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CHAPTER 1 

Introduction 

The goal of this thesis was to do some research in the topic of T-paths 
and their further generalizations, min-max relations concerning packing prob­
lems, their polyhedral descriptions or linear programming formulations. This 
text brings a linear programming formulation of one of those problems and some 
other minor new facts about T-paths. 

The text was written in such a way that a person with some basic knowledge of 
mathematics and graph theory should understand it, therefore the basic necessary 
background facts are briefly given at the beginning. 

In Chapter 2 we list the basic definitions and notations from various areas of 
mathematics needed. We recall the basic denotation, definitions and theor.ems 
from linear algebra, graph theory (graph basics, matchings, b-matchings, disjoint 
paths), matroid theory, complexity theory ( classes P and NP) and linear opti­
mization. Everything is explained briefly and is meant to make reader familiar 
with the notation used. The only exception is the section about b-matchings. 
They are not so commonly known and therefore we give more details. 

The following part, Chapter 3, is a compilation of known theoretical results 
about T-paths from the book [Sch03c] and articles [SchOl], [SS04], [CGG+04], 
[Pap05b] and [Pap06]. It consists of a description of basic disjoint T-paths pack­
ing problems, of Gallai [Gal61] and Mader [Mad78a], [Mad78b] and relations 
between them. Then the min-max relations for those problems are stated. We 
also mention the relation of the path packings to matroids. This chapter also 
covers further generalizations of those problems, like e.g. non-zero T-paths in 
group-labeled graphs, and some known min-max results about them. 

Chapter 4 is a compilation of algorithmic results relevant to T-paths from 
the book [Sch03c] and articles [Lov80], [Lov81], [CCG04] and [Pap05a]. It 
describes algorithmic view of disjoint T-paths packing problems and known algo­
rithms for them. Two basic algorithms, the first one using graph matchings, which 
works only for one type of the problem, and the second one, Lovász's algorithm 
[Lov80], [Lov81] using matroid matchings in linear spaces are shown. Further­
more, recent combinatorial algorithmic results by Chudnovsky et. al. (CCG04] 
and Pap [Pap05a] are mentioned. 

The last Chapter 5 consists most of all of the main outcomes of this work -· 
a simple linear programming description of fully vertex-disjoint non-ret1:1fning 
T-paths derived in different ways and some pasic insight to properties of possible 

1 



2 1. INTRODUCTION 

further generalizations of path packings like returning T-paths or non-returning 
S-paths are shown. 



CHAPTER 2 

Preli01inaries, definitions and denotation 

1. Linear algebra 

Some basic knowledge of linear algebra, vector spaces and matrices is required 
for understanding the following text. From now on we will consider all vectors 
as column vectors. The components of a vector x = (x1, ... , Xn)T are x1 , ... , Xn· 

Functions x: S---+ IR are identified with the vectors x such that Xs = x(s) for 
each s ES. 

For any R C S the incidence vector of R is the vector XR defined as 

(1) () {
1 ifsER 

XR s := 
O otherwise 

For any s E S we denote 

(2) Xs := X{s} 

Given a vector space R8 , the all-zero vector is denoted by Os or just O and 
similarly all-one vector is denoted by ls or 1. 

Whenever we write any matrix or vector multiplication we implicitly assume 
compatibility of the dimensions. 

For a function x : S ---+ JR and any R C S, we denote 

(3) x(R) := L x(s) 
se R 

Vectors xi, ... , Xk are called linearly independent if there are no >..1 , ... , >..k 

such that L:~=l AiXi =O and not all of >..i are equal to O. Linear hull of a set X of 
vectors is the set of all their linear combinations and is denoted bylin. hull(X), 
more precisely 

(4) lin. hull(X) := {:L y>.y, Y C X finite , ,\ E l~.Y} 
yEY 

A set X is a linear space if X= lin. hull(Y) for some Y. Dimension of a space 
L is the maximum number of linearly independent vectors in that space and is 
denoted by dim(L). If X, Y are subsets of a linear space L and z E L, >.. E R, 

3 
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then 

(5a) 

(5b) 

(5c) 

2. PRELIMINARIES, DEFINITIONS AND DENOTATION 

z+X:={z+xlxEX} 

X+ Y := {x + y I x E X,y E Y} 
AX := { AX I X E X} 

If X, Y are subspaces of L then 

(6) X/Y := {x + Y I x EX} 

is a quotient space, which is a linear space, with addition and scalar multiplication 
given by (5). The dimension of a quotient space is known to be dim(X/Y) = 
dim(X) - dim(X n Y). The idea behind this definition is that we consider all 
vectors in the space x + Y as equivalent and we are performing all operations on 
these equivalence classes. 

2. Sets 

For U, V sets we will sometimes use additive notation for set union and set 
subtraction so 

(7) 

(8) 

U-V :=U\ V 

U+V:=UUV 

If it is also clear from the context that v is not a set but an element we will 
also use this notation for set and element 

(9) 

(10) 

U-v:= U\ {v} 

U+ v:= U U {v} 

A family :F of sets is called a packing if the sets in :F are pairwise disjoint. 
Given a set X, we will denote (~) := {Y C X I IYI = n} set of all subsets of 

X of cardinality n. For n E N we will denote [n] = {1, ... ,n}. 

3. Permutations 

Permutation 7r on a set S is a bijective mapping 7r : S ---+ S. We will usually 
talk about permutations on [k]. Identity on S is the permutation on S given by 
ids : x ~ x sometimes also denoted just by id. A transposition is a permutation 
equal to identity for all but two elements of S. We denote transpositions by (a, b) 
so that 

(11) 
b X= a 

(a,b)(x) := a x = b 
x otherwise 
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4. Linear programming 

Linear programming is a problem of optimizing a linear function over a lin~arly 
bounded region of a space. It is a quite powerful tool and has many application 
both in solving "real-life" problems as well as in many areas of combinatorics, 
for its theoretical properties. For a detailed reading on this topic we would 
recommend [Sch86]. 

Linear programming is a special case of optimization problem. 

4.1. Optimization. Optimization problem is a problem of finding 

(12) min{f(x) I x ES} 

given a set S and a function f : S --+ JR. We call element s of S f easible solutions 
of our problem. There are following possibilities: 

• S = 0: we call (12) infeasible, 
• inf{J(x) I x ES} = -oo: we call (12) unbounded, 
• inf{J(x) I x ES} > -oo but the minimum does not exist, 
• min{! (x) I x E S} exists. 

4.2. Polytopes and polyhedra. Let xi, ... , Xk E IRn. Vector y E lRn is 
called a convex combination of x1 , ... , Xn if there are ,i\1 , ... , Ak > O such that 
y = L.:~=l AiXi and E Ai = 1. For a set of vectors X we call its convex hull the set 
of all finite convex combinations of vectors from X and denote 

(13) conv. hull(X) = {L y>.y j 1 T).. = 1,).. E JR!, Y C X finite } 
yEY 

A convex set is a set S C Rn, such that for each x, y ES also ,i\x + (1 - ,i\)y ES 
for all A E [O, l]. Convex hull of X is then the minima! convex set containing X. 

A polyhedron P is a subspace of Rn given by 

(14) P = {x E Rn I Ax < b} 

where A E Rmxn,b E Rm. We call a set P polytope if P = conv.hull(X) 
for some finite set of vectors X. We call polyhedron P bounded if there is 
a number s ER+, such that \::lx E P: llxlloo < s. The following theorem describes 
the relation between polytopes and polyhedra. 

THEOREM 2.1. Every polytope is a polyhedron and every bounded polyhedron 
is a polytope. 

It is straightforward to see from the definition of polyhedron that if P is 
a polyhedron and x ~ P then x violates at !east one of the defining inequalities 
Aix < bi. 
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4.3. Linear optimization. Linear program is an optimization problem of 
optimizing linear function c over a polyhedron P 

(15) max{cT x I x E P} 

There are many equivalent forms of formulating such a problem: minimization, 
maximization and the way the inequalities are formed. For more detail see the 
lecture notes [Pen] or introductory part of [Sch03a] ( or any other basic text on 
linear programming). We will use a standard form: 

(16) max{cTx I Ax < b,x > O,x E ~n} 

where A E IRmxn, b E IRn. The c above is called an objective function. Linear 
programming is a special case of optimization problems and it is always either 
infeasible, unbounded or the optimum exists. Reader can easily see following 
fact: 

0BSERVATION 2.2. If the maximum m oj {16} exists and the polyhedron P := 
{ x I Ax < b} f orm ( 16) is bounded, then m is attained by a vertex oj P. 

This is useful when we tackle various combinatorial problems with linear 
programming methods as we will see later. 

4.4. Duality. Dual program to a linear program (16) is the linear program 

(17) min{yTb I yT A> cT,y > O,y E Rm} 

There is a relation between (16) and (17) called strong duality: 

THEOREM 2.3 (Strong duality). For any matrix A E Rmxn and vectors b E 
~m,c E Rn 

(18) max{cTx I Ax < b,x > O,x E lRn} = min{yTb I yT A> cT,y > O,y E ~m} 

as long as both problems are feasible. 

There is a characterization of primal and dual optima! solutions: 

THEOREM 2.4 ( Complementary slackness). Let A E lRmxn, b E Rm, c E Rn. 
Let ai, ... am be the rows oj A. If x is afeasible solution oj (16} and y is afeasible 
solution oj {17} then the following conditions are equivalent 

(19a) x and y are both optimal solutions 

(19b) for each i E [m] either Yi =O or aix = bi 

4.5. Ellipsoid method. A breakthrough in the theory of linear program­
ming was discovery of a polynomial-time algorithm by [Kha79] and later conse­
quences for many combinatorial problems described in [GLS81]. 

THEOREM 2.5 (Ellipsoid method). A linear program max{ cT x I Ax < b, x > 
o, X E Rn} with A E zmxn' c E zn' b E zm can be solved in time polynomial to 
n, m and T where T is the maximal absolute value oj entries in A, b. 
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Restricting to Z is the same as restricting to Q and multiplying all the values 
by the least common multiple of their denominators. This method can be even 
extended to provide more interesting characteristics. 

Let P be a polyhedron in !Rn. Separation problem for P is: Given a vector 
y E Qn decide whether y belongs to Por not, and in the latter case, find a vector 
a E Qn such that ax < ay for all x E P. 

Ellipsoid method can be modified·and is often used in a way that its number of 
elementary operations is polynomial in n and T while some of these operations can 
be solving a separation problem for the original polytope. Thus if we can solve the 
separation problem polynomially in the dimension of the polytope we do not have 
to care how many inequalities describe it. This is especially used for combinatorial 
problems where there are quite often exponentially many inequalities describing 
them but they are sometimes well structured and can be separated in polynomial 
time - as for example in Keijsper, Pendavingh, Stougie [KPS06]. 

5. Graphs 

A graph is a pair G = (V, E) where V is a finite set and E is a family of 
unordered pairs from V. Elements of V are called vertices and elements of E 
edges. We use the following shorthand notation for edges 

(20) uv = {u,v} 

We denote V(G) the set of vertices of G and E(G) the family of edges of G. 
We have chosen the definition carefully so it allows multiple parallel edges and 
loops ( edges of the form vv). A graph without multiple edges and loops is called 
simple graph. We call G bipartite if there are X, Y C V such that X U Y = V 
and X n Y = 0 and all edges e E E have e n X f 0 and e n Y =I 0. Examples 
of graphs are complete graph on n vertices Kn := ([n], ([~l) ), path oj length n 
Pn := ([n+ 1], { {i, i+ 1} I i E [n]}), circuit of length n defined by Cn := ([n], { {i, (i 
mod n) + 1} I i E [n]}) and complete bipartite graph Km,n := ([n] U [m]', { {i,j'} I 
i E [n],j E [m]}). For a simple graph G we call G := (V(G), (V~G)) - E(G)) 
a complement of G. 

Vertices u, v E V are called adjacent if there is an edge uv E E. Vertex u 
is called incident to an edge e E E if u E e. Given a graph G = (V, E) and 
a vertex v E V we call Na( v) = N( v) := {u E V I {u, v} E E} set oj neighbours 
of v. A subgraph of G is an arbitrary graph G' =(V', E') such that V' C Vand 
E' CE. For a set UC V we denote E[U] := {e E E I e CU}. G[U] :=(U, E[U]) 
is called a subgraph induced by U. For U, W C V, U n W = 0 we denote 

(21) 8(U, W) := {e E E I IU n el = IW n el = 1} 

By 8(U) we denote the family of edges leaving U and by d(U) we denote j8(U)I. 
A path in G is a sequence P :=(s= v0e0v1 •.• ek-lvk = t) where all vi EV, all 

ei E E, ei = vivi+l and no vertex appears mo:re than once. We say that P connects 
s with t and call it an s-t path. For u, v E V we say that u is reachable from v 
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if there exists a u-v path. A connected component or component of connectivity 
in G ~s a non--empty set of vertices of G such that it contains some v E V and 
consists of all vertices that are reachable from v. A graph is connected if it 
has a single connected component. Otherwise we call it disconnected. A graph is 
called k-connected if there is no set S of at most k-1 vertices, such that the graph 
G[V(G) - S] is disconnected. Such a set S of vertices making G disconnected is 
called a vertex cut in G. If vertices s and t are then in different components it 
is called an s-t vertex cut. If s E U and t E V - U we call 8(U) an s-t cut. Let 
U C V then by contraction of U we will denote an operation resulting 

(22) G /U := (V + u - U, E[V - U] U { ux I vx E E. for some v E U} 

Given P, a family of paths, we will denote 

(23) endsv(P) := {s I P E P, Pis s-t path or t-s path} 

the set of endpoints of those paths. Similarly, we will denote 

(24) endsE(P) := {st I P E P, P starts or ends with st} 

Clique in G is an induced complete subgraph. A stable set is an induced 
subgraph without edges. 

A directed graph (digraph) is a pair G = (V, A) where Vis a finite set and A 
a family of ordered pairs from V. Elements of V are called vertices, elements of 
A arcs. 

6. Matchings in graphs 

A matching in a graph G = (V, E) is a subset M of E such that e n e' = 0 
for all e, e' E M, e -:/= e'. A matching is called perfect if it covers all vertices, 
which means IMI = !IVI. We denote the maximum size of a matching in G 
by v( G). Tutte has proved a characterization of graphs with a prefect matching 
in [Tut4 7] and later Berge [Ber58] extended his result to the famous min-max 
relation characterizing v( G): 

THEOREM 2.6 (Tutte-Berge formula). Let G =(V, E) be a graph. Maximum 
size of a matching in G is equal to the minimum value oj 

(25) !(IVI + IUI - o(G - U)) 

taken over all subsets U of V, where o(H) denotes number oj odd-size connected 
components of H. 

Maximum-size matching can be found in polynomial time by algorithm due 
to Edmonds [Edm65b]. 
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6.1. The matching polytope. The perfect matching polytope of a graph 
G = (V, E) is a convex hull of incidence vectors of all perfect matchings in G. 
We write -

(26) F~erfect matching(G) = conv. hull{XM I Mis a perfect matching in G} 

Similarly, we can define a matching polytope of a graph G = (V, E) as a convex 
hull of incidence vectors of all matchings in G. We write 

(27) . Pmatching(G) = conv. hull{XM I Mis a matching in G} 

Pperfect matching ( G) and P matching ( G) are polytopes in JR E. 

For bipartite graphs, perfect matching polytope can be described by the fol-
lowing system of inequalities: 

(28a) 

(28b) 

Xe > 0 

x(ó(v)) = 1 

for each e E E 

for each v EV 

as it was shown by Birkhoff in [Bir46]. From the perfect matching polytope 
description for bipartite graphs one can easily derive a system of inequalities 
describing the matching polytope, which is the following: 

(29a) Xe > O for each e E E 

(29b) x(ó(v)) < 1 for each v EV 

First observe that both Pmatching(G) and Pperfect matching(G) are in fact poly­
topes because Pperfect matching(G) C Pmatching(G) C [O, l]E. Next we would like to 
note that the latter description immediately gives us a polynomial algorithm for 
finding a maximum-cardinality matching ( and therefore also a perfect patching, 
if it exists) for bipartite graphs. Consider the linear program 

max{lx I X E Pmatching(G)} 

Pmatching(G) is bounded and from the Observation 2.2 we know, that the maxi­
mum -is attained by some vertex Xo of Pmatching( G). Furthermore, we know that 
vertices of Pmatching(G) are incidence vectors of matchings in G. This specially 
means that the matching M0 corresponding to the vertex x 0 has maximal number 
of edges amongst all matchings of G. It is easy to see that the linear program 
has polynomially many defining inequalities, therefore we can separate in poly­
nomial time and find the optimum by ellipsoid method. By now we have the size 
of maximum-cardinality matching. By using the above described algorithm as 
a black box we can try removing edges from G one by one. Whenever the maxi­
mum drops, we have removed the maximum-matching-edge, so we easily obtain 
edge-set of the maximum matching in polynomial number of queries to the pre­
vious algorithm. 

For general graphs the inequalities in (28) and (29) are not sufficient. If 
we take G = K3 a triangle and Xe = ~ for each edge then x satisfies both 
(28) and (29). It is easy to see that x <f. Pperfect matching(G), since G does not 
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have any perfect matching and therefore Pperfect matching( G) is empty. To see x ~ 
Pmatching(G) consider a linear function f: RE--+~ defined as J(y) = lTy. Then 
f(x) = ~· On the other hand, since Pmatching(G) is a polytope this function attains 
maximum over it in one of its vertices, which are exactly vectors corresponding to 
the matchings in G. For these vertices xM, function f computes exactly the size 
of the corresponding matching M. Maximum size of a matching in K 3 is 1 and 
so max{f(y) I Y E Pmatching(G)} = 1 < ~ = f(x), which implies X~ Pmatching(G). 

For a general graph G the descriptions of Pperfect matching(G) and Pmatching(G) 

needs additional inequalities. Perfect matching polytope can be described by 
the following system of inequalities 

(30a) 

(30b) 

(30c) 

Xe > Q 

x(8(v)) = 1 

x(8(U)) > 1 

for each e E E 

for each v EV 

for each UC V with IUI odd 

as was shown by Edmonds [Edm65a]. 
Description of the matching polytope for general graph can again be derived 

from the perfect matching polytope description and consists of the following 
inequalities: 

(31a) 

(31b) 

(31c) 

Xe > 0 

x(8(v)) < 1 

x(E[U]) < l!IUIJ 

for each e E E 

for each v EV 

for each UC V with IUI odd 

As well as in the bipartite case, also these descriptions give us and algorithm 
for finding the maximum-cardinality matching in polynomial time. The only 
additional difficulty we have to face is separation over the new condition set of 
(31c). This can be done in polynomial time but it requires some further knowledge 
(it involves algorithm for minima! cut in a graph) and we will not show it. 

7. b-matchings 

7.1. b-matchings. Let G = (V, E) be a graph and let b E Z~. A b-matching 
is a function X E Z~ satisfying 

(32) x(8(v)) < b(v) for each v EV 

This can also be rewritten as Mx< b where Mis the V x E incidence matrix of 
G. We remark that the definition allows edges to be used more than once. 

In (32) we count multiplicities: if e is a loop at v we count it twice (this is 
consistent with the definition of 8(v)). 

We see that b-matchings are on the one hand generalization of matchings. 
On the other hand they can be reduced to matching in the following way: we 
create a graph Gb arising from G by splitting each vertex v into b( v) copies and 
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by replacing every edge uv by b( u )b( v) copies connecting all b(u) copies of u with 
all b(v) copies of v. Formally, Gb := (Vb, Eb), where 

(33a) Vb := {qv,i I v EV, 1 <i< b(v)} 

(33b) Eb := {qu,iqv,j I UV E E, 1<i<b(u),1 < j < b(v),qu,i i qv,j} 

The last condition is relevant only if u = v (so the edge is a loop). Hence, 
b-matchings in G are in correspondence with matchings in Gb and vice versa. 
The construction above was given by Tutte in [Tut54] and it plays a crucial role 
in proofs of many basic properties of b-matchings and it can be used to adapt 
algorithm for maximum-cardinality matchings to solve the maximum-cardinality 
b-matching problem as well. 

Similarly as for ordinary matchings, we de:fine the b-matching polytope for 
a graph G = (V, E) as the convex hull of incidence vectors of all b-matchings 
in G. The inequalities describing this polytope were found by Edmonds [1965] 
and are: 

(34a) 

(34b) 

(34c) 

Xe > 0 

x(ó(v)) < b(v) 

x(E[U]) < l~b(U)J 

for e E E 

for v EV 

for UC V with b(U) odd 

We call x a perfect b-matching if it is a b--matching and satis:fies (32) with equality 
(for all v). Then the perfect b-matching polytope of a graph G = (V, E) is a convex 
hull of incidence vectors of all perfect b-matchings. It is described by the following 
system of inequalities: 

(35a) 

(35b) 

(35c) 

Xe > 0 

x(ó(v)) = b(v) 
x(ó(U)) > 1 

for e E E 

for v EV 

for UC V with b(U) odd 

7.2. Capacitated b-matchings. As a concept of further generalization of b­
matchings was studied their capacitated version. Capacitated b-matching prob­
lem considers b-matching x satisfying prescribed capacity constraint x < c. We 
can again define polytopes for this problem 

Let G = (V, E) be a graph and let b E Z~ and c E Z~. The c-capacitated 
b-matching polytope is a convex hull of all b-matchings x satisfying x < c. lts 
description follows from the uncapacitated b-matching polytope 

( 36a) O < Xe < c( e) for e E E 

(36b) x(ó(v)) < b(v) for v EV 

(36c) x(E[U]) + x(F) < l~(b(U) + c(F))J UC V, FC ó(U), b(U) + c(F) odd 
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Similarly, the c-capacitated perfect b-matching polytope is a convex hull of all 
perfect b-matchings x of G satisfying x < c. Its description is 

(37a) O< Xe < c(e) for e E E 

(37b) x(ó(v)) = b(v) for v EV 

(37c) x(ó(U) - F) - x(F) > 1 - c(F) UC V, F c 8(U), b(U) + c(F) odd 

This .description was announced by Edmonds and· Johnson in [EJ73]. 

7 .3. Simple b-matchings and b-factors. An interesting case of capaci­
tated b-matchings is when c = 1. In such a case x is a 0-1 vector and we can 
identify matchings with subsets F of E[G] with degp v < b(v). We call such 
b-matchings simple. Simple perfect b-matchings are called b-factors. Again we 
can define a simple b-matching polytope. Given a graph G = (V, E) and a vector 
b E Z~ the simple b-matching polytope is a convex hull of incidence vectors of all 
simple b-matchings in G, which can be described by the following inequalities: 

(38a) O < Xe < 1 for e E E 

(38b) x(ó(v)) < b(v) for v EV 

(38c) x(E[U]) + x(F) < l~(b(U) + IFl)J UC V, FC 8(U), b(U) + IFI odd 

as a special case of capacitated b-matchings. We define b-factor polytope sim­
ilarly. Given a graph G = (V, E) and a vector b E Z~, b-factor polytope is 
a convex hull of incidence vectors of all b-factors of G. It is described by the fol­
lowing inequalities: 

(39a) 

(39b) 

(39c) · 

0 < Xe < 1 

x(ó(v)) = b(v) 

x(ó(U) - F) - x(F) > 1 - IFI 

for e E E 

for v EV 

UC V, FC ó(U), b(U) + IFI odd 

8. Paths in graphs 

There are many problems concerning disjoint paths in graphs. One well­
known is described by the following theorem: 

THEOREM 2.7 (Menger's theorem - undirected vertex-disjoint formulation). 
Let G = (V, E). G is k-connected if and only if for every u, v E V, u =/= v there 
are k disjoint paths connecting u with v. 

Later we will find a disjoint paths problem useful. It is the following problem: 
Given an undirected graph G = (V, E) and pairs of its vertices (s1, t1), ... (sk, tk) 
find vertex-disjoint paths P1 , ... Pk where I{ is an si-ti path for each i. 
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9. Matroids 

Matroids are a powerful tool (not only) in combinatorial optimization. They 
were motivated by questions in linear algebra, geometry and graph theory. For 
detailed reading about matroids see Oxley [Oxl92] or Schrijver [Sch03b]. 

A pair A1 = (S, I) is called a matroid if Sis a finite set and I is a nonempty 
collection of subsets of S satisfying 

(40a) (i) if I E I and J CI then also JE I 

( 40b) ( ii) if I, J E I and I 11 < I JI, then I U {z} E I for some z E J - I 

Elements of I are called independent sets of the matroid. All other sets X C S 
are called dependent. Property (i) is called hereditary property, (ii) is called 
exchange property. 

For a set U C S, a subset B is called a base of U if B is its inclusion-wise 
maximal independent subset. Exchange property gives us immediately: 

0BSERVATION 2.8. Let (S,I) be a matroid and UC S. Then all bases oj U 
have the same size. 

The common size of bases of U is called rank of U, denoted by r(U). A set is 
called a baseof M if it is a base of S. For T C S, a span function is defined as 

(41) span(T) :={s ES I r(TU {s})= r(T)} 

THEOREM 2.9. Let vi, ... , Vm be vectors in Rn. Let S= { v1 , ... , vm} and let 
I consist oj all subsets oj S formed by linearly independent vectors. Then (S, I) 
is a matroid. 

The above defined matroid is called a linear matroid. Note that for a linear 
matroid, bases correspond to a linear algebraic bases, rank to the dimension of 
a generated space and span to the set of vectors of S in the generated space. 

Sometimes infinite matroids are also considered - for example for matroid 
matchings defined later. An infinite matroid Mis a pair (S,I) where Sis an in­
finite set and I collection of its subsets satisfying 

(42a) (i) if I E I and J CI then also JE I 

(42b) (ii) if I C Sand all finite subsets of I belong to I, then I belongs to I 

(42c) (iii) if I, JE I, III < IJI < oo, then I U {z} E I for some z E J - I 

A straightforward infinite extension of linear matroids are linear spaces Rn 
where I consists of all linearly independent subsets of ]Rn. 

Let (S,I) be a matroid with rank function rand span function span. Let E be 
a finite collection of unordered pairs from S such that each pair is an independent 
set. For F C E define 

(43) 

(44) 

span(F) := span(UF) 

r(F) := r(span(F)) 
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A subset M of E is called a matroid matching or matching, if 

(45) r(M) = 2IMI 

So M is a matching if and only if it consists of disjoint pairs and union of those 
pairs is independent. 

THEOREM 2.10. Given a set E oj pairs oj vectors in a linear space L, a maximum­
size matching can be j ound in strongly polynomial time. 

10. Pand NP 

One of the major fields in computer science studies complexity issues and 
helps us believe, that some problems are hard to solve. An exhaustive reading 
on this topic from the basics can be found in Papadimitriou [Pap94]. 

Let C be a language over alphabet A. A decision problem for this language 
is to decide for a given word w E A* whether w E C. P is a class of languages, 
for which there exists a deterministic Turing machine deciding whether w E .C 
in polynomially (in the length of w) bounded number of steps. NP is a class of 
languages, for which there exists a non-deterministic Turing machine deciding 
whether w E .C in polynomially (in the length of w) bounded number of steps. 
Obviously PC NP. Roughly speaking, P can be considered a class of problems 
for which there exists a polynomial algorithm and NP a class of problems for 
which there is a certificate for a positive answer, which can be verified in polyno­
mial time. Problem .C is called N P-hard if for every problem .C0 in NP there is 
a polynomial-time algorithm transforming any instance 10 of .C0 to an instance 
I of C such that I E .C if and only if 10 E .C0 (we say .C0 reduces to C). As soon 
as we have any N P-hard problem .CNP it suffi.ces to find a reduction of CNP to 
Cin order to show that C is N P-hard. A problem is called N P-complete if it is 
in NP and is N P-hard. 

Ali N P-hardness result for a problem .C give us hope for a polynomial algo­
rithm for deciding .C only under assumption P = NP, which is widely believed 
to be untrue. 

11. Some NP-bard problems 

For further reading we will need to know N P-hardness results about the fol­
lowing two problems. The first one is a decision variant (since we have defined 
NP only for decision problems) of the disjoint paths problem mentioned in Sec­
tion 8. 

THEOREM 2.11. Let VP be a decision problem defined as jollows: 
Given a graph G = (V, E), integer k E N and k pairs oj vertices ( s1 , t 1), ... , ( sk, tk), 

decide whether there exist disjoint paths (Pi)f=1 such that Pi connects si with ti. 
Problem VP is N P-hard. 

Another N P-hard problem we will be dealing with later is: 
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THEOREM 2.12. The following problem is NP-hard: 
Let G = (V, E) be a graph. Deterrnine whether there is a path P in G con-

taining all vertices oj G. -

Such a path is called Hamiltonian path. The problem is called Hamiltonian 
path problem. 

12. Some polynomially solvable problems 

We will also need to know that there are polynomial algorithms for the min­
cut problem: 

THEOREM 2.13. Let G = (V, E) be a graph and c E JRE be called a capacity 
function. Let S, T C V, Sn T = 0. Then the minimal-capacity cut ó(U) such 
that S C U, T C V - U can be f ound in polynomial time. 

and the min-odd-cut problem: 

THEOREM 2.14. Let G = (V, E) be a graph and c E ]RE. Let s, t E V, s ::/= t. 
Then there is a polynomial-time algorithm for finding a minimum-capacity odd 
(in number oj edges) s-t cut. 





CHAPTER 3 

Path packings 

In the introductory chapter we looked at matchings and their generalizations 
- the b-matchings. 

Now we will go over another related problem of finding a maximum number 
of disjoint p~ths w:hose set~ ___ are two different vertices in a given set T of vertices 
(compared to matchings where we are looking for a maximum number of disjoint 
edges) - the T-paths. Fundamental theorems of Mader imply min-max relations 
for this. 

Let G = (V, E) be a graph and T C V. A path Pin G is called a T-path if 
its ends are distinct vertices in T and no interna! vertex of P belongs to T. 

Mader [Mad78b] gave a min-max formula for the maximum number ofin~ 
ternally vertex-disjoint T-paths. It is a generalization of the undirected vertex­
disjoint version of Menger' s theorem (for ITI = 2) and also of Tutte-Berge formula 
(by adding a copy v' to each vertex v of the original graph G and connecting it 
by an edge v'v; if we take T as the set of all those copies, the maximum number 
of internally vertex-disjoint T-paths in the new graph is equal to the maximum 
size of a matching in the original graph). 

There are different paths-packing problems and their min - max characteri­
zations. 

1. Fully vertex-disjoint T-paths 

The simplest one is the fully vertex-disjoint version. 

THEOREM 3.1 (Gallai's disjoint T-paths theorem). Let G = (V, E) be an 
undirected graph and let T C V. The maximum number oj (fully) vertex-disjoint 
T-paths in G is equal to the minimum value oj 

(46) 
K 

taken over all U C V, where K ranges over all components oj G - U, 

This problem is dosely related to the ordinary maximum-size matching prob­
lem and can directly reduced to it - as Gallai [Gal61] showed in his proof. 

PROOF. The maximum is less or equal to the minimum, since for every UC V 
each T-path either intersects U (and hence, uses at least one of its vertices) or 
has both endpoints in a single K n T for some component K of G - U. 

17 
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To see that the maximum is at least the minimum, let µ be the minimal value 
of (46). Let G =(V, E) be a graph constructed from G by adding a disjoint copy 
Hof G -T and making copy v' E Hof each vertex v EV -T adjacent to v and 
all its neighbours in G. Formally 

(47) 

V =V U {v' I v E V - T} 

E =EU {u'v' I uv E E, u, v EV -T}U 

{v'ulvEV-T,uEN(V)U{v}}. 

From Tutte-Berge formula we will derive that G has a matching of size µ + 
IV - TI. To show it we must prove that for any Ú C V the following inequality 
holds: 

(48) IÚI + ~)W<IJ > µ + IV - TI 
k 

where k ranges over the components of G - Ú. If for some v E V -T exactly one 
of v, v' belongs to Ů we can delete it from Ú while not increasing the left-hand 
side of (48). Value IUI drops by one and the sum does not increase by more than 
one, since just one component that previously contained v or v' will change (by 
adding the other vertex from this pair). 

Sowe assume that for each v E V -T either v, v' E Ú or v, v' tt, Ú. Define U := 
Ú n V. Then each component K of G - U is equal to k n V for some component k 
of G-ú (v, v' always have the same set of neighbours). Additionally, the rounding 
in the sum can be caused just by presence of a vertex from Tin the component 
because all other vertices are paired with their copies in the components. Hence 

(49) ú + 2)~1Í<IJ = IUI + 2)~1K nTIJ +IV -TI ><46
) µ+IV -TI 

i<. K 

where K ranges over all components of G - U. This gives us (48) and therefore 
a matching M in G of size µ + I V - TI· Consider the matching N = { vv' I v E 
V - T} in G. Then union of M and N has at least µ components with more 
edges in M than in N since IMI =µ+IV -TI = µ + INI. Each such component 
gives us a path connecting two vertices in T and after contracting edges of N also 
a T-path in G. So the set of those components gives us µ desired T-paths. D 
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2. Disjoint S-paths 

The strongest version of min - max relati?~ poncerning disjoint T -paths speaks 
about S-paths. Let G = (V, E) be a graph, let S be a collection of disjoint sub­
sets of V. A path in G is called an S-path if it connects vertices s1 E Si, s2 E S2 

from two different sets 81 , 82 ES. We denote T :=US. 

THEOREM 3.2 (Mader's disjoint S-paths theorem). The maximum number 
oj disjoint S-paths in G is equal to the minimum value of 

n 

(50) IUol + ~)~IBilJ 
i=l 

taken over all partitions U0 , U1 , ... , Un oj V such that each S-paths intersects U0 

or traverses some edge spanned by some Ui. Bi then denotes the set oj vertices 
in Ui that belong to T or have a neighbour in V - (U0 U'.f{i)· The value oj the 
expression above for the partition U0 , U1, ... , Un is called ·vdlue oj the partition. 

It can be easily seen that Theorem 3.2 immediately implies Theorem 3.1 when 
we take S = { {s} I s E T}. 

FIGURE 1. Dual partition for S-paths 

The condition "such that each S path intersects Uo or traverses some edge 
spanned by some Ui'' might sound counter-intuitive. We explain briefly what it 
means. The above stated says that the graph G' := G - Uo - Uf=1 E[Ui] has no 
two vertices s, t, such that s E Si, t E SJ and i-=/ j, in the same component. We 
can see an example of such a partition in Figure 1 (vertices of T are black, edges 
of G' are in hold). 

A short proof using Gallai's theorem was given by Schrijver in (SchOl]: 

PROOF. Let µ be the the minimum value of (50). Trivially, the maximum 
number of disjoint S-paths is at most µ, since each S-path P either intersects U0 

in at least one vertex or traverses an edge of some Ui and therefore, it contains 
at least two vertices of Bi. 
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Fixing V, we chaose a counterexample E, S minimizing 

(51) IEI - I{ {i,j} I i,j Ev, 31, JE s: i E I,j E J, I =I= J}I. 

The base case where IXI = 1 for each X E S follows from Gallai's the­
orem (Theorem 3.1): Every S-path also is a T-path and vice-versa. There­
fore the maxima in both theorems are equal. If we take a minimizing parti­
tion U, K = {K1 , ... Kr} from the Gallai's theorem and define U0 := U, U1 := 
Ki, ... , Ur := Kr, the resulting partition U0 , ••. Un is a valid partition in Mader's 
theorem (because each S-path either enters U or is fully contained in one com­
ponent Ki and therefore traverses at least one edge spanned by· Ki)· Hence, the 
maximum number of disjoint S-paths is at least µ, proving our special case. 

So IXI > 2 for some X E S. Then X is a stable set, since deleting an edge 
e spanned by X increases the value of (51), but does not change the minimum 
and maximum value in Mader's theorem (as no S-path is by definition allowed 
to use e and deleting e does not change any set Bi). Chaose an s E X and define 

(52) S':= (S- {X})+ {X - {s}}+ {s} 

Replacing S by S' decreases ( 51), but does not decrease the minimum in 
Mader's theorem (as every S-path is an S'-path and US' = T, therefore every 
feasible partition for S' in Mader's theorem is a valid partition for S as well and 
Bi are equal in both cases). Hence there is a family P of µ disjoint S'-paths. 

Then there is a path P0 connecting s with another vertex of X ( otherwise P 
is a family of µ disjoint S-paths, contradicting the fact that G, Sis a counterex­
ample) and all other paths in P are S-paths. Let u be an internal vertex of Po 
(it exists because X is a stable set). Define 

(53) S":=(S-{X})+{X+{u}} 

Replacing S by S" again decreases (51) but does not decrease the minimum 
in Mader's theorem (by the same argument as in the previous case, since every 
S-paths is an S"-path as well and T C US"). So there is a family Q of µ disjoint 
S"-paths. Chaose Q, such that 

(54) E[UQ] - E[UP] 

is minimized. 
Necessarily, u is an endpoint of some path Q0 E Q (otherwise Q forms µ 

disjoint S-paths, again contradicting the fact that G, S is a counterexample) 
and all other paths in Q are S-paths (see Figure ??). As IPI = IQI and u is 
an endpoint of Q0 while it is not an endpoint of any path in P, there is some 
endpoint r of some path P E P, which is not an endpoint of any path in Q. 

Then P intersects some path in Q ( otherwise Q - Q0 + P is a family of 
µ disjoint S-paths). Starting in r and following the path P, denote the first 
encountered vertex of Q by w belonging to a path Q E Q. Then Q is split by w 
into two parts Q', Q" (possibly of zero-length). Denote the part of P connecting 
rand w by P'. 
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X 

QO 

FIGURE 2. Situation in the proof: P0 and Q0 

If neither of the parts Q', Q" is fully contained in the path P, then one end­
point of Q belongs to a different set from S" than r does. Without loss of 
generality it is an endpoint of Q'. Then joining the path Q' with the path P' 
yields an S"-path disjoint form all the other paths in Q. This contradicts the 
assumption on minimality of (54). Sowe can assume that EQ' CEP. 

If P = P0 then we have Q = Q0 (since EQ' CEP and w is the first point of 
Q on the way from r, the path Q must start in u). Let Q p be a path obtained 
by replacing the part Q' of Q by P'. Then the f amily Q - Q + Q p consists of µ 
disjoint S paths, which again leads to a contradiction. 

Otherwise P -=/= P0 • Then P is a S"-path as well and it is disjoint from all 
the paths in Q apart from Q ( as Q' must be the same path as P - P'). Then the 
family Q - Q + P contradicts the minimality assumption on ( 54) and finishes the 
proof by showing that there is no such counterexample to Mader's theorem. D 

What we have just proven is dosely related to the following: 

3. Internally vertex-disjoint T-paths 

The original theorem of Mader was stated in terms of internally vertex­
disjoint T-paths (endpoints can be shared by more paths but interna! vertices 
have to be disjoint) instead of fully vertex-disjoint S-paths and can be derived 
from the Theorem 3.2. 

For a graph G define B0 (U) set of vertices in U having a neighbour in G that 
is not in U. 

CoROLLARY 3.3 (Mader's internally vertex-disjoint T-paths theorem). Let 
G = (V, E) be a graph and let T be a stable set oj V. Then the maximum number 
of intemally vertex-disjoint T-paths in G is equal to the minimum value oj 

n 

(55) IUol + LWBa-uo(Ui)IJ 
i=l 

where U0 , U1 , ... , Un partition V - T such that each T-path intersects U0 or 
traverses some edge spanned by some Ui. 
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PROOF. The maximum is less or equal to the minimum since each path not 
intersecting U0 traverses at least two vertices in some Ui hence it traverses at 
least two vertices of Ui that have a neighbour in V - (U0 U Ui)· 

To prove equality we either have two vertices of T having a common neighbour 
v or not. In the former case we can delete v from G. Then the maximum 
drops by 1 and the minimum also drops by 1 since v must be in Uo. So we 
can apply induction to show the equality. Otherwise there are no two vertices 
of T having common neighbour and we can apply Theorem 3.2 with G - T and 
S= {N(s) I s E T}. Therefore the maximum number of T-paths in G is equal 
to the maximum number of S-paths in G - T, which is equal to the minimum 
value of 

n n n 

JUol+ ~)~IBilJ = JUol+ ~)~IBa-u0 (Ui)U(UinT)IJ = JUol+ L)~IBa-uo(Ui)IJ 
i=l i=l i=l 

taken over U0 , U1 , ... , Un partitions of V(G -T) =V -T such that each S-path 
intersects U0 or traverses an edge spanned by some Ui. Every such partition also 
satisfies condition that every T-path in G either intersects U0 or traverses some 
edge spanned by some Ui, which proves the corollary. D 

4. Edge disjoint T-paths 

Similar result for edge-disjoint T-paths packings is also known and is implied 
by Corollary 3.3 as Mader has shown in [Mad78a]. 

THEOREM 3.4 (Mader's edge disjoint T-paths theorem). Let G = (V, E) be 
a graph and let T C V. Then the maximum number of edge-disjoint T-paths in 
G is equal to the minimum value of 

(56) ~(LdE(X8 ) - K) 
seT 

where the Xs are disjoint sets with s E X 8 for s E T, and where "'1 is the number 
of components K of a graph G - UserXs with dE(K) odd. 

5. Mader matroid 

Mader's disjoint S-paths define a matroid. Let S= US and let I consist of 
all I such that I C endsv(P) for some family P of disjoint S-paths. Then 

THEOREM 3.5. The pair M := (S, I) defined above is a matroid. 

The hereditary property is obvious. The exchange property can be extracted 
from the proof of Mader's S-path theorem from [SchOl], the proof can be found 
in [Sch03c]. The above defined matroids are called Mader matroids. 

There was an open question on the relation of Mader matroids and another 
known class of matroids - so called gammoids. This question was recently an­
swered by Pap in [Pap06] resulting that every Mader matroid is a gammoid and 
vice versa. 
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6. Non-zero T-paths 

Recently there were few further extensions of vertex-disjoint T-paths packing. 
First of them is due to Chudnovsky, Geelen, Gerards, Goddyn, Lohman and 
Seymour [CGG+o4], who have introduced a new, more general concept of non­
zero T-paths packing in so-called group-labeled graphs. 

Let r be a group (we will use additive notation for r even though it does not 
have to be abelian), G =(V, E) be an oriented graph and 'Y E fE. A triple Q = 
( G, r, 'Y) will be called a group-labeled graph. Let e = (u, v) E E. We will denote 
'Y(e, u) = -'Ye and 'Y(e, v) = 'Ye· Now for a path P = (v0 , e1 , v1 , e2 , ... , ek, vk) in 
G the weight of P denoted as 'Y(P) will be 'Y(P) = E7=1 'Y(ei, vi)· 

Let <} = ( G, r, 'Y) be a group-labeled graph and T C V ( G) be a set of vertices 
of Q. We will call a path or a circuit P non-zero if 'Y(P) =f Or. A set of edges 
F C E( G) is T-balanced if F contains no non-zero path or circuit. Denote 
V(F) a set of all vertices incident to some edge in F. lt is easy to see that F is 
T-balanced if and only if all vertices in V(F) can be assigned labels "Iv from r 
according to the f ollowing rule 

(57a) 

(57b) 
'Yv = Or 

'Yv = 'Yu + 'Y(e, u) 

v E V(F) n T 

e E F,e= (v,u) or e = (u,v) 

Authors have proved a min-max relation for a problem of maximum number 
of (fully) vertex-disjoint non-zero T-paths. 

THEOREM 3.6 (Chudnovsky et. al. '04). Let Q = (G, f, !) be a group-labeled 
graph and let T C V( G). Then the maximum number oj vertex-disjoint non-zero 
T-paths in G is equal to the minimum value oj 

(58) IXI + L L~l(T u V(F)) n V(H)IJ 
HeCx,F 

taken over all T-balanced sets F C E(G) and all sets X C V(G) where Cx,F 
denotes the set oj components oj G - X - F. 

Proof of thls theorem can be found in Chudnovsky ei., al. [CCG04]. It 
can be seen that Gallai's vertex-disjoint T-paths packing and Mader's vertex­
disjoint S-paths packing are a special case of non-zero T-paths. ln the following 
paragraph, we explain the relation: 

T-paths: we want every T-path to be feasible. Consider r = ZITI· Let 
T ={ti, t2, ... , tlTI}· For e =(u, v) E E(G) we define 'Y as follows: 

i - J u= ti, v= tj 
i u = ti, v E V ( G) - T 

'Y(u,v) = 
-i u E V ( G). - T, v = ti 
O otherwise. 
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In such a configuration every path connecting vertices ti, tj has its weight 
equal to i - j =f O. 

S-paths: we want every S-path to be feasible and every path connecting 
two vertices in a single S E S to be infeasible. Consider r = Z1s1. Let S = 
{ S1, S2, ... , S1s1} and let T = US. For edges e = (u, v) we define 'Y as follows: 

'Y(u,v) = 

i - J u E si, v E sj 
i u E Si, v E V ( G) - T 
-i uEV(G)-T,vESi 
O otherwise. 

In such a configuration every path connecting vertices in Si and SJ has 
a weight equal to i - j. This is not O if and only if i =I= j. 

7. Non-returning T-paths 

The previous concept was further extended to a more general concept of non­
returning T-paths in permutation-labeled graphs by Pap [Pap05b]. 

Let G = (V, E) be an oriented graph and T C E a set of terminals. Let n be 
an arbitrary set of potentials and let w : T ~ n define a potential of origin for 
the terminals. Let 7r : E ~ S(n) where S(n) denotes the set of all permutations 
on n. We will call a permutation-labeled graph such g = { G, T, n, w, 7r }. A 
T-path in g is then a T-path in the underlying undirected graph. For an are 
e = (a, b) we denote 7r(e, a) = 7r-1(e) and 7r(e, b) = 7r(e). For a T-path P = 
( v0 , ei, vi, ... , ek, vk) let 7r(P) = 7r(ei, v1) o 7r(e2, v2) o ... o 7r(ek, vk)· P is called 
non-returning if 7r(P)(w(v0)) =I= w(vk) - in other words, the path P does not 
map potentials of origin to each other. 

Let Q = (G,T,n,w,7r) be a permutation-labeled graph and F C E(G). 
Denote V ( F) a set of vertices incident to some edge of F. Let T' = T U V ( F). F 
is called T-balanced if w can be extended to w': A'--. n such that 7r(ab)(w'(a)) = 
w'(b) for each are ab = e E F. 

Pap has shown a min-max relation for the maximum number of (fully) vertex­
disjoint non-returning T-paths in a permutation-labeled graph. 

THEOREM 3.7 (Pap '05). Let Q = (G,T,O,w,7r) be a permutation-labeled 
graph. Maximum number of vertex-disjoint non-returning T-paths in G is equal 
to the minimum value of 

(59) v'(G - F, TU V(F)) 

taken over all T-balanced edge sets F. v'(G, T) denotes the maximum number 
of vertex-disjoint T-paths in G. 

The proof of this theorem can be found in [Pap05b]. 
This theorem is a generalization of Theorem 3.6. It can be easily seen by taking n 
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equal to the underlying set of the group r. Then define w(t) = Or for each t E T. 
Let 7r(e) be functions on n defined by 7r(e)(x) = X+ --y(e). It is a permutatioQ 
since the '+' operation has inverse. 





CHAPTER 4 

Algorithniic aspects of paths packings 

1. Gallai's paths and matchings 

In the proof of Gallai's theorem the problem of finding a maximum fully 
vertex-disjoint T-paths packing was reduced to problem of finding a maximum­
size matching in an auxiliary graph. 

We can easily find the maximum set of paths by the following algorithm. At 
first construct an auxiliary graph G = (V, E) according to the rule (47). Now 
we find a maximum-size matching Min G. Then let N = { {v, v'} I v E V - T} 
be a trivial matching of size IV - Tj. Take all the components of (V, MU N) 
having more edges in M than in N and contract edges of N to obtain a family P · 
of disjoint T-paths in G. From the proof of Gallai's theorem we have that such 
P is a maximum-size f amily. 

2. Matroid matching 

Lovász [Lov80] showed that Mader's theorem can be derived from matroid 
matching theory, which yields a polynomial-time algorithm for finding a maxi­
mum packing of S-paths by matroid-matching algorithm for linear spaces [Lov81]. 
The following text is restricted just to derive a polynomial-time solvability of 
the problem as in [Sch03c]. 

THEOREM 4.1. There is a strongly polynomial algorithm for finding maximum 
number of disjoint S -paths in a graph. 

PROOF. Let G = (V, E) be a graph and S= {Si, ... , Sk} be a set of disjoint 
subsets of V. Let T =US= S1 U ... USk. We can assume that each Si is a stable 
set (because no edge uv where u, v E Si could ever contribute to an S-path). 

Consider a linear space (JR2 ) v which can be seen as a space of functions 
x: V--+ ~2 but also as a space of vectors in JR.2 x1VI. For each edge e = uv E E(G), 
let Le be the linear subspace of (~2 ) v given by 

(60) Le= {x E (JR2)v I x(w) =O for each w ~ {u,v} and x(u) = -x(v)} 

Alternatively it can be seen as a space of vectors x having all components equal 
to zero except for Xu, xv: Xu E ~2 , Xv = -Xu· It is obvious that dim Le = 2. 

Choose distinct 1-dimensional subspaces l1, ... , lk of IR2 and for each vertex 
v E V define Lv =li if v E Si for some i or {O} otherwise. Define 

(61) Q = {x E (lR.2)v I rfv EV: x(v) E Lv} 
27 
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Let & be the collection of all (for all e E E) subspaces Le/Q of (JR2)v /Q. For 
each edge e E E the dimension dim(Le/Q) = dim(Le) - dim(Le n Q). Since 
dim(Le) = 2 and no two vertices of an edge are in the same Si so Len Q = {O}, 
we have dim(Le/Q) = 2. 

For any F C E, let CF denote the f ollowing collection of spaces in & 

(62) Cp = {Le/Q I e E F} 

We show for each FC E 

LEMMA 4.2. Cp is a matching if and only ij F is a jorest such that each 
component oj (V, F) has at most two vertices in common with T and at most one 
with each si 

Let X = EeeF Le. Then X consists of all x : V -+ IR2 with x(K) = O for 
each component K of (V, F) since X is a linear hull of all vectors in all Le, which 
means x E X if and only if x can be expressed as x = EeeF O:eYe where O:e are real 
weights and Ye E Le. By such a sum one can just obtain x such that x(K) =O for 
each component K of (V, F) since adding any multiple of any Ye does not change 
the sum over the component. Conversely if x has zero sum over each component 
of (V, F) it can be easily expressed in a given form by taking spanning tree of 
the component and then assigning weights to the edges greedily from the leaves 
in order to satisfy the leaf (then remove it and continue recursively). 

So dim(X) = (2IVI - "1) where "' is number of components of (V, F). Then 
dim(X n Q) =O if and only if each component of (V, F) has at most two vertices 
in common with T and at most one vertex in common with every Si (we have 
non-empty intersection if and only if there is a set of linearly dependent non-zero 
vectors x(u) for u E K n T, which happens if and only if there are at least three 
non-zero vectors or two colinear vectors x(u) in one K n T). Now 

(63) dim(CF) = dim(X/Q) = dim(X) - dim(X n Q) < dim(X) < 2IFI 
Hence Cp has dimension 2IFI and therefore is a matching if and only if dim(X n 
Q) =O and dim(X) = 2IFI. By the previous we have proved Lemma 4.2 

Lemma 4.2 then implies the following relation to S-paths. 

LEMMA 4.3. If G is connected, the maximum number oj disjoint S-paths is 
equal to v(&) - IVI +IT!. 

To see this let t be the maximum number of disjoint S-paths, let P be the fam­
ily of t disjoint S-paths and let F' be set of edges contained in these paths. Extend 
F' to F such that each component in (V, F) either contains a unique path in P 
or a unique vertex in T. Then F satisfies condition given in Lemma 4.2, and 
IFI = IVI - ITI + t since there are ITI - t components. So Cp forms a matching 
of size t + IVI - ITI, and hence v(&) > t + IVI - ITI. Conversely, let :FC & be 
a matching of size v(&). Then :F is some forest (V, F*) satisfying the condition 
given in Lemma 4.2. Let t* be the number of components of (V, F*) intersecting 
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T twice (and thus containing a unique S-path). Then by deleting t* edges fron1 
F*, we obtain a forest such that each component intersects T at 111ost once. So -
IF*I - t* < IVI - ITI since the resulting forest has T co1nponents, and hence 

t* > IF*l - IVI + ITI =v(&) - llll + ITI 
This shows Lemma 4.3. Together with Theorem 2.10 it gives us strongly-polynomial 
algorithm for finding maximum number of disjoint S paths in G. O 

Such an algorithm also gives us a polynomial algorithm for finding a family 
attaining this maximum since we can always do the following: 

At first we determine the actual maximum S-paths packing size t. Now for 
each edge e E E we determine the maximum S-paths packing size ť in G - e. 
If ť = t the .edge is not necessary for some optima! solution. Thus we delete it 
and continue with GNEW := G - e. Otherwise the edge is needed for all optima! 
solution and we have to keep it. The graph we have in the end after proceeding 
with all edges is exactly a union of S-paths from the optimal solution. Those 
paths can be easily identified therefore we determine the optimal family P in 
polynomial time. 

3. Edge-disjoint T-paths and linear programming 

Keijsper, Pendavingh, Stougie proved in [KPS06] from Mader's edge-disjoint 
T-paths theorem that one can find maximum number of edge-disjoint T-paths 
in polynomial time by ellipsoid method. 

To see this, let G = (V, E) be a graph and let T C V. Consider the polyhedron 
P E JRE given by x satisfying 

(64a) 

(64b) 

(64c) 

0 < Xe < 1 

x(ó(U)) < jó(U)I - 1 

x(ó(s)) < x(8(X)) 

for each e E E 

for each UC V - T with l8(U)I odd 

for each s E T, X C V with X n T = {s} 

All of these conditions can be tested in polynomial time. The conditions (64a) 
can be checked trivially one by one. To test (64b) let G' be a graph obtained 
from G by contracting T to a single vertex t. Let c be a capacity function given 
by Ce := 1 - Xe· Then (64b) is satisfied if and only if the minimum capacity of 
an odd t cut in G' is at least 1. That can be tested in polynomial time due to 
Theorem 2.14. Finally, testing (64c) can also be done by finding a cut separating 
s and T - {s} of minimum capacity taking x as a capacity function for every 
s E T dueto Theorem 2.13. 

Thus one can optimize any linear function over P by the ellipsoid method in 
polynomial time. 

LEMMA 4.4. The maximum value A oj the linear function 

(65) ~ L x(ó(s)) 
sET 
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over P is equal to· the maximum number µ oj edge-disjoint T-paths in G. 

The inequality A > µ is obvious since an incidence vector of any family of 
T-paths satisfies (64) and has (65) equal toµ. 

To see the equality, by Mader's edge-disjoint T-paths theorem there exist 
disjoint sets X 8 for each s E T such that s E X 8 and 

(66) µ = ~ (L dE(Xs) - r.) 
seT 

where "' is the number of components K of the graph G' = G - UseTXs with 
d(K) odd. Let W = V(G') and JC be the collection of components of G' and let 
F be the set of edges connecting different sets of X 8 • We will call K E K odd if 
dE(K) is odd and we call it even if dE(K) is even. Then 

BET Kele 

= 2IFI + L dE(K) + L 2UdE(K)J 
KEie KEie 

K even K odd 

(67) 
>(

54
b) 2IFI + L x(8(K)) + L x(8(K)) 

KEIC Kele 
K even K odd 

= 2IFI + L x(8(K)) > 2x(F) +I: x(8(K)) 
Kele Kele 

= 2x(F) + x(8(W)) = 2x(F) + x(8(UseTXs)) 

= Lx(8(Xs)) ><54
c) Lx(8(s)) = 2,\ 

xET BET 

concluding µ > A and hence µ = A. This implies that µ can be determined in 
polynomial time. To obtain the family of paths we can use an approach similar 
to the one from the previous section. 

This approach can be even extended to solve capacitated version of this prob­
lem: given a capacity function c: E --->-Z+ find the maximum number of T-paths 
such that they together use each edge e at most c( e) times. 

4. Combinatorial algorithm for maximum S-path packing 

The first combinatorial algorithm (not using matroids) for finding maximum 
packing of T-paths for the original Mader's problem was presented by Chud­
novsky, Cunningham and Geelen in [CCG04]. They have found an algorithm 
for finding a maximum packing of non-zero T-paths in group-labeled graphs -
a generalization of the original problem. 
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Later Pap came in [Pap05a] with an algorithn1 for 1n~x.in1un1 packing of non­
returning T-paths in permutation-labeled graphs, further generalizing the above -
mentioned algorithm. 





CHAPTER 5 

Results 

1. Polyhedral description of T-paths 

One of the goals of this paper was to derive polyhedral description or lin­
ear programming formulation of the Mader's T-paths problem. That basically 
means finding some reasonably formulated linear program1ning problem that has 
the same optimum value as the Mader's path-packing problems. Such a thing 
was for instance done by Keijsper, Pendavingh, Stougie in [KPS06] for edge­
disjoint T-paths - where they have also shown polynomial-time separability for 
that description and therefore polynomial-time solvability of such a problen1 by 
ellipsoid method. 

Let G be a graph and T C V ( G). The fully vertex-disjoint T-paths packings 
polyhedron Pa,T is then the convex hull of incidence vectors of all fully vertex­
disjoint T-path packings in G. There is generally not much hope for finding 
a "nice" description for Pa,T that would also come with a separation algorithm 
for the conditions. More precisely 

OBSERVATION 5.1. There is no description oj Pa,T such that Pc,T = {x E 
}Rn I Ax < b} where A E Rmxn, b E Rm and all the entries oj A, b are polynomial 
in n, together with an algorithm polynomial in n for separation from Pa,T (unless 
P=NP). 

PROOF. If there was such a description and algorithm we show we would be 
able to decide whether a given graph has a Hamiltonian path in polynomial time. 
Suppose there is a separation algorithm. Let G = (V, E) be a graph. Given two 
vertices s, t E V we will show that we are able to answer the query whether there 
is an s-t path traversing all the vertices of V. Let T ={s, t}. Then there are no 
two disjoint T-paths in G. Consider the linear program max{lTx I x E Po,T}· 
Since Pa,T is a polytope, the maximum is attained by a vertex that corresponds 
to a fully vertex-disjoint paths packing. We are maximizing the total number 
of edges and therefore the optimum is the length of the longest s-t path in G. 
Since we have a polynomial separation algorithm, we can compute this value 
in polynomial time by the ellipsoid method. Then there is a Hamiltonian path 
connecting s and t if and only if the optimum of ou~ linear program is IVl-1. We 
can easily test this for all pairs s, t and therefore get a polynomial-time algorithm 
for Hamiltonian path. D 

33 
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Similar result can also be easily seen for internally vertex-disjoint · T-paths 
packings and for vertex-disjoint S-paths packings. 

Also for a directed version of arc-disjoint T-paths the same result can be 
shown 

OBSERVATION 5.2. There is no description oj an arc-disjoint T-paths pack­
ings polytope PJ,r such that PJ,r = {x E ~nlAx < b} where A E ~mxn,b E ~m 
and all the entries oj A, b are polynomial in n, together with an algorithm poly­
nomial in n for separation from Pa,T (unless P = NP). 

PROOF. We can easily simulate the maximum fully vertex-disjoint T-paths 
packing problem by the maximum arc-disjoint T-paths packing problem. We 
split each vertex v into two vertices vin and v0 ut connected by an are av = vinvout, 

where all arcs uv from the original graph now become u0 utvin. Additionally we 
add a new vertex ť on at for each t E T thus making edges tinť and ťt0ut. This 
reduction together with the previous observation proves the statement. D 

Therefore there is just hope either for a general description of the polytopes 
that is not polynomially separable or for a description that is problem specific 
and exploits the problem structure in some way. 

In the following subsections we show a description for vertex-disjoint case 
that was considered in Gallai's theorem. 

1.1. b-factors. The first and most straightforward approach was to derive 
this formulation from some already known results about similar topics. In the 
case of maximum fully vertex-disjoint paths packing the problem has a quite 
simple structure that can be described through matchings or even more easily by 
simple b-matchings or b-factors. 

We can describe it as a problem of finding a collection C of edges such that 
each edge is chosen at most once, each vertex in T has at most one of its incident 
edges contained in C and each vertex in V - T has zero or two of its incident 
edges contained in C. If we construct G' by taking G and adding a loop to every 
node in V -T then the conditions concerning vertices in V -T can be simplified 
to a condition that each vertex in V - T is exactly twice amongst the endpoints 
of edges in C for G'. Let 

(68) b -{1 v E T 
v- 2 vEV-T 

Then we want to find a simple b-matching in G such that the b-condition is 
satisfied with equality for all vertices in V - T and the number of edges incident 
to vertices in Tin the matching is maximized. 

Simple b-matching polyhedron is exactly the polyhedron described by inequal­
ities in (38). We know it is a convex hull of incidence vectors of b-matchings, 
hence all its vertices are b-matchings. If we consider its face described by the 
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additional equalities 

(69) x(ó(v)) = 2 for each l' E l" - T 

35 

then its vertices (if any) are incidence vectors of b-1natching that satisfy the b­
conditions for the vertices out of T. Therefore the optiinal value over the resulting 
polyhedron of a linear function cT x such that c := l:teT .\c5(t) is integral and is 
attained by some vertex, which means by a b-n1atching. After a doser look it 
gives exactly twice the number of endpoints of edges in the b-n1atching within 
T. That is - from previous - twice the maxin1um size of fully vertex-disjoint 
T-paths packing in G. 

We will obtain the following linear program: 

0 < Xe < 1 

x(óa1(v)) < 1 

x(óa1(v)) = 2 

for e E E(G') 

for v E T 

for v E \/ - T 

(70a) 

(70b) 

(70c) 

(70d) x(E[U]) + x(F) < L~(b(U) + IFl)J UC V, FC c5(U), b(U) + IFI odd 

We can remove the conditions for loops thus obtaining again the set of conditions 
for G and substitute for b in the last condition. This way we obtain: 

(71a) O < Xe < 1 

(71b) x(c5(v)) < 1 

(71c) x(c5(v)) + 2yv = 2 

(7ld) x(E[U] u F) + y(U -T) < IU - TI+ l~(IU n TI+ IFl)J 

for e E E(G') 

for v E T 

for v EV -T 

for UC V, FC c5(U), IU n TI+ IFI odd 

This already gives an exact linear programming description of the Gallai's prob­
lem (and even its polytope) but it can be further simplified. 

1.2. Pure calculations. With a slightly different and more straightforward 
approach it is possible to obtain simpler inequalities for the problem. Consider 
a problem of finding the maximum number of fully vertex-disjoint T-paths. We 
assume that there are no two vertices of T connected by an edge ( otherwise we 
subdivide the edge). We will show that this problem has the same optimum value 
as the following linear program: 

(72) 
1 
- maxx(8(T)) 
2 
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subject to 

(73a) 

(73b) 

(73c) 

(73d) 

(73e) . 

0 < Xe < 1 

O< Yv < 1 

x(ó(u)) + 2yu = 2 

x(ó(u)) < 1 

x(E[U]) + y(U -T) < IU -TI+ L~IU n TIJ 

e E E 

vEV-T 

uEV-T 

uET 

U c V, IU n TI odd 

Lets denote --\ the optimum of this program and let µ be the optimum from 
Gallai's theorem. First of all we show that µ < .A. To do so we construct - from 
the fully vertex-disjoint paths family - a feasible solution of the linear program 
with the same value. 

Let X be the set of edges used in the paths and let Y be the set of vertices 
in V - T not used by any path. Let x = xx and y = XY. Then x, y is a feasible 
solution of the linear program. Conditions (73a), (73b), (73c) and (73d) are 
obviously valid. Let us have a look at (73e). First, we observe the following 

(74) L x(8(u)) = 2x(E[U]) + x(8(U)) 
ueU 

Also for each set U by summing all relevant equations (73c) and (73d) we get 
the following inequality 

(75) Lx(8(u)) + 2y(U -T) < 2IU -TI+ IU n TI 
uEU 

From those we can derive 2x(E[U]) + 2y(U -T) < 2x(E[U]) + x(ó(U)) + 2y(U -
T) <<~4) 2:ueux(ó(u))+2y(U-T) <<75

) 2IU-Tl+IUnTI. Thatshowsthat 
(73e) is implied from the other inequalities for even IU n TI, which we will find 
useful later. 

Now consider U with UnT odd. Since all x, y are integral, the left side is even 
and the right side is odd, we can sharpen the inequality to 2x(E[U])+2y(U-T) < 
2IU - TI+ (IU n TI - 1), which is the same as (73e). 

Additionally, if we have U C T then (because T is a stable set) we can write 

(76) L x(8(u)) = x(8(U)) 
uEU 

Now we are ready to prove µ > .A. Let us consider the partition U from dual 
in Gallai's theorem and }(, the set of resulting components of G - U. We will 
denote Ko = {K E K I IK n TI is even}, K1 = {K E }(, I IK n TI is odd}. Then 
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we can write 

2µ = 21u1+2 L l~II\ n TIJ 
KeJC 

= 21u n TI+ 21u - TI+ L II\ n TI+ L 2lW\. n TIJ 

>(
75

) L x(c5(u)) + L x(c5(u)) + 2y(U - T) + 
ueUnT ueU 

L L x(c5(u)) + L 2l~IK n TIJ 
KEJCoueKnT KEJC1 

=(
76

) x(c5(U n T)) + L x(c5(K n T)) + L x(c5(u)) + 
KEK.o v.EU 

2y(U -T) + L 2l~IK n TIJ 

> x(c5(U n T)) + L x(c5(K n T)) + x(c5(U)) + L 2l~IK n TIJ 
KEK.o 

>(
73

e) x(c5(U n T)) + L x(c5(K n T)) + x(c5(U)) + 
KE!Co 

L 2(x(E[K]) + y(K - T) - IK - TI) 

> x(c5(U n T)) + L x(c5(K n T)) + L x(c5(K)) + 
KeK.o 

L 2(x(E[K]) + y(K - T) - IK - TI) 

=(74
) x(c5(U n T)) + L x(c5(K n T)) + 

KEK.o 

L (L x(c5(u)) + 2y(K - T) - 2IK -TI) 
KEIC1 uEK 

=(
73c) x(c5(U n T)) + L x(c5(K n T)) + L L x(c5(u)) 

KEKo 

=(76
) x(c5(U n T)) + L x(c5(K n T)) + L x(c5(K n T)) 

KEKo KEK.1 

=(76) x( 8(T)) = 2A 

1.3. Duality approach. The same problem q1n be approached differently 
to further simplify the last inequality of the linear program. Consider the follow­
ing linear program 
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(77) ~ maxx(8(T)) 

subject to 

(78a) 

(78b) 

(78c) 

(78d) 

x(8(u)) < 1 

x(8(u)) < 2 

x(8(R, S)) - x(8(R, V - (R u S)))< 2l~ISIJ 

x>O 

uET 
uEV-T 
SCTRCV-T - ' -

This can be derived from (73) by substituting for the slack variable y and adding 
some implied inequalities. The inequalities (78a), (78b) and (78d) are implied by 
(73c) and (73d). The last inequality to show is (78c). At first let us remind that 
(73e) is valid in (73) also without the odd condition as we have shown earlier. 
We will now derive (78c) from this extended (73e) that says: 

(79) x(E[U]) + y(U - T) < IU -TI+ l~IU n TIJ for UC V 

we substitute from (73d) to get 

(80) 2x(E[U]) < L x(ó(u)) + 2L~IU n TIJ 
uEU-T 

now we cluster the edges and since there are no edges within T we get exactly 

(81) 2x(E[U -TJ)+ 2x(8(U n T, U -T)) - L x(ó(u)) < 2L~IU n TIJ 
ueU-T 

this can be rewritten from (74) to 

(82) 2x(8(U n T, U -T)) - x(8(U -T)) < 2l~IU n TIJ 

which is, after regrouping the edges and denoting S = U n T and R = U - T, 
exactly (78c). 

Therefore the description (78) implies the description (73). It is again easy 
to see that if we have a maximal paths packing of size µ from Gallai's theorem it 
again gives us a feasible solution of (78) attaining value µ (for example because 
we were able to derive it for the previous linear program). Let .Abe the optimal 
value of (77). The previous gives us .A > µ. To prove µ > .A consider the dual 
program of (77), which is 

(83) ! (min Lau+ 2 L ,Bu+ 2 L l1R,sl~ISIJ) 
uET ueV-T SCT 

R~V-T 
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subject to 

(84a) 

'°'"' '°'"' '°'"' '°'"' { 1 ť' E J(T) u~T au+ u~/u + Rb-T ( {9, rJR.S - ~· rJR.s) > O e E E - c5(T) 

0 
eeó(R) eeó(S) e~ó(S') 

* 
(84b) c1, B, a> O 

We will show that from Gallai's theorem we will find a solution of this dual 
attaining the value µ, which will give us the desired inequality. 

Let U be the set attaining the optima! value in Gallai's theorern in dual and 
let K set of components of G - U. Let 

(85) Q ·-{2 uEUnT 
u.-

otherwise o 

~1.1 := { ~ uEU-T 
otherwise 

(86) 

(87) 
{ 

1 K E JC, K = R U S, R = K - T, S = I\ n T 
O'R S := 

' O otherwise 

In (83) this assignment attains the value ! (2jUUTI +2IU-TI +2 LKeK l~ II<n 
TIJ), which is exactly µ. Hence if we show this is a feasible solution we are 
finished. We will discuss the situation according to e. 

If e connects two vertices in U then the left hand side is always at least 2 
because ( *) = O in this case. 

If e connects U with a component K E K then ( *) > O if e n K C T and 
( *) > -1 otherwise. For D we have (D) > 2 if e n U C T and (O) > 1 otherwise. 
So we get that total (D) + (*) > O and if at least one end of e is in T then 
(D) + (*) > 1, so the conditions are satisfied. 

The last case is that e connects two vertices in a single K E K. If none of 
them is in T then ( *) = O, otherwise ( *) = 1. (D) is always zero. 

So our conditions are satisfied for all possible positions of e and hence our 
solution is dual feasible, which gives us µ > ,.\ and together with previous also 
µ = ,.\. 

2. Disjoint returning T-paths 

Another goal of this thesis was to try to generalize the Pap's result about 
non-returning paths form (Pap05b]. 

The first attempt could be done on a slightly different concept - returning 
T-paths: 
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Consider a permutation-labeled graph Q = ( G, T, O, w, 1T). A path P = 
(v0e1v1 ... ekvk) in G is called returning if rr(P)(w(v0 )) = w(vk)· We can have 
a brief look at the problem of finding a maximum-size family of returning T-paths 
in Q and show it is already NP-complete. 

We will reduce from a disjoint paths problem. Given an instance of disjoint 
paths problem G, { ( s1 , t1), ... , (s k, tk)}, we are going to construct an instance of 
disjoint returning T-paths problem. Let G' arise from G by adding new vertices 
{Pi}f:1 , {qi}f=1 and all edges SiPi and tiQi· Let T = {Pi}f=1 U {qi}f=1 , n =[k] and 
w(x) = 1 for all x in T. We orient all edges in G' arbitrarily. Let 

( 
.) { (1, i) uv = BiPi V uv = tiqi 1T uv := 

id otherwise 

Now let Q = (G',T,O,w,1T). It is easy to see that there are disjoint paths be­
tween all given pairs of vertices in G if and only if there exist k disjoint returning 
T-paths in Q. This gives us N P-hardness of the problem. Since the paths them­
selves are polynomial in the size of input, it immediately gives N P-completeness 
of the problem. 

3. Other non-zero and non-returning T-paths packings 

Proofs of Mader's min-max relation for S-paths and of min-max relation 
for non-returning T-paths in permutation-labeled graphs have one element in 
common. They are showing and exploiting some kind of exchange properties of 
those path packings - or in the case of non-returning paths using only weaker 
property that every path packing can be extended to a larger one (if there is 
some), while preserving all the path endpoints in T. The proof of Mader's min­
max relation shows the exchange property for path endpoints that forms a Mader 
matroid. Pap's proof of min-max relation for non-returning T-paths also shows 
and implies the following: 

THEOREM 5.3 (Exchange property for non-returning paths). Let Y = endsv(Q) 
for some family Q oj fully vertex-disjoint non-returning T-paths. Let Z = 
endsv ('R) for a fully vertex-disjoint T-paths f amily 'R such that I Y I < I Z I · Then 
there exist X such that X= Y U {s, t} for some s, t E Z - Y and X= endsv(P) 
for some family P of fully vertex-disjoint non-returning '[-paths in Q. 

Similarly as in [Pap05b], the proof follows: 

PROOF. We prove by induction on IVI. Let Q be a non-returning family 
with Y = endsv(Q) and R a non-returning family with Z= endsv(R) such that 
IYI < IZI. Without loss of generality we can assume IRI = IQI + 1 and therefore 
IZI = IYI + 2. 

If Y C Z we are finished since we can take P :='Rand X :=Z. Otherwise 
there is a node r E Y - Z. 
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If r is covered in Q by a path of length one 1T' then} ., = } ·· -1·-r' satisfies} ., = 
endsv(P') for a non-returning fan1ily Q' = Q - rr' in Q' = (G - 1· - r' ~ T- 1· - r'). 
Let R' arise from 'R by deleting the path starting in r' (if there is any) and let 
Z' := endsv(R'). 'R' is a non-returning fa1nily in Q' and j}"'I < IZ'j. Since 
I V ( G') I < I V ( G) I we can use induction ·--- so there are s. t E Z' C Z such that 
there is a non-returning family P' in Q' with ){' :=}"'+{s. t} = endsy(P'). Now 
X:= Y +{s, t} satisfies X= endsv(P) for P := P' U rr' ·-·-···· obtained fron1 P' by 
adding back the path rr'. So P is the desired fan1ily. 

Otherwise r is covered in Q by a path of length more than 1 starting by 
an edge rq E E, q E V - T. Define w' : T - r + q -+ n b~r w on T - r and 
w'(q) := 7r(rq,r)(w(r)). Then Y' := Y - r + q is }/'' = endsv(Q') where Q' arises 
from Q by s11:ortening the path ending in r just to q. Q' is a non-retuning fa1nily 
in Q' = ( G - r, T - r + q, w', 7r). We claim that there is a bigger non--returning 
family in Q'. If none of the paths from R traverses q then R is that fan1ily. 
After applying induction we get a non-returning fan1ily P' covering JY' such that 
X'= Y' +{s, t} for some s, t E Z - y·'. Then P obtained fron1 P' by extending 
the path ending in q to r is a non-returning family in Q covering X:=}/'+ {s, t} 
where s, t E Z - Y' = Z - Y' - r C Z - y·. Otherwise let R E R joining q1 

to q2 traverse r. Then one of the sections q1 -q and q-q2 must be non-returning 
(otherwise the whole path is returning). Without loss of generality it is q1-q. Let 
R' be this path. Let Z':= Z - q2 + q and 'R':= n - R+ R'. Then R' is a non­
returning family in Q' and Z' = endsv(R'). So R' gives a bigger non-returning 
family. From the induction we get a family P' covering X' : = Y' + {s, t} for 
some s, t E Z' - Y'. Then consider X := Y +s + t and P arise from P' by 
extending the path ending in q to r. Then P is a non-returning f amily in g and 
s, t E Z' - Y' = Z' - Y' - r = (Z - q2 + q) - (Y - r + q) C Z - Y. That completes 
the proof. O 

In the Pap's min-max result only weaker result is shown and for the rest of 
the proof needed. 

COROLLARY 5.4 (Extendability of non-returning T-paths packings). Let Y = 
endsv(Q) for some family Q oj fully vertex-disjoint non-ret'urning T-paths, 
where Q is not maximal-size such packing. Then there is Q' with Y' : = endsv ( Q') 
such that Y' = Y + s + t for some s, t E T. 

If we think about proving some min-max relations like this one for more 
general non-returning internally vertex-disjoint T-paths, non-returning disjoint 
S-paths or non-returning edge-disjoint T-paths, we would like to have a similar 
property in order to be able to apply an analogous approach. 

Unfortunately this is not possible since such a property does not hold for 
either of mentioned packings. The following statements are,)Q. internally vertex­
disjoint and edge-disjoint analogues to the above mentioned extendability: 
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DESIRED PROPERTY (Extendability for non-returning ( non-zero) internal­
ly-disjoint paths). Let Y = endsE(Q) for some family Q of internally vertex­
disjoint non-returning (non-zero) T-paths. Let R be an internally vertex­
disjoint non-returning (non-zero) T-paths family such that IRI > IQI. Then 
there exists a family P of internally vertex-disjoint non-returning (non-zero) T­
paths in Q such that endsE(P) = Y +s+ t for some s, t rt Y edges with one 
endpoint in T. 

and 

DESIRED PROPERTY (Extendability for non-returning ( non-zero) edge-dis­
joint paths). Let Y = endsE(Q) for some family Q of edge-disjoint non-returning 
(non-zero) T-paths. Let R be an edge-disjoint non-returning (non-zero) T­
paths family such that IRI > IQI. Then there exists a family P of edge-disjoint 
non-returning (non-zero) T-paths in g such that endsE(P) = Y +s+t for some 
s, t rt Y edges with one endpoint in T. 

Unfortunately, none of these properties hold even for the non-zero paths over 
a binary group Z2 and we give a common counterexample for them which is 
shown in Figure 1. 

Underlying graph 
A 

E 

G 

1 

H 

I 

D 

F 

B 

c 

J 

P f amily of paths 
A 

E F 

G B 

1 

H c 

I J 

D 

R f amily of paths 

E F 

G B 

H c 

J 

FIGURE 1. Edge-disjoint and internally vertex-disjoint counterexample 

V consists of A, B, C, D, E, F, G, H, I and J. The set of terminals is 
T = {A, B, C, D}. Group r is Z2. Since we are in a binary group we do not 
need to take into account orientation of the edges since the parity is the same in 
both ways. All edges e have 'Y(e) := Or with the exception of e E {AF, GH, JD}JJ>? 
where it is "f(e) := lr. From now on we will call those edges e with 'Y(e) = lr 
parity edges. Let family P consist of a path P1 = AEGH ID and family R of 
paths R1 = AFEGB and R2 = DJIHC. 
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At first we will observe that the only path that can start with an t~dge AE is 
exactly P1. It has to traverse odd number of parity edges aud thus at lt)a ... 'it on<\ 
of them. Therefore this path has to traverse the edge G H. Now there is onl~· cm<\ 
way to reach another vertex of T without passing even number of parity edges in 
total and that is exactly P1. Now it is easy to .see that this path does not allow 
any other path connecting vertices in T being either internally vertex···~disjoint or 
edge-disjoint to it. So the conclusion is that endsE(P) cannot even bc> enlarged 
in any way although it is not maxin1al (as we can see fron1 'R which consists of 
two disjoint non-zero paths). 

This counterexan1ple already gives an idea }~~Q~ the counterexan1ple for the 
Mader's disjoint S-paths version will logk like (note that it is sufficient to split 
end vertices into the sets of S). We sho"' it i~ Figure 2. 

D 
I 

E S4 F 

FIGURE 2. Mader counterexample 

The vertex set consists of vertices A, B, C, D, E, F, G, H, I and J. The 
sets of terminals are S= {{A, B}, {C}, {D}, {E, F} }. The group r is again Z2. 
All edges e have 1(e) = Or except for e E {BG, HI, J F} having 1(e) = lr. 

The path family P consists of one path P1 = AGH I JE and the family 'R of 
two disjoint paths R1 = BGHC and R2 = F JID. We will show that P1 and 
AGHID are the only non-zero paths that can start (end) by AG. It follows 
from the fact that it has to traverse one or three parity edges. Since it cannot 
connect A with B (they are in the same set of S) it must traverse I J. Only ways 
to continue are either finish in D or continue as P1. Similarly, the only paths 
starting ( ending) with JE are P1 and CH I JE. If we have a doser look at those 
three paths AGH ID, CH I JE and AGH I JE we see that neither of them allows 
any other S-path to be disjoint with it. That gives us that endsE(P) cannot be 
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extended in any way even though there exists a larger set covered by the family 
R. 

One could also ask a question whether a weaker property would not be suffi­
cient. For example requiring only increasing the number of edges at each vertex 
(and not extending the set of edges) would suffice to follow a part of Pap's proof. 
For internally disjoint T-paths we might only require 

DESIRED PROPERTY (Weak extendability for non-returning (non-zero) in­
ternally vertex-disjoint paths). Let Y = endsE(Q) for some family Q of inter­
nally vertex-disjoint non-returning (non-zero) T-paths. Let n be an ii:iternally 
vertex-disjoint non-returning (non-zero) T-paths family such that IRI > I QI. 
Then there exists a family P of internally vertex-disjoint non-returning (non­
zero) T-paths in Q such that for each t E T we have l{e E endsE(P) I t E e}I < 
l{e E endsE(Q) I t E e}I. 

Similarly for edge-disjoint T-paths 

DESIRED PROPERTY (Weak extendability for non-returning ( non-zero) edge-dis­
joint paths). Let Y = endsE(Q) for some family Q of edge-disjoint non-returning 
(non-zero) T-paths. Let R be an edge-disjoint non-returning (non-zero) T­
paths family such that IRI > I QI. Then there exists a family P of edge­
disjoint non-returning (non-zero) T-paths in Q such that for each t E T we 
have l{e E endsE(P) I t E e}I < l{e E endsE(Q) I t E e}I. 

Unfortunatelly even these properties do not hold. We present the following 
common counterexample (note that this works as a counterexample also to the 
ordinary extendability but we rather prefer to show both the counterexamples). 
Figure 3 shows the underlying graph and Figure 4 show the path families Q and 
n. 

u v w 

A 

y z 

FIGURE 3. Weak extendability counterexample - underlying graph 

We again consider binary group Z2, set T := {A, B, C} and all edges have 
label O except for AU, AY and AZ, which have label 1. 

Family P consists of non-zero T-paths P1 = AUVWC and P2 = AYZXC, 
so A and C have degree 2 and B has degree O. Now R consists of three non-zero 
T-paths Ri = AUB, R2 = AYB and Rg = BVWXZC. To satisfy the weak 
extendability, we have to find three non-zero T-paths such that at least two of 
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Pl 

FIGURE 4. Weak extendability counterexa1nple - the paths (P and 'R.) 

them end in A and at least two in BC. Since they need to be three non·· ·zero 
paths and we only have three non-zero edges, each of the paths has to use onP 
of these edges. To satisfy the degree conditions, at least one of the paths has 
to connect A with C. This path can either go through A, } ·, Z and .X, thus 
preventing the edge CZ from being in a T-path or through A, [l, \„, H" and 
further to C or through X to C. Then the path starting with CZ cannot usf' the 
edge VW, therefore it has to go through ZY (as VH,.,., 1·„z forn1 a cut separating 
A, B from C). Now from Y it has to continue to Band therefore the path starting 
by AY cannot be formed. This proves that the weak extendability neither holds 
for edge-disjoint case, nor for internally vertex-disjoint. 

A counterexample for a similar property for S-paths can be produced in 
a similar way as it was done with the extendability property. 

The question of finding a maximum non-zero internally vertex··-disjoint T-·­
paths packing also appears to be more difficult because it covers another problen1 
called 2 disjoint paths problem, which is the following: 

Given a graph G = (V, E) and two pairs of vertices (s 1 , t 1) and (s2 , t2 ), decide 
whether there exist disjoint paths P1, P2, such that Pi connects si and ti. 

A characterization when these two paths exist, together with a polynomial al­
gorithm for deciding this problem are known dueto Seymour [Sey80], Thomassen 
[Tho80] and Shiloach [Shi80]. The characterization is: 

THEOREM 5.5. Let G = (V, E) be a graph and let s1, ti, s2, t2. Then G has 
disjoint paths P1 and P2 , where ~ connects si and ti (i = 1, 2), if and only if 
there is no subset U oj V such that.· 

(1) S1,t1,s2,t2 E [}, 
(2) IN(K)I < 3 for each component K oj G - [} 
(3) the graph H obtained jrom G[U] by adding, for each component K oj 

G - [} and each distinct u, v E N(K), an edge connecting u and v, is 
planar, with s1 , t 1 , s2 , t 2 in this order cyclically on the outer boundary oj 
some drawing oj H. 

First of all, lets observe that 2-paths problem can be formulated by the non­
zero T-paths packing problem. Consider H = (V, E) and s1, ti, s2, t2 E V an in­
stance of the 2 disjoint paths problem. We want to find a group-labeled graph 



46 5. RESULTS 

Q = (G, T, r, 'Y) such that there are two internally disjoint non-zero T-paths in 
G if and only if the two disjoint paths in H, s1, t1, s2, t2 exist. First of all we 
will chaose r = Z2 a binary group. Therefore we will not need to bother about 
the orientation of edges in G. Now let 

(1) V(G) := V(H) U {s, t} for some s, t tt: V(H), 
(2) E(G) := E(H) U {{s, s1}, {s, s2}, {t1, t}, {t2, t} }, 
(3) T :={s, t} 

and define 

e E E(H) o 
e = {s,s1} o 

(88) 'Y(e) := e = {s,s2} 1 

e = {t1,t} 1 

e = { t2, t} o 
Under such setting we have exactly two non-zero edges. Therefore every non­

zero path uses exactly one of them. Furthermore, we have exactly two vertices in 
T, which gives us together with the previous that non-zero T-paths are exactly 
the paths starting with edge ss1 and ending with t1t or starting with ss2 and 
ending with t2t. Then two such paths P1 , P2 are disjoint if and only if (wlog) 
P 1 := ss1P{t1t and P2 := ss2P~t2t and the subpaths P{ and P~ are disjoint. 

As a consequence of the previous, our min-max characterization of the non­
zero internally vertex-disjoint T-paths packing would have to involve a char­
acterization of solvability this special problem of 2 disjoint paths, which looks 
hopeless in the sense of expressing the planarity-related condition or something 
equivalent as a 'value' of the min part. 
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Open questions 

There are some interesting questions that 1night be worth of further researeh. 
Our whole research was motivated by the following problen1 

PROBLEM 1. Finding a linear programming formulation to a 1naxinnun nun1-
ber of edge-disjoint non-zero T-paths in a pern1utation-labeled graph. 

To get an intuition about it (and also a powerful tool for proof), one woul<l 
like to have a min-max relation for this quantity ((KPS06] used it for proving 
properties of their line ar program for edge-disjoint T-paths as well as we <lid for 
our disjoint T-paths). 

It might seem quite natural to try proving such a min-max relation for the 
maximum size of a non-returning edge-disjoint T-paths packing fron1 a 1nin--1na.x 
relation for the maximum si ze of a non-returning internally vertex-disjoint T-· 
paths packing, as it was done in the case of T-paths in ordinary (not perrnutation-· 
labeled) graphs. 

Unfortunatelly, as we have stated above, we disbelieve, that such a 1nin-max 
relation can be ( easily) found but on the other hand, one could try to find the 
min-max relation for the edge-disjoint case in a different way. 

PROBLEM 2. Finding a min-max relation for the maximum size of non­
returning edge-disjoint T-paths packing. 

From the other end, there arise also some questions to generalize aur linear 
programming formulation result. One could try to extend the linear programming 
formulation for the cardinality of maximum T-paths packing to a polynomially 
separable formulation: 

PROBLEM 3. Finding a linear programming formulation L(G, T) for the max­
imum number of disjoint T-paths in G, such that separation over the polyhedron 
(polytope) of L(G, T) can be done in polynomial time. 

And another possible direction might be attemping to extend aur characteri­
zation to the case of internally disjoint T-paths packing, i.e. 

PROBLEM 4. Finding a linear programming formulation L(G, T) for the max­
imum number of internally vertex-disjoint T-paths in T. 

A good start would be to take our program and change it in a way that it 
would be feasible for all (reasonable) internally-disjoint T-paths packings. This 

47 
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requires removing the conditions implying that we can use at most one edge at 
vertices in T and replacing it by conditions that would forbid paths starting and 
ending in the same vertex in T. Inspiration for such a condition can be found 
in the article [KPS06], where they are dealing with edge-disjoint T-paths. We 
have tried this approach and it seems not to lead to any linear programming 
formulation for this problem. 
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