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Abstract

Název práce: Izotonická regrese v Sobolevových prostorech
Autor: Michal Pešta
Katedra: Katedra pravděpodobnosti a matematické statistiky
Vedoućı diplomové práce: Mgr. Zdeněk Hlávka, Ph.D.
e-mail vedoućıho: hlavka@karlin.mff.cuni.cz
Abstrakt: Uvažme tř́ıdu neparametrických odhad̊u pro regresńı modely založené
na metodě nejmenš́ıch čtverc̊u přes množiny dostatečně hladkých funkćı. Nejmenš́ı
čtverce dovoluj́ı uložeńı dodatečného omezeńı, izotonie, na neparametrické regresńı
odhady a jejich následné testováńı.

Odhady prob́ıhaj́ı přes koule funkćı, které jsou prvky vhodných Sobolevových
prostor̊u. Sobolevovy prostory jsou speciálńı typ Hilbertových prostor̊u, které
umožňuj́ı projekci vzhledem k nejmenš́ı čtverc̊um. Hilbertovskost nám umožňuje
dělat projekci a tedy rozložit prostor do navzájem kolmých doplňk̊u. Pak převe-
deme problém hledáńı nejlépe aproximuj́ıćı funkce v prostoru nekonečné dimenze
na konečně-dimenzionálńı optimalizačńı problém.

Dokážeme, že koule funkćı v Sobolevových prostorech je omezená a má omezené
i derivace vyšš́ıho řádu. To nám dovoluje odhadovat přes bohatou množinu funkćı
s dostatečně malou metrickou entropíı a použ́ıt zákony velkých č́ısel a centrálńı
limitńı věty.
Kĺıčová slova: izotonická regrese, Sobolevovy prostory, neparametrická, mono-
tonie

Title: Isotonic Regression in Sobolev Spaces
Author: Michal Pešta
Department: Department of Probability and Mathematical Statistics
Supervisor: Mgr. Zdeněk Hlávka, Ph.D.
Supervisor’s e-mail address: hlavka@karlin.mff.cuni.cz
Abstract: We propose a class of nonparametric estimators for the regression
models based on least squares over the sets of sufficiently smooth functions. Least
squares permit the imposition of additional constraint—isotonia—on nonparamet-
ric regression estimation and testing of this constraint.

The estimation takes place over the balls of functions which are elements of a
suitable Sobolev space—special types of Hilbert spaces that facilitate calculation
of the least squares projection. The Hilbertness is allowing us to take projections
and hence to decompose spaces into mutually orthogonal complements. Then
we transform the problem of searching for the best fitting function in an infinite
dimensional space into a finite dimensional optimization problem.

We prove that the balls of functions in Sobolev space are bounded and have
bounded higher order derivatives. It permits us to estimate over rich set of func-
tions with sufficiently low metric entropy and apply Laws of Large Numbers and
Central Limit Theorems.
Keywords: isotonic regression, Sobolev spaces, nonparametric, monotonicity
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Introduction

Motivation and Aim of Thesis

What is isotonia and Sobolev space? Let’s try a heuristic description of
the terms. Isotonia is non-negativity (non-positivity) of n-th derivative of
function (e.g. monotonicity, convexity or concavity). Sobolev spaces are class
of functions with smooth high order derivative. On the other hand, they are
also spaces of integrable functions on a specific domain.

We think of the regression models based upon functions with specific
features (quality). So we do not care about the formula of the regression
function (nonparametric regression).

Main Steps

In first chapter we focus on Sobolev spaces and their main properties. We
progressively define Sobolev norms, Sobolev spaces and afterwards Sobolev
inner product. Declaration of the representors in Sobolev spaces provides us
base elements for the functional representation. Finally we prove an impor-
tant result for the boundedness of derivatives.

Second chapter concerns bare regression in Sobolev spaces. Basic and
advanced models are defined. Very important theorem—transforming our
problem from the infinite dimension into the finite one—is given. Optimizing
algorithm and its properties are studied. We are also interested in Cross-
Validation.

In third chapter we introduce isotonic regression. Our main imposition
still remains the smoothness of the regression estimator. Completely different
approach on the isotonic regression (but without smoothness demand) using
Greatest Convex Minorant (GCM) can be found in Robertson et al. (1988).
We extend our models by adding additional constraint—isotonia. Finally,
we define various types of isotonia.

Fourth chapter surveys the asymptotic behavior of our estimators. Some
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Isotonic Regression in Sobolev Spaces Introduction

prepositions for confidence intervals and tests of hypothesis are shown. Boot-
strap techniques are also applied.

In the appendix we give a brief overview through the skeletons of algo-
rithms, procedures and statistical computing described in the whole thesis.
Parts of R source code are listed. The appendix provides lots of figures for
better imagery. All the used important theorems and lemmas are also quoted
in the end.

In the future, one can study and examine the relation between isotonic
regression in Sobolev spaces and the location of zeros of regression functions
(and their derivatives). We may subsequently dwell on its estimation. This
could help us to estimate extremes of various functions.

xiv



Chapter 1

Sobolev Spaces

In this chapter, we give a brief overview on basic results of the theory of the
Sobolev spaces. We assemble and prove necessary preliminaries and theorems
for statistical regression in these spaces.

The crux of this chapter lies in Theorem 1.4.1 (Representors in Sobolev
Space) from Bos and Yatchew (1997). I have continued in examining rep-
resentors’ properties and proved Theorem 1.4.2, which provides the way of
construction of the representors and their exact form.

1.1 Impact of Lebesgue Integration Theory

We need to summarize some basic definitions and corollaries from Lebesgue
integration theory.

Definition 1.1.1 (Domain). A connected Lebesgue-measurable (open or
closed) subset Ω of an Euclidean space Rq with non-empty interior is called
a domain.

From now on, we will denote Ω as a domain.

Definition 1.1.2 (Lebesgue Space). Consider a real-valued function on a
given Lebesgue-measurable domain. Simply f : Ω → R, Ω ∈ Mq(λq). The
Lebesgue integral of function f is

∫
Ω
f(x)dλq(x) ≡ ∫

Ω
f(x)dx. Let

‖f‖Lp(Ω) :=





( ∫
Ω
fp(x)dx

)1/p

for 1 ≤ p <∞,

inf
{
C ≥ 0 : |f | ≤ C a.e.

}
for p =∞.

(1.1.1)

We define a Lebesgue space by Lp(Ω) :=
{
f : ‖f‖Lp(Ω) <∞

}
, 1 ≤ p ≤ ∞.

1



Isotonic Regression in Sobolev Spaces 1. Sobolev Spaces

Definition 1.1.3 (Complete Space). A complete space Ξ is a metric space
such that every Cauchy sequence {ξi}i∈N ∈ Ξ has a limit ξ ∈ Ξ.

Completeness can be defined for a normed linear space, where the metric
is induced by the respective norm.

Lemma 1.1.1. Normed linear space is complete, if each convergent sequence
{ξi}i∈N ∈ Ξ has a limit ξ ∈ Ξ.

Proof. Trivial.

Definition 1.1.4 (Banach Space). Normed linear space (Ξ, ‖·‖), complete
with respect to the norm ‖·‖, is called a Banach space.

Corollary 1.1.2. Lp(Ω), 1 ≤ p ≤ ∞ is a Banach space.

Proof. See Lukeš and Malý (1995).

1.2 Sobolev Norms

We consider function f : Ω→ R and denote by

Dαf(x) :=
∂|α|1f(x)

∂xα1
1 . . . ∂x

αq
q

(1.2.2)

its partial derivatives of order |α|1 for x ∈ int(Ω)(≡ Ω◦ := Ω\∂Ω), where
α = (α1, . . . , αq)

′ ∈ Nq
0 is a multiindex of the modulus |α|1 =

∑q
i=1 αi.

Definition 1.2.1 (Spaces of Continuously Differentiable Functions).
Let m ∈ N0. We define Cm(Ω) space of m-times continuously differentiable
scalar functions upon bounded domain Ω. Simply

Cm(Ω) :=
{
f : Ω→ R

∣∣Dαf ∈ C0(Ω), |α|∞ ≤ m
}
, (1.2.3)

where C0(Ω) ≡
{
f : Ω→ R

∣∣f continuous on Ω
}

and |α|∞ = maxi=1,...,q |αi|.
In the space Cm(Ω) we can define various norms

‖f‖∞,∞,Cm(Ω) :=
∑

|α|∞≤m

sup
x∈int(Ω)

|Dαf(x)| , (1.2.4a)

‖f‖1,∞,Cm(Ω) := max
|α|∞≤m

sup
x∈int(Ω)

|Dαf(x)| (1.2.4b)

and then we also obtain corresponding normed linear spaces:
(
Cm(Ω), ‖·‖∞,∞,Cm(Ω)

)
and

(
Cm(Ω), ‖·‖1,∞,Cm(Ω)

)
. (1.2.5)

2



1.2 Sobolev Norms Michal Pešta

Remark 1.2.1. (Cm(Ω), ‖·‖∞,∞,Cm(Ω)) and (Cm(Ω), ‖·‖1,∞,Cm(Ω)) are both Ba-
nach spaces, because they are complete.

Definition 1.2.2 (Sobolev Norm). Let f ∈ Cm(Ω)∩Lp(Ω). We introduce
a Sobolev norm1 ‖·‖p,Sob,m:

‖f‖p,Sob,m :=





∑

|α|∞≤m

∫

Ω

∣∣∣Dαf(x)
∣∣∣
p

dx





1/p

. (1.2.6)

Proof. The correctness of Definition 1.2.2 needs to be shown. Let f, g ∈
Cm(Ω) ∩ Lp(Ω), then the triangle inequality for the p-norms on Lp(Ω) and
lp ({α : |α|∞ ≤ m}) implies

‖f + g‖p,Sob,m =





∑

|α|∞≤m

‖Dαf +Dαg‖pLp(Ω)





1/p

(1.2.7)

≤




∑

|α|∞≤m

[
‖Dαf‖pLp(Ω) + ‖Dαg‖pLp(Ω)

]




1/p

(1.2.8)

≤




∑

|α|∞≤m

‖Dαf‖pLp(Ω)





1/p

+





∑

|α|∞≤m

‖Dαg‖pLp(Ω)





1/p

(1.2.9)

= ‖f‖p,Sob,m + ‖g‖p,Sob,m . (1.2.10)

Definition 1.2.3 (Sobolev Space). A Sobolev space Wm
p (Ω) is the com-

pletion of intersection of space Cm(Ω) and space Lp(Ω) with respect to the
Sobolev norm ‖·‖p,Sob,m.

Remark 1.2.2. Cm(Ω) ∩ Lp(Ω) is dense in Wm
p (Ω) according to ‖·‖p,Sob,m.

Definition 1.2.4 (Weak Derivative). Let f ∈ L1(Ω) and α ∈ Nq
0. The

function f is said to have a weak derivative Dα
wf if there exists a function

g ∈ L1(Ω) such that
∫

Ω

f(x)Dαh(x)dx = (−1)|α|1
∫

Ω

g(x)h(x)dx, h ∈ C∞(Ω). (1.2.11)

Then we set Dα
wf := g.

1We could formally write ‖·‖p,∞,Sob,m, because the multiindex of modulus |α|∞ =
maxi=1,...,q αi is taken with respect to maxim-norm.

3



Isotonic Regression in Sobolev Spaces 1. Sobolev Spaces

Example 1.2.1. Let q = 1 and Ω = (−1,+1) The function f(x) = |x|,
x ∈ Ω is not differentiable in the classical sense. However, it admits a weak
derivative D1

wf given by

D1
wf(x) =




−1 , x < 0,
whatever , x = 0,
+1 , x > 0.

(1.2.12)

To show this, we break the interval (−1,+1) into the two parts in which f
is smooth and then integrate by parts.

Remark 1.2.3 (General Definition of Sobolev Space). A Sobolev space can be
also defined in more general way:

Wm
p (Ω) := {f ∈ Lp(Ω)|Dα

wf ∈ Lp(Ω), |α|∞ ≤ m} . (1.2.13)

1.3 Hilbert Spaces

Definition 1.3.1 (Hilbert Space). A Hilbert space Ξ is a vector space
with an inner product 〈·, ·〉 such that the norm defined by |ξ| =

√
〈ξ, ξ〉,

ξ ∈ Ξ turns Ξ into a complete metric space.

Corollary 1.3.1. A Hilbert space is always a Banach space.

Proof. Trivial.

Example 1.3.1. L2(Ω) is a Hilbert space with respect to the inner product
〈f, g〉L2(Ω) :=

∫
Ω
f(x)g(x)dx.

Lemma 1.3.2. If ∆ is a subspace of Hilbert space Ξ, then it is also a Hilbert
space.

Proof. By definition ∆ is closed under the norm ‖·‖ and that implies the
completeness of (∆, ‖·‖).
Definition 1.3.2 (Sobolev Inner Product). Let f, g ∈ Wm

2 (Ω). We
introduce a Sobolev inner product 〈·, ·〉Sob,m:

〈f, g〉Sob,m :=
∑

|α|∞≤m

∫

Ω

Dαf(x)Dαg(x)dx. (1.3.14)

Notation 1.3.1. We denote the Sobolev norm ‖·‖2,Sob,m := ‖·‖Sob,m for sim-
plicity.

4



1.4 Representors in Sobolev Space Michal Pešta

Conjecture 1.3.3. The correctness of Definition 1.3.2 is guaranteed by the
denseness of the space Cm(Ω) ∩ L2(Ω) in Wm

2 (Ω) (see Remark 1.2.2).

Remark 1.3.1. The Sobolev inner product 〈·, ·〉Sob,m induces in Wm
2 (Ω) the

Sobolev norm ‖·‖2,Sob,m.

Proof. Each element of Wm
2 (Ω) is differentiable almost everywhere as many

times as we need according to Remark 1.2.2.

Definition 1.3.4. We denote the Sobolev space Hm(Ω) :=Wm
2 (Ω).

Theorem 1.3.3. Hm(Ω) is a Hilbert space.

Proof. It is straightforward to verify that Hm(Ω) is a normed linear space. It
is also complete by construction, so it is a Banach space. The inner product
〈·, ·〉Sob,m has been defined on Hm(Ω), so it is a Hilbert space.

The theory of the Sobolev spaces is enormous and more general than we
have already presented. But our simplified theory that concerned the Sobolev
spaces will be enough for our statistical needs. More information about the
Sobolev spaces can be found in Adams (1975) or Maz’ja (1985).

1.4 Representors in Sobolev Space

Hm(Ω) is a Hilbert space, so we can express Hm(Ω) as a direct sum of sub-
spaces that are orthogonal to each other and take the projections of elements
of Hm(Ω) into its subspaces. This property is very important in the regres-
sion.

Remark 1.4.1. From now on, let suppose m ∈ N.

Notation 1.4.1. Qq denotes closed unit cube in Rq.

Remark 1.4.2. Qq is a closed bounded domain.

Remark 1.4.3. Continuous function on a closed bounded subset Ω ⊂ Rq is

always Lebesgue-integrable. Hence Hm = ̂Cm(Ω) ∩ Lp(Ω)
‖·‖Sob,m ≡ Cm(Ω),

where Ξ̂‖·‖ denotes the completion of space Ξ with respect to the norm ‖·‖.

Theorem 1.4.1 (Representors in Sobolev Space). For all f ∈ Hm(Qq),
a ∈ Qq and w ∈ Nq

0, |w|∞ ≤ m−1, there exists a function ψwa (x) ∈ Hm(Qq),
s.t. 〈

ψwa , f
〉

Sob,m
= Dwf(a). (1.4.15)

5



Isotonic Regression in Sobolev Spaces 1. Sobolev Spaces

ψwa is called a representor at the point a with the rank w. Furthermore,
ψwa (x) =

∏q
i=1 ψ

wi
ai

(xi) for all x ∈ Qq, where ψwi
ai

(·) is the representor in the
Sobolev space of functions of one variable on Q1 with inner product

∂wif(a)

dxwi
i

=
〈
ψwi

ai
, f(x1, . . . , xi−1, ·, xi+1, . . . , xq)

〉
Sob,m

=
m∑

α=0

∫

Q1

dαψwi
ai

(xi)

dxα
i

dαf(x)

dxα
i

dxi. (1.4.16)

Remark 1.4.4. Proof of this Theorem has been inspired by Bos and Yatchew
(1997). But we implement some modifications, because the proof in Bos
and Yatchew (1997) seems to be incorrect (there is a solution of differential
equation with specific boundary conditions, which is wrong).

Proof. We divide the proof into two steps.

i) Construction of a representor ψa(≡ ψ0
a)

For simplicity, let’s setQ1 ≡ [0, 1]. We know that for functions of one variable
we have

〈g, h〉Sob,m =
m∑

k=0

∫

Q1

g(k)(x)h(k)(x)dx, (1.4.17)

so all we need to do is to construct a representor

ψa ∈ Hm [0, 1] s.t. 〈ψa, f〉Sob,m = f(a) (1.4.18)

for all f ∈ Hm [0, 1]. It suffices to demonstrate the result for all f ∈ C2m

because of the denseness of C2m (see Remark 1.2.2), hence assume that f ∈
C2m. This representor will be of the form:

ψa(x) =

{
La(x) 0 ≤ x ≤ a,
Ra(x) a ≤ x ≤ 1,

(1.4.19)

where La(x) ∈ C2m [0, a] and Ra(x) ∈ C2m [a, 1]. As ψa ∈ Hm [0, 1], it suffices

that L
(k)
a (a) = R

(k)
a (a), 0 ≤ k ≤ m− 1. We get:

f(a) = 〈ψa, f〉Sob,m =

∫ a

0

m∑

k=0

L(k)
a (x)f (k)(x)dx+

∫ 1

a

m∑

k=0

R(k)
a (x)f (k)(x)dx.

(1.4.20)
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Integrating by parts, we have:

m∑

k=0

∫ a

0

L(k)
a (x)f (k)(x)dx

=
m∑

k=0

{
k−1∑
j=0

(−1)j L(k+j)
a (x)f (k−j−1)(x)

∣∣∣∣∣

a

0

+ (−1)k

∫ a

0

L(2k)
a (x)f(x)dx

}

=
m∑

k=0

k−1∑
j=0

(−1)j L(k+j)
a (x)f (k−j−1)(x)

∣∣∣∣∣

a

0

+

∫ a

0

{
m∑

k=0

(−1)k L(2k)
a (x)

}
f(x)dx.

(1.4.21)

Let’s try to substitute i = k − j − 1 and rewrite it:

m∑

k=0

∫ a

0

L(k)
a (x)f (k)(x)dx

=
m∑

k=1

k−1∑
i=0

(−1)k−i−1 L(2k−i−1)
a (x)f (i)(x)

∣∣∣∣∣

a

0

+

∫ a

0

{
m∑

k=0

(−1)k L(2k)
a (x)

}
f(x)dx

=
m−1∑
i=0

m∑

k=i+1

(−1)k−i−1 L(2k−i−1)
a (x)f (i)(x)

∣∣∣∣∣

a

0

+

∫ a

0

{
m∑

k=0

(−1)k L(2k)
a (x)

}
f(x)dx

=
m−1∑
i=0

f (i)(a)

{
m∑

k=i+1

(−1)k−i−1 L(2k−i−1)
a (a)

}

−
m−1∑
i=0

f (i)(0)

{
m∑

k=i+1

(−1)k−i−1 L(2k−i−1)
a (0)

}

+

∫ a

0

{
m∑

k=0

(−1)k L(2k)
a (x)

}
f(x)dx.

(1.4.22)
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Similarly:

m∑

k=0

∫ 1

a

R(k)
a (x)f (k)(x)dx

=
m−1∑
i=0

f (i)(1)

{
m∑

k=i+1

(−1)k−i−1R(2k−i−1)
a (1)

}

−
m−1∑
i=0

f (i)(a)

{
m∑

k=i+1

(−1)k−i−1R(2k−i−1)
a (a)

}

+

∫ 1

a

{
m∑

k=0

(−1)k R(2k)
a (x)

}
f(x)dx.

(1.4.23)

These two results hold for all f(x) ∈ Cm [0, 1]. Thus we require that both La

and Ra are the solutions of the constant coefficient differential equation

m∑

k=0

(−1)k ϕ(2k)(x) = 0. (1.4.24)

Boundary conditions are obtained by equality of the functional values of
L

(i)
a (x) and R

(i)
a (x) at the point a and the coefficient comparison2 of f (i)(0),

f (i)(1) and f (i)(a):

ra ∈ Hm [0, 1] ⇒ L(i)
a (a) = R(i)

a (a)

. . . 0 ≤ i ≤ m− 1, (1.4.25)

f (i)(0) ./ 0 ⇒
m∑

k=i+1

(−1)k−i−1 L(2k−i−1)
a (0) = 0

. . . 0 ≤ i ≤ m− 1, (1.4.26)

f (i)(1) ./ 0 ⇒
m∑

k=i+1

(−1)k−i−1R(2k−i−1)
a (1) = 0

. . . 0 ≤ i ≤ m− 1, (1.4.27)

f (i)(a) ./ 0 ⇒
m∑

k=i+1

(−1)k−i−1
{
L(2k−i−1)

a (a)−R(2k−i−1)
a (a)

}
= 0

. . . 1 ≤ i ≤ m− 1, (1.4.28)

f(a) ./ 1 ⇒
m∑

k=1

(−1)k−1
{
L(2k−1)

a (a)−R(2k−1)
a (a)

}
= 1; (1.4.29)

2% ./ ς denotes that % has a coefficient ς in a specific equation.
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1.4 Representors in Sobolev Space Michal Pešta

together m + m + m + (m − 1) + 1 = 4m boundary conditions. To obtain
the general solution of this differential equation we need to find the roots of
its characteristic polynomial

Pm(λ) =
m∑

k=0

(−1)kλ2k. (1.4.30)

Hence it follows

(1 + λ2)Pm(λ) = 1 + (−1)mλ2m+2, λ 6= ±i. (1.4.31)

Solving the last equation (1.4.31), we get characteristic roots

λk = eiθk , (1.4.32)

where

θk ∈




(2k+1)π
2m+2

m even, k ∈ {0, 1, . . . , 2m+ 1} \{
m
2
, 3m+2

2

}
,

kπ
m+1

m odd, k ∈ {0, 1, . . . , 2m+ 1} \{
m+1

2
, 3m+3

2

}
.

(1.4.33)

We have (2m + 2) − 2 = 2m different complex roots together, but each has
a pair that is conjugate with it. Thus if m is even then we have m complex
conjugate roots with multiplicity one. We also have 2m base elements alike
complex roots:

m even

ϕk(x) = exp
{(<(λk)

)
x
}

cos
[(=(λk)

)
x
]
, (1.4.34)

k ∈ {0, 1, . . . ,m} \ {m/2} ;

ϕm+1+k(x) = exp
{(<(λk)

)
x
}

sin
[(=(λk)

)
x
]
, (1.4.35)

k ∈ {0, 1, . . . ,m} \ {m/2} .

On the other hand if m is odd then we have 2m− 2 different complex roots
together (each has a pair that is conjugate with it) and two real roots. Two
real roots are ±1 and m − 1 complex conjugate roots have the multiplicity
one. We also have 2(m− 1) + 2 = 2m base elements alike all roots, too. So
these base elements are:

9
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m odd

ϕ0(x) = exp {x} ; (1.4.36)

ϕk(x) = exp
{(<(λk)

)
x
}

cos
[(=(λk)

)
x
]
, (1.4.37)

k ∈ {1, 2, . . . ,m} \ {(m+ 1)/2} ;

ϕm+1(x) = exp {−x} ; (1.4.38)

ϕm+1+k(x) = exp
{(<(λk)

)
x
}

sin
[(=(λk)

)
x
]
, (1.4.39)

k ∈ {1, 2, . . . ,m} \ {(m+ 1)/2} .

These vectors generate a subspace of Cm [0, 1] that is the space of solutions of
the differential equation (1.4.24). In this case, the general solution is given
by the linear combination:

La(x)





=
m∑

k=0
k 6=m

2

γk exp
{(<(λk)

)
x
}

cos
[(=(λk)

)
x
]

+
m∑

k=0
k 6=m

2

γm+1+k exp
{(<(λk)

)
x
}

sin
[(=(λk)

)
x
]

. . .m even,

= γ0 exp {x}+
m∑

k=1
k 6=m+1

2

γk exp
{(<(λk)

)
x
}

cos
[(=(λk)

)
x
]

+ γm+1 exp {−x}+
m∑

k=1
k 6=m+1

2

γm+1+k exp
{(<(λk)

)
x
}

sin
[(=(λk)

)
x
]

. . .m odd,
(1.4.40)
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Ra(x)





=
m∑

k=0
k 6=m

2

γ2m+2+k exp
{(<(λk)

)
x
}

cos
[(=(λk)

)
x
]

+
m∑

k=0
k 6=m

2

γ3m+3+k exp
{(<(λk)

)
x
}

sin
[(=(λk)

)
x
]

. . .m even,

= γ2m+2 exp {x}+
m∑

k=1
k 6=m+1

2

γ2m+2+k exp
{(<(λk)

)
x
}

cos
[(=(λk)

)
x
]

+ γ3m+3 exp {−x}+
m∑

k=1
k 6=m+1

2

γ3m+3+k exp
{(<(λk)

)
x
}

sin
[(=(λk)

)
x
]

. . .m odd,
(1.4.41)

where coefficients γk are arbitrary constants that satisfy the boundary con-
ditions (1.4.25)–(1.4.29). It can be easily seen that we have obtained 4(m+
1)− 4 = 4m coefficients γk, because the first index of γk is 0 and the last one
is 4m + 3. Thus we have 4m boundary conditions and 4m unknowns of γks
that lead us to the square 4m× 4m system of the linear equations. Does ψa

exist and is it unique? To show this, it suffices to prove that the only solution
of the associated homogeneous system of linear equations is the zero vector.
Suppose La(x) and Ra(x) are functions corresponding to the solution of the
homogeneous system, because in linear system of equations (1.4.25)–(1.4.29)
the right side has all zeros—coefficient of f(a) in the last boundary condi-
tion is 0 instead of 1. Then, by the exactly the same integration by parts,
it follows that 〈ψa, f〉Sob,m = 0 for all f ∈ Cm [0, 1]. Hence ψa(x), La(x) and
Ra(x) are zero almost everywhere and thus by the linear independence of
base elements ϕk(x), so we have unique γks.

ii) Producing a representor ψwa
Let’s produce the representor ψwa by setting

ψwa (x) =

q∏
i=1

ψwi
ai

(xi) for all x ∈ Qq, (1.4.42)

where ψwi
ai

(xi) is the representor at ai in Hm (Q1). We know that Cm is dense
in Hm, so it is sufficient to show the result for f ∈ Cm(Qq). For simplicity
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let’s suppose Qq ≡ [0, 1]q. After rewriting the inner product and using Fubini
theorem we have

〈
ψwa , f

〉
Sob,m

=

〈 q∏
i=1

ψwi
ai
, f

〉

Sob,m

=
∑

|α|∞≤m

∫

Qq

∂α1ψw1
a1

(x1)

∂xα1
1

· · · ∂
αqψ

wq
aq (xq)

∂x
αq
q

Dαf(x)dx

=
∑

i1,...,iq=0,...,m

∫

Qq

∂i1ψw1
a1

(x1)

∂xi1
1

· · · ∂
iqψ

wq
aq (xq)

∂x
iq
q

∂i1,...,iqf(x)

∂xi1
1 . . . ∂x

iq
q

dx

=
m∑

i1=0

∫ 1

0

∂i1ψw1
a1

(x1)

∂xi1
1

[
· · ·

[
m∑

iq=0

∫ 1

0

∂iqψ
wq
aq (xq)

∂x
iq
q

.
∂i1,...,iqf(x)

∂xi1
1 . . . ∂x

iq
q

dxq

]
. . .

]
dx1.

(1.4.43)

According to Definition 1.3.2 and notation in (1.4.15) we can rewrite the
centermost bracket

m∑
iq=0

∫ 1

0

∂iqψ
wq
aq (xq)

∂x
iq
q

.
∂i1,...,iqf(x)

∂xi1
1 . . . ∂x

iq
q

dxq

=
〈
ψwq

aq
, D(i1,...,iq−1)f(x1, . . . , xi−1, ·)

〉
Sob,m

= D(i1,...,iq−1,wq)f(x−q, aq). (1.4.44)

Chain proceeding in this way we obtain the value for the whole expression
to be equal to Dwf(a).

1.4.1 Calculation of Representors

We will here just continue from the proof of Representor Theorem 1.4.1 on
page 5.

We would like to calculate the representor ψa ≡ ψ0
a of the function f ∈

Hm [0, 1] (see (1.4.19)). All we need to know are functions La and Ra in the
form (1.4.40) and (1.4.41). The proof of Representor Theorem 1.4.1 gives
us exactly λks from (1.4.32) and also ensures us of the existence and the
uniqueness of the coefficients γk. Unknowns γk can be obtained from the
square system of linear equations that consists of the boundary conditions
(1.4.25)–(1.4.29) for the solution of differential equation (1.4.24).

Definition 1.4.1. Given f ∈ Hm [0, 1] and an appropriate representor ψa ≡
ψ0

a s.t. 〈ψa, f〉Sob,m = f(a). We call the coefficients γk from (1.4.40) and
(1.4.41) as coefficients of the representor ψa.

12
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Theorem 1.4.2 (Obtaining Coefficients γk). Coefficients γk of the rep-
resentor ψa are unique solution of 4m× 4m system of linear equations

m∑

k=0
k 6=κ

γk

(
ϕ

(m−j)
k (0) + (−1)jϕ

(m+j)
k (0)

)

+
m∑

k=0
k 6=κ

γm+1+k

(
ϕ

(m−j)
m+1+k(0) + (−1)jϕ

(m+j)
m+1+k(0)

)
= 0, j = 0, . . . ,m− 1

(1.4.45a)

m∑

k=0
k 6=κ

γ2m+2+k

(
ϕ

(m−j)
k (1) + (−1)jϕ

(m+j)
k (1)

)

+
m∑

k=0
k 6=κ

γ3m+3+k

(
ϕ

(m−j)
m+1+k(1) + (−1)jϕ

(m+j)
m+1+k(1)

)
= 0, j = 0, . . . ,m− 1

(1.4.45b)

m∑

k=0
k 6=κ

(γk − γ2m+2+k)ϕ
(j)
k (a)

+
m∑

k=0
k 6=κ

(γm+1+k − γ3m+3+k)ϕ
(j)
m+1+k(a) = 0, j = 0, . . . , 2m− 2,

(1.4.45c)

m∑

k=0
k 6=κ

(γk − γ2m+2+k)ϕ
(2m−1)
k (a)

+
m∑

k=0
k 6=κ

(γm+1+k − γ3m+3+k)ϕ
(2m−1)
m+1+k(a) = (−1)m−1,

(1.4.45d)

where

κ :=

{
m
2
, m even,

m+1
2
, m odd

(1.4.46)

and ϕk are defined in (1.4.34)–(1.4.39).

Proof. Existence and uniqueness of coefficients γks has already been proved
in the proof of Theorem 1.4.1.
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Figure 1.4.1: Representors in Sobolev space H4 [0, 1] for data points
x = (0.05, 0.27, 0.41, 0.53, 0.57, 0.75, 0.81, 0.83, 0.87, 0.9, 0.96)′—dashed ver-
tical lines. Zoomed view in the upper picture—interval [0, 1], reduced view
in the lower picture—interval [−4.5,+5.5].

Let’s define

Λ
(l)
a,I :=





L
(l)
a (0), for I = L;

R
(l)
a (1), for I = R;

L
(l)
a (a)−R(a)

a (a), for I = D.

(1.4.47)
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From (1.4.26)–(1.4.29) we easily see

m∑

k=i+1

(−1)k−i−1Λ
(2k−i−1)
a,I = 0, 0 ≤ i ≤ m− 1, I ∈ {L,R,D} ,

except [i, I] = [0, D] ; (1.4.48)
m∑

k=1

(−1)k−1Λ
(2k−1)
a,D = 1. (1.4.49)

If m = 1 it directly follows from (1.4.48)–(1.4.49):

Λ
(1)
a,I = 0, I ∈ {L,R} , (1.4.50)

Λ
(1)
a,D = 1. (1.4.51)

If m = 2 it also directly follows from (1.4.48)–(1.4.49):

Λ
(2)
a,I = 0, ∀I, (1.4.52)

Λ
(1)
a,I − Λ

(3)
a,I = 0, I ∈ {L,R} , (1.4.53)

Λ
(1)
a,D − Λ

(3)
a,D = 1. (1.4.54)

Suppose m ≥ 3. We would like to prove this important step in our proof:

Λ
(m−j)
a,I + (−1)jΛ

(m+j)
a,I = 0, j = 0, . . . ,m− 2, ∀I, (1.4.55)

Λ
(1)
a,I + (−1)m−1Λ

(2m−1)
a,I = 0, I ∈ {L,R} , (1.4.56)

Λ
(1)
a,D + (−1)m−1Λ

(2m−1)
a,D = 1, (1.4.57)

where j := m− i− 1.
For j = 0 is i = m− 1 and from (1.4.48)–(1.4.49) we have straightforwardly

Λ
(m)
a,I = 0, ∀I, (1.4.58)

which is correct according to (1.4.55). Consider j = 1 and thus i = m − 2.
In a same way we get a correspondent result to (1.4.55)

Λ
(m−1)
a,I − Λ

(m+1)
a,I = 0, ∀I. (1.4.59)

For j = 2 and thus i = m− 3 we have

Λ
(m−2)
a,I − Λ

(m)
a,I + Λ

(m+2)
a,I = 0, ∀I, (1.4.60)

so it forces us to apply (1.4.58) and for j = 3 and thus i = m− 4 we have

Λ
(m−3)
a,I − Λ

(m−1)
a,I + Λ

(m+1)
a,I − Λ

(m+3)
a,I = 0, ∀I, (1.4.61)
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so we can apply (1.4.59). We could continue in this way finite times (formally
we can proceed this by something like a finite double induction). We finish
when j = m − 1. The last step ensures the correctness of (1.4.56) in case
I ∈ {L,R}, eventually (1.4.57) in case I = D instead of (1.4.55).
To finish this proof all we need to do is not to forget to think of (1.4.25).
From (1.4.25) we obtain

Λ
(j)
a,D = 0, j ∈ {0, . . . ,m− 1} . (1.4.62)

According to (1.4.55) for I = D and (1.4.57) we further see:

Λ
(j)
a,D = 0, j ∈ {m+ 1, . . . , 2m− 2} ; (1.4.63)

Λ
(2m−1)
a,D = (−1)m−1. (1.4.64)

Alltogether we have obtained these 4m linear equations

Λ
(m−j)
a,L + (−1)jΛ

(m+j)
a,L = 0, j = 0, . . . ,m− 1, (1.4.65)

Λ
(m−j)
a,R + (−1)jΛ

(m+j)
a,R = 0, j = 0, . . . ,m− 1, (1.4.66)

Λ
(j)
a,D = 0, j = 0, . . . , 2m− 2, (1.4.67)

Λ
(2m−1)
a,D = (−1)m−1, (1.4.68)

which after rewriting them using (1.4.47), (1.4.40)–(1.4.41) and (1.4.34)–
(1.4.39) bring us to a close.

Remark 1.4.5. The square system of 4m linear equations (1.4.45) can be
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written in the matrix notation in more illustrative way:




ϕ
(m−j)
k (0)

+(−1)jϕ
(m+j)
k (0)

∅

∅ ϕ
(m−j)
k (1)

+(−1)jϕ
(m+j)
k (1)

ϕ
(j)
k (a) −ϕ

(j)
k (a)

ϕ
(2m−1)
k (a) −ϕ

(2m−1)
k (a)




︸ ︷︷ ︸
{Γj,k}




γ0
...

γκ−1

γκ+1
...
γm

γm+1
...

γm+κ

γm+2+κ
...

γ2m+1

γ2m+2
...

γ2m+1+κ

γ2m+3+κ
...

γ3m+2

γ3m+3
...

γ3m+2+κ

γ3m+4+κ
...

γ4m+3




︸ ︷︷ ︸
{γk}

=




0
...
0
0
...
0
0
...
0

(−1)m−1




j=︷ ︸︸ ︷
0

...
m-1

0

...
m-1

0

...
2m-2

2m-1

.

(1.4.69)
Hence we obtain the coefficients γk as a solution of:

γ = (−1)m−1
[
Γ−1

]
•,4m

. (1.4.70)

Remark 1.4.6. We easily see from the proof of Theorem 1.4.1 and the proof
of Theorem 1.4.2 that the form of representor ψa does not depend on exact
closed cube [c1, d1]×. . .×[cq, dq] ∈ Rq. In Figure 1.4.1 we can see representors
in Sobolev space H4 [0, 1] for eleven data points.
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1.5 Bounded Derivatives in Subnorm

Theorem 1.5.1 (Embedding). The embedding Hm(Qq) ↪→ Cm−1(Qq) is
compact.

Remark 1.5.1. Proof of this Theorem can be found in Bos and Yatchew
(1997). We only proceed some steps more properly for better understanding.

Proof. We divide the proof into two steps again.
i) Existence of the embedding

We will first show that f ∈ Hm(Qq) implies that f ∈ Cm−1(Qq). In one
dimensional case just see Adams (1975).

Given 0 ≤ w ≤ m− 1 and a ∈ Q1, the mapping

Φ: Hm(Q1)→ R1 : f 7→ dwf(a)

dxw
(1.5.71)

is a bounded linear functional on Hm(Q1). Bounded linear functional is
continuous and then by the Riesz Representation Theorem C.1.3 there exists
a representor ψw

a ∈ Hm(Q1) such that for all f ∈ Hm(Q1),

〈ψw
a , f〉Sob,m =

dwf(a)

dxw
. (1.5.72)

There is also ρ > 0 such that if ‖f‖Sob,m ≤ 1 then ‖f‖∞,∞,m−1 ≤ ρ (compact

sets are bounded)3. Hence:

∃ρ>0∀0≤w≤m−1∀a∈Q1∀f∈Hm(Q1) : ‖f‖Sob,m ≤ 1⇒
∣∣∣〈ψw

a , f〉Sob,m

∣∣∣ ≤ ρ.

(1.5.73)
Since ψw

a ∈ Hm(Q1) then

∣∣∣∣∣
〈
ψw

a ,
ψw

a

‖ψw
a ‖Sob,m

〉

Sob,m

∣∣∣∣∣ = ‖ψw
a ‖Sob,m ≤ ρ. (1.5.74)

By the construction of the representors (see proof of Theorem 1.4.1) it can
be easily seen that there exists a continuous mapping

Υ: Q1 → Hm(Q1) : a 7→ ψw
a (1.5.75)

for 0 ≤ w ≤ m− 1.

3See notation (1.2.4a) in Definition 1.2.1.
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1.5 Bounded Derivatives in Subnorm Michal Pešta

Consider the several variable case and define ψwa (x) :=
∏q

i=1 ψ
wi
ai

(xi).
For all f ∈ Hm(Qq) and w such that |w|∞ ≤ m − 1 by Theorem 1.4.1
〈ψwa 〉Sob,m = Dwf(a). It is straightforward to show that:

‖ψwa (x)‖Sob,m =

q∏
i=1

∥∥ψwi
ai

(xi)
∥∥

Sob,m
. (1.5.76)

Let f ∈ Hm(Qq). By the definition there is a sequence {fn}n∈N ⊂ Cm(Qq)

such that ‖f − fn‖Sob,m

n→∞−→ 0. We wish to show that {fn}n∈N is convergent

in Cm−1(Qq) by showing that it is Cauchy in this space. But we know that
{fn}n∈N is Cauchy in Hm(Qq). Hence, given ε > 0, choose n0 ∈ N large
enough so that n1, n2 > n0 implies ‖fn1 − fn2‖Sob,m < ε

mqρq . Then for n1, n2 >

n0 using notation (1.2.4a) from Definition 1.2.1, Theorem 1.4.1 and Cauchy-
Schwartz C.1.2 we have:

‖fn1 − fn2‖∞,∞,m−1 =
∑

|α|∞≤m

sup
y∈Qq

∣∣∣Dαfn1(y)−Dαfn2(y)
∣∣∣

=
∑

|α|∞≤m

sup
y∈Qq

∣∣∣
〈
ψα
y , fn1 − fn2

〉
Sob,m

∣∣∣

≤
∑

|α|∞≤m

sup
y∈Qq

∥∥ψα
y

∥∥
Sob,m

∥∥fn1 − fn2

∥∥
Sob,m

< mqρq ε

mqρq
= ε.

(1.5.77)

Do not forget that the last inequality follows from the relations (1.5.74) and
(1.5.76) and that there are mq elements in the summation (each αi taking on
values 0, . . . ,m − 1). Hence, we find out that {fn}n∈N is indeed Cauchy in
Cm−1(Qq). But as Cm−1(Qq) is complete, there exists g ∈ Cm−1(Qq) such that

fn
Cm−1(Qq)−→ g, that is, Dwfn → Dwg uniformly for all |w|∞ ≤ m − 1. Then

Dwfn
L2(Qq)−→ Dwg for all |w|∞ ≤ m− 1, or in other words, fn

Hm−1(Qq)−→ g. But

by the definition, fn
Hm−1(Qq)−→ f . Hence, by the uniqueness of limit, f = g,

f ∈ Cm−1(Qq).
ii) Compactness of the embedding

To show the compactness, we proceed by induction on m. Consider m =
1. In this case, we must show that if {fn}n∈N is a bounded sequence in
H1(Qq) then there is a subsequence that converges in C0(Qq). But by the
Arzela-Ascoli Theorem C.1.1 it suffices to show that {fn} is equibounded
and uniformly equicontinuous. We know that Qq is a closed domain, hence
{fn} is equibounded. If we proof that {fn} is equicontinuous then it will
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Isotonic Regression in Sobolev Spaces 1. Sobolev Spaces

be also uniformly equicontinuous, because the same reason—Qq is a closed
domain. The equicontinuity follows from the fact

|fn(a)− fn(ã)| =
∣∣∣〈ψa − ψã, fn〉Sob,m

∣∣∣ ≤ ‖ψa − ψã‖Sob,m ‖fn‖Sob,m (1.5.78)

and that ψa depends continuously on a.
Now suppose that the embedding Hm(Qq) ↪→ Cm−1(Qq) is compact for

particular m and consider m + 1. Let {fn} be a bounded sequence in
Hm+1(Qq). Then {Dαfn}n∈N is bounded in Hm(Qq) for each α with |α|∞ ≤
1. Hence for each |α|∞ ≤ 1 there is a subsequence of {Dαfn} which converges
in Cm−1(Qq), because in the compact space each sequence has a convergent
subsequence. By passing to the subsequence {Dαfnk

}k∈N we have a sequence
which converges in Cm−1(Qq) for all |α|∞ ≤ 1. That is, {fnk

}k∈N converges
in Cm−1+1(Qq).

Remark 1.5.2. The compactness of this embedding means that given a closed
ball of functions in Hm(Qq) with respect to ‖·‖Sob,m, its closure is compact

in Cm−1(Qq). This result ensures us that functions in a bounded ball in Hm

have all lower order derivatives bounded in supnorm.
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Chapter 2

Regression in Sobolev Spaces

Connection of features of L2-spaces and Cm-spaces can grant us an interesting
background for the nonparametric regression. L2-spaces are special types of
Hilbert spaces that facilitate the calculation of least square projection. On
the other hand, we regard Cm-spaces as one of the common classes of functions
that we want to approximate the data with.

We propose some statistical models from Bos and Yatchew (1997) and
Härdle and Yatchew (2003). According to the assumptions from these mod-
els, we choose least squares as an appropriate way of penalizing. The focus of
this chapter is hidden in Theorem 2.2.1 (Infinite to Finite), again from Bos
and Yatchew (1997). I have amended this theorem and shown the uniqueness
of the regression estimator. Finally, I have generalized this theorem into the
weighted regression case (Theorem 2.3.1). Then I have investigated the form
of the regression estimator in the Sobolev space in Corollary 2.2.2. Hence I
have also proved symmetry and positive definiteness of the representor ma-
trix.

I have used Schur decomposition Theorem C.2.2 to solve optimizing prob-
lem with quadratic constraint (Theorem 2.2.5) and proved the existence and
the uniqueness of its solution in Theorem 2.2.6 and Algorithm 2.2.1. The
asymptotic behavior of the regression estimator (Theorem 2.2.7) is also in-
vestigated in Bos and Yatchew (1997).

In the end, we are concerned with Cross-Validation. I have proved the
existence of 1–1 mapping between the Sobolev bound and the smoothing
parameter (Theorem 2.6.1).
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2.1 Single Equation Model

Definition 2.1.1 (Single Equation Model). The single equation model
is

Yi = f(Xi) + εi, i = 1, . . . , n (2.1.1)

with these assumptions:

i) Xi are q-dimensional random vectors, i.i.d. with probability law Px and
density px bounded away from zero on the support Qq, the unit cube
in Rq;

ii) εi are i.i.d. random variables with probability law Pε so that Eεi = 0
and Var εi = σ2

ε for all i; Pε ∈Pε a collection of probability laws with
mean 0 and support contained in a bounded interval of R1; Xi and εi

are independent;

iii) f ∈ F , where F is a family of functions in the Sobolev space Hm(Qq)

from Rq to R1, m > q
2
, F =

{
f ∈ Hm(Qq) : ‖f‖2Sob,m ≤ L

}
.

Remark 2.1.1. Our setting is concerned with independent, identically dis-
tributed random variables {(Xi, Yi)}ni=1. The regression curve can be also
defined as

f(x) = E [Y |X = x] . (2.1.2)

It is common terminology to refer to this setting as the random design
model. By contrast, the fixed design model is concerned with controlled,
non-stochastic variables xi. Unless otherwise indicated, we think of the ran-
dom design model.

Notation 2.1.1. From this point now on we denote Hm ≡ Hm(Qq), where
Qq is the unit cube in Rq.

2.2 Least Squares

Least squares are the most typical and standard way of error penalization.
Our regression problem can be characterized by one of these ways:

a)

min
f∈Hm

1

n

n∑
i=1

[yi − f(xi)]
2 s.t. ‖f‖2Sob,m ≤ L, (2.2.3)
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2.2 Least Squares Michal Pešta

b)

min
f∈Hm

{
1

n

n∑
i=1

[yi − f(xi)]
2 + χ ‖f‖2Sob,m

}
. (2.2.4)

The Sobolev norm bound L and also the smoothing parameter (bandwidth
parameter) χ controlls the tradeoff between the infidelity to the data and
roughness of the estimated solution.

Definition 2.2.1 (Representor Matrix). Let ψx1 , . . . , ψxn be the repre-
sentors for function evaluation at x1, . . . ,xn respectively, i.e. 〈ψxi

, f〉Sob,m =
f(xi) for all f ∈ Hm, i = 1, . . . , n. Let Ψ be the n × n representor matrix
whose columns (and rows) equal the representors evaluated at x1, . . . ,xn; i.e.

Ψi,j =
〈
ψxi

, ψxj

〉
Sob,m

= ψxi
(xj) = ψxj

(xi). (2.2.5)

Theorem 2.2.1 (Infinite to Finite). Let x1, . . . ,xn be q × 1 vectors, y =
(y1, . . . , yn)′ and define

σ̂2 = min
f∈Hm

1

n

n∑
i=1

[yi − f(xi)]
2 s.t. ‖f‖2Sob,m ≤ L, (2.2.6)

s2 = min
c∈Rn

1

n
[y −Ψc]′ [y −Ψc] s.t. c′Ψc ≤ L (2.2.7)

where c is an n × 1 vector and Ψ is the representor matrix at x1, . . . ,xn.
Then σ̂2 = s2. Furthermore, there exists a solution to (2.2.6) of the form

f̂ =
n∑

i=1

ĉiψxi
(2.2.8)

where ĉ = (ĉ1, . . . , ĉn)′ solves (2.2.7). The estimator f̂ is unique a.e.

Remark 2.2.1. Proof of this Theorem was adopted from Bos and Yatchew
(1997) with small modifications.

Proof. Let M = span {ψxi
: i = 1, . . . , n} and its orthogonal complement

M⊥ =
{
h ∈ Hm : 〈ψxi

, h〉Sob,m = 0, i = 1, . . . , n
}

. Representors exist by

Theorem 1.4.1 and we can write the Sobolev space as a direct sum of its
orthogonal subspaces, i.e. Hm = M ⊕ M⊥ since Hm is a Hilbert space.
Functions h ∈ M⊥ take on the value zero at x1, . . . ,xn. Each f ∈ Hm can
be written in form

f =
n∑

j=1

cjψxj
+ h, h ∈M⊥. (2.2.9)
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Then

n∑
i=1

[yi − f(xi)]
2 =

n∑
i=1


yi −

〈
ψxi

,

n∑
j=1

cjψxj
+ h

〉

Sob,m




2

=
n∑

i=1

[
yi −

n∑
j=1

〈
ψxi

, cjψxj

〉
Sob,m

]2

=
n∑

i=1

[
yi −

n∑
j=1

cj
〈
ψxi

, ψxj

〉
Sob,m

]2

=
n∑

i=1

[
yi −

n∑
j=1

Ψijcj

]2

= [y −Ψc]′ [y −Ψc] .

(2.2.10)

Note further that

‖f‖2Sob,m = 〈f, f〉Sob,m

=

〈
n∑

j=1

cjψxj
,

n∑
j=1

cjψxj

〉

Sob,m

+ 〈h, h〉Sob,m = c′Ψc+ 〈h, h〉Sob,m .
(2.2.11)

Suppose that f =
∑n

j=1 cjψxj
+ h minimizes

1

n

n∑
i=1

[yi − f(xi)]
2 s.t. ‖f‖2Sob,m ≤ L (2.2.12)

then so does f ∗ = f − h is zero at x1, . . . ,xn. Hence, there exists a function
f ∗ minimizing the infinite dimensional optimizing problem that is a linear
combination of the representors. Furthermore,

‖f ∗‖2Sob,m ≤ ‖f ∗‖2Sob,m + ‖h‖2Sob,m = ‖f‖2Sob,m ≤ L. (2.2.13)

We note also that ‖f ∗‖2Sob,m = c′Ψc. Finally, we observe that the following
two problems are equivalent:

min
f∗

1

n

n∑
i=1

[yi − f ∗(xi)]
2 s.t. ‖f ∗‖2Sob,m ≤ L, f ∗ ∈M ; (2.2.14)

min
c

1

n
[y −Ψc]′ [y −Ψc] s.t. c′Ψc ≤ L. (2.2.15)

Uniqueness is clear, since ψxi
are the base elements of M ,

∥∥∥f̂
∥∥∥

2

Sob,m
= L and

adding a function that is orthogonal to the spaces spanned by the representors
will increase the norm.
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Remark 2.2.2. Theorem 2.2.1 transforms the infinite dimensional problem
into a finite dimensional one—quadratic optimization problem.

Corollary 2.2.2 (Form of the Regression Function). The regression
function from Theorem 2.2.1 in one-dimensional case is of this form:

f̂(x) =





n∑
i=1

ĉiLxi
(x), 0 ≤ x ≤ x1,

...
...

n∑
i=j+1

ĉiLxi
(x) +

j∑
i=1

ĉiRxi
(x), xj < x ≤ xj+1, j = 1, . . . , n− 1;

...
...

n∑
i=1

ĉiRxi
(x), xn < x ≤ 1,

(2.2.16)
where ĉ = (ĉ1, . . . , ĉn)′ solves (2.2.7) and functions Lxi

(x) and Rxi
(x) are

defined in (1.4.19).

Proof. Trivial. It can be directly seen from the definition of form (1.4.19) of
the representor and from (2.2.8).

Remark 2.2.3. Corollary 2.2.2 can be easily extended for q-dimensional vector
variable x if we realize how the representor ψa has been produced in the proof
of Theorem 1.4.1. Then we just apply (1.4.19) on the form of each factor ψa of
the product of representors ψa in (1.4.42). The only difference in (2.2.16) will
be the number of cases. We will obtain (n + 1)q decision conditions (vector
x has q components) instead of actual number n + 1 (0 ≤ x ≤ x1, . . . , xj <
x ≤ xj+1, . . . , xn < x).

Remark 2.2.4. The form of the regression function can be written alterna-
tively:

f̂(x) =
n∑

j=1

ĉj

2m∑

k=1

exp
[<(

eiθk
)
x
]

{
I[x≤xj ]γk cos

[=(
eiθk

)
x
]
+ I[x>xj ]γ2m+k sin

[=(
eiθk

)
x
] }

.

(2.2.17)

It is very important to realize that f̂ is not estimated using goniometric
splines neither kernel functions!
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Lemma 2.2.3 (Symmetry of Representor Matrix). Representor Matrix
is symmetric.

Proof. Trivial. Representor matrix is symmetric by Definition 2.2.1, because

Ψi,j =
〈
ψxi

, ψxj

〉
Sob,m

=
〈
ψxj

, ψxi

〉
Sob,m

= Ψj,i, (2.2.18)

i.e. Ψ = Ψ′.

Theorem 2.2.4 (Positive Definiteness of Representor Matrix). Rep-
resentor Matrix is positive definite.

Proof. We proceed this proof only for one dimensional variable x. Extention
into the multi-variable case is clearly simple (see Remark 2.2.3). For an
arbitrary c ∈ Rn we obtain

c′Ψc =
∑

i

ci
∑

j

Ψijcj =
∑

i

∑
j

ci
〈
ψxi

, ψxj

〉
Sob,m

cj

=
∑

i

∑
j

〈
ciψxi

, cjψxj

〉
Sob,m

=

〈∑
i

ciψxi
,
∑

j

cjψxj

〉

Sob,m

=

∥∥∥∥∥
∑

i

ciψxi

∥∥∥∥∥

2

Sob,m

≥ 0.

(2.2.19)

Hence c′Ψc = 0 iff
∑

i ciψxi
= 0 a.e. According to (1.4.40)–(1.4.41), (1.4.34)–

(1.4.39) and (1.4.70) we have1

ψxi
(x) = γ(xi)

′ϕ(x) = (−1)m−1
[
Γ−1

xi

]′
•,4m

ϕ(x) (2.2.20)

where ϕ(x) is vector which elements are linear independent base elements of
space of the differential equation’s (1.4.24) solutions, i.e. ϕk(x) (see 1.4.34–

1If x > xi then γ(xi) = (γ0, . . . , γκ−1, γκ+1, . . . , γm+κ, γm+2+κ, . . . , γ2m+1)
′ (xi) else

γ(xi) = (γ2m+2, . . . , γ2m+1+κ, γ2m+3+κ, . . . , γ3m+2+κ, γ3m+4+κ, . . . , γ4m+3)
′ (xi). Simi-

larly with elements of vector
[
Γ−1

xi

]
•,4m

.
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1.4.39). Thus linear independence of ϕk(x) it follows that

∑
i

ciψxi
= (−1)m−1

∑
i

ci
[
Γ−1

xi

]′
•,4m

ϕ

= (−1)m−1
∑

i

∑

k

ci
[
Γ−1

xi

]
4m,k

ϕk = 0 a.e. (2.2.21)

m

ϕk = 0 a.e. k ∈ {0, 1, . . . , 2m+ 1} \




{
m
2
, 3m+2

2

}
m even,

{
m+1

2
, 3m+3

2

}
m odd;

(2.2.22)

⇓
ψxi

= 0 a.e. i = 1, . . . , n. (2.2.23)

And ψxi
= 0 a.e. is a zero element of the space Hm.

Remark 2.2.5. Slightly different conception of representors has been de-
scribed in Wahba (1992).

Theorem 2.2.5 (Optimizing with Constraint). Optimizing problem with
constraint

min
c∈Rn

1

n
[y −Ψc]′ [y −Ψc] s.t. c′Ψc ≤ L, (2.2.24)

where Ψ > 0 is a symmetric n× n matrix, y is an n× 1 vector of constants
and L > 0, has a solution

ĉ = Φd̂ (2.2.25)

where Φ is an orthogonal n× n matrix from Schur decomposition C.2.2

Ψ = ΦΛΦ′ (2.2.26)

where

Λ = diag {λ1, . . . , λn} , (2.2.27)

λi > 0, i = 1, . . . , n, (2.2.28)

I = Φ′Φ = ΦΦ′ (2.2.29)

and d̂ = (d̂1, . . . , d̂n)′ solves

min
d∈Rn

1

n

n∑
i=1

(λidi − zi)
2 s.t.

n∑
i=1

λid
2
i ≤ L (2.2.30)

where z = (z1, . . . , zn)′ = Φ′y. Vector d̂—solution of (2.2.30)—always ex-
ists.
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Proof. From Schur decomposition C.2.2 we know that there are such matrices
Φ and Λ, because according to Lemma 2.2.3 Ψ is symmetric. Ψ is positive
definite—Theorem 2.2.4. Hence all the eigenvalues are positive, so λi > 0 for
all i. Let d := Φ′c and z := Φ′y. Try to calculate

n∑
i=1

(λidi − zi)
2 ≡ ‖Λd− z‖22 = [Λd− z]′Φ′Φ [Λd− z]

= ‖ΦΛd−Φz‖22 = ‖ΦΛΦ′c−ΦΦ′y‖22
= ‖Ψc− y‖22 ≡ [y −Ψc]′ [y −Ψc] ,

(2.2.31)

where ‖·‖2 denotes the classic Euclidean norm in Rn and

n∑
i=1

λid
2
i = d′Λd = d′Φ′ΦΛΦ′Φd = (Φd)′ (ΦΛΦ′) (Φd)

= c′Ψc ≤ L.

(2.2.32)

The existence of d̂ is trivial, because the objective function 1
n

∑n
i=1 (λidi − zi)

2

is continuous in d and set S := {d ∈ Rn :
∑n

i=1 λid
2
i ≤ L} is closed and

bounded in Rn, i.e. compact set. Finally ĉ := Φd̂.

Remark 2.2.6. We could heighten the proposition of Theorem 2.2.5 and add
the uniqueness of d̂ and hence the uniqueness of ĉ. We show this in Theorem
2.2.6 and its proof. We should not add any restrictions to the assumptions
of Theorem 2.2.5 to avoid pathological (degenerating) cases, because none
can become (see proof of Theorem 2.2.6).

Remark 2.2.7. This optimizing problem in Theorem 2.2.5 can be also solved
using SVD Theorem C.2.3 as it can be found in Golub and Loan (1996).

Theorem 2.2.6 (Minimizing Problem). Let L > 0, λi > 0 for all i =
1, . . . , n and define S := {d ∈ Rn :

∑n
i=1 λid

2
i ≤ L} a feasible set. Solution

of

d̂ = argmin
d∈Rn

1

n

n∑
i=1

(λidi − zi)
2 s.t.

n∑
i=1

λid
2
i ≤ L (2.2.33)

can be obtained from Algorithm 2.2.1. This algorithm is finite and always
provides a unique result.

Proof. Function 1
n

∑n
i=1 (λidi − zi)

2 is continuous in Rn. It can take its local
minimum at the point where all the first partial derivatives ∂

∂di
are equal zero

or lie on the boundary of the feasible set S.
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Algorithm 2.2.1 Quadratic Minimizing with Quadratic Constraint

Input: z, λ, L
Output: d
Require: L > 0 and λ > 0

1: if
(

z1

λ1
, . . . , zn

λn

)′
∈ S then

2: d̂i ← zi

λi
∀i

3: else
4: ϑ∗ ← solve

(∑n
i=1

z2
i

(λi+nϑ)2
λi = L

)

d̂i ← zi

λi+nϑ∗ ∀i
5: end if

Objective function takes its minimal value 0 only at one point
(

z1

λ1
, . . . , zn

λn

)′
.

It is exactly at the same point where all the first partial derivatives ∂
∂zi

are
equal zero

∂

∂di

[
1

n

n∑
i=1

(λidi − zi)
2

]
= 2λi (λidi − zi)

!
= 0 ⇒ di =

zi

λi

∀i. (2.2.34)

So if point
(

z1

λ1
, . . . , zn

λn

)′
belongs into the feasible set S, we are done and this

point is also one unique global minimum. If not, the local and also global
minimum of our objective function must lie on the boundary ∂S, because
the feasible set S is a compact set. Then we need to solve

min
d∈Rn

1

n

n∑
i=1

(λidi − zi)
2 s.t.

n∑
i=1

λid
2
i = L (2.2.35)

by using Lagrange multipliers. Define the Lagrange multiplier according to
our objective function and feasible set

L(d, ϑ) =
1

n

n∑
i=1

(λidi − zi)
2 + ϑ

(
n∑

i=1

λid
2
i − L

)
. (2.2.36)

Let’s find extreme of the Lagrange multiplier

∂

∂di

L(d, ϑ) = 2
λi

n
(λidi−zi)+2ϑλidi

!
= 0 ⇒ di =

zi

λi + nϑ
∀i. (2.2.37)

To determine the Lagrange parameter we define

ξ(ϑ) :=
n∑

i=1

λid
2
i (ϑ) =

n∑
i=1

λiz
2
i

(λi + nϑ)2
(2.2.38)
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and seek the solution to ξ(ϑ) = L. We know that

(
z1

λ1

, . . . ,
zn

λn

)′
/∈ S. (2.2.39)

Thus

ξ(0) =
n∑

i=1

λi

(
zi

λi

)2

> L. (2.2.40)

Now ξ(ϑ) is monotone decreasing for ϑ > 0, and
∑n

i=1
z2
i

λi
> L therefore

implies the existence of a unique positive ϑ∗ for which ξ(ϑ∗) = L. So we
have only one unique ϑ∗ which gives a unique d̂i for all i (local and global
minimum).
Finiteness of the algorithm is trivial, because it does not contain any loops.

Remark 2.2.8. If the first condition in previous Algorithm 2.2.6 is true then
our optimizing problem was only an interpolation. We cannot talk about
approximation or estimation. This case is not important for us, because it
does not turn up in the real situation.

Note 2.2.9. At this moment we finally find the procedure of determination
of regression function f̂ (see Remark 2.2.4). The quadratic optimizing with
constraints provides ĉj. Riesz Representation Theorem C.1.3 gives us θk.
The boundary conditions of specific differential equation provides γk.

Theorem 2.2.7 (Asymptotic Behavior of Finite Optimizing Solu-

tion). Let f̂ satisfy s2 = minf∈Hm
1
n

∑n
i=1 [Yi − f(Xi)]

2. Suppose f ∈ Hm,
then:

i) s2 a.s.→ σ2
ε , n→∞,

ii) 1
n

∑n
i=1

[
f̂(Xi)− f(Xi)

]2

= Op(n
−r), where r = 2m

2m+q
,

iii) n1/2 [s2 − σ2
ε ]

D→ N (0,Var (ε2)) , n→∞.

Proof. Proof has been properly proceeded in Bos and Yatchew (1997). Pow-
erful Kolmogorov-Tihomirov Theorem C.3.1 (see Kolmogorov and Tihomirov
(1959)) and some important results from de Geer (1990) are applied.

Remark 2.2.10. Var (ε2) may be estimated consistently using the fourth order

moments of the estimated residuals ε̂i = Yi− f̂(Xi) as we can find in Yatchew
(2000).
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2.3 Weighted Least Squares Michal Pešta

2.3 Weighted Least Squares

For some reasons it is sometimes necessary to emphasize some observations,
because some of them could be more important then the other ones. That’s
why we “weight” observation data.

Definition 2.3.1 (Penalizing Using Weighted Least Squares). Opti-
mizing using Weighted Least Squares is

min
f∈Hm

1

n
[y − f(x)]′Λ [y − f(x)] s.t. ‖f‖2Sob,m ≤ L (2.3.41)

where x is an n× 1 vector of q-dimensional vector data points x1, . . . ,xn, Λ
is an n× n positive definite matrix, y is an n× 1 vector of constants, f is a
real function of a real value, f(x) = (f(x1), . . . , f(xn))′ and L > 0.

Theorem 2.3.1 (Weighted Infinite to Finite). Let y = (y1, . . . , yn)′, Λ
an n× n positive definite matrix and define

σ̂2 = min
f∈Hm

1

n
[y − f(x)]′Λ [y − f(x)] s.t. ‖f‖2Sob,m ≤ L, (2.3.42)

s2 = min
c∈Rn

1

n
[y −Ψc]′Λ [y −Ψc] s.t. c′Ψc ≤ L (2.3.43)

where c is an n × 1 vector, f is declared in Definition 2.3.1 and Ψ is the
representor matrix at x1, . . . ,xn. Then σ̂2 = s2. Furthermore, there exists a
solution to (2.3.42) of the form

f̂ =
n∑

i=1

ĉiψxi
(2.3.44)

where ĉ = (ĉ1, . . . , ĉn)′ solves (2.3.43). The estimator f̂ is unique a.e.

Proof. The idea of this proof is almost the same as in proof of Theorem 2.2.1.
The only thing that we have to rewrite for correctness is this succession of
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equalities in (2.2.10):

[y − f(x)]′Λ [y − f(x)]

=


y• −

〈
ψx• ,

n∑
j=1

cjψxj
+ h

〉

Sob,m



′

Λ


y• −

〈
ψx• ,

n∑
j=1

cjψxj
+ h

〉

Sob,m




=

[
y• −

n∑
j=1

〈
ψx• , cjψxj

〉
Sob,m

]′
Λ

[
y• −

n∑
j=1

〈
ψx• , cjψxj

〉
Sob,m

]

=

[
y• −

n∑
j=1

cj
〈
ψx• , ψxj

〉
Sob,m

]′
Λ

[
y• −

n∑
j=1

cj
〈
ψx• , ψxj

〉
Sob,m

]

=

[
y• −

n∑
j=1

Ψ•,jcj

]′
Λ

[
y• −

n∑
j=1

Ψ•,jcj

]
= [y −Ψc]′Λ [y −Ψc]

(2.3.45)

where for an arbitrary g ∈ Hm

〈ψx• , g〉Sob,m =
(
〈ψx1 , g〉Sob,m , . . . , 〈ψxn , g〉Sob,m

)′
. (2.3.46)

2.4 Multiple Observations

There are numbers of situations where multiple observations appear and
we need to work with them. E.g. option price data often consist of multiple
observations at a finite vector of strike prices (see Härdle and Yatchew (2003)
for detailed set-up).

Let X = (X1, . . . , Xk)
′ be the vector of k distinct strike prices. We will

assume that the vector X is in increasing order. Let σ2(X1), . . . , σ
2(Xk) be

the residual variances at each of the distinct strike prices. Let ∆ be the n×k
matrix such that

∆ij :=

{
1 if xi = Xj,
0 otherwise.

(2.4.47)

We may now rewrite our infinite optimizing problem as

min
f∈Hm

1

n
[y −∆f(X)]′Σ−1 [y −∆f(X)] s.t. ‖f‖2Sob,m ≤ L (2.4.48)

where y is an n×1 vector of strike prices, Σ > 0 is a symmetric n×n matrix
and f(X) is defined as in Definition 2.3.1, so it is also an k × 1 vector of
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values. Nothing else that the representor matrix Ψ is in this case k × k, the
analogue to finite quadratic optimizing becomes:

min
c∈Rk

1

n
[y −∆Ψc]′Σ−1 [y −∆Ψc] s.t. c′Ψc ≤ L (2.4.49)

where c is an k × 1 vector of constants.
We can clearly see that this model is only a little extention of the Weighted

Least Squares model declared in Section 2.3. The same properties remain
for this Model with Multiple Observations, too. But we have to realize that
the typical random design model cannot be appropriate for this set-up. We
will discuss this model later in Theorem 4.1.2.

2.5 Multi-Equation Model

Definition 2.5.1 (Multi-Equation Model). The multi-equation model is

Yi = f(Xi) + εi, i = 1, . . . , n (2.5.50)

with these assumptions:

i) Xi are q-dimensional random vectors, i.i.d. with probability law Px and
density px bounded away from zero on the support Qq, the unit cube
in Rq;

ii) εi are p-dimensional i.i.d. random variables with probability law Pε

so that Eεi = 0 for all i and the covariance matrix is Var εi = Σε;
Pε ∈ Pε a collection of probability laws with mean 0 and support
contained in a bounded interval of Rq; Xi and εi are independent;

iii) F , a family of functions from Rq to Rp, is a cross-product of the Sobolev
balls

F =
{
f = (f1, . . . , fp)

′ |fj ∈ Hm(Qq), ‖fj‖2Sob,m ≤ Lj, j = 1, . . . , p
}

(2.5.51)
where m > q

2
.

Note 2.5.1. f and f do not mean the same! f is a vector of function values
and f is a vector function.

Theorem 2.5.1 (Extensions to the Multi-Equation Settings). Let
x1, . . . ,xn be q × 1 vectors, y = (y1, . . . , yn)′, Ξ be a positive definite matrix
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and define

σ̂2 = min
f∈Hm

1

n

n∑
i=1

[yi − f(xi)]
′Ξ [yi − f(xi)]

s.t. ‖fj‖2Sob,m ≤ Lj, j = 1, . . . , p (2.5.52a)

s2 = min
C∈Rn×p

1

n

n∑
i=1


yi −C ′




Ψi1
...

Ψin







′

Ξ


yi −C ′




Ψi1
...

Ψin







s.t. (C1j, . . . , Cnj)Ψ



C1j
...
Cnj


 ≤ Lj, j = 1, . . . , p. (2.5.52b)

where C is an n×p matrix and Ψ is the representor matrix of inner products
of the ψx1 , . . . , ψxn. Then σ̂2 = s2. Furthermore, there exists a solution of

optimizing problem of the form f̂ = (f̂1, . . . , f̂p)
′, f̂j =

∑n
i=1 Ĉijψxi

for j =

1, . . . , p, where Ĉ solves finite dimensional problem (2.5.52b). The estimator

f̂ is unique a.e.

Proof. This proof tends to be very similar to the proof of Theorem 2.2.1.
Let M = span {ψxi

: i = 1, . . . , n} and its orthogonal complement M⊥ ={
h ∈ Hm : 〈ψxi

, h〉Sob,m = 0, i = 1, . . . , n
}

. Representors exist by Theorem

1.4.1 and we can write the Sobolev space as a direct sum of its orthogonal
subspaces, i.e. Hm = M ⊕ M⊥ since Hm is a Hilbert space. Functions
h ∈ M⊥ take on the value zero vector at x1, . . . ,xn. Consider a vector
function f = (f1, . . . , fp)

′. Each fi can be written in the form

fj =
n∑

i=1

Cijψxi
+ hj, hj ∈M⊥, j = 1, . . . , p. (2.5.53)

Then

fj(xk) =

〈
ψxk

,

n∑
i=1

Cijψxi
+ hj

〉

Sob,m

=
n∑

i=1

〈ψxk
, Cijψxi

〉Sob,m

=
n∑

i=1

Cij 〈ψxk
, ψxi
〉Sob,m =

n∑
i=1

ΨkiCij, k = 1, . . . , n, j = 1, . . . , p.

(2.5.54)
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Note further that

‖fj‖2Sob,m = 〈fj, fj〉Sob,m

=

〈
n∑

i=1

Cijψxi
,

n∑
i=1

Cijψxi

〉

Sob,m

+ 〈hj, hj〉Sob,m

= (C1j, . . . , Cnj)Ψ



C1j
...
Cnj


 + 〈hj, hj〉Sob,m , j = 1, . . . , p.

(2.5.55)

Suppose that f minimizes

1

n

n∑
i=1

[yi − f(xi)]
′Ξ [yi − f(xi)] s.t. ‖fj‖2Sob,m ≤ Lj, j = 1, . . . , p

(2.5.56)
then so does f∗ = f − h is zero vector at x1, . . . ,xn where

f = C ′



ψx1

...
ψxn


 +



h1
...
hp


 , f∗ = C ′



ψx1

...
ψxn


 . (2.5.57)

Hence, there exists a function f∗ minimizing the infinite dimensional optimiz-
ing problem that is a linear combination of the representors. Furthermore,

∥∥f ∗j
∥∥2

Sob,m
≤

∥∥f ∗j
∥∥2

Sob,m
+ ‖hj‖2Sob,m = ‖fj‖2Sob,m ≤ Lj, j = 1, . . . , p.

(2.5.58)

We note also that
∥∥f ∗j

∥∥2

Sob,m
= (C1j, . . . , Cnj)Ψ(C1j, . . . , Cnj)

′. Finally, we

observe that the following two problems are equivalent:

min
f∗

1

n

n∑
i=1

[yi − f∗(xi)]
′Ξ [yi − f∗(xi)]

s.t.
∥∥f ∗j

∥∥2

Sob,m
≤ Lj, j = 1, . . . , p, f∗ ∈M ; (2.5.59a)

min
C

1

n

n∑
i=1


yi −C ′




Ψi1
...

Ψin







′

Ξ


yi −C ′




Ψi1
...

Ψin







s.t. (C1j, . . . , Cnj)Ψ



C1j
...
Cnj


 ≤ Lj, j = 1, . . . , p. (2.5.59b)
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Uniqueness is clear, since ψxi
are base elements of M ,

∥∥∥f̂
∥∥∥

2

Sob,m
= L and

adding a function that is orthogonal to the spaces spanned by the representors
will increase the norm.

2.6 Selection of Sobolev Norm Bounds

In nonparametric least squares the smoothing parameter L corresponds to
the diameter of the set of functions over which the estimation takes place.
Heuristically, the larger are the bounds (much larger than true norm), the less
efficient estimators we obtain in spite of the fact that they will be consistent.
On the other hand, the smaller bounds the more efficient estimators we have
but inconsistent.

2.6.1 Cross-Validation

Definition 2.6.1 (Cross-Validation Function). We define the Cross-
Validation function

CV(L) =
1

n

n∑
i=1

[
yi − f̂−i(xi)

]2

(2.6.60)

where f̂−i is obtained by solving

min
f∈Hm

n∑
j=1
j 6=i

[yj − f(xj)]
2 s.t. ‖f‖2Sob,m ≤ L. (2.6.61)

The idea of selection of the smoothing parameter by Cross-Validation is
based on its ability to predict outside the sample. We omit the i-th observa-
tion from the estimation when the i-th observation is being predicted. Then
we use the minimum of the Cross-Validation function CV to estimate the
smoothing parameter (Sobolev bound L). Relationship between the data-fit
and the smoothness of estimator is shown in Figure 2.6.1.

Theorem 2.6.1 (1–1 Mapping of Smoothing Parameter). Let L > 0,
Σ is positive definite and symmetric matrix and

f ∗ = arg min
f∈Hm

1

n
[y − f(x)]′Σ−1 [y − f(x)] s.t. ‖f‖2Sob,m = L (2.6.62)

then there exists a unique χ > 0 such that

f ∗ = arg min
f∈Hm

1

n
[y − f(x)]′Σ−1 [y − f(x)] + χ ‖f‖2Sob,m . (2.6.63)
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Independent data
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Figure 2.6.1: Left—changing monotone curve in H2 depending upon smooth-
ing parameter. Right—optimal value of smoothing parameter according to
Cross-Validation.

Proof. The solution of (2.6.62) always exists and is unique according to the
proof of Theorem 2.3.1 (just alter some inequalities to equalities). From the
same proof of Theorem 2.3.1 follows that finding f ∗—optimizing (2.6.62)—is
the same as searching optimal c∗ such that

c∗ = arg min
c∈Rn

1

n
[y −Ψc]′Σ−1 [y −Ψc] s.t. c′Ψc = L (2.6.64)

and again from the proof of Theorem 2.3.1 the existence and the uniqueness of
c∗ is guaranteed. Let’s fix L. If c∗′Ψc∗ = L, we can simply apply Lagrange
Multiplier Theorem on our bond condition c′Ψc = L using the Lagrange
function

J (c, λ) =
1

n
[y −Ψc]′Σ−1 [y −Ψc] + λ (c′Ψc− L) (2.6.65)

and it provides us a unique Lagrange multiplier χ. We do not care about
−χL because it does not depend on c.

Quadratic form J (·, λ) have to be positive definite according Lagrange
Multiplier Theorem (we are minimizing J ). That implies χ > 0.

Remark 2.6.1. There exists a 1–1 mapping Z : R+ → R+ : L 7→ χ.
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Remark 2.6.2. There has to be an equality not an inequality in condition of
(2.6.62), because for the sharp inequality we are able to find lots of χ > 0.
If c∗′Ψc∗ < L, then we are talking about the interpolation not the approx-
imation because y = Ψc∗. This is very unusual case for a real statistical
situation and our problem, too. See also Remark 2.2.8.

Proof. Global extreme of function

I(c) =
1

n
[y −Ψc]′Σ−1 [y −Ψc] (2.6.66)

is also its local extreme on open set T = {c ∈ Rn|c′Ψc < L}. Hence all the
partial derivatives need to be equal zero in the optimal point c∗. Using the
matrix notation of the partial derivatives, positive definiteness and symmetry
of the matrices Σ and Ψ we get:

∂I(c)
∂ci

!
= 0 ∀i ⇐⇒ y = Ψc. (2.6.67)

Remark 2.6.3. At this moment we have shown that the penalization

a)

min
f∈Hm

1

n

n∑
i=1

[yi − f(xi)]
2 s.t. ‖f‖2Sob,m ≤ L, (2.6.68)

b)

min
f∈Hm

{
1

n

n∑
i=1

[yi − f(xi)]
2 + χ ‖f‖2Sob,m

}
(2.6.69)

have “almost” the same meaning.

2.6.2 Other Methods

Cross-Validation is basic Leave-One-Out method for choosing a smoothing
parameter in the nonparametric regression. There are a lot of other methods
based on penalizing functions or plug-in selectors. Specific types of “smooth-
ing choosers”—such as Generalized Cross-Validation, Akaike’s Information
Criterion, Finite Prediction Error, Shibata’s model selector or Rice’s band-
width selector—can be found in Härdle (1990).
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Chapter 3

Isotonia

In regression in Sobolev spaces we have demanded only smoothness con-

straint on the regression function f ∈ F =
{
f ∈ Hm(Qq) : ‖f‖2Sob,m ≤ L

}
.

Now our estimators should also underlie additional constraints. We therefore
focus on the imposition of additional constraint—isotonia—on nonparamet-
ric regression estimation and testing of this constraint. Two basic types of
isotonia are monotonicity and convexity/concavity so we will concentrate
mostly on them.

We would like to estimate to the subject f ∈ F̃ ⊆ F where F̃ combines

smoothness with further functional properties and to test H0 : f ∈ F̃ .
We examine general constrained submodel from Bos and Yatchew (1997).

Then I have set up this model for isotonia and declared two main attitudes
to isotonia—definite and indefinite.

3.1 Constrained Submodel

Definition 3.1.1 (Constrained Single Equation Model). Invoke the
assumptions for the Single Equation Model 2.1.1 and add these assumptions:

iv) F̃ ⊆ F is a closed set of functions such that the metric entropy
logN(δ; F ) ≤ Aδ−ζ for some A > 0, ζ > 0;

v)
{

F̃n

}∞
n=1

is a descending sequence of the closed and possibly random

sets of functions F ⊇ F̃1 ⊇ . . . ⊇ F̃1 ⊇ . . . ⊇ F̃ such that
⋂∞

n=1 F̃n =

F̃ a.s. and logN(δ; F̃n) ≤ A′δ−ζ , n = 1, 2, . . . for some A′ > 0.

Remark 3.1.1. Metric entropy H(δ; F ) := logN(δ; F ), where N(δ; F ) de-
fines the minimal number of points of a δ-net in F so here it denotes the
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minimum number of balls of radius δ in supnorm required to cover the set of
functions F .

Theorem 3.1.1 (Convergence of Constrained Estimation). Let f̂ sat-

isfy s2 = minf∈Hm

∑n
i

1
n

[Yi − f(Xi)]
2 s.t. f ∈ F̃n. If f ∈ F̃ then the conclu-

sion of Theorem 2.2.7 (Asymptotic Behavior of Finite Optimizing Solution)

continue to hold with rate of convergence η = 2m
2m+q

. Suppose f /∈ F̃ , ‖f‖2Sob,m

is finite and there exists a unique f̃ ∈ F̃ satisfying ming∈ eF
∫

(f − g)2 dPx.

Then s2 a.s.−−→ σ2
ε +

∫ (
f − f̃

)2

dPx, n→∞.

Proof. Proof has also been properly proceeded in Bos and Yatchew (1997).

Definition 3.1.2 (Derivative of Representor Matrix). Let ψx1 , . . . , ψxn

be the representors for function evaluation at x1, . . . , xn respectively, i.e.
〈ψxi

, f〉Sob,m = f(xi) for all f ∈ Hm(Q1), i = 1, . . . , n. Let Ψ(1) be the first
derivative of n × n representor matrix whose columns are equal to the first
derivatives of the representors evaluated at x1, . . . , xn; i.e.

Ψ
(1)
i,j = ψ(1)

xj
(xi), i, j = 1, . . . , n. (3.1.1)

Remark 3.1.2. It is very important that the derivative of the representor
matrix is defined in a “column” way. In spite of Theorem 2.2.3, derivative of
representor matrix needn’t to be a symmetric one.

3.2 Monotonicity

Definition 3.2.1 (Definite Monotonicity). Optimizing with Smoothness
and Definite Monotonicity Constraint is

minc∈Rn

1

n
[y −Ψc]′ [y −Ψc] (3.2.2)

s.t. c′Ψc ≤ L (3.2.3)

Ψ(1)c ≥ 0 (3.2.4)

where Ψ is an n × n representor matrix at the data points x1, . . . , xn, Ψ(1)

is the first derivative of representor matrix at the data points x1, . . . , xn, y
is an n× 1 vector of constants and L > 0.

Remark 3.2.1. We should call Definition 3.2.1 Minimizing with Smoothness
and Definite Non-decreasing Constraint for correctness.
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Conjecture 3.2.2. Definition 3.2.1 determines a set of functions

F̃n := closure
{
f ∈ Hm(Q1) : ‖f‖2Sob,m ≤ L, f ′(xi) ≥ 0, i = 1, . . . , n

}
.

(3.2.5)

Definition 3.2.3 (Indefinite Monotonicity). Optimizing with Smooth-
ness and Indefinite Monotonicity Constraint is

minc∈Rn

1

n
[y −Ψc]′ [y −Ψc] (3.2.6)

s.t. c′Ψc ≤ L (3.2.7)

[Ψc]i ≤ [Ψc]j for xi ≤ xj, i, j = 1, . . . , n (3.2.8)

where Ψ is an n × n representor matrix at the data points x1, . . . , xn, y is
an n× 1 vector of constants and L > 0.

Remark 3.2.2. We should call Definition 3.2.3 Minimizing with Smoothness
and Indefinite Non-decreasing Constraint for correctness.

Conjecture 3.2.4. Definition 3.2.3 determines a set of functions

F̃n := closure{
f ∈ Hm(Q1) : ‖f‖2Sob,m ≤ L, f(xi) ≤ f(xj), xi ≤ xj, i, j = 1, . . . , n

}
.

(3.2.9)

Remark 3.2.3. Versions 3.2.1 and 3.2.3 are slightly different. Using the Mean
Value Theorem, the second definition ensures us that the estimated derivative
is positive (non-negative) at some point between each pair of the consecu-
tive points. The first one requires the estimated derivatives to be positive
(non-negative) at the points x1, . . . , xn. Neither procedure ensures that the
estimated function is monotone everywhere in small samples but, as data
accumulate, the smoothness requirement prevents non-monotonicity.

3.3 Convexity and Concavity

Definition 3.3.1 (Second Derivative of Representor Matrix). Let
ψx1 , . . . , ψxn be the representors for function evaluation at x1, . . . , xn respec-
tively, i.e. 〈ψxi

, f〉Sob,m = f(xi) for all f ∈ Hm(Q1), i = 1, . . . , n. Let Ψ(2) be
the second derivative of n × n representor matrix whose columns are equal
to the second derivatives of representors evaluated at x1, . . . , xn; i.e.

Ψ
(2)
i,j = ψ(2)

xj
(xi), i, j = 1, . . . , n. (3.3.10)
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Figure 3.3.1: Various isotonic curves in H4. Data set is from Table 4.2.

Definition 3.3.2 (Definite Convexity). Optimizing with Smoothness and
Definite Convexity Constraint is

minc∈Rn

1

n
[y −Ψc]′ [y −Ψc] (3.3.11)

s.t. c′Ψc ≤ L (3.3.12)

Ψ(2)c ≥ 0 (3.3.13)

where Ψ is an n × n representor matrix at the data points x1, . . . , xn, Ψ(2)

is the second derivative of representor matrix at the data points x1, . . . , xn,
y is an n× 1 vector of constants and L > 0.

Remark 3.3.1. Analogically we can also define Indefinite Convexity, Definite
Concavity and Indefinite Concavity. In Figure 3.3.1 we can see various types
of the isotonic estimators in the Sobolev space H4.
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Chapter 4

Asymptotic Behavior

Our last chapter in theoretical approach concerns the asymptotic behavior
of our estimators, e.g. its convergence in probability and in distribution.

We show asymptotic behavior based upon Strong Law of Large Numbers
and Central Limit Theorem 4.1.2 (proved in Härdle and Yatchew (2003)).
Then we examine the residual regression test for the regression with con-
straint from Bos and Yatchew (1997) and apply this test to the isotonia. Fi-
nally, we acquaint ourselves with bootstrap techniques from Yatchew (2003)
and proceed to the construction of confidence intervals and test of isotonia
in a bootstrap way.

4.1 Confidence Intervals

Theorem 4.1.1 (Consistency of Estimator). Suppose Yi = f(Xi) + εi,
where εi are independently distributed with Var (εi) = σ2

i and 0 < σ2
i < K

for some K. Xi are i.i.d. with continuous density px on [a, b] bounded away
from zero. Then

sup
x∈[a,b]

∣∣∣f̂ (s)(x)− f (s)(x)
∣∣∣ P−→ 0, n→∞ for s = 0, . . . ,m− 2 (4.1.1)

and
1

n

n∑
i=1

(
f(Xi)− f̂(Xi)

)2

= Op

(
n−

2m
2m+1

)
, n→∞. (4.1.2)

Proof. Theorem 2.2.7 says that f̂ converges to f in mean squared error at
the indicated rate of convergence. By Theorem 1.5.1, all the functions in
the estimating set have derivatives up to order m − 1 uniformly bounded
in supnorm. If the first derivatives are uniformly bounded, the convergence
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in mean square implies the convergence of f̂ to f in supnorm. In fact, if
(m− 1)-th derivatives are uniformly bounded, then this ensures that f̂ (s) for
s ≤ m− 2 converges in supnorm.

We do not discuss the random (stochastic) design model for a while. We
propose a special type of the fixed design model in Theorem 4.1.2.

We focus on Multiple Observations Model in Section 2.4, defined in
(2.4.48). Even if the number of distinct strike prices k does not increase,
the call function can be estimated consistently at X1, . . . , Xk. This does not
assure that the estimates of derivatives are estimated consistently. Indeed,
no “nonparametric” estimator can consistently estimate derivatives at a data
point without accumulation of observations in the neighborhood of the point.

Theorem 4.1.2 (Asymptotic Behavior Based upon Laws of Large
Numbers and Central Limit Theorem). Given data {(xi, Yi)}ni=1 where
Yi = f(xi) + εi, the εi are independently distributed and xi are sampled
from a discrete distribution whose support is X1, . . . , Xk with corresponding
probabilities π1, . . . , πk. Suppose that f lies strictly inside the ball of functions
‖f‖2Sob,m < L and f is strictly increasing and strictly convex. Let Ȳ (X) =(
Ȳ1(X1), . . . , Ȳk(Xk)

)′
be the k-dimensional vector of average observations

at the k values. Let Π/n = Var (Ȳ (X)) be the k × k diagonal matrix of
variances of the point means estimators, i.e. Πjj = σ2(Xj)/πj, j = 1, . . . , k.
Then

i) P
[
f̂(X) = Ȳ (X)

]
n→∞−−−→ 1, (4.1.3)

ii) f̂(X)
P−→

n→∞
f(X), (4.1.4)

iii) f̂ (1)(X)
P−→

n→∞
f (1)(X), (4.1.5)

iv) f̂ (2)(X)
P−→

n→∞
f (2)(X), (4.1.6)

v)
√
n

(
f̂(X)− f(X)

) D−→
n→∞

N (0,Π), (4.1.7)

vi)
√
n (ĉ− c) D−→

n→∞
N (0,Ψ−1ΠΨ−1), (4.1.8)

vii)
√
n

(
f̂ (1)(X)− f (1)(X)

)
D−→

n→∞
N (0,Ψ(1)Ψ−1ΠΨ−1Ψ(1)), (4.1.9)

viii)
√
n

(
f̂ (2)(X)− f (2)(X)

)
D−→

n→∞
N (0,Ψ(2)Ψ−1ΠΨ−1Ψ(2)). (4.1.10)

Remark 4.1.1. Proof of this Theorem can be found in Härdle and Yatchew
(2003).
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Proof. All we have to realize that Ψ−1Ȳ (X) solves the unconstrained opti-
mizing problem (2.4.49):

min
c∈Rk

1

n
[y −∆Ψc]′Σ−1 [y −∆Ψc] s.t. c′Ψc ≤ L. (4.1.11)

Now let ĉ minimize (4.1.11) subject to (3.2.4) and (3.3.13). Since f is a
linear combination of the representors

f̂(x) =
k∑

j=1

ĉjψXj
(x) (4.1.12)

and its first two derivatives consistently estimate their true counterparts (see
Theorem 4.1.1). We also know

[
f̂(X)

]′
Ψ−1f̂(X)

P−→ [f(X)]′Ψ−1f(X) < L, n→∞ (4.1.13)

and as sample size increases, the smoothness constraint become non-binding
in probability. According to Strong Law of Large Numbers

P
[
f̂(X) = Ȳ (X)

]
n→∞−−−→ 1. (4.1.14)

Using conventional Central Limit Theorems, we obtain

√
n

(
f̂(X)− f(X)

) D−→ N (0,Π), n→∞ (4.1.15)

and equations (4.1.8), (4.1.9) and (4.1.10) follow immediately.

4.2 Tests of Hypothesis

Our interest is also concentrated on testing the main property of our esti-
mator, isotonia. Smoothness of our estimator is certain by its construction.
The null hypothesis to be tested is that our regression function is isotonic:

H0 : f ∈ F̃ = {f ∈ F |f is isotonic} , (4.2.16)

while, without a specific alternative model, the alternative to be tested will
be that the null is false:

H1 : f ∈ F\F̃ . (4.2.17)

Remark 4.2.1. Particular null hypothesis instead of the general one declared
in (4.2.16) can be e.g.

H0 : f ∈ F̃ = {f ∈ F |f is increasing & convex} . (4.2.18)

45



Isotonic Regression in Sobolev Spaces 4. Asymptotic Behavior

Let’s focus only on the one-dimensional case (e.g. q = 1)—in higher
dimension we can hardly define isotonic properties. We dwell on the resid-
ual regression test. The idea of our test is as follows. Under H0, since

Eε

[
Y − f̂(X)|X

]
= 0, we have

Eε,X

{(
Y − f̂(X)

)
Eε

[
Y − f̂(X)|X

]
px(X)

}
= 0, (4.2.19)

while under H1, since Eε

[
Y − f̂(X)|X

]
= f(X)− f̂(X), we have

Eε,X

{(
Y − f̂(X)

)
Eε

[
Y − f̂(X)|X

]
px(X)

}
(4.2.20)

= Eε,X

{(
Eε

[
Y − f̂(X)|X

])2

px(X)

}
(4.2.21)

= EX

[(
f(X)− f̂(X)

)2

px(X)

]
(4.2.22)

> 0. (4.2.23)

The sharp inequality in (4.2.23) follows from the fact that under the alter-

native H1 is f ∈ F\F̃ , so PX

[
f(X) 6= f̂(X)

]
< 1.

Define a special modification of a standard one-sample “second-order”
U -statistic

Un =
1

n(n− 1)λ

n∑
i=1

n∑
j=1
j 6=i

(
Yi − f̂(Xi)

) (
Yj − f̂(Xj)

)
K

(
Xi −Xj

λ

)
,

(4.2.24)
where K(·) is a kernel with the common smoothing parameter λ. We assume
that the underlying univariate kernel is symmetric having support [−1,+1].
We can convert (4.2.24) into

Un =
1

n

n∑
i=1

(
Yi − f̂(Xi)

)



1

(n− 1)λ

n∑
j=1
j 6=i

(
Yj − f̂(Xj)

)
K

(
Xi −Xj

λ

)

 ,

(4.2.25)
where the term in the square brackets may be thought of as an estimator

of
(
f(Xi)− f̃(Xi)

)
pX(Xi) such that f̃ has been declared in Theorem 3.1.1.
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We can also expand (4.2.25) into

Un = Un,1 + Un,2 + Un,3

=
1

n(n− 1)λ

n∑
i=1

n∑
j=1
j 6=i

εiεjK

(
Xi −Xj

λ

)

+
1

n(n− 1)λ

n∑
i=1

n∑
j=1
j 6=i

(
f(Xi)− f̂(Xi)

)(
f(Xj)− f̂(Xj)

)
K

(
Xi −Xj

λ

)

+
2

n(n− 1)λ

n∑
i=1

n∑
j=1
j 6=i

εi

(
f(Xj)− f̂(Xj)

)
K

(
Xi −Xj

λ

)
.

(4.2.26)

Theorem 4.2.1 (Test of Isotonia). Suppose f ∈ F̃ , nλ → ∞ and
n1−ηλ1/2 → 0 where η = 2m

2m+1
is the rate of the convergence of the restricted

estimator. Then

nλ1/2Un
D−→ N

(
0, 2σ4

ε

∫
p2(x)dx

∫
K2(v)dv

)
, n→∞. (4.2.27)

Let the estimated variance of U be given by:

σ̂2
Un

=
2

n2(n− 1)2λ2

n∑
i=1

n∑
j=1
j 6=i

(
Yi − f̂(Xi)

)2 (
Yj − f̂(Xj)

)2

K2

(
Xi −Xj

λ

)
.

(4.2.28)
Then

n(n− 1)λσ̂2
Un

P−→ 2σ4
ε

∫
p2(x)dx

∫
K2(v)dv, n→∞. (4.2.29)

Hence
Un

σ̂Un

D−→ N (0, 1) , n→∞. (4.2.30)

Remark 4.2.2. We demonstrate an implementation of Theorem 4.2.1 in Al-
gorithm 4.2.1 and also in Subsection A.6.1. Our set-up is the same as in
Remark 4.2.1.

Remark 4.2.3. Proof of this Theorem 4.2.1 can be found in Bos and Yatchew
(1997). We only proceed some steps differently or more properly for better
understanding.
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Proof. We divide the proof into five steps.

i) Variance of Un,1

Note that

E(Un,1) = E




1

n(n− 1)λ

n∑
i=1

n∑
j=1
j 6=i

εiεjK

(
Xi −Xj

λ

)

 = 0 (4.2.31)

according to the assumptions of independence in Definition 2.1.1 and i 6= j.
Then VarUn,1 = EU2

n,1. To obtain this, we need to calculate

E
[
ε2

i ε
2
j

λ
K2

(
Xi −Xj

λ

)]
(4.2.32)

= σ4
ε

∫

Qn

1

λ
K2

(
xi − xj

λ

) n∏

k=1

px(xk)dx (4.2.33)

= σ4
ε

∫ 1

0

∫ 1

0

1

λ
K2

(
xi − xj

λ

)
px(xi)px(xj)dxidxj (4.2.34)

= σ4
ε

∫ 1

0

px(xi)

{∫ (1−xj)/λ

−xj/λ

K2(v)px(λv + xj)dv

}
dxj (4.2.35)

λ→0−−→ σ4
ε

∫ 1

0

p2
x(xi)dxi

∫ +1

−1

K2(v)dv. (4.2.36)

We have substituted v :=
xi−xj

λ
in (4.2.35) and thus dv = dxi

λ
. In (4.2.36)

we have sent λ into 0, used Lebesgue’s dominated convergence theorem and
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realized that K(·) = 0 outside [−1,+1]. Hence

Var (nλ1/2Un,1)

= E




1

(n− 1)λ1/2

n∑
i=1

n∑
j=1
j 6=i

εiεjK

(
Xi −Xj

λ

)



2

=
1

(n− 1)2λ

n∑
i=1

E




n∑
j=1
j 6=i

εiεjK

(
Xi −Xj

λ

)



2

+
1

(n− 1)2λ

n∑
i=1

n∑

k=1
k 6=i

E




n∑
j=1
j 6=i

εiεjK

(
Xi −Xj

λ

)






n∑
j=1
j 6=k

εkεjK

(
Xk −Xj

λ

)



=
1

(n− 1)2λ

n∑
i=1

n∑
j=1
j 6=i

E
[
ε2

i ε
2
jK

2

(
Xi −Xj

λ

)]

+
1

(n− 1)2λ

n∑
i=1

E




n∑

k=1
k 6=i

εiεkK

(
Xi −Xk

λ

)



2

i6=j
=

2

(n− 1)2
n(n− 1)E

[
ε2

i ε
2
j

λ
K2

(
Xi −Xj

λ

)]

n→∞−−−→ 2σ4
ε

∫
p2

xdx

∫
K2(v)dv,

(4.2.37)

because λ ≡ λn.
ii) Distribution of Un,1

Let’s define

Zn,i :=
λ1/2

σ2
ε

√
2
∫
px(x)dx

∫
K2(v)dv

εi

[
2

(n− 1)λ

∑
1≤j<i

εjK

(
Xi −Xj

λ

)]

(4.2.38)
and rewrite

Un,1 =
1

n

n∑
i=1

εi
2

(n− 1)λ

∑
1≤j<i

εjK

(
Xi −Xj

λ

)
(4.2.39)
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where λ and K
(

Xi−Xj

λ

)
are implicitly functions of n. Note that

n∑
i=1

Zn,i =
nλ1/2Un,1

σ2
ε

√
2
∫
px(x)dx

∫
K2(v)dv

. (4.2.40)

Due to the assumptions for Constrained Single Equation Model 3.1 in Def-
inition 3.1.1, all the propositions in McLeish Theorem C.4.1 (see McLeish
(1974)) are satisfied. There has been used terminology of Feller in Theorem
C.4.1. In our set-up according to Definition 3.1.1, (C.4.12) means nothing
else than the convergence of variances. Applying mentioned theorem, we
conclude

n∑
i=1

Zn,i
D−→ N (0, 1), n→∞ (4.2.41)

and hence

nλ1/2Un,1
D−→ N

(
0, 2σ4

ε

∫
px(x)dx

∫
K2(v)dv

)
, n→∞. (4.2.42)

iii) Rate of Convergence of Un,2 and Un,3

Define n × n matrix K whose entries are Kij = K
(

Xi−Xj

λ

)
, i, j = 1, . . . , n.

The matrix K
nλ

when multiplied by a column vector of ones and evaluated
in x = (x1, . . . , xn)′, yields the kernel estimate of the density px of X =
(X1, . . . , Xn)′ at X1 = x1, . . . , Xn = xn. The matrix is symmetric and may
be decomposed according Eigen Decomposition Theorem C.2.1 as

K

nλ
= ΦΥΦ′ (4.2.43)

where Φ is orthogonal and Υ is the diagonal matrix of eigenvalues. For given
n the matrix K and hence the eigenvalues are determined by the sequence
X1, . . . , Xn. Under our assumptions for Constrained Single Equation Model
3.1 in Definition 3.1.1 for Xis, max |Υii| is bounded in probability. Similarly,
if K2 is the matrix whose elements are the squares of the elements of K,
then K2

nλ
is symmetric with the largest eigenvalue bounded in probability.

Let f(X)− f̂(X) be the n× 1 vector with elements f(Xi)− f̂(Xi). Since
exists k such that

P [max |Υii| > k]
n→∞−−−→ 0 (4.2.44)
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we have with probability going to one:

Un,2 =
1

n

(
f(X)− f̂(X)

)′
ΦΥΦ′

(
f(X)− f̂(X)

)
(4.2.45)

≤ 1

n

(
f(X)− f̂(X)

)′
ΦkIΦ′

(
f(X)− f̂(X)

)
(4.2.46)

=
k

n

n∑
i=1

(
f(Xi)− f̂(Xi)

)2

(4.2.47)

in which case,

Un,2 = Op

(
1

n

n∑
i=1

(
f(Xi)− f̂(Xi)

)2
)
, n→∞. (4.2.48)

Using Kolmogorov-Tihomirov Theorem C.3.1 it can be shown that exists
A > 0 such that for δ > 0, we have logN(δ; F ) < Aδ−1/m. Consequently
applying Lemma 3.5 from de Geer (1990), we obtain that there exist positive
constants C0, K0 such that for all K > K0

P

 sup
‖g‖2Sob,m≤L

√
n

∣∣− 2
n

∑n
i=1 εi (f(Xi)− g(Xi))

∣∣
(

1
n

∑n
i=1 (f(Xi)− g(Xi))

2) 1
2
− 1

4m

≥ KA1/2


 ≤ exp

{−C0K
2
}
.

(4.2.49)

Since f ∈ F and f̂ minimizes the sum of squared residuals over g ∈ F ,

1

n

n∑
i=1

[
Yi − f̂(Xi)

]2

≤ 1

n

n∑
i=1

[Yi − g(Xi)]
2 , g ∈ F (4.2.50)

1

n

n∑
i=1

[(
f(Xi)− f̂(Xi)

)
+ εi

]2

≤ 1

n

n∑
i=1

[(f(Xi)− g(Xi)) + εi]
2 , g ∈ F

⇓ realize that f ∈ F

1

n

n∑
i=1

(
f(Xi)− f̂(Xi)

)2

≤ − 2

n

n∑
i=1

εi

(
f(Xi)− f̂(Xi)

)
. (4.2.51)

Now combine (4.2.49) and (4.2.51) to obtain the result that ∀K > K0

P
[

1

n

n∑
i=1

(
f(Xi)− f̂(Xi)

)2

≥
(
K2A

n

) 2m
2m+1

]
≤ exp

{−C0K
2
}
. (4.2.52)

Thus

1

n

n∑
i=1

(
f(Xi)− f̂(Xi)

)2

= Op

(
n−

2m
2m+1

)
, n→∞. (4.2.53)
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Similarly,

Un,3 = Op

(
1

n

n∑
i=1

εi

(
f(Xi)− f̂(Xi)

))
= Op

(
n−

2m
2m+1

)
, n→∞.

(4.2.54)
iv) Since by the assumptions, n1−ηλ1/2 → 0, we have

nλ1/2Un,2
P−→ 0, n→∞, (4.2.55)

nλ1/2Un,3
P−→ 0, n→∞, (4.2.56)

in which case

nλ1/2Un
D−→

n→∞
N

(
0, 2σ4

ε

∫
px(x)dx

∫
K2(v)dv

)
. (4.2.57)

v) To show that

n(n− 1)λσ̂2
Un

P−→
n→∞

2σ4
ε

∫
px(x)dx

∫
K2(v)dv, (4.2.58)

expand to obtain:

n(n− 1)λσ̂2
Un

=
2

n(n− 1)λ

n∑
i=1

n∑
j=1
j 6=i

ε2
i ε

2
jK

2

(
Xi −Xj

λ

)

+
2

n(n− 1)λ

n∑
i=1

n∑
j=1
j 6=i

(
f(Xi)− f̂(Xi)

)2 (
f(Xj)− f̂(Xj)

)2

K2

(
Xi −Xj

λ

)

+
4

n(n− 1)λ

n∑
i=1

n∑
j=1
j 6=i

ε2
i

(
f(Xj)− f̂(Xj)

)2

K2

(
Xi −Xj

λ

)
.

(4.2.59)

The first term converges to 2σ4
ε

∫
px

∫
K2 from (4.2.36) and Strong Law of

Large Numbers. Using arguments similar to part iii) above, the second and
the third term converge to zero, in which case

n(n− 1)λσ̂2
Un

P−→
n→∞

2σ4
ε

∫
px(x)dx

∫
K2(v)dv. (4.2.60)

Combining these results, we have

Un/σ̂Un

D−→
n→∞

N (0, 1). (4.2.61)
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Remark 4.2.4. If the null hypothesis is true, then the distribution of Un

(suitably standardized) is determined by the distribution of Un,1, which is
approximately normally distributed.

More elaborated approach that generalizes the above described has been
examined in Zheng (1996), Yatchew (1998) and Fan and Li (1996).

Algorithm 4.2.1 Testing of Monotonicity and Convexity Based on Residuals

Input: m, α, {(xi, yi)}ni=1, χ, λ
Output: Un/σ̂Un and true/false

Require: α ∈ (0, 1), χ > 0, λ > 0 //χ could be also obtained using CV
1: Calculate representor matrix Ψ from (1.4.19).
2: Calculate ĉ by solving (2.6.63) subject to (3.2.4) and (3.3.13). //Σ can

be identical matrix
3: Perform the restricted regression of y on x from (2.2.8) to obtain f̂(x).
4: for i in 1 : n do
5: tmp← |x− x[i]|
6: tmp← (tmp ≤ λ)
7: tmp [i]← 0
8: K [i, ]← 1

2
tmp

9: end for //calculate the kernel matrix K
(xi−xj

λ

)
= 1

2
I{|xi−xj |≤λ}

10: Determine Un from (4.2.25).
11: Determine σ̂2

Un
from (4.2.28).

12: Perform a one-sided test comparing Un/σ̂Un on level (1−α)×100% with
the critical value from the N (0, 1).

4.3 Bootstrap

The bootstrap is a resampling technique that prescribes taking “bootstrap
samples” using the same random mechanism that generated the data.

In the case of the fixed design models with homoscedastic error structure,
that are less general than the random ones, one may use only the estimated
residuals (residuals resampling):

ε̂i = Yi − f̂(Xi), i = 1, . . . , n. (4.3.62)

Resampling them as
{
ε̂B

i

}n

i=1
gives bootstrap observations

Y B
i = f̂(Xi) + ε̂B

i , i = 1, . . . , n. (4.3.63)
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We propose in our random design model only residuals resampling and we do
not care about “naive bootstrap”

{(
XB

i , Y
B
i

)}n

i=1
. Of course, (4.3.63) makes

sense only if the error distribution does not depend on X.
An alternative residual resampling methodology known as the “wild” or

“external” bootstrap is useful particularly in heteroscedastic setting. Each
bootstrap residual is drawn from the two-point distribution. So for each es-
timated residual ε̂i = Yi− f̂(Xi) one creates a two-point random distribution
for a random variable (e.g. ωi) with probabilities and properties as shown in
Table 4.1. One then draws from this distribution to obtain ε̂B

i .

ωi P(ωi) E(ωi) E(ω2
i ) E(ω3

i )

ε̂i(1−
√

5)/2 (5 +
√

5)/10 0 ε̂2
i ε̂3

i

ε̂i(1 +
√

5)/2 (5−√5)/10 0 ε̂2
i ε̂3

i

Table 4.1: A two-point distribution for “wild” or “external” bootstrap.

4.3.1 Bootstrap Confidence Intervals

Construction of confidence intervals and tests of hypothesis has been per-
formed using the indicated asymptotic normal approximation. Alternatively,
they may be implemented using the bootstrap as we describe below. Algo-
rithm 4.3.1 outlines the implementation of the percentile bootstrap confi-
dence interval at f(x0).

In Section B.1 and Section B.2 we practically construct various confidence
intervals based on Theorem 4.1.2 and Algorithm 4.3.1. Implementation can
be seen in Subsection A.5.1.

4.3.2 Bootstrap Tests of Hypothesis

Also tests of hypothesis may be implemented using the bootstrap procedures.
Similar conclusion as in Theorem 4.2.1 can be induced for bootstrap.

Theorem 4.3.1. Continuing with the assumptions of Theorem 4.2.1, holds

UB
n /σ̂

B
Un

D−→ N (0, 1) , n→∞. (4.3.64)

Proof. This proof is similar to that of Theorem 4.2.1 and we can find it in
Bos and Yatchew (1997).

Implementation of Theorem 4.3.1 we can see in Algorithm 4.3.2, Example
4.3.1 and also in Subsection A.6.1.
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Algorithm 4.3.1 Bootstrap Percentile Point-Wise Confidence Intervals for

f̂ , f̂ (1) and f̂ (2)

Input: m, α, {(xi, yi)}ni=1, χ, b

Output:

[
f̂

(s)
down(Xj), f̂

(s)
up (Xj)

]
, j = 1, . . . , k and s = 0, 1, 2

Require: α ∈ (0, 1), χ > 0 //χ could be also obtained using CV
1: X ← x [1]
2: for i in x do
3: if length(x[x = i]) = 0 then
4: X ← c(X, i)
5: end if
6: end for //determines values X = (X1, . . . , Xk)

′

7: k ← length(X)
8: for i in 1 : n do
9: for j in 1 : k do

10: if x [i] = X [j] then
11: ∆ [i, j] = 1
12: else
13: ∆ [i, j] = 0
14: end if
15: end for
16: end for //determines matrix ∆ according (2.4.47)
17: Calculate ĉ from (2.4.49) applying amended Algorithm 2.2.1.

18: Perform the restricted regression of y on x from (2.2.8) to obtain f̂(x).
19: Calculate the estimated residuals {ε̂i}ni=1 from (4.3.62).
20: for k in 1 : b do
21: Construct a bootstrap data set

{(
xi, y

B
i

)}n

i=1
from (4.3.63) where ε̂B

i is
obtained by sampling from {ε̂1, . . . , ε̂n} using the bootstrap (or “wild”
bootstrap).

22: Using the bootstrap data set obtain ĉB by solving (2.6.63).

23: Calculate and save f̂B(Xj),
(
f̂ (1)(Xj)

)B

and
(
f̂ (2)(Xj)

)B

.

24: end for //b . . . bootstrap range; repeat steps multiple times

25: To obtain a (1−α)×100% point-wise confidence intervals for f̂ , f̂ (1) and

f̂ (2) obtain α/2 and (1 − α/2) quantiles of the corresponding bootstrap
estimates.
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Algorithm 4.3.2 Bootstrap Residual Regression Test of Monotonicity and
Convexity

Input: m, α, {(xi, yi)}ni=1, χ, λ, b
Output: UB

n /σ̂
B
Un

and true/false

Require: α ∈ (0, 1), χ > 0, λ > 0 //χ could be also obtained using CV
1: Calculate representor matrix Ψ from (1.4.19).
2: Calculate ĉ by solving (2.6.63) subject to (3.2.4) and (3.3.13) applying

amended Algorithm 2.2.1.
3: Perform the restricted regression of y on x from (2.2.8) to obtain f̂(x).
4: Calculate the estimated residuals {ε̂i}ni=1 from (4.3.62).
5: for i in 1 : n do
6: tmp← |x− x[i]|
7: tmp← (tmp ≤ λ)
8: tmp [i]← 0
9: K [i, ]← 1

2
tmp

10: end for //calculate the kernel matrix K
(xi−xj

λ

)
= 1

2
I{|xi−xj |≤λ}

11: Determine Un from (4.2.25).
12: Determine σ̂2

Un
from (4.2.28).

13: for k in 1 : b do
14: Construct a bootstrap data set

{(
xi, y

B
i

)}n

i=1
from (4.3.63) where ε̂B

i is
obtained by sampling from {ε̂1, . . . , ε̂n} using the bootstrap (or “wild”
bootstrap).

15: Using the bootstrap data set, estimate the model under the null and
calculate UB

n and σ̂B
Un

.
16: Calculate and save the standardized test statistic UB

n /σ̂
B
Un

.
17: Define the bootstrap critical value for a α×100% significance level test

to be the (1− α)× 100-th percentile of the UB
n /σ̂

B
Un

.
18: end for //b . . . bootstrap range; repeat steps multiple times
19: Compare Un/σ̂Un , the actual value of the statistic, with the bootstrap

critical value.
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Example 4.3.1 (Monotonicity and Convexity Residual Regression
Test and its Bootstrap Versions). Given data set from Table 4.2.

Number of lines ×1000 0.1 0.2 0.44 0.5 0.75 0.9
Time in seconds 0.35 0.28 0.42 0.51 0.79 0.77

Table 4.2: Translation time of the specific number of lines of this diploma
thesis LATEX2ε source code on my old Pentium R© 120MHz with FreeBSD 6.0
using LATEX 3.141592.

i) Residual Regression Test
Follow Algorithm 4.2.1. Suppose order of Sobolev space m = 4. By solving
(2.6.63) subject to (3.2.4) and (3.3.13), we easily obtain ĉ:

88.968305 -91.464147 -75.481021 8.381719 158.231554 -88.102874

We assume the kernel smoothing parameter λ = 0.5590617 (can be estimated
as n−1/5 [max(x)−min(x)]). Then we calculate vector

(
Un, σ̂

2
Un
, Un/σ̂Un

)′
from (4.2.25) and (4.2.28) as we have implemented in Section A.6.1. For
results see Table 4.3.

Un −8.956006× 10−4

σ̂2
Un

3.468456× 10−7

Un/σ̂Un −1.520710× 100

Φ
(

Un

σ̂Un

)
6.416631× 10−2

u(0.95) 1.644854× 100

Table 4.3: Results of asymptotic residual regression test of monotonicity and
convexity. Φ(x) is distribution function of the standard normal distribution
N (0, 1) and u(1−α) is (1−α)×100%-quantile of standard normal distribution
N (0, 1).

Critical region for lower-tailed test is well-known interval (−∞,−1.645).
Since 0.05 < 0.06416631, with probability 95% we can say that we do not
reject the null hypothesis and do not accept the alternative according to our
asymptotic residual regression test and thus the observations from Table 4.2
can be considered as data with the increasing and convex character.

ii) Classical and Wild Bootstrap Version
Continue from part i) of this example and follow Algorithm 4.3.2. Hence we
easily obtain results in Table 4.4:
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Bootstrap UB
n /σ̂

B
Un

resample number classical wild

10 -1.134556 -0.828338
20 -0.689638 -0.8126242
30 -1.050000 -0.6059807
40 -1.581657 -0.6981061
50 -1.649988 -1.153033
60 -0.5469642 -1.39981
70 -0.9886503 -0.5631235
80 -1.095642 -0.7864272
90 -0.9827762 -1.361833
100 -1.236391 -1.110179

mean -0.97424928 -0.9559600
variance 0.08432592 0.0863544

95-th percentile -0.56801890 -0.5081651
Φ(·) 0.1649664 0.1695462

Table 4.4: Results of classical and wild bootstrap residual regression test of
monotonicity and convexity. Φ(x) is distribution function of the standard
normal distribution N (0, 1).

Looking at the results, we have 0.05¿ 0.1649664 and 0.05¿ 0.1695462.
Hence we obtain the same decision as in part i). With probability 95%
we can say that we do not reject the null hypothesis and do not accept
the alternative according to our “classical” and “wild” bootstrap residual
regression test and thus the observations from Table 4.2 can be considered
as data with the increasing and convex character.
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Appendix A

Implementation into R

In this first chapter of the appendix we show the most important parts of R
source code which has been used in this master thesis—mostly for generating
figures that etch our theme of isotonic regression in the Sobolev spaces in.

There are lots of dropped hints in the R source code, which sometimes
help to understand.

A.1 Calculations of Representors with R

A.1.1 Representor in Sobolev Space

To calculate the representor in the Sobolev space all we have to do is to
follow Theorem 1.4.2. For better ideation we can look at (1.4.69).

We propose that some functions (procedures) have been already imple-
mented, e.g. derivsin() which computes l-th derivative of function

ϕk(x) = exp {[< (λk)]x} sin {[= (λk)]x} (A.1.1)

considering m-order Sobolev space or relambda() which computes the real
part of complex number eiθk .

repre <- function(m=4,a=0.5) {

# computes coefficients of representors at point a

# creates Gamma matrix (4m x 4m)

# considering Sobolev space order=m and representor at point a from (0,1)

dim <- 4*m

Gamma <- matrix(0,nrow=dim,ncol=dim)

kap <- kappa(m)

# L_a^(m-j)(0)+(-1)^j*L_a^(m+j)(0)

for (j in 0:(m-1)) {

for (k in 0:(kap-1)) Gamma[j+1,k+1]

<- derivcos(0,k,m,m-j)+((signum(j))*derivcos(0,k,m,m+j))

for (k in (kap+1):m) Gamma[j+1,k]

<- derivcos(0,k,m,m-j)+((signum(j))*derivcos(0,k,m,m+j))
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for (k in 0:(kap-1)) Gamma[j+1,m+k+1]

<- derivsin(0,k,m,m-j)+((signum(j))*derivsin(0,k,m,m+j))

for (k in (kap+1):m) Gamma[j+1,m+k]

<- derivsin(0,k,m,m-j)+((signum(j))*derivsin(0,k,m,m+j))

}

# R_a^(m-j)(1)+(-1)^j*R_a^(m+j)(0)

for (j in 0:(m-1)) {

for (k in 0:(kap-1)) Gamma[m+1+j,2*m+1+k]

<- derivcos(1,k,m,m-j)+((signum(j))*derivcos(1,k,m,m+j))

for (k in (kap+1):m) Gamma[m+1+j,2*m+k]

<- derivcos(1,k,m,m-j)+((signum(j))*derivcos(1,k,m,m+j))

for (k in 0:(kap-1)) Gamma[m+1+j,3*m+1+k]

<- derivsin(1,k,m,m-j)+((signum(j))*derivsin(1,k,m,m+j))

for (k in (kap+1):m) Gamma[m+1+j,3*m+k]

<- derivsin(1,k,m,m-j)+((signum(j))*derivsin(1,k,m,m+j))

}

# L_a^(j)(a)

for (j in 0:(2*m-1)) {

for (k in 0:(kap-1)) Gamma[2*m+1+j,k+1] <- derivcos(a,k,m,j)

for (k in (kap+1):m) Gamma[2*m+1+j,k] <- derivcos(a,k,m,j)

for (k in 0:(kap-1)) Gamma[2*m+1+j,m+k+1] <- derivsin(a,k,m,j)

for (k in (kap+1):m) Gamma[2*m+1+j,m+k] <- derivsin(a,k,m,j)

}

# m odd ... real roots +-1

if (m%%2 == 1) {

for (j in 0:(m-1)) {

Gamma[j+1,1] <- 1+signum(j) # 1=exp(0)

Gamma[j+1,m+1] <- signum(m-j)+signum(j)*signum(m+j) # 1=exp(-0)

Gamma[m+j+1,2*m+1] <- (1+signum(j))*exp(1)

Gamma[m+j+1,3*m+1] <- exp(-1)*(signum(m-j)+signum(j)*signum(m+j))

}

for (j in 0:(2*m-1)) {

Gamma[2*m+j+1,1] <- exp(a)

Gamma[2*m+j+1,m+1] <- signum(j)*exp((-1)*a)

}

}

# (-1)*R_a^(j)(a)

for (j in (2*m+1):dim) for (k in (2*m+1):dim) Gamma[j,k] <- (-1)*Gamma[j,k-2*m]

InvGamma <- solve(Gamma)

last <- InvGamma[,dim]

gmm <- last*signum(m-1)

gmm

}

A.1.2 Representor Matrix

To produce a representor matrix is very simple from (1.4.40), (1.4.41) and
Definition 2.2.1 using function repre().

repremat <- function(m=4,xdata=c(0.1,0.5,0.2,0.44,0.9,0.75)) {

# computes representor matrix evaluated at the data points xdata

n <- length(xdata)

# creates an 4m x n matrix that has coefficients (gamma_k)s of representors in columns

GMM <- matrix(nrow=4*m,ncol=n)

for (i in 1:n) GMM[,i] <- t(repre(m,xdata[i]))

# representor matrix Psi

Psi <- matrix(nrow=n,ncol=n)

for (i in 1:n) for (j in 1:n) {

tmp <- 0
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# computes representor at x_i evaluated at x_j,

# i.e. \psi_{x_i}(x_j)=\psi_{xdata[i]}(xdata[j])

if (m%%2 == 0) {

if (xdata[i]>xdata[j]) {

# L_{xdata[i]}(xdata[j]) and m is even

for (k in 0:(m/2-1)) tmp

<- tmp+(GMM[k+1,i]*exp(xdata[j]*relambda(k,m))*cos(xdata[j]*imlambda(k,m)))

for (k in (m/2+1):m) tmp

<- tmp+(GMM[k,i]*exp(xdata[j]*relambda(k,m))*cos(xdata[j]*imlambda(k,m)))

for (k in 0:(m/2-1)) tmp

<- tmp+(GMM[m+k+1,i]*exp(xdata[j]*relambda(k,m))*sin(xdata[j]*imlambda(k,m)))

for (k in (m/2+1):m) tmp

<- tmp+(GMM[m+k,i]*exp(xdata[j]*relambda(k,m))*sin(xdata[j]*imlambda(k,m)))

} else {

# R_{xdata[i]}(xdata[j]) and m is even

for (k in 0:(m/2-1)) tmp

<- tmp+(GMM[2*m+k+1,i]*exp(xdata[j]*relambda(k,m))*cos(xdata[j]*imlambda(k,m)))

for (k in (m/2+1):m) tmp

<- tmp+(GMM[2*m+k,i]*exp(xdata[j]*relambda(k,m))*cos(xdata[j]*imlambda(k,m)))

for (k in 0:(m/2-1)) tmp

<- tmp+(GMM[3*m+k+1,i]*exp(xdata[j]*relambda(k,m))*sin(xdata[j]*imlambda(k,m)))

for (k in (m/2+1):m) tmp

<- tmp+(GMM[3*m+k,i]*exp(xdata[j]*relambda(k,m))*sin(xdata[j]*imlambda(k,m)))

}

} else {

if (xdata[i]>xdata[j]) {

# L_{xdata[i]}(xdata[j]) and m is odd

tmp <- tmp+(GMM[1,i]*exp(xdata[j]))

for (k in 1:((m+1)/2-1)) tmp

<- tmp+(GMM[k+1,i]*exp(xdata[j]*relambda(k,m))*cos(xdata[j]*imlambda(k,m)))

for (k in ((m+1)/2+1):m) tmp

<- tmp+(GMM[k,i]*exp(xdata[j]*relambda(k,m))*cos(xdata[j]*imlambda(k,m)))

tmp <- tmp+(GMM[m+1,i]*exp((-1)*xdata[j]))

for (k in 1:((m+1)/2-1)) tmp

<- tmp+(GMM[m+k+1,i]*exp(xdata[j]*relambda(k,m))*sin(xdata[j]*imlambda(k,m)))

for (k in ((m+1)/2+1):m) tmp

<- tmp+(GMM[m+k,i]*exp(xdata[j]*relambda(k,m))*sin(xdata[j]*imlambda(k,m)))

} else {

# R_{xdata[i]}(xdata[j]) and m is odd

tmp <- tmp+(GMM[2*m+1,i]*exp(xdata[j]))

for (k in 1:((m+1)/2-1)) tmp

<- tmp+(GMM[2*m+k+1,i]*exp(xdata[j]*relambda(k,m))*cos(xdata[j]*imlambda(k,m)))

for (k in ((m+1)/2+1):m) tmp

<- tmp+(GMM[2*m+k,i]*exp(xdata[j]*relambda(k,m))*cos(xdata[j]*imlambda(k,m)))

tmp <- tmp+(GMM[3*m+1,i]*exp((-1)*xdata[j]))

for (k in 1:((m+1)/2-1)) tmp

<- tmp+(GMM[3*m+k+1,i]*exp(xdata[j]*relambda(k,m))*sin(xdata[j]*imlambda(k,m)))

for (k in ((m+1)/2+1):m) tmp

<- tmp+(GMM[3*m+k,i]*exp(xdata[j]*relambda(k,m))*sin(xdata[j]*imlambda(k,m)))

}

}

Psi[i,j] <- tmp

}

Psi

}
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A.1.3 Plotting a Regression Curve in Sobolev Space

We need to plot a regression curve for many figures. To plot such a curve
we just divide our predefined interval into equidistant sequence of points and
evaluate the sum of representors multiplied by corresponding coefficients in
these points. Finally we only connect evaluated points with the lines.

curve <- function(c,xdata,ydata,m) {

n <-length(xdata)

seq(0,1,by=0.05) -> xax # x-axis

points <- length(xax) # number of points on x-axis

yax <- rep(0,points) # prepared for y-axis data at this time only zeros

for (k in (1:points)) {

j <- length(xdata[xdata<xax[k]]) # how many xdata are less than xax[k]

if (j == 0) for (i in (1:n)) yax[k] <- Lpart(m,xdata[i],xax[k])*c[i]+yax[k] else {

if (j == n) for (i in (1:n)) yax[k] <- Rpart(m,xdata[i],xax[k])*c[i]+yax[k] else {

for (i in ((j+1):n)) yax[k] <- Lpart(m,xdata[i],xax[k])*c[i]+yax[k]

for (i in (1:j)) yax[k] <- Rpart(m,xdata[i],xax[k])*c[i]+yax[k]

}

}

}

lines(xax,yax)

}

A.2 Constrained Minimizing with R

A.2.1 Quadratic Minimizing in Finite Dimension

To estimate coefficients c—necessary for the estimation of the regression
function f according to Corollary 2.2.2 or Remark 2.2.4—we need to imple-
ment Theorem 2.2.5 and Algorithm 2.2.1. This procedure requires library
Matrix for Schur decomposition of matrix.

estimator <- function(m=4,xdata,ydata,L=2,dif=0.05) {

# computes coefficients c of estimator \hat{f}

n <- length(xdata)

if (n != length(ydata)) write("ERROR in input data!",file="")

# rearrange matched xdata vectors so that the first is in ascending order

o <- order(xdata)

rearranged <- rbind(xdata[o],ydata[o])

xdata <- rearranged[1,]

ydata <- rearranged[2,]

PSI <- as(repremat(m,xdata), "dgeMatrix")

schur.psi <- Schur(PSI)

phi <- schur.psi$Z

lambda <- schur.psi$WR

z <- t(phi)%*%ydata

# algorithm: ?is in a feasible set S or not?

if (sum(z^2/lambda) <= L) d <- z/lambda else {

# upper estimate of vartheta^*; maxlambda=min_i(lambda_i); maxz=max_i(z_i)

maxlambda <- max(lambda)

maxz <- max(abs(z))

UP <- maxz*sqrt(maxlambda/(n*L))

vartheta <- uniroot(function(x) sum(z^2*lambda/(lambda+n*x)^2)-L,low=0,up=UP)$root
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d <- (z/(lambda+n*vartheta))

}

c <- phi%*%d

c

}

A.2.2 Ridge Regression

Above function estimator() (especially implementation of Algorithm 2.2.1)
can be proceed similarly using preprogrammed functioned optim(). All we
need to do is to take a different view of it—using ridge regression.

z <- t(phi)%*%ydata

objectivef <- function(unknown) {

(1/n)*sum((lambda*unknown-z)^2)+chi*sum(lambda*(unknown^2))

}

gradient <- function(unknown) {

(2*lambda/n)*(lambda*unknown-z)+2*chi*lambda*unknown

}

minimum <- optim((z/lambda),objectivef,gradient)

d <- minimum$par

A.3 Cross-Validation with R

A.3.1 Choosing the Smoothing Parameter

To choose the smoothing parameter χ, we plot a Cross-Validation function
and then we find its minimum. To choose optimal χ is the same as choosing
the Sobolev bound L according Theorem 2.6.1 and Remark 2.6.3.

CVchi <- function(m=2,xvalue,yvalue,chilower=-5.5,chiupper=-1.5,chidif=0.1) {

n <- length(xvalue)

if (n != length(yvalue)) write("ERROR in input data!",file="")

# rearrange matched xvalue vectors so that the first is in ascending order

o <- order(xvalue)

rearranged <- rbind(xvalue[o],yvalue[o])

xvalue <- rearranged[1,]

yvalue <- rearranged[2,]

chiveclog <- seq(chilower,chiupper,by=chidif)

chivec <- 10^chiveclog

ERvec <- numeric(length(chivec))

for (s in (1:length(chivec))) {

ER <- 0

for (xr in xvalue) {

xdata <- xvalue[xvalue!=xr]

c <- estimator(m,xdata=xvalue[xvalue!=xr],ydata=yvalue[xvalue!=xr],chi=chivec[s])

yr <- 0 # f_{-r} values at xvalue[-r] ... xr <-> yr

j <- length(xdata[xdata<xr]) # how many xdata are less than xr

if (j == 0) for (i in (1:(n-1))) yr <- Lpart(m,xdata[i],xr)*c[i]+yr else {

if (j == (n-1)) for (i in (1:(n-1))) yr <- Rpart(m,xdata[i],xr)*c[i]+yr else {

for (i in ((j+1):(n-1))) yr <- Lpart(m,xdata[i],xr)*c[i]+yr

for (i in (1:j)) yr <- Rpart(m,xdata[i],xr)*c[i]+yr

}
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}

ER <- ER+(((yvalue[xvalue==xr])-yr)^2)

}

ERvec[s] <- ER

}

plot(chiveclog,ERvec,xlab=expression(log(chi(L))),ylab=expression(CV(L)))

points(chiveclog,ERvec)

lines(chiveclog,ERvec)

}

A.4 Isotonia with R

We would like to extend our setup for Constrained Minimizing with R in
Section A.2. We want to add some isotonic properties.

A.4.1 Definite Non-decreasing

We implement model declared in Definition 3.2.1. This algorithm requires
library quadprog for function solve.QP(). Procedure derrepremat() has
been preprogrammed according to Definition 3.1.2 and similarly as shown
procedure repremat().

defmonotonic <- function(m=4,xdata,ydata,chi=0.0001) {

# chi ... smoothing parameter of ridge regression

n <- length(xdata)

PSI <- repremat(m,xdata)

Dmat <- 2*(PSI%*%PSI/n+chi*PSI)

dvec <- 2*(ydata%*%PSI)/n

Amat <- derrepremat(m,xdata)

bvec <- rep(0,n)

minimum <- solve.QP(Dmat,dvec,Amat,bvec)

c <- minimum$solution

c

}

A.4.2 Indefinite Non-decreasing

This is similar case as above—implementation of the model declared in Def-
inition 3.2.3.

Amat <- matrix(nrow=n,ncol=n-1)

for (i in 1:(n-1)) Amat[,i] <- PSI[,i+1]-PSI[,i]

bvec <- rep(0,n-1)

A.4.3 Definite Non-decreasing and Definite Convexity

Also similar as above—implementation of the combined model declared in
Definition 3.2.1 and Definition 3.3.2.

Amat <- cbind(derrepremat(m,xdata),secderrepremat(m,xdata))

bvec <- rep(0,2*n)
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A.4.4 Multiple Observations

Implementation of the model declared in Section 2.4.

multiple <- function(filedata="file.dat",m=4,chi=0.001) {

data <- read.table(filedata,header=FALSE)

xdata <- data[1,1]

for (i in data[,1]) if (length(xdata[xdata==i])==0) xdata <- c(xdata,i)

ydata <- data[,2]

k <- length(xdata)

n <- length(ydata)

Delta <- matrix(nrow=n,ncol=k)

for (i in 1:n) for (j in 1:k) if (xdata[j]==data[i,1]) {

Delta[i,j] <- 1 else Delta[i,j] <- 0

}

PSI <- repremat(m,xdata)

transDelta <- t(Delta)

Dlt <- transDelta%*%Delta

Delt <- PSI%*%Dlt

Dmat <- 2*(Delt%*%PSI/n+chi*PSI)

dvec <- 2*(PSI%*%(transDelta%*%ydata))/n

Amat <- (-1)*derrepremat(m,xdata)

bvec <- rep(0,k)

minimum <- solve.QP(Dmat,dvec,Amat,bvec)

c <- minimum$solution

c

}

A.5 Confidence Intervals and Bootstrap with

R

A.5.1 Calloption Prices

Let’s construct an isotonic regression curve in m-order Sobolev space, which
is non-increasing and convex. We can use function pcls() from library mgcv

instead of function solve.QP() from library quadprog, because it is more
complex and faster than the second one.

PSI <- repremat(m,xdata)

derPSI <- derrepremat(m,xdata)

M <- list(X=PSI,y=ydata,S=list(PSI),w=rep(1,n),Ain=SIG*t(derPSI),bin=rep(0,n),

C=matrix(0,0,0),off=0,sp=chi,p=solve(t(derPSI))%*%rep(epsilon,n))

c <- pcls(M)

We can also construct point-wise confidence intervals based upon classical
bootstrap, wild bootstrap and CLT. See Theorem 4.1.2 and Algorithm 4.3.1.

# Classical Bootstrap Confidence Intervals

epsdgm <- ydata - PSI%*%c

epsdgm <- epsdgm - mean(epsdgm)

fdgm <- PSI%*%c

BootEstimates <- matrix(0,nrow=nboot,ncol=n)

for (iboot in 1:nboot) {
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epsboot <- sample(epsdgm,size=n,replace=T)

yboot <- fdgm + epsboot

MBoot <- list(X=PSI,y=yboot,S=list(PSI),w=rep(1,n),Ain=SIG*t(derPSI),bin=rep(0,n),

C=matrix(0,0,0),off=0,sp=chi,p=solve(t(derPSI))%*%rep(epsilon,n))

cBoot <- pcls(MBoot)

BootEstimates[iboot,] <- PSI%*%cBoot

}

BootCUp <- rep(0,n)

BootCLo <- rep(0,n)

for (i in 1:n) {

BootCUp[i] <- quantile(BootEstimates[,i],prob=.975)

BootCLo[i] <- quantile(BootEstimates[,i],prob=.025)

}

# Bootstrap Wild Confidence Intervals

BootEstimates <- matrix(0,nrow=nboot,ncol=n)

for (iboot in 1:nboot) {

randomBernoulli <- rbinom(n,1,((5+sqrt(5))/10))

ranplusminus <- (1-sqrt(5))/2*randomBernoulli + (1+sqrt(5))/2*abs(randomBernoulli-1)

epsboot <- epsdgm * ranplusminus

yboot <- fdgm + epsboot

MBoot <- list(X=PSI,y=yboot,S=list(PSI),w=rep(1,n),Ain=SIG*t(derPSI),bin=rep(0,n),

C=matrix(0,0,0),off=0,sp=chi,p=solve(t(derPSI))%*%rep(epsilon,n))

cBoot <- pcls(MBoot)

BootEstimates[iboot,] <- PSI%*%cBoot

}

BootCUp <- rep(0,n)

BootCLo <- rep(0,n)

for (i in 1:n) {

BootCUp[i] <- quantile(BootEstimates[,i],prob=.975)

BootCLo[i] <- quantile(BootEstimates[,i],prob=.025)

}

# Asymptotic Confidence Intervals

sserr <- ((ydata-mean(ydata))^2)/(n-1)

CI <- 1.96*sqrt(sserr/n)

AsyCIup <- fdgm+CI

AsyCIlo <- fdgm-CI

A.6 Tests of Hypothesis with R

A.6.1 Test of Isotonia

Finally, let’s proceed monotonicity and convexity residual regression test
based on Theorem 4.2.1. This implementation follows from Algorithm 4.2.1.

Dmat <- 2*(PSI%*%PSI/n+chi*PSI)

dvec <- 2*(ydata%*%PSI)/n

Amat <- cbind(derrepremat(m,xdata),secderrepremat(m,xdata))

bvec <- rep(0,2*n)

minimum <- solve.QP(Dmat,dvec,Amat,bvec)

c <- minimum$solution

lambda <- n^(-0.2)*(max(xdata)-min(xdata))

K <- matrix(0,nrow=n,ncol=n)

for (i in (1:n)) {

tmp <- abs(xdata-xdata[i])

tmp <- (tmp<=lambda)

tmp[i] <- 0 # exclude current observation from kernel matrix

K[i,] <- 0.5*tmp
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}

eps <- ydata - PSI%*%c

U <- t(eps)%*%K%*%eps/(n*(n-1)*lambda)

sigma <- 2*t(eps^2)%*%(K^2)%*%(eps^2)/(n^2*(n-1)^2*lambda^2)

stat <- U/sqrt(sigma)

And its bootstrap version uses function sample(). It is based on similar
Theorem 4.3.1 and follows from Algorithm 4.3.2.

fdata <- PSI%*%c

nboot <- 100

UBoot <- rep(0,nboot)

for (iboot in 1:nboot) {

epsboot <- sample(eps,size=n,replace=T)

yboot <- fdata + epsboot

dvecboot <- 2*(t(yboot)%*%PSI)/n

minimumboot <- solve.QP(Dmat,dvecboot,Amat,bvec)

cboot <- minimumboot$solution

epsboothat <- yboot - PSI%*%cboot

U <- t(epsboothat)%*%K%*%epsboothat/(n*(n-1)*lambda)

Omegahat <- 2*t(epsboothat^2)%*%K^2%*%epsboothat^2/(n^2*(n-1)^2*lambda^2)

U <- U/sqrt(Omegahat)

UBoot[iboot] <- U

if (iboot%%10==0) cat("UBoot[iboot]=",UBoot[iboot],"\n")

}

BootCrit <- quantile(UBoot,prob=c(.90,.95))

c(BootCrit,mean(UBoot),var(UBoot))

The practical performance of the residual regression test, its classical and
wild bootstrap versions have been shown in Example 4.3.1.

A.7 Software

I have been using GNU/GPL statistical software R, versions 2.0.0–2.2.1. All
the procedures, simulations and tests have been running on Unix-like oper-
ating systems—FreeBSD 6.0 and Ubuntu Linux 6.04. In this way I would
like to thank to all developers, testers and contributors of these Open Source
operating systems and to the R Development Core Team.

Isotonic regression in Sobolev spaces has not been implemented into any
statistical software yet. That’s why I am preparing a package/library for R.
At this moment, the source code of all used functions is placed on my home-
page http://michal.pesta.matfyz.cz/studium/ and can be downloaded
from this site.
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Appendix B

Figures

In this chapter we demonstrate up to now theory and algorithms. The re-
gression estimation in the Sobolev space H4 with specific isotonic constraint
is illustrated in the following figures.

We use simulated data sets as well as real data. The estimation of true
function, its first and second derivative is proceeded. Isotonia of the first and
the second order (monotonicity with convexity or concavity) is demanded
in each case. We construct also point-wise confidence intervals—mostly on
95% probability level—for each estimate based upon asymptotic normality
and bootstrap techniques—classical or wild. Number of bootstrap resample
steps is always 1000, default for each estimation.

On each page, we can see a pair of figures with the same data, the esti-
mator and point-wise confidence intervals. Lines are the only difference in
the second figures that connect particular neighboring upper or lower ends of
point-wise confidence intervals. This is done for better visualization, some-
times the first figure provides better information, sometimes the second one
from the couple.

Asymptotic and bootstrap confidence intervals for the regression estima-
tor of true function appear almost the same. But the noticeable sporadically
striking difference occurs when we estimate derivatives. The bootstrap tech-
niques provide much better confidence intervals.

B.1 Simulated Data

We simulate following data and estimate the true function and its derivatives:

{xi, exp {−xi}+ εi}14
i=1 , εi

iid∼ N (0, .25), xi ∈ [−2, 1] equidistant, (B.1.1)

{xi, arctan(xi) + εi}8i=1 , εi
iid∼ N (0, .1), xi ∈ [0, 2] equidistant. (B.1.2)
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Figure B.1: Monotone and convex regression estimator (with various types
of 95% point-wise confidence intervals) in H4 of simulated data Yi =
exp {−xi} + εi, i = 1, . . . , 14, where xi are equidistributed on [−2, 1] and

εi
iid∼ N (0, .25).
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Figure B.2: Monotone and convex regression estimator with various types of
95% point-wise confidence intervals (connected by lines) in H4 of simulated
data from Figure B.1.
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Figure B.3: Regression estimator of the first derivative of exp {−x} repre-
sented by simulated data from Figure B.1 (with various types of 95% point-
wise confidence intervals). [exp {−x}]′ = − exp {−x}.
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Figure B.4: Same as Figure B.3. 95% point-wise confidence intervals are
connected by lines for better visualization.
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Figure B.5: Regression estimator of the second derivative of exp {−x} repre-
sented by simulated data from Figure B.1 (with various types of 95% point-
wise confidence intervals). [exp {−x}]′′ = exp {−x}.
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Figure B.6: Same as Figure B.5. 95% point-wise confidence intervals are
connected by lines for better visualization.
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Figure B.7: Monotone and concave regression estimator (with various types
of 95% point-wise confidence intervals) in H4 of simulated data Yi =
arctan(xi) + εi, i = 1, . . . , 8, where xi are equidistributed on [0, 2] and

εi
iid∼ N (0, .1).
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Figure B.8: Monotone and concave regression estimator with various types of
95% point-wise confidence intervals (connected by lines) in H4 of simulated
data from Figure B.7.
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Figure B.9: Regression estimator of the first derivative of arctan(x) repre-
sented by simulated data from Figure B.1 (with various types of 95% point-
wise confidence intervals). [arctan(x)]′ = 1

1+x2 .
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Figure B.10: Same as Figure B.9. 95% point-wise confidence intervals are
connected by lines for better visualization.
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Figure B.11: Regression estimator of the second derivative of arctan(x) rep-
resented by simulated data from Figure B.1 (with various types of 95% point-
wise confidence intervals). [arctan(x)]′′ = − 2x
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Figure B.12: Same as Figure B.11. 95% point-wise confidence intervals are
connected by lines for better visualization.
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B.2 Real Data – DAX Call Options

The German Stock Index (Deutscher Aktienindex—DAX) is a total return
index of 30 selected German blue chip stocks traded on the Frankfurt Stock
Exchange (Deutsche Börse AG). We have a data set of DAX call options,
where independent variable is strike price and dependent variable is call op-
tion price adjusted by discount factor. From econometric theory (see Härdle
and Hlávka (2005)) follows that option price—as a function of strike price—
have to be decreasing and convex.

Our data set contains 561 prices of call options on DAX on January 1st,
2001. We construct regression estimator with non-increasing and convex
property for option price. Confidence intervals based on asymptotic normal-
ity and bootstrap are also constructed. Then we estimate first and second
derivative of option price, but we do not show confidence intervals based on
asymptotic normality in figures, because they are very wide and unreliable.
It has two reasons—theoretical and computational. Theoretical reason is
that variance in (4.1.9) and (4.1.10) is obviously huge, computational one is
that matrix of representors Ψ can be ill-conditioned and hence we can obtain
an inaccurate inverse matrix.
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Figure B.13: DAX call options data—monotone (nonincreasing) and convex
regression estimator in the Sobolev spaceH4 with various types of 95% point-
wise confidence intervals.
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Figure B.14: Same as Figure B.13. 95% point-wise confidence intervals are
connected by lines for better visualization.
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Figure B.15: Regression estimator of the first derivative of option price with
various 95% point-wise confidence intervals.
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Figure B.16: Regression estimator of the first derivative of option price (95%
point-wise confidence intervals are connected by lines for better visualiza-
tion).
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Figure B.17: Regression estimator of the second derivative of option price
with various 95% point-wise confidence intervals.
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Figure B.18: Regression estimator of the second derivative of option price
(95% point-wise confidence intervals are connected by lines for better visu-
alization).
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Figure B.19: Regression estimator of option price, the first and the second
derivative of option price with 90% and 95% point-wise wild bootstrap con-
fidence intervals.
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Appendix C

Useful Theorems and Lemmas

Used theorems and lemmas are listed below. They are divided into the
separate categories and then named in the alphabetical order.

C.1 Functional Analysis

Theorem C.1.1 (Arzela-Ascoli Theorem). Let Ω be a bounded subset of
Rn and {fk}k∈N a sequence of functions fk : Ω→ Rm. If {fk} is equibounded
and uniformly equicontinuous then there exists a uniformly convergent sub-
sequence

{
fkj

}
j∈N.

Theorem C.1.2 (Cauchy-Schwartz Inequality). If f ∈ L2(Ω) and f ∈
L2(Ω), then fg ∈ L1(Ω) and

∫

Ω

|f(x)g(x)| dx ≤ ‖f‖L2(Ω) ‖g‖L2(Ω) . (C.1.1)

Theorem C.1.3 (Riesz Representation Theorem). For every continu-
ous linear functional f on a Hilbert space H, there is a unique u ∈ H such
that f(x) = 〈x, u〉 for all x ∈ H.

C.2 Linear Algebra and Matrices

Theorem C.2.1 (Eigen Decomposition). Let Pn×n be a matrix of eigen-
vectors of a given square matrix An×n and Wn×n be a diagonal matrix with
the corresponding eigenvalues on the diagonal. Then, as long as Pn×n is a
square matrix with full rank, An×n can be written as an eigen decomposition

An×n = Pn×nWn×nP
−1
n×n (C.2.2)
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where Wn×n is a diagonal matrix. Furthermore, if An×n is symmetric, then
the columns of Pn×n are orthogonal vectors. If Pn×n is not a square matrix
with full rank, then Pn×n cannot have a matrix inverse and An×n does not
have an eigen decomposition.

Theorem C.2.2 (Schur Decomposition). Eigenvalues λ1, . . . , λn of sym-
metric matrix An×n are always real. Without losing of generality suppose
that λ1 ≥ . . . ≥ λn. Let Wn×n = diag {λ1, . . . , λn}. Then there exists an
orthogonal matrix Un×n such that

An×n = Un×nWn×nU
′
n×n, (C.2.3)

In×n = U′
n×nUn×n = Un×nU

′
n×n. (C.2.4)

Theorem C.2.3 (Singular Value Decomposition – SVD). Let m ≥
n. Any matrix Am×n can be written as the product of a column-orthogonal
matrix Um×n, a diagonal matrix with positive or zero elements Wn×n, and
the transpose of an orthogonal matrix Vn×n:

Am×n = Um×nWn×nV
′
n×n (C.2.5)

where

Wn×n =




w1 0 . . . 0 0
0 w2 . . . 0 0
...

...
. . .

...
...

0 0 . . . wn−1 0
0 0 . . . 0 wn




(C.2.6)

and

w1, . . . , wn ≥ 0, (C.2.7)

U′
n×mUm×n = V′

n×nVn×n = Vn×nV
′
n×n = In×n. (C.2.8)

The diagonal elements of matrix Wn×n are the singular values of matrix
Am×n and non-negative numbers.

C.3 Information Theory

Theorem C.3.1 (Kolmogorov-Tihomirov). Let F be a compact non-
empty subset of a metric space. Then for all δ > 0 exists A > 0 and 0 < ζ < 1
such that metric entropy

H(δ; F ) < Aδ−2ζ . (C.3.9)
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C.4 Probability

Theorem C.4.1 (McLeish). Let {Xn,i}kn

i=1 be an array of random variables

on the probability triple (Ω,A ,P). Let {An,i}kn

i=1 be any triangular array of
sub-sigma fields of A such that for each n and 1 ≤ i ≤ kn, Xn,i is An,i-
measurable and An,i−1 ⊂ An,i. Let Xn,i be any array satisfying

i) max
1≤i≤kn

|Xn,i| is uniformly bounded in L2 norm, (C.4.10)

ii) max
1≤i≤kn

|Xn,i| n→∞−−−→P 0, (C.4.11)

iii)
kn∑
i=1

X2
n,i

n→∞−−−→P 1, (C.4.12)

iv)
kn∑
i=1

E [Xn,i|An,i−1]
n→∞−−−→P 0, (C.4.13)

v)
kn∑
i=1

E2 [Xn,i|An,i−1]
n→∞−−−→P 0. (C.4.14)

Then
kn∑
i=1

Xn,i
D−→ N (0, 1), n→∞. (C.4.15)
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Härdle, W. 1990. Applied Nonparametric Regression. Cambridge Univer-
sity Press, Cambridge.
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Härdle, W. and Yatchew, A. J. 2003. Nonparametric state price den-
sity estimation using constrained least squares and the bootstrap. This
is a full unpublished entry, Humboldt-Universität zu Berlin and Toronto
University, http://www.chass.utoronto.ca/˜yatchew/.

Kolmogorov, A. N. and Tihomirov, V. M. 1959. ε-entropy and ε-
capacity of sets in function spaces. Uspehi Matematičeskih Nauk 14:3–86.
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