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Abstract: Commercially available quartz tuning forks produced as frequency standards for
digital watches are used as multipurpose tools for cryogenic flow dynamics, thanks to their
sensitivity to probe the flow of surrounding fluids. In linear (i.e., laminar) regime they can
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Chapter 1

Introduction

Helium. Proton number 2, molecular mass 4.00 g/mol, electron configuration
1s2. This is the summary of the facts about the second most abundant
element in the Universe that are available to most people as they are listed
in every periodic table. Unfortunately, none of these facts can give us even
the slightest idea of the wide variety of extremely unusual and fascinating
properties that the isotopes of this seemingly simple noble gas can display.

In chemistry, we are usually taught that Helium is a noble gas which
forms monatomic molecules and that it’s presence was first discovered in
the Sun’s emission spectrum. If we are lucky, we also learn that two stable
isotopes of Helium exist, namely *He and *He, whose nuclei consist of two
protons accompanied by one or two additional neutrons respectively. How-
ever, most students never find out about the most intriguing phenomenon
associated with Helium - superfluidity. Perhaps this is because Helium be-
comes superfluid only at extremely low temperatures, unattainable without
specialised cryogenic equipment, or it is due to the fact, that the fundamen-
tal principles governing the behaviour of superfluid Helium are still far from
being fully understood.

Since presenting the full array of extraordinary properties the Helium
isotopes exhibit is well beyond the scope of this work, we will concentrate
only on the flow properties of *He (further on, Helium and He will always
refer to “He), and especially on the transition from laminar to turbulent
flows in its gaseous, liquid (He I) and superfluid (He II) phases. As the title
suggests, these properties will be studied using a tool called the quartz tuning
fork, which will be introduced once we learn something about “He in general
and after we become familiar with the basics of continuum hydrodynamics.



Chapter 2

Basic Properties of Cryogenic
Helium

The principal aim of this Chapter is to provide the reader with a concise
overview of the basic properties of the Helium gas and liquids. Due to spatial
restrictions, the properties will not be derived from all the underlying laws
but instead they will be presented "as is", stressing rather facts than equa-
tions. Further information including a thorough and rigorous calculation is
available in the referenced literature.

At room temperature, He obeys the Maxwell-Boltzmann distribution,
behaves like any other ordinary gas and nothing extraordinary happens. In-
teresting phenomena arise at low temperatures where the bosonic nature
of He atoms becomes prominent. What is however interesting about the
classical He gas and liquid, is its thermodynamic and hydrodynamic prop-
erties, namely the most important parameter of any flow experiment, the
kinematic viscosity, which can be varied over orders of magnitude simply
by changing temperature and pressure and can reach much lower values in
liquid He than eg. in air or water. For tabulated values of various quantities
describing cryogenic Helium including its viscosity, see [1].

If we have a close look at the phase diagram of Helium (Fig. 2.1), we will
immediately notice two striking features which no other substance exhibits
and which are therefore unique to Helium - first, there is no triple point and
second, the transition to a superfluid phase. No matter how deep we cool
liquid helium at pressures below 25 bar, it will never freeze and will stay
liquid till the absolute zero, however at the temperature of about 2.17 K
something very strange will happen.
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Figure 2.1: Phase diagram of *He

If we observed this cooling in a glass cryostat, we would notice that
the violently moving level of the previously boiling helium suddenly forms
a smooth surface (actually, with the precision of a monatomic layer, the
smoothest natural surface ever). This could be explained by an extremely
high heat conductivity and if we measured it, we would find that it is indeed
at least six orders of magnitude larger than above this temperature. However,
our greatest surprise would most likely be, that if we tried to measure the
pressure drop in a He flow through a tiny orifice, we would find out that there
is none at all, which would imply zero viscosity! This leads to the fact, that
unlike normal viscous fluids, this He can flow even through infinitesimally
small holes. Another surprising discovery would undoubtedly be the fact,
that Helium below 2.17 K wets any substance except Cesium ideally, forming
a thin film on its surface. The flow of this film can cause entire vessels of
He to empty simply by passing over their walls. These are but a few of the
variety of seemingly strange effects that take place in Helium below this
temperature. But what really happens? Is there a theory which can explain
them all?

What we know for sure is, that the event occurring at 2.17 K is a second
order phase transition between normal He liquid (historically called He I) and
so-called superfluid Helium (historically also called He II). It is fair to state,
that despite the long time since the discovery of He II in the 1930’s, there
is still no microscopic theory today which would describe its behaviour in a
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Figure 2.2: Landau model - Quasiparticle energy dispersion spectrum

comprehensive way. Not that we would not have enough theories, but either
they are lacking accuracy of description or they just happen to be purely
phenomenological. Two of these theories, specifically the Landau two-fluid
model and Bose-Einstein condensation, will be introduced in greater detail,
as their understanding will be necessary for further considerations.

2.1 Landau Two-Fluid Model

This phenomenological theory is based on the premise that He II can be
described as an inseparable mixture of two constituents - the normal com-
ponent, which behaves like classical fluids and the superfluid component,
which has zero viscosity and entropy. Within the standard Landau model,
these components do not interact. The sum of their densities correspond
to the total density of He II and their ratio was first established from the
famous Andronikashvili experiment (see Fig. 2.3) and later theoretically,
following from the dispersion spectrum of quasiparticle excitations in He II
(Fig. 2.2) which was first guessed by the famous Russian theoretician Lan-
dau and later proved by neutron diffraction. The relative densities depend
solely on temperature and this dependence is illustrated in Fig. 2.3.

The standard two-fluid model is a very powerful tool for describing basic
He II flow properties and wave processes, which can be derived solely based
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Figure 2.3: Stack of the discs used in the Andronikashvili experiment
(schematics) and the relative densities of the normal and superfluid com-
ponents

on the existence of the two independent components. Via this model, it is
possible to explain the experiments mentioned above, such as apparent zero
viscosity and it was even used to predict the existence of second sound in
superfluid He (as is shown eg. in [2]), which is the core of several popular
experimental techniques used today. One of the main achievements of this
theory was also the prediction of a critical velocity at which excitations
begin to be created and therefore superfluidity is destroyed, see also [2].
The two-fluid model also explains the fountain effect and its counterpart -
the mechanocaloric effect (Fig. 2.4), even though these can be understood
qualitatively in a simpler way by considering Bose-Einstein condensation.

There are, however, several phenomena, which cannot be explained by
Landau’s model unless additional assumptions are introduced. These in-
clude for example the existence of quantized vortices, the consequence of the
collective behaviour of the Helium atoms which follows from Bose-Einstein
condensation. We will therefore explore this theory based on statistical ther-
modynamics now.
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Figure 2.4: Fountain effect and the mechanocaloric effect

2.2 Bose-Einstein Condensation

All particles that form the matter in the universe can be divided into two
groups based on their statistical behaviour in thermodynamic equilibrium.
One of these groups is called fermions and these particles follow the Fermi-
Dirac statistical distribution, while the other group is called bosons and they
follow the Bose-Einstein distribution. It can also be shown from Quantum
Field Theory that the spin of all bosons expressed in the units of the Planck
constant is an integer, while the spin of fermions is always an integer + 1/2,
the proof is however quite tedious and requires a deep understanding of QF'T,
but enthusiastic readers can find it in [3]. The two distributions governing
the number of particles occupying a given energy state are expressed as
follows:

9k
nit = g — (2.1)
eksT — 1
9k
nZFD T TEix (2-2)
eksT +1

The important point is, that at high enough temperatures or low enough
concentrations (meaning exp(E; — u/kgT) > 1), both of these statistics
reduce to the classical Maxwell-Boltzmann distribution and the behaviour
of these two groups of particles is indistinguishable from the point of view
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of statistical physics (though it of course still holds, that two fermions can-
not occupy the same energy state, while two bosons can). Differences start
to arise once we cool the system down to a temperature, which no longer
satisfies the stated condition. If we have a bosonic system and reach the
condensation temperature (derived eg. in [2]), the thermal De Broglie wave-
length of the particles will become equal to the interparticle distances, the
particles will start to behave collectively and to condense into the zero en-
ergy level. There is nothing to stop them from doing so because this simply
minimizes the energy of the entire system. Fermions, however, cannot do
anything similar because of an interaction, which is the basis of the Pauli
exclusion principle, prohibiting two fermions to occupy the same energy state
and therefore forcing them to occupy higher energy states as well. This leads
to the creation of the Fermi sphere in the momentum space. The statisti-
cal behaviour of bosons and the condensation was discovered by Satyendra
Nath Bose and Albert Einstein working together in the 1920’s, therefore
they bear their names. It is interesting to note, that the F-D distribution
was discovered in 1926 by Fermi and Dirac working alone and independently
which reflects the behaviour of the two types of particles beautifully.

Once we are below the condensation temperature, a macroscopic amount
of the particles os the system will be in the zero energy level, while others
will still remain in higher energy states. The existence of the Bose-Einstein
condensate changes the thermodynamics of the entire system considerably.
It can be shown [2] that if we consider a condensed ideal Bose gas as a
thermodynamic system, its state will always be sufficiently described by
a single quantity, eg. by temperature, and all of its other thermodynamic
quantities e.g. pressure, volume and heat capacity will depend solely on
this one selected parameter. Physically, even without calculations, this can
be ascribed to the fact, that the ratio of particles in the condensate to
the total number of particles becomes the only important parameter of the
system, since all the particles in the condensate have the same energy (and
therefore no thermodynamic degrees of freedom). Based on these simple
considerations, it is already possible to predict the fountain effect and the
mechanocaloric effect, as these are evident once we realize, that pressure
will be a function of temperature only and therefore local heating will be
equivalent to changing pressure locally thus creating a gradient.

Now we must ask, are there any links between the theory for the con-
densed ideal B-E gas and superfluid He II? The answer is not as simple as it
might seem. The theoretical BEC critical temperature of Helium should be
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about 3.15 K. The lambda transition in Helium occurs at 2.17 K at saturated
vapour pressure. These two values are pretty close (within 50 percent), which
hints that some links might be expected. However, liquid Helium is anything
but a non-interacting gas, the interactions within Helium actually happen
to be quite strong. Furthermore, if the condensate is supposed to have zero
momentum, how can it flow? These and similar arguments were among the
reasons why Landau himself in his lifetime never accepted this theory. The
prediction and confirmation of the fountain effect and the mechanocaloric
effect is however quite convincing, among dependencies deduced according
to this theory such the temperature dependence of particles above the con-
densate or heat capacity. Today it is generally accepted, of course with the
single exception, that it truly does not account for particle interactions. In
the 1950’s, Bogoliubov showed, that weak interactions can be taken into
account as well.

2.3 Quantized Vorticity

As only a brief account, follows, the reader is directed to [4] for further
information on quantum vortices. One of the most prominent features of
the Bose-Einstein condensate is the collective behaviour of particles. This
means, that using Quantum Mechanics, the condensate can be described by
a macroscopic wave function:

V(7 1) = /pse ™) (2.3)

where the amplitude is given by the square root of the density of the
condensate, ps, and 1 is the macroscopic phase. As well as with other QM
wavefunctions, its square expresses the probability of finding a He atom
in a certain volume, i.e. the density of Helium. We must however keep in
mind, that this wavefunction describes the entire system, not just an indi-
vidual particle, so that when we apply the momentum operator and divide
by mass, we will obtain the actual flow velocity of the condensate (i.e., of
the superfluid component of He II). Doing so, we get that the velocity is
proportional to the gradient of the phase:

Ug(r,t) = ﬂ:LSVgo(r, t) (2.4)

from which it follows, that the vorticity

12



h
wsg =V xtg=—V xVp(rt)=0 (2.5)
mg

of the superfluid component is zero. Now it would seem, that since the

vorticity equals zero, the Stokes theorem yields that the circulation I'" defined
as

F:]{v_é-cﬁ:/wfg-drg (2.6)
c S

of the superfluid component must be zero as well, which would mean
that there can be no rotational flows, not to mention turbulence. We do
however recall, that many scientific works, including this Thesis, are actually
dealing with the issue of superfluid turbulence, so there must be something
more to it. Of course, the Stokes theorem only holds for simply connected
areas, which is a condition that superfluid He actually manages to avoid. It
creates quantized vortices, which do not have the superfluid component in
their cores, and thus manufactures natural multiply connected areas in its
volume, which can have non-zero circulation. If we express the circulation
around such a vortex, we get

= ?{US di=—§ V. dS—iAgp (2.7)

As the wavefunction must be deﬁned uniquely in space, it follows im-
mediately, that the phase difference in the equation can only be equal to a
multiple of 27, which tells us, that circulation in the superfluid component is
always quantized. Actually, since the energy of a vortex is proportional the
number of carried circulation quanta squared [2|, vortices having multiple
quanta would be energetically unstable and thus all vortices carry exactly
one quantum of circulation.

It should be stressed now, that this presents us with a prototype of tur-
bulence, that is easier to describe than the turbulence in classical fluids,
because in this case, all vortices differ only in the geometry of their cores,
but otherwise, all of them are completely the same, which is a considerable
simplification. Since the cores of vortices have the diameter of about 1 A,
they can be modeled as lines in space, which enables many interesting numer-
ical simulations of vortex dynamics unparalleled in classical fluids, because
classical vortices lack the restraints imposed on their quantum counterparts.

Now, that we have explained the basic properties of superfluid Helium
including two theories which attempt to describe them, we will carry on with

13



the introduction of the basic concepts of hydrodynamics, mostly regarding
the general characteristics of laminar and turbulent flows and the transition
between them. We will also introduce the equations of motion of fluids and
the hydrodynamic model used to describe He II.

14



Chapter 3

Continuum Hydrodynamics in a
Nutshell

In this chapter, we will briefly introduce the properties of laminar and turbu-
lent flows including the criteria pertaining to the transition between them.
We will proceed by revisiting the key steps of deriving the equations of
motion of both ideal and viscous fluids, later modifying these equations to
describe superfluid Helium within the framework of the Landau two-fluid
model.

3.1 Laminar and Turbulent Flows

We will begin this section by analyzing a simple and yet important hydro-
dynamic experiment. Let us consider a flow of any viscous fluid, say water,
through the horizontal pipe depicted in Fig. 3.1, which has three vertical
branches next to a millimeter scale, which will provide information about
local pressure. The first end of the pipe is connected to a container full of
water, the other end is open and the pressure here will be equal to the at-
mospheric one. By adjusting the valve at the container, we will be able to
control the flow velocity. The first thing we will notice is, that at low veloci-
ties, the water level in the three branches will be stationary, and that it will
have a linear slightly decreasing tendency in the direction of the flow. This
type of flow is called laminar. If we increase the velocity, we will eventually
reach a region, where the water levels will no longer be stationary, which is a
clear sign of local pressures and flow velocities varying in time and marking
a transition region characteristic of the onset of turbulence. If we studied

15



Figure 3.1: A typical experimental setup used to study the pipe flow

the average positions of the water levels, we would not be able to make
any conclusions about the dissipative forces acting on the fluid, since the
fluid will be switching between laminar and turbulent flow. If we increase
the velocity further, the three water levels will still vary in time, but their
average positions would now imply, that the pressure drop over a certain
length of the pipe is much greater than in laminar flow. This is the case of
fully developed turbulence.

This brief exercise serves only one purpose here - we need a description
of laminar and turbulent flows, yet in any textbook, there are no definitions
whatsoever! Not to be mistaken, there is a number of ways of characterizing
laminar and turbulent flows but none of them can be used as a precise and
rigorous definition (the reasons will be clearer once we derive the equations
of motion and the Reynolds number). For now, we will therefore have to
be content with stating several characteristics of each flow type, keeping in
mind the example given above.

Laminar flows of viscous fluids are usually steady in time (or can be
considered in a stationary approximation), which allows defining streamlines
and the stream function, and in many cases they are also irrotational, which
allows the introduction of a scalar flow potential, see |5]. The drag force
acting on a body in a laminar flow is linear with the relative velocity of the
body and the fluid. Turbulent flows are on the other hand characterised by
abrupt changes of flow velocity in time and space, they are always rotational,
consisting of intertwined vortices of many different length scales and the
drag force acting on bodies experiencing turbulent flow is proportional to
the velocity squared.

16



3.2 Equations of Motion of Fluids

We will now proceed by revising the most important ideas encountered dur-
ing deriving the equations of motion of both ideal and viscous fluids. Since
the following will be only a brief version of the derivation, the reader is
directed to [5] or 6] for the full account.

First we shall introduce the concepts of continuum and of fluid particles.
Even though, that every fluid must consist of individual molecules or atoms,
this granularity of the fluid can be neglected at large enough length scales
and high enough concentrations. From here it follows, that under normal
circumstances, we can consider the fluid density a continuous function of
space (neglecting individual particles) and use the continuum description.
Since the behaviour of fluids is described by local differential equations, we
will also need some infinitesimally small volumes where the equations will
apply. We therefore introduce the idea of fluid particles, which are negligibly
small compared to typical flow length scales, but at the same time are large
enough not to be in contradiction with the continuum model. Now the de-
scription of fluid motion is reduced to describing the motion of a continuum
of fluid particles.

The motion of fluid particles can be usually described in two different
ways. The first possibility is to consider a given particle and watch its posi-
tion and velocity in time and this is called the Lagrange description of fluids.
The other possibility is obviously to watch a certain volume and analyze the
velocity of any fluid particles currently in that volume. This other approach
is called the Euler description of fluids and will be used throughout the rest
of this Thesis.

3.2.1 Classical Fluids

Here, the equations governing the behaviour of classical fluids will be derived.

First, we will state the law of conservation of two quantities - mass and
entropy. The first is known as the equation of continuity (3.1). The other one
(3.2) is important only for thermally driven flows and is listed here only for
the sake of completeness, as all the flows discussed herein can be considered
isentropic. Both of the equations are expressed in the form typical of laws
of conservation.

Ip

o TV (o0 = (3.1)
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8(5’5) +V - (pST) =0 (3:2)

Within the bounds of applicability of classical physics, the motion of
fluid particles must be determined by Newton’s second law (equivalent to
the conservation of momentum) and must therefore have the form of

= F 3.3

Di (3.3)

where % signifies the change of the particle velocity in time (sometimes

also the called material derivative). If we rewrite this equation using the
Euler description, we obtain this form:

o F

— 4+ (0- V)T =—

Now, if we disregard any dissipative forces acting on the fluid and con-

sider only the forces caused by the gradient of pressure within the fluid and
gravity, we obtain the Euler equation for the motion of ideal fluids:

(3.4)

ovr L —=Vp
EJF(UV)U_—[) +g (3.5)

If dissipative forces due to viscosity are included (we assume only New-
tonian fluids, where viscosity can be reasonably defined) and gravity is ne-
glected, as it has little effect in our case, we will obtain (see [5]) the infamous
Navier-Stokes equation for isentropic incompressible flows, which has been
troubling physicists and mathematicians since it very discovery:

g: + (0-V)U = pr +vAU (3.6)

Equations 3.1, 3.2, and 3.6 together form a closed system sufficient to
solve any incompressible flow of classical fluids, as they represent five equa-
tion for five quantities (three velocity components, pressure and entropy).
However, since the N-S equation is a non-linear partial differential equation,
it is possible to obtain an analytical solution only in a limited number of
cases depending on the initial and boundary conditions including the flow
geometry and flows in most practical applications have to be solved numer-
ically.

18



3.2.2 Superfluid He 11

Using the standard Landau two-fluid model, it is possible to obtain the equa-
tions governing the motion of superfluid helium. The equations are derived
in a similar manner as for classical fluids, see, e.g., |2], the only difference
being the existence of two components with independent densities and ve-
locity fields, one of which has zero viscosity and entropy. The densities must
obey:

Pn+ps=p (3.7)

Under the two-fluid model, the equation of continuity becomes:

0
ST (gt + pui) = 0 (3.8)

Despite the fact, that the superfluid component carries no entropy, the
law of conservation of entropy stays almost unmodified, since entropy S is
defined per a unit of Helium liquid (not per a unit of the normal component),
only the velocity is replaced by that of the normal component:

I(pS)

In He II, the behaviour of the normal component is determined by a
Navier-Stokes type equation, while the inviscid superfluid component obeys
a Euler type equation assuming no quantized vortices are present. In the
case of incompressible isothermal (and therefore also isentropic) flow, these
equations take the following form:

aa”; + (5, V)0, = ‘pr + A, (3.10)
oy . —Vp

. S — A1

5 + (03 - V) s ; (3.11)

If a generalized two-fluid model is considered, where the two components
of superfluid Helium interact, the interaction force is added as an extra term
to the RHS of these equations. It can be shown [7], that the interaction force
will be proportional to ||v;, — v;||* and can be therefore neglected at small
counterflow velocities.
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3.3 Geometrical Similarity, Transition to Tur-
bulence

The Navier-Stokes equation mentioned above describes a very broad variety
of flows in any Newtonian fluid. However, each rendition of the equation can
be interpreted as a description not just of a single flow, but rather of a whole
class of flows, which are geometrically similar. By geometrical similarity we
understand what common sense tell us - that there is a scaling factor, which
transforms one flow into the other precisely. However, if two different flow
should reduce to the same N-S equations, this is not the only condition to
be satisfied.

Focusing only on geometrically similar stationary flows now (thus avoid-
ing temporal dependencies), we notice that a total of three quantities enters
the N-S equation: a length scale, [, over which velocity changes appreciably
and which enters implicitly via the spatial derivatives (typically the size of
an immersed body or the radius of a pipe or container), the flow velocity, v,
at a given point in space and the kinematic viscosity, v, of the fluid. If all
quantities in the N-S equation are replaced by their dimensionless counter-
parts:

l
I'=— (3.12)
lo
iU 3.13
- (313)
/
l
£=22 (3.14)
P P
it can be rearranged so that only one independent parameter remains:
Vp 1
v-V)U+ — = —Av 3.15
(7 V)i + ~F = AT (315)

For historical reasons, this parameter is called the Reynolds number and
can be expressed as:
lv
Re = —, (3.16)

14

where the scalar v is the magnitude of the velocity. It should be noted,
that pressure (scaled by the fluid density) is not considered an independent
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parameter, since it does not enter the N-S equation, but rather is obtained
from it as a result. The N-S equation is of course complemented by the equa-
tion of continuity for incompressible steady flows, V - ¢ = 0, which already
reduces the dimensionality of the problem from four to three unknowns.

Now it is clear, that if two different stationary geometrically similar flows
have the same Reynolds number, they are described by the same N-S equa-
tion. Such flows are called dynamically similar as opposed to just geometri-
cally similar.

A brief look at 3.15 tells us, that the ratio of the magnitudes of the
inertial term plus the pressure gradient on the left to the viscous drag term
on the right is in fact the Reynolds number. With bigger Reynolds numbers,
the viscous term will be lower and the flow will have a greater tendency to
become turbulent, as viscous forces represent the only mechanism preventing
the onset of turbulence.

From here it follows, that once we have a given geometry of the flow, the
transition between laminar and turbulent drag regimes will be defined solely
by a certain critical value of the Reynolds number, Re., corresponding to a
certain critical velocity, v.. This is however true only for stationary flows. As
we will be considering periodic flows due to an oscillating quartz crystal in
this Thesis, it should be emphasized, that an additional condition must be
satisfied in order for two flows to be dynamically similar, specifically, there
is another dimensionless quantity that must be equal for both of the flows -
the Strouhal number.

Named after the Czech physicist Cengk Strouhal, who investigated the
frequency of sound emitted by a wire moving rapidly through air, this num-
ber is derived from the typical time interval, 7, over which velocities change
appreciably in the flow, e.g. from the period of oscillations or in the case of
Strouhal’s experiments, the period of creation of vortices behind the wire.
It can be expressed as:

St = ? (3.17)

Finally, it should also be stressed, that the transition between linear and
turbulent flows does not occur at precisely defined values of the Reynolds and
Strouhal numbers, instead experimental evidence indicates, that a transition
region occurs, where the flow is switching between both regimes, depending
on the magnitude and frequency of various perturbations that break down
the laminar flow.
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Chapter 4

Quartz Tuning Forks

In this Chapter, we will introduce the sensor used in our experiments - the
vibrating quartz tuning fork - and proceed to explain the hydrodynamic
model used to describe its motion in fluids.

In the research of cryogenic liquids, oscillating objects have become al-
most traditional and certainly irreplacable tools for probing various types
of flows. Starting more than fifty years ago, when Andronikashvili used an
oscillating stack of closely spaced disks to measure the ratio of the densities
of the normal and superfluid component of He II, various other oscillators
found their use in cryogenic fluid dynamics (both in *He and “He), including
vibrating spheres [8], reeds [9], grids [10],[11] and wires [12], [13], [14]. The
quartz tuning fork presents a new and interesting addition to this family
of oscillators, as its operation mode shows some important differences from
other objects, mainly due to its comparatively high frequency, as will be
discussed later.

Typical quartz tuning forks are commercially produced piezoelectric os-
cillators meant to be used as frequency standards in digital watches. At room
temperature in vacuum, they oscillate at a calibrated standard frequency of
2°Hz (= 32768 Hz). However, the characteristics of individual forks differ
in cryogenic conditions and therefore calibration is necessary. The forks are
supplied in a vacuum-tight metal can, which has to be entirely or partly
removed for any hydrodynamic applications. For a better idea of the forks
appearance, see Fig. 4.1.

The quartz tuning fork offers several important advantages as a sensor of
its cryogenic environment. Forks are extremely cheap and readily available,
they are robust and as such easy to install and use if reasonable care is taken
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Figure 4.1: Photographs and micrographs of quartz tuning forks

during the manipulation. They are highly sensitive indicators of the physical
properties of the medium in which they are immersed. A major advantage
in many applications is that to drive these piezoelectric devices no magnetic
fields are needed and that they are in fact insensitive to them.[15, 16]

In the experiments described herein, the forks were used as generators
and detectors of both laminar and turbulent flows in cryogenic Helium de-
pending on the amplitude of the driving voltage. The purpose is to obtain
information about the transition between the two flow regimes and com-
pare the results from all media available - from Helium gas, He I and He
II. In order to understand, how the fork operates as a sensitive detector of
its surroundings, a hydrodynamic model will be introduced, describing its
behaviour when immersed in viscous fluids.

4.1 Hydrodynamic Model of the Tuning Fork

The aim of this section is to obtain the theoretical relations for the parame-
ters of the resonance curve of the quartz oscillator depending on the density
and viscosity of the medium in which it is immersed. For the sake of clarity,
we will first discuss only the motion of the fork in vacuum and in the next
step, the influence of the surrounding medium will be incorporated into our
analysis as well.

At low amplitudes of oscillations, the fork can be considered as a damped
harmonic oscillator driven by a harmonic force with the relevant oscillation
mode being the basic antisymmetric mode, when the two prongs move in
anti-phase. When considering vacuum, the damping arises only from the
dissipation of energy through internal friction in the quartz crystal related
to the motion of point defects, dislocations and other structures or processes
disrupting the crystal lattice e.g. thermal motion of the atoms. We will
assume this friction force to be approximately proportional to velocity, but
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since it is much smaller than the friction force caused by any surrounding
medium, the exact dependence is not really important. The equation of
motion for a single prong of the fork has the following form:

d*x dz
mgﬁ + Foa + kx = FQCOS(Cdt), (41)

t

where my is the effective mass of the prong in vacuum, I'g expresses the
internal friction and k is the spring constant.

The solution to this equation is well known. It is found in the form of

the Lorentzian absorption and dispersion curves and can be expressed as:

2o(t) = xao(w) sin(wt) + zq0(w) cos(wt), (4.2)

where z49 and x,¢ are the dispersion and absorption, respectively. These
curves have the following mathematical transcription:

_ Cow? _ To(Awy)*w?
CUa,O(W) = Xy (F0w>2 T (muﬂ — /{:)2 - (AWU)QWQ + (w2 — wg)Q (4.3)
w(mw? — k) zoAwow (W — wp)
B _ 4.4
Zao(w) = o (Tow)? + (mw? — k)2~ (Awp)2w? + (w? — wd)?’ 4

where Awy is the resonant linewidth of the fork in vacuum (i.e. the full
width of the absorption curve at half of its maximum x).

The important result here is, that the resonant frequency wy = (k/mg)/?
depends on the effective mass of the prong and that the resonant linewidth
Awy = I'g/my depends on the effective mass as well and more importantly
on size of the dissipative forces.

Now we are ready to discuss the effects of immersing the fork in a viscous
medium. The classical viscous flow around a submerged oscillating body/|5|
is rotational within a certain layer adjacent to the body, while at larger dis-
tances it rapidly changes to potential flow if there is no free liquid surface or
solid surface in the vicinity of the oscillating body. The depth of penetration
of the rotational flow is of order

_ 2
5_\[) \/; (45)

where w is the angular frequency of oscillation while  and v = n/p are
the dynamic and kinematic viscosities of the fluid with the density p.
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As a result of the oscillatory motion of the body through the liquid, the
body experiences a force which has components proportional to the velocity
of the body # (drag) and to its acceleration & (mass enhancement):

F=Ty1+ mi. (4.6)
The new equation of motion including this force therefore is:

2

mjltf + FCZ; + kx = Fycos(wt), (4.7)

where m = mg+m is the effective mass of the fork prong in the medium
and I' =T'yg 4+ I'; is the total friction experienced by the prong.

To determine the values of b and m generally a full solution of the flow
field around the oscillating body is required. However, in our case, a sim-
plification is possible due to the ratio of the relative magnitudes of the
characteristic size of the oscillating body [, oscillation amplitude zy, and
viscous penetration depth §. Due to the high frequencies of oscillation and
low kinematic viscosity of Helium, the penetration depth is very small (ap-
prox. 0.5 um) and we are operating in the limit [ > 0 and [ > x( as the
oscillation amplitude would reach the leg thickness 7 only at very high ve-
locities of several m/s. In this case the layer of rotational flow around the
body is very thin, while in the rest of the fluid, the flow is potential. Note
that other oscillating objects such as spheres or wires may not always be
in this flow regime since they usually have smaller characteristic sizes and
lower oscillation frequencies.

If these conditions are valid, a major contribution to both b and m in
Eq. (4.6) is found by solving the potential flow field u around the body.|5]
In particular, b is expressed as

I, = %cs, (4.8)

where S is the surface area of the body, and C is a numerical constant
depending on the exact geometry of the body.

The largest contribution to mass enhancement m arises from the poten-
tial flow around the body and can be expressed through the mass pV" of the
liquid displaced by the body of volume V. A smaller contribution is caused
by the fact that the viscous drag force experienced by the body is usually
phase shifted with respect to the velocity of the body. This can be inter-
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preted such that a volume of order S¢ of the liquid is clamped to move with
the oscillating body. Thus for m we can write

i = BpV + BpS3 (4.9)

where 3 and B are again geometry-dependent coefficients.

Though it is possible to obtain the exact values of 3, B, and C for, e.g.,
spheres, cylinders oscillating perpendicularly to their axis or even beams,
the author is not aware of any rigorous calculation of these parameters for
a tuning fork. The results for beams cannot be used, as the presence of two
prongs of the fork in close vicinity affects the flow significantly, changing for
example the § parameter. We will therefore consider G, B, and C as fitting
parameters, to be determined for a particular fork from the experiment. This
approach was previously used, for example, in Ref. [9] for the description of
the behavior of a vibrating reed in liquid “He and it proved to be a useful
technique for the initial understanding of the experimental results.

To summarize the effects due to the viscous medium, we shall state, that
we found the new effective mass of a prong as:

m =mg + BpV + BpSJ , (4.10)
and the new friction force as:
P=ro+/2-cs. (4.11)

This information can be used to express the resonant frequency, f,,, and
linewidth, Af,,, as they will be modified by the presence of the medium,
yielding the so called fork equations:

AN ﬂ( S /77)
<fm> = 1+pq ﬁ—I—BV i) (4.12)

Af, = (Af0+1 ””fmcs> (fm> , (4.13)

2mo V. m Jo

where p, is the density of quartz and the indices "0" and "m" denote the
quantities related to vacuum and a viscous medium respectively.

Now we are familiar with the behaviour of the fork at low amplitudes
of oscillation, but what happens, when the amplitude increases? It is found
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experimentally and shown in Chapter 6 that at a certain amplitude, the
response of the fork ceases to be of the Lorentzian form, which is caused by
the fact, that the damping force due to the surrounding medium is no longer
linear with velocity, but assumes a quadratic dependence instead, which
corresponds to the transition from the laminar to turbulent drag regime
within the fluid.

4.2 Electrical Properties of the Tuning Fork

In the previous section, we explored the behaviour of the quartz tuning fork
as a mechanical oscillator. Here we will show that when the leads of the
fork are connected to a harmonic driving voltage, an analogy exists between
the mechanical oscillator and the electrical oscillatory circuit, which can be
considered as a series RLC resonator in the first approximation.

The first relation between the two resonators arises from the piezoelectric
effect and states that stresses in the piezoelectric crystal caused by its deflec-
tion induce electrical charges or that the current flowing through the crystal
is proportional to the time derivative of the deflection, i.e. the velocity:

(4.14)

where a is the fork constant. Its theoretical value is given by [17] as

a=3dy E(TW/L) (4.15)

where d;; and E are the longitudinal piezoelectric modulus and the the
Young modulus of quartz respectively. Here, 7, VW and L stand for the
thickness, width and length of a fork prong, respectively.
Furthermore, the current flowing through a series RLC oscillatory circuit
obeys the following differential equation:
d*I dl I dU
Ldt2+Rdt+C_ o (4.16)
Comparing Eqs. (4.16) and (4.7) we see that w? = 1/(LC), T/m =
R/L, and using Eq. (4.14), 1/L = (Fy/Up) a/m. Additionally we have the
condition that the dissipated power at resonance has to be equal for both
equations: The electrical power UZ/(2R) drives two legs of the fork which
dissipate 2 - F2/(2T'). Thus we have a closed set of equations allowing us
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to connect the electrical and mechanical properties of the fork via the fork
constant a:

F = (a/2)U, (4.17)
R = 2I'/a*, (4.18)
L = 2m/a®, (4.19)
C = a*/(2k). (4.20)

Experimentally the fork constant a can be determined using Eq. (4.18),
which can be rewritten as

2m Aw
a= ) 4.21
- (4.21)
Here Aw is determined from the width of the resonance curve while 1/R
is the linear slope of the experimental [o(Uj) dependence, where I is the
current amplitude at resonance. This measurement of course has to be taken

in vacuum at the temperature of the planned hydrodynamic experiment.

4.3 Theoretical Predictions

The first thing that has to be done before any actual measurements is the
verification of the hydrodynamic model used. For this purpose, we will use
the fork equations to derive the dependence of the resonant frequency and
linewidth of the fork on the pressure of a surrounding ideal gas. This depen-
dence will later be verified in Helium and Nitrogen at room temperature.

First, we will neglect the second term in the bracket in Equation 4.12 as
it can be shown to be significantly lower than the first one (both 8 and B
are of order unity, the S/V ratio is < 1 and using the data for Helium and
Nitrogen, the square root is also less then 1). This yields:

1

fm = foma

and since the densities of the gases at pressures achievable within our cell
are much lower then the density of quartz, p < p,, the final approximative
dependence can be expressed as follows:

(4.22)
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_ __r
fm = fo(1 2%5) (4.23)

As the density of an ideal gas is directly proportional to its pressure,
we therefore expect to find the resonant frequency decreasing linearly as
the pressure is increased, however, the relative change in the frequency for
pressures up to 30 bar will be quite negligible, again because of the ratio of
the respective densities.

Repeating a similar process with the linewidth, where we neglect the
ratio (f../fo)? and replace f,, by fo under the square root due to reasons
explained in the previous paraFig., we obtain:

Afp = Mg+ —— [PHo o g (4.24)
2m0 ™

Bearing in mind, that the dynamic viscosity, 1, of an ideal gas is by defi-
nition independent of pressure, we arrive at a conclusion, that the linewidth
will be proportional to the square root of the pressure and shifted by its
vacuum value A fj.

For liquid Helium, similar reasoning can be applied regarding the reso-
nant frequency except that the density is no longer directly proportional to
the pressure. Regarding the linewidth, the actual values of dynamic viscosity
have to be taken into account in order to obtain a reasonable dependence.

However, another, and perhaps the most important prediction for lig-
uid Helium follows from the relative magnitudes of the viscous penetration
depth, ¢, the typical dimension of the fork, [. For the relevant frequencies of
the order 3 - 10%, § ~ 0.5um while the smallest dimensions of the fork are
several hundreds of pum.

Since § < [, it becomes apparent, that the relevant length scale used
in the computation of the Reynolds and Strouhal numbers will not be the
dimension of the fork, but the viscous penetration depth itself. Substituting
0 as expressed in Eq. 4.5 into equations 3.16 and 3.17 and replacing the time
interval T by 27 /w by we obtain:

St = mRe = V2

, 4.25
= (4.25)

which tells us two interesting facts: first, any one of these numbers is
sufficient for determining the dynamical similarity of flows including the
transition to turbulence, as they differ only by a multiplicative constant and
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second, if the transition occurs at a given value of the, say, Reynolds number,
the critical velocity, v, at which the transition occurs, should scale as \/vw.
While this scaling law for oscillating objects may seem rather obvious, still
it was never verified experimentally, possibly due to the lack of suitable
oscillators operating at high enough frequencies.

To strengthen this claim, the same scaling can be derived analytically
by equating the laminar and turbulent drag forces acting on an immersed
body vibrating in a fluid. We will illustrate this on the analytically tractable
example of an oscillating sphere. For R > § and according to [5], the laminar
and turbulent drag forces acting on such a sphere are equal to:

&>
Q
3

|

6mnRv <1 -+ R)] ~ 6mnRv, (4.26)
0/1r>s

CapR*v%. (4.27)

DN | —

By putting F,,, = Fium, the critical velocity of the transition between
the laminar and turbulent drag regimes is obtained as:

12 [vw
e = —1/—, 4.28
ve =G5 (4.28)

which is in accordance with the proposed scaling.
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Chapter 5

Experimental Setup

In this Chapter, the experimental setup used during the work on this Thesis
as well as during other experiments will be introduced. We will begin by a
brief description of the used apparatus and measurement instrumentation
and then we will proceed to the used software and describe the experimental
protocol.

5.1 Hardware

The most important piece in the whole setup is undoubtedly the quartz
tuning fork itself. Actually, various types of forks were used during these
experiments ranging from the smallest oscillating at ~ 32 kHz to the largest
fork oscillating at ~ 4 kHz (5.1), most experiments were however performed
using one of the two sizes of forks that oscillate at 32 kHz since these can
be easily fitted into a small pressure cell. The other forks were used in an
open bath.

The home-made pressure cell (depicted in Fig 5.2) is Indium-sealed and
withstands safely pressures up to 30 bar. During the experiments, it is placed
inside a glass cryostat (Fig. 5.3) and it is filled by the desired fluid via a
capillary connected to a piping panel through a cold trap. The purpose of
the cold trap is to remove any possible frozen impurities in technical Helium
that might otherwise block the capillary or settle down on the fork, thus
reducing its sensitivity and devaluating the information obtained from the
characteristics of its response.

Two pressure meters are used, a analogue Leybold—Heraeus and a dig-
ital Barotron, to measure the pressure inside the cell or inside the cryo-
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Figure 5.1: Top to bottom: Details of the 32 kHz, 8 kHz, and 4 kHz fork

stat. Measuring the pressure in the cryostat allows determining the tem-
perature of the Helium bath, since if care is taken not to manipulate the
pressure/temperature quickly, Helium exists in the cryostat at saturated
vapour pressure.

The cryostat used is a standard glass cryostat provided with a shielding
Nitrogen bath, separated from the Helium bath by evacuated space. The
Helium bath itself is also covered by a reflective layer of silver reducing
incoming radiation with only a narrow viewport allowing visual observation
of the experiment. Using a Roots pump to reduce the pressure above the
Helium level, the temperature can be reduced as low as 1.2 — 1.3 K in this
cryostat.

As for the electronics, the necessary equipment includes an Agilent signal
generator providing the driving voltage of the fork, a step-up transformer
and an attenuator, which allow us to shift the operating range of the gen-
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Figure 5.2: The pressure cell used in our experiments where two forks can be installed
filled by Helium - working fluid - via the capillary that enters the cell inside the supporting
stainless steel tube on the top. Special cryogenic stainless steel coaxial cables used to drive
and readout the forks can be seen as well.

erator to either higher or lower values, a home-made current splitter and
a commercial lock-in amplifier SR 830, which is a detector of the fork’s
response, measuring the amplitude of both the absorption (in-phase) and
dispersion (out-of-phase) signals with an extremely high resolution and sen-
sitivity. An optional device to this experiment is a Conductus temperature
controller, which provides better thermal stability of the system should it
be needed, but most of the experiments were performed without operating
it, as the thermal stability was usually satisfactory once the fluctuations of
the system relaxed. See the connection diagram in Fig. 5.4 for a better un-
derstanding of the electrical circuit used for driving the fork and reading its
response.

The generator, the SR 830 lock-in amplifier, the Barotron pressure meter
and the Conductus temperature controller were connected to a PC using the
GPIB bus, which provided a handy way of controlling the experiment and
reading the acquired data.

5.2 Software and Experimental Protocol

The controlling software was programmed in the LabView 7.1 Fig.ical pro-
gramming environment. Its principal features allowed sweeping the frequency
across the resonance in a defined manner and reading the measured reso-
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Figure 5.3: The laboatory glass cryostat

nance curves. The absorption signal was fitted by its analytical function and
the resonant frequency, linewidth and amplitude were evaluated. The data
was recorded into files for further processing using the Origin 7.0 software.

During the experiments, several important rules had to be kept in mind.
First, the purity of the fluid was essential, especially liquid Helium. There-
fore, if experiments at varied pressures were performed, they always had to
start at the highest pressure and then proceed gradually to the lower ones.
This ensured that during the experiments Helium flowed only in the direc-
tion out of the pressure cell, preventing any impurities from reaching the
fork.

Second, thermal stability had to be ensured. If temperatures were changed
during the experiments, i.e., by adjusting the rate of outgoing Helium gas, it
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Figure 5.4: Fork connection diagram

was necessary to wait for approx. 20 minutes before new experiments could
be performed. The thermal stability was verified by monitoring the fork’s
response and/or the temperature controller.

Third, temporal stability. If a mechanical oscillator is switched on, or if
its frequency is changed suddenly, its response approaches the new value ex-
ponentially with the decay time equal to 1/Aw s. Thus, since the frequency
of the driving voltage is swept across a certain range, sufficient time (about
4/Aw s) had to be provided for the fork to assume each new frequency. Ful-
filling this requirement could be verified by sweeping the frequency upwards
and downwards for the same conditions and comparing the shape of the
response curves.
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Chapter 6

Results and Discussion

In this Chapter, the main results acquired during the measurements per-
formed on the quartz tuning forks will be presented and their possible im-
plications on the nature of flow properties of cryogenic Helium will be dis-
cussed.

All the results were obtained in the Joint Low Temperature Laboratory
established between the Faculty of Mathematics and Physics of the Charles
University in Prague and the Physics Institute of Physics of the Academy
of Sciences of the Czech Republic. Most of them have already been pub-
lished in several papers [18], [19], [20] and presented at various conferences
including QFS Kyoto 2006 and QFS Kazan 2007. The author of this Thesis
contributed mostly by performing selected experiments and processing their
output either individually or in cooperation with other laboratory colleagues.

The principal aim of the performed experiments was to generate and
detect laminar and turbulent flows in both classical and superfluid Helium
using the quartz tuning fork and to establish the criteria for the transition
to turbulence. To make this possible, several key steps had to be completed
first.

The first step was obviously the verification of the hydrodynamic model
proposed in Chapter 4. In order to test the model, the fork was first mounted
into the pressure cell, and immersed in gaseous nitrogen and helium at room
temperature. Then it was excited at a low amplitude of the driving voltage
in order to ensure that it operated in the linear regime and the resonant
frequency and linewidth were measured for different pressures up to 30 bar
and compared to the expected dependencies. The results of this verification
are shown in Fig. 6.1.
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Figure 6.1: Pressure dependence of resonant frequency and linewidth mea-
sured with the standard 32 kHz fork in N, and He gases at room temperature

As it is apparent from the figures, the resonant frequency indeed behaves
according to the prediction 4.23 based on our model. It decreases linearly
with increasing pressure, however, its relative change tends to be rather small
at the given pressures. The linewidth follows the prediction of Eq. 4.24 too,
as its dependence on the applied pressure is of the square root form. The
fitted lines were used to determine the values of the parameters § and C,
which are both of order unity. Later it was found that they might depend
weakly on the exact geometry of the flow. Thus they have to be determined
for each fork and each flow geometry separately. As their values are not
essential to any of the following experiments, they will not be discussed
here anymore and the reader will be directed to other publications for more
details [18].

Now, the model was successfully tested in gases at room temperature,
but will it hold in liquids and low temperatures? Another test was performed
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Figure 6.2: The resonant frequency of the standard 32 kHz fork in liquid He
I at 4.2 K plotted versus applied pressure and corresponding density of He I

to see if it is the case, this time in He I at 4.2 K in pressures again up to
30 bar. The only minor difference is, that this time, the pressure had to be
recalculated into density for the comparison to be meaningful. This recal-
culation was performed using the HEPAK [21] software package, carrying
a comprehensive set of data on Helium physical properties both above and
below the lambda transition. The results of this test are summarized in Fig.
6.2, which again shows that the model is valid in cryogenic liquids as well
and describes the behaviour of the fork sufficiently despite the neglections
we made when deriving the simplified relations for the resonant frequency
and linewidth from the fork equations 4.12 and 4.13.

As the next step we proved that the tuning fork can indeed generate
and detect turbulent flows. The fork was again immersed in He I and the
amplitude of the driving voltage was gradually increased, while the measure-
ments of the resonant curves were performed giving the resonant frequency,
linewidth and amplitude. As it is nicely shown in Fig. 6.3, the response of
the fork changes with the increasing drive amplitude. It shifts towards lower
frequencies, the width increases and at a certain point, it ceases to be of
the Lorentzian form. It should be emphasized, that our experimental setup
allows investigations over an extremely broad range of the driving voltage,
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Figure 6.3: Resonant response of the fork at various drive amplitudes. The
solid lines are Lorentzian curves. For details, see text.

exceeding seven orders of magnitude.

For a better understanding of the ongoing process, the dependence of
I(U), equivalent to v(F') due to Equations 4.17 and 4.14, was plotted in log-
arithmic axes in Fig. 6.4. From this graph, is is immediately evident that two
flow regions exist. In the first region (lowest drive amplitudes) the velocity
is proportional to the force, hinting at the existence of a laminar flow, while
in the second region, it assumes a square root dependence thus marking the
turbulent drag regime and hinting at the existence of a turbulent flow. The
insets also show that the transition from the laminar to the turbulent drag
regime is marked by a pronounced decrease of the resonant frequency and
an even stronger and more apparent increase of the linewidth. However, as
these quantities are poorly defined for a non-Lorentzian resonance curve,
it was decided that the relevant critical velocity for the transition to tur-
bulence in classical fluids will be derived from the main graph itself as the
velocity corresponding to the point of intersection of the lines fitted through
the points deeply in the two separate regions.

Recently, visualization experiments on a vibrating rectangular beam (Fig.
6.5) immersed in water were performed as well, using the pH Baker tech-
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nique, see [22| for details. Despite the fact that this setup is not precisely
geometrically similar to the actual fork, it provides a good qualitative idea
of what might be happening. The beam was firmly connected to a loud-
speaker, which acted as a harmonic drive. Direct observation of the experi-
ment showed that, at a certain critical velocity roughly corresponding to the
one expected from the scaling, snake-like vortices began to form near the
edges of the beam and were shedded away. This can be understood as an
unequivocal proof that the phenomenon responsible for switching between
linear and quadratic drag regimes is indeed the transition to turbulence.

6.1 Classical Fluids - Critical Velocity Scaling

In order to verify the scaling of the critical velocity v. o< /vw in the widest
possible range of viscosities and frequencies possible, experiments were per-
formed using forks of different sizes and resonant frequencies, namely 32 kHz,
8 kHz and 4 kHz. These were immersed in various working fluids, ranging
from the relatively viscous Helium gas at liquid Nitrogen temperature to
liquid Helium just above T), which is the classical fluid known for having
the smallest kinematic viscosity.

The results on this scaling law are summarized in Fig. 6.6, where the ob-
served critical velocity of the fork is plotted versus y/vw for all the mentioned
experiments. From the graph, it is immediately evident that the scaling in-
deed holds for all the combinations of forks and fluids and the fit in the
logarithmic inset found the exponent of the dependence to be 0.48 + 0.04
which is in excellent agreement with the expected value of 0.5. As far as we
know, this scaling law for oscillatory flows in the R > § limit was proved
for the first time. Therefore, its confirmation over several decades presents
a valuable contribution to classical fluid dynamics.

6.2 Superfluid Helium

With the scaling of the critical velocity firmly established in classical flu-
ids, the next step was to verify whether a similar scaling could be used for
quantum fluids as well. The velocity scaling can be, in principle, used to de-
termine an effective kinematic viscosity of the superfluid Helium attempting
to describe it as a one-component quasiclassical fluid.

While this approach might be useful for describing several experiments,
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we must bear in mind that it is only a simplification of the real problem,
since He II is known to behave as if it consists of two distinct components
with very different properties.

First, the force versus velocity dependence was measured for several tem-
peratures and for different forks. Sample results are shown in Fig. 6.7 as well
as the dependence for classical He I at 4.2 K. At the first sight, it seems that
the dependence is the same as for classical fluids. If this were true, it would
mean that in our experiments He Il indeed behaves more or less like a qua-
siclassical one-component fluid. The velocity scaling mentioned above was
therefore temporarily used to determine the effective kinematic viscosity and
the obtained results were compared with the data from other experiments
in He II, including those with vibrating grids [10] and second sound atten-
uation in thermal counterflow [23]. One of the outcomes of this preliminary
analysis leads to a conclusion that He II should have a finite effective kine-
matic viscosity even in the 7" — 0 limit. This contradicts a common notion
that in this limit He II is entirely superfluid with zero viscosity.

We therefore performed a more thorough analysis, and it became evident
that we could never describe the transition to turbulence in He II this way.
After a closer look at Figure 6.7, it might be noticed that the force versus
velocity dependence is not ezactly the same as that for the classical fluids.
Rather, another feature (difficult to see unaided in this graph) within the
broad transition region is present as well. In order to see it clearly, we em-
ployed another approach based on the general equation for the drag force
acting on a body in turbulent flow:

1
Fturb = §OdSU2. (61)

From here, it is possible to evaluate the drag coefficient C; based on
the force versus velocity dependence. If Cy is plotted versus the velocity for
a classical fluid across the transition region, it decreases monotonically for
most body geometries to a constant value of order unity, which signifies the
turbulent drag regime. However, when we plot Cy calculated for the vibrat-
ing forks from data acquired at various temperatures, we find a different
behaviour, which is especially pronounced at the lowest temperatures near
1.3 K. It displays the laminar part, where the drag is due to the viscous
normal fluid only, and then past a sharp minimum C} increases again and
displays a broad maximum, above which it gradually becomes constant as
in the classical case. See Fig. 6.8 for a detailed picture of the discovered
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dependence.

This complex dependence can hardly be explained by a single transition
to turbulence in any hypothetical quasiclassical fluid. We are therefore left
to conclude that perhaps two separate transitions actually occur - one in
the normal component and one in the superfluid component. On first ap-
proximation, we may consider their velocity fields independent (although it
is well known that when quantized vortices are present, the the components
are coupled by the mutual friction force).

The idea of two separate transitions was further supported by consulta-
tions with other scientists, mainly Professor W.F. Vinen of the University
of Birmingham. He proposed a phenomenological relation between the force
(or the drag coefficient) and the velocity, assuming full independence of the
two components of He II and the existence of two distinct transitions. Fur-
thermore, the superfluid component does not contribute any laminar drag
and the turbulent drag force due to the superfluid acts only above a critical
velocity U.s. The proposed equation takes the following form:

B o' 25/A\ 2 fo v 4 < pn> l (U = U.g)? ]
4= i +8—4+v|1——|P(U—-U.s) 5
p €+ (U - UcS)

(6.2)

where @ is the Heaviside step function, o/, 3, and ~ are unknown numer-

ical coefficients and the terms on the RHS describe the laminar drag of the

normal component, the turbulent drag of the normal component and the
turbulent drag of the superfluid component, respectively.

Equation 6.2 was used to fit our drag coefficient versus velocity data
(again see Fig. 6.8) and to determine the critical velocity in the superfluid
component, U.. The critical velocity of the normal component, U.y was
determined the same way as for classical fluids. This is justified under the
assumption that the normal component behaves exactly like a classical vis-
cous fluid.

The critical velocities for both the normal and the superfluid components
for the 32 kHz fork are plotted versus the temperature in Fig. 6.9. Data
obtained using forks vibrating at other frequencies was added to this picture,
too. We show the critical velocities of the normal component as measured (at
the frequency of the particular fork) as well as multiplied by the square root
of the appropriate frequency ratio, in accordance with the proved v, o< y/vw
scaling. This multiplication was done in order to check whether or not the
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measured critical velocities of the normal fluid would collapse to a single
temperature dependence. From Fig. 6.9 it can be seen that this is indeed
the case. On the other hand, quite surprisingly, no dependence of the critical
velocity of the superfluid component on the frequency of the oscillating fork
was found.

As it is evident from Fig. 6.9, the re-scaled critical velocities of the normal
component fall all above the critical velocities of the superfluid component. If
all the assumptions used in this approach are true, and therefore our results
are valid, it ought to be possible to find such a temperature and frequency
at which the two critical velocities will be equal and a crossover in the Cj,
dependence should occur, since at lower frequencies, the superfluid compo-
nent will become turbulent at higher velocities than the normal component.
The experimental verification of this crossover will certainly be one of the
issues to be studied in the near future.

6.3 Cavitation

There is one more interesting phenomenon that was observed during the
experiments in liquid Helium. When the drive of the fork was increased
gradually, usually first the transition to turbulence occurred. However, when
the drive reached another critical level, the central region of the resonant
response of the fork broke down completely as it is illustrated in Fig. 6.10.

Since this kind of breakdown was observed only in liquids and at the
highest fork velocities achievable in our experiment, the only viable expla-
nation is the cavitation process - local creation of a gaseous phase within
the volume of the liquid. It should be noted that since evaporation is a first
order phase transition, we must keep in mind that cavitation does not oc-
cur at the temperature and pressure corresponding to the saturated vapour
pressure curve (SVP), but at a lower pressure, because the liquid can be
"superheated". The term cavitation technically means that the nucleation
line is crossed in the direction of the pressure axis, while (volume) boiling
means reaching SVP in the direction of the temperature axis, see Fig. 6.11.

The breakdown of the fork’s response was used to determine the crit-
ical cavitation velocity as the highest point that still lies on the original
Lorentzian-like curve. When the cavitation velocity was plotted versus tem-
perature (see Fig. 6.12), a pronounced almost step-like increase was observed
close below the lambda point. The cavitation velocity in He IT was three to
four times larger then that in He I. It should be stressed that within the
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framework of the standard nucleation model presented, e.g., in [24], there is
no reason for this increase to occur.

Comparing our temperature dependence with [25] and [26], it was found
that other experiments exhibit a similar, almost step-like increase in the
vicinity of the lambda point. In these experiments, the negative pressure
was produced by a piezoelectric oscillator of hemispherical shape emitting
pressure waves. Thanks to constructive interference, these were amplified
greatly in the center of the hemisphere. During the negative pressure swing,
cavitation occurred. As it was pointed out, there should be no reason for
any step-like increase around T), so why is it observed?

A plausible explanation would be that during the measurements in He
I, the fluid was also overheated locally, by the power dissipated by the os-
cillating fork, or by the power transmitted by the amplified pressure wave.
Therefore, what probably happened, was that the nucleation line was not
crossed in the direction of the pressure axis, but rather at a large angle to
it (see again Fig. 6.11). If the thermal effects were significant, this process
would distort the observed temperature dependence. As the heat transport
efficiency in He I and He II differs by several orders of magnitude, the con-
sequences of the above mentioned heating processes are very different above
and below the superfluid transition. When the heat conductivity of He I is
considered disregarding any convective flows, significant local overheating
of the fluid in the vicinity of the vibrating quartz fork of the order of sev-
eral K can be produced quite easily. However, in He II, local overheating
is hardly possible. With the typical power dissipated by the fork, only a
small counterflow velocity of order 1 cm/s is needed to carry the heat away
from the fork, which means that almost no temperature gradient is created
in the fluid. Furthermore, at the temperatures corresponding to He II, the
nucleation line is already almost horizontal, meaning that the critical cav-
itation pressure depends on temperature weakly. Therefore, the nucleation
line would be likely crossed in the direction of the pressure axis and a true
cavitation velocity (or pressure) would be measured.

We must ask, however, do we really observe cavitation? Is not the break-
down caused by boiling instead? According to the Bernoulli equation, the
pressure is indeed lowered in the vicinity of the moving fork, especially in
the regions of high flow velocities near the sharp edges of the fork, where
the flow velocity is enhanced strongly compared to the velocity of the fork
itself. Therefore it seems, that at least in He II, where overheating can be
neglected, true cavitation is most likely observed.
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Strictly speaking, the Bernoulli equation describing the whole volume
of the liquid generally holds only for stationary and potential flows, while
the flow we are discussing is periodic and most likely turbulent. Therefore
it was necessary to determine, if the Bernoulli equation can be at all used
in our case. This was done by measuring the dependence of the cavitation
velocity on an externally applied overpressure. The discovered dependence
was approximately of the form p o< v? as shown in Fig. 6.13. Since the square
root dependence is in accord with the Bernoulli equation, it was inferred that
it can perhaps be used to semi-qualitatively describe even the complicated
turbulent flow.

Our critical velocity of the fork established for zero overpressure in He
IT corresponds to a negative change in local pressure of the order of 250 Pa.
This is much lower than the results of other experiments, such as [25], where
negative pressures of the order of several bar were found. This seems a large
discrepancy, but there is a number of possible explanations. At first, we
had thought that we measured heterogeneous cavitation, while the above
mentioned experiments dealt with homogeneous cavitation far away from
walls, but this idea had severe flaws. Since liquid Helium is actually the
purest substance achievable, as at LHe temperatures all other elements are
frozen solid, and since He II wets any surface ideally (perhaps with the
exception of Cesium), it seemed inevitable to conclude that even in our
experiments homogeneous cavitation most likely occurs.

Presently, we think that the discrepancy arises form the enhancement of
flow velocities near the sharp edges of the fork (or from various excrescences
at its surface). The velocity we measured was the amplitude of the veloc-
ity of the fork, but due to the hydrodynamic enhancement, the fluid near
the edges moves much faster than the fork itself. To explain the enormous
differences in the observed pressure (about three orders of magnitude), an
enhancement factor of about 30 would be necessary. That is not as unfeasi-
ble as it might seem, because the ratio of the typical dimension of the fork
(about 200 — 400 um) to the surface roughness, and therefore to the "radius
of curvature" at the corners (typically about a few microns, see micrographs
in Chapter 4) is roughly of the same order. Strictly speaking, our data do
not therefore allow us to conclude with certainty, whether the observed cav-
itation is heterogeneous or homogeneous in nature.
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Figure 6.4: Transition from laminar to turbulent drag regime as detected by the 32 kHz
vibrating quartz fork in He I at 4.2 K and 18.6 bar (x), in He II at SVP at 1.37 K (o),
1.61 K (v), 2.06 K (A) and in gaseous helium at 78 K and 10.05 bar (e). For conversion of
measured electrical quantities Up and I to F' and U, see [18]. The insets show the width
Af of the in-phase resonance response (top) and the frequency of maximum response
fmax (bottom) versus measured current; both being constant in a linear regime. Increase
of Af and decrease of f,.x indicate an onset of the turbulent drag regime.

46



Figure 6.5: The beam and the Baker solution used for flow visualization
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Figure 6.6: The critical velocity at which transition from laminar to turbulent drag
occurs for five different forks Al, A2, B1, Ul and U2 in classical fluids (data points
obtained using He I in the temperature range 2.2 < T < 4.2 K and He gas at 78 K at
ambient and elevated pressure up to 30 bar plotted versus y/vw). The solid lines represent
the best linear fit that includes the origin(top). This scaling is confirmed by comparison
with the fixed solid line in the logarithmic plot (bottom); the fitted power law for all forks
yields 0.48 4+ 0.04. The black square point has been obtained with the rectangular brass
beam using the pH Baker flow visualisation technique.
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Figure 6.7: Left panel: Transition from laminar to turbulent flow of He II as detected
by vibrating quartz fork in He I and He II at three temperatures as indicated. At low
drive level (in laminar regime) the measured velocity is a linear function of the applied
drive; around its critical value a crossover to a turbulent regime occurs, characterized by
a quadratic driving force versus velocity dependence. Right panel: The plot of the drag
coefficient versus the velocity of the fork clearly shows that in a classical fluid (He I)
there is one gradual change towards its constant value well above the transition; while in
He II there are two separate transitions in the superfluid and in the normal fluid, clearly
displayed far enough below the 7. For details, see text.
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Figure 6.8: Detailed view of the drag coefficient versus velocity as measured in He I and
He IT at various temperatures. The solid lines are fits using Eq. 6.2. A detailed description
can be found in the text.
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Figure 6.10: Broken responses of the tuning fork indicating cavitation
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Figure 6.11: A detail of the He phase diagram showing both the SVP curve and the
nucleation line, illustrating pure cavitation (vertical arrow) and boiling (horizontal arrow).
Here, we assume that the fork is placed at the depth h below the Helium level (if an
external overpressure Ape,; were applied, the point would be shifted further upwards).
For the vibrating quartz fork, the observed phenomenon is most likely a combination of
both of these processes as schematically shown by the tilted broken arrow.
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Figure 6.12: The critical cavitation velocity depending on temperature. The
inset shows a detailed view of the vicinity of the superfluid transition.

20



' 3
30 F ;
25 F .
20 F ;

0 [ ]

£ - ]

> 15[ ]

° - Equation: P1*(x-P2)*0.5 i

> K Chi*2/DoF =0.01012 1
1.0 - R2 = 0.98547 g

P1 0.03477 +0.00014
s b P2 -141.44385  £15.12485 1
o L ——

0 2000 4000 6000 8000
overpressure (Pa)

Figure 6.13: Dependece of the critical cavitation velocity on the applied
overpressure at 4.2 K. The solid red line is a fit using the Bernoulli equation
with the stated parameters.

o1



Chapter 7

Conclusions

During the work on this Thesis, the ability of the quartz tuning forks to gen-
erate and detect flows in cryogenic liquids was tested. The forks proved to
be cheap, widely available, simple to use, install and still very sensitive de-
tectors of fluid properties. Furthermore, it was shown that they can be used
to detect the transition to turbulence as well as other interesting phenomena
such as cavitation in cryogenic liquid Helium.

The hydrodynamic model of the tuning fork was put forward and tested
successfully in classical fluids. Due to the extremely wide range of kinematic
viscosities of various Helium fluids, it was possible to verify the scaling of
the critical velocity for the transition from the laminar to the turbulent
drag regime in boundary layer flows near bodies oscillating at sufficiently
high frequencies.

When immersed in quantum fluids, the quartz tuning fork serves equally
well as a detector of fluid properties and of the transition to turbulence.
It was found, however, that in this type of flow, two different turbulent
states may exist and that the transition to turbulence is rather complex,
as the normal and the superfluid component becomes turbulent at different
velocities. The detailed structure of the transition from the laminar to the
turbulent drag regime and the corresponding flow phase diagram will be
subject of further studies, as will be other applications of the quartz tuning
fork in cryogenic fluid dynamics including, e.g., the detection of counterflow
turbulence.

The quartz tuning fork has also been used to detect cavitation in Helium
liquids. The interpretation of the acquired results does present a considerable
challenge. In particular, it was shown that thermal effects are essential for
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the interpretation of the cavitation results obtained in both He I and He II.

The results discussed herein have been acquired owing to the common
efforts of the members of the superfluidity group within the Joint Low Tem-
perature Laboratory, established between the Faculty of Mathematics and
Physics of the Charles University in Prague and the Institute of Physics
of the Academy of Sciences of the Czech Republic, Prague. This research is
supported by GAUK under the grant no. 7953/2007: Study of Helium Super-
flow Due to a Vibrating Quartz Crystal, awarded to the author for the years
2007-2009. The results have been published (or submitted for publication) in
recognized scientific journals. They were also presented by the author in two
talks: i) The Flow Properties of LHe, Quantum Turbulence and Cavitation,
at the seminar of the Department of Low Temperature Physics, ii) Quartz
Tuning Forks as Low Temperature Sensors, at an intensive course called
Contemporary Problems of Low Temperature Physics in Pec pod Snezkou,
May 6th - 10th, 2007. Other members of the Laboratory have presented
them at several conferences, both in the Czech Republic and abroad (see
the attached List of Publications).

In summary, the quartz tuning fork has proved to be an extremely useful
tool for generating and probing cryogenic flows and will certainly continue
to be used in future experiments as a full and valid member of the family of
various oscillating objects - cornerstone devices of cryogenic fluid dynamics
research since its very beginning.
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