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vrcholech má asymptoticky skoro jistě méně než 3
2
·0.9351n hran. Dále ukážeme, že počet

vrcholů vrcholově maximálního indukovaného bipartitnho podgrafu náhodného kubického
grafu asymptoticky skoro jistě leží v intervalu [0.75n; 0.9082n]. K získání dolního odhadu
zkonstruujeme randomizovaný algoritmus na hledání velkého indukovaného biparitního
podgrafu v náhodném kubickém grafu.
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2
· 0.9351n edges. We also show that

the number of vertices of a vertex-maximum induced bipartite subgraph of a random
cubic graph lies within interval [0.75n; 0.9082n]. To obtain the lower bound we design a
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Chapter 1

Overview of the results

We give upper bounds for bipartite density (bipartite density is the ratio of the num-
ber of edges in the edge-maximum bipartite graph over the number of edges) and size
of maximum induced bipartite subgraph of a random cubic graph in Chapter 3. We
show that the number of vertices of a maximum induced bipartite subgraph of a ran-
dom cubic graph is a.a.s. at most 0.9082n and bipartite density is a.a.s. at most 0.9351.
First moment method is used to obtain the results. Chapter 4 is completely devoted to
probabilistic analysis of randomized algorithm BIPGREEDY which finds large induced
bipartite subgraphs in cubic graphs. The analysis gives us a lower bound on the size of
maximum induced bipartite subgraph of a random cubic graph. Concretely, we show that
the size of maximum induced bipartite subgraph of a random cubic graph on n vertices
is a.a.s. at least (0.75 − ε)n vertices. The analysis is not tight; we include data from
computer simulation which show that the bipartite subgraph found by the computer has
a.a.s. at least 0.8179n vertices. We sketch how a tight analysis could be done, with only
(hopefully) little more effort. The estimates on the size of maximum induced bipartite
subgraph are natural counterparts to estimates on the size of maximum independent set
and are obtained by the same methods. McKay [McK87] showed that the size of a max-
imum independent set is a.a.s. at most 0.4554n for a random cubic graph. Frieze and
Suen [FS94] obtained an lower bound for independence number; the size of maximum
independent set is at most 0.4327n.

In Chapter 5 we deduce some consequences for graph homomorphisms, namely to
homomorphisms onto odd cycles. Our motivation comes from the Pentagon Conjecture
of Nešetřil. We show that there is a cubic graph with arbitrary high girth which is not
homomorphic to C11. This is a better result than the one obtained analogously from
McKay’s bound on independence number. Still, the method gives result much weaker
then approach of Hatami [Hat05].
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Chapter 2

Preliminaries

2.1 Graph theory

The gentle reader is referred to [Die05] for the basic notation from graph theory (such
as ‘independent set’ or ‘girth’). The explanation of the term of ‘graph’ is left to chapter
Random cubic graphs; we just emphasize at this point that the term will be used in a bit
sloppy way throughout the thesis. We vary with the Diestel’s book only in the notation
of minimal degree of a graph; for graph G we write it as mindeg(G).

2.2 Probability

We assume some knowledge of probability theory. Book [Ros00] can serve as a good
source. From the more advanced stuff, only moment generating functions will be used
here without explanation.

All probability spaces we are dealing with in the thesis are finite or countable. This
guarantees us we will not get into any measure theoretical problems when examining the
probabilities only of the elementary events.

We usually do not write which space we are working in; it should be clear from the
context. For a finite set A we denote by Au the uniform probability space on with set of
elementary events A. Next we explain symbol ∈u. By writing Pr[x has propertyP ; x ∈u

A] (for a finite set A) we mean exactly the same as by PrAu [x has property P ]. For
example Pr[x is odd; x ∈u {1, 2, 3}] = 2/3.

We write X ∼ D when random variable X has distribution D. We write X
ind∼ D as

a shortcut for introducing a new random variable X with distribution D independent on
all variables and events used before. We describe what this means formally: let Ω be the
probability space we worked in before introducing X. Let ΩD be the probability space
which has the structure that allows us to define distribution D on. Now, we take product
space Ω × ΩD and work (naturally) in it.

Distribution Be(p) is Bernoulli distribution with success probability p, that is for

2



X ∼ Be(p) it holds that

Pr[X = n] =
{ 1 − p for n = 0

p for n = 1

We say that event E holds asymptotically almost surely (a.a.s.) in a sequence of
probability spaces {Ωi}i∈N if limi→∞ PrΩi

[E] = 1.

We conclude the section with two notorious inequalities of probability theory: Markov
Inequality and Chernoff Inequality.

Theorem 2.1 (Markov Inequality). Let X be a nonnegative random variable with finite
expectation. Let t > 0 be arbitrary. Then

Pr[X ≥ t] ≤ E[X]

t

The version of Chernoff Inequality presented here is not tight, see [Jan02] for a better
tail estimate.

Theorem 2.2 (Chernoff Inequality, Remark 2.9 in [J LR00]). Let X1, X2, . . . , Xn be inde-

pendent random variables attaining values in [0, 1], denote X =
∑n

i=1Xi, σ
2 = Var[X].

Then for any ε > 0

Pr[X − E[X] ≥ ε] < exp

( −ε2

σ2 + ε/3

)

and

Pr[X − E[X] ≤ −ε] < exp

( −ε2

σ2 + ε/3

)

2.3 Markov chains

We refer to [MU05] for a brief introduction to the theory of stochastic processes. We
shortly recall here the basic notation of the theory of finite Markov chains, following
[MU05]. Book [Ros96] deals with the subject in much more detail. This section contains
two unproven statements: Fact 2.4 and Fact 2.9. Both are well known facts in the theory
which can be found in Chapter 4 of [Ros96], for example. We give them tailored to what
we need in the thesis.

Let {Ft}t∈N0 be a discrete time stochastic process. We say that {Ft}t∈N0 is a Markov
chain if

Pr[Ft = at|Ft−1 = at−1, Ft−2 = at−2, . . . , F0 = a0] = Pr[Ft = at|Ft−1 = at−1]

for any time t ∈ N and ai ∈ R, i = 0, . . . , t. We call Ft the state of the process at time t.
The state space is the set of all possible states over all times. If the state space is finite,
then we say that the Markov chain is finite. Without loss of generality we assume that
the state of any finite Markov chain is {1, 2, . . . , n} (for some n). Markov chain {Ft}t∈N0

3



is uniquely defined by F0 and its transition matrix P . Entry Pi,j is the probability that
the process moves in one step from state i to j.

Pi,j = Pr[Ft = j|Ft−1 = i]

By π(t) we denote the distribution of the states of the Markov chain at time t. We write
its coordinates in brackets in the superscript, i.e. π(i)(t) denotes the probability that the
Markov chain is in state i at time t. It follows immediately that

(π(1)(t), π(2)(t), . . . , π(n)(t)) = (π(1)(t− 1), π(2)(t− 1), . . . , π(n)(t− 1)) P

It is often useful to think of a Markov chain as of a walk on a directed graph. The graph
is constructed as follows. Each vertex corresponds to a state. Edge (i, j) is contained in
the graph if and only if Pi,j > 0; w((i, j)) = Pi,j is the weight of the edge. At time t = 0

we pick a starting vertex of the walk at random with distribution of the probabilities
π(0). At each time t > 0 we move to vertex j with probability w((i, j)), where i is the
vertex we are currently at.

Example 2.3. Figure 2.1 shows a graph corresponding to a Markov chain with transition
matrix

P =




1
2

1
6

1
3

0 0 1
4
5

1
5

0




Consider the starting distribution π(0) is π(1)(0) = 1
2
, π(2)(0) = 1

4
, π(3)(0) = 1

4
. The

1

2 3

1

2

1

6
1

3

4

5

1

5

1

Figure 2.1: A random walk on a graph with three vertices

following table shows the distribution at times t = 0, 1, 2, . . . , 5. The probabilities are
rounded to four digits.
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distribution π(1)(t) π(2)(t) π(3)(t)

t = 0 .5000 .2500 .2500
t = 1 .4500 .1333 .4167
t = 2 .5583 .1583 .2833
t = 3 .5058 .1497 .3444
t = 4 .5285 .1532 .3183
t = 5 .5189 .1517 .3294

One may guess that the distributions in the above example converge to a certain
distribution π. This is true and it does happen in a big family of Markov chains.

A finite Markov chain is irreducible if its graph representation is a strongly connected
graph. A state i in a Markov chain {Ft}t∈N0 is periodic if there exists an integer ∆ > 1

such that Pr[Ft+s = i|Ft = i] = 0 whenever s is not divisible by ∆. Markov chain is
periodic if any state is periodic. Markov chain is aperiodic if it is not periodic.

We say that π is a stationary distribution of a Markov chain with transition matrix
P if π = π P .

Now we can give a statement about existence and uniqueness of a stationary distri-
bution and about the convergence of the distribution to it.

Fact 2.4. Any irreducible aperiodic finite Markov chain with transition matrix P has the
following properties

(a) The chain has a unique stationary distribution π = (π(1), π(2), . . . , π(n)).

(b) Given any starting distribution π(0) the distribution converges to π, limt→∞ π(t) =

π.

(c) Vector π is the only eigenvector (up to a scalar multiple) of P T corresponding to

its largest eigenvalue λ = 1.

The stationary distribution of the chain from Example 2.3 is π
.
= (0.5219, 0.1522, 0.3262).

Example 2.5. Figure 2.2(a) shows an example of a Markov chain which has infinitely
many stationary distributions. Two of these are π1 = (1

2
, 1

2
, 0, 0) and π2 = (1

4
, 1

4
, 1

4
, 1

4
).

The graph is not strongly connected.
Graph on Figure 2.2(b) does not correspond to an aperiodic Markov chain. It is easy to

check that there is only one starting distribution, which is convergent, π(0) = (1
4
, 1

4
, 1

4
, 1

4
).

What is often of interest is how fast a Markov chain converges to the stationary
distribution, irrespective of the starting distribution π(0). To measure this we introduce
variation distance ‖ · ‖ of two distributions π1 and π2. It is given by ‖π1 − π2‖ =
1
2

∑
i |π

(i)
1 − π

(i)
2 |. Mixing time of a Markov chain is a time when, irrespective to π(0),

the variation distance of π(t) and π starts to be small enough. The following theorem is
useful for bounding mixing time of a Markov chain.

5
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1
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1
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1
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41

2

(a) (b)

1

1

1

1

Figure 2.2: An example of a Markov chain which is not (a) irreducible, (b) aperiodic

Theorem 2.6 (Theorem 11.5 in [MU05]). Let P be the transition matrix for a finite,
irreducible, aperiodic Markov chain with stationary distribution π. Let mj be the smallest

entry in the j-th column of matrix P and let m =
∑

j mj. Then, for any starting

distribution π(0) it holds for all t that

||π(t) − π|| ≤ (1 −m)t

The next two lemmas deal with a special kind of random walk {Xt}t∈N0 on N0. Let Z
be a random variable with support on N0, let GZ(s) be its probability generating function,

GZ(s) =
∞∑

i=0

si
Pr[Z = i]

Suppose that the radius of convergence of GZ is a constant greater than 1. Let p and q be
constants such that 0 ≤ p < q ≤ 1. The Markov chain {Xt}t is defined by the transition
probabilities

Pr[Xt+1 = i |Xt = 0] = Pr[Z = i]

Pr[Xt+1 −Xt = i |Xt 6= 0] =

{ p if i = 1

1 − p− q if i = 0

q if i = −1

and initial state X0 = 0. Random variable Rk is the time elapsed when Xt returns for the
k-th time to state 0. Random variable W (t) counts how many times state 0 was visited
during time interval [0, t].

The proof of the following lemma goes along the same lines as proof of Lemma 3
in [FS94] (the lemma itself is contained in [FS94] as Lemma 4 with the proof omitted).

Lemma 2.7. For any A > 0 we have as k → ∞,

Pr

[∣∣∣∣Rk −
k(q − p+ E[Z])

q − p

∣∣∣∣ ≥ A
√
k

]
≤ O(exp(−A))

6



Proof. First consider Markov chain {X ′
t}t with the same states and transition probabil-

ities as {Xt}t and initial state X ′
0 = 1. Let τ be the first time t when X ′

t = 0, let τ1
and τ2 be two independent copies of τ . Then τ equals in distribution to constant 1 with
probability q, 1+τ1 with probability, 1 + τ1 + τ2 with probability p. Let ϕ(s) be the
moment generating function of τ , ϕ(s) = E[exp(sτ)]. Then we have

ϕ(s) = exp(s)
(
q · 1 + (1 − p− q) · ϕ(s) + p · ϕ2(s)

)

Solving it (algebraically), we get

ϕ(s) =
1 − exp(s)(1 − p− q) −

√
(exp(s)(1 − p− q) − 1)2 − 4pq exp(2s)

2p exp(s)

From this, one can easily calculate the expectation of τ ,

E[τ ] =
d

ds
ϕ(s)|s=0 =

1

q − p

Let ψ(s) be the moment generating function for R1, ψ(s) = E[exp(sR1)]. From how
the transition probabilities look like we see, that

ψ(s) = exp(s)GZ(ϕ(s)) (2.1)

and direct computation gives us

E[R1] =
d

ds
ψ(s)|s=0 = 1 +

E[Z]

q − p

From (2.1) it is easy to extract terms [s0] and [s1] of ψ(s); as s→ 0 we have

ψ(s) = 1 +
q − p+ E[Z]

q − p
s+O(s2)

Variable Rk equals in distribution to the sum of k independent copies of R1, which
gives us ψ(s)k = E[exp(sRk)].

Pr

[
Rk −

k(q − p+ E[Z])

q − p
≥ A

√
k

]

= Pr

[
exp(sRk) ≥ exp

(
Ask1/2 +

sk(q − p+ E[Z])

q − p

)]

≤ E [exp(sRk)]

exp
(
Ask1/2 + sk(q−p+E[Z])

q−p

)

= ψ(s)k exp

(
−Ask1/2 − sk(q − p + E[Z])

q − p

)

=

(
1 +

q − p+ E[Z]

q − p
s+O(s2)

)k

exp

(
−Ask1/2 − sk(q − p+ E[Z])

q − p

)

= exp
(
O(ks2) − Ask1/2

)

7



where we used Markov Inequality between lines 2 and 3. Substituting s = k−1/2 we get

Pr

[
Rk −

k(q − p+ E[Z])

q − p
≥ A

√
k

]
= O(exp(−A))

The tail estimate of Pr

[
Rk − k(q−p+E[Z])

q−p
≤ −A

√
k
]

is analogous.

Lemma 2.8.

Pr

[
W (t) <

t(q − p)

q − p− E[Z]
−A

√
t

]
= O (exp(−A))

Proof.

Pr

[
W (t) <

t(q − p)

q − p+ E[Z]
− A

√
t

]

= Pr

[
R t(q−p)

q−p+E[Z]
−A

√
t
> t

]

≤ Pr

[∣∣∣∣R t(q−p)
q−p+E[Z]

−A
√

t
− t+

A
√
t(q − p+ E[Z])

q − p

∣∣∣∣ >
A
√
t(q − p+ E[Z])

q − p

]

= O

(
exp

(
−A(q − p+ E[Z])

q − p

))

= O (exp(−A))

where we used Lemma 2.7 between lines 3 and 4.

A state S of Markov chain {Ft}t∈N0 is called absorbing if it is impossible to leave it,
i.e. Pr[Ft+1 6= S | Ft = S] = 0 for every time t ∈ N0. A Markov chain is absorbing if it
is possible to get from every state (in one or more steps) to an absorbing state. For an
absorbing Markov chain, a state which is not absorbing is called transient (in literature,
transient states are defined for any Markov chain in a more general way, however for
absorbing Markov chains the two definitions coincide).

By renumbering the states in the transition matrix P of an absorbing Markov chain
we can get in to the canonical form

P =

(
Q R

0 1 )
where matrix Q is a transition matrix between the transient states, matrix R records
transition probabilities from the transient states to the absorbing states and 1 is an
identity matrix representing equability of the absorbing states. The following fact is a
basic fact about absorbing Markov chains.

Fact 2.9. For an absorbing Markov chain the matrix 1 − Q has an inverse N , N =1 +Q+Q2 + · · · +Qi + · · · . Entry Ni,j is the expected number of times the chain is in

state j, given that it starts in state i.

8



Matrix N from the Fact is called the fundamental matrix.
In the thesis we will use absorbing Markov chains with only one absorbing state.

Proposition 2.10. Let {Ft}t∈N0 be a Markov chain with only one absorbing state S, such

that F0 = j and P is its transition matrix,

P =




Q

p1

...

pn−1

0 1




Then the probability that the last visited transient state was state i is piNj,i.

Proof.

Pr[the last visited transient state was state i]

=

∞∑

t=0

Pr[Ft+1 = S | Ft = i]

= pi

∞∑

t=0

Pr[Ft = i]

= pi E[number of times the chain is in state i]

= piNj,i

9



Chapter 3

Random cubic graphs

The main results in the thesis deal with random graphs. Book [AS00] is a comprehensive
introduction to the Probabilistic method (which a tool used not only to obtain results in
graph theory but also in other parts of mathematics). All the important concepts needed
here are introduced there. For further results on random graphs we refer to [J LR00] and
[Bol01].

By G3,n we denote the uniform probability space of all cubic graphs on vertices
v1, v2, . . . , vn. This model is what one would imagine saying ‘a random cubic graph’.
Alas, any direct computation in the model is practically unmanageable.

We will use the pairing model of cubic graphs to deal with random cubic graphs.
The model was first introduced by Bender and Canfield [BC78]. The elements of the
probability space G∗

3,n are all perfect matching on {1, . . . , n}×{1, 2, 3} (for n even; we will
not emphasize the condition henceforth); every element of G∗

3,n has the same probability.
To obtain from a matching G ∈ G∗

3,n a cubic multigraph (with possible loops) one projects
the elements {1, 2, . . . , n} × {1, 2, 3} in a natural way onto the set of vertices of G which
we denote by V (G) = {v1, v2, . . . , vn}. The matchings in G∗

3,n will be called inaccurately
graphs; and we also translate graph-theoretical terms to G∗

3,n. For a vertex vi of G we
write vi = (v1

i , v
2
i , v

3
i ) where vl

i = (i, l) ∈ {1, . . . , n} × {1, 2, 3}, l = 1, 2, 3.
We let f(n) denote the number of matchings on n elements. For n odd, f(n) = 0, for

n even, f(n) =
(n

2)(
n−2

2 )(n−4
2 )...(2

2)
(n/2)!

= n!
(n/2)!2n/2 . It follows from the definition that |G∗

3,n| =

f(3n).
We draw attention to the fact that after projecting, not all the graphs (in the proper

sense) have the same probability in G∗
3,n. Figure 3.1 shows two graphs G1 and G2, G1

corresponding to six matchings P 1
1 , P

2
1 . . . , P

6
1 and G2 corresponding to nine matchings

P 1
2 , P

2
2 . . . , P

9
2 . However, for simple graphs without loops the situation gets easier as the

following facts ([Wor99b]) show.

Fact 3.1. Conditioning that G ∈ G∗
3,n is simple and without loops we get a uniform

sample from G3,n.

Fact 3.2. The probability that G ∈ G∗
3,n is simple and without loops tends to e

−9/4.

10
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Figure 3.1: G1, G2 corresponding to graphs of different probabilities in G∗
3,n

Generalization of Fact 3.2 is the following

Fact 3.3. The probability that G ∈ G∗
3,n has girth at least k tends to

∏k−1
i=2 exp

(
− 2i

i+1

)
.

The following theorem can be used to show strong concentration of a random variable
in G∗

3,n (such as the size of maximum independent set) around its expectation. The
theorem uses notion of simple switching. Denote the set of elements {1, . . . , n}×{1, 2, 3}
on which we perform the matching by {e1, e2, . . . , e3n}. We say that two graphs G1, G2 ∈
G∗

3,n differ by a simple switching if there are two edges f1 = {ei, ej}, f2 = {ek, el} of G1

such that {ei, ek}, {ej, el} are edges of G2 and otherwise G1 and G2 have the same edges.
Figure 3.2 shows two such graphs.

Theorem 3.4 (Theorem 2.19 in [Wor99b]). Let Xn be a random variable defined on G∗
3,n

such that |Xn(G1)−Xn(G2)| ≤ c whenever G1 and G2 differ by a simple switching. Then

Pr[|Xn − E[Xn]| ≥ t] ≤ 2 exp

( −t2
3nc2

)

for all t > 0.

We conclude this preparatory part by defining two graph parameters. For graph
G, number bi(G) denotes the number of vertices of vertex-maximum induced bipartite
subgraph of G. Bipartite density bd(G) of a graph G is the fraction of edges in the
edge-maximum bipartite subgraph of G. Obviously,

bi(G) =
MAXCUT (G)

|E(G)|
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Figure 3.2: Two graphs differing by a simple switching.

Since determining MAXCUT (G) for a cubic graph is well-known to be an NP-hard
problem, so is the problem of determining the value of bi(G).

3.1 Maximum induced bipartite subgraph — the up-

per bound

Theorem 3.5. bi(G)
n

≤ 0.9301 a.a.s. for G ∈u G∗
3,n.

Proof. We bound the probability of the event A that there is an induced bipartite sub-
graph of G ∈u G∗

3,n of size at least k.

Pr[A] ≤
∑

B⊆V

|B|=k

⌊k
2
⌋∑

l=0

∑

B1⊆B

|B1|=l

Pr[B1 and B \B1 are independent]

=

(
n

k

) ⌊k
2
⌋∑

l=0

(
k

l

) 3l∑

h=0

Pr[A(k, l, h)]

where denotes A(k, l, h) the event that fixed sets of vertices B1 and B2 (of sizes k and
k − l) induce a bipartite graph with exactly h edges.

Pr[A(k, l, h)] =

(
3l
h

)(
3(k−l)

h

)
h!
(
3(n−k)
3k−2h

)
(3k − 2h)! f(3n− 6k + 2h)

f(3n)

At the end of the estimates we will show that n
√

Pr[A(0.9301n, l, h)] ≤ c for some
constant c < 1 and for all l, h. To deal with the inequalities easier we introduce notion
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of asymptotically similar behavior in the n-th square root: we write f(n) ≈ g(n) if
limn→∞

n
√
f(n)/g(n) = 1 and f(n) / g(n) if lim supn→∞

n
√
f(n)/g(n) ≤ 1. We use

two approximations: n! ≈ (n/e)n and
∑n

i=1 F (i) ≈ max{F (i); i = 1, 2, . . . , n} for a
nonnegative function F .

Pr[A(k, l, h)]

=

(
3l
h

)(
3(k−l)

h

)
h!
(
3(n−k)
3k−2h

)
(3k − 2h)! f(3n− 6k + 2h)

f(3n)

≈ 31.5n(n− k)3n−3k l3l (k − l)3k−3l

(3n− 6k + 2h)1.5n−3k+2h (3k − 3l − h)3k−3l−h n1.5n hh (3l − h)3l−h

= t(k, l, h)

For fixed k, l we find the maximum of t(k, l, h) over h ∈ [0, 3l]. Since the derivative
d

dh
t(k, l, h) tends from infinity at h = 0 to minus infinity at h = 3l, the function is

maximized at the only point of zero derivative h = 3
2
(k−n+

√
n2 − 2nk + k2 − 4l2 + 4kl).

We have the following bound:

Pr[A] /

(
n

k

) ⌊k
2
⌋∑

l=0

kk

ll(k − l)k−l
t(k, l, 1.5(k − n+

√
n2 − 2nk + k2 − 4l2 + 4kl)

Evaluating the derivative d

dl
of the inner term of the sum we get that the term is

maximized at l = 0.5k.

Pr[A] /
nn

kk(n− k)n−k
2k · t(k, 0.5k, 1.5(k − n+

√
n2 − 2nk + 2k2)

Substituting k = 0.9301n we get

Pr[A] / 0.99999n

which proves the theorem.

We shall use the method of switching to sharpen the bound. The idea of the method
is simple: we shall show that if there is one maximum induced bipartite graph, then there
are at least M of them. This will allow us to improve previous estimate

Pr[exists a large induced bipartite graph] ≤ E[number of large induced bipartite subgraphs]

to

Pr[exists a large induced bipartite graph] ≤ E[number of large induced bipartite subgraphs]

M

First we make a simple observation about the structure of maximum induced bipartite
subgraphs.
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Proposition 3.6. Let G be a cubic graph, H be its maximum induced bipartite subgraph
with parts B1, B2 ⊆ V (G). Let C = V \ (B1 ∪B2).

(a) Any vertex v ∈ C neighbors with at least one vertex from B1 and from B2.

(b) For any vertex v ∈ B1 such that at least two of its neighbors v1, v2 (or v1, v2, v3)

lie in C, there are at most one of these are not adjacent to any vertex in B1 other

then v. (and symmetrically for v ∈ B2)

Proof. (a) This is obvious.

(b) If there were two neighbors v1, v2 ∈ C of v which are not adjacent to any other
vertex of B1, we obtain a larger induced bipartite subgraph by taking B̃1 = B1 \
{v} ∪ {v1, v2}, B̃2 = B2, a contradiction.

Lemma 3.7. Let G be a cubic graph on n vertices with maximum induced bipartite

subgraph with parts B1, B2 of sizes l, k − l. Then G has at least 30.5(n−k) maximum

induced bipartite subgraphs with parts of the same sizes.

Proof. For any vertex x ∈ C = V \ (B1 ∪B2) let wx be its arbitrary (but fixed) neighbor
in B1 or B2, such that x is adjacent to no other neighbor in that part (since deg x = 3,
there is always at least one). For any v ∈ B1 ∪B2 we denote Vv = {x ∈ C;wx = v}∪{v}.
By Proposition 3.6 (b), if x, y ∈ C, x 6= y then wx 6= wy, i.e. |Vv| ≤ 2. Moreover,
|{v ∈ B1 ∪B2; |Vv| = 2|}| = n− k.
Switching a vertex v ∈ B1 ∪B2, such that Vv = {v, x} is an operation which replaces

induced bipartite subgraph with parts B1, B2 by one with parts either B1 \ {v}∪ {x}, B2

(if v ∈ B1) or B1, B2 \ {v} ∪ {x} (if v ∈ B2).
If we switch any vertex u we obtain an induced bipartite graph. Now, it may happen

that switching another vertex u′ (according to the original list {Vv}v∈B1∪B2) we do not
get an induced bipartite graph; this is the case Vu = {u, c}, neighbors of c are u, x, c′,
x ∈ B1 ∪B2, wc = u′ and u, u′ lie in the same part of the bipartite graph — but it is the
only case (and we observe that symmetrically switching u′ first, we cannot switch u). In
this case we say that u blocks u′.

The set B1 ∪B2 is split into a set A of d vertices which do not block any other vertex
and 0.5(n− k − d) pairs {u, u′} of vertices such that u blocks u′.

We can perform switching on the whole bipartite subgraph in the following way: we
switch vertices of an arbitrary subset of A and for any pair {u, u′} of blocking vertices we
choose one of the three possibilities: (1) either we do not switch u nor u′ or (2) we switch
u only or (3) we switch u′ only. The resulting bipartite subgraph will stay induced with
parts of the same size; different switchings give different bipartite graphs. So the number
of bipartite graphs obtained by switching the original one is 2d ·30.5(n−k−d) ≥ 30.5(n−k).

Theorem 3.8. bi(G)
n

≤ 0.9082 a.a.s. for G ∈u G∗
3,n.
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Proof. We calculate the number of cubic graphs (in the pairing model) which contain an
induced bipartite subgraph on fixed parts B1, B2, |B1| = l, |B2| = k− l, span over h edges
and satisfy condition given by Proposition 3.6 (a).

For any vertex v = (v1, v2, v3) ∈ C, C = V \ (B1 ∪B2) we distinguish to which vertex
set (either B1, B2 or C) each vi is adjacent to. There are twelve admissible cases.

In the following list of possibilities vi →W denotes that vi is adjacent to some vertex
in W ⊆ V ):

• Type 0 : one of v1, v2, v3 is adjacent to a vertex in C (6 cases): (1) v1 → B1, v
2 →

B2, v
3 → C; (2) v1 → B1, v

2 → C, v3 → B2; (3) v1 → C, v2 → B1, v
3 → B2; (4)

v1 → B2, v
2 → B1, v

3 → C; (5) v1 → B2, v
2 → C, v3 → B1; (6) v1 → C, v2 →

B1, v
3 → B2.

• Type 1 : two of v1, v2, v3 are adjacent to vertices in B1 (3 cases): (1) v1 → B1, v
2 →

B2, v
3 → B1; (2) v1 → B1, v

2 → B1, v
3 → B2; (3) v1 → B2, v

2 → B1, v
3 → B1.

• Type 2 : two of v1, v2, v3 are adjacent to vertices in B2 (3 cases similar to Type 1).

First we choose parts B1 and B2 in G; there are K =
(

n
k

)(
k
l

)
possibilities of doing this.

Then we choose h edges spanning B1 ∪ B2 (there are H =
(
3l
h

)(
3(k−l)

h

)
h! ways of doing

that) and fix them.
Let t0, t1, t2 be the number of vertices of Type 0, 1, 2. The number of edges between

B1 and C is 3l−h, the number of edges between B2 and C is 3(k− l)−h, so the following
system of equations must hold:

n− k = t0 + t1 + t2

3l − h = t0 + 2t1 + t2

3(k − l) − h = t0 + t1 + 2t2

Solving it, we get t0 = 3n− 6k + 2h, t1 = k + 3l − h− n, t2 = 4k − 3l − h− n.
There are

T0 = 6t0

(
n− k

t0

)(
3l − h

t0

)(
3(k − l) − h

t0

)
(t0!)

2 f(t0)

ways to choose t0 vertices of C and to add edges (between them and B1∪B2 and between
them mutually) as Type 0.

Having fixed these vertices and edges, there are

T1,2 = 3t1

(
n− k − t0

t1

)(
3l − h− t0

2t1

)(
3(k − l) − h− t0

t1

)
(2t1)!t1! · 3t2t2!(2t2)!

ways how to add the remaining edges (corresponding to vertices of Type 1 and Type 2).
Let Xk,l,h(G) be the number of induced bipartite subgraphs of G with parts of sizes l

and k − l spanning over exactly h edges, G ∈ G∗
3,n.

E[Xk,l,h] =
KHT0T1,2

f(3n)
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Applying Lemma 3.7 we get a bound for the probability Pr[Ak] that there is a maxi-
mum induced bipartite subgraph of G of size k.

Pr[Ak] ≤
∑

l,h E[Xk,l,h]

30.5(n−k)

Using similar estimates as in Theorem 3.5, we get

E[Xk,l,h]

≈ 23n−6k+2h32k−0.5nll(k − l)k−l

n0.5nhh(3l + k − h− n)3l+k−h−n(4k − 3l − h− n)4k−3l−h−n(3n− 6k + 2h)0.5(3n−6k+2h)

Evaluating the derivative d
dl

it can be shown that the righthand side term is maximized
for l = 0.5k. A computer is used check that for all k ∈ [0.9082n, n] the following holds.

Pr[Ak] / 0.99999n

This proves that a random cubic graph contains asymptotically almost surely no
induced bipartite subgraph of size at least 0.9082n.

3.2 Bipartite density — the upper bound

In this section we show that bd(G) ≤ 0.9351 a.a.s. for a random cubic graph. The fact
was first announced by McKay [McK82], however the proof never appeared in print. See
[Šám06] for weaker estimate bd(G) ≤ 0.9386.

Theorem 3.9. bd(G) ≤ 0.9351 a.a.s. for G ∈u G∗
3,n.

Proof. Variable 3
2
n bd is a random variable such as Xn in Theorem 3.4 (with c = 2) so it

is strongly concentrated around its expectation. Therefore the statement will be proven
even if we show that bd(G) ≤ 0.9351−ε (for some ε > 0) a.a.s. for G ∈u G∗

3,n, conditioning
that G is a simple graph without loops. We denote the ratio of loopless simple cubic
graphs over all cubic graphs on n vertices by cn. Fact 3.2 says that limn→∞ cn = e−9/4.

Until the end of the proof we condition on G being simple without loops.
We find an upper bound for the probability that a random cubic graph G on n vertices

has bipartite density at least δ = 0.93509. Let V (G) = B1 ∪ B2 be the partitioning of
vertices of G such that bipartite subgraph B with parts B1, B2 has maximum edges. Then
degB v ≥ 2 for any v ∈ V (G) (this is the only point in the proof where G is needed to
be without loops). Let k = |B1|, hi be the number of vertices in Bi (for i = 1, 2) having
degree 3 in B. Then

3h1 + 2(k − h1) = 3h2 + 2(n− k − h2)

which gives h2 = 4k−2n+h1. The number of edges of the bipartite graph is 3h1 +2(k−
h1) = 2k + h1.
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Pr[bd(G) ≥ δ] ≤
∑

k

∑

B1⊆V (G)

|B1|=k

∑

h1

2k+h1≥1.5δn

Pr[A(B1, h1)]

where A(B1, h1) denotes the event that a bipartite subgraph of G with parts B1, V (G)\B1

has the maximum number of edges of all bipartite subgraphs of G and there are exactly
h1 vertices of degree three in part B1.

If |B1| = k then

Pr[A(B1, h1)]

≤
(

k
h1

)(
n−k
h2

)
(3h1 + 2(k − h1))! 3n−h1−h2 f(k − h1) f(n− k − h2)

cn f(3n)

Pr[(∃B1 ⊆ V (G), |B1| = k)A(B1, h1)]

≤
(

n
k

)(
k
h1

)(
n−k

4k−2n+h1

)
(2k + h1)! 33n−2h1−4k f(k − h1) f(3n− 5k − h1))

cn f(3n)

Since the examined bipartite density δ is greater than 2
3

all the terms of the expression
on the right-hand side must tend to infinity as n goes to infinity. We may use the following
approximation:

Pr[(∃B1 ⊆ V (G), |B1| = k)A(B1, h1)]

/
31.5n−2h1−4k(2k + h1)

2k+h1

hh1
1 (4k − 2n + h1)4k−2n+h1n0.5n(k − h1)0.5(k−h1)(3n− 5k − h1)0.5(3n−5k−h1)

A computer is used to check that the last term is less or equal to 0.99999n whenever
2k + h1 ≥ 0.93509 · 3

2
n.

Setting ε = 0.00001 completes the proof1.

1It could be argued that there exist even smaller positive numbers than 0.00001, so why not to use

one (and get a better constant consequently)? We prefer (relatively) nice constants to long and precise

ones.
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Chapter 4

Algorithm BIPGREEDY

In this section we present randomized Monte Carlo algorithm BIPGREEDY for finding a
large induced bipartite subgraph of a random cubic graph. Analysis of it, which we carry
out in a later section, shows that it performs quite well. Analysis of the performance of
BIPGREEDY gives us also a lower bound on number bi(G) for a random cubic graph
G. We did not find any other probabilistic method to obtain a (nontrivial) lower bound
on bi(G).

BIPGREEDY is most similar to algorithm MINGREEDY presented by Frieze and
Suen in [FS94] (see also [FRS95] for some technical details) for finding a large independent
set in a random cubic graph.

For comparison, we describe algorithm MINGREEDY first. We start with a cubic
graph G at an input and empty independent set I. In each step a vertex v of minimum
degree is randomly chosen in graph G, added to independent set I constructed in parallel,
and removed with all its neighbors from the graph. This procedure guarantees that
independence of the constructed set will never be violated.

MINGREEDY;
Input G;
I := ∅;
while G 6= ∅ do
Vmin := set of vertices of minimum degree in G;
choose v ∈ Vmin uniformly at random;
I := I ∪ {v};
G := G− {v} − {neighbors of v};
remove isolated vertices from G;
end while

Output I;

Algorithm BIPGREEDY works as follows. Input cubic graph is dismounted while the
bipartite subgraph is constructed in parallel. At each step vertex of minimum degree is
picked randomly and removed from the graph. We add it to that part of the bipartite
subgraph in which the property of induceness will not become violated; when there is no
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such, we throw the vertex away; if adding to both parts is possible, we add it to one of
them at random.

BIPGREEDY;
Input G;
B1 := ∅;
B2 := ∅;
while G 6= ∅ do
Vmin := set of vertices of minimum degree in G;
choose v ∈ Vmin uniformly at random;
if v has no formal neighbor1 in B1 nor B2 then
if random(2)= 0 then

B1 := B1 ∪ {v};
else

B2 := B2 ∪ {v};
end if
end if

if v has formal neighbor in B1 only then
B2 := B2 ∪ {v};
end if
if v has formal neighbor in B2 only then
B1 := B1 ∪ {v};
end if
if v has formal neighbors in B1 and B2 then

;
end if

G := G− {v};
remove isolated vertices from G;
end while

Output B1, B2;

A random variable bialg(G) denotes the number of vertices of the bipartite subgraph
produced by BIPGREEDY.

The main result of this section is Theorem 4.16 which states that the algorithm finds
a bipartite graph of size at least (0.75− ε)n on average, i.e. E[bialg] ≥ (0.75− ε)n (where
n is the number of vertices of the input graph and n is big). It is an easy consequence
(Corrolary 4.17) that bi(G) > (0.75 − ε)n a.a.s. for G ∈u G∗

3,n.
Analogously, Frieze and Suen proved that MINGREEDY finds an independent set

of size at least (6 ln(3/2) − 2 − ε)n
.
= 0.4327n on average. This means that α(G) >

(6 ln(3/2) − 2 − ε)n a.a.s. for G ∈u G∗
3,n.

Both algorithms run in linear time. In the next section we make a short excursion

1a formal neighbor of a vertex v is a vertex u ∈ V (G(0)) such that {u, v} ∈ E(G(0)) and u 6∈ V (G(t))

(where t is the current time)
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into complexity theory. We show that finding a maximum induced bipartite subgraph is
computationally a hard problem.

4.1 Complexity of finding a maximum induced bi-

partite subgraph

Decision problem INDEPENDENT SET(G, k) asks whether there is an independent set of
size at least k in cubic graph G. Decision problem BIPARTITE SUBGRAPH(G, k) asks
whether there is an induced bipartite graph of size at least k in cubic graph G.

Theorem 4.1. (a) INDEPENDENT SET is NP-complete.

(b) BIPARTITE SUBGRAPH is NP-complete.

Proof. (a) This is shown in [GJS76] by reduction from 3SAT.

(b) Obviously, BIPARTITE SUBGRAPH ∈ NP. We make a polynomial time reduction
from NAE 3SAT. NAE 3SAT is a problem which gets a boolean formula φ such, that
φ is in conjunctive normal form and in each elementary disjunction at most three
literals are used, on the input. The question is, whether it is possible to assign
the variables values in such a way, that the formula is satisfied and there is no a
clause in which all three literals are set to 1. It is well known that NAE 3SAT is
NP-complete.

Let φ be an input formula for NAE 3SAT. First observe that we may assume that
all the clauses in the input formula consist of exactly three literals (with possible
repetition of the literals in clauses). Let αx be the number of occurrences of variable
x, βx be the number of its negations ¬x in the formula, γx = max(αx, βx). We may
assume that γx > 1 for every variable x. If this was not true, we can work with
equivalent problem of deciding whether φ ∧ φ ∈ NAE 3 SAT. Now we describe how
we construct a graph G from formula φ. For each variable x we construct a cycle
Cx of length 2γx and we properly color vertices of Cx with red and blue. For each
clause L we construct a triangle TL. Each vertex in the triangle represents one
literal of the clause. We connect sequentially vertices of triangles TL to vertices of
cycles Cx. If the literal is variable x (resp. negation ¬x), we connect it with a red
(resp. blue) vertex of Cx which still has degree two. After this, we all the vertices
of the original triangles TL have degree three. Vertices of the original cycles Cx are
of degree two or three. We add gadgets depicted on Figure 4.1 to those of degree
two.

Let c be the number of clauses. We shall show that for a formula φ (with assump-
tions as above), φ ∈ NAE 3SAT if and only if (G, 2c+ 2

∑
x αx + βx + 6|αx − βx|) ∈

BIPARTITE SUBGRAPH.
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Figure 4.1: Gadgets added to vertices of degree two

Let φ ∈ NAE 3SAT. We find an induced bipartite subgraph of G of size 2c +

2
∑

x αx + βx + 6|αx − βx| as follows. Let X = (x1, x2, . . . , xn) be the satisfying
assignment of the values to the variables. In each clause L we pick one literal tL
which is 1 with respect to X and one literal fL which is 0 with respect to X. Vertices
of part B1 of the bipartite graph will be all the blue vertices, vertices which are
corresponding to literals tL and some of the vertices of the gadgets. Vertices of part
B2 of the bipartite graph will all the red vertices, vertices which are corresponding
to literals fL and some of the vertices of the gadgets. The distribution of the vertices
of the gadget into the bipartite graph is shown on Figure 4.2. It is easy to check
that we get an induced bipartite graph of demanded size.

B2

B1

B1

B1

B2

B2

Figure 4.2: Distribution of the vertices of a gadget into the parts of the bipartite graph.
The case when the gadget is attached to a vertex in part B2 is depicted. Analogous
assignment can be done if the associated vertex is in part B1.

On the other hand, knowing that there is an induced bipartite subgraph of G of
size 2c+2

∑
x αx +βx +6|αx−βx|, we know that φ ∈ NAE 3SAT. This follows quite

straightforward by a reverse argument. The only thing one has to observe is that
there are always at most six vertices of each gadget present in the bipartite graph.

An example of the reduction is shown on Figure 4.3.
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L1 L2 L3 L4

φ =
︷ ︸︸ ︷

(x ∨ y ∨ ¬z) ∧

︷ ︸︸ ︷

(x ∨ ¬y ∨ w) ∧

︷ ︸︸ ︷

(x ∨ ¬y ∨ w) ∧

︷ ︸︸ ︷

(y ∨ ¬w ∨ ¬z)

Cx

Cz Cw

Cy

red

red

red

red

red

red

red

red

red

blue

blue

blue

blue blue

blue

blue

blue

blue

L1

L2

L3

L4

y

x

y

w

y

y

x

¬z

¬z

¬w

¬y

¬y

Figure 4.3: An example of reduction of NAE 3SAT to BIPARTITE SUBGRAPH. Gadgets
which are to be added to vertices of degree two are not depicted for lucidity.

The author is not acquainted with any result concerning approximability of the prob-
lem. Thanks to Peter Golovach for discussion on the subject and for appointing the idea
of the proof of Theorem 4.1.

4.2 Computer simulation

The following table shows mean value and variance of bipartite ratio bialg(G)

n
found by com-

puter. For each number of vertices 1,000 or 10,000 random cubic graphs were generated
and for each of the graphs one Monte Carlo run was executed.

number of vertices 1,000 10,000 100,000 1,000,000
number of graphs generated 10,000 10,000 10,000 1,000

E[
bialg

n
] .81681 .81778 .81796 .81798

Var[
bialg

n
] 5.59E-05 5.58E-06 5.36E-07 5.58E-08

4.3 Probabilistic analysis

By probabilistic analysis we mean that we investigate how the algorithm performs typi-
cally, i.e. given a random cubic graph as an input. We emphasize that we do not analyze
how the algorithm behaves given a fixed graph on the input.
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The probability space used for the analysis will be product space Ωn = G∗
3,n ×

({0, 1}u)
N. Term G∗

3,n corresponds to the input we get, term ({0, 1}u)
N represents a

random number generator which is used by the algorithm. We promised in Prelimi-
naries that only countable probability spaces will be used; which Ωn is not. However,
it can be checked from the design of the algorithm that for a fixed number of ver-
tices only a bounded number of bounded random numbers is needed, so we may use
Ωn = G∗

3,n × ({0, 1}u)
f(n) (for some function f) as well.

In the analysis we investigate behavior of several chains defined on the input graph.
One step in the chains is a run of the ‘while G 6= ∅ do’ block. We number the steps
starting from zero. We denote G(t) the graph (in the sense of the pairing model) at the
t-th step of the algorithm. By N1(t), N2(t), N3(t) we denote the number of vertices of
degree 1, 2, 3 in graph G(t), M(t) denotes the number of edges in the graph. We set
pi(t) = iNi(t)/(2M(t)) for i = 1, 2, 3 and N(t) = N1(t) +N2(t) +N3(t).

Overview of the analysis. The first step in the analysis is to show (Lemma 4.5) that
during the run of the algorithm (up to a minor time interval near the end) it holds with
very high probability that

N3(t)
.
=

23/2M(t)3/2

33/2n1/2
(4.1)

We give a simple reason here which should show that this is plausible. We liken
the stochastic process to a differential equation. This method was used several times in
analysis of randomized greedy algorithms before, some other applications can be found
in [Wor99a]. It is easy to show, that it is sufficient to analyze the run only for connected
graphs. Then, except the first step, vertex of degree three in never removed. The first step
has only little impact on values M(t), N3(t) and hence may be omitted from the analysis.
We think of the process as a sequence of step-by-step edge removals. Let the graph have
at certain time τ (τ does not have to be an integer—we subdivided original steps; each
step is divided so that M decreases by 1 in each substep) M(τ) edges and N3(τ) vertices
of degree three. When vertex v was picked as a vertex of minimum degree, deg v < 3 and
edge {u, v} is currently being removed, the number of vertices of degree three decreases
if and only if deg u = 3. The probability that this happens is p3(τ) + O(1/M(t)). The
differential equation which approximately describes this is

dN3

dM
=

3N3

2M

Solving it with initial condition M(0) = 3
2
n, N3(0) = n we get (4.1).

In Lemma 4.8 and Lemma 4.9 we show what is the probability that a vertex of degree 2
at certain time t is picked by the algorithm, namely it is very close to p3(t)/(2−p3(t)). This
is done by examining the transition probabilities for states N1 = 0, N1 = 1, N1 = 2 (which
are the only three possible values of N1 as shown in Proposition 4.6). We approximate
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the process {N1(t)}t by a Markov chain with transition matrix P ,

P =




p3(t)
2 2p2(t)p3(t) p2(t)

2

p3(t) p2(t) 0

0 p3(t) p2(t)




The stationary distribution of the chain is

π =

(
p3(t)

2 − p3(t)
,
1 − p3(t)

2

2 − p3(t)
,
(1 − p3(t))

2

2 − p3(t)

)

Lemmas 4.10 and 4.11 give estimates on how many steps it takes to remove certain
number of edges. The estimates are straightforward since we now know the ratio between
how many times a vertex of degree one and degree two is picked. The two lemmas give
as a consequence Lemma 4.12 which states how many vertices degree 1 are picked during
certain intervals on average.

In Lemma 4.15 we show that the number of vertices in G(t) which have a neighbor
already placed in B1 and the number of vertices in G(t) which have a neighbor already
placed in B2 are likely to be similar. We denote the numbers of vertices of degree 2
in G(t) having neighbors in B1 and B2 by K1(t) and K2(t), respectively. The proof of
Lemma 4.15 is somewhat technical but the idea is simple. We shall sketch here why it is
not probable (in the rigorous proof we give bound on the probability O(1/n2)) that there
exists time t1 such that

K1(t1) −K2(t1) > εn

Let t1 be any such time. Let t0 be the first time such that K1(t) −K2(t) > εn/2 for
all t ∈ [t0, t1]. Since n→ ∞, t1 − t0 must be big. Let t ∈ [t0, t1] be any time.

(a) If vertex v(t) chosen at time t has degree 2, then it is more likely that its neighbor is
in B1. If so then v(t) will be inserted to B2 and we have ∆K1 = −1 at the moment.
There are three cases according to the degrees of the neighbors of v(t)

• Both neighbors have degree 2. Then ∆K2 = 2.

• One neighbor has degree 2 and one has degree 1. Then ∆K2 = 1.

• Both neighbors have degree 2. Then ∆K2 = 0.

When v(t) has a neighbor in B2 we get a symmetric situation in terms of ∆K1

and ∆K2 (with the same probabilities of corresponding opposite events). Hence we
have that ∆(K1 −K2) < 0 on average.

(b) If a vertex of degree 1 with a neighbor of degree 1 is picked, then ∆(K1 −K2) = 0.

(c) When it happens that v(t) had degree 1 and in the next step there are no vertices
of degree 1 in G(t+ 1), the situation gets more complicated. One has to trace back
the 1-chain (1-chain is a sequence of steps in which the algorithm chose a vertex
of degree 1, such that each vertex in the 1-chain neighbors with the consecutive
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one) to its beginning and find how it emerged2. It turns out that ∆(K1 −K2) > 0

on average, but still alternation of cases (a), (b) and (c) (in ratio given by the
probabilities of the cases) gives total outcome ∆(K1 −K2) < 0.

Since t1 − t0 is big, we have that the ‘on average’ stuff really behaves how expected and
thus the initial disproportion K1(t0) −K2(t0) > εn/2 was much more likely to decrease
then to increase.

Lemma 4.15 was the last step needed in our analysis. In Theorem 4.16 we show
that BIPGREEDY returns an induced bipartite subgraph of size at least (0.75 − ε)n on
average. This is done by showing that at most (0.25 + ε)n vertices are not included in
the bipartite graph. A vertex is not included in the bipartite graph either because it had
degree 0 or because it was neighboring with vertices of the both parts of the bipartite
graph. We show in Lemma 4.7 that there are at most lnn degree-zero vertices with high
probability. To cope with vertices which have formal neighbors in the both parts of the
bipartite graph, Lemma 4.12 and Lemma 4.15 are used. By Lemma 4.12 we know how
many vertices of degree 1 were picked at each stage of the algorithm, by Lemma 4.15 we
know that the case that both formal neighbors of any such vertex were in the same part
of the bipartite graph is nearly the same as that the neighbors were in different parts.
This suffices to prove the theorem.

The following lemma and its consequence stated in Lemma 4.3 are essential for any
further analysis. We note that the statements are not true when a random graph at the
input is replaced by a fixed one, which is the reason why we are not able to give analysis
of performance of BIPGREEDY for a fixed graph.

Symbol RS(i) denotes a distribution of a random uniform subset of size i of set
{1, 2, 3}, RS(i) ∼

({1,2,3}
i

)
u
.

Lemma 4.2. In Ωn, given (N1(t), N2(t), N3(t)) at any time t, G(t) has the same distri-

bution as a random matching on set S ⊆ {1, 2, . . . , n}×{1, 2, 3}, S = V1 ∪V2 ∪V3, where

V1, V2, V3 were obtained in the following way. Take a triple of disjoint sets W1,W2,W3 ⊆
{1, 2, . . . , n}, |Wi| = Ni(t) randomly uniformly from the set of all such triples. Then

define Vi =
⋃

w∈Wi
{w} ×X(w), where X(w)

ind∼ RS(i), i = 1, 2, 3.

Proof. A random graph G ∈u G∗
3,n can be constructed as follows. At the beginning we

take set {1, 2, . . . , n} × {1, 2, 3} of all elements of the future matching. We repeatedly
pick an arbitrary (random, or given by a certain rule, for example) unmatched element
x and match it with an element which was chosen randomly uniformly from the set of
currently unmatched elements different from x.

We shall construct a random graph G using this procedure. We start with unmatched
elements F = {1, 2, . . . , n} × {1, 2, 3}. At each step we pick a vertex v = (v1, v2, v3) in G

2Well, one cannot expect any results tracing the algorithm backwards; one can only trace it forward

and use essential Lemma 4.2. The description given here should however give some feeling what we will

be trying for later on.
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uniformly at random such that the degree of v is the maximum degree over all vertices of
G except vertices of degree three. Out of v1, v2, v3 there are one, two or three elements
which are currently unpaired. We take the unpaired elements in sequence and for each
element we take a random uniform unpaired element in F and establish a pairing between
these two elements.

The described way of generating a random graph was not arbitrary; it is an easy
observation that we constructed the graph in reverse to step-by-step dismounting the
edges by BIPGREEDY. The elements of the graph which remained paired at a certain
step during the run of BIPGREEDY are exactly those which are yet to be paired in the
parallel construction and thus the lemma holds.

Lemma 4.3. In Ωn, {(N1(t), N2(t), N3(t))}t is a Markov chain with initial state (0, 0, n).

Proof. Follows directly from Lemma 4.2.

We say that graph G is nearly-connected if G is connected or has exactly two compo-
nents, one of which has at most two vertices.

Proposition 4.4. Pr[G ∈u G∗
3,nis nearly-connected] = 1 − O(1/n2).

Proof.

Pr[G ∈u G∗
3,n is not nearly-connected]

≤
∑

A⊆V (G)

4≤|A|≤n−4

Pr[there are no edges between A and V (G) \ A]

=

n−4∑

k=4

(
n

k

)
· f(3k) f(3(n− k))

f(3n)

= O

(
1

n2

)

Lemma 4.5. For any ε > 0,

Pr

[
∃t : M(t) > n1/2 ln3 n and

∣∣∣∣
33/2N3(t)n

1/2

23/2M(t)3/2
− 1

∣∣∣∣ > ε

]
= O

(
1

n2

)
(4.2)

Proof. By Proposition 4.4 we may suppose that our graph G is nearly-connected. If
G was not connected (i.e. it consisted of two components H1 and H2, H1 having two
vertices) we let the algorithm run on G (we denote the chains N3,G(t),MG(t)) and on H2

(the chains are N3,H2(t),MH2(t)). Then obviously:

N3,H2(t) ≤ N3,G(t) ≤ N3,H2(t) + 2 in distribution

MH2(t) ≤MG(t) ≤MH2(t) + 3 in distribution
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so the examined ratio changes only little by replacing chains corresponding to G with
ones corresponding to H2. Hence it is sufficient to prove the result only for connected
graphs.

We make a finer division of steps made by the algorithm: each step is one edge
removal. The refined chains M(t), N3(t) will be denoted by M̃(τ), Ñ3(τ).

Suppose that in a certain step τ a vertex v ∈ Vmin was picked and edge e = {u, v} is
removed. Except the case τ = 0 it holds deg v < 3. The probability that u is of degree
three is

p(τ) =
3Ñ3(τ) +O(1)

2M̃(τ)
(4.3)

Let h = ⌊n1/4⌋, for i = 0, 1, . . . , ⌊3
2
n3/4⌋ define mi = 3

2
n− ih. Let zi be the number of

vertices of degree three in G at the first time τ̂i when M̃(τ̂i) ≤ mi and let Ei be the event
that

33/2zin
1/2

23/2m
3/2
i

− 1 = O

(
i−1∑

j=0

n3/8 ln1/2 n

m
5/4
j

)
(4.4)

We first prove that for i such that mi ≥ n1/2 ln3 n,

Pr

[⋂

j≤i

Ej

]
= 1 −O

(
i

n4

)
(4.5)

Note that the O term on the right hand-side of (4.4) tends to zero as n goes to infinity,
since

∑

j

3/2n−jn1/4≥n1/2 ln3 n

n3/8 ln1/2 n

(3
2
n− jn1/4)5/4

≤ n1/16 ln1/2 n
∑

j
3
2
n−jn1/4≥n1/2 ln3 n

1
(

3
2
n3/4 − j

)5/4

= n1/16 ln1/2 n
∑

n1/4 ln3 n≤j≤ 3
2
n3/4

1

j5/4

= (1 + o(1))n1/16 ln1/2 n

∫ 3
2
n3/4

n1/4 ln3 n

1

x5/4
dx

= O

(
1

ln1/4 n

)

Thus proving (4.5) would imply that for any ε′ > 0 it holds that

Pr

[
∃i : mi > n1/2 ln3 n and

∣∣∣∣∣
33/2zin

1/2

23/2m
3/2
i

− 1

∣∣∣∣∣ > ε′

]
= O

(
1

n3

)
(4.6)
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We prove (4.5) by induction. The equation is true for i = 0. Assume that the
hypothesis holds for i− 1 and mi ≥ n1/2 ln3 n. We shall show that

Pr
[
Ei | Ei−1

]
= O

(
1

n4

)
(4.7)

Denote ∆zi = zi−1 − zi. Until the end of the proof of induction step we condition on
Ei−1. We substitute into (4.3) and get for all τ such that τi−1 ≤ τ ≤ τi:

p(τ) =
3zi−1 +O(h)

2mi−1 +O(h)
=

3zi−1

2mi−1

(
1 +O

(
n3/4

m
3/2
i−1

))

Define

papprox =
3zi−1

2mi−1

Variables Xτ (for τ = τ̂i−1, . . . , τ̂i − 1) are Bernoulli variables with success probability
very close to papprox. Thus we may expect a Chernoff-type concentration result for ∆zi =∑

bτi−1
τ= dτi−1

Xτ . But variables Xτ are moderately dependent; p(τ) depends on p(τ̂i−1) and∑τ−1
j= dτi−1

Xj . Janson-Suen or Talagrand inequality seem not to help in this case. What
helps is to bound each Xt by Xuppert from above and by X lowert from below, introduce
variables ∆zupperi =

∑i
τ= dτi−1

Xupperτ and ∆zloweri =
∑i

τ= dτi−1
X lowerτ and then to show that

∆zupper
bτi−1 and ∆zlower

bτi−1 are concentrated variables with expectations close to each the other.
Let K be such that

p(τ) ∈
[

3zi−1

2mi−1

(
1 −K

(
n3/4

m
3/2
i−1

))
,

3zi−1

2mi−1

(
1 +K

(
n3/4

m
3/2
i−1

))]

Denote

pupper =
3zi−1

2mi−1

(
1 +K

(
n3/4

m
3/2
i−1

))

plower =
3zi−1

2mi−1

(
1 −K

(
n3/4

m
3/2
i−1

))

For each τ = τ̂i−1, . . . , τ̂i−1 define Xupperτ
ind∼ Be(pupper) and X lowerτ

ind∼ Be(plower). Now
Xupperτ and X lowerτ are independent random variables, for which

X lowerτ ≤ Xτ ≤ Xupperτ in distribution

∆zloweri ≤ ∆zi ≤ ∆zupperi in distribution

The expected values of the sums bounding ∆zi are

E[∆zupperi ] = hpupper =
3n1/4zi−1

2mi−1

(
1 +K

(
n3/4

m
3/2
i−1

))
(4.8)

E[∆zloweri ] = hplower =
3n1/4zi−1

2mi−1

(
1 −K

(
n3/4

m
3/2
i−1

))
(4.9)
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We apply Chernoff Inequality 2.2 to ∆zupperi . We shall use that Var[∆zupperi ] ≤
E[∆zupperi ].

Pr

[
|∆zupperi − E[∆zupperi ]| ≥

√
10hpupper lnn

∣∣ Ei−1

]

≤ 2 exp

(
− 10hpupper lnn

Var[∆zupperi ] +
√

10hpupper lnn/3
· (1 + o(1))

)

≤ 2 exp

(
−10hpupper lnn

2hpupper
· (1 + o(1))

)
= O

(
1

n4

)

Similar computations can be carried out for ∆zloweri .
Combining (4.8) and (4.9) with the concentration results we get that, with probability

1 − O(1/n4), it holds:

∆zi

zi−1
=

3n1/4

2mi−1
+O

(
n

m
5/2
i−1

)
+O

(
n1/8 ln1/2 n

m
1/2
i−1z

1/2
i−1

)
=

3n1/4

2mi−1
+O

(
n3/8 ln1/2 n

m
5/4
i−1

)

We shall verify (4.4):

zi = zi−1 − ∆zi

= zi−1

(
1 − 3n1/4

2mi−1
+O

(
n3/8 ln1/2 n

m
5/4
i−1

))

We use approximation by Generalized binomial formula
(

mi

mi−1

)3/2

= 1 − 3n1/4

2mi−1

+O

(
n1/2

m2
i−1

)

and get

zi = zi−1

(
mi

mi−1

)3/2
(

1 +O

(
n3/8 ln1/2 n

m
5/4
i−1

))

Substituting zi−1 using (4.4) gives us the desired relation for zi

zi =

(
1 +O

(
i−2∑

j=0

n3/8 ln1/2 n

m
5/4
j

))
· 23/2m

3/2
i

33/2n1/2
·
(

1 +O

(
n3/8 ln1/2 n

m
5/4
i−1

))

=

(
1 +O

(
i−1∑

j=0

n3/8 ln1/2 n

m
5/4
j

))
· 23/2m

3/2
i

33/2n1/2

and proof of (4.5) is completed.
What only remains to be shown is that the examined ratio is almost constant every-

where, not only in node points τ̂i. Let ε > 0 be arbitrary. Assume that for all i such that
mi ≥ n1/2 ln3 n it holds ∣∣∣∣∣

33/2zin
1/2

23/2m
3/2
i

− 1

∣∣∣∣∣ <
ε

2
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Let t be such, that M(t) ≥ n1/2 ln3 n. (Actually, we need a stronger hypothesis on t,
(∗) M(t) ≥ n1/2 ln3 n+ n1/4, but this is only a technical detail. The proof of (4.6) would
also work weakening the condition on the number of edges to mi ≥ 0.9n1/2 ln3 n instead
of mi ≥ n1/2 ln3 n; and then (∗) holds.) Let τ̂i and τ̂i+1 be the neighboring node points,
mi ≤M(t) ≤ mi−1, zi ≤ N3(t) ≤ zi−1. We shall only show that

33/2N3(t)n
1/2

23/2M(t)3/2
− 1 < ε

The other inequality is analogous.

33/2N3(t)n
1/2

23/2M(t)3/2
− 1 ≤ 33/2zi−1n

1/2

23/2m
3/2
i

− 1 =
33/2zi−1n

1/2

23/2m
3/2
i−1

·
(
mi−1

mi

)3/2

− 1

=
33/2zi−1n

1/2

23/2m
3/2
i−1

· (1 + o(1)) − 1 ≤
(
1 +

ε

2

)
+ o(1)

Equivalent way of writing
∣∣∣ 33/2N3(t)n1/2

23/2M(t)3/2 − 1
∣∣∣ ≤ ε is

∣∣∣∣p3(t) −
√

2M(t)
3n

∣∣∣∣ ≤ ε
√

2M(t)
3n

. Thus

Lemma 4.5 provides us with a good estimate for p3(t) depending on the current number
of edges M(t).

Note that the proof of Lemma 4.5 could be strengthened; the error probability could
be O(1/n3) instead of O(1/n2). The only thing one has to do is to weaken the notion of
nearly-connectedness.

Proposition 4.6. N1(t) ≤ 2 for all t.

Proof. By induction on t. For t = 0 the number of vertices of degree one is zero.
Suppose by induction hypothesis that N1(t − 1) ≤ 2 for some t > 0. We distinguish

two cases:

• N1(t− 1) = 0. The minimum degree of the graph is either two or three. In each of
these cases not more than two vertices of degree one emerge.

• N1(t − 1) > 0. In step t a vertex of degree one is picked (and deleted from the
graph) and at most one vertex of degree one emerges. The number of vertices of
degree one does not increase.

We denote by Jε a random variable which is the number of times such that N1(t) = 2

and N1(t+ 1) = 0 in time interval where p2(t), p3(t) > ε, N(t) > εn. Variable Jε counts
how many times a vertex of degree one, such that its only neighbor has degree one, was
picked.
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Lemma 4.7. Let ε > 0 be fixed. Then

Pr
[
Jε(G) > lnn; G ∈u G∗

3,n

]
= O

(
1

n2

)

Proof. Probability that we picked at a certain step t (with restriction on t given by the
hypotheses) a vertex of degree one, such that its only neighbor has degree one is at most
1
εn

. The probability that this happens in at least lnn steps can be estimated by

Pr
[
Jε(G) > lnn; G ∈u G∗

3,n

]
≤
(

n

⌈lnn⌉

)(
1

εn

)ln n

≤
( en

lnn

)⌈ln n⌉
(

1

εn

)ln n

= O

(
1

n2

)

Lemma 4.8. Let ε > 0 and k ∈ N be fixed. With probability 1 − O(1/n2) the following

holds.

For any time t0 such that

• p2(t0), p3(t0) > 2ε,

• N(t0) > 2εn, and

• a vertex of degree one with neighbor of degree one is never picked by the algorithm
in time interval [t0, t0 + (k + 1) lnn].

it holds that

Pr[N1(t) = 0] ≤ (1 + ε) · p3(t0)

2 − p3(t0)

for any t ∈ [t0 + lnn, t0 + (k + 1) lnn].

Proof. We may suppose (for the same reason as in the proof of Lemma 4.5) that G is
connected. This does not occur with probability O(1/n2).

By Proposition 4.6, N1 ≤ 2. We examine transition probabilities of states N1 =

0, N1 = 1, N1 = 2. At time t > 0 they are given by the matrix

P (t) =

N1 = 0 N1 = 1 N1 = 2︷ ︸︸ ︷


p3(t)
2 + o 2p2(t)p3(t) + o p2(t)

2 + o

p3(t) + o p2(t) + o 0

0 p3(t) + o p2(t) + o



} N1 = 0

N1 = 1

N1 = 2

where symbol o is an abbreviation for O(1/M(t)).
At each step of the algorithm both p2 and p3 increase by at most 2/N(t). This means

that for every time t between t0 and t0 +∆t it holds that p2(t) ≤ p2(t0)+2∆t/N(t0 +∆t),
p3(t) ≤ p3(t0) + 2∆t/N(t0 + ∆t).

Set ∆1t = ⌈lnn⌉, ∆2t = k⌈ln n⌉. By π(t) we denote the distribution of states
N1 = 0, N1 = 1, N1 = 2 at time t (so Pr[N1(t) = 0] = π(N1=0)(t)). We shall show
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that, irrespectively to the starting distribution π(t0), π(t) is very close to the stationary
distribution of a Markov chain given by transition matrix P0,

P0 =




p3(t0)
2 2p2(t0)p3(t0) p2(t0)

2

p3(t0) p2(t0) 0

0 p3(t0) p2(t0)




in time interval t ∈ [t0 + ∆1t, t0 + ∆2t]. Note that the stationary distribution of the
Markov chain is

π =

(
p3(t0)

2 − p3(t0)
,
1 − p3(t0)

2

2 − p3(t0)
,
(1 − p3(t0))

2

2 − p3(t0)

)

Direct computation shows that, under the above hypotheses, at every time t between
t0 and t0 + ∆2t it holds

P (t) ≤ (1 + δ)P0

where δ = 2k lnn
n

. By Theorem 2.6 we know that, given starting distribution π(t0), it
holds for any ∆t that

‖π(t0)P
∆t
0 − π‖ ≤ (1 − ε2)∆t

which gives for all t between t0 + ∆1t and t0 + ∆2t that

‖π(t0)P
t−t0
0 − π‖ ≤ 1

nε2

Since π(t) ≤ (1 + δ)t−t0π(t0)P
t−t0
0 , for t ≤ t0 + ∆2t, we have that

π(t) ≤
(

1 +
4k2⌈lnn⌉2

n
+O

(
ln3 n

n2

))
π(t0)P

t−t0
0

Thus, we were able to bound π(N1=0)(t) for all times t between t0 + ∆1t and t0 + ∆2t.

π(N1=0)(t) ≤
(

1 +
k2⌈lnn⌉2

n
+O

(
ln3 n

n2

))
· p3(t0)

2 − p3(t0)
+

1

nε2

≤ (1 + ε) · p3(t0)

2 − p3(t0)

for sufficiently large n.

Lemma 4.9. Let ε > 0 and k ∈ N be fixed. With probability 1 − O(1/n2) the following

holds.

For any time t0 such that

• p2(t0), p3(t0) > 2ε,

• N(t0) > 2εn, and

• a vertex of degree one with neighbor of degree one is never picked by the algorithm
in time interval [t0, t0 + (k + 1) lnn].
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it holds that

Pr[N1(t) = 0] ≥ (1 − ε) · p3(t0)

2 − p3(t0)

for any t ∈ [t0 + lnn, t0 + (k + 1) lnn].

Proof. Analogously to proof of Lemma 4.8.

We denote ti the first time when M ≤ 3
2
n
(
1 − i

h

)
.

Lemma 4.10. Let ε > 0 be arbitrary. Let ti be such that p2(ti) > 2ε, p3(ti+1) > 2ε and

N(ti) > 2εn. Then

E[ti+1 − ti] ≤ (1 + ε) ·
3n
(
2 −

√
1 − i

h

)

4h

Proof. We set k ∈ N large and ε′ > 0 small.
Leaving out finitely many events of probability O(1/n2) will not effect the linear term

of the expectation, hence we may omit them. Again we suppose that G is connected and
distribution of N1 behaves as described in Lemma 4.8. Suppose, by Lemma 4.5, that∣∣∣p3(t) −

√
2M(t)/(3n)

∣∣∣ < ε′
√

2M(t)/(3n) for all t where the conditions of Lemma hold.

At each time t > 0 the number of edges in the graph decreases by one (if N1(t) > 0) or
two (if N1(t) > 0). We split interval [ti, ti+1] into subintervals [τ1, τ2], [τ2, τ3], . . . , [τl−1, τl],
each of them, except possibly the last one, of length (k+1)⌈lnn⌉. Number of subintervals
l− 1 is Θ (n/ lnn). By Lemma 4.7 we can suppose that the number of intervals [τs, τs+1]

in which there is picked a vertex of degree one with a neighbor of degree one is at most
ε′l. We apply Lemma 4.9 for the remaining intervals. This gives us a lower bound on the
expected number of times Ri,q when, within interval [τq, τq+1], state N1 = 0 was visited.

E[Ri,q] ≥ k⌈lnn⌉ (1 − ε′) · p3(τq)

2 − p3(τq)

≥ k⌈lnn⌉ (1 − 5ε′) · p3(ti)

2 − p3(ti)

for interval [τq, τq+1] in which a vertex of degree one with a neighbor of degree one was
not picked.

Summing these bounds we get a bound for the expected number of times Ri when,
within interval [ti, ti+1], state N1 = 0 was visited. In the computation we omit the
intervals in which a vertex of degree one with a neighbor of degree one was not picked
and also we omit the starting stage of length ⌈lnn⌉ in each interval.

E[Ri] ≥ (1 − ε′)
k(ti+1 − ti)

k + 1
(1 − 5ε′) · p3(ti)

2 − p3(ti)

≥ k(ti+1 − ti)

k + 1
(1 − 8ε′) ·

√
1 − i

h

2 −
√

1 − i
h
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This gives us (for sufficiently large k, n and sufficiently small ε′)

E[Ri] ≥ (1 − ε) (ti+1 − ti) ·

√
1 − i

h

2 −
√

1 − i
h

(4.10)

It is an easy observation that (1 + o(1))(ti+1 − ti) + Ri = 3n
2h

. Plugging (4.10) into
this, we get

E[ti+1 − ti] ≤ (1 + ε) ·
3n
(
2 −

√
1 − i

h

)

4h

Lemma 4.11. Let ε > 0 be arbitrary. Let ti be such that p2(ti) > 2ε, p3(ti+1) > 2ε and

N(ti) > 2εn. Then

E[ti+1 − ti] ≥ (1 − ε) ·
3n
(
2 −

√
1 − i

h

)

4h

Proof. Analogously to proof of Lemma 4.10.

Lemma 4.12. Let ε > 0 be arbitrary. Let ti be such that p2(ti) > 2ε, p3(ti+1) > 2ε and

N(ti) > 2εn. Let Yi be the number of times when a vertex of degree 1 is picked by the

algorithm within interval [ti, ti+1]. Then

(1 − ε)
3n

2h

(
1 −

√
1 − i

h

)
≤ E[Yi] ≤ (1 + ε)

3n

2h

(
1 −

√
1 − i

h

)

Proof. We obtained estimates for ti+1 − t1 and the number of times R1 when N1 = 0 in
Lemmas 4.10 and 4.11. The statement follows from an obvious equality Yi = ti+1 − t1 −
Ri.

We say that vertex v of graph G(t) is 1-fixed if it has exactly one neigbor, which
is already removed; and this neighbor was placed into part B1. If the neighbor was
placed into B2 instead, we say that the vertex is 2-fixed. If a vertex v has exactly one
neighbor, which is already removed from G(t) and this neighbor was not added to the
bipartite graph, we say that v is 0-fixed. Similarly, we say that vertex v of graph G(t)

whose exactly two neighbors were removed from the graph is 0,0-fixed, 0,1-fixed, 0,2-fixed,
1,1-fixed, 1,2-fixed or 2,2-fixed.

Variables K1(t), K2(t) and K0(t) are the numbers of 1-fixed, 2-fixed and 0-fixed ver-
tices in G(t).

Another notion which will come in handy is the notion of a 1-chain. We say that
times t′1 < t′2 < . . . < t′l form a 1-chain if

• The degree of vertex v(t′i) picked by the algorithm at time t′i (i > 1) changed at
time t′i−1 from 2 to 1. In particular, this means that v(t′i−1) and v(t′i) were adjacent.

• There is no t′0 < t′1 such that t′0, t
′
1, t

′
2, . . . , t

′
l satisfy the above condition of a 1-chain.
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• There is no t′l+1 > t′l such that t′1, t
′
2, . . . , t

′
l, t

′
l+1 satisfy the above conditions of a

1-chain.

Vertices {v(t′i)}l
i=1 are the vertices of 1-chain. Length of the 1-chain is l. Time t′1 is the

starting time and v(t′1) is the starter.
We say that vertex v(t) picked by the algorithm at time t is in state (i) A0, (ii) A1 or

(iii) A2 if degG(t) v(t) = 1 and (i) v(t) will not be added to the bipartite graph, (ii) will
be added to part B1 or (iii) will be added to part B2, respectively. Observe that v(t) is
a vertex of a 1-chain if and only if degG(t) v(t) = 1.

Proposition 4.13. Let ε ∈ (0, 1) be arbitrary. Let ts be the first time when p3(ts) ≤ 2ε.

Let Cε(n) = ⌈3
ε
lnn⌉. Then the probability that there exists t0 ≤ ts such, that for all t,

t ∈ [t0, t0 + Cε(n)] it holds mindeg(G(t)) = 1 is O(1/n2).

Proof. Let t0 be time as in the hypothesis. We condition the computations on p3 behaving
as described in Lemma 4.2.

Since one cannot get from state N1 = 1 to state N1 = 2 avoiding state N1 = 0, there
must be an integer k such that N1(t) = 2 for all t ∈ [t0, t0 + k] and N1(t) = 1 for all
t ∈ [t0 + k + 1, t0 + Cε(n)].

Recall that the transition probabilities of statesN1 = 0, N1 = 1, N1 = 2 were examined
in the proof of Lemma 4.8.

Pr [∃t0 : t0 ≤ ts and mindeg(G(t)) = 1 for all t ∈ [t0, t0 + Cε(n)]]

≤
∑

t≤ts

Cε(n)∑

k=0

t0+k∏

t=t0

(
p2(t) +O

(
1

M(t)

)) Cε(n)∏

t=t0+k+1

(
p2(t) +O

(
1

M(t)

))

≤ nCε(n)

(
1 − 3

2
ε

)Cε(n)

= O

(
1

n2

)

Proposition 4.14. Let {Q∗
t}t∈N0 be a Markov chain with states S1, S2 and S3, transition

matrix

P =



α1,1 α1,2 α1,3

α2,1 α2,2 0

0 α3,2 α3,3




and initial state Q∗
0 = S1. Let {Qt}t∈N0 be a discrete time stochastic process with states

S1, S2 and S3, initial state Q0 = S1 such, that at every time t the transition probabilities
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satisfy the following conditions

Pr[Qt+1 = S1|Qt = S1] ≥ α1,1

Pr[Qt+1 = S2|Qt = S1] ≤ α1,2

Pr[Qt+1 = S3|Qt = S1] ≤ α1,3

Pr[Qt+1 = S1|Qt = S2] ≥ α2,1

Pr[Qt+1 = S2|Qt = S2] ≤ α2,2

Pr[Qt+1 = S3|Qt = S2] = 0

Pr[Qt+1 = S1|Qt = S3] = 0

Pr[Qt+1 = S2|Qt = S3] ≥ α3,2

Pr[Qt+1 = S3|Qt = S3] ≤ α3,3

Let R∗(t) be a random variable counting how many times Q∗
τ = S1 for τ ∈ [0, t]. Let R(t)

be a random variable counting how many times Qτ = S1 for τ ∈ [0, t].

Then

R∗(t) ≤ R(t) in distribution

for every t ∈ N0.

Proof. Let random variables T ∗ and T indicate the first time t > 0 when Q∗
t = S1 and

Qt = S1, respectively. The statement will be proven by showing that

T ∗ ≥ T in distribution

This can be easily done by coupling.

Lemma 4.15. For any ε ∈
(
0, 1

100

)
,

Pr [∃t : p2(t
′) < 1 − ε for all t′ ∈ [0, t] and |K1(t) −K2(t)| > εn] = O

(
1

n2

)
(4.11)

Proof. We shall assume, as usually, that rare events do not occur. We assume that a
vertex of degree 2 is picked at least once in every Cε(n) steps (by Proposition 4.13); we
assume that G is connected and that p3 behaves as described by Lemma 4.2.

In the proof we use some inequalities which become true only when n is large enough,
n ≥ n0(ε).

Define h =
⌊

n
lnn

⌋
and for i = 0, 1, . . . ,

⌊
3
2
lnn
⌋

define mi = 3
2
n − ih. Let Ei be an

event that |K1(τ̂i) −K2(τ̂i)| ≤ εn where τ̂i is the first time when M(τ̂i) ≤ mi. Set
ilast = min

{⌊
3
2
lnn
⌋
, i : p2(t

′) ≥ 1 − ε for some t′ ∈ [0, τ̂i]
}

. We shall show that

Pr
[
Ei | Ei−1

]
= O

(
1

n4

)
(4.12)

We postpone the proof of (4.12) and conclude from it the statement of the theorem.
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Event E0 holds with probability 1. Combining this with (4.12) we have that

Pr

[
ilast⋂

i=0

Ei

]
= 1 −O

(
1

n2

)

This means that with probability 1−O(1/n2) it holds for every time τ̂i that |K1(τ̂i)−
K2(τ̂i)| ≤ εn. But since τ̂i − τ̂i−1 ≤ n

lnn
and number |K1 −K2| changes by at most 3 in

each step, we have that |K1(t)−K2(t)| ≤ 2εn at any time t such that M(t) > 3
2
n− o(n)

and p2 < 1 − ε on [0, t]. By similar consideration we have that |K1(t) −K2(t)| ≤ 6εn at
any time t which proves the statement of the theorem (up to factor 6; which is, of course,
not fatal).

We shall now prove (4.12). Suppose that Ei−1 holds and Ei does not. Because Ei does
not hold, we have that

|K1(t) −K2(t)| > εn− ε2n

100

for all t ∈ [τ̂i−1, τ̂i]. Without loss of generality we assume that

K1(t) −K2(t) > εn− ε2n

100

for all t ∈ [τ̂i−1, τ̂i]. By the same reasoning we know that at every time t

|K1(t) −K2(t)| < εn+
ε2n

100

We divide the rest of the proof into several steps:

(⋆1) We count how many times state N1 = 0 was visited.

(⋆2) We estimate the probability that a 1-chain with starter in state A1 or A2 emerges
at certain time.

(⋆3) We count the 1-chains having starter in state Ai and the last visited state Aj.

(⋆4) We show that outside the 1-chains the difference K1 −K2 tends to decrease.

(⋆5) The final computation gives (4.12).

Parts (⋆1), (⋆2), (⋆3) and (⋆4) are somewhat technical. Each shows that some random
variable behaves nearly the same way as if many events (which are actually slightly
dependant) in the run of the algorithm are considered mutually independent. The reader
may find it more understandable to read part (⋆5) first (and look up definitions of some
symbols in the previous parts).

(⋆1):
Set ∆τ = τ̂i − τ̂i−1. Clearly, ∆τ = Θ

(
n

lnn

)
. Define τ ∗ as the first time after τ̂i−1 such

that N1(τ
∗) = 0. By assumption made on the beginning of the proof, τ ∗ ≤ τ̂i−1 + Cε(n)
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where Cε(n) = ⌈3
ε
lnn⌉ = o(∆τ). Let R be a random variable, which counts how many

times the state N1 = 0 was visited within interval [τ ∗, τ̂i − 1]. Let R∗ be a random
variable, which counts how many times the state S1 was visited within interval [τ ∗, τ̂i−1]

for a Markov chain {Q∗
t}t∈N0 with states S1, S2 and S3 and with corresponding transition

matrix P0,

P0 =




p3(τ̂i−1)
2 − ε2

4
2p2(τ̂i−1)p3(τ̂i−1) + ε2

8
p2(τ̂i−1)

2 + ε2

8

p3(τ̂i−1) − ε2

8
p2(τ̂i−1) + ε2

8
0

0 p3(τ̂i−1) − ε2

8
p2(τ̂i−1) + ε2

8




As n goes to infinity, the differences

max
t∈[τi−1,τi]

{p2(t)} − min
t∈[τi−1,τi]

{p2(t)}

and
max

t∈[τi−1,τi]
{p3(t)} − min

t∈[τi−1,τi]
{p3(t)}

tend uniformly to zero. This means that we may use chain {Q∗
t}t∈N0 to get a lower bound

on R. Proposition 4.14 gives us

R∗ ≤ R in distribution

Lower bound on R∗ is a straightforward application of Lemma 2.8; process runs for

time at least
(
1 − ε2

4

)
∆τ and constants of the Lemma are p = 0, q = p3(τ̂i−1) − ε2

8
and

random variable Z is defined by

Z =

{ 0 with probability p3(τ̂i−1)
2 − ε2

4

1 with probability 2p2(τ̂i−1)p3(τ̂i−1) + ε2

8

2 with probability p2(τ̂i−1)
2 + ε2

8

Thus we have E[Z] = 2p2(τ̂i−1) + 3ε2

8
+O(1/N(τ̂i−1)). Direct substitution gives

Pr


R∗ <

(
1 − ε2

4

)
∆τ
(
p3(τ̂i−1) − ε2

8

)

2p2(τ̂i−1) + p3(τ̂i−1) + ε2

4
+O

(
1

N( dτi−1)

) − 4 lnn

√(
1 − ε2

4

)
∆τ


 = O

(
1

n4

)

which yields

Pr

[
R∗ <

(
1 − ε

4

)
∆τ p3(τ̂i−1)

2 − p3(τ̂i−1)

]
= O

(
1

n4

)
(4.13)

(⋆2):
In the next denotion of 1-chains {C0

κ}κ, {C1
κ}κ and {C2

κ}κ we restrict ourselves on the
1-chains which start and finish within interval [τ ∗, τ̂i]. Let C0

1 , C0
2 , . . . , C0

c0
, C1

1 , C1
2 , . . . , C1

c1

and C2
1 , C2

2 , . . . , C2
c2 be all the 1-chains with starter in state A0, A1 and A2, respectively.
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A chain starting at time t with starter in state A1 could have emerged only if N1 = 0 in
the previous step t − 1. In this case the expected number of starters in state A1 (there
can be 0, 1 or 2 of them) emerging at time t is

(K0(t) + 2K1(t))(K0(t) +K2(t))

(K0(t) +K1(t) +K2(t))2
·
(

1 +O

(
1

N(t)

))
p2(t)

We shall use bounds on this probability which are true on the whole interval [τ̂i−1, τ̂i].
The bound from above can be set to

(K0(τ̂i−1) + 2K1(τ̂i−1))(K0(τ̂i−1) +K2(τ̂i−1))

(K0(τ̂i−1) +K1(τ̂i−1) +K2(τ̂i−1))2
·
(

1 +
ε2

100

)
p2(τ̂i−1)

and the bound from below to

(K0(τ̂i−1) + 2K1(τ̂i−1))(K0(τ̂i−1) +K2(τ̂i−1))

(K0(τ̂i−1) +K1(τ̂i−1) +K2(τ̂i−1))2
·
(

1 − ε2

100

)
p2(τ̂i−1)

Similarly, the expected number of starters in state A2 emerging at time t is

(K0(t) + 2K2(t))(K0(t) +K1(t))

(K0(t) +K1(t) +K2(t))2
·
(

1 +O

(
1

N(t)

))
p2(t)

with bounds

(K0(τ̂i−1) + 2K2(τ̂i−1))(K0(τ̂i−1) +K1(τ̂i−1))

(K0(τ̂i−1) +K1(τ̂i−1) +K2(τ̂i−1))2
·
(

1 +
ε2

100

)
p2(τ̂i−1)

from above and

(K0(τ̂i−1) + 2K2(τ̂i−1))(K0(τ̂i−1) +K1(τ̂i−1))

(K0(τ̂i−1) +K1(τ̂i−1) +K2(τ̂i−1))2
·
(

1 − ε2

100

)
p2(τ̂i−1)

from below.

(⋆3):
Let {t′j}l

j=1 form a 1-chain C, C ∈ {C0
κ}κ ∪ {C1

κ}κ ∪ {C2
κ}κ. We glance at the approxi-

mation of the processes with states A0, A1 and A2 to see what is happening. We denote
the matrix of transition probabilities of the 1-chain at time t by C(t) (The notion of
transition matrix does not apply for this case—it is not clear what C(t) should stand for.
Entry C(t)ι,j is defined as the probability that the state of the 1-chain in the step after
time t will be the one corresponding to column j, conditioned on what was happening in
the graph until time t−1 and on that the vertex chosen at time t is in state corresponding
to row ι. Note, that matrices {C(t)}t are not independent.), Cappr is the approximation
by a Markov chain {Lt}t∈N,

Cappr =




0 p2 · K0+2K2

2(K0+K1+K2)
p2 · K0+2K1

2(K0+K1+K2)
p3

p2 · K2

K0+K1+K2
0 p2 · K0+K1

K0+K1+K2
p3

p2 · K1

K0+K1+K2
p2 · K0+K2

K0+K1+K2
0 p3

0 0 0 1



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where the last row and column of the matrix represent a termination of the chain and
symbols p2, p3, K0, K1, K2 are shortcuts for p2(t

′
1), p3(t

′
1), K0(t

′
1), K1(t

′
1), K2(t

′
1). The

described approximative chain is an absorbing Markov chain; its fundamental matrix is

N =
1

Υ
·

·
(

1 − p2
2(K0 + K1)(K0 + K2)/Γ2 p2( 1

2
K0 + K2)/Γ + p2

2( 1
2

K0 + K1)(K0 + K2)/Γ2 p2( 1
2

K0 + K1)/Γ + p2
2( 1

2
K0 + K2)(K0 + K1)/Γ2

p2K2/Γ + p2
2K1(K0 + K1)/Γ2 1 − p2

2K1( 1
2

K0 + K1)/Γ2 p2(K0 + K1)/Γ + p2
2K2( 1

2
K0 + K1)/Γ2

p2K1/Γ + p2
2K2(K0 + K2)/Γ2 p2(K0 + K2)/Γ + p2

2K1( 1
2

K0 + K2)/Γ2 1 − p2
2K2( 1

2
K0 + K2)/Γ2

)

where Γ = K0 +K1+K2 and Υ = 1−p2
2((K0 +K1)(K0+K2)+K1(

1
2
K0 +K1)+K2(

1
2
K0 +

K2))/Γ
2−p3

2(K1(
1
2
K0+K2)(K0+K1)+K2(

1
2
K0+K1)(K0+K2))/Γ

3. We shall investigate
probabilities αι,1 and αι,2,

αι,1 = Pr[the last transient state of C was A1 | the starter of C is in state Aι]

αι,2 = Pr[the last transient state of C was A2 | the starter of C is in state Aι]

for ι = 0, 1, 2. First we look at the approximation of the probabilities. Let

αapprι,1 = Pr[the last visited transient state of {Lt}t was A1 | L1 = Aι]

αapprι,2 = Pr[the last visited transient state of {Lt}t was A2 | L1 = Aι]

By Proposition 2.10 we have αapprι,1 = p3Nι,2 and αapprι,2 = p3Nι,3. It can be easily seen that
(1− 8 lnn/(εn))C0 ≤ C(t) ≤ (1 + 8 lnn/(εn))C0 for every time t of the chain C. It holds

αι,j ≤
(

1 +
8 lnn

εn

)⌈ 3
ε

lnn⌉
αapprι,j +O

(
1

n2

)
= (1 + o(1))αapprι,j +O

(
1

n2

)
(4.14)

and

αι,j ≥
(

1 − 8 lnn

εn

)⌈ 3
ε

lnn⌉
αapprι,j − O

(
1

n2

)
= (1 + o(1))αapprι,j − O

(
1

n2

)
(4.15)

(Terms O
(

1
n2

)
are here, because we conditioned on the lenght of each 1-chain; we allow

it to be of length
⌈

3
ε
lnn
⌉

at most). Denote symbols o(1) used in equations (4.14) and
(4.15) by 1

2
g1(n) and 1

2
g2(n), respectively (g1 is a positive function and g2 is negative).

Define C0 as

C0 =




0
p2(τ̂i−1)·(K0(τ̂i−1)+2K2(τ̂i−1))

2(K0(τ̂i−1)+K1(τ̂i−1)+K2(τ̂i−1))

p2(τ̂i−1)·(K0(τ̂i−1)+2K1(τ̂i−1))

2(K0(τ̂i−1)+K1(τ̂i−1)+K2(τ̂i−1))
p3(τ̂i−1)

p2(τ̂i−1)·K2(τ̂i−1)

K0(τ̂i−1)+K1(τ̂i−1)+K2(τ̂i−1)
0

p2(τ̂i−1)·(K0(τ̂i−1)+K1(τ̂i−1))

K0(τ̂i−1)+K1(τ̂i−1)+K2(τ̂i−1)
p3(τ̂i−1)

p2(τ̂i−1)·K1(τ̂i−1)

K0(τ̂i−1)+K1(τ̂i−1)+K2(τ̂i−1)

p2(τ̂i−1)·(K0(τ̂i−1)+K2(τ̂i−1))

K0(τ̂i−1)+K1(τ̂i−1)+K2(τ̂i−1)
0 p3(τ̂i−1)

0 0 0 1




and let N0 be a fundamental matrix which would correspond to a Markov chain with
transition matrix C0. It can be checked that for all chains {Lt}t∈N (as above) with
transition matrices Cappr it holds for ι = 1, 2, 3 that

N1,ι ≤ (1 + f1(n))N0
1,ι

N2,ι ≥ (1 − f2(n))N0
2,ι
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where f1(n) = o(1), f2(n) = o(1). Let rι,j (ι = 0, 1, 2, j = 1, 2) be the number of 1-chains
with starter in state Ai and last visited transient state Aj. Let rupperι,1 be a sum of c1
independent Bernoulli variables with success probability

(1 + g1(n))(1 + fp(n))(1 + f1(n))p3(τ̂i−1)N
0
1,ι

where fp(n) = o(1). Let rlowerι,2 be a sum of c2 independent Bernoulli variables with success
probability

(1 + g2(n))(1 − fp(n))(1 − f2(n))p3(τ̂i−1)N
0
1,ι

We have that

rι,1 ≤ rupperι,1 in distribution

rι,2 ≥ rlowerι,2 in distribution

We apply Chernoff bounds 2.2 for rupperι,1 and rlowerι,2

Pr[rupperι,1 > (1 + ε2)cιp3(τ̂i−1)N
0
1,ι] = O

(
1

n4

)
(4.16)

Pr[rlowerι,2 < (1 − ε2)cιp3(τ̂i−1)N
0
2,ι] = O

(
1

n4

)
(4.17)

(⋆4):
Let L1 and L2 be the change of K1 and K2, respectively, when restricted to vertices

which are not in 1-chain, i.e.

Lι =
∑

t∈[τ∗,bτi]

degG(t) v(t)=2

∆Kι(t)

At each such time t the probabilities that vertex v(t) (yet unchosen at the beginning
of step t) will be 0-fixed, 1-fixed or 2-fixed are in ratio K1(t) : K2(t) : K3(t); and the
expected number of its neighbors of degree three will be 2p3(t)+O(1/N(t)). If vertex v(t)
is 1-fixed, for illustration, having two neighbors of degree 3 in G(t), than it is assigned to
B2 and ∆K1(t) = −1 (v(t) is not 1-fixed any more) and ∆K2 = 2 (two 2-fixed vertices
emerged). In general, the expected changes of K1 and K2 at time t are

E[∆K1(t)] = − K1(t)

K0(t) +K1(t) +K2(t)
+ 2p3(t) ·

1
2
K0(t) +K2(t)

K0(t) +K1(t) +K2(t)
+O

(
1

N(t)

)

E[∆K2(t)] = − K2(t)

K0(t) +K1(t) +K2(t)
+ 2p3(t) ·

1
2
K0(t) +K1(t)

K0(t) +K1(t) +K2(t)
+O

(
1

N(t)

)

with the variances very moderate. One can bound these variables in distribution from
below and from above respectively by independent variables with the same distribution
and use Chernoff inequality 2.2. Combining this with an estimate on the number of
summands (4.13) and using K1−K2

K0+K1+K2
> εn− ε2n

100
we get

Pr

[
L1 − L2 > − ε∆τ p3(τ̂i−1)

2(2 − p3(τ̂i−1))

]
= O

(
1

n4

)
(4.18)
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(⋆5):
One can bound number r = rupper0,1 + rupper1,1 + rupper2,1 − rlower0,2 − rlower1,2 − rlower2,2 from above

using Equations (4.16) and (4.17) by

ε2p3(c0 + c1 + c2)

10Υ

with error probability O(1/n4). Assumption p2 < 1 − ε and a little high school algebra
gives Υ > ε. We have

Pr

[
r >

1

10
εp3(c0 + c1 + c2)

]
= O

(
1

n4

)
(4.19)

Now the crucial observation comes: numbers K1 and K2 change by at most 1 dur-
ing the run of a 1-chain and the possible change happens only the termination step of
a 1-chain. In that step a vertex of degree 3 becomes either 0-fixed, 1-fixed or 2-fixed,
depending on whether the last vertex of the 1-chain was in state A0, A1 or A2. Equa-
tion (4.19) thus states that almost surely (with error probability O(1/n4)) the number
K1 −K2 increases by at most 1

10
εp3(c0 + c1 + c2) when restricted to 1-chains. By (4.18)

K1 −K2 decreases by at least ε ∆τ p3( dτi−1)
2(2−p3( dτi−1))

when restricted to the complement of 1-chains
with probability 1 −O(1/n4). This gives in total

K1(t) −K2(t)
∣∣∣

bτi

t=τ∗

< − 1

10
ε∆τ p3(τ̂i−1) (4.20)

with probability 1 − O(1/n4) and (4.12) follows — we see that we did not have to treat
interval [τ̂i−1, τ

∗]; it is of at most logarithmic length while Equation (4.20) gives us spare
in ∆(K1 −K2) of size Θ

(
n

ln n

)
.

Theorem 4.16. For every ε > 0, BIPGREEDY returns bipartite graph with at least(
3
4
− ε− o(1)

)
n vertices on average given graph G ∈u G∗

3,n on the input.

Proof. Fix η > 0 and h a positive integer.
We do the analysis only in the central part of the run, i.e. except a very short initial

and final part of the run. What is important is that we can make these parts arbitrarily
small, i.e. as small as linear with arbitrarily small constant. Thus what is happening in
these parts can be fitted within allowed error εn.

All the vertices of original graph G are included in the bipartite graph, except vertices
which were in state A0 and vertices of degree 0. By Lemma 4.7 there are at most lnn

vertices of degree 0 with probability 1 − O(1/n2), so this number has no impact on the
linear term of the expected number of removed vertices. Vertices in state A0 correspond
exactly to 1,2-fixed vertices. Let us count how many of them there were. By Lemma 4.12,
the expected number of vertices of degree one picked in the interval [ti−1, ti] is bounded
by

E[Yi] ≤ (1 + η)
3n

2h

(
1 −

√
1 − i

h

)
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We see from Lemma 4.5 that for every η′ > 0 there exists β ′ > 0 such that

Pr [∃t : η′n < N(t) < (1 − η′)n and N2(t) < β ′n] = O

(
1

n2

)

Set β to such a number corresponding to η′ = η. We use Lemma 4.15 with allowing
deviation K1 from K2 to be at most ηβn. Thus we may condition on |K1(t)−K2(t)| ≤ ηβn

for all t such that ηn < N(t) < (1 − η)n. Therefore at each step t, conditioning on that
a vertex v of degree one will emerge in this step, the probability that it will be 1,2-fixed
is at most 1

2
+ η (here we used Lemma 4.2).

The average number of 1,2-fixed vertices (not including 1,2-fixed vertices near the
beginning and the end) can be bounded from above by

(
1

2
+ η

) h∑

i=0

E[Yi]

≤
(

1

2
+ η

)
(1 + η)

h∑

i=0

3n

2h

(
1 −

√
1 − i

h

)

h→∞
=

(
1

2
+ η

)
(1 + η) · n ·

(∫ 1

0

3
(
1 −

√
1 − x

)

2
dx+ o(1)

)

=

(
1

2
+ η

)
(1 + η) · n ·

(
1

2
+ o(1)

)

Setting η small and h large we see that BIPGREEDY returns a bipartite graph with
at least

(
3
4
− ε
)
n vertices (for n ≥ n0(ε)) on average when G ∈ G∗

3,n is given on the
input.

Corollary 4.17. For any ε > 0 it a.a.s. holds that for G ∈u G∗
3,n

bi(G)

n
>

3

4
− ε

Proof. Follows from Theorem 4.16 and Theorem 3.4.

We present the following corollary for the independence number of a random cubic
graph just for completeness. The result itself is much weaker then Frieze and Suen’s
result. There are two reasons for this: we show in Remark 4.19 that the constant in
Theorem 4.16 could be considerably improved. Secondly, one should not expect that
an algorithm designed for finding a big induced subgraph will excel in finding a big
independent set also.

Corollary 4.18. For any ε > 0 it a.a.s holds that for G ∈u G∗
3,n

α(G)

n
>

3

8
− ε

Proof. Follows from Corollary 4.17 by taking independent set I the bigger of parts B1

and B2.

43



4.4 Concluding remarks

Remark 4.19. The analysis done in Theorem 4.16 does not give asymptotically tight
result (i.e. there exists q > 0.75 such that bialg(G)

n
≥ q a.a.s.). To see this we recall how

we bounded the number of vertices excluded from the graph. A vertex is excluded (with
probability p) only if it was picked as a degree-one vertex. We were able to bound p by
1
2

+ ε in Lemma 4.15 by exhibiting that when a vertex becomes degree-one vertex, then
it will be with nearly the same probability 1,2-fixed as 1,1-fixed or 2,2-fixed. But there is
also a considerable (i.e. linear, during the middle phase) number of 0-fixed vertices; these
may turn into 0,0-fixed, 0,1-fixed or 0,2-fixed vertices and will never be excluded. We did
not take this fact into account in the analysis.

We believe that tight result is obtainable with only a little more effort (note that all
other statements which we used in the proof of Theorem 4.16 had counterparts saying
that the constant in that statement is tight). It is quite likely that q

.
= 0.8719, as data

obtained from computer simulation show.

Remark 4.20. Algorithm BIPGREEDY can be improved. Here we propose a simple
improvement BIPGREEDY2. BIPGREEDY2 cares about the neighborhood of vertex v

which is currently being placed into the bipartite graph. If v could be placed into both
parts of the bipartite graph, then we place it in that part, so as to create less restrictions
to the neighboring vertices. Only if none of the choices is favorable we toss a coin. In
BIPGREEDY we always tossed a coin at this point.

BIPGREEDY2;
Input G;
B1 := ∅;
B2 := ∅;
while G 6= ∅ do
Vmin := set of vertices of minimum degree in G;
choose v ∈ Vmin uniformly at random;
if v has no formal neighbor in B1 nor B2 then

if placing v to B1 creates less new restrictions to the neighbors of v then placing
it to B2 then
B1 := B1 ∪ {v};
end if
if placing v to B2 creates less new restrictions to the neighbors of v then placing
it to B1 then
B2 := B2 ∪ {v};
end if
if the number of new restrictions to the neighbors of v does not depend on where
v is placed then
if random(2)= 0 then
B1 := B1 ∪ {v};
else
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B2 := B2 ∪ {v};
end if
end if

end if
if v has formal neighbor in B1 only then
B2 := B2 ∪ {v};
end if

if v has formal neighbor in B2 only then
B1 := B1 ∪ {v};
end if

if v has formal neighbors in B1 and B2 then
;
end if
G := G− {v};
remove isolated vertices from G;
end while
Output B1, B2;

Figure 4.4 shows an example when BIPGREEDY and BIPGREEDY2 behave differ-
ently; in case (a) BIPGREEDY decides randomly into which part it places v, in case (b)
BIPGREEDY2 places v into part B1, because no new restrictions on the neighbors of v
will emerge then.

v

G(t)
B1(t)

B2(t)

1

2

1

2

v

G(t)
B1(t)

B2(t)

1

(a) (b)

Figure 4.4: Placing vertex v (a) at random by BIPGREEDY (b) deterministically by
BIPGREEDY2.

We did not analyze BIPGREEDY2. The ideas of the analysis would remain the same
but the computation would become more technical and tedious. Another reason which
discourages us from the analysis is that there obviously exist simple modifications of
BIPGREEDY which perform even better; these take into account greater neighborhood
of v.

Computer simulation shows very little improvement of BIPGREEDY2 compared to
BIPGREEDY, approximately by 0.1%.

Remark 4.21. One may ask the following questions related to our problem.
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• For which graph parameters ζ and for which models of random graphs (represented
by a sequences of probability spaces {Gn}n) there exists a randomized greedy al-
gorithm, which is asymptotically tight (i.e. for every ε > 0 it holds, that 1 − ε <
ζalg(G)

ζ(G)
< 1 + ε a.a.s. for G ∈u Gn)? When the graph parameter represents size

of a certain structure in the graph, one is usually interested not only in finding
(close-to-exact) value of the parameter, but also in finding the structure itself (or
something close to it). We would like our algorithm to find the structure also.

The first such algorithm was an algorithm for finding a maximum matching in sparse
random graphs devised by Karp and Sipser [KS81]. The analysis of the algorithm
was revised by Aranson, Frieze and Pittel [AFP98] recently. They showed that
Karp-Sipser algorithm works even much better then we demanded—for graphs G ∈u

Gc/n,n, c < e (members Gp,n are defined as random graphs on n vertices where each
edge is contained with probability p, mutually independently) the algorithm does
find the maximum matching asymptotically almost surely and for G ∈u Gc/n,n, c > e

the error of the algorithm (i.e. the difference between the size of the maximum
matching and the matching found by the algorithm) is O(n1/5).

• We investigated what happens when G ∈u G∗
3,n is given on the input of BIP-

GREEDY. What happens ifG ∈u G3/n,n? One can, of course, generalize the question
to other randomized algorithms.
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Chapter 5

Consequences for graph
homomorphisms

In this section we apply the results we obtained about bi(G) to graph homomorphisms.
Our motivation is the Pentagon Conjecture due to Nešetřil, which is stated as Question 5.3
here.

We say that mapping h : V (G) → V (H) is a homomorphism of graph G to graph H
if for every edge {v1, v2} ∈ E(G) it holds that {h(v1), h(v2)} ∈ E(H). We say that graph
G is homomorphic to graph H if there is a homomorphism of graph G to graph H and
denote the fact by G→ H .

In this section we shall present only terminology and statements which is needed
to apply the results about bipartite graphs in cubic graphs to weakened version of the
Pentagon Conjecture. Book [HN04] gives comprehensive survey on the topic.

Observation 5.1 (Transitivity of homomorphisms). If G,H,K are graphs G → H and

H → K then G→ K.

The following lemma is useful when one wants to show that G is not homomorphic
to H . First we prepare some notation for it.

A graph H is said to be vertex-transitive if for any two vertices u, v ∈ V (H) there
is a automorphism h of H (an automorphism of H is a one-to-one homomorphism of H
to H) such that h(u) = v. Let G,K be graphs; we denote by n(G,K) the maximum
number of vertices in an induced subgraph of G that is homomorphic to K.

Lemma 5.2 (Proposition 1.22 in [HN04]). Suppose G,H,K are graphs, where H is
vertex-transitive. If G→ H then

n(G,K)

|V (G)| ≥ n(H,K)

|V (H)|

5.1 The Pentagon Conjecture

Question 5.3 ([Neš99]). Is it true that any cubic graph G with sufficiently large girth is
homomorphic to C5?
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If C5 in Question 5.3 is replaced with C3, the is answer affirmative (by Brook’s The-
orem), whenever the girth is at least 4.

There was a series of results which showed that a random cubic graph a.a.s. is not ho-
momorphic to cycle of length 11 ([KNS01]), 9 ([WW01]) and 7 ([Hat05]). Note that from
transitivity it follows that if G is not homomorphic to C2l+1 it also is not homomorphic
to C2k+1 for any k ≥ l; and thus Hatami’s result implies the one of Kostochka, Nešetřil,
Smolíková and the one of Wanless, Wormald. Since, by Fact 3.3, a random cubic graph

on n vertices has girth at least k with probability tending to
∏k−1

i=2 exp
(
− 2i

i+1

)
> 0, it

holds that for any girth k there is a cubic graph which is not homomorphic to C7.

First we apply McKay’s result that a.a.s. α(G) ≤ 0.4554n for a random cubic graph
G. Substituting K = K1 into Lemma 5.2 we get that a random cubic graph a.a.s. is not
homomorphic to C13 since 0.4554 ≤ n(G,K1)

|V (G)| < n(C13,K1)
|V (C13)| = 6

13

.
= 0.4615. Thus we were able

to show that there is a cubic graph of arbitrary high girth which is not homomorphic
to C13. But we are also able to find limits of this technique. Due to Frieze and Suen’s
α(G) ≥ 0.4327n and thus we will never be able (by applying Lemma 5.2 with K = K1),
even when sharpening McKay’s bound on α(G), to prove that a random cubic graph is
not homomorphic to C7 (n(C7,K1)

|V (C7)| = 3
7

.
= 0.4285).

Now we use the same method for K = K2. Then n(G,K2) = bi(G). Due to Theo-
rem 3.8 bi(G) ≤ 0.9082n a.a.s. for a random cubic graph G. This means that G is a.a.s.
not homomorphic to C11 since n(C11,K2)

|V (C11)| = 10
11

.
= 0.9090 > 0.9082. On the other hand,

data obtained from computer simulation show that there is no hope disproving Pentagon
Conjecture using this method (for a 5-cycle: n(C5,K2)

|V (C5)| = 4
5
< 0.81

.
=

bialg(G)

n
a.a.s. for

G ∈u G∗
3,n). Theorem 4.16 itself is void in this case.
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