
Charles University in Prague

Faculty of Mathematics and Physics

DIPLOMA THESIS

Radim Krupi£ka

Unsupervised learning based on images

Department of Software Engineering

Supervisor: Prof. Ing. Václav Hlavá£, CSc.

Study programme: Computer science

Acknowledgments

I would like to thank my supervisor Prof. Ing. Václav Hlavá£, CSc. for
his leading of my diploma thesis, for inspiring discussions and ideas. Many
thanks belong to Oleksandr Shekhovtsov for his help with the algorithms
and his advices. Finally I am very grateful to Ing. Pavel Krsek, Ph.D., Ing.
Vojt¥ch Franc, Ph.D. and Ing. Tomá² Werner, Ph.D. for their consultations.

Prohla²uji, ºe jsem svou diplomovou práci napsal samostatn¥ a výhradn¥
s pouºitím citovaných pramen·. Souhlasím se zap·j£ováním práce.

I declare that I wrote my diploma thesis independently and exclusively
with the use of the cited sources. I agree with lending the thesis.

Prague, April 18, 2007 Radim Krupi£ka

Contents

1 Motivation 1

2 Problem formulation 4

3 Introduction 6

4 State of the art 8
4.1 Cognitive architectures . 8

4.1.1 Task outline . 8
4.1.2 Objectives . 8

4.2 Segmentation . 9
4.3 Object recognition . 11
4.4 Reinforcement learning . 13

4.4.1 Elements of Reinforcement Learning 14
4.4.2 Reinforcement-learning model 14
4.4.3 Basic principles . 16

5 My solution 18
5.1 Robot's world and body . 19

5.1.1 Physical setup . 19
5.1.2 Innate elementary capabilites 19
5.1.3 Functionality and example session 21

5.2 Object detection . 22
5.2.1 Segmentation . 22
5.2.2 Feature extraction . 25
5.2.3 Objects classi�cation 26

5.3 Scene processing . 29
5.3.1 Object tracing . 29
5.3.2 Grip test . 29
5.3.3 Shape alignment . 31

5.4 Reinforcement learning . 31

1

6 Implementation 34
6.1 Hardware implementation . 34
6.2 GM module . 35

6.2.1 Robot movement . 36
6.2.2 Segmentation . 37
6.2.3 Object tracing . 38
6.2.4 Object detection . 38
6.2.5 Grip test . 39
6.2.6 Alignment . 39

6.3 Reinforcement learning . 39

7 Conclusions 41

Bibliography 42

List of Figures 43

A The Contents of the Enclosed CD 45
A.1 Overview of the contents of the enclosed CD 45
A.2 The list of the created and modi�ed �les 46

2

Abstract

Title: Unsupervised learning based on images
Author: Radim Krupi£ka
Department: Department of Software Engineering
Supervisor: Prof. Ing. Václav Hlavá£, CSc.
Supervisor's e-mail address: hlavac@fel.cvut.cz

Abstract: The aim of the project was to create an experimental environ-
ment for solving the children puzzle �shape sorter�. This environment serve
as a testbed for various learning tasks of cognitive nature with image feed-
back. This puzzle is a demonstrator of the EU project COSPAL, IST-004176.
The industrial robot CRS A-465 with six degrees of freedom and its control
system is used. The scene is observed by one static camera. The system
processes the images from the camera and the further robot movement is
based on the reinforcement learning.

Keywords: cognitive systems, COSPAL, image processing, reinforcement
learning

Název práce: U£ení bez u£itele na základ¥ obraz·
Autor: Radim Krupi£ka
Katedra (ústav): Katedra softwarového inºenýrství
Vedoucí diplomové práce: Prof. Ing. Václav Hlavá£, CSc.
E-mail vedoucího: hlavac@fel.cvut.cz

Abstrakt: Cílem diplomové práce bylo vytvo°ení experimentálního prost°edí
pro °e²ení d¥tského hlavolamu � skláda£ka, v n¥mº je moºné zkou²et r·zné
metody pro u£ení systému s obrazovou zp¥tnou vazbou s kognitivními rysy.
Hlavolam je demonstrátorem EU projektu COSPAL, IST-004176. Pro vk-
ládání je pouºitý pr·myslový robot se ²esti stupni volnosti. Scéna je sle-
dována jednou statickou kamerou. Systém zpracovává obraz z kamery a na
základ¥ zp¥tnovazebného u£ení rozhoduje o dal²ím pohybu robota.

Klí£ová slova: kognitivní systémy, COSPAL, zpracování obrazu, zp¥tno-
vazebné u£ení

Chapter 1

Motivation

The aim of the diploma project is to contribute to studies in cognitive sys-
tems. The activities are part of the EU project COSPAL, IST-004176.
COSPAL is the acronym for �COgnitive Systems using Perception-Action
Learning�. Methods developed within the project are tested on the demon-
strator solving the children puzzle �shape sorter�, see Figure 1.1. With the
puzzle, a child is supposed to insert pieces (prisms with bases of di�erent
shapes) into holes with matching shape in a box. The diploma thesis follows
principles in the rather new research �eld of cognitive systems.

The aim of the project is to create and use an experimental environment
for solving the puzzle. This environment serves as a testbed for various
learning tasks of cognitive nature which use feedback from images and robot
actions. These modules are provided by the researchers of the COSPAL
project. The limit case, which is not practically achievable, would be the
case in which the system knows nothing about the task and environment
a priori and builds basic concepts, relations from random movements and
corresponding observations. It is supposed that a priori information will be
used which will simplify the task.

The industrial robot CRS A-465 with six degrees of freedom and its con-
trol system is used (Figure 1.2). The robot is available in the Center for
Machine Perceptions of the Faculty of Electrical Engineering of the Czech
Technical University in Prague, where the advisor of this diploma thesis
works. The base-level robot control and image acquisition software is the
outcome of the Pavel Janda's diploma project which run in parallel.

The COSPAL project

The purpose of this project is to investigate design principles and architec-
tures for technical systems, which are capable of learning basic cognitive skills

1

Figure 1.1: Di�erent types of puzzles

in a similar way as humans do. It might appear surprising that, for instance,
learning basic motor skills as done by children during the �rst three years of
their life is hard to simulate in a technical system.

To understand why the �simpler� capabilities of humans are more dif-
�cult to simulate than �higher level� capabilities like, for instance, playing
chess, one has to consider the di�erent approaches to human learning and to
implementing arti�cial systems, which appear to be intelligent.

Nowadays arti�cial systems typically consist of a prede�ned set of rules,
which control the system actions depending on the inputs. Unforeseen inputs
and constellations cannot be processed by such a system. Playing chess is
a very well suited problem for this kind of system design, because the chess
game follows exact rules and has a �nite (although enormous) number of
distinct constellations. Simulating certain cognitive capabilities of a one year
old child, however, cannot be implemented by a rule based system for two
reasons: First, there are no exact rules in basic behavioral schemes, they
remain too fuzzy and qualitative to be used in an arti�cial system. Second,
the number of possible inputs and the number of possible constellations are
in�nite in a way that for any number of rules there would exist cases that
would not be covered by the rules [8].

The COSPAL architecture combines techniques from the �eld of arti�cial
intelligence (AI) and learning of arti�cial neural networks (ANN). Feedback
loops through the continuous and the symbolic parts of the system is estab-

2

lished. This arrangement allows the perception-action feedback at several
abstraction levels in the system. After an initial bootstrapping phase, incre-
mental learning techniques are used to train the system simultaneously at
di�erent levels, allowing adaptation and exploration.

Figure 1.2: The industrial robot CRS A-465 with six degrees of freedom with
installed electromagnet and with the puzzle.

3

Chapter 2

Problem formulation

The assignment of the diploma project is to design and implement an experi-
mental environment for solving the �shape sorter puzzle�, see Figure 2.1. This
puzzle serves as a demonstrator of the project COSPAL in which abilities of
the arti�cial cognitive system should be demonstrated. The diploma project
should prepare basic computer vision and machine learning tools allowing
experimenting with the puzzle.

Figure 2.1: Shape sorter puzzle used in the COSPAL demonstrator.

The �shape sorter puzzle� consists of a box with holes of di�erent shapes
and several pieces of di�erent shape. Each piece matches to only one hole.
The task is to insert all pieces into appropriate holes.

In the COSPAL demonstrator, the pieces have to be manipulated by the
arm of the industrial robot. One or more stationary cameras observe the
scene and are used as a feedback of the system. If the information about
the task and the puzzle were known to the system then the solution of the
puzzle would be trivial, of course. In the project, the cognitive abilities are
simulated by having a minimal knowledge about the puzzle and solving it by
learning from experience.

This diploma project follows up the concurrently running diploma project

4

of a fellow student Pavel Janda [5]. He is supposed to prepare more low-level
modules for the robot control and the image acquisition.

The above mentioned general assignment can be decomposed into several
subtask:

Create the experimental environment in MATLAB allowing to solve
the puzzle and experiment with various facets of the solution. The
expected features of the environment are:

• Integration of the robot hardware and video input prepared by
Pavel Janda into a coherent system which should be able to move
the robot arm and to acquire the image from cameras.

• Image processing and object detection part together with the rep-
resentation of the internal states of the system based on the situ-
ation in the scene.

• Flexibility of the system which should manifest in ability to solve
su�ciently robustly similar tasks.

Veri�cation of the environment on the pilot problem which uses rein-
forcement learning as a learning algorithm.

Creation of the documentation of the written software.

5

Chapter 3

Introduction

The diploma project is a part of the COSPAL project. The architecture
solving the cognitive tasks was designed for the COSPAL project. The
COSPAL architecture, Figure 3.1, consists of three modules, forming a hier-
archy in di�erent levels of abstraction: the perception-action (PA) module,
the abstraction-management (AM) module, and the symbolic processing (SP)
module. The four universities participate in the COSPAL project as depicts
Figure 3.1. The CVUT (Czech Technical University) is focused on the devel-
opment of the AM module. The AM module is described in [11]. The AM
module was divided into several subtasks, which were worked by CVUT sta�
on. One of these subtasks is this diploma project.

Figure 3.1: Current speci�cation of the COSPAL architecture.

6

The diploma thesis includes these chapters:

State of the art chapter contains the basic knowledge, which is important
to understanding the diploma thesis. This chapter de�nes the cogni-
tive architectures and explains the segmentation and the classi�cation
methods. The last section of this chapter is focused on the reinforce-
ment learning.

My solution chapter deals with the theoretic solution of the problemme.
The image processing and arti�cial intelligent algorithms are presented
here.

Implementation chapter describes how and where the algorithms were im-
plemented.

7

Chapter 4

State of the art

4.1 Cognitive architectures

4.1.1 Task outline

Cognitive architectures are based on the belief that understanding (human)
cognitive processes can be helped by implementing them on a computational
level. Cognitive architectures can be characterized by certain properties or
goals that are follows [12]:

1. Implementation of not just various di�erent aspects of a cognitive be-
havior but of a cognition as a whole. This is in contrast to same cog-
nitive models.

2. The architecture often tries to reproduce the behavior of the modelled
system (human) in a way that timely behavior (reaction times) of the
architecture and modelled cognitive systems can be compared in detail.

3. Robust behavior in the face of error, the unexpected, and the unknown.

4. Learning.

5. Parameter-free: The system should not depend on parameter tuning
(in contrast to, e.g., arti�cial neural networks).

4.1.2 Objectives

The diploma project is focused on vision based arti�cial cognitive systems
(ACS). State-of-the-art of these tend to be either based on classical arti�cial
intelligence (AI) paradigm or follow the ideas of arti�cial neural networks
(ANN) [2]. Combinations of both approaches are rare.

8

In AI systems, the designer supplies knowledge and scene representations
to a largest possible extent. For designing AI based ACSs, a rule based
system is set up, which typically uses some features extracted by low-level
image processing in order to follow a path through a decision tree, ending up
in a certain system response. These responses can be of di�erent kind, e.g.,
the choice in a database, the movement of robot arm, or estimation of certain
parameters. The discrete choices made everywhere in the system design, and
in particular in the lower levels, lead necessarily to unstable and non-robust
results.

ANNs derive knowledge about the external world through exploration.
That means ANN based ACS are supposed to tackle the same goals by a
totally di�erent method, which in practice boils down to a non-linear lo-
cal optimization process. The constraints on this optimization are typically
called bias and its search space is re�ected by the term variance. Instead of
selecting features and setting up rules, these system require a good choice of
constraints leaving su�cient degrees of freedom: the bias-variance dilemma
is still an unsolved problem in this area [2].

Both paradigms, AI and ANN, have similar goals concerning the sys-
tem performance, but have very much di�erent drawbacks and advantages.
It's possible to combine both methods in the hope that the drawbacks are
compensated and the overall system performance is improved.

As a result of insu�cient interweaving, todays ACS show the following
drawbacks:

• The system is either stable and robust or competent, i.e., stable and
robust system are of little practical value and systems ful�lling relevant
tasks are too specialized and not fault tolerant.

• No association of appearance and function of objects is possible.

• The perception cannot su�ciently adapt to the current action state or
current percepts, i.e., the performance of the perception design limits
the performance of the whole system.

4.2 Segmentation

The main goal of image Segmentation is to divide an image into parts that
have a strong correlation with objects or areas of the real world depicted in
the image [9].

Most image segmentation approaches can be placed in one of three cate-
gories:

9

• Characteristic feature thresholding or clustering.

• Edge-based segmentation.

• Region-based segmentation.

The main segmentation problem is the image data ambiguity that is often
accompanied by information noise. Characteristic feature thresholding
or clustering represents the simplest image segmentation process, and it is
computationally inexpensive and fast. Thresholding does not exploit spatial
information, and thus ignores information that could be used to enhance the
segmentation results. Gray-level thresholding is the simplest segmentation
process. Many objects or image regions are characterized by constant re�ec-
tivity or light absorption of their surfaces; a brightness constant or threshold
can be determined to segment objects and background. Thresholding can eas-
ily be done in real time. Complete segmentation can result from thresholding
in simple scenes. Thresholding is the transformation of an input image f to
an output (segmented) binary image g as follows:

g(i, j)

{
= 1 for f(i, j) ≥ T,
= 0 for f(i, j) < T,

(4.1)

where T is the threshold, g(i, j) = 1 for image elements of objects, and
g(i, j) = 0 for image elements of the background.

Edge-based segmentation relies on edges found in an image by an edge
detecting operator. The edge detection does exploit spatial information by
examining local edges found throughout the image data, it does not necessar-
ily produce closed connected region boundaries. For simple noise-free data,
detection of edges usually results in straightforward region boundary delin-
eation. However, edge detection on noisy, complex image data often produces
missing edges and extra edges that cause the detected boundaries to no nec-
essarily from a set of close connected curves that surround connected regions.
Three types of region borders may be formed due to `pixelized' nature of the
image: inner, outer, and extended. The inner border is always part of region,
but the outer border never is. Therefore, using inner or outer border de�ni-
tion, two adjacent regions never have a common border. Extended borders
are de�ned as single common borders between adjacent regions still being
speci�ed by standard pixel co-ordinates.

Region growing segmentation should satisfy the following condition
of complete segmentation:

R =
S⋃

i=1

Ri , Ri ∩Rj = ∅ , i 6= j. (4.2)

10

and the maximum region homogeneity conditions:

H(Ri) = true i = 1, 2, . . . , S. (4.3)

H(Ri ∪Rj) = false i 6= j, Ri adjacent to Rj. (4.4)

Three basic approaches to region growing exist:

Region merging starts with an oversegmented image in which regions sat-
isfy equation (4.3). Regions are merged to satisfy condition (4.4) as
long as equation (4.3) remains satis�ed.

Region splitting is the opposite of region merging. Region splitting begins
with an undersegmented image which does not satisfy condition (4.3).
Therefore, the existion image regions are sequentially split to satisfy
conditions (4.2),(4.3), and (4.4).

A combination of splitting and merging may result in a method with
the advanteges of both other approaches. Split-and-merge processing
options are available, the starting segmentation does not have to satisfy
either condition (4.3) or (4.4).

Region growing approaches to segmentation are preferred in the project
because region growing exploits spatial information and guarantees the for-
mation of closed, connected regions.

4.3 Object recognition

The task of object recognition is to determine which, if any, of a given set
of objects appear in a given image or image sequence. Object recognition
solves a problem of matching models from a database with representations
of those models extracted from the image luminance data [9].

An object is physical unit, usually represented in image analysis and
computer vision by a region in a segmented image. The set of objects can
be divided into disjoint subsets, that, from the classi�cation point of view,
have some common features. These subsets are called classes. The de�nition
of how the objects are divided into classes is ambiguous and depends on the
classi�cation goal.

Object recognition is based on assigning classes to objects. The device
that does these assignments is called the classi�er. The number of classes is
usually known beforehand, and typically can be derived from the problem

11

speci�cation. Nevertheless, there are approaches in which the number of
classes may not be known. The classi�er (similarly to a human) does not
decide about he class from the object itself�rather, sensed object properties
serve this purpose. For example, to distinguish steel from sandstone, we
do not have to determine their molecular structures, although this would
describe these materials well. Properties such as texture, speci�c weight,
hardness, etc., are used instead.

The main pattern recognition steps are shown in Figure 4.1. The block
�Construction of formal description� is based on the experience and intuition
of the designer. A set of elementary properties is chosen which describe some
characteristics of the object; these properties are measured in an appropriate
way and form the description pattern of the object. These properties can
be either quantitative or qualitative in character and their form can vary
(numerical vectors, chains, etc.). The theory of recognition deals with the
problem of designing the classi�er for the speci�c (chosen) set of elementary
object descriptions.

Figure 4.1: Main pattern recognition steps

Statistical object description uses elementary numerical descriptions called
features, x1, x2, . . . , xn. The pattern (also referred to as pattern vector, or
feature vector) x = (x1, x2, . . . , xn) that describes an object is a vector of el-
ementary descriptions, and the set of all possible patterns forms the patterns
space X (feature space). If the elementary descriptions were appropriately
chosen, similarity of objects in each class results in the proximity of their
patterns in the pattern space. The classes form clusters in the feature space,
which can be separated by a discrimination curve (or hyper-surface in a
multi-dimensional feature space) - Figure 4.2.

Intuitively, we may expect that separable classes can be recognized with-
out errors. The majority of object recognition problems do not have separable
classes, in which case the locations of the discrimination hyper-surfaces in
the feature space can never separate the classes correctly and some objects
will always be misclassi�ed [9].

12

Figure 4.2: A general discrimination function.

4.4 Reinforcement learning

Reinforcement learning [10] is learning what to do�how to map situations
to actions�so as to maximize a numerical reward signal. The learner is not
told which actions to take, as in the most forms of machine learning, but
instead must discover which actions yield the highest reward by trying them.
In the most interesting and challenging cases, actions may a�ect not only the
immediate reward but also the next situation and, through that, all subse-
quent rewards. These two characteristics�trial-and-error search and delayed
reward�are the two most important distinguishing features of reinforcement
learning.

Reinforcement learning refers to a class of problems in machine learning
which postulate the agent exploring an environment. The agent perceives its
current state and takes actions. The environment, in return, provides a re-
ward (which can be positive or negative). Reinforcement learning algorithms
attempt to �nd a policy for maximizing cumulative reward for the agent over
the course of the problem.

There are two main strategies for solving reinforcement-learning prob-
lems. The �rst one is to search in the space of behaviors in order to �nd
the behavior that performs well in the environment. This approach has been
usually taken by works in genetic algorithms and genetic programming. The

13

second strategy is to use statistical techniques and dynamic programming
methods to estimate the utility of taking actions in states of the world. In
this diploma project, the second set of techniques is used because they take
advantage of the special structure of reinforcement-learning problems that is
no available in optimization problems in general [10].

4.4.1 Elements of Reinforcement Learning

Beyond the agent and the environment, one can identify four main subele-
ments of a reinforcement learning system: a policy, a reward function, a value
function, and, optionally, a model of the environment [7].

A policy de�nes the learning agent's way of behaving at a given time.
Roughly speaking, a policy is a mapping from perceived states of the envi-
ronment to actions to be taken when in those states. The policy is the core
of a reinforcement learning agent in the sense that it alone is su�cient to
determine behavior. In general, policies may be stochastic.

A reward function de�nes the goal in a reinforcement learning problem.
Roughly speaking, it maps each perceived state (or state-action pair) of the
environment to a single number, a reward, indicating the intrinsic desirability
of that state. A reinforcement learning agent's sole objective is to maximize
the total reward it receives in the long run. In general, reward functions may
be stochastic.

A value function speci�es what is good in the long run. The value of a
state is the total amount of reward. An agent can expect to accumulate over
the future, starting from that state.

We seek actions that bring about states of highest value, not the highest
reward, because these actions provide the greatest amount of reward over the
long run. In decision-making and planning, the derived quantity called value
is the one with which we are most concerned. Rewards are basically given
directly by the environment, but values must be estimated and reestimated
from the sequences of observations an agent makes over its entire lifetime.

Model of the environment is mimics the behavior of the environment.
For example, given a state and action, the model might predict the resultant
next state and next reward. Models are used for planning, by which we
mean any way of deciding on a course of action by considering possible future
situations before they are actually experienced.

4.4.2 Reinforcement-learning model

In the standard reinforcement-learning model, an agent is connected to its
environment via perception and action, as depicted in Figure 4.3. On each

14

step of interaction the agent receives as input i, some indication of the current
state s of the environment; the agent then chooses an action a to generate as
output. The action changes the state of the environment. The value of this
state transition is communicated to the agent through a scalar reinforcement
signal r. The agent's behavior B should choose actions that tend to increase
the long/run sum of values of the reinforcement signal. The reinforcement-
based learning system can learn to do this over time by systematic trial and
error, guided by a wide variety of algorithms. Formally, the model consists
of:

• a discrete set of environment states S,

• a discrete set of agent actions A,

• a set of scalar reinforcement signals; typically 0,1, or the real numbers.

Figure 4.3: The standard reinforcement learning model.

The agent's job is to �nd a policy π mapping states to actions that max-
imizes some long-run measure of reinforcement. We expect, in general, that
the environment will be non-deterministic; that is, that taking the same ac-
tion in the same state on two di�erent occasions may result in di�erent next
states and/or di�erent reinforcement values.

Reinforcement learning di�ers from the more widely studied problem of
supervised learning in several ways. The most important di�erence is that
there is no presentation of input/output pairs. Instead, after choosing an ac-
tion, the agent is told the immediate reward interests. It is necessary for the
agent to gather useful experience about the possible system states, actions,
transitions and rewards actively with the aim to act optimally. Another dif-
ference from supervised learning is that the on-line performance is important:
the evaluation of the system is often concurrent with learning [7].

15

4.4.3 Basic principles

One major di�erence between reinforcement learning and supervised learning
is that a reinforcement-learner must explicitly explore its environment.

The simplest possible reinforcement-learning problem is known as the k-
armed bandit problem [1]. The agent is in a room with a collection of k
gambling machines (each called a �one-armed bandit� in colloquial English).
The agent is permitted a �xed number of pulls, h. Any arm may be pulled
on each turn. The machines do not require a deposit to play; the only cost
is in wasting a pull while playing a locally suboptimal machine. When arm i
is pulled, machine i pays o� 1 or 0, according to some underlying probability
parameter pi, where payo�s are independent events and the pis are unknown.
What should the agent's strategy be?

This problem illustrates the fundamental trade-o� between exploitation
and exploration. The agent might believe that a particular arm has a fairly
high payo� probability; should it choose that arm all the time, or should
it choose another one that it has less information about, but seems to be
worse? Answers to these questions depend on how long the agent is expected
to play the game; the the longer the game lasts, the worse the consequences
of prematurely converging on a sub-optimal arm, and the more the agent
should explore.

There is a wide variety of solutions to this problem. I will show two of
them.

Dynamic-Programming Approach

If the agent is going to be acting for a total of h steps, it can use basic
Bayesian reasoning to solve for an optimal strategy [1]. This requires an
assumed prior joint distribution for the parameters {pi} that each pi is in-
dependently uniformly distributed between 0 and 1. We compute a map-
ping from �belief states� (summaries of the agent's experiences during this
run) to actions. A belief state can be represented as a tabulation of action
choices and payo�s: {n1, w1, n2, w2, . . . , nk, wk} denotes a state of the play
in which each arm i has been pulled ni times with wi payo�s. We write
V ∗(n1, w2, . . . , nk, wk) as the expected payo� remaining, given that a total of
h pulls are available, and we use the remaining pulls optimally.

If
∑

i ni = h then there are no remaining pulls, and

V ∗(n1, w2, . . . , nk, wk) = 0.

This is the basis of a recursive de�nition. If we know the V ∗ value for all
belief states with t pulls remaining, we can compute the V ∗ value of any

16

belief state with t + 1 pulls remaining:

V ∗(n1, w2, . . . , nk, wk) =

= maxi E

[
Future payo� if agent takes action i
then acts optimally for remaining pulls

]
= maxi

(
ρiV

∗(n1, wi, . . . , ni + 1, wi + 1, . . . , nk, wk)+
(1− ρi)(n1, wi, . . . , ni + 1, wi, . . . , nk, wk)

)
,

(4.5)

where ρi is the posterior subjective probability of action i paying o� given
ni, wi and our prior probability. For the uniform priors, which result in a
beta distribution, ρi = (wi + 1)/(ni + 2).

The expense of �lling in the table of V ∗ values in this way for all attainable
belief states is linear in the number of belief states times actions, and thus
exponential in the horizont.

Greedy strategies

The �rst strategy that comes to mind is to always choose the action with
the highest estimated payo�. The �aw is that early unlucky sampling might
indicate that the best action's reward is less than the reward obtained from
a suboptimal action. The suboptimal action will always be picked, leaving
the true optimal action starved of data and its superiority never discovered.
An agent must explore it to ameliorate this outcome.

A useful heuristic is �optimism in the face of uncertainty� in which actions
are selected greedily, but strongly optimistic prior beliefs are put on their
payo�s so that a strong negative evidence is needed to eliminate the action
from consideration. This still has a measurable danger of starving an optimal
but unlucky action, but the risk of this can be made arbitrarily small.

17

Chapter 5

My solution

This chapter describes the theoretic solution of the project. The solution of
the project is divided into four sections. The division and the dependencies
are shown in Figure 5.1. The �gure depicts the environment and the system,
which changes the environment with the robot. The environment and the
robot abilities are described in Section 5.1. The system acquires the images
of the environment for processing. After the image acquisition, the objects
are detected in the image. This is described in Section 5.2. The detected
objects are included to the scene and scene is processed, Section 5.3. Finally,
the learning algorithm decides the next robot movement, Section 5.4.

Figure 5.1: The solution scheme.

18

5.1 Robot's world and body

5.1.1 Physical setup

The shape sorter board, pieces and the robot gripper were made deliberately
simple. Only �at 2�dimensional arrangement was chosen to keep the image
analysis and magnetic gripping as easy as possible. The scene consists of the
table, the board, and objects. An object can be:

• Piece. Pieces are �at magnetic objects of equal height but possibly
di�erent shapes and di�erent colors.

• Hole. Holes in the �at board can have arbitrary sizes and shapes.

• Distractor is something (drawn image, non-magnetic object) unmovable
and ungrippable on the table.

These examples of the setup are illustrated in Figure 5.2. The board lies on
the table. The pieces can lie on the table or on the board. Also, they can be
inserted into the holes in the board (Figure). There is a single, stationary,
top-view camera not attached to the robot. To avoid perspective distortions,
the higher the camera is positioned the better.

Figure 5.2: Examples of the puzzle arrangement.

5.1.2 Innate elementary capabilites

The vertical position of the gripper can take only two levels: the grip/release
level and the move level. The robot has the following innate action capabil-
ities:

• Grip. It is assumed that the gripper is in the move level above the
object. Descend to the grip level and turn on the electromagnet in the
gripper. The grip action succeeds if the object is a piece. Gripping an
empty space is considered a failure.

19

• Move. It is assumed that the gripper is in the grip level and is holding
an object. The electromagnet is turned on, the gripper is risen to the
move level and moved horizontally in the move level above a speci�ed
object. Moving always succeeds, because there is no an grippable and
unmovable object in the gripper trajectory.

• Release. It is assumed that the gripper is in the move level. The
magnetic gripper is descended to the release level and the magnet is
turned o�.

After each action, the system produces the success/failure signal. Detection
of success/failure is done on the images seen by the camera.

Besides these manipulation capabilities, the system has the following in-
nate perceptual capabilities:

• Object detection and tracking. The system detects objects and tracks
their identities in time. Ocassionally, the track can be interrupted (i.e.,
the identity lost), e.g., after an accidental moving of an object occluded
by the robot arm.

• Feature extraction. For each object, a set of features is extracted from
its iconic representation (i.e., the image of its blob). The system does
not know the meaning of individual features, meanings will be assigned
later by learning classi�ers acting on this feature space. The features
themselves are not subject to learning and stay the same during the
system's lifetime. The feature set is a vector

(x, y, t1, . . . , tn, s1, . . . , sm),

where:

� x, y is the position of the reference point of the blob.

� t1, . . . , tn are texture descriptors. In the simplest case of texture-
less puzzle pieces, they can be just mean R, G, B values of the
blob region.

� s1, . . . , sm are shape descriptors. For example, they can be text-
book shape descriptors, like the ratio of the outline length and
square root of the area, a few centered moments, or a few a�ne
invariants [9].

20

• Piece insertion detection. The system should detect the insertion of a
piece to the appropriate hole. The detection could be accomplished by
an external sensor, user input or camera. The camera detection is used
in our system. For this purpose the system can recognize object's types
(piece/hole) and �nd suitable hole for each piece. This information
is explored only for the detection and the robot can't use it. When
the robot tries to insert a piece to an appropriate hole, the system
automatically aligns the piece with the hole and returns the `success'
signal.

5.1.3 Functionality and example session

The system is able to perform several subtasks, corresponding to forces
(modes of behavior) driving the system do something:

1. Identify the model of the world. I.e., become able to predict outcomes
of actions (or �nd out the set of allowed actions, or something like
that).

2. Find a goal to be ful�lled (e.g., put all objects to holes). At the current
state of development, we can temporarily make this goal innate.

3. Ful�ll the given goal.

Note that subtask 3 cannot be performed without performing subtask
2 �rst, and both subtask cannot be done without performing subtask 1.
However, attempting to perform solely subtask 1 for a longer time than is
necessary for ful�lling the other two subtasks would be a mistake. Ideally,
there should be a trade-o� between them optimizing some criterion (�tness
function).

Example: one piece, 2D distractor

The scene consists of two 2D red distractors of rectangular shape and a
yellow object laying on one of distractors. There are two allowed positions:
the object laying on the �rst distractior or on the second distractor. When
laying on a distractor, the object makes it completely invisible.

The robot tries to grip a object, i.e., the gripper descends to the grip level
above the object, turns the magnet on and goes back with the object. This
produces the `success' signal. The robot makes a hypothesis that all objects
are gripable.

The robot tries to move the gripped object. This produces the `success'
signal. The robot makes a hypothesis that all objects are moveable. The

21

gripper with the object moves to a di�erent, randomly chosen, position � in
our case there is only one such position, namely above the other distractor.

The robot tries to release the object, i.e., the gripper tries to descend
to the release level. This produces the `success' signal. Therefore the robot
makes a hypothesis that any object can be placed on any other object. Note,
if there was another piece under the gripper, the release attempt would pro-
duce `failure' because descending to the release level would cause a collision.

In subsequent random actions, the system tries to falsify the current hy-
potheses. It tries to grip the distractor, which fails. The way out from the
contradictory set of hypotheses (`all objects are gripable' and `all objects are
not gripable') is to discover a hidden property of objects that would resolve
the contradiction. The robot has an innate capability to compute the fea-
ture vector (x, y, t1, . . . , tn, s1, . . . , sm) for each object. It tries to resolve the
contradiction by teaching a linear classi�er [9] (devoted to gripability) acting
on this feature space, using a labeled training set with two elements being
the two actions performed so far. It is always possible to run a hyperplane
in this (m + n + 2)-dimensional feature space separating these two elements.
However, this hyperplane is highly ambiguous � therefore the robot has no
way to �nd out whether the gripability/non-gripability is distinguished by
position, texture/color, shape, or their linear combination.

5.2 Object detection

5.2.1 Segmentation

Stable image segmentation is very important for correct work of the algo-
rithm. There were implemented three di�erent image segmentation algo-
rithms. Finally the Graph-Based image segmentation algorithm was used
for its stability, short running time and easy con�gurability. Algorithm proof
and more detailed description is in the report [3].

Graph-based image segmentation

Graph-based image segmentation techniques generally represent the problem
in terms of a graph where each node corresponds to a pixel in the image, and
the graph edges connect certain pairs of neighboring pixels. Let G = (V, E)
undirected graph with vertices vi ∈ V , the set of elements to be segmented,
and edges (vi, vj) ∈ E with corresponding weight w((vi, vj)), which is a non-
negative measure of the dissimilarity between neighboring elements vi and
vj. In this case of image segmentation, the elements in V are pixels and the
weight of an edge is some measure of the dissimilarity between the two pixels

22

connected by that edge (e.g., color, di�erence in intensity, location or some
other local attribute).

In the graph-based approach, a segmentation S is a partition of V into
components such that each component (or region) C ∈ S corresponds to
a connected component in a graph G′ = (V, E ′), where E ′ ⊆ E. In other
words, any segmentation is induced by a subset of the edges in E.

We de�ne predicate D for evaluating whether or not there is evidence for
a boundary between two components in a segmentation. This predicate is
based on measuring the dissimilarity between elements along the boundary of
the two components relative to a measure of the dissimilarity among neigh-
boring elements within each of two components. The resulting predicate
compares the inter-component di�erences to the within component di�er-
ences and is thereby adaptive with respect to the local characteristics of the
data.

The internal di�erence of a component C ⊆ V is the largest weight in the
minimum spanning tree of the component, MST (C, E). That is,

Int(C) = max
e∈MST (C,E)

w(e). (5.1)

The di�erence between two components C1, C2 ⊆ V to be the minimum
weight edge connecting the two components.

Dif(C1, C2) = min
v1∈C1,v3∈C2,(vi,vj)∈E

w((vi, vj)). (5.2)

If there is no edge connecting C1 and C2 then Dif(C1, C2) = ∞.
The region comparison predicate evaluates if there is evidence for a bound-

ary between a pair or components. If the di�erence between the components,
Dif(C1, C2), is large relative to the internal di�erence within at least one of
the components, Int(C1) and Int(C2). A threshold function is used to control
the degree to which the di�erence between componets must be larger than
the minimal internal di�erence. We de�ne pairwise comparison predicate as,

D(C1, C2) =

{
true if Dif(C1, C2) > MInt(C1, C2),
false otherwise .

(5.3)

where the minimum internal di�erence, MInt, is de�ned as,

MInt(C1, C2) = min(Int(C1) + τ(C1), Int(C2) + τ(C2)). (5.4)

The threshold function τ controls the degree to which the di�erence be-
tween two components must be greater than their internal di�erences in order
for there to obtain the evidence about boundary between then (D to be true).

23

For small components, Int(C) is not a good estimate of the local characteris-
tics of the data. In the extreme case, when |C| = 1, Int(C) = 0. Therefore,
a threshold function is used based on the size of the component,

τ(C) = k/|C|, (5.5)

where |C| denotes the size of C, and k is some constant parameter. That
is, for small components stronger evidence is required for a boundary. In
practice, k sets a scale of observation. A larger k causes a preference to
larger components. For our purpose k was set to 1500. However, that k is
not a minimal component size. Smaller components are allowed when there
is a su�ciently large di�erence between the neighboring components.

Segmentation algorithm

The input is a graph G = (V, E), with n vertices and m edges. The output
is a segmentation of V into components S = (C1, . . . , Cr).

1. Sort E into π = (o1, . . . , om), by non-decreasing edge weight.

2. Start with a segmentation S0, where each vertex vi is in its own com-
ponent.

3. Repeat step 4 for q = 1, . . . ,m.

4. Construct Sq given Sq−1 as follows. Let vi and vj denote the vertices
connected by the q-th edge in the ordering, i.e., oq = (vi, vj). If vi

and vj are in disjoint components of Sq−1 and w(oq) is small compared
to the internal di�erence of both those components then merge the
two components, otherwise do nothing. More formally, let Cq−1

i be the
component of Sq−1 containing vi and Cq−1

j the component containing
vj. If Cq−1

i 6= Cq−1
j and w(oq) ≤ MInt(Cq−1

i , Cq−1
j) then Sq is obtained

from Sq−1 by merging Cq−1
i and Cq−1

j . Otherwise Sq = Sq−1.

5. Return S = Sm.

For integer weights this algorithm can be performed in linear time using
counting sort. In general, it can be performed in O(m log m) time using any
one of several sorting methods.

24

Figure 5.3: The segmentation result produced by this algorithm. Distinct
classes are labeled by di�erent colors. The crosses in the image give the
representative points of segmented objects.

5.2.2 Feature extraction

The image segmentation �nd objects in the image. Each object is charac-
terized by a lot of several features. For future processing there is necessary
extract this features [9]:

• Area of the object.

• Filled area of the object - area of the object with holes.

• Center of mass position.

• Major and minor axis length.

• Eccentricity.

• Bounding box coordinates.

• Convex hull and convex area.

• Solidity - quotient of the area and the convex area.

• Boundary - vector of boundary points.

• Mean Color and average color.

• Perimeter.

25

5.2.3 Objects classi�cation

The purpose of the classi�cation in the project is recognition of holes, pieces
and their pairs for piece inserting test. As features in classi�cation the follow-
ing ones were chosen: perimeter2 divided by �lled area, solidity, eccentricity
and the mean color. For classi�cation, an ellipsoid separation algorithm was
used [4].

Consider a binary classi�cation problem in Rd. Let X and Y be two �nite
subsets of Rd giving examples two classes. Let class X has a distribution
which can be approximated by multivariate a Gaussian, let class 2 has some
unknown distribution. Under this non-symmetric setting we call x ∈ X
as positive examples and y ∈ Y as negative ones. Our assumptions which
motivated the selection of classi�cation model is as follows:

• Under limited number of training examples it is desirable to keep the
complexity of the classi�cation model as low as possible.

• Scaling of the feature space may be arbitrary: color features with area
features, etc.

• The linear model is not su�cient.

• Increasing the dimension of the feature space is undesirable.

Consider problem of learning discriminative ellipsoid with center �xed at
0:

�nd A : Rd 7→ Rd such that:
{
||Ax|| < 1, x ∈ X ,
||Ay|| > 1, y ∈ Y .

(5.6)

Constraints ||Ay|| > 1 are non-convex in A, however we can express ||Ax||2
as 〈x, ATAx〉 and reformulate expression (5.6) as follows:

min 1
〈x, Qx〉 < 1, x ∈ X
〈y, Qy〉 > 1, y ∈ Y
Q < 0

(5.7)

which contains linear constraints and Q < 0 is equivalent to Q = ATA.〈〉
denotes the scalar product.

Examples

Figure 5.4 shows objects detected in the 2D puzzle simulator environment.
Feature vectors describing the objects contain color and some a�ne-invariant
shape features.

26

Figure 5.4: Objects detected 2D puzzle simulator.

−10 −8 −6 −4 −2 0 2 4 6 8 10

−8

−6

−4

−2

0

2

4

6

8

sqrt(eigenvalues): 5.6332 0.8176 0.0238 0.0013 0.0005 0.0001

Figure 5.5: Learning �color� equivalence. Red � positive examples; blue �
negative examples; black � rest of all possible pairs from Figure 5.4. Black
dots inside magenta circle are indeed represent objects of equivalent color.

Figure 5.5 shows how class of equivalence can be learned based on pos-
itive training pair: (7, 8) and negative training pairs ({7, 8}, {1, 5, 15, 13})

27

({12, 7, 6}, 4) w.r.t. Figure 5.4. The learned equivalence represents color
equivalence. Note that only one positive training sample was present.

Fig. 5.6 shows learned equivalence class for training data: objects 1, 4, 11
are said to be equal (numbers are w.r.t. Figure 5.4), negative examples were
sequentially added until learned classi�cation indeed corresponded to shape
equivalence. Note that positive examples are given only for 3 square shapes.

−10 −5 0 5 10

−10

−5

0

5

10

sqrt(eigenvalues): 44.6476 18.2492 5.6132 0.0001 0.0001 0.0000

Figure 5.6: Learning "shape" equivalence: best separating ellipsoid is 3D,
the projection on two main axis is shown.

28

5.3 Scene processing

5.3.1 Object tracing

The scene has to be processed by the system after each robot action. The
robot needs recognize changes in the scene for correct work of the algorithm.
The system keeps a database of the objects detected in the scene. When
the image is segmented, the detected objects are compared with the stored
objects. Each object in the database has its own unique index. If the object is
not found then the object with a new unique index is added to the database.

Each object is characterized by a feature vector, v = (t1, . . . , tn), where
v1, . . . , vn are chosen features. Similarity, S, between two objects described
by vectors, v1 = (t11, . . . , t1n) and v2 = (t21, . . . , t2n), is

S = ‖v2 − v1‖ =
n∑

i=1

(t2i − t1i)
2. (5.8)

The chosen features for the comparison are the same as in classi�cation:
perimeter2 divided by �lled area, solidity, eccentricity and mean color. Sep-
arately from the feature vector the last object position in the scene is saved.
Matching objects from the database with object from the scene is followed
by this rules:

1. Remove superobjects (superobjects contain other objects).

2. Each object from the database can be linked with just one object in
the scene.

3. An invisible object may appear only at the same position where it was
visible last time.

4. The robot can change the position of just one object in the scene.

5. The value of the similarity between two objects is minimal.

5.3.2 Grip test

When the robot tries to grip an object, the system recognizes if the object
was gripped or not. The system uses images from a camera for grip recogni-
tion. The system needs two images - �rst before gripping and second after
it. Example of this images are shown in Figure 5.7. When the images are
available, the gripped object is cut from the �rst image and this template is
being found in the second one. If the object was found and its position was

29

changed then grip is successful. For �nding the template in the image, the
sum of squared distances is used by template matching algorithm.

Figure 5.7: Images from camera a) before grip b) successful grip c) unsuc-
cessful grip

Let the template T be of size M × N , and the image I(x, y) of size
W ×H, where (x, y) denotes the generic image coordinates. We also indicate
the image subwindow located at (x, y) as Is(x, y). Then, the generic distance
function measuring the dissimilarity between the template and the image
subwindow can be written as follows:

δp(x, y) =
M∑
i=1

N∑
j=1

(I(x + i, y + j))− T (i, j))2. (5.9)

The image subwindow is the most similar with the template, where the

30

dissimilarity is minimal.

5.3.3 Shape alignment

When the robot tries to insert a piece to a hole, the system has to align
the piece with the hole automatically. Each detected object (hole/piece)
has a boundary and a center of mass. This features are used for the object
alignment.

Figure 5.8: The shape alignment and the border function of two objects (red
and blue line). The magenta line shows the result of the shape alignment.

For a computation of a rotation angle, we transform the border to polar
coordinates, where the origin is in the center of mass. We de�ne periodic
function of the border, f1(φ) = r, for the �rst object and function, f2(φ) = r,
for the second object, where φ is an angle and r is a radius used in the polar
coordinates. We �nd the angle of rotation α ∈ (0, 2π), so that a value V of
a function

V =

∫ 2π

0

(f1(φ)− f2(φ + α))2dφ (5.10)

is minimal. Example of the alignment is shown in Figure 5.8.

5.4 Reinforcement learning

The example in Section 5.1.3 describes, how the robot should react to the
problem. In our project, the robot decision is controlled by reinforcement
learning [7]. For reinforcement learning we de�ne:

31

• Set of the environment states:
S = (in_gripper × under_gripper)
= { Piece, Empty } × { Piece, Hole, Empty}
= {Piece-Piece, Piece-Hole, Piece-Empty, Empty-Piece,
Empty-Hole, Empty-Empty}.

• Set of the actions: A = {Grip, Release, move to piece, move to hole}.

• Reward function: R : S × A → R

• State transition function: T : S ×A → Π(S), where a member of Π(S)
is a probability distribution over the set S (i.e., it maps states to proba-
bilities). We write T (s, a, s′) for the probability of making a transition
from state s to state s′ using action a.

The state transition function speci�es probabilistically the next state
of the environment as a function of its current state and the agent's
action. The reward function speci�es expected instantaneous reward
as a function of the current state and action.

We de�ne the optimal value of a state � it is the expected in�nite discounted
sum of reward that the agent will gain if it starts in that state and executes
the optimal policy.

V ∗(s) = max
π

E

(
∞∑

t=0

γtrt

)
. (5.11)

This optimal value function is unique and can be de�ned as the solution
to the simultaneous equations

V ∗(s) = max
a

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

)
,∀s ∈ S, (5.12)

which assert that the value of a state s is the expected instantaneous reward
plus the expected discounted value of the next state, using the best available
action. Given the optimal value function, we can specify the optimal policy
as

π∗(s) = arg max
a

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

)
. (5.13)

32

To �nd an optimal policy was used a simple iterative algorithm called
`policy iteration' that can be shown to converge to the correct V ∗ values.
Using π as a complete decision policy.

choose an arbitrary policy π′

loop

π := π′

compute the value function of policy π:
solve the linear equations

Vπ(s) = R(s, π(s)) + γ
∑

s′∈S T (s, π(s), s′)Vπ(s′)
improve the policy at each state:

π′(s) = arg maxa(R(s, a) + γ
∑

s′∈S T (s, a, s′)Vπ(s′)
until π = π′

The value function of a policy is just the expected in�nite discounted
reward that will be gained, at each state, by executing that policy. It can be
determined by solving a set of linear equations. Once we know the value of
each state under the current policy, we consider whether the value could be
improved by changing the �rst action taken. If it can we change the policy to
take the new action whenever it is in that situation. This step is guaranteed
to strictly improve the performance of the policy. When no improvements
are possible then the policy is guaranteed to be optimal.

33

Chapter 6

Implementation

The project has been implemented in MATLAB environment. Team of four
people worked on the implementation, because the project was very ex-
tensive. Vojt¥ch Franc modi�ed the COSPAL 2D puzzle simulator, which
was created by Eric Jonson from the cooperative Linköping University [6].
Pavel Janda created a hardware interface. Radim Krupi£ka with Oleksandr
Shekhovtsov used the hardware interface and modi�ed the simulator for the
real environment. This modi�cations are described in this work.

Whole implementation is divided into three modules, see Figure 6.1:

Hardware module includes functions of the image acquisition and the robot
movement. Connection between the camera and the robot is imple-
mented.

GM module (grounding and management) includes functions for receiving
and processing the images from the camera. GM module keeps infor-
mation about the scene and moves with the robot arm.

Learning module makes a decision on what the robot has to do.

Each module is described in the following sections. Sections include ex-
amples of the source code, which is modi�ed for demonstration use. The
complete source code and its documentation can be found on the enclosed
CD.

6.1 Hardware implementation

The hardware implementation is a theme of Pavel Janda's diploma work [5].
The GM module processes an image acquired from the camera. Calibration

34

Figure 6.1: Implementation diagram.

enables to move with the robot arm in the image coordinates. There are
implemented these functions: Move to the position in the image coordinates,
Grip and release piece on the coordinates, Take a picture of the environment
with the robot arm and without the robot arm.

6.2 GM module

The GM module is the main part of the implementation. The GM module
is built on 2D COSPAL simulator, which was created by Eric Jonson [6] and
later modi�ed by Vojt¥ch Franc. This simulator was modi�ed for practical
use. The GM module includes functions for the robot movement and the
image and scene processing.

The GM module controls robot actions and returns feedback. The actions
are:

• grip - If the object is gripped, the function returns success.

• move to position - Move the robot arm on coordinates.

• move to object - Move the robot arm over the indexed object.

• release - If the object was inserted to appropriate hole, function returns
`success' and `inserted'.

Function gm_action is de�ned in gm_module/gm_action.m �le. More
detailed description is in Section 6.2.1. Move to object and grip functions
need an index of the object. The GM module contains a database of the
detected objects for tracking. Each object has own unique index and own
features, see Section 5.2.2. When the robot moves with a piece, the system
has to take a new picture and recognize the same objects, Sections 5.3.1
and 6.2.3. The recognition needs the segmentation of the image, which is
described in Sections 5.2.1 and 6.2.2.

Grip detection is described in Sections 5.3.2 and 6.2.5.

35

When the robot tries to insert a piece to an appropriate hole, the system
automatically aligns the piece with the hole, Sections 5.3.3 and 6.2.6, and
detects insertion. For insertion test, the system recognizes the pieces and
its suitable holes, Sections 5.2.3 and 6.2.4. The GM module system and
dependencies are shown in Figure 6.2

Figure 6.2: GM module work�ow diagram.

6.2.1 Robot movement

The robot arm movement is implemented in the gm_module/gm_action.m
�le. There are four possible actions: grip, release, move to position, move to
object.

Grip algorithm

The robot tries to grip an object.

1. If other object is in the gripper or no object is under the gripper, the
grip fails,

36

2. else let the robot perform the action (call the appropriate hardware
function).

3. If action 2 is successful then the grip is detected from the image. If
the grip is successful then the object is loaded and the function returns
`success'.

Release algorithm

The robot releases a gripped object.

1. When the gripper is empty then the function returns `fail'.

2. If an object is under the gripper then alignment angle is computed and
the gripped object is aligned with the object under the gripper.

3. Let the robot perform the release action.

4. If the piece in the gripper corresponds to a hole under the gripper then
the function returns successful insertion.

Move to position

Move to position calls hardware action, which moves the robot to input
coordinates.

Move to object

The robot is moved to position, where the object with entered ID is placed.

6.2.2 Segmentation

The segmentation is written in the C++ language as a MEX module and
is compiled for the MATLAB environment. The sources of the library are
located in the directory graph_segmentation on enclosed CD. The segmen-
tation function returns segmented objects and their features. The function
has four input parameters:

• img - Input image for the segmentation.

• sigma - Smooth of the image. Values from 0 to 1, where 1 is maximum
smooth.

• k - Constant for threshold function based on the size of the component.

37

• min - Minimum component size.

After a lot of experiments, the values were set to sigma = 0.7,k = 1600,
min = 1500.

6.2.3 Object tracing

The function gm_update is called before every robot action. This function
processes an image from a camera and traces objects. The function is im-
plemented in the gm_module/gm_update.m �le. The rules are de�ned in
Section 5.3.1, which are respected by the following algorithm.

1. The objects (blobs) are acquired from the image by the image segmen-
tation.

2. Convert the tracking problem to the max-sum problem [9]. Create
a similarity matrix between objects from the database and detected
blobs. A similarity between some blob and object is

−norm(feature_vector_object− feature_vector_blob),

where norm is the vector norm.

3. Set the similarity between blob and object to -in�nity, when the invis-
ible object does not appear at the same position where it was visible
last time.

4. Find the combination of the blobs and the objects where the sum of
their similarity is maximal. Exclude the combinations where two ob-
jects change their position. The Vojt¥ch Franc's function maxsumg was
used for the computation.

6.2.4 Object detection

The object detection is used for holes and pieces recognition. Several exam-
ples of the images of the holes and the pieces were chosen and the classi�er
was learned and saved for future recognition. Learning equivalence class in
linear space is based on �positive� and �negative� examples. Positive exam-
ples are pairs of points which have to be classi�ed as equal, negative examples
are pairs of points which have to be classi�ed as not equal. The classi�er is
searched in the class of separating ellipsoids. The separating ellipsoid with
center at 0 is found such that positive examples are inside unit sphere. Nega-
tive examples are outside the sphere with maximal radius, where spheres are

38

considered in the metric de�ned by the ellipsoid. Learning is implemented
in the function gm_module/classi�er/learn_eq_classi�er.m.

When the classi�er is learned, the system could classify the image of
the object as the hole or the piece. The classi�er class is found in the
/gm_module/classi�er directory. Classi�er class was implemented by Alexan-
der Shekhovstov. Yalmip and SeDumi extension are used for classi�cation
computation.

6.2.5 Grip test

The function detect_grip is implemented in the gm_module/ private/ de-
tect_grip.m �le. This function takes four parameters: object ID, image of
the scene with the gripper on the object before lift up - I1, image after grip
- I2 and the image of the scene without the robot arm before grip. The
function cuts o� the object from I1 and calls a function detect_object, which
�nds object from I1 in the I2. If the object from I1 changes the position, the
grip was successful.

6.2.6 Alignment

The function shape_align_bd computes the rotation angle to align two shapes.
This function is implemented in the gm_module/private/shape_align_bd.m
�le. The function takes a border and a centroid of the objects and returns
the rotation angle.

1. Transform border coordinates from Cartesian to polar coordinate sys-
tem.

2. Create the border function. Make a cubic interpolation for unde�ned
points.

3. Find the shift of the functions, where the sum (5.10) is minimal.

6.3 Reinforcement learning

The pilot problem is to insert all the pieces into the appropriate holes. This
problem is solved by the reinforcement learning. The reinforcement learning
algorithm was described in Section 5.4. The algorithm is implemented in the
rl directory and the script rl/rl.m starts the demonstration.

At �rst, the start script rl.m initializes hardware and then loads the saved
classi�cators. If the problem was solved before the previously learned model

39

is loaded. The main part of the algorithm is the function policy_iteration,
which computes optimal policy for the given model. This function calls
the policy_evaluation function for computing values of states. The pol-
icy_iteration returns the action, which the robot has to execute now. A
function rl/make_action.m makes this action. The make_action function
calls gm_action.m (from GM module) which causes the robot to move. If
the action was successful then the robot is rewarded. The reward is 5 for an
insertion of a piece into its hole and 1 for a successful grip.

40

Chapter 7

Conclusions

The aim of the diploma project is to contribute to the studies in the cog-
nitive systems. The task of solving the �shape sorter puzzle� was chosen
as a demonstrator of the cognitive systems. The experimental environment
was created and used for solving this puzzle. The diploma project is a part
of the EU project COSPAL. The diploma project is designed so that it is
compatible with the other COSPAL projects and follows the demands of the
COSPAL architecture.

Vojt¥ch Franc modi�ed the puzzle simulator from the cooperative Linkö-
ping University and created the core of the GM (grounding and management)
module. Pavel Janda [5] prepared low-level modules for the robot control
and the image acquisition. We included these modules to the GM module
and tested the functionality of the robot movement and the camera. The
GM module was enhanced with the object alignment, the object tracking,
the object recognition (classi�cation) and the grip detection. After the GM
module was tested, I found out that the original image segmentation was
unsuitable and implemented another segmentation algorithm.

The reinforcement-learning algorithm was used to determine the deci-
sion strategy. The algorithm has been successfully veri�ed on the pilot task
and is suitable for solution of the cognitive tasks. The implementation and
the whole system was successfully defended on the COSPAL workshop in
September 2006. At this moment, the robot is used for another tasks. The
diploma project provided also another outcome. The developed modules are
used in a tracking process. The reinforcement learning in combination with
the vision and the robot manipulation has been used in student laboratory
exercises at the Czech Technical University, Faculty of Electrical Engineering,
Department of Cybernetics.

41

Bibliography

[1] D. A. Berry and B. Fristedt. Bandit problems: Sequential allocation of
experiments. Chapman and Hall, London, UK, 1985.

[2] COSPAL. Cognitive Systems using Perception-Action Learning, number
COSPAL-004176, June 2005.

[3] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. E�cient graph-based
image segmentation. International Journal of Computer Vision, pages
167�181, September 2004.

[4] Fr. Glineur. Pattern separation via ellipsoids and conic programming.
Technical report, Faculté Polytechnique de Mons, Belgium, 1998.

[5] Pavel Janda. Control of the industrial robot with cameras. Master's
thesis, Charles University in Prague, 2007.

[6] Erik Jonsson. The COSPAL 2D puzzle simulator v1.1, October 2004.

[7] Leslie Pack Kaelbling, Michael L. Littman, and AndrewW.Moore. Rein-
forecement learning. Journal of Arti�cial Intelligence Research 4, pages
237�285, June 1996.

[8] LiU. COSPAL deliverable D1: Project presentation. Technical Report
IST-2003-004176, LiU, 2004.

[9] Milan �onka, Václav Hlavá£, and Roger Boyle. Image Processing, Analy-
sis and Machine Vision. Thomson Toronto Canada, third edition, 2007.

[10] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. The MIT Press Cambridge, Massachusetts London, Eng-
land, 1997.

[11] Tomá² Werner, Václav Hlavá£, and Vojt¥ch Franc. COSPAL Deliverable
8: Network States to Symbols Software Prototype. Technical Report

42

CTU�CMP�2005�24, Czech Technical University in Prague, September
2005.

[12] www.wikipedia.org. Cognitive architectures. 2006.

43

List of Figures

1.1 Di�erent types of puzzles . 2
1.2 The industrial robot CRS A-465 with six degrees of freedom

with installed electromagnet and with the puzzle. 3

2.1 Shape sorter puzzle used in the COSPAL demonstrator. 4

3.1 Current speci�cation of the COSPAL architecture. 6

4.1 Main pattern recognition steps 12
4.2 A general discrimination function. 13
4.3 The standard reinforcement learning model. 15

5.1 The solution scheme. 18
5.2 Examples of the puzzle arrangement. 19
5.3 The segmentation result produced by this algorithm. Distinct

classes are labeled by di�erent colors. The crosses in the image
give the representative points of segmented objects. 25

5.4 Objects detected 2D puzzle simulator. 27
5.5 Learning �color� equivalence. Red � positive examples; blue �

negative examples; black � rest of all possible pairs from Fig-
ure 5.4. Black dots inside magenta circle are indeed represent
objects of equivalent color. 27

5.6 Learning "shape" equivalence: best separating ellipsoid is 3D,
the projection on two main axis is shown. 28

5.7 Images from camera a) before grip b) successful grip c) unsuc-
cessful grip . 30

5.8 The shape alignment and the border function of two objects
(red and blue line). The magenta line shows the result of the
shape alignment. 31

6.1 Implementation diagram. 35
6.2 GM module work�ow diagram. 36

44

Appendix A

The Contents of the Enclosed CD

A.1 Overview of the contents of the enclosed

CD

The enclosed CD contains:

• System guide and code documentation.

• PDF �le containing this diploma thesis.

• Project source codes and compiled binaries.

The contents of the individual directories:

gm_module � The main control module of the application is here.

graph_segmentation � This directory contains the segmentation algo-
rithm written in �C� language.

hw_ctu � The contents of this folder present both the robot control and
the image acquisition modules.

rl � The source codes of the reinforcement learning modules are stored here.

robot � This directory contains the source codes, documentation and com-
piled DLL libraries of both the TROL Robot Control Library and MAT-
LAB Interface for CRS A465 Robot.

SEDUMI, stptool and yalmip � These folders incorporate external li-
braries required for the work.

45

A.2 The list of the created and modi�ed �les

The integral component of this diploma project are the �les containing the
source codes. The works on this project required the creation of the new �les
as well as the modi�cation of the current ones. The enclosed CD contains
some functional modules of the COSPAL project. A group of people has been
engaged in the COSPAL project development, and thus the CD contains the
works of many authors. All �les referring to this diploma thesis contain
the author's mark RK. The following list contains both newly created and
modi�ed items. Only the most important �les are listed:

• /rl/ � The reinforcement learning algorithm.
I created or modi�ed all �les in this directory.

• /graph_segmentation/ � The graph image segmentation algorithm.
I created or modi�ed all �les in this directory.

• /gm_module/eq_shape.m

• /gm_module/gm_action.m

• /gm_module/gm_can_insert.m

• /gm_module/gm_update.m

• /gm_module/private/detect_grip.m

• /gm_module/private/detect_object.m

• /gm_module/private/get_blobs_gr.m

• /gm_module/private/gm_auto_align.m

• /gm_module/private/shape_align_bd.m

• /gm_module/private/shape_align.m

• /gm_module/private/template_matching.m

46

