. Drivers may be enhanced with several extensions. Extensions provide
additional functionalities to them. Again, only one driver extension is implemented
at the time - the iopcdriverex_oracle10g_or extension. It adds the
iopcdriver_oracle10g driver support for O/R mapping.

5.3.1 Basic classes
Figure 5.2 shows an overview of basic classes and subsets of their methods.

Figure 5.2: Basic classes of the database layer

DriverManager is a central part of the driver model. A single instance of this class
holds references to all drivers loaded in a user application. Users can obtain reference to a
database driver by calling its method getDriver(name). Database driver is represented as
an instance of the Driver class.

Next three classes - the Database, Connection and Cursor can be found in all
previous versions of the IOPC and POLiTe libraries. Their interfaces were slightly modified in
IOPC 2 and implementation were moved from their subclasses to subclasses of the abstract
classes (interfaces) DatabaseImpl, ConnectionImpl and CursorImpl. Each
database driver must implement these interfaces.

The reason for almost duplicating the Database and Cursor interfaces is that they are
used in a decorator pattern to modify effects of the methods they provide. As you may see in
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Figure 5.3, the classes CachedDatabase and CachedConnection are designed to
decorate the BasicDatabase and BasicConnection classes. BasicConnection
and BasicDatabase implement the basic database independent functionality, mostly the
connection and cursor management. Database dependent operations are delegated to
database drivers using the -Impl interface classes. The CachedDatabase and
CachedConnection classes decorate behaviour of several fundamental methods such as
commit or rollback by performing a caching related operations - e.g. writing modified local
copies to a database before commit.

Figure 5.3: Using the decorator pattern

Example 5.3.1 shows how a connection to Oracle database instance "XE" can be made. First
we create only a simple connection allowing only basic SQL statements to be executed, then we
release this connection and create a new one using the CachedConnection decorator class.
This connection can be used with the O/R mapping features, see later.
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Example 5.3.1 Connecting to an Oracle database in IOPC 2
Database* db = DriverManager::getDriver(
"IopcOracle10g").getDatabase("XE");

Connection* conn = db->getConnection(
"username=iopc;password=iopc");

conn->sqlNonQuery("INSERT INTO test VALUES(’Test’)");

// Connections need to be released when no longer needed
db->returnConnection(conn);
DriverManager::returnDatabase(db);

// CachedDatabase returns CachedConnection instances
// (no need to decorate them)
CachedDatabase* db2 =
new CachedDatabase(DriverManager::getDriver(
"IopcOracle10g").getDatabase("XE"), new VoidCache());

CachedConnection* conn2 =
(CachedConnection*)db2->getConnection(
"username=iopc;password=iopc");

conn2->open();
...

5.3.2 Driver features
Driver features reflect differences between database systems. Different database systems
provide different features or services. In IOPC 2, interfaces to such services(features) can be
grouped into units called driver extensions. Modules of the IOPC 2 library define interfaces
(representing the features) and database driver creators optionally implement them to their
drivers or group them in driver extensions. The library then asks the drivers what features they
offer. Based on the answers it enables or disables some of its functionalities provided.

Driver extensions are shared libraries that are linked together with the drivers and
user applications. One such extension implemented for the Oracle 10g driver is
iopcdriverex_oracle10g_or. It enhances the iopcdriver_oracle10g Oracle
10g driver with the support for object-relational mapping.

Features are descendants of the DbFeature abstract class. Features declared in the
iopcdb library are:

• SqlStatementsFeature - declares methods that are used to generate basic SQL
statements like the INSERT, UPDATE, DELETE, CREATE TABLE, DROP TABLE and
others.

• TypeMappingFeature - declares methods that are used to translate C++ data types
to the SQL.

As part of the iopclib library, there are additional features declared that are needed for
the object-relational mapping proccess:

• MappingStatementsFeature - declares methods that are used to generate shared
SQL statements needed for the object-relational mapping.
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• ORStatementsFeature - declares methods that are used to generate SQL statements
supporting object-relational mapping to purely relational tables. (Relational databases)

• ObjectStatementsFeature - declares methods that are used to generate SQL
statements needed by the ADT mapping type. (Object-relational databases)

Figure 5.4 illustrates how the driver features and extensions are used by the Oracle 10g
database driver.

Figure 5.4: Oracle 10g database driver extensions and driver features

5.4 The metamodel
Metamodel description is created for all descendants of the Object class. Source files must
be processed using iopcsp and the result must be compiled and linked together with the
iopcmeta library and the user application. The metamodel can be then inspected using classes
and structures defined in iopcmeta.

5.4.1 The metamodel classes
Figure 5.5 provides an overview of these classes.
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Figure 5.5: The iopcmeta classes

The Type class and its descendant, the TypeDesc<T> template class, are the central
point of the reflection mechanism. Instances of the TypeDesc<T>specializations represent
reflection-capable classes and all basic C++ types. There is only one instance of the template
specialization for a reflection-capable class or a basic type. As mentioned before, the concept is
similar to prototypes in the POLiTe libraries and to IopcClassObjectImpl from the IOPC
library. However, classes defined in iopcmeta do not provide any object-relational mapping
capabilities.

The TypeDesc<T> template class uses technique called type traits to encapsulate
various type-dependent data and to provide access to the metamodel description at
compile-time in a static way. For example, given the class User, the correspondent
type trait is TypeDesc<User> and the solitary type instance is accessible via the
TypeDesc<User>::getType() call. Type traits are defined in a manner illustrated in
Example 5.4.1. As you can see, this is a good way how to unify the metamodel interface for
C++ basic types along with the object types declared in the IOPC 2 library.
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Example 5.4.1 Type traits
// Generic template
template<typename T>
class TypeDesc : public Type {
public:
virtual const std::string getName() const;
...

}

// Template specializations for particular types
template<>
class TypeDesc<int> : public Type {
virtual const std::string getName() const { return "::int"; }

}

template<>
class TypeDesc<Object> : public Type {
virtual const std::string getName() const { return "iopc::Object ←↩

"; }
}

TypeManager is a singleton class which maintains a list of instances of the Type
subclasses. As the call to TypeDesc<T>::getType() is a method how to gain access to
the metamodel in a static way, the call to TypeManager::getType(std::string
typeName) can be used to obtain the type information from a run-time constructed
type-name string.

The Object class as a predecessor of all reflection-capable classes does not offer
much functionality. It provides infrastructure for dirty status tracking and a list of
AttributeValue objects that allow developers to modify object attribute values using
reflection. This leads us to the Attribute class whose instances represent attributes of a
particular class. Object also contains a getType() method which is the last way leading
us to the corresponding Type instance.

Example usage of reflection can be found in Example 5.4.2. The example prints a brief
description of the Person class we defined earlier. For more examples, see Section A.2.
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Example 5.4.2 Using the reflection interface
const Type& t = TypeDesc<Person>::getType();
cout << "Type name: " << t.getQualifiedName() << endl;
cout << "Attributes: " << endl;
const Type::AttributesMap& attributes = t.getAttributes();
for(Type::AttributesIterator it = attributes.begin(); it != ←↩

attributes.end(); it++) {
cout << it->first << ": " <<

it->second.getType().getQualifiedName() << endl;
}
// For simplicity we assume that multiple inheritance
// is not used
cout << "Parent: " << t.getFirstParent().getQualifiedName() << ←↩

endl;
cout << "Children: " << endl;
const Type::ChildrenList& children = t.getChildren();
for(Type::ChildrenIterator it = children.begin(); it != children. ←↩

end(); it++) {
cout << (*it)->getQualifiedName() << endl;

}

// Output is:
Type name: ::Person
Attributes:
age: iopc::EShort
name: iopc::EString
Parent: iopc::OidObject
Children:
::Employee
::Student

5.4.2 Enhanced data types
Mostly because of the need of dirty status tracking for the object-relational layer a set of classes
encapsulating C++ built-in types was created. The basic requirement is that starting from a
specific time, an object needs to be aware if value of any of its attributes has been changed.
There are several transparent ways how to fulfil this requirement (like preserving a copy of the
object and comparing it with the original when needed) and one of the simplest is to have the
attributes to be aware of their own changes. This is achieved in the library by creating new
data types that mimic behaviour of built-in types. These types are called enhanced data types.
Developers are, however, not forced to use these types, they can use built-in types and manually
notify the object that its state has changed.

POLiTe libraries solved this problem by using setter methods generated from descriptive
macros. The additional task of the setter methods is simply to modify the dirty status flag of
the containing object. IOPC library took advantage of the OpenC++ parsers’ ability to process
entire source code and changed every relevant assignment operation to use generated setter
methods similar to the POLiTe ones.

Second goal was to create a common interface for data types of class attributes that will
unify the way how they are mapped to the database. Thanks to enhanced data types, string
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values, numeric values or references to other objects (using the DbPtr<T> class as attribute)
can be treated in a similar way in the database drivers and in the database part of the library
(iopcdb). Enhanced data types are also given the ability to represent NULL values. The
NULL status becomes part of an attribute itself as opposed to the preceding versions of the
library. Such design helps to further minimize impedance mismatch by unifying data domains
of C++ data types and column types of database tables. Structure of the enhanced data type
classes is displayed in Figure 5.6.

Figure 5.6: Structure of the enhanced data type classes

Enhanced data types are designed to be used like built-in C++ types. Example 5.4.3 illus-
trates this feature along with the NULL values and dirty status tracking.

Example 5.4.3 Enhanced datatype usage
EInt a = 8;
a = a + 2;
int b = 2 + a;
EFloat d = 2.5;
d = (d + 2.5 + a) / 2;
EDouble c = (a + 2)*(a + 3);
cout << "a: " << a << " b: " << b << " c: " << c << " d: " << d << ←↩

endl;
d.setNull();
cout << "a.isDirty(): " << a.isDirty() << endl;
cout << "c.isDirty(): " << c.isDirty() << endl;
cout << "d: " << d.toString() << endl;

Output is:
a: 10 b: 12 c: 156 d: 7.5
a.isDirty(): 1
c.isDirty(): 0
d: null
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5.4.3 Class metadata
Modern languages like Java or languages based on the .NET platform provide language con-
structs that allow programmers to add custom information to class metadata. These constructs
- attributes in C# or annotations in Java - have declarative meaning and do not directly impact
semantics of a program. Information stored in attributes or annotations can be accessed at run-
time using reflection. Class metadata concept goes well with object-relational mapping layer
because the information about into which database tables to map, which mapping type to use or
how the table columns should be named has also declarative character. Such information does
not change at run-time.

Example 5.4.4 Java annotations and C# attributes
// Demonstration on the Hibernate library
// http://www.hibernate.org
// Java
@Entity
@Table(name="tab_person")
public class Person implements Serializable {
@Column(name = "name", nullable = false)
public String getName() { ... }

}
// C#
[Class(Table="tab_person")]
class Person
{
[Property(Name = "name", NotNull=true)]
public string Name { ... }

}

IOPC 2 library also implements this concept, but in a very simple way. In iopccommon
there is a MetadataHolder class which, when instantiated, behaves like a dictionary.
MetadataHolder can contain data of several types - integer or boolean values, void
pointers or strings. Data stored in the dictionary are identified by a string key.

Classes that describe the metamodel like Type or Attribute derive from
MetadataHolder. Their instances inherit the dictionary features which simulates the
behaviour of the Java or .NET language constructs. However, a significant difference is that
the metadata is appended at run time. It can be hardcoded into a class initialization method
(see the Example 5.4.5 and Section A.3 for further explanation) or loaded from a configuration
file during the library initialization using the supplied TextFileMetadataLoader (also
described in Section A.3).
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Example 5.4.5 Example usage of metadata in the IOPC 2 library
class Person : public iopc::OidObject {
public:
iopc::EString name;
// the class initialization method
static void iopcInit(iopc::Type& t) {

t["db.table"].setStringValue("person");
t.getAttribute("name")["db.column"].setStringValue("name");
t.getAttribute("name")["db.type.notNull"].setBoolValue(true);

}
...

};

5.4.4 iopcsp
iopcsp is a standalone application, already introduced in the Section 4.2. The application
processes XML output of GCCXML and generates C++ files containing structures that describe
classes from files originally processed by the GCCXML. To get better understanding of what
the application does, we will repeat the description of the metamodel generation process in
more detail:

• The process is invoked on every CPP file of a user’s project.2

• GCCXML reads the input CPP file and generates a XML file describing all declarations
from the input file and from all files included (it runs the C preprocessor). In the provided
implementation this output file is given a filename "input-filename.cxml".

• iopcsp reads the CXML file and transforms it into a couple of C++ compilable source
files named "input-filename.ih" and "input-filename.ic". iopcsp searches for all
descendants of the Object class and for each of them it writes several lines of macro
code into both IH and IC files. The macro code in the IH file expands to a full definition
of the TypeDesc<T> template specialisation whereas the IC file contains the template
instantiation and a static instance of a TypeRegistrar class which registers the type
by the TypeManager singleton. The registration is initiated when the user application
starts.

• Last step may vary between scenarios. All IC and IH files compiled into object files can
be archived using the ar program and the created archive, as a "type catalogue", can be
linked to the rest of the user application. Another approach is to create archives containing
the IC/IH object files together with the object files of the original input CPP sources.

The process is customisable and currently is driven by a shell script. The script can be
modified by developers and even integrated into their favourite IDEs. Examples provided in this
thesis illustrate how to use the shell scripts with simple Makefiles or integrated into Eclipse’s
CDT3 managed build system.

2This is not necessarily true because the build process can be modified to accept only a subset of the project
files.

3http://www.eclipse.org/cdt/
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Managed build system generates project build files automatically based on the project re-
sources and user settings. Build file generation can be customized by users. Example projects
provided with this thesis change the default compile command executed on each compilation
unit in the project (g++) to iopc_compile.sh shell script call. iopc_compile.sh runs
the steps described above these paragraphs and compiles the compilation unit using g++.

The example projects can be found on the enclosed DVD - see Appendix D. During the
managed Eclipse CDT build of the examples, a type catalogue archive is created and in the end
of the build process the catalogue is lined to the resulting binary. If the examples are built using
provided Makefiles, the second approach is used - type archives are created for all processed
compilation units.

5.4.5 Usage transparency differences from IOPC
IOPC uses OpenC++ source-to-source translator which gives it full control over the source code
structure. IOPC processes not only class declarations, but also method bodies and everything
else. On the other hand, IOPC 2 uses GCCXML which processes only declarations. GCCXML
output does not contain function bodies, therefore it is not possible to modify the original source
code and dump the modified version into a new file that will be compiled. Such approach could
work if the class declarations were in separate files and completely without any function code.
This solution was however rejected as it would lead to other source code modifications and to
build process complications.

Solution used in IOPC 2 is less intrusive as it generates only new structures (the type
descriptions - TypeDesc<T>) into additional compilation units. It does not modify the
original source code in any way and to read attribute values from reflection-capable instances
it uses only "safe" C++ techniques 4. There are two restrictions that somehow violate the usage
transparency and that the developers should keep in mind when creating the reflection-capable
(or persistent) classes.

The first problem is, how to access private or protected members in reflection-capable
classes from the type descriptions. There are several ways how to accomplish this task, but all
aside from direct memory access to these members are either not considered "safe" by the
author or involve modification of the class declaration. For IOPC 2 the latter option was
chosen. Developers need to include a friend class declaration as shown in Example 5.4.6 if
they want to access such members via reflection or to make them persistent using the O/R
mapping provided. The friend declaration should be understandable for developers as it clearly
says what it does (provides access to the private members to some other entity - the reflection).
It is not needed if all such members are declared as public.

4No direct, field-size based memory access to these members, etc.
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Example 5.4.6 Friend type description declaration
class Person : public iopc::OidObject {
private:
EShort age;
EString name;

public:
void setData(std::string name, short int age) {

this->name = name;
this->age = age;

}
std::string getName() const { return name; }
short int getAge() const { return age; }

// Needed
friend class TypeDesc<Person>;

};

Second point concerns the dirty status tracking of persistent objects. All IOPC 2 library
predecessors used getter and setter methods for this task. However, these methods could not
be used in IOPC 2 because it would involve source code modification. For this reason, the
enhanced data types were created - see Section 5.4.2. They provide automatic dirty status
tracking and they can also represent the SQL NULL values. Developers do not need to use
the enhanced data types if they explicitly call the Object::setDirty() method to tell the
library that value of the object has changed. In contrast, if developers need to set or read NULL
values using the O/R mapping, they must use the enhanced data types as there is no alternative
for such task in the library.

5.5 The persistence layer - iopclib
iopclib puts together all other components into an object-relational library. It uses iopcdb
with appropriate database drivers (iopcdriver_oracle10g) for database access.
iopclib requires the drivers to have the object-relational features implemented and
linked (the iopcdriverex_oracle10g_or extension). Metamodel description is
generated using GCCXML and iopcsp and is accessed using the iopcmeta library. The
iopccommon library is implicitly used by all of these components and also by iopclib
itself.

5.5.1 Database mapping
iopclib defines the base classes DatabaseObject and OidObject as described in the
Section 4.3.1. The OID data type is defined by a typedef, so it can be changed in the future.
Now it defaults to EULong. Identity of DatabaseObjects is expressed as instances of the
KeyValues class. KeyValues contain a list of key-value pairs which represents any single-
attribute or composite (multi-attribute) key.
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Figure 5.7: Classes involved in the database mapping process

The idea behind the O/R mapping part is to wrap each type representing a persistent class5

into a class that will provide persistence related tasks. Such class has been named DbType as
displayed in Figure 5.7. For each persistent class type there is exactly one DbType instance.
These instances are managed by the DbTypeManager singleton.

DbType class implements the mapping algorithm described in the Section 4.3.4. The
algorithm has been split between the DbType, ObjectMappingStrategy and
ORMappingStrategy classes. DbType performs the table-level part of the algorithm while
the strategy classes implement the attribute-level operations - this means the Load_Object or
Insert_Object6 methods for the ADT mapping type (ObjectMappingStrategy) and
Load_Row or Insert_Row6 methods for the other mapping types (ORMappingStrategy).
The lists described in Section 4.3.3 needed by the algorithm can be found in these classes.

When one of the main CRUD methods of DbType is invoked, the program iterates
through the inheritance hierarchy of the related class type according to the algorithm and calls
the ObjectMappingStrategy or ORMappingStrategy to perform the attribute-level
operations. The strategies in turn call the database drivers’ ObjectStatementsFeature
or ORStatementsFeature to generate SQL statements that will be executed. If possible,
these statements are cached and not re-created each time. After that, the SQL statements are
sent to the underlying DBMS via the database driver being used.

Another important class defined in iopclib is the ScriptsGenerator.
ScriptsGenerator has only two methods - getDbCreateScript and
getDbDrobScript. As the method names suggest, the class generates SQL CREATE and
DROP scripts which create or delete database schema required by the O/R mapping. The
generator first creates a list of topologically ordered persistent classes according to their
inheritance dependencies and then calls the MappingStatementsFeature for each of
them in order to generate the scripts. Example 5.5.1 shows how to prepare required database

5Class that derives from DatabaseObject
6And its update and delete variants.
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schema.

Example 5.5.1 Using the ScriptsGenerator to create required database schema.
vector<string> script;
script = ScriptsGenerator::getDbCreateScript(conn->getDriver());

for(vector<string>::const_iterator it = script.begin();
it != script.end(); it++) {
conn->sqlNonQuery(*it);

}

5.5.2 Persistent object manipulation

Figure 5.8: Classes manipulating with persistent objects

Most classes presented in this and in the next sections are adapted from the POLiTe 2 library,
so we will provide only a brief overview of their structure and of the way how they interact. For
detailed description, see [3].

Instances of the PersIdentification class represent identity of persistent objects.
The class encapsulates both the OID and the KeyValues. It also provides access to CRUD
methods defined in DbType. PersIdentification instances are used as keys in the cache
layer containers and in this context they represent the only communication channel between the
cache layer and the O/R mapping services - see the sequence diagrams below.

As in the POLiTe 2 library, developers must use indirect references to manipulate database
object in their transient or persistent state. IOPC 2 uses exactly the same concept as described
in Section 3.2.3.

The indirect references - database pointers - are represented by instances of the DbPtr<T>
template class. DbPtr<T> can point to database object instances in one of the following states:

79



• Transient instances which are not yet managed by a cache. The owner of these instances
is the database pointer. If the pointer is destroyed before delegating the object ownership
to a cache, the object is also destroyed.

• Instances managed by a cache. They may or may not already have a database representa-
tion.

• Persistent instances that are not present in a cache. The pointer contains only their identity
description (a PersIdentification instance).

bePersistent is the method that transfers the object ownership to a cache. It has only
one argument - a database connection (CachedConnection). The cache that is associated
with this connection becomes the new owner of the object.

Example 5.5.2 Using the bePersistent method
// Creates a new transient Person instance
// owned by the database pointer p
DbPtr<Person> p;
p->name = "Mary Major";
p->age = 60;
// Transfers the ownership to the cache associated
// with the connection conn.
p.bePersistent(conn);

Example 5.5.2 illustrates how to use the bePersistent method. First, as outlined in the
Figure 5.9, the transient instance is passed to a cache associated with the used connection. Then
the cache takes ownership of the object and stores a reference to it into its internal structures.
A CacheLock instance is returned. CacheLock class is used to lock local object copies
in a cache so that they can be safely used by the user application. The local copy cannot be
manipulated by the cache while it is locked.

Figure 5.9: The bePersistent operation

When the lock is released, the cache is free to create a persistent copy of the object in the
underlying database and eventually to remove the local copy from memory. Depending on the
cache implementation and updating strategy used, the actual flow of events may differ slightly.
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By dereferencing a database pointer instance, or by calling one of the getCachePtr or
getConstCachePtr methods, an instance of a cache pointer can be retrieved. Cache pointer
can be constructed for transient as well as for cache-managed objects. If a cache pointer for a
cache-managed object is created, the cache is instructed to lock (or to load from a database and
lock) the object it points to (the CacheLock class is used). The lock is released as soon as
the cache pointer instance is destroyed. Cache locks can also be dereferenced and, this time, a
pointer to the actual database object instance is returned. The cache pointer is implemented as
the CachePtr and ConstCachePtr classes. The only difference between them is that the
latter one returns only a constant pointer to the object and locks it as read-only in the cache.
Objects that have a read-only lock can be read by multiple threads at a time.

Both pointer classes (DbPtr<T> and (Const)CachePtr<T>) overload the -> operator.
As described in Section 3.2.3, if a call to the operator->() function is made and if the object
returned also overloads the -> operator, C++ automatically calls the operator->() on it
again. Figure 5.10 illustrates what happens if the following source code excerpt is executed.

p->age = 59;

Figure 5.10: Database pointer and cache pointer interaction

The first -> operator call results in the CachePtr<T> instance creation. Its constructor
retrieves a CacheLock instance containing a reference to the locked local copy. When
obtaining a CacheLock, the cache looks for the requested object in its containers and if not
found, the database mapping part of the library is asked to load it from a database. Then, the
object instance is locked as described above and CachePtr<T> retrieves a direct reference to
the locked local copy from the CacheLock.

After that, C++ chains the operator-> call and invokes it on the newly created
CachePtr<T> instance. CachePtr<T> in turn returns reference to the database object
itself and the age attribute is accessed. Immediately after the assignment operation, the life
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cycle of the CachePtr<T> instance ends and its destructor is called. Inside the destructor,
the cache lock is released.

Figure 5.11: Interaction with the O/R mapping services

Figure 5.11 indicates how the flow of the previous scenario would continue from the
getCacheLock call, if the requested object was not present in the cache. As mentioned
earlier, the cache layer uses the PersIdentification class to call the database mapping
routines.

5.5.3 The cache layer
The cache layer was ported from the POLiTe 2 library. Its interfaces and overall architecture
remained almost unchanged. Cache layer depends on infrastructure described in the previous
section. Because these infrastructure classes were preserved or enhanced, there was no reason
to change the architecture of the cache layer. Again, the structure and behaviour of the cache
layer were described before, so for detailed information about it please refer to [3]. Following
paragraphs describe its hi-level architecture and design of its interfaces.

Each cache must implement the Cache interface. It defines following operations:

• makePersistent (insert) - cache obtains ownership of a new database object. The
object is made persistent according to the updating strategy and caching algorithm used.
Persistent copy creation can be enforced by invoking the updateDirty method.

• getCacheLock (load) - if needed, cache loads requested object from the database,
locks it and returns a reference to it.

• updateDirty (update) - writes all changes including new objects to the database.
updateDirty is called from CachedConnection.commit().

• dbDelete (delete) - deletes the specified object from the cache as well as from the
database.

• clear - writes all changes to the database and removes all objects from the cache.

• removeAll - clears the cache, and discards all changes. Nothing is written back to the
database. Called from CachedConnection.rollback().
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Figure 5.12: Basic classes of the cache layer. VoidCache architecture.

Classes in Figure 5.12 represent the basic framework for building simple synchronous cache
implementations. One such implementation is the VoidCache. The VoidCache actually
does not cache anything - it merely loads and locks objects from the database as user requests.
After the lock is released, changes made to the object are immediately propagated back to the
database and the object removed from the cache. VoidCache stores the locked items in its
containers as instances of the VoidCacheItem class.

IOPC 2 (and POLiTe 2) contains also an advanced interface designed for more complex
cache implementations - the ExtendedCache interface. It adds methods that are needed
by the cache manager CacheKeeper to run an asynchronous maintenance. Additionally,
it allows to specify various strategies that modify behaviour of extended caches. Developers
can define rules that specify which extended caches and which strategies should be used for
particular objects. Architecture of the extended interface is displayed in Figure 5.13.

• Strategy - instances of this class can be used to modify behaviour of an extended
cache. The instances represent combinations of the updating, reading, locking and
waiting strategies introduced in the original POLiTe library - see Section 3.1.4. The
class contains four of such predefined strategy combinations that can be used right away
(as static instances), see [3].

• CacheSelector and StrategySelector - selector interfaces are used to specify
rules that decide which strategy or which cache will be used for specific objects.
SimpleStratSelector and SimpleCacheSelector implement these
interfaces and provide basic rules which associate specific strategies or caches
respectively with persistent object types. This means that the decisions are based on the
processed object types.

• ComposedCache derives from the basic cache interface Cache and acts as a
proxy that combines different extended caches into one "basic" cache. It uses
CacheSelector to determine which cache should be used for the object being
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Figure 5.13: Extended interface of the cache layer.

processed. StrategySelector is then passed to the cache where it is used to
customize its behaviour.

• CacheKeeper - a single CacheKeeper instance is assigned one or more database
connections. For each of these connections an instance of ComposedCache is created.
CacheKeeper provides a facade for these caches by exposing an interface that allows
developers to specify caches and strategies for particular connection and database object
type combinations. However, the main benefit of using CacheKeeper is that it runs a
second thread that scans managed caches and removes instances considered as ’worst’. If
dirty, these instances are written back to the database.

The library offers two caches that implement the extended interface - MapLruCache and
MapArcCache. As their names suggest, they use LRU and ARC replacement policies,
respectively. For detailed description please refer to [3]. There are also singlethreaded variants
of these two caches (suffixed with "ST") which cannot be used in multithreaded environment
and thus cannot use the asynchronous maintenance that the CacheKeeper provides.

5.5.4 Querying
Queries in IOPC 2 are realised as instances of the SimpleQuery and FreeQuery classes.
Both classes derive from the same predecessor - the Query class as displayed in Figure 5.14.
The base class declares the getSql method, whose implementation translates the query repre-
sented by the particular Query descendant instance to SQL. The Driver passed as a param-
eter is used in the translation process to accommodate the result to the destination SQL dialect.

The SimpleQuery class is used to create basic queries which select data only from a
single view or table specified by the result type of the query result (see below). The result
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Figure 5.14: The Query classes

can be ordered and filtered by restricting attribute values of the type. SimpleQuery is used
to retrieve instances of one particular type. SimpleQuery represents only the WHERE and
ORDER BY parts of the resulting SQL SELECT statement.

For more complex queries there is the FreeQuery class. This class allows developers
to specify everything after the FROM keyword. There are absolutely no restrictions on joins,
subselects or other SQL language constructs.

To make the queries independent from the table, view and column naming, users can insert
application-level class names, attribute names and class metadata (see Section 5.4.3) references
into any part of the query. This is probably best explained by an example:

SimpleQuery query("$::Person::name$ = ’Ian’")

The translation process looks for the dollar signs and substitutes data type and attribute
names that it finds between them. The ::Person::name string will be substituted for the
name of the corresponding database table/view and column. By default, the Oid object names
reference the associated polymorphic views, while the non-Oid object names are replaced by
the names of physical tables.

The data type and attribute names can be further expanded with class metadata codes. This
way, we can force the data type name to be substituted with corresponding table name instead
of its pregenerated view name:

FreeQuery query("$::Person[db.table]$ WHERE $::Person[db.table]:: ←↩
name[db.column]$ = ’Ian’")

The db.table and db.column class metadata are created by the iopclib library by
default; however, they can be customised. For full list, see Appendix C.

Results of the queries are encapsulated by the Result template class. Its only template
parameter determines the type of the objects in the result set the query returns. Queries are
executed by invoking the open method. After that, an iterator (ResultIterator) can be
obtained and used in a standard C++ way. Example 5.5.3 shows how the example query from
Section 2.5 ("Find all students older than 26.") can be implemented in IOPC 2.
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Example 5.5.3 Example query in IOPC 2
SimpleQuery q("$::Student::age$ >= 26");
Result<Student> r(conn, q);
r.open();
for (Result<Student>::iterator it = r.begin(); it != r.end(); it ←↩

++) {
cout << "name: " << it->name << endl;

}
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Chapter 6

Conclusion

IOPC 2 managed to unify the POLiTe 2 and IOPC libraries into one solid, flexible and extensi-
ble platform. Thanks to its well-designed interface and modular architecture, the library can be
easily customized, enhanced and used. Its ability to integrate with IDEs and its reflective fea-
tures provide the developers with almost transparent object-relational mapping functionality.

If we compare the table from Section 3.4 against final IOPC 2 implementation described in
the last two chapters, we may see changes, mostly improvements in many of the listed areas:

POLiTe POLiTe 2 IOPC IOPC 2
Transparent
usage

- Macro
descriptions

- Macro
descriptions

+ Uses Open
C++

+ Uses
GCCXML

Supported
mapping types - Vertical - Vertical

+ Vertical,
horizontal,
filtered,
combinations

+ Vertical,
horizontal,
filtered, ADT,
combinations

Associations
between
objects

+ Simple
reference and
relations -
one-to-many,
many-to-one,
many-to-many,
chained

+ Simple
reference and
relations -
one-to-many,
many-to-one,
many-to-many,
chained

+/- Simple
reference and
reference list

- Only simple
reference

Caching - Simple object
cache

+ Advanced
caching
features.

-- Simple
object cache,
no locking

+ Advanced
caching
features (same
as POLiTe 2).

Querying

C++-like
syntax,
combining
queries

C++-like
syntax,
combining
queries

C++-like
syntax,
combining
queries

SQL syntax,
class metadata
embedding

Read-only db
or existing
schema
support

+ + - +

Library
architecture - Monolithic - Monolithic - Monolithic

+ Modular,
configurable
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POLiTe POLiTe 2 IOPC IOPC 2
Supported
databases

Oracle 7
(OCI 7)

Oracle 7
(OCI 7)

Oracle 8i
(OCI 8)

Oracle 10g
(OCI 10)

Multithreading
support - + - +

IOPC 2 was designed with emphasis on modularity. IOPC 2 doesn’t provide only object-
relational mapping services. It consists of a set of libraries which can be used in one of four
configurations - an object persistence library, a database access library, a reflection library and
an all-purpose library providing some useful tools. The database access library can be further
customised with separate database drivers.

The reflection library represents a unified interface which allows developers to inspect the
structure of the reflection-capable classes at run-time. It offers some of the features which are
incorporated into reflective languages like Java or C#. To get the metamodel description IOPC
2 uses GCCXML, which represents a more reliable solution than OpenC++ used by IOPC.

Object-relational mapping capabilities of the original IOPC library has been enhanced by
one additional mapping type - the ADT mapping. ADT mapping is a result of discussion on
object-relational databases presented in this thesis. It demonstrates how their features can
simplify the development of an object-relational layer. IOPC 2 also retained the ability to work
with existing or read-only database schemas.

Although the IOPC 2 library covers many of the needs developers may pose on an object
persistence library, there is a lot of room for improvement and future enhancements. A major
issue of this library is the lack of a persistable data type representing a list of references. To
express various kinds of associations between persistent objects, POLiTe libraries used
relation objects as described earlier in Section 3.1.3. POLiTe libraries also allowed to use a
simple reference to model the one-to-many relation. IOPC replaced the concept of relation
objects with the persistent references and reference lists. Unfortunately, the reference lists
were almost unusable, so they were removed from the IOPC 2 implementation and remained
to be implemented in the future. The future implementation should also use some of the
ORDBMS features like references or arrays to store these lists in the database. Reintroduction
of the relation objects may also be possible.

This leads us to the second, smaller, issue - IOPC 2 aside from ADTs doesn’t use other
ORDBMS features. There are many other ways how to enhance functionality of the library in
this area. Other areas may also improved - for example the reflection can be given the ability to
describe and invoke methods.

IOPC 2 also lacks proof of concept - a real-life or real-life-like application that would
demonstrate the library usability for the purpose for which it is designed. There should be both
- web-based as well as a thick client application. Such test would probably reveal other issues
or misconceptions which may result in additional requirements on the library. For example the
web application requirements would surely include a connection pool facility to speed up the
connection creation process. Similarly, another non-Oracle database driver could be
implemented - support for a lightweight in-process database like SQLITE1 would be
interesting.

1http://www.sqlite.org
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Appendix A

User’s guide

This chapter will guide you through the steps needed to create a simple IOPC 2-based
application. We will start with library initialization and termination and then we will continue
with metamodel definition and metamodel description browsing. Further we will describe how
the database drivers and their extensions are used and finally, we will discuss usage of the
persistence and caching layers to create a code that can persists or load database objects from
the database.

Examples from this guide can be found on the enclosed DVD. To run the examples right
away, you can use the included VMWare image which contains Eclipse CDT workspaces of
both the library and the examples. For more information on the DVD see Appendix D.

A.1 Library initialization and termination
The IOPC 2 library can be used in several configurations (Section 4.1). Depending on the
selected configuration, corresponding initialization and termination routines must be called.
These routines are listed in the Table A.1. Configurations are ordered by ascending complexity
and so by amount of features they provide. First row of the table contains the most basic
configuration - the iopccommon library. Libraries/configurations in following rows depend
on libraries from previous rows and also implicitly call their initialization/termination routines.
So calling the initialization/termination routine only for the selected configuration is
sufficient. There exist also header files with the "Headers" suffix in their names (like
iopcMetaHeaders.h or iopcDbHeaders.h), which include most commonly used
header files for the selected configuration.

Basic library setup for a configuration that uses IOPC 2 as a database access library can then
look like this:

// Include all commonly used headers for the
// iopcdb configuration
#include "iopcdb/iopcDbHeaders.h"

// IOPC 2 structures are defined within the iopc napespace
using namespace iopc;

int main(int argc, char *argv[])
{
try {

// Initializes the library and also sets the LogWriter masks
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// Throws an exception if not successful
IopcDb::init(LogWriter::ERROR, LogWriter::ERROR |

LogWriter::WARNING);

// ...

// Library cleanup. Releases allocated resources,
// closes open connections.
IopcDb::shutdown();

} catch (IopcException& e) {
// Error handling

}
}

library / configuration header file initialization / termination routine
iopccommon iopccommon/

iopcCommon.h
IopcCommon::Init()
IopcCommon::Shutdown()Library support

services
iopcmeta iopcmeta/

iopcMeta.h
IopcMeta::Init()
IopcMeta::Shutdown()A reflection library

iopcdb
iopcdb/iopcDb.h

IopcDb::Init()
IopcDb::Shutdown()A database access

library
iopclib

iopclib/iopc.h
Iopc::Init()
Iopc::Shutdown()An object persistence

library

Table A.1: Library configurations and their initialization/termination routines

First parameter of the IopcDb::init specifies mask for messages written to standard
output, second parameter specifies mask for the log file which is created by the library at its
initialisation. Its name is iopc_log.txt by default, but it can be overridden in the third (not
shown) parameter of the IopcDb::init method.

The logger masks filter the log messages by their category. Supported categories are:

• ERROR - messages generated usually as a result of an exception that prevented required
operation to be finished. They can be generated by the user application.

• WARNING, INFO - warning or informational messages. They can be generated by the
user application.

• INFO_SQL - SQL trace messages representing SQL statements that have been sent to the
underlying database. Messages in this category are exclusively generated by the iopcdb
library.

• DEBUG - messages useful for debugging purposes. It can be also disabled by
commenting out the IOPC_DEBUG macro in the iopccommon/trace.h file. This
macro should be undefined in release versions of IOPC 2.
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• TRACE - more detailed messages which trace the library execution. Turning this filter
on may result in large amount of logged messages. May be also disabled by commenting
out the IOPC_TRACE macro in the iopccommon/trace.h file. Release versions of
IOPC 2 should have this macro undefined.

If an error occurs during any of library activities an exception is thrown. All exceptions
thrown by the IOPC 2 library are descendants of the IopcException class. For a detailed
list of all exception types please refer to the library documentation.

A.2 Inspecting objects with reflection
Reflection and object persistence features will be presented on the following classes. We will
start with a simple class hierarchy with which we are already familiar from the Section 2.2. To
present the provided reflection mechanism and later the database mapping, we need to define
some test classes. Additional features will be added later.

// We use the reflection library configuration
#include "iopcmeta/iopcMetaHeaders.h"
#include <string>

using namespace std;

class Person : public iopc::Object {
public:
EString name;
EShort age;

};
class Employee: public Person {
private:
EInt salary;

public:
Employee() {};
Employee(string name, short int age, int salary) {

this->name = name;
this->age = age;
this->salary = salary;

}
void setSalary(int salary) {

this->salary = salary;
};
int getSalary() {

return salary;
};
friend class iopc::TypeDesc<Employee>;

};
class Student : public Person {
public:
EString studcardid;

};
class PhdStudent : public Student {
public:

93



EShort scholarship;
};

Classes discoverable by the IOPC 2 reflection must conform to the following rules:

• The classes must be defined in header files. These headers will be included by the gener-
ated IH files containing type descriptions (see Section 5.4.4).

• The classes must derive directly or indirectly from the Object defined in iopcmeta/
object.h.

• The classes must contain a non-parameterised constructor (implicit or explicit). A con-
structor with all default parameters is also acceptable.

• If the classes contain any non-public members, they must declare the associated type
description as friend - see the Employee class definition. For more information, refer to
Section 5.4.5.

Attribute definitions use enhanced data types (see Section 5.4.2). This will come in handy
later in sections discussing object persistence and querying.

To see how to use the reflection interface, we will provide a set of examples which demon-
strate its features. The code should be placed between the init and shutdown calls which
we presented in the first example.

Following example lists all data types that are recognised by the reflection mechanism.

const map<string, const Type*>& types =
TypeManager::getTypesMap();

cout << "Registered types:" << endl;
for(
map<string, const Type*>::const_iterator it = types.begin();
it != types.end(); it++) {
cout << (*it).first << endl;

}

When compiled using the supplied makefile/compile script or using the managed-build
Eclipse project and when run, the program will print a list of types registered by the
TypeManager singleton (see Section 5.4).

::Employee iopc::EBool
::Person iopc::EChar
::PhdStudent iopc::EDouble
::Student iopc::EFloat
::bool iopc::EInt
::char iopc::ELDouble
::double iopc::ELong
::float iopc::ESChar
::int iopc::EShort
::long iopc::EString
::long double iopc::EUChar
::short iopc::EUInt
::signed char iopc::EULong
::unsigned char iopc::EUShort
::unsigned int iopc::EWCharT
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::unsigned long iopc::EWString
::unsigned short iopc::Object
::wchar_t
std::string
std::wstring

The types can be divided into three categories:

• Built-in C++ numeric types, STL string types.

• Enhanced data types which correspond to the basic types and string types.

• All descendants of the Object class which is also included and can be inspected using
the reflection. Such types are classified as complex data types in the IOPC 2 library.

All the listed types can be used as attribute types. Attributes of other types are ignored1.
Complex type attributes cannot be however persisted by the object persistence layer (iopclib)
at the moment. In this case, complex type attributes must be marked as transient using the
attribute metadata db.transient. See Appendix C.

The programmer can use the reflection for more complex tasks, as it is shown in following
examples.

First, we obtain an object which represents a type description. See Section 5.4.1.

const Type& t = TypeManager::getType("::Person");

The TypeManager::getType() call searches in the catalogue of registered types for
the type of given name and returns its description. The type description is obtained as a refer-
ence to a Type object representing the requested type. This class provides many methods that
can be used to introspect the structure of the associated type. The type description can be also
obtained in a static way:

const Type& t = TypeDesc<Person>::getType()

Having the Type reference we can start examinig the Person class by obtaining a list of
its parents:

const Type::ParentsList& parents = t.getParents();
for(Type::ParentsIterator it = parents.begin();
it != parents.end(); it++) {
cout << (*it)->getQualifiedName() << endl;

}

If we are not using multiple inheritance, the following method can be used:

cout << t.getFirstParent().getQualifiedName() << endl;

The example prints:

iopc::Object

Similarly, we list the child types of the Person class.

1This should change in the future
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const Type::ChildrenList& children = t.getChildren();
for(Type::ChildrenIterator it = children.begin();
it != children.end(); it++) {
cout << (*it)->getQualifiedName() << endl;

}

We get the following output:

::Employee
::Student

If we want to obtain even indirect parents or children, we have to use the
Type::getAllParents() or Type::getAllChildren() methods instead.

Attributes can be listed using the following code:

const Type::AttributesMap& attributes = t.getAttributes();
for(Type::AttributesIterator it = attributes.begin();
it != attributes.end(); it++) {

const Attribute& attr = it->second;
switch (attr.getVisibility()) {

case Attribute::VISIBILITY_PUBLIC: cout << "public "; break;
case Attribute::VISIBILITY_PRIVATE: cout << "private "; break;
case Attribute::VISIBILITY_PROTECTED: cout << "protected "; ←↩

break;
}
cout << it->second.getType().getQualifiedName()

<< " " << it->first << endl;
}

The example iterates over a map whose keys are attribute names and values are Attribute
class instances. Using Attribute methods we can obtain attribute names, their data types
(which are again described by the familiar Type interface) and determine if the attributes were
declared as private, protected or public. In a similar way, inherited attributes can be listed
using the Type::getInheritedAttributes() method. The previous code yields the
following output:

public iopc::EString name
public iopc::EShort age

Using reflection we can also create objects or manipulate with values of their attributes
(regardless of their visibility). In the following example we create a new instance of the
Employee class and initialise values of all of its attributes.

Employee* e = dynamic_cast<Employee*>(
TypeManager::getType("::Employee").newObjectInstance());

*((EString*)e->getAttributeValue("name").getValue()) =
"Ola Nordmann";

*((EShort*)e->getAttributeValue("age").getValue()) = 45;

*((EInt*)e->getAttributeValue("salary").getValue()) = 60000;
cout << e->name << " " << e->age << " " << e->getSalary() << endl;

The Object::getAttributeValue() method returns an instance of the
AttributeValue which allows us to get or set values of the attribute it represents. Using
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its getValue() method we obtain a void pointer to the requested field in the Employee
instance. By casting it to the actual attribute data type we can manipulate with its value.
Output of the example is:

Ola Nordmann 45 60000

Attribute values can be iterated similarly as attributes. The list of attribute values can be
obtained using the Object::getAttributeValues() method:

const Object::AttributeValuesMap& attrVals =
e->getAttributeValues();

for(Object::AttributeValuesIterator it = attrVals.begin();
it != attrVals.end(); it++) {

const AttributeValue& val = it->second;
cout << it->first << ": ";
if (val.getAttribute().getType().getDataTypeClass() == Type:: ←↩

IOPC_TYPECLASS_ENHANCED) {
cout << ((EnhancedTypeBase*)val.getValue())->toString()
<< endl;

}
}

In the example we take advantage of the enhanced data types and of the
Object::toString() method they implement. For regular objects it prints just an
address on which they reside in the memory. It is however overridden by the enhanced data
type implementations so that the returned string contains a value they represent. Output of the
example is:

age: 45
name: Ola Nordmann
salary: 60000

Types recognised by the reflection are categorised into several groups called type classes.
They help to easily determine their "nature":

• IOPC_TYPECLASS_SIMPLE - built-in C++ numeric types

• IOPC_TYPECLASS_STRING - STL strings.

• IOPC_TYPECLASS_COMPLEX - class types, descendants of Object. Excluding the
enhanced data types.

• IOPC_TYPECLASS_ENHANCED - enhanced data types.

Last thing we may need from the reflection interface is the ability to compare the types. For
example, we may want to ask if some type is descendant of another type or if it represents the
same type. The following example illustrates how such comparisons can be done in IOPC 2.

const Type& t1 = TypeDesc<Person>::getType();
const Type& t2 = TypeDesc<Student>::getType();
if (t1 == t2) { cout << "t1 is t2" << endl; }
if (t1 != t2) { cout << "t1 is not t2" << endl; }
if (t1.isTypeOf(t2)) { cout << "t1 is t2 or t1 is descendant of t2 ←↩

" << endl; }
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if (t2.isTypeOf(t1)) { cout << "t1 is t2 or t2 is descendant of t1 ←↩
" << endl; }

if (t1.is<Student>()) { cout << "t1 is of type Student" << endl; }
if (t2.is<Student>()) { cout << "t2 is of type Student" << endl; }
if (t1.isTypeOf<Person>()) { cout << "t1 is of type Person or its ←↩

descendant" << endl; }
if (t2.isTypeOf<Person>()) { cout << "t2 is of type Person or its ←↩

descendant" << endl; }

Output of the example is:

t1 is not t2
t1 is t2 or t2 is descendant of t1
t2 is of type Student
t1 is of type Person or its descendant
t2 is of type Person or its descendant

A.3 Class metadata
The concept of class metadata was explained in Section 5.4.3. Basically, class metadata can be
specified on three levels:

• At a global level using getDefaultsMeta() from the MetadataHolder class.

• At a type level.

• At an attribute level.

Metadata specified at a higher level are inherited by objects at lower levels. So if we specify
metadata for a type, all attributes of that type inherit such information. If we specify the same
metadata on an attribute, the type level metadata are overridden by the attribute level metadata.
Global level metadata are inherited by both, the type and attribute objects.

The Type and Attribute classes inherit from the MetadataHolder.
MetadataHolder::getDefaultsMeta() returns a MetadataHolder instance
directly. MetadataHolder provides its descendants with a dictionary-like interface as
illustrated by the following example:

// Global level metadata (all objects will use ADT mapping)
MetadataHolder& globalMeta = MetadataHolder::getDefaultsMeta();
globalMeta["db.mapping.type"].setStringValue("object");

// Type level metadata
// The ADT type associated with the Person class
// will be named Person_type. (The default is tPerson).
const Type& t = TypeDesc<Person>::getType();
t["db.type"].setStringValue("Person_type");

// Attribute level metadata
// The Person::name attribute will be a 20 characters long string
t.getAttribute("name")["db.type.length"].setIntValue(20);
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Class metadata can be set in three different ways at the program start-up. First way is
to set metadata in the static method iopcInit() which can be defined for each reflection-
capable type. It is used to set type level and attribute level metadata for the class in which
it is defined. iopcInit() methods are invoked during the iopcMeta library initialisation
(IopcMeta::Init()). To demonstrate how iopcInit is used, we modify the Person
class definition:

class Person : public iopc::OidObject {
public:
EString name;
EShort age;

static void iopcInit(iopc::Type& t) {
t["db.type"].setStringValue("Person_type");
t.getAttribute("name")["db.type.length"].setIntValue(20);

}
};

Second way is to implement the MetadataInitializer interface declared in
iopcmeta. It defines only one method - initializeMetadata() - into which we can
insert the metadata initialization code. In this case, the global level values can also be set. The
instance of the MetadataInitializer implementation is then passed as first parameter to
any of the iopcmeta, iopcdb or iopclib initialisation methods:

class OurMetadataInitializer : public MetadataInitializer {
public:
virtual void initializeMetadata();

};
...
void OurMetadataInitializer::initializeMetadata()
{
// metadata initialisation code
// same as in the first example of this section

}
...
int main(int argc, char *argv[])
{
Iopc::init(new OurMetadataInitializer(), LogWriter::ERROR ... );
...

}

The OurMetadataLoader instance is deallocated during the library
initialization after its initializeMetadata() method is called.
During the initialization phase, iopcInit() methods are invoked before
MetadataInitializer::initializeMetadata(), so the metadata changes done
in MetadataInitializer::initializeMetadata() may overwrite metadata
created in the iopcInit() methods.

iopcmeta contains a MetadataInitializer implementation named
TextFileMetadataLoader which represents the last way how we can set the class
metadata. Its constructor takes a single parameter, a filename (may include a path as well) of a
configuration file, which contains a description of metadata assignments. The class is used in
the same way as the OurMetadataInitializer in previous example. When its
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initializeMetadata() method is invoked, it loads the configuration file and sets all
global level, type level and attribute level metadata according to it.

The format of the configuration file is illustrated by the following example:

# global level
defaults[db.mapping.type];string;object
# type level
::Person[db.type];string;Person_type
# attribute level
::Person::name[db.type.length];int;20

TextFileMetadataLoader skips all empty lines or lines starting with the ’#’ charac-
ter. The file is case-sensitive. Lines describing the metadata contain three semicolon delimited
values. First value specifies the location and code of the metadata to be set. It uses the same
format as metadata in queries (see Section 5.5.4). Second column denotes the data type of the
metadata value. Only string, int and bool values are allowed. Last column contains the
metadata value. Boolean values can be either true or false.

One additional class based on the MetadataHolder container
class is the GlobalSettings class. Its global instance is defined in
iopccommon/globalSettings.h. Although it is based on the MetadataHolder
class, it does not contain any class metadata. It is used to provide application-wide settings.
The settings can be specified using the following line in the TextFileMetadataLoader
configuration file:

# global settings
globals[db.oracle.oidSequence.name];string;MyOIDSeq

A.4 Basic database access
IOPC 2 can be used as a database access library. It is able to send SQL commands to supported
database engines and to execute SQL queries and iterate through their results. Transactions are
also supported - see further. To use the provided database features we need to include and link
either the iopcdb or the iopclib library / configuration.

To send any SQL commands to the database, we need to obtain and open a connection:

Database* db =
DriverManager::getDriver("IopcOracle10g").getDatabase("XE");

Connection* conn =
db->getConnection("username=iopc;password=iopc");

conn->open();

First the Driver instance is obtained using the DriverManager::getDriver()
method. The Driver does not provide much functionality. Usually it is used to obtain the
Database object using its Driver::getDatabase() method. Its other responsibilities
will be discussed later in this section.

Driver::getDatbase() takes one parameter denoting name of the database instance
the returned Database object will represent. For other database systems, the parameter can
refer for example to a filename of a database that will be loaded. The Database’s only inter-
esting method at the moment is Database::getConnection.
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By calling the Database::getConnection() method a physical link to the DBMS is
established2 and a Connection object representing the link is returned. The string passed to
the Database::getConnection() method is called connection string. The connection
string syntax may vary between different drivers. For the Oracle10g driver the string is a
semicolon delimited list of key-value pairs as shown in the example. Recognised keys are:

• username - database account username

• password - its password

• autocommit - determines whether the current transaction is committed after every state-
ment executed. Optional, the default value is "false".

When the connection is no longer needed, it should be closed and returned back to the
database object by calling db->returnConnection(conn). The same goes for the
database and driver:

...
conn->close();
db->returnConnection(conn);
DriverManager::getDriver("IopcOracle10g").returnDatabase(db);
// alternatively:
DriverManager::returnDatabase(db);

Oracle10g driver supports transactions3. First SQL statement executed after the
connection is created begins first transaction. Transactions can be ended by calling
Connection::commit() or Connection::rollback(). Next transaction starts
again when next SQL statement is executed. In the Oracle10g database driver each transaction
get committed implicitly whenever a DDL statement is issued. Closing an open connection
also commits any running transaction. If autocommit is enabled, transactions are committed
immediately everytime after any SQL statement is executed.

Connection::savePoint() and Connection::rollbackToSavePoint()
operations are also provided by the Connection interface. They interact with the cache
analogously.

Simple commands that do not return any value and that are not parameterised can be exe-
cuted using the sqlNonQuery method. Let’s create a new table and insert some testing val-
ues into it.

conn->sqlNonQuery("CREATE TABLE blacklist(id NUMBER PRIMARY KEY, ←↩
name VARCHAR2(20))");

conn->sqlNonQuery(
"INSERT INTO blacklist VALUES(1, ’Richard Doe’)");

conn->sqlNonQuery(
"INSERT INTO blacklist VALUES(2, ’Ola Nordmann’)");

// we have to call commit() because autocommit is disabled
// for conn
conn->commit();

Now we will load and print the inserted data:

2Other drivers may behave differently.
3For more on what database transactions are refer to http://en.wikipedia.org/wiki/Database_transaction
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Cursor* cur = conn->sql("select id, name from blacklist");
std::string name;
int id;
cur->addOutParam(1, &id, TypeDesc<int>::getType());
cur->addOutParam(2, &name, TypeDesc<std::string>::getType());
cur->execute();
while (cur->fetchNext()) {
cout << id << " " << name << endl;

}
cur->close();
conn->returnCursor(cur);

By calling the Connection::sql() method we obtain a Cursor which represents
results of the query passed to the method. The query is not yet executed; nothing is sent to the
database system until the Cursor::execute() is invoked. Before we execute the query,
we may specify input and output parameters (if any). This is done by calling one of the
Cursor::addXXParam(), Cursor::addEnhancedXXParam() where XX is "In" or
"Out", or Cursor::addNullInParam(). Whether to call the first or the second
(enhanced) method depends on if we are going to use enhanced data type or basic C++ data
type (plus the STL strings) parameters. The example above uses the basic variant.

First parameter specifies the parameter position in the query4 and second parameter the
variable to be stored/loaded. Last parameter of the Cursor::addXXParam method tells
the database layer of what type the value passed as pointer in the second parameter is. In
some situations, the database layer and drivers must know the memory size (sizeof) occupied
by the input or output parameters. This information is also obtained from the type descriptions.
However, because memory occupied by string parameters (STL or enhanced) is of variable size,
a number describing memory size to be allocated for buffers needed by the database layer must
be specified. This number is defined as maximum string length and defaults to 2000 characters.
It can be overridden by supplying the last argument of the Cursor::addXXParam methods
in this way:

MetadataHolder meta;
meta["db.type.length"].setIntValue(100);
cur->addOutParam(1, &id, TypeDesc<int>::getType());
cur->addOutParam(2, &name, TypeDesc<std::string>::getType(), meta) ←↩

;

The db.type.length metadata can be also specified on the type or attribute level as
described in Section A.3. Type level represents the default value for all parameters of such type
(by default 2000 as mentioned above), attribute level is used by the object persistence layer -
see later in this guide.

Same example as above, this time using the enhanced data types:

Cursor* cur = conn->sql("select id, name from blacklist");
EString name;
EInt id;
// OUT parameters can be added any time before fetch is invoked
// - even after execute
cur->addEnhancedOutParam(1, id);

4Parameters specified by name are not currently supported.
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cur->addEnhancedOutParam(2, name);
cur->execute();
while (cur->fetchNext()) {
cout << id << " " << name << endl;

}
cur->close();
conn->returnCursor(cur);

As you see, specifying enhanced data type parameters is even simpler, the additional type
description is not needed.

If the cursor is not needed, it should be closed to free blocked database resources. If it is
not needed any longer, it should be released by returning it back to its connection which also
releases allocated application resources. After the cursor is closed, it can be re-opened and
executed again (it even be re-executed without closing and opening). The parameters are not
discarded. If a cursor is returned back to its connection in an open state, it is automatically
closed.

Input pramaters are used in a similar way:

Cursor* cur = conn->sql(
"SELECT name from blacklist where id = :id");

EString name;
EInt id = 2;
cur->addEnhancedOutParam(1, name); // first input parameter
cur->addEnhancedInParam(1, id); // first output parameter
cur->execute();
while (cur->fetchNext()) {
cout << id << " " << name << endl;

}
cur->close();
conn->returnCursor(cur);

This example loads and print only the second row inserted ("Ola Nordmann").
All objects from the iopcdb library are thread safe except for the Cursor class, which

should be used always only from one thread.

A.5 Driver features
Driver features were introduced in Section 5.3.2. A driver feature is actually an interface (ab-
stract class) which each driver may or may not implement. Two basic features are defined by
iopcdb - the TypeMappingFeature and SqlStatementsFeature. See their docu-
mentation for detailed description.

The database driver feature interface provides basically only two things - it allows us to
ask whether the driver supports the feature specified and allows us to obtain a reference to its
implementation. This is best illustrated by an example:

Driver& d = conn->getDriver();
if (d.supportsFeature<SqlStatementsFeature>()) {
TypeMappingFeature& f = d.getFeature<TypeMappingFeature>();
string sqlType = f.getTypeSql(TypeDesc<string>::getType());
cout << sqlType << endl;

}
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First, we obtain a driver reference from an existing connection. We want to use the
TypeMappingFeature to obtain a SQL type definition for the std::string type. Then
we ask, if the driver even supports such feature and finally we obtain a reference to its
implementation. Having reference to the feature implementation we may call methods
of the feature according to its interface and documentation. This example returns a
VARCHAR2(2000) string representing a SQL type which corresponds to std::string. The
number 2000 is taken from the db.type.length default metadata specified on the
std::string type.

A.6 Driver implementation
Database driver is an instance of a Driver subclass. Each driver is identified by a unique
name. Implementation of a new database driver begins by creating a subclass of the Driver
class. The subclass requires the following to be implemented:

• Driver initialisation and termination code if needed (Driver::doInit() and
Driver::doShutdown() methods). Usually the initialisation routine registers
features the driver supports:

void Oracle10gDriver::doInit() {
// typeMappingFeature is defined as an attribute in the ←↩

Oracle10gDriver class:
// Oracle10gTypeMappingFeature typeMappingFeature;

registerFeautre<TypeMappingFeature>(typeMappingFeature);
}

• getDatabaseImpl() and returnDatabaseImpl() methods which should cre-
ate, repspectively free the driver-specific instance of the DatabaseImpl subclass.

• A constructor implemented in the following way:

Oracle10gDriver::Oracle10gDriver(const std::string& ←↩
driverName)

: Driver(driverName) {}

• Driver registration code. A single static driver instance which is initialized as soon as the
driver is loaded. Run-time calls the driver constructor that in turn registers the driver at
the DriverManager.

static Oracle10gDriver oracle10gDriverInstance("IopcOracle10g ←↩
");

As you can see, the Driver class is only an entry point to the driver. Most of its code can
be found in its DatabaseImpl, ConnectionImpl and CursorImpl implementations.

Driver extensions are usually sets of additional driver features which are appended to the
features the drivers provide. Driver extension is a DriverExtension subclass instance
which is created and registered in a similar way to driver:
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• The DriverExtension::doInit() initialisation method takes one parameter
which is a reference to the associated driver. In the IopcOracle10gORExtension,
additional driver features are registered:

void Oracle10gExtension::doInit(Driver& driver) {
driver.registerFeature<ORStatementsFeature>( ←↩

orStatementsFeature);
...

}

• Driver extension constructor has two parameters. One parameter is a name of a driver the
extension extends, second is a name of the extension. Again, its implementation should
call the parent constructor as in the following example:

Oracle10gORExtension::Oracle10gORExtension(const std::string& ←↩
driverName, const std::string& name) :

DriverExtension(driverName, name) {}

• Driver extension registration code:

static Oracle10gORExtension Oracle10gORExtensionInstance(" ←↩
IopcOracle10g", "IopcOracle10gORExtension");

A.7 Persistent object manipulation
The most complex configuration of the IOPC 2 library we can use is iopclib. It contains
all features described to this point, plus it offers object persistence using four kinds of database
mapping - vertical, horizontal, filtered and ADT. Objects that can be persisted must derive from
the DatabaseObject or OidObject classes. We will start with the OID objects as they
are easier to handle and offer more functionality. Let’s take the classes defined in Section A.2
and prepare them for the persistence layer.

// Use the iopclib headers
#include "iopclib/iopcHeaders.h"

using namespace iopc;
class Person : public iopc::OidObject {
public:
EShort age;
EString name;

};
class Employee : public Person {
public:
EInt salary;

};
class Student : public Person {
public:
EString studcardid;
DbPtr<Employee> supervisor;

static void iopcInit(iopc::Type& t) {
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t["db.mapping.type"].setStringValue("horizontal");
}

};
class PhdStudent : public Student {
public:
EShort scholarship;

static void iopcInit(iopc::Type& t) {
t["db.mapping.type"].setStringValue("filtered");
t["db.mapping.insertto"].setStringValue("::Student");

}
};

We changed the predecessor of the Person class to OidObject as we intend to use OID
objects. We also specified some metadata that modify the default mapping type from vertical to
horizontal for the Student class and filtered for the PhdStudent class. If filtered mapping
is used, the db.mapping.insertto metadata must also be specified. The ::Student
value tells the library that attributes of the PhdStudent class will be stored into the table
associated with the Student class.

Before we can start using these classes, we must prepare required database schema.
ScriptsGenerator can be used for this task as described in Section 5.5.1. Once more, the
code snippet that creates the database schema for persistent classes in the application:

vector<string> script;
script = ScriptsGenerator::getDbCreateScript(conn->getDriver());
for(vector<string>::const_iterator it = script.begin();
it != script.end(); it++) {
conn->sqlNonQuery(*it);

}

When manipulating persistent objects, we need to use CachedConnection decorator
for the standard connection usually obtained. There is also the CachedDatabase class
which decorates the "basic" database and creates already decorated CachedConnections.
The reason why we are using these decorators is that the caching layer is tightly integrated
with the object persistence layer and object persistence cannot be used without it. The
CachedConnection provides us with additional methods for cache manipulation. It can be
created in the following way:

CachedDatabase* db = new CachedDatabase(
DriverManager::getDriver("IopcOracle10g").getDatabase("XE"),
new VoidCache());

CachedConnection* conn =
(CachedConnection*)db->getConnection("username=iopc;password= ←↩

iopc");
conn->open();

CachedConnection needs to have an associated cache. In this scenario we use the basic
cache implementation - the VoidCache - see Section 5.5.3.

Now, we have all the prerequisites we need to be able to manipulate persistent objects. First,
we create some persistent objects and store them in the database.

DbPtr<Person> person;
person->name = "Mary Major";
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person->age = 60;
person.bePersistent(conn);

DbPtr<Employee> employee;
employee->name = "Ola Nordmann";
employee->age = 45;
employee->salary = 60000;
employee.bePersistent(conn);

DbPtr<Student> student;
student->name = "Richard Doe";
student->age = 22;
student->studcardid = "WCD-3223";
student->supervisor = employee;
student.bePersistent(conn);;

DbPtr<PhdStudent> phd;
phd->name = "Joe Bloggs";
phd->age = 27;
phd->studcardid = "PHD-1234";
phd->scholarship = 12000;
phd->supervisor = employee;
phd.bePersistent(conn);
conn->commit();

Transient instance of a persistent class is automatically created by declaring a variable of a
database pointer type as shown in the example. Its attributes are accessible using the ->. The
DbPtr::bePersistent() method then transfers the ownership of the transient instance
to the cache associated with the connection conn. In this case, the VoidCache immediately
inserts the object into corresponding database table.

If we used another cache, the objects might be inserted into the database
later. However, the CachedConnection::commit() method call forces
the associated cache to store all changes (including new objects) into the database
before the actual commit is issued to the database. This update can be invoked
manually by calling CachedConnection::updateDirty(). Actually,
commit calls CachedConnection::updateDirty() to perform the update.
Analogously, CachedConnection::removeAll() is called before
CachedConnection::rollback() to discard all changes or new objects by emptying
the associated cache. (The objects will be loaded from database into the cache again as soon as
they are accessed).

Note that when we assign a database pointer to the supervisor reference attribute, the
database pointer must already point to an instance which is managed by a cache. That means
that DbPtr::bePersistent() must have already been called on the database pointer be-
fore.

Every time we access attributes of a persistent object managed by a cache using the ->
operator, the object is looked up in the cache and returned as a cache pointer - CachePtr.
Then the attribute is accessed and the cache pointer instance is destroyed. If we use the
VoidCache, the object is even loaded from the database every time when the CachePtr is
created and stored back when destroyed. If the object is transient, just the CachePtr is
created and destroyed repeatedly, cache is not used.

107



If we want to prevent such behaviour to speed up repeated access to the persistent object
attributes, we need to store the CachePtr instance into a variable. This can be done in two
ways:

// Using the getCachePtr() method
CachePtr<PhdStudent> phdPtr = phd.getCachePtr();

// or by dereferencing the DbPtr using the * operator:
CachePtr<PhdStudent> phdPtr = *phd;

We may now modify the attributes, the persistent object is locked in the cache. If we want
the cache to take back the control of the persistent object, we must release the cache pointer.
Cache pointer can be released either explicitly by calling the CachePtr::release() or
implicitly by destroying its instance:

// explicitly
CachePtr<PhdStudent> phdPtr = *phd;
phdPtr->scholarship = 13000;
phdPtr->supervisor = employee;
phdPtr.release();

// implicitly:
{
CachePtr<PhdStudent> phdPtr = *phd;
phdPtr->scholarship = 13000;
phdPtr->supervisor = employee;

}

Persistent objects can be locked for read-only access using the
DbPtr::getConstCachePtr() call. We cannot modify the object attributes, but the
advantage is that the cache lock used in this case is not exclusive and the object can be locked
in this way by more threads at a time.

Cache pointers may be copied. The lock is released as soon as last instance of the cache
pointers is released or destroyed. Database pointers may also be copied, the behaviour of the
copies depends on whether we are copying a pointer to a transient object or to an object managed
by a cache. Copies of the transient objects are reference counted. We are not allowed to call
the DbPtr::bePersistent() method if more than one reference pointing exists. In such
case an exception would be thrown.

By creating a copy of a database pointer pointing to a cache managed object, only its identity
(PersistentIdentification) and connection information are copied. If we delete the
object using one of the pointers from cache and from the database and then access its attributes
using different pointer, we get an exception saying that such object could not be found in the
database.

// Copying cache pointers
CachePtr<PhdStudent> phdPtr2 = phdPtr;

// Copying database pointers
DbPtr<PhdStudent> phd2 = phd;

DbPtr provides two additional noteworthy methods - DbPtr::dbDelete() and
DbPtr::cacheDelete(). The first method deletes the persistent object from the database
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as well as from the cache, the second one hints the cache to drop its cached local copy (the hint
may be ignored).

A.8 Querying persistent objects
Before we start with this topic, we need to get familiar with database objects - persistent objects
without an OID, descendants of DatabaseObject. Database objects usually represent query
results from read-only tables or from tables not generated by the IOPC 2 library. They can be
also mapped to database tables which are not part of an IOPC 2 generated schema. As query
results, they do not need to have a database identity, but if they are mapped into some table,
they do. This identity is an instance of the KeyValues class. They contain a list of key-value
pairs which represents any single-attribute or composite (multi-attribute) key.

To illustrate the concept of database objects, we will re-use the previously created table
blacklist:

CREATE TABLE blacklist(id NUMBER PRIMARY KEY, name VARCHAR2(20));
INSERT INTO blacklist VALUES(1, ’Richard Doe’);
INSERT INTO blacklist VALUES(2, ’Ola Nordmann’);

Now we create a database object class BlackListEntry whose instances will represent
rows from that table:

class BlacklistEntry : public iopc::DatabaseObject {
public:
EInt externalId;
EString name;

static void iopcInit(iopc::Type& t) {
t["db.table"].setStringValue("blacklist");
t.getAttribute("externalId")["db.column"].setStringValue("id") ←↩

;
t.getAttribute("externalId")["db.primaryKey"].setBoolValue( ←↩

true);
t.getAttribute("name")["db.type.length"].setIntValue(20);
// not necessary, attribute name and column name are the same:
t.getAttribute("name")["db.column"].setStringValue("name");

}
};

Because the name of the class and the names of its attributes differ from the schema, we
must specify class metadata which describe mapping between this class and the blacklist
table. The metadata can be specified in a configuration file as well (see Section A.3). Metadata
used in this example are listed in the following table:

Metadata Level Description
db.table type Database table associated with the class
db.column attribute Table column associated with the attribute

db.type.length type / attribute

Database column length, maximum number
of characters that can be fetched or stored
from/to database for the associated
type/attribute
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Metadata Level Description
db.primarykey attribute Attribute is part of the class/table primary key

The simplest way to load an object is to pass its OID or key values to the DbPtr constructor.
In the following example, we will load a blacklist entry with id 2:

KeyValues key;
key.add("externalId", 2);
DbPtr<BlacklistEntry> entry(conn, key);
cout << entry->externalId << ": " << entry->name << endl;

Output of the example is:

2: Ola Nordmann

Because the class has identity defined, we can modify the loaded object or even create a new
one:

DbPtr<BlacklistEntry> newEntry;
newEntry->externalId = 3;
newEntry->name = "Mary Major";
newEntry.bePersistent(conn);

Now, to the objects wihtout identity. We create a class that will represent USER_TABLES
view from the Oracle Data Dictionary, and we will use it to list all tables in the current schema.

class UserTable : public iopc::DatabaseObject {
public:
EString tableName;
EString tablespaceName;

static void iopcInit(iopc::Type& t) {
t["db.transient"].setBoolValue(true);
t["db.table"].setStringValue("USER_TABLES");
t.getAttribute("tableName")["db.column"].setStringValue(" ←↩

TABLE_NAME");
t.getAttribute("tableName")["db.type.length"].setIntValue(30);
t.getAttribute("tablespaceName")["db.column"].setStringValue(" ←↩

TABLESPACE_NAME");
t.getAttribute("tablespaceName")["db.type.length"].setIntValue ←↩

(30);
}

};

The db.transientmetadata tells the library that the class is transient and that it does not
have an identity. If we did not specify this metadata, an exception would be thrown during the
library initialisation routine saying that the class needs at least one primary key to be defined.

Basic query that just returns all rows from a table associated with the specified class is very
simple. We do not need to construct any Query objects:

Result<UserTable> userTables(conn);
userTables.open();
for (Result<UserTable>::iterator it = userTables.begin();
it != userTables.end(); it++) {
cout << it->tableName << " " << it->tablespaceName << endl;
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}
userTables.close();

The example lists all tables from the current schema along with tablespaces containing the
tables. Query is executed by calling the Result<T>::open() method, a database cursor is
created. The results can be then iterated as shown in the example. To free the allocated database
cursor, Result<T>::close() must be called when the result is not needed any more.

If we want to filter or to sort the query results, we must create a SimpleQuery instance
and specify our needs. The following example lists the table names in ascending order and
restricts the table results to tables from the USERS tablespace.

SimpleQuery q(
"$::UserTable::tablespaceName$ = ’USERS’", "$::UserTable:: ←↩

tableName$ ASC");
Result<UserTable> userTables(conn, q);
userTables.open();
for (Result<UserTable>::iterator it = userTables.begin();
it != userTables.end(); it++) {
cout << it->tableName << " " << it->tablespaceName << endl;

}
userTables.close();

First parameter of the SimpleQuery constructor filters the query result, it is inserted into
the WHERE part of the resulting SQL query. Second parameter represents the ORDER BY
part. For the query format description please refer to Section 5.5.4.

Finally, database object classes even need not to be bound to one table, they can represent
results of any query. In the following example, we add a columnCount attribute to
the UserTable class to represent number of columns of each table. If we join the
USER_TABLES and USER_TAB_COLS tables, we may calculate the column count by
grouping the results by TABLE_NAME (and TABLESPACE_NAME) and by adding a
COUNT(*) column. The modified UserTable class would look like this:

class UserTable : public iopc::DatabaseObject {
public:
EString tableName;
EString tablespaceName;
EInt columnCount;

static void iopcInit(iopc::Type& t) {
t["db.transient"].setBoolValue(true);
t.getAttribute("tableName")["db.column"].setStringValue(" ←↩

TABLE_NAME");
t.getAttribute("tableName")["db.type.length"].setIntValue(30);
t.getAttribute("tablespaceName")["db.column"].setStringValue(" ←↩

TABLESPACE_NAME");
t.getAttribute("tablespaceName")["db.type.length"].setIntValue ←↩

(30);
t.getAttribute("columnCount")["db.column.sql"].setStringValue ←↩

("COUNT(*)");
// Not necessary:
t.getAttribute("columnCount")["db.column"].setStringValue(" ←↩

COLUMN_COUNT");
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}
};

The db.table metadata was removed. The db.column.sql metadata specifies the
column expression used to select value for this attribute. It is rendered as COUNT(*) AS
column_name.

Instead of SimpleQuery we now use a FreeQuery instance because it allows us to
specify everything after the FROM keyword in the SQL SELECT statement:

FreeQuery q("USER_TABLES JOIN USER_TAB_COLS USING (TABLE_NAME) ←↩
GROUP BY TABLESPACE_NAME, TABLE_NAME");

Result<UserTable> userTables(conn, q);
userTables.open();
for (Result<UserTable>::iterator it = userTables.begin();
it != userTables.end(); it++) {
cout << it->tableName << " " << it->tablespaceName << " "

<< it->columnCount << endl;
}
userTables.close();

The resulting SELECT statement will be:

SELECT
COUNT(*) AS COLUMN_COUNT,
TABLE_NAME,
TABLESPACE_NAME

FROM
USER_TABLES JOIN USER_TAB_COLS USING (TABLE_NAME)

GROUP BY
TABLESPACE_NAME,
TABLE_NAME

OID objects are queried in a similar way. To illustrate it, we list all persons in our database
who are older than 30:

SimpleQuery q("$::Person::age$ >= 30");
Result<Person> r(conn, q);
r.open();
for (Result<Person>::iterator it = r.begin(); it != r.end(); it++) ←↩

{
cout << "name: " << it->name << " age: " << it->age << endl;

}
r.close();

Output of the example is:

name: Mary Major age: 60
name: Ola Nordmann age: 45

As you see, the query selects from the polymorphic views, so even the Person descendants
are returned. To select only the Person instances we must change the query to FreeQuery
and specify the corresponding simple view name from which to select:

FreeQuery q2("$::Person[db.view.sv]$ WHERE $::Person[db.view.sv]:: ←↩
age$ >= 30");
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// SQL executed:
SELECT OID FROM Person_SV WHERE Person_SV.Person_age >= 30

Only OID column is selected for OID objects because selected objects may be present in
the cache. Full object is then either obtained from the cache or loaded from database when
accessed5.

A.9 Caching
Setting up the cache layer is quite complicated topic. Because it was already described in user
guide in [3] we will provide only a few basic examples.

In the previous sections we learned how to use the VoidCache. Similarly we could use the
single-threaded variants of the other two cache implementations provided - the ArcCacheST
and LruCacheST caches:

db = new CachedDatabase(
DriverManager::getDriver("IopcOracle10g").getDatabase("XE"),
new HashArcCacheST());

db = new CachedDatabase(
DriverManager::getDriver("IopcOracle10g").getDatabase("XE"),
new HashLruCacheST());

To take advantage of the cache/strategy selector facade and asynchronous cache
maintenance provided by CacheKeeper we must first associate the ComposedCache (no
other cache) with the connections. Then we will define cache and strategy selection rules (see
Section 5.5.3) on each connection and start the maintainer thread:

db = new CachedDatabase(
DriverManager::getDriver("IopcOracle10g").getDatabase("XE"),
new ComposedCache());

conn = (CachedConnection*)db->getConnection(
"username=iopc;password=iopc;autocommit=false");

CacheKeeper cacheKeeper(-15000, 100, 200);
cacheKeeper.setCache(conn, TypeDesc<Employee>::getType(), new ←↩

HashArcCache());
cacheKeeper.setCache(conn, new HashLruCache());
cacheKeeper.setStrategy(conn, Strategy::lazy);
cacheKeeper.runMaintainer();

In the example, we associated the HashArcCache (multithreaded variant) with the
Employee class. Instances of this class manipulated on the conn connection will use this
cache. All other persistent objects will use the default HashLruCache. The lazy strategy
will be used for objects of all types. For other strategy types and their descriptions see [3].
CacheKeeper constructor allows to specify maximum cache capacities and other parameters
that influence the cache maintenance.

5In the future, users should be able to choose whether to load full copies from the query results or use the
mechanism currently implemented.
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Appendix B

Sample schema SQL scripts

SQL scripts generated from the class model defined in Section 2.2:

class Person : public iopc::OidObject {
public:
EShort age;
EString name;

};

class Employee : public Person {
public:
EInt salary;

};

class Student : public Person {
public:
EString studcardid;

};

class PhdStudent : public Student {
public:
short int scholarship;

};

Class mapping uses the following settings. For the format definition see Section A.3
Person and Employee use vertical mapping, Student uses horizontal mapping,

PhdStudent uses filtered mapping. Its attributes are inserted into Student.

::Person[db.mapping.type];string;vertical
::Student[db.mapping.type];string;horizontal
::PhdStudent[db.mapping.type];string;filtered
::PhdStudent[db.mapping.insertto];string;::Student
::Employee[db.mapping.type];string;vertical
iopc::EString[db.type.length];int;50

CREATE SEQUENCE OIDSEQ MINVALUE 1 START WITH 1 INCREMENT BY 1 ←↩
CACHE 20 NOCYCLE;

CREATE SEQUENCE SERIALSEQ MINVALUE 1 START WITH 1 INCREMENT BY 1 ←↩
CACHE 20 NOCYCLE;
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CREATE TABLE OidObject (
CLASSNAME VARCHAR2(1000), OID NUMBER(10), SERIALID NUMBER(10),
CONSTRAINT OidObject_pk PRIMARY KEY (OID))

CREATE INDEX OidObject_idxcn ON OidObject (CLASSNAME);

CREATE TABLE Person (
age NUMBER(5), name VARCHAR2(50), OID NUMBER(10),
CONSTRAINT Person_OID_fk FOREIGN KEY (OID) REFERENCES OidObject( ←↩

OID),
CONSTRAINT Person_pk PRIMARY KEY (OID));

CREATE TABLE Student (
studcardid VARCHAR2(50), age NUMBER(5), name VARCHAR2(50), ←↩

scholarship NUMBER(5), OID NUMBER(10),
CONSTRAINT Student_OID_fk FOREIGN KEY (OID) REFERENCES OidObject ←↩

(OID),
CONSTRAINT Student_pk PRIMARY KEY (OID));

CREATE TABLE Employee (
salary NUMBER(10), OID NUMBER(10),
CONSTRAINT Employee_OID_fk FOREIGN KEY (OID) REFERENCES ←↩

OidObject(OID),
CONSTRAINT Employee_pk PRIMARY KEY (OID));

CREATE VIEW OidObject_SV AS (
SELECT
OidObject.CLASSNAME AS CLASSNAME, OidObject.OID AS OID, ←↩

OidObject.SERIALID AS SERIALID
FROM OidObject
WHERE OidObject.CLASSNAME = ’iopc::OidObject’);

CREATE VIEW Person_SV AS (
SELECT
Person.age AS Person_age, Person.name AS Person_name,
OidObject.CLASSNAME AS CLASSNAME, OidObject.OID AS OID, ←↩

OidObject.SERIALID AS SERIALID
FROM Person INNER JOIN OidObject ON (Person.OID = OidObject.OID)
WHERE OidObject.CLASSNAME = ’::Person’);

CREATE VIEW Student_SV AS (
SELECT
Student.studcardid AS Student_studcardid,
Student.age AS Person_age, Student.name AS Person_name,
OidObject.CLASSNAME AS CLASSNAME, OidObject.OID AS OID, ←↩

OidObject.SERIALID AS SERIALID
FROM Student INNER JOIN OidObject ON (Student.OID = OidObject.OID)
WHERE OidObject.CLASSNAME = ’::Student’);

CREATE VIEW PhdStudent_SV AS (
SELECT
Student.studcardid AS Student_studcardid,
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Student.age AS Person_age, Student.name AS Person_name,
Student.scholarship AS PhdStudent_scholarship,
OidObject.CLASSNAME AS CLASSNAME, OidObject.OID AS OID, ←↩

OidObject.SERIALID AS SERIALID
FROM Student INNER JOIN OidObject ON (Student.OID = OidObject.OID)
WHERE OidObject.CLASSNAME = ’::PhdStudent’);

CREATE VIEW Employee_SV AS (
SELECT
Employee.salary AS Employee_salary,
Person.age AS Person_age, Person.name AS Person_name,
OidObject.CLASSNAME AS CLASSNAME, OidObject.OID AS OID, ←↩

OidObject.SERIALID AS SERIALID
FROM Employee INNER JOIN
Person ON (Employee.OID = Person.OID) INNER JOIN
OidObject ON (Employee.OID = OidObject.OID)

WHERE OidObject.CLASSNAME = ’::Employee’);

CREATE VIEW Employee_PV AS (
SELECT
Employee.salary AS Employee_salary,
Person.age AS Person_age, Person.name AS Person_name,
OidObject.CLASSNAME AS CLASSNAME, OidObject.OID AS OID, ←↩

OidObject.SERIALID AS SERIALID
FROM Employee INNER JOIN
Person ON (Employee.OID = Person.OID) INNER JOIN
OidObject ON (Employee.OID = OidObject.OID));

CREATE VIEW PhdStudent_PV AS (
SELECT
Student.studcardid AS Student_studcardid,
Student.age AS Person_age, Student.name AS Person_name,
Student.scholarship AS PhdStudent_scholarship,
OidObject.CLASSNAME AS CLASSNAME, OidObject.OID AS OID, ←↩

OidObject.SERIALID AS SERIALID
FROM Student INNER JOIN OidObject ON (Student.OID = OidObject.OID)
WHERE OidObject.CLASSNAME IN (’::PhdStudent’));

CREATE VIEW Student_PV AS (
SELECT
Student.studcardid AS Student_studcardid,
Student.age AS Person_age, Student.name AS Person_name,
OidObject.CLASSNAME AS CLASSNAME, OidObject.OID AS OID, ←↩

OidObject.SERIALID AS SERIALID
FROM Student INNER JOIN OidObject ON (Student.OID = OidObject.OID) ←↩

);

CREATE VIEW Person_PV AS (
SELECT
Person.age AS Person_age, Person.name AS Person_name,
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OidObject.CLASSNAME AS CLASSNAME, OidObject.OID AS OID, ←↩
OidObject.SERIALID AS SERIALID

FROM Person INNER JOIN OidObject ON (Person.OID = OidObject.OID)
UNION ALL
SELECT
Student.age AS Person_age, Student.name AS Person_name,
OidObject.CLASSNAME AS CLASSNAME, OidObject.OID AS OID, ←↩

OidObject.SERIALID AS SERIALID
FROM Student INNER JOIN OidObject ON (Student.OID = OidObject.OID) ←↩

);

CREATE VIEW OidObject_PV AS (SELECT * FROM OidObject);

ADT mapping is set on all classes. ADT hierarchy root is OidObject.

iopc::OidObject[db.mapping.type];string;object
::Person[db.mapping.type];string;object
::Student[db.mapping.type];string;object
::PhdStudent[db.mapping.type];string;object
::Employee[db.mapping.type];string;object
iopc::EString[db.type.length];int;50

CREATE SEQUENCE OIDSEQ MINVALUE 1 START WITH 1 INCREMENT BY 1 ←↩
CACHE 20 NOCYCLE;

CREATE SEQUENCE SERIALSEQ MINVALUE 1 START WITH 1 INCREMENT BY 1 ←↩
CACHE 20 NOCYCLE;

CREATE OR REPLACE TYPE tOidObject AS OBJECT (
OID NUMBER(10), CLASSNAME VARCHAR2(1000), SERIALID NUMBER(10),
STATIC PROCEDURE insert_object(p_OID NUMBER, p_CLASSNAME ←↩

VARCHAR2, p_SERIALID NUMBER),
STATIC PROCEDURE update_object(p_OID NUMBER, p_CLASSNAME ←↩

VARCHAR2, p_SERIALID NUMBER),
STATIC PROCEDURE delete_object(p_OID NUMBER) ) NOT FINAL;

CREATE TABLE OidObject OF tOidObject (
CONSTRAINT OidObject_pk PRIMARY KEY (OID) );

CREATE OR REPLACE TYPE BODY tOidObject AS
STATIC PROCEDURE insert_object(p_OID NUMBER, p_CLASSNAME ←↩

VARCHAR2, p_SERIALID NUMBER) IS
BEGIN INSERT INTO OidObject VALUES(tOidObject(p_OID, ←↩

p_CLASSNAME, p_SERIALID)); END;
STATIC PROCEDURE update_object(p_OID NUMBER, p_CLASSNAME ←↩

VARCHAR2, p_SERIALID NUMBER) IS
BEGIN UPDATE OidObject X SET VALUE(X) = NEW tOidObject(p_OID, ←↩

p_CLASSNAME, p_SERIALID) WHERE X.OID = p_OID; END;
STATIC PROCEDURE delete_object(p_OID NUMBER) IS

BEGIN DELETE FROM OidObject WHERE OID = p_OID; END; END;

CREATE INDEX OidObject_idxcn ON OidObject (CLASSNAME);
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CREATE OR REPLACE TYPE tPerson UNDER tOidObject (
age NUMBER(5), name VARCHAR2(50),
STATIC PROCEDURE insert_object(p_OID NUMBER, p_CLASSNAME ←↩

VARCHAR2, p_SERIALID NUMBER, p_age NUMBER, p_name VARCHAR2),
STATIC PROCEDURE update_object(p_OID NUMBER, p_CLASSNAME ←↩

VARCHAR2, p_SERIALID NUMBER, p_age NUMBER, p_name VARCHAR2),
STATIC PROCEDURE delete_object(p_OID NUMBER) ) NOT FINAL;

CREATE OR REPLACE TYPE BODY tPerson AS
STATIC PROCEDURE insert_object(p_OID NUMBER, p_CLASSNAME ←↩

VARCHAR2, p_SERIALID NUMBER, p_age NUMBER, p_name VARCHAR2) ←↩
IS BEGIN

INSERT INTO OidObject VALUES(tPerson(p_OID, p_CLASSNAME, ←↩
p_SERIALID, p_age, p_name)); END;

STATIC PROCEDURE update_object(p_OID NUMBER, p_CLASSNAME ←↩
VARCHAR2, p_SERIALID NUMBER, p_age NUMBER, p_name VARCHAR2) ←↩
IS BEGIN

UPDATE OidObject X SET VALUE(X) = NEW tPerson(p_OID, ←↩
p_CLASSNAME, p_SERIALID, p_age, p_name) WHERE X.OID = p_OID ←↩
; END;

STATIC PROCEDURE delete_object(p_OID NUMBER) IS BEGIN
DELETE FROM OidObject WHERE OID = p_OID; END; END;

CREATE OR REPLACE TYPE tStudent UNDER tPerson ( studcardid ←↩
VARCHAR2(50),

STATIC PROCEDURE insert_object(p_OID NUMBER, p_CLASSNAME ←↩
VARCHAR2, p_SERIALID NUMBER, p_age NUMBER, p_name VARCHAR2, ←↩
p_studcardid VARCHAR2),

STATIC PROCEDURE update_object(p_OID NUMBER, p_CLASSNAME ←↩
VARCHAR2, p_SERIALID NUMBER, p_age NUMBER, p_name VARCHAR2, ←↩
p_studcardid VARCHAR2),

STATIC PROCEDURE delete_object(p_OID NUMBER) ) NOT FINAL;

CREATE OR REPLACE TYPE BODY tStudent AS
STATIC PROCEDURE insert_object(p_OID NUMBER, p_CLASSNAME ←↩

VARCHAR2, p_SERIALID NUMBER, p_age NUMBER, p_name VARCHAR2, ←↩
p_studcardid VARCHAR2) IS BEGIN

INSERT INTO OidObject VALUES(tStudent(p_OID, p_CLASSNAME, ←↩
p_SERIALID, p_age, p_name, p_studcardid)); END;

STATIC PROCEDURE update_object(p_OID NUMBER, p_CLASSNAME ←↩
VARCHAR2, p_SERIALID NUMBER, p_age NUMBER, p_name VARCHAR2, ←↩
p_studcardid VARCHAR2) IS BEGIN

UPDATE OidObject X SET VALUE(X) = NEW tStudent(p_OID, ←↩
p_CLASSNAME, p_SERIALID, p_age, p_name, p_studcardid) WHERE ←↩
X.OID = p_OID; END;

STATIC PROCEDURE delete_object(p_OID NUMBER) IS BEGIN
DELETE FROM OidObject WHERE OID = p_OID; END; END;

CREATE OR REPLACE TYPE tPhdStudent UNDER tStudent ( scholarship ←↩
NUMBER(5),
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STATIC PROCEDURE insert_object(p_OID NUMBER, p_CLASSNAME ←↩
VARCHAR2, p_SERIALID NUMBER, p_age NUMBER, p_name VARCHAR2, ←↩
p_studcardid VARCHAR2, p_scholarship NUMBER),

STATIC PROCEDURE update_object(p_OID NUMBER, p_CLASSNAME ←↩
VARCHAR2, p_SERIALID NUMBER, p_age NUMBER, p_name VARCHAR2, ←↩
p_studcardid VARCHAR2, p_scholarship NUMBER),

STATIC PROCEDURE delete_object(p_OID NUMBER) ) NOT FINAL;

CREATE OR REPLACE TYPE BODY tPhdStudent AS
STATIC PROCEDURE insert_object(p_OID NUMBER, p_CLASSNAME ←↩

VARCHAR2, p_SERIALID NUMBER, p_age NUMBER, p_name VARCHAR2, ←↩
p_studcardid VARCHAR2, p_scholarship NUMBER) IS BEGIN

INSERT INTO OidObject VALUES(tPhdStudent(p_OID, p_CLASSNAME, ←↩
p_SERIALID, p_age, p_name, p_studcardid, p_scholarship)); ←↩
END;

STATIC PROCEDURE update_object(p_OID NUMBER, p_CLASSNAME ←↩
VARCHAR2, p_SERIALID NUMBER, p_age NUMBER, p_name VARCHAR2, ←↩
p_studcardid VARCHAR2, p_scholarship NUMBER) IS BEGIN

UPDATE OidObject X SET VALUE(X) = NEW tPhdStudent(p_OID, ←↩
p_CLASSNAME, p_SERIALID, p_age, p_name, p_studcardid, ←↩
p_scholarship) WHERE X.OID = p_OID; END;

STATIC PROCEDURE delete_object(p_OID NUMBER) IS BEGIN
DELETE FROM OidObject WHERE OID = p_OID; END; END;

CREATE OR REPLACE TYPE tEmployee UNDER tPerson ( salary NUMBER(10) ←↩
,

STATIC PROCEDURE insert_object(p_OID NUMBER, p_CLASSNAME ←↩
VARCHAR2, p_SERIALID NUMBER, p_age NUMBER, p_name VARCHAR2, ←↩
p_salary NUMBER),

STATIC PROCEDURE update_object(p_OID NUMBER, p_CLASSNAME ←↩
VARCHAR2, p_SERIALID NUMBER, p_age NUMBER, p_name VARCHAR2, ←↩
p_salary NUMBER),

STATIC PROCEDURE delete_object(p_OID NUMBER) ) NOT FINAL;

CREATE OR REPLACE TYPE BODY tEmployee AS
STATIC PROCEDURE insert_object(p_OID NUMBER, p_CLASSNAME ←↩

VARCHAR2, p_SERIALID NUMBER, p_age NUMBER, p_name VARCHAR2, ←↩
p_salary NUMBER) IS BEGIN

INSERT INTO OidObject VALUES(tEmployee(p_OID, p_CLASSNAME, ←↩
p_SERIALID, p_age, p_name, p_salary)); END;

STATIC PROCEDURE update_object(p_OID NUMBER, p_CLASSNAME ←↩
VARCHAR2, p_SERIALID NUMBER, p_age NUMBER, p_name VARCHAR2, ←↩
p_salary NUMBER) IS BEGIN

UPDATE OidObject X SET VALUE(X) = NEW tEmployee(p_OID, ←↩
p_CLASSNAME, p_SERIALID, p_age, p_name, p_salary) WHERE X. ←↩
OID = p_OID; END;

STATIC PROCEDURE delete_object(p_OID NUMBER) IS BEGIN
DELETE FROM OidObject WHERE OID = p_OID; END; END;

CREATE VIEW OidObject_SV AS (
SELECT
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TREAT(VALUE(X) AS tOidObject).OID AS OID, TREAT(VALUE(X) AS ←↩
tOidObject).CLASSNAME AS CLASSNAME, TREAT(VALUE(X) AS ←↩
tOidObject).SERIALID AS SERIALID

FROM OidObject X
WHERE X.CLASSNAME = ’iopc::OidObject’);

CREATE VIEW Person_SV AS (
SELECT
TREAT(VALUE(X) AS tPerson).OID AS OID,
TREAT(VALUE(X) AS tPerson).age AS Person_age, TREAT(VALUE(X) AS ←↩

tPerson).name AS Person_name,
TREAT(VALUE(X) AS tPerson).CLASSNAME AS CLASSNAME, TREAT(VALUE(X ←↩

) AS tPerson).SERIALID AS SERIALID
FROM OidObject X WHERE X.CLASSNAME = ’::Person’);

CREATE VIEW Student_SV AS (
SELECT
TREAT(VALUE(X) AS tStudent).OID AS OID,
TREAT(VALUE(X) AS tStudent).studcardid AS Student_studcardid, ←↩

TREAT(VALUE(X) AS tStudent).age AS Person_age, TREAT(VALUE(X) ←↩
AS tStudent).name AS Person_name,

TREAT(VALUE(X) AS tStudent).CLASSNAME AS CLASSNAME, TREAT(VALUE( ←↩
X) AS tStudent).SERIALID AS SERIALID

FROM OidObject X WHERE X.CLASSNAME = ’::Student’);

CREATE VIEW PhdStudent_SV AS (
SELECT
TREAT(VALUE(X) AS tPhdStudent).OID AS OID,
TREAT(VALUE(X) AS tPhdStudent).scholarship AS ←↩

PhdStudent_scholarship,
TREAT(VALUE(X) AS tPhdStudent).studcardid AS Student_studcardid, ←↩

TREAT(VALUE(X) AS tPhdStudent).age AS Person_age, TREAT( ←↩
VALUE(X) AS tPhdStudent).name AS Person_name,

TREAT(VALUE(X) AS tPhdStudent).CLASSNAME AS CLASSNAME, TREAT( ←↩
VALUE(X) AS tPhdStudent).SERIALID AS SERIALID

FROM OidObject X WHERE X.CLASSNAME = ’::PhdStudent’);

CREATE VIEW Employee_SV AS (
SELECT
TREAT(VALUE(X) AS tEmployee).OID AS OID,
TREAT(VALUE(X) AS tEmployee).salary AS Employee_salary,
TREAT(VALUE(X) AS tEmployee).age AS Person_age, TREAT(VALUE(X) ←↩

AS tEmployee).name AS Person_name,
TREAT(VALUE(X) AS tEmployee).CLASSNAME AS CLASSNAME, TREAT(VALUE ←↩

(X) AS tEmployee).SERIALID AS SERIALID
FROM OidObject X WHERE X.CLASSNAME = ’::Employee’);

CREATE VIEW Employee_PV AS (
SELECT
TREAT(VALUE(X) AS tEmployee).OID AS OID,
TREAT(VALUE(X) AS tEmployee).salary AS Employee_salary,
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TREAT(VALUE(X) AS tEmployee).age AS Person_age, TREAT(VALUE(X) ←↩
AS tEmployee).name AS Person_name,

TREAT(VALUE(X) AS tEmployee).CLASSNAME AS CLASSNAME, TREAT(VALUE ←↩
(X) AS tEmployee).SERIALID AS SERIALID

FROM OidObject X WHERE VALUE(X) IS OF (tEmployee));

CREATE VIEW PhdStudent_PV AS (
SELECT
TREAT(VALUE(X) AS tPhdStudent).OID AS OID,
TREAT(VALUE(X) AS tPhdStudent).scholarship AS ←↩

PhdStudent_scholarship,
TREAT(VALUE(X) AS tPhdStudent).studcardid AS Student_studcardid, ←↩

TREAT(VALUE(X) AS tPhdStudent).age AS Person_age, TREAT( ←↩
VALUE(X) AS tPhdStudent).name AS Person_name,

TREAT(VALUE(X) AS tPhdStudent).CLASSNAME AS CLASSNAME, TREAT( ←↩
VALUE(X) AS tPhdStudent).SERIALID AS SERIALID

FROM OidObject X WHERE VALUE(X) IS OF (tPhdStudent));

CREATE VIEW Student_PV AS (
SELECT TREAT(VALUE(X) AS tStudent).OID AS OID,
TREAT(VALUE(X) AS tStudent).studcardid AS Student_studcardid, ←↩

TREAT(VALUE(X) AS tStudent).age AS Person_age, TREAT(VALUE(X) ←↩
AS tStudent).name AS Person_name,

TREAT(VALUE(X) AS tStudent).CLASSNAME AS CLASSNAME, TREAT(VALUE( ←↩
X) AS tStudent).SERIALID AS SERIALID

FROM OidObject X WHERE VALUE(X) IS OF (tStudent));

CREATE VIEW Person_PV AS (
SELECT TREAT(VALUE(X) AS tPerson).OID AS OID,
TREAT(VALUE(X) AS tPerson).age AS Person_age, TREAT(VALUE(X) AS ←↩

tPerson).name AS Person_name,
TREAT(VALUE(X) AS tPerson).CLASSNAME AS CLASSNAME, TREAT(VALUE(X ←↩

) AS tPerson).SERIALID AS SERIALID
FROM OidObject X WHERE VALUE(X) IS OF (tPerson));

CREATE VIEW OidObject_PV AS (SELECT * FROM OidObject);

There is a problem in Oracle 10g in execution of porymorphic views belonging to classes
that use ADT mapping. In some scenarios the predicate WHERE VALUE(X) IS OF
(tType) AND (X.Property_of_Type_tType oper Value) is evaluated
incorrectly and no rows are returned from those queries regardless if part of the query is
hidden in the view or not. For this reason the following global setting can be used:

globals[db.oracle.workaround.10gOO];bool;true

When the workaround is enabled, the WHERE clause in Polymorphic views is generated in
the following way:

WHERE X.OID IN (SELECT Y.OID FROM OidObject Y WHERE VALUE(Y) IS OF ←↩
(tType))

The problem is fixed in Oracle 11g.
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Appendix C

Metadata overview

Metadata Level Type Description

db.column attribute string
Table column associated with the
attribute. Default value: name of the
attribute.

db.column.sql attribute string

Specifies the column expression used to
select value for the attribute. Used in
transient classes which represent query
results. See Section A.8.

db.index attribute string

If specified, the SQL CREATE script
will create index on the attribute. The
index will be named as the value of this
metadata.

db.index.unique attribute string

If specified, the SQL CREATE script
will create unique index on the attribute.
The index will be named as the value of
this metadata.

db.mapping.
insertto

attribute string
If filtered mapping is used, this metadata
specifies the destination table/class for
the class attributes.

db.mapping.type type string

Mapping type for the associated class.
Allowed values are: vertical, horizontal,
filtered, object. If filtered is used,
db.mapping.insertto must be specified.
Default value: vertical

db.oracle.
oidSequence.name

global
settings

string
Name of the OID sequence. Default
Value: OIDSEQ

db.oracle.
serialIdSequence.
name

global
settings

string
Name of the SERIAL ID sequence.
Default Value: SERIALSEQ

db.oracle.
type.sql

type string

SQL type string used in CREATE
TABLE statements as column type.
Used by the IopcOracle10g driver.
Default values are generated by the
driver.
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Metadata Level Type Description

db.oracle.
type.sql.param

type string

SQL type string used as parameter type.
Used by the IopcOracle10g driver.
Default values are generated by the
driver.

db.oracle.
workaround.10gOO

global
settings

bool
ADT polymorphic views are generated
in a different way to work around a bug
in Oracle 10g. See Appendix B.

db.primarykey attribute bool
Attribute is part of the class/table
primary key.

db.query.skip query N/A

When used as class metadata in a query
statement like this: WHERE
x$::Class[db.query.skip]::
attribute$ = 1 the table qualifier
is skipped and only the column name is
rendered: WHERE x.attribute =
1

db.table type string
Database table associated with the class.
Default value: name of the class

db.transient
type /
attribute

bool

Type level - tells the library that the class
is transient and that it does not have an
identity. Attribute level - attribute is
transient, it is not mapped on any
database column. Default value: false

db.type type string
Database type associated with the class.
Default value is tClassName.

db.type.length
type /
attribute

int

Database column length, maximum
number of characters that can be fetched
or stored from/to database for the
associated type/attribute. Default value:
2000 (for all string types)

db.type.notNull
type /
attribute

string
Corresponding database table columns
will be generated as NOT NULL by the
ScriptsGenerator.

db.view.pv type string
Name of the associated polymorphic
view. Default value: [db.table]_PV

db.view.sv type string
Name of the associated simple view.
Default value: [db.table]_SV

db.viewColumn attribute string
View column associated with the
attribute. Applies to all views. Default
value: [db.column]

scripts.exclude type bool
No SQL CREATE or DROP scripts are
generated for the class.
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Appendix D

DVD content

• docs/ - library documentation

• iopc/ - source code of the library and examples ready for a Makefile build

– build/ - build of the library and examples

– compile_scripts/ - IOPC SP compile scripts for Makefile build and for
Eclipse CDT managed build

– examples/ - examples source files

– include/ - library header files

– src/ - library source files

– Makefile - master makefile

• VM/ - a VMWare image with pre-installed environment:

– Ubuntu Linux 8.10

– Oracle XE database (Oracle 10g family)

– GCC 4.3.2

– GCCXML - CVS snapshot from 2008-12-22

– Xerces-C++ 2.8.0-2

– Eclipse Platform 3.4.1 with Eclipse C/C++ Development Tools 5.0.1

– GNOME Desktop 2.24.1

To run the virtual machine, you need VMWare Player1 or other VMWare product capable
of running VMWare virtual machines.

Detailed description of the installed environment can be found in readme.txt located
on the iopc user’s desktop. The iopc user is logged on automatically after machine
start up.

• workspace_examples/ - Eclipse CDT projects containing examples from
Appendix A

• workspace_iopc2/ - Eclipse CDT projects containing IOPC 2 library source code

• thesis.pdf - this thesis

1http://www.vmware.com/products/player/
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