Title: Measurement of transverse relaxation using spin echo methods

Author: MUDr. Antonín Škoch, Ph.D.

Department: Department of Low Temperature Physics

Supervisor: RNDr. Zdeněk Tošner, Ph.D.

NMR laboratory, of Faculty of science, Charles University in Prague Supervisor's e-mail address: tosner@karlov.mff.cuni.cz

Abstract:

The study of T_2 relaxation in systems with homonuclear J-coupling is complicated by modulation in the relaxation curve. This J-modulation can be removed when CPMG sequence is used and the period of repetition of refocusing pulse τ fulfils a condition

$$\tau \ll \frac{1}{\Delta \nu} \tag{1}$$

where Δv is the frequency difference of coupled nuclei. However, the condition (1) cannot be in practice always fulfilled. The aim of this work was to investigate J-modulation and relaxation behaviour of homonuclear J-coupled system in various parameters of CPMG sequence. Simulations based on numerical solution of Liouville-von Neumann equation and Redfield theory were performed. Relaxation curves of CH₂ group of citrate were measured on high-resolution NMR spectrometer. It was found that the suppression of J-modulation can be achieved also for τ longer than required by the condition (1) providing that the refocusing angle in CPMG for both J-coupling partners $\theta \neq 180^{\circ}$. The simulations yielded conditions for τ when J-modulation vanishes (decoupling)

$$\tau_{rec} = \frac{2k - 1}{\Delta v}, \, k = 1, 2, 3, \dots$$
 (2)

and when it is maximal (recoupling)

$$\tau_{dec} = \frac{2k}{\Delta \nu}, k = 1, 2, 3, ...$$
 (3)

The decoupling is systematically worse in strong coupling and worsening of decoupling in τ_{dec} was observed when k is increased. The simulation of relaxation showed no significant difference in T_2 from its expecting value.

Keywords: NMR, J-coupling, T₂ relaxation, CPMG, citrate