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1. Introduction

There are many aspects of combinatorics, but only few areas form such a compact body
of concepts and results (and thus in turn form a theory in the classical sense) as Ram-
sey theory. Also, very few areas of combinatorics display such a variety of techniques
from various parts of mathematics. Very roughly speaking, Ramsey theory studies the
chromatic number of hypergraphs. Many results of Ramsey theory (including Ramsey’s
theorem itself) have a character of a combinatorial principle which may be viewed as a
generalisation of the pigeon-hole principle. Moreover, many mathematicians admit there
is an elegance in Ramsey theory statements.

The theory of combinatorial games is an exceptionally attractive field. Combinatorial
games are 2-player games of skill (no chance moves) with perfect information (the player
cannot hide anything), and there are only three possible outcomes of the game: “win”,
“draw” and “loss”. This class includes Chess, Go, Checkers, Tic-Tac-Toe, Hex, Nim, etc.
The goal is to answer questions like “who wins”, “how to win” and “how long does it take
to win”. In other words, the theory of combinatorial games tries to find good strategies.
Strategies can be also viewed as a special class of online algorithms. As a contrary to
Ramsey theory, the theory of combinatorial games is still very young and at an early stage
of development. Therefore, the underdeveloped state of the theory is a great opportunity
to make major discoveries.

What is the thing that connects Ramsey theory and combinatorial games? In one
direction, almost every object studied by Ramsey theory can be taken and considered a
“playground” of a combinatorial game. Two players keep colouring parts of this object
and both wants to win, this means, to colour certain sub-object by their own colour. There
can be also many different game rules. In the other direction, Ramsey theory can serve
as a powerful tool to at least partially answer questions like “who wins” in a particular
game.

Given a certain object, Ramsey theory states that there exists an internal regularity
inside, some homogeneous sub-object. To the contrary, the goal of many combinatorial
games is to create such a homogeneous sub-objects. Usually, the validity of Ramsey-type
theorems depends only on the size of the object; given object large enough, the theorem
holds. We call such minimal sufficient size Ramsey number. Similar concept exists in
combinatorial games. By game number we mean the minimum object size such that
certain player (usually the first) wins, provided he uses the best strategy possible. Often,
there is large gap between the Ramsey number and the appropriate game number.

The goal of this thesis is to study various Ramsey-type theorems and the corre-
sponding games, establish good upper bounds on both numbers and discover large gaps
between them. In many cases, establishing a reasonable Ramsey number upper bound is
an enormously complicated task which has been a subject of effort of many great math-
ematicians. Surprisingly, when considering the corresponding combinatorial game, it is
often quite easy to find good upper bound on the game number, usually much lower than
the Ramsey number bound. Therefore, we consider this topic exceptionally interesting.
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In Chapter 2, we give a survey of selected interesting parts of Ramsey theory. We
formulate all theorems we later study in the “game-centric” aspect and prove a majority
of them. These include: Ramsey’s theorem, van der Waerden theorem, Hales-Jewett
theorem (together with the revolutionary proof by Shelah), and others. We mostly follow
the write-ups by Nešetřil [Ne] and Graham [GRS].

In Chapter 3, we build the theory of positional games from scratch. We give the
basic definitions and fundamental theorems and we introduce the powerful technique of
resource counting, which is the main tool in our work. We also present the degree game
in a comprehensible way as previous write-ups were unsatisfactory. The chapter more or
less closely follows (with the exception of the degree game) the great work of József Beck
[Be].

Chapter 4 contains the main and original results of this thesis. As we have already
mentioned before, we study Ramsey-type theorems from Chapter 2 in the view of combi-
natorial games and we find reasonable strategies together with appropriate game numbers
upper bounds. We compare the Ramsey and game numbers and show the sometimes sur-
prisingly large gap between them.

The author would like to thank to his advisor, prof. Jaroslav Nešetřil, for all consulta-
tions, helpful suggestions and comments, and moral support. The author is also grateful
to prof. József Beck and feels honoured for the introduction to the theory of combinatorial
games during his lectures, which had essential impact on this thesis. Thanks also goes
to prof. Donald Knuth for the TEX typesetting system and to members of VRR Team for
creating the vector graphic editor VRR, by which all pictures has been drawn.

1.1 Basic notions

For the sake of completeness, we define the basic notation used in this book. However, we
restrict ourselves only to bare definitions, for details and explanation, see e.g. Matoušek
and Nešetřil [MN].

By the symbol N, we shall mean the set
�
1, 2, . . . � of all positive integers, and by R

we mean the set of all real numbers. For n � N, we often denote the set
�
1, 2, . . . , n � by

[n]. For an integer c, by c[n] we denote the set
�
ci; i � [n] � . To emphasise that a certain

element is vector, we use bold symbols (x,y, . . . ). For 0 � k � n, the symbol (n
k) denotes

the number of k-element subsets of an n-element set. For a set X, the symbol 2X means
the set of all possible subsets of X, the symbol (X

k ) means the set of all k-element subsets
of X, by �X � we denote the cardinality of X, and we define

Xk = X �����	�
� X� �	 �
k

,

where � is the Cartesian product of two sets. The difference of two set A and B is denoted
by A � B.

Let us define the asymptotic estimates.

(1) We say that a function f : N � N is � (g) for a function g : N � N, if there is a
constant c > 0 such that f(n) � c � g(n) for every n � N.
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(2) We say that a function f : N � N is Ω(g) for a function g : N � N, if there is a
constant c > 0 such that c � g(n) � f(n) for every n � N.

(3) We say that a function f is Θ(g) if f is both � (g) and Ω(g).
(4) To express that f is � (g), we often write f(n) = � (g(n)). Similarly, f(n) =

Ω(g(n)) means that f is Ω(g).

A graph G is a tuple (V,E) where V , called the vertex set , is an arbitrary finite set
and E � (V

2) is called the edge set . Elements of E are called edges. For a graph G, the
vertex set of G is denoted by V (G), and the edge set by E(G).

A finite hypergraph � = (V, F ) is a set system where V is an arbitrary finite set and
F � 2V . Similarly, V ( � ) is the vertex set and E( � ) is the edge set. Elements of F are
usually called hyperedges. A hypergraph � is k-uniform (or simply a k-graph) if �S � = k
for every S � E( � ). Thus, graph is a special case of hypergraph, a 2-graph. We always
use standard letters to denote graphs, and we use both standard and caligraphic symbols
( � , � , . . . ) to denote hypergraphs.

We say that hypergraph � = (VH, EH) is a subgraph of hypergraph � = (VF , EF ) if
VH � VF and EH � 2VH � EF . We denote this fact by ����� .

For a hypergraph � = (V, F ) and a vertex v � V , we define the vertex degree

degF(v) = � � S � F ; v � S � � .
We alse define a minimum degree

δ( � ) = min
v∈V

degF(v)

and a maximum degree
∆( � ) = max

v∈V
degF (v).

For two distinct vertices u, v � V , we define the double degree

degF(u, v) = � � S � F ; u, v � S � �
and a maximum double degree

∆2( � ) = max
u,v∈V
u6=v

degF (u, v).

If ∆2( � ) = 1, then � is called almost disjoint.
For two hypergraphs � = (VH, EH) and � = (VF , EF ), the bijection f : VH � VF is

called isomorphism if the condition

�
v1, v2, . . . , vk � � EH �

�
f(v1), f(v2), . . . , f(vk) � � EF

holds for every k and for every subset
�
v1, . . . , vk �	� VH. If there exists an isomorphism

of two hypergraphs � and � , we denote this fact by ��
�� and we say that � and �
are isomorphic.
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For two hypergraphs � = (VH, EH) and � = (VF , EF ), the function h : VH � VF is
called homomorphism if the condition

�
v1, v2, . . . , vk � � EH �

�
f(v1), f(v2), . . . , f(vk) � � EF

holds for every k and for every subset
�
v1, . . . , vk � � VH.

These are the important graphs used throughout the whole thesis:

(1) A complete k-graph Kk
n is a k-graph (V, (V

k)), �V � = n. If k = 2, we use just the
symbol Kn.

(2) A cycle C` of length ` is every hypergraph (VC , EC) where VC =
�
v0, v1, . . . , v`−1 �

and EC =
�
S0, S1, . . . , S`−1 � such that

�
vi, v(i+1) mod ` � � Si for every 0 � i < `.

(3) A path P of length p is every hypergraph (VP , EP ) such that VP =
�
v1, v2, . . . , vp �

and EP =
�
S1, S2, . . . , Sp−1 � such that

�
vi, vi+1 � � Si for every 0 � i < p. Often,

we talk about a path from one vertex (which is v1) to another vertex (which is vp).

A hypergraph � is said to be connected if for every two distinct vertices u, v � V ( � )
there exists a path in � from u to v. A tree is a connected hypergraph that contains no
cycle. A star is a tree where all edges share precisely one common vertex.

A vertex-colouring (or just colouring to be short) of a hypergraph � = (V, F ) by t

colours is a mapping ct : V � �
1, . . . , t � . We say that a colouring ct is proper if every

S � F contains at least two vertices with different colours. The chromatic number of �
is

χ( � ) = min
�
t; there exists a proper colouring ct of � � .
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2. Ramsey Theory

In this chapter we give a survey of the most famous Ramsey-type theorems, which later
in Chapter 4 serve as a basis for Ramsey-type combinatorial games. Most of information
here comes from Graham, Rothschild and Spencer [GRS], from Nešetřil [Ne], and other
resources.

2.1 Introduction

Proposition 2.1. Consider a group of six people. In this group, there are 3 people who

know each other, or there are 3 people who do not know each other. (We assume that the
relation “to know someone” is symmetric.)

Proof. Let us model the society as a graph G such that its vertices are the people and
if they know each other, they are connected by an edge. Choose an arbitrary vertex v of
the graph G. The vertex v is adjacent either with at least 3 edges or at least 3 non-edges.
Let us consider the first case, and let v be adjacent with vertices x, y and z.

v

x y z

Fig. 2.1. The group of people as a graph.

If there is some edge defined on these three vertices, we have just found a triangle. If
there is no edge on x, y, z, they form an independent set. The second case, i.e. non-edges,
is analogous. �

The previous simple proposition is one of the first nontrivial claims, which we call
Ramsey-type theorems. These theorems states that in every sufficiently large object there
is some homogeneous sub-object. In many cases, the surprising fact occurs that for the
existence of an internal regularity, only the assumption of large object size is needed.
Speaking in a popular and rather inaccurate manner, “total chaos is impossible” inside
large objects. In this chapter, we show some of the most important Ramsey-type theorems.

In other words, Ramsey-type theorems study the chromatic number of certain hy-
pergraphs. For some family of hypergraphs, a typical Ramsey-type theorem states that
starting from a certain number of vertices, the chromatic number of every such hypergraph
is big.
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Section 2.2 is an improved translation of the appropriate chapter by Valla and Ma-
toušek [VM], presenting the original results of Ramsey [Ram]. In Section 2.3, we present
the Hales-Jewett theorem with the proof by Shelah, loosely following the write-up by
Nešetřil [Ne]. In Section 2.4, we present some famous Ramsey-type results for arithmetic
progressions, following e.g. Graham et al. [GRS]. Section 2.5 contains formulation of the
result of Rado [Rad], as presented by Graham et al. [GRS]. Sections 2.6 and 2.8 loosely
follow the write-up by Nešetřil [Ne].

2.2 Graph and hypergraph Ramsey theorems

Let us extend Proposition 2.1 into more complex theorem, which was published in a
slightly different form in 1930 by the English mathematician, economist and philosopher
Frank Ramsey [Ram].

Theorem 2.2. (Ramsey, for graphs) For every positive integer n, there exists positive

integer N such that an arbitrary graph on N vertices contains a complete graph on n
vertices or an independent set on n vertices.

In general: For every positive integers n and r, there exists positive integer N such
that if every edge of the graph KN is coloured by one of the r colours, then this KN

contains a monochromatic Kn subgraph, that is, a complete subgraph on n vertices with

all edges of the same colour.

How does the second part imply the first part? Let us replace every edge of the given
graph on N vertices by red edge and every non-edge by blue edge. This gives a KN graph
with edges coloured by red and blue and we apply the second part of the theorem on this
graph.

Proof. We first show the theorem holds for two colours (r = 2). From this we prove the
theorem for any number of colours.

Let us define the number � (k, `) as follows:

� (k, `) := min

�
N ;

every KN with edges coloured red and blue
contains red Kk or blue K` � .

The number � (k, `) is called Ramsey number for graphs and two colours.
We only need to show � (n, n) < � , but we actually prove that also � (k, `) is finite

for every k, `. We do it by induction on k + `.
If k = 1 or ` = 1, one can choose an arbitrary vertex. Therefore, we have � (1, `) = 1

and � (k, 1) = 1.
Let us assume � (k � 1, `) is finite and � (k, ` � 1) is finite. We prove that also � (k, `)

is finite. In particular, we verify� (k, `) ��� (k � 1, `) + � (k, ` � 1).

Let N = � (k � 1, `) + � (k, ` � 1), and consider a graph KN with edges arbitrarily
coloured by two colours, red and blue. We show it contains a Kk-subgraph with all edges
red or a K`-subgraph with all edges blue.
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Consider an arbitrary vertex v of this KN . We divide the remaining vertices into two
sets A and B: The set A contains vertices which are adjacent to v by red edge, and the
set B contains vertices which are adjacent to v by blue edge.

A

B
v

Fig. 2.2. Splitting the vertices into the sets A and B.

We have �A � + �B � = N � 1 = � (k � 1, `) + � (k, ` � 1) � 1, this means that �A ���� (k � 1, `) or �B ��� � (k, ` � 1).
Let us first assume �A ��� � (k � 1, `). If the subgraph induced by A contains red

Kk−1, we can add the vertex v to it and get a red Kk. If there is no red Kk−1 in A, then
there must be a red K`.

For �B ����� (k, ` � 1) is the argument similar. If B contains red K`−1, we can add the
vertex v to it and get a blue K`. Otherwise, B contains complete red Kk.

All cases thus lead to existence of a monochromatic Kk or K`, and due to previous
reasoning also to finality of � (k, `). This finishes the proof of Ramsey theorem for two
colours.

Let us consider three colours now. Let M = � (n, n) and N = � (n,M) where � (k, `)
is the Ramsey number defined above. Given a graph KN with edges arbitrarily coloured
by red, blue and yellow, we first merge the colours blue and yellow into one, green. Thus,
we have coloured the edges of KN by red and green, and by definition of � (n,M), there
exist a red Kn or green KM in the graph KN . In the first case, we are done. In the second
case, we have KM such that its edges in the original red-blue-yellow colouring are only
blue and yellow. Because we have set M = � (n, n), we can find a blue Kn or a yellow
Kn in the KM . This proves the theorem for three colours.

For four colours we reduce the problem in a similar way as before on theorem for three
colours, and so on. Therefore, Ramsey theorem holds for any finite number of colours.

One can also observe that for any finite number of colours, the same approach we
have used for two colours works. We define the Ramsey number � (k1, k2, . . . , kr) for r

colours, and in induction we choose the size of the graph as the sum of r these numbers.�

We further generalise Theorem 2.2 for edge-coloured complete p-graphs.

Theorem 2.3. (Ramsey, for hypergraphs) For every positive integers n, r, p, there exists
a positive integer N with the following property: Given a set X of N elements where every

p-element subset of X is coloured by one of the r colours, X contains a monochromatic

subset Y � X, that is, all p-element subsets of Y are of the same colour. In other
words, every complete p-graph on N vertices with edges coloured by r colours contains a

monochromatic complete subgraph on n vertices.
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Proof. We proceed by induction on p. For p = 1 the theorem reduces to pigeonhole
principle and for p = 2 to already proven Ramsey theorem for graphs (the element tuples
are the graph edges).

Assume we already know the sufficient size N of the set X. We establish N at the
end of the proof. Consider a set X of size N with all p-tuples coloured by r = 2 colours.
Let X0 := X and we do the following step for i = 1, 2, . . . , 2n � 1:

� Consider an arbitrary element xi � Xi−1, and colour every (p � 1)-element subset
S of the set Xi−1 � � xi � by the colour of the p-tuple S

� �
xi � . By induction

hypothesis there exists sufficiently large subset Xi of the set Xi−1 � � xi � such that
all (p � 1)-tuples of Xi have got the same colour bi.

One of the colours appears (by pigeonhole principle) among the colours bi at least
n-times, without loss of generality the red. Then

�
xi; bi = red � is the desired n-element

subset Y . Therefore, the size N of the set X can be chosen huge enough (but still finite)
such that X is sufficient for all the steps.

There are more ways to prove the theorem for r > 2 colours. One can perform more
steps, for i = 1, 2, . . . , rn � 1, and again observe it is possible to choose the number N
sufficiently large such that all arguments are valid. Or one may use the “colour merging”
method in the similar way as in Theorem 2.2. We merge two colours into one, apply
the theorem for the lesser number of colours, which yields a number N , and we use the
theorem once more, this time for n := N . �

The Ramsey theorem for p-tuples is also often denoted by the following abbreviation:

N � (n)p
r.

We read this notation: “The size N of an arbitrary set X where each p-tuple is coloured
by one of r colours is sufficient for the existence of a homogeneous subset of size n.” We
denote the minimum N such that N � (n)p

r by � p(n, r).

2.3 Hales-Jewett theorem

This section contains formulation of the famous theorem by Hales and Jewett [HJ], to-
gether with the proof by Shelah [Sh].
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2.3.1 Definitions and theorem formulation

We begin by the notation. We define Cn
t , the n-cube over t elements, by

Cn
t =

�
(x1, . . . , xn); xi � �

0, 1, . . . , t � 1 � � .

By a line in Cn
t we mean a set of (suitably ordered) points x0, . . . ,xt−1, xi = (xi,1, . . . , xi,n)

so that in each coordinate j, 1 � j � n, either

x0,j = xi,j = ���	� = xt−1,j

or

xs,j = s for 0 � s < t,

and the latter occurs for at least one j (otherwise all xi would be constant). For example,
with t = 4, n = 3,

�
020, 121, 222, 323 � forms a line, as does

�
031, 131, 231, 331 � .

Our definition differs from the ordinary geometric definition as, for example the set�
02, 11, 20 � is not a line in C23 . The reason for this is that the cube is meant to be

independent of the underlying set
�
0, 1, . . . , t � 1 � . In other words, for any set A =�

a1, . . . , at � we may define

Cn
t =

�
(x1, . . . , xn); xi � A �

and lines of Cn
t as those x0, . . . ,xt−1 so that in each coordinate j either the xi,j are constant

or xi,j = ai. All such cubes are combinatorially isomorphic.
By [t]n we denote the cubes Cn

t based on the set
�
1, 2, . . . , t � .

Theorem 2.4. (Hales, Jewett) Let C be a finite set (alphabet) and let t be a posi-
tive integer. Then there exists positive integer N with the following property: For every

colouring of the elements of the cube CN by t colours, one of the colour classes contains
a combinatorial line.

The original proof by Hales and Jewett [HJ] was quite simple, however, the upper
bound on N was immensely high—not even primitive recursive (see Section 2.8 for the
informal definition). We present a relatively new proof. In 1988, Shelah [Sh] found a
proof which avoids use of double induction and yields a primitive recursive upper bound.
We loosely follow the write-up by Nešetřil [Ne].

By � (n, t) denote the minimal number N for which the statement of the Hales-Jewett
theorem (for C = [n] and t colours) holds.

14



2.3.2 Shelah’s pigeonhole lemma

In the proof we shall use the following technical lemma.

Lemma 2.5. (Shelah’s pigeonhole) For all positive integers n and t, there exists a

positive integer N with the following property: Consider any choice of n colourings of the
cube [N ]2n−1 by t colours, that is, every αi : [N ]2n−1 � [t] for i = 1, 2, . . . , n. Then for

every i = 1, . . . , n there exist integers 1 � ai < bi � N such that we have

αi(a1, b1, . . . , ai−1, bi−1, ai, ai+1, bi+1, . . . , an, bn)

= αi(a1, b1, . . . , ai−1, bi−1, bi, ai+1, bi+1, . . . , an, bn). (2.1)

Denote by f(n, t) the minimal such number N .

Proof. We proceed by induction on n. Obviously, f(1, t) = t+1 by pigeonhole principle.
For the inductive step we prove

f(n + 1, t) � tf(n,t)2n + 1. (2.2)

To simplify the notation, put

M = f(n, t) and N = tM
2n

+ 1.

(The reason for setting the number N like this will be clear later.) Let αi : [N ]2n+1 � [t],
i = 1, . . . , n + 1, be arbitrary colourings. Consider the induced colouring

α′ : [N ] � [t]M
2n

of the set [N ] by tM
2n

“vector-colours”, defined as

α′(a) =
�
αn+1(x1, . . . , x2n, a); (x1, . . . , x2n) � [M ]2n �

for every a � [N ]. Note that each such “vector-colour” has M 2n coordinates. We have set
the number N large enough, therefore, by the pigeonhole principle, there are two integers
1 � an+1 < bn+1 � N such that

α′(an+1) = α′(bn+1). (2.3)

Now, we define colourings of the cube [M ]2n−1 by t colours. Precisely, we define the
t-colourings α′′

i : [M ]2n−1 � [t] for i = 1, . . . , n, such that

α′′
i (x1, . . . , x2n−1) = αi(x1, . . . , x2n−1, an+1, bn+1)

for every (x1, . . . , x2n−1) � [M ]. By the induction hypothesis, there are numbers

a1 < b1, a2 < b2, . . . , an < bn

15



such that for every i = 1, . . . , n we have

α′′
i (a1, b2, . . . , ai−1, bi−1, ai, ai+1, bi+1, . . . , an, bn)

= α′′
i (a1, b1, . . . , ai−1, bi−1, bi, ai+1, bi+1, . . . , an, bn)

= αi(a1, b1, . . . , ai−1, bi−1, bi, ai+1, bi+1, . . . , an, bn)

= αi(a1, b1, . . . , ai−1, bi−1, ai, ai+1, bi+1, . . . , an, bn). (2.4)

The equality (2.3) means

αn+1(x1, . . . , x2n, an+1) = αn+1(x1, . . . , x2n, bn+1)

for every (x1, . . . , x2n) � [M ]2n, thus also

αn+1(a1, b1, . . . , an, bn, an+1) = αn+1(a1, b1, . . . , an, bn, bn+1).

This together with (2.4) gives (2.1). �

2.3.3 Main proof

Let us proceed with the main proof of the Hales-Jewett theorem.

Proof. Obviously, � (1, t) = 1. By induction on n we prove

� (n + 1, t) ��� (n, t) � f � � (n, t), t(n+1)
H(n,t) �

, (2.5)

where f is the function occurring in Shelah’s pigeonhole lemma (Lemma 2.5).
To simplify the notation, set

N = � (n, t) and m = f � N, t(n+1)
N �

.

Thus, the desired upper bound (2.5) is N � m. Also set

Mk =
�
mk + 1, . . . ,m(k + 1) �

for k = 1, . . . , N .
Now, let α : [n + 1]N ·m � [t] be some fixed colouring.
In fact, it suffices to consider a colouring of a subset of [n+1]N ·m formed by all cascade

functions. Note that each vector x � Xk can be interpreted as a function [k] � X that
maps each coordinate index to some element of X. A cascade function f is a function
[N � m] � [n + 1] determined by

(1) a family � ak, bk; k = 1, . . . , N � where ak � bk and ak, bk � Mk,
(2) a function g : [N ] � [n + 1].
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A cascade function f further satisfies

f(i) = ���� n + 1 for i < ak, i � Mk,

g(k) for ak � i � bk,

n for bk < i � Mk.

The (2N)-tuple � ak, bk; k = 1, . . . , N � is called the schema S of the cascade function f .
For a fixed schema S, the mapping g �� f is a bijection which carries a line from

[n + 1]N into a line in [n + 1]N ·m. We put HS(g) = f . See Figure 2.3 for the illustrated
meaning of the definition.

g M1 M2 M3

a1 b1 a2 b2 a3 b3

n+ 1 n+ 1 n+ 1

n n n

Fig. 2.3. Illustrating the definition of HS(g).

For ` = 1, . . . , N , let us define the colourings

β` : [m]2N−1 � � f ; f : [n + 1]N � [t] �
where each vector x = (a1, b1, . . . , a`−1, b`−1, a` = b`, a`+1, b`+1, . . . , aN , bN ) � [m] gets the
colour

β`(x) =
�
α(H(a`,b`)(g)); g � [n + 1]N � . (2.6)

If (a`, b`) does not correspond to a schema of a cascade function, then we define β` arbi-
trarily.

Let us apply Shelah’s pigeonhole lemma on the colourings β`: there exists a schema
S = � a1 < b1, a2 < b2, . . . , aN < bN � such that (2.1) holds. Explicitly, for every ` =
1, . . . , N ,

β`(a1, b1, . . . , a`−1, b`−1, a`, a`+1, b`+1, . . . , aN , bN )

= β`(a1, b1, . . . , a`−1, b`−1, b`, a`+1, b`+1, . . . , aN , bN ). (2.7)

Let us consider all cascade functions with schema S, i.e. all functions HS(g), g � [n+1]N .
By the choice N = � (n, t), there exists a subset I � [N ] and a vector x0 = (x01, . . . , x

0
N ) �
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[n]N such that if we denote by L the line in [n]N determined by x0 and I (the indices of
non-constant coordinates), then HS(L) is a monochromatic subset of [n + 1]N ·m.

Let the points (functions) of the line L be denoted by x1, . . . ,xn. Observe that
all the cascade functions HS(x1),HS(x2), . . . ,HS(xn) have schema S. Define xn+1 =
(xn+1
1 , . . . , xn+1

N ) by

xn+1
i =

�
x0i for i /� I,

n + 1 for i � I.

The cascade function HS(xn+1) has schema S. However, both cascade functions HS(xn)
and HS(xn+1) may be also thought of as having any of the following schemas ((a′

`, b
′
`); ` =

1, . . . , N) where a′
` = a` and b′` = b`, for every ` /� I, and

a′
`, b

′
` � �

a`, b` � , a′
` � b′` for ` � I.

From this follows (by repeated use of (2.6) and (2.7)) that

α (HS(xn)) = α
�
HS(xn+1) �

and thus x1,x2, . . . ,xn+1 is a monochromatic line in [n + 1]N ·m. �

2.4 Arithmetic progressions

This sections contains one of the oldest and most famous Ramsey-type results, studying
arithmetic progressions. In 1927, B. L. van der Waerden [Wae] published a proof of the
following unexpected result.

Theorem 2.6. (Van der Waerden) For every choice of positive integers t and n, there

exists an integer N such that for every colouring of the set
�
1, . . . , N � by t colours, one

of the colour classes contains an arithmetic progression with n terms.

However, the original proof was very complicated and provided enormous upper bound
on the number N . We present a simpler proof by Shelah [Sh], who applies his own proof
of Hales-Jewett theorem, that gives primitive recursive (see Section 2.8) upper bound.

Proof. Van der Waerden theorem can be easily proved using Hales-Jewett theorem (The-
orem 2.4). Assume we know the number N already. Let us put C =

�
0, 1, . . . , n � 1 � and

consider the cube CN . With every point x = (x1, . . . , xN ) � CN we associate an integer

w(x) =
N�

i=1

xi � ni.

The mapping w : CN � �
0, . . . , nN � 1 � is bijective; one can view the number w(x) as

an N -coordinate number in the scale of n. Therefore, every combinatorial line is mapped
to an arithmetic progression of length n, and vice versa. By Hales-Jewett theorem, there
exists a number N such that the cube CN coloured by t colours contains a monochromatic
line, i.e.

�
1, . . . , N � contains a monochromatic arithmetic progression. �
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2.5 Rado theorem and related theorems

Let us first start with the following simple theorem by Schur [Sch]. We show a proof
based on Ramsey theorem, presented e.g. by Graham et al. [GRS].

Theorem 2.7. (Schur) For every positive integer t, there exists a positive integer N
such that for every colouring of the set S =

�
1, . . . , N � by t colours, one of the colour

classes contains number x and y together with their sum x + y.

Proof. Schur’s theorem easily follows from Ramsey’s theorem. Let α be a given colouring
of the elements of S by t colours. We define the colouring α′ of pairs by α′(

�
i, j � ) =

α( � i � j � ) for i, j � S, i �= j. By Ramsey theorem (Theorem 2.2), we may choose N

such that there exists an α′-monochromatic triangle with vertices i < j < k. However,
(j � i) + (k � j) = k � i, and we know that α(i � j) = α(k � j) = α(k � i). The theorem
follows. �

Both Schur’s theorem and Van der Waerden’s theorem fit the following more general
schema. Let A = (ai,j) be an integer m � n matrix. Then for every integer t � 1, there
exists an integer N = N(A, t) which has the following properties: If the set

�
1, 2, . . . , N �

is partitioned into t classes, then in one class of the partition there is a solution x1, . . . , xn

of a system of equations

a1,1x1 + . . . +a1,nxn = 0

a2,1x1 + . . . +a2,nxn = 0
...

am,1x1 + . . .+am,nxn = 0. (2.8)

We can abbreviate (2.8) by writing

Ax = 0, x = (x1, . . . , xn)T .

The basic problem is to characterise those integral matrices A for which a result analogous
to Schur’s and Van der Waerden’s theorems holds. This leads to the following notions:

The set of equations Ax = 0 is said to be partition regular if for any finite partition
of the set [N ] there is always a solution of the system (2.8) in one of the classes.

Note that obviously not every set of equations is partition regular, e.g. consider x =
2y � 1 and a partition by parity. However, one can characterise all partition regular
systems as follows:

An m � n matrix A = (ai,j) is said to satisfy the columns condition if it is possible to
order its column vectors a1, . . . ,an so that for some choice of indices 1 � n1 < n2 < �	��� <
nk = n, if we set

bi =
ni�

j=ni−1+1

aj,

then
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(1) b1 = 0,
(2) for 1 < i � k, the vector bi can be expressed as a rational linear combination of

columns aj for 1 � j � ni−1.

Now we can formulate the following.

Theorem 2.8. (Rado [Rad]) The system Ax = 0 is partition regular if and only if A
satisfies the columns condition.

In neither direction this is a trivial result. For the proof see Graham et al. [GRS].
For the Schur theorem, consider the matrix A consisting of the single row

A = (1, 1 � 1).

For the Van der Waerden theorem, consider the following matrix M :

M =

�����
�

1 � 1 1
1 � 1 1

1 � 1 1
. . .

...
1 � 1 1

������
�

The matrix M actually proves a stronger statement (also conjectured by Schur) and
originally proved by his student Brauer [Br].

Theorem 2.9. (Brauer, 1928) For a positive integer n, there exists a positive integer N

such that in an arbitrary colouring of the set [N ] by r colours, we can find in one of the
colour classes the arithmetic progression a0, a0+d, . . . , a0+nd together with the difference

d.

Proof. The first column m1 of the matrix M corresponds to the variable a0, second
column m2 to a0 + d, etc., and the last column mn+2 corresponds to the difference d. To
apply Rado Theorem, one has to show that M satisfies the columns condition. To see
this, consider the vector b1 = � n+1

i=1 mi and vector b2 = mn+2. It is easy to see that
b1 = 0. By considering the rational combination b2 = � n+1

i=1 (n � i + 1)mi, the columns
condition holds, therefore, due to Rado theorem, Theorem 2.9 follows. �

We also present another proof of Theorem 2.9, which is using van der Waerden the-
orem. In spite of the results by Shelah, this gives better upper bound on the number N .
For the original write-up, see Graham et al. [GRS], Chapter 3.

Proof. We use induction on r. In the case r = 1, we may clearly take N(n, 1) = n + 1.
Let W (t, r) be the minimal number W such that if [W ] if r-coloured, there exists a
monochromatic arithmetic progression of length t. Here, of course, we are using van der
Waerden’s theorem.

For given n and r, we claim that we may take

N = N(n, r) = W (n � N(n, r � 1), r). (2.9)
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We fix an r-colouring of [N ]. Among the first W (n � N(n, r � 1), r) integers, we find a
monochromatic, say red, set

�
a0 + id′; 0 � i � n � N(n, r � 1) � .

If, for some j, 1 � j � N(n, r � 1), d′j is red, then the set
�
a0, a0 + d, . . . , a0 + nd, d � is

red with d = jd′. Otherwise,
�
d′j; 1 � j � N(n, r � 1) � is (r � 1)-coloured. Using the

equivalence between colourings of [N ] and d′[N ], we find that the desired monochromatic
set exists. �

2.6 Restricted theorems

We start this section by chronologically first example of restricted Ramsey problem (i.e.
K4-free Ramsey graphs for the triangle). This problem was fully solved by Nešetřil and
Rödl [NR2].

Theorem 2.10. Let G be a graph not containing a complete graph Kk. Let t be a positive

integer. Then there exists a graph H not containing a complete graph Kk such that for
every t-colouring of edges of H we get a subgraph isomorphic to G with all its edges in

one of the classes of the partition.

Results of this type are called restricted Ramsey-type theorems. However, it is possible
to prove a much more general statement. We shall do so by means of the following
definitions.

Given objects A and B, denote by (B
A) the set of all sub-objects of B which are

isomorphic to A. We say that object C is (t, A)-Ramsey for object B if for every t-
colouring of the set (C

A) there exists a sub-object B ′ of C which is isomorphic to B such
that the set (B′

A ) is monochromatic. We denote this by C � (B)A
t .

For A � K we say that the class K has the A-Ramsey property if for every object B

of K and every positive integer t there exists C of K such that C � (B)A
t . In the extreme

case where K has the A-Ramsey property for each of its objects A we say that K is a
Ramsey class.

A type is a sequence (nδ; δ � ∆) of positive integers. A type will be fixed. A structure
(set system) of type ∆ is a pair (X, � ) where:

(1) X is linearly ordered set,
(2) � = ( � δ; δ � ∆) and � δ � (X

nδ
) for each δ � ∆.

Given two structures (X, � ) and (Y, � ), � = (� δ; δ � ∆), a mapping f : X � Y is
said to be an embedding if

(1) f is bijection and monotone with respect to standard orderings,
(2) for every δ � ∆ and each subset M � X, we have M ��� δ � f(M) ��� δ.

The tuple (X, � ) is a substructure of (Y, � ) if the inclusion X � Y is embedding.
A structure A = (X, � ), � = ( � δ; δ � ∆) of type ∆, is said to be irreducible if

for every pair x, y � X, there exists δ � ∆ and M ��� δ such that x, y � M . Let �
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be a (possibly infinite) set of structures of type ∆. Denote by Forb∆( � ) the class of all
structures A of type ∆ which do not contain any member of � as a substructure.

Now we can formulate the principal result for set structures due to Nešetřil and Rödl
[NR3, NR4]. We omit the proof.

Theorem 2.11. (Ramsey classes of structures) Let ∆ be a type. Let � be a (possibly
infinite) set of irreducible structures of type ∆. Then Forb∆( � ) is a Ramsey class.

As the special case of the immensely general Theorem 2.11, we formulate the following
corollary.

Corollary 2.12. Let k � 2 and t � 2 be integers. Let F and W be two k-graphs such

that F is irreducible and F �� W . Then there exists an F -free k-graph H such that in any
edge-colouring of H by t colours, H contains a monochromatic F -subgraph.

Proof. Follows from Theorem 2.11 by considering the type ∆ = (k). The one-element
set of forbidden structures contains only � =

�
F � . Note that W � Forb∆( � ) and the

one-edge k-graph S = (T, T ) � Forb∆( � ). Then by Theorem 2.11, the class Forb∆( � )
contains a k-graph H such that H � (W )S

t . �

2.7 Other Ramsey-type theorems

The following challenging conjecture has been formulated by Martin Loebl.

Conjecture 2.13. (Loebl) Let T be a tree on n vertices. Then every K2n whose edges
are coloured by two colours contains monochromatic T .

Only partial results have been achieved, e.g. Haxell,  Luczak and Tingley [HLT] have
proved the conjecture for trees with small maximum degree.

2.8 Ramsey numbers upper bounds

Perhaps the first question which one is tempted to consider is the problem of the actual size
of a set which guarantees the validity of Ramsey’s (and Ramsey-type) theorem. However,
it is well known that Ramsey numbers are difficult to determine and even good asymptotic
estimates are difficult to find (and improve).

First we should define the family of functions, which we will often use in our estimates.
For each positive integer n, define the functions fn : N � N as follows:

f1(i) = i + 1

f2(i) = 2i

fn+1(i) = fn � ���	� � fn� �	 �
i

(i)

Thus, f3(i) = 2i and f4(i) is a stack of 2’s of height i (the tower function). This family of
functions is called the Ackermann hierarchy. The Ackermann function A is the diagonal
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function
A(n) = fn(n).

Many results could be shown about Ackermann hierarchy. All these function can be
also expressed in the terms of partially recursive functions. We do not wish to intro-
duce the formal machinery of partially recursive functions. However, we mention that
these functions contain instruments like “for-cycles” and “while-cycles” (in the meaning
of programming language) and also simple arithmetic operations. For details see e.g. [So].

A function that can be computed without “while-cycles” is called primitive recursive.
It can be shown that every function fi from the Ackermann hierarchy is asymptotically
the fastest growing function among all functions using at most i “for-cycles”. Ackermann
function fails to be primitive recursive; it cannot be expressed by a combination of the
usual function operations without “while-cycles”.

Back to the Ramsey numbers estimates. For Ramsey numbers the situation is not as
dramatic. It follows from Erdős and Rado [ER] and Erdős et al. [EHR] that both upper
and lower bound for the Ramsey number � p(n, t) (see Section 2.2 for definition) are of
the form

Tp(cp,t � n), (2.10)

where cp,t is a constant depending solely on p and t and Tp is the two-variables version of
the tower function f4:

Tp(x) = 22
·
·
·
2x

(2.11)

and there are p � 1 2’s on the stack.
Let us derive an upper bound for the Hales-Jewett theorem.

Corollary 2.14. For every positive integer n and t

� (n, t) � f5(c(n + t)),

where f5 is the function introduced in the Ackermann hierarchy and c is an absolute
positive constant.

Proof. The function f(n, t) from Lemma 2.5 has a growth of the tower function, which
in our notation is the function f4. This follows from the inequality (2.2). The bound
on � (n, t) (see the inequality (2.5)) then involves the iteration of f(n, t) as the principal
term, which gives the function f5. �

Recall the van der Waerden theorem (Theorem 2.6). By � (n), we shall mean the
smallest integer N such that van der Waerden theorem holds for n and t = 2 colours. By
Corollary 2.14 and the proof of Theorem 2.6, we know that � (n) � f5(c � n). However,
Gowers recently proved the following celebrated result [Go].

Theorem 2.15. (Gowers, 2001) Let n be an integer. Then

� (n) � 22
22
2n+9

.
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Let
�

(t) denote the minimum n such that the theorem of Schur (Theorem 2.7) holds.
An examination of proof of Theorem 2.7 yields

�
(t) ��� 2(3, t).

The second proof of Brauer theorem (Theorem 2.9) gives a reasonable upper bound.
Let � d(n) be the smallest number N such that Brauer theorem holds for r = 2 colours.
An examination of the second proof of Brauer theorem, particularly (2.9), yields

� d(n) � W (n(n + 1), 2) = � (n(n + 1)) � 22
22
2n
2+n+9

, (2.12)

using Theorem 2.15 by Gowers.
However, for the Rado theorem (Theorem 2.8), no reasonable upper bounds are

known, i.e. they are not even primitive recursive. The same applies for Theorem 2.11
and Corollary 2.12, and these results remain to be improved.
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3. Combinatorial Games

In this chapter, we build all the necessary theory of positional games from scratch, to be
later used in Chapter 4. The write-up more or less closely follows the great work by Beck
[Be], with the exception of Section 3.4.

3.1 Informal introduction into combinatorial

games

Games belong to the oldest experiences of mankind, well before the appearance of any
kind of serious mathematics. How the playing of games has long been a natural instinct of
all humans, is how the solving of games is a natural instinct of mathematicians. “Recre-
ational mathematics” is a vast collection of all kinds of clever observations about games
and puzzles, the perfect empirical background for a mathematical theory. It is well known
how games of chance played a crucial role in the early developments of probability theory.
Similarly, graph theory grew out of puzzles (i.e. one-player games) like the “Königsberg
bridge problem”, solved by Euler, or Hamilton’s “round-trip game” on the graph of dodec-
ahedron. Unlike these two very successful theories, we still do not have a really satisfying
quantitative theory of games of pure skill with perfect information, or as they are called
nowadays: combinatorial games.

In technical terms, combinatorial games are 2-player games, mostly finite, with perfect
information and no chance moves, and the payoff function has three values � 1, 0 as the
first player wins or loses the play, or it ends in a draw. Combinatorial game theory
attempts to answer the questions of “who wins”, “how to win”, and “how long does it
take to win”. Naturally, “win” means “forced win”, i.e. a winning strategy.

A great effort to bring the enormously rich branch of “recreational mathematics” up to
“academic mathematics” is the two-volumed Winning Ways by Berlekamp, Conway and
Guy [BCG], published in 1982. We must admit, however, that combinatorial game theory
is still at an early stage of its developments. We do not feel that this is discouraging. Just
to the contrary: we think the underdeveloped state of the theory is a great challenge and
a great opportunity to make major discoveries in this exceptionally attractive field.
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3.1.1 Classification of games

One natural way to classify games is the following:

(1) games of pure chance,
(2) games of mixed chance and skill,
(3) games of pure skill.

Another possible classification is

(1) games of perfect information (players cannot hide anything),
(2) games of imperfect information (players can keep some secrets).

Throughout this work, we are interested exclusively in the games of pure skill and
perfect information.

GAMES

COMBINATORIAL GAMES

POKER and other games
of imperfect information:
von Neumann, Nash, . . .

Chess, Go,
Checkers, . . .

NIM and its
variants:
Conway, Guy,
Berlekamp, . . .

Positional Games:
Tic-Tac-Toe and
its variants
our subject

Fig. 3.4. One of the game classifications.
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3.1.2 Traditional game theory

Traditional game theory, initiated by John von Neumann, deals with an extremely wide
concept of games, including both games of perfect and imperfect information, chance and
skill, with two or more players, and with arbitrary payoff functions. Each player has a
choice, called strategy, and his object is to maximise a payoff which depends both on his
own choice and on his opponent’s.

The crucial minimax theorem for 2-player games (i.e. pure conflict situation) is that
it is always possible for both players to find mixed strategies forming an “equilibrium”,
which means the best compromise for both players. Mixed strategy means to randomly
choose a strategy from a set of available strategies by some given probability distribution.
The interesting consequence of Neumann’s minimax theorem is that the best play often
involves random, unpredictable moves. A typical example of such a game is Poker, which
was in fact von Neumann’s main motivation.

In the years since 1944, traditional game theory has developed rapidly. It plays a
fundamental role in the mathematical fields like linear programming and optimisation.
It has an important place in economics. Traditional game theory is certainly very useful
in games of imperfect informations. However, for combinatorial games like Chess, Go,
Checkers, traditional theory does not give too much insight.

For perfect-information games, including the subclass of combinatorial games, the von
Neumann theory provided a more efficient general method to find a pure optimal strategy.
It is called the backward labelling of the game-tree, or, in other words, the brute force
case study. However, backward labelling still needs exponential running time in terms of
the size of the board, which means it is impractical.

We can say, therefore, that the basic challenge of the theory of combinatorial games
is the complexity problem. Even for games with relatively small boards, the backward
labelling of the game-tree or any other brute force case study is far beyond the capacity
of the fastest computers.

3.1.3 Combinatorial games theory

The object of combinatorial game theory is to describe wide classes of games for which
there is a substantial “shortcut”. This means to find a fast way of answering the question
“who wins”, and also, if possible, to find a tractable way of answering the other question
of “how to win”, avoiding the exhaustive search in full depth. A natural way to cut down
the alternatives is to able to judge the value of a position at a level of a few moves depth
only. This requires human intelligence, an essential thing that computers lack.

If we do not have time for the exhaustive search through all branches of the game-
tree, then we have to develop a new approach. The basic idea is to use score systems
which have some natural probabilistic interpretations related to the random walk on the
game-tree. The strategy is to keep the “danger” (i.e. the “loss-chance”) at a low level
during the entire course of the play.

How can one keep the “danger” at a low level? Well, the trick is the potential tech-
nique, a popular method in applied mathematics. We find the origin of the potential
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technique in physics. Consider for example a pendulum. When a pendulum is at the top
of its swing, it has certain potential energy and unless it receives extra energy, it cannot
attain more than this speed, nor can it swing higher than its starting point. The same
argument is widely used in one-player games. This technique is called resource counting.

We apply this approach on the wide class of “Tic-Tac-Toe-like games”, i.e. positional
games. It means to play according to the rules of the Tic-Tac-Toe on an arbitrary family
of winning sets (strong game). Or to play the asymmetric “maker-breaker version” on the
same family: maker wants to completely occupy a winning set, and breaker simply wants
to prevent his opponent from doing so (we call it the weak game).

3.1.4 Why are games interesting?

Why should the reader be interested in combinatorial games? Well, beside the obvious
reason that games are great fun, we are going to present four reasons.

First, positional games are interesting, because they include such all-time favourites
as Tic-Tac-Toe and its “grown-up” variants like Go-Moku, multidimensional Tic-Tac-Toe,
Hex, Bridgit, graph games like Sim, etc.

The second reason why the reader might find our subject interesting is that the theory
of positional games forms a natural bridge between the two well-established combinatorial
theories: random graphs and Ramsey theory.

Third, games are ideal models for all kinds of research problems. Expressing a math-
ematical or social problem in terms of games is half of the problem.

Finally, this theory already has some very interesting applications in algorithms and
complexity theory.

The “bad news” is that we could not solve such famous open problems like to find
an explicit first-player’s winning strategy in Hex or similar games (in these cases strategy
stealing implies the existence). One also cannot expect the potential function method to
solve delicately balanced “head-to-head” games where single mistake could be fatal. But
the theory can recognise and solve large classes of complex “one-sided” games where a
few mistakes do not change the outcome.

The “good news” is that this theory is not about long, boring case studies. Quite to
the contrary, we hardly have any case study. We focus on finding general principles which
explain the behaviour of large classes of games.

3.2 Positional games and strategies formally

We start building the theory of positional games precisely.
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3.2.1 Definitions

We define the class of (finite) strong games. Let � = (V, F ) be an arbitrary finite
hypergraph. Here V is a finite set (the “vertex set” or “point set”) that we call the board
of the game. The set F is an arbitrary collection of subsets of V (formally F � 2V ), a
collection of hyperedges, that we prefer to call the family of winning sets. Two players
alternately occupy previously unoccupied points of the board V . Each player occupies
one point per move. That player wins who occupies all points of some winning set A � F
first; otherwise the play ends in a draw.

If a player can block every winning set in a strong game, then he can force a blocking
draw . The complementary concept is weak win: if a player does not have a blocking draw,
then the opponent has a weak win. In other words, a player has a weak win if he can
completely occupy a winning set (but not necessarily first).

In similar way we define the class of (finite) weak games. Let � = (V, F ) be an
arbitrary finite hypergraph, the set V is a finite set that we call the board of the game
and the set F � 2V is a collection of hyperedges that we call the winning sets. Two players
alternately occupy previously unoccupied points of the board V , each player occupies one
point per move. The first player wins if he occupies all points of some winning set A � F .
Otherwise the second player wins. Note that the second player can completely occupy
some winning set, but this is not considered as victory, his only goal is to prevent the first
player from winning. Also note that draw is impossible in a weak game. In a weak game,
the first player is usually called maker and the second player is called breaker . Sometimes
the weak games are thus called maker-breaker games.

Note that a drawing strategy can be a winning strategy, and a blocking draw can be
a pairing draw.

Consider a strong game on a finite hypergraph � = (V, F ). A strategy for the first
(second) player formally means a function S such that the domain of S is a set of even
(odd) length subsequences of different elements of the board V , and the range is V . If
the moves of the first player are denoted by x1, x2, x3, . . . , and the moves of the second
player are y1, y2, y3, . . . , then the i-th move xi (yi) is determined from the “past” by S as
follows:

xi = S(x1, y1, x2, y2, . . . , yi−1) � V � � x1, y1, x2, y2, . . . , yi−1 �
� yi = S(x1, y1, x2, y2, . . . , yi−1, xi) � V � � x1, y1, x2, y2, . . . , yi−1, xi � �

defines the i-th move of the first (second) player. In other words, a strategy for the first
(second) player is a function which assigns a legal next move to all partial plays of even
(odd) length.

A winning (or drawing) strategy S for the first player means that in all possible plays
where the first player follows S to find his next move is a win for him (a win or a draw).
Formally, each play

x1 = S( � ), � y1, x2 = S(x1, y1), � y2, x3 = S(x1, y1, x2, y2), � y3, . . . , � yn/2 (3.1)
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if n = �V � is even, and

x1 = S( � ), � y1, . . . , � y(n−1)/2, x(n+1)/2 = S(x1, y1, x2, y2, . . . , y(n−1)/2) (3.2)

if n is odd, is a win for the first player (a win or a draw).
Similarly, a winning (drawing) strategy S for the second player means that in all

possible plays where the second player uses S to find his next move is a win for him (a
win or a draw). Formally, each play

� x1, y1 = S(x1), . . . , � xn/2, yn/2 = S(x1, y1, x2, y2, . . . , xn/2) (3.3)

if n = �V � is even, and

� x1, y1 = S(x1), � x2, y2 = S(x1, y1, x2), � x3, . . . , � x(n+1)/2 (3.4)

if n is odd, is a win for the second player (a win or a draw). In both cases

xi � V � � x1, y2, x2, y2, . . . , yi−1 � and yi � V � � x1, y2, x2, y2, . . . , yi−1, xi � (3.5)

hold for all i � 1.
The ultimate questions of game theory are about strategies, in fact about optimal

strategies. Optimal strategies are the winning strategies, and the drawing strategies when
winning strategy does not exist.

3.2.2 Possible game outcomes

There are only three possible outcomes of a strong game, as precisely formulated in the
following theorem.

Theorem 3.1. (Strategy Theorem) Let � = (V, F ) be an arbitrary finite hypergraph,
and consider the strong game on this hypergraph. Then there are three alternatives: either
the first player has a winning strategy, or the second player has a winning strategy, or

both of them have a drawing strategy.

Proof. The formal proof is a simple modification of the De Morgan’s law. Indeed, we
have the following three possibilities:

(a) either the first player (I) has a winning strategy;
(b) or the second player (II) has a winning strategy;
(c) or the negation of (a) � (b).

First assume that n = �V � is even. In view of (3.1)–(3.5), case (a) formally means
that �

x1 � y1

�
x1 � y2 ���	�

�
xn/2 � yn/2 (3.6)

such that I wins (the sequence in (3.6) has to satisfy (3.5)).
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Indeed,

S(x1, y1, x2, y2, . . . , yi−1) = xi � V � � x1, y1, x2, y2, . . . , yi−1 �

defines a winning strategy S for I.
By the De Morgan’s law, � (a) is equivalent to

� x1

�
y1 � x2

�
y2 ���	� � xn/2

�
yn/2 (3.7)

such that I loses or it is a draw (the sequence in (3.7) has to satisfy (3.5)). Therefore,
� (a) means that I has a drawing strategy.

Case (c) is equivalent to � (a)
�

� (b), which means that both players have a drawing
strategy. The case “n is odd” is analogous and we omit it. �

We should also mentions that for the class of weak games, there are only two outcomes:
either the first player (maker) has a winning strategy or the second player (breaker) has
a winning strategy, which follows directly from the definition.

3.2.3 Strategy stealing argument

The following theorem is extremely important and also quite surprising; it states that in
the class of strong games the first player has a big advantage—he cannot lose.

Theorem 3.2. (Strategy Stealing) Let � = (V, F ) be an arbitrary finite hypergraph.
Then playing the strong game on � , first player can force at least a draw, i.e. a draw or
possibly a win.

Proof. The real meaning of Theorem 3.2 is that for the subclass of strong games one of
the 3 possible outcomes of a game (see Theorem 3.1) cannot occur. Indeed, we show that
second player cannot have a winning strategy.

Assume that second player (II) has a winning strategy S, and we want to obtain a
contradiction. The idea is to see what happens if first player (I) steals and uses S. A
winning strategy for a player is a list of instructions telling the player that if the opponent
does this, then he does that, so if the player follows the instructions, he will always win.

Now I can use II’s winning strategy S to win as follows. I takes an arbitrary first
move, and then pretends to be the second player, that is, he ignores his first move. After
II’s each move, I, as a fake second player, reads the instruction in S to take action. If
I is told to take a move that is still available, he takes it. If this move was taken by
him before as his ignored “arbitrary” first move, he takes another “arbitrary move”. The
crucial point here is that an extra move, namely the last “arbitrary move”, only benefits
I in a strong game.

The formal execution of this idea is very simple and goes as follows. We use the
notation x1, x2, x3, . . . for the moves of I, and y1, y2, . . . for the moves of II. By using II’s
moves y1, y2, . . . and II’s winning strategy S, we are going to define I’s moves x1, x2, . . .

(satisfying (3.5)), and also two auxiliary sequences z1, z2, z3, . . . and w1, w2, w3, . . . .
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Let x1 be an “arbitrary” first move of I. Let w1 = x1 and z1 = S(y1). We distinguish
two cases. If z1 �= w1, then let x2 = z1 and w2 = w1. If z1 = w1, then let x2 be another
“arbitrary” move, and let w2 = x2. Next let z2 = S(y1, z1, y2). Again we distinguish two
cases. If z2 �= w2, then let x3 = z2 and w3 = w2. If z2 = w2, then let x3 be another
“arbitrary” move, and let w3 = x3, and so on.

In general, let zi = S(y1, z1, y2, z2, . . . , yi). We distinguish two cases: if zi �= wi, then
let xi+1 = zi and wi+1 = wi; if zi = wi, then let xi+1 be another “arbitrary” move, and let
wi+1 = xi+1.

It follows from the construction that�
x1, x2, . . . , xi, xi+1 � =

�
z1, z2, . . . , zi � � �

wi+1 � (3.8)

for each i � 1. In view of (3.8) the “virtual play” y1, z1, y2, z2, y3, z3, . . . is a legitimate
one, i.e. it satisfies principle (3.5). We call the two players of this “virtual play” Mr. Y
(who starts) and Mr. Z (of course Mr. Y is II, and Mr. Z is “almost” I). The only minor
technical difficulty is to see what happens at the end. We consider two cases according
to the parity of the board size. The complete “virtual play” between Mr. Y and Mr. Z is

y1, z1, y2, z2, y3, z3, . . . , ym, zm, wm+1 (3.9)

if the board size �V � = 2m + 1 is odd, and

y1, z1, y2, z2, y3, z3, . . . , ym−1, zm−1, ym, wm (3.10)

if the board size �V � = 2m is even.
We recall that zi = S(y1, z1, y2, z2, . . . , zi−1, yi) for each i � 1. Since S is a winning

strategy for the second player, it follows that Mr. Z wins the virtual play (3.9) (i.e. when
�V � is odd) even if the last move wm+1 belongs to Mr. Y. In view of (3.8) this implies a
I’s win in the “real play”

x1, y1, x2, y2, x3, y3, . . . , xm, ym.

We used the fact that in a strong game an extra point cannot possibly harm I. This is
how I “steals” II’s winning strategy S.

The conclusion is that if II had a winning strategy, so would I. But it is impossible
that both players have a winning strategy. Indeed, if each player follows his own winning
strategy, then this particular play has two winners, which is a contradiction. So the
supposed winning strategy for II cannot exist. This implies that I can always force at
least a draw. �

Corollary 3.3. Let � be an arbitrary finite hypergraph. If the second player has a winning
strategy in a weak game on � , then the strong game on � is draw.

Proof. Let S be the winning strategy of the second player in the weak game on � .
Consider a strong game on � . If the second player uses the strategy S, he cannot lose.
Due to Strategy Stealing (Theorem 3.2), he also cannot win, therefore the game is draw.�

However, we should emphasise that the proof of Strategy Stealing is not constructive,
i.e. it gives only existential proof of the first player’s drawing strategy.
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3.3 Resource counting

The resource counting technique will be the main tool in our work. In this section we
present the most important theorems based on resource counting.

3.3.1 Solitaire Army puzzle

The best way to illustrate the resource counting method is to discuss Conway’s solution
of a puzzle called Solitaire Army.

Solitaire Army is a particular case of the class of solitaire puzzles. These puzzles are
not “real games” because there is only one player. The common feature of these puzzles
is that each one is played with a board and men or pegs, the board contains a number of
holes each of which can hold one man. Each move consists of a jump by one man over
one or more other men, the man jumped over being removed from the board. Each move
therefore reduces the number of men on the board.

The Solitaire Army is played on the infinite plane and the holes are in the lattice
points. The permitted move is to jump a man horizontally or vertically but not diagonally.
Let us draw a horizontal line across the infinite board and start with all men behind this
line. Assume this line is the horizontal axis, so all men are in the lower half-plane. How
many men do we need to send one man forward 1, 2, 3, 4 or 5 holes into the upper
half-plane?

Obviously, two men are needed to send a man forward one hole, and four men are
needed to send a man forward two holes. Eight men are enough to send a man forward
three holes. Twenty men are enough to send a man forward four holes, see Figure 3.5.

1

2

3

4

5

Fig. 3.5. A configuration of Solitaire Army able to jump to distance 4.

But the really surprising result is the case of five holes: it is impossible to send a
man forward five holes into the upper half-plane. This striking result was discovered by
Conway in 1961 (see e.g. [BCG] or [Be]).

33



The idea behind Conway’s resource counting is the following. We assign a weight to
each hole subject to the condition that if H1, H2 and H3 are any three consecutive holes
in a row or in a column, and w(H1), w(H2) and w(H3) are the corresponding weights,
then w(H1) + w(H2) � w(H3). We can evaluate a position by the sum of the weights of
those holes which are occupied by men—this sum is called the value of the position.

The meaning of the inequality w(H1) + w(H2) � w(H3) is following. The effect of
a move where a man in H1 jumps over another man in H2 and arrives at H3 is that
we replace men with weights w(H1) and w(H2) by a man with weight w(H3). Since
w(H1) + w(H2) � w(H3), this change cannot be an increase in the value of the new
position.

Inequality w(H1)+w(H2) � w(H3) guarantees that no play is possible from an initial
position to a target position if the target position has a higher value.

Let w be a positive number which satisfies w + w2 = 1. The number w equals the
golden section

√
5−1
2 . Now Conway’s resource counting goes as follows. Assume that one

succeeded to send a man 5 holes forward into the upper half-plane by starting from a
configuration of a finite number of men in the lower half-plane. Write 1 where the man
stands 5 holes forward into the upper half-plane, and extend it in the following way:

1

w

w2

w3

w4

w5

w6

w7w8

w6

w7

w7

w8

w9

w8

w9

w10

w6

w7

w8

w7

w8

w9

w8

w9

w10

...

· · ·

· · ·

...
...

· · ·

· · ·

Fig. 3.6. Evaluating the board by w =
√

5−1

2
.

The value of the top line of the lower half-plane is

w5 + 2w6 + 2w7 + 2w8 + ���	� = w5 + 2
w6

1 � w
= w5 + 2

w6

w2
= w5 + 2w4 = w3 + w4 = w2.

So the value of the whole lower half-plane is

w2(1 + w + w2 + w3 + . . . ) = w2
1

1 � w
= w2

1
w2

= 1,

which is exactly the value of the target position. So no finite number of men in the lower
half-plane will suffice to send a man forward five holes into the upper half-plane. If it was
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possible, then, using rules which do not increase the total weight, it would be possible to
gain the final value 1 from the original value less than 1. This is a contradiction.

One can even show that eight men are in fact needed to send a man forward three
holes, and similarly, twenty men are needed to send a man forward four holes (i.e. the 2i

pattern breaks for four holes). The fact that eight men are necessary can be seen from the
resource count of Figure 3.6, for the target position has value w2 and the highest value
that can be achieved with only seven men below the line is w5 + 3w6 + 3w7. One can
easily check that w2 > w5 + 3w6 + 3w7.

To send a man forward 4 holes requires 20 men (not 16). The proof that 20 men are
necessary is more complicated, but the idea is almost the same as for the case of 3 holes,
and we skip it.

3.3.2 Sufficient condition for blocking draw

An application of resource counting for 2-player games is the following result of Erdős
and Selfridge from 1973 [ESe]. This is a sufficient condition for blocking draw.

Theorem 3.4. (Erdős, Selfridge) If � = (V, F ) is an k-uniform hypergraph and �F � <
2k−3, then the second player can force a draw, in fact a blocking draw, in the strong game
on � .

Proof. Let F =
�
A1, A2, . . . , Am � where m < 2k−1. Assume we are at the stage of the

game where the first player already occupied x1, x2, . . . , xi, and the second player occupied
y1, y2, . . . , yi−1. The question is how to choose the second player’s next point yi. Those
winning sets which contain at least one yj, j � i � 1, are “harmless”—we call them dead
sets. The winning sets which are not dead are called survivors. The survivors have a
chance to be completely occupied by the first player at the end of the play, so they each
represent some “danger”. What is the “total danger” of the whole position? We evaluate
the given position by the following expression, called danger function: Di = � s∈S 2−us,
where S is the set of survivors indices, us is the number of unoccupied elements of the
survivor As, s � S and index i indicates that we are at the stage of choosing the i-th
point yi of the second player.

A natural choice for yi is to minimise the danger Di+1 at the next stage. How to do
that? Because of the simple linear structure of the danger function Di, it is quite easy to
answer this question. Let yi and xi+1 denote the next two moves. What is their effect on
Di+1? The point yi “kills” all the survivors As � yi, which means we have to subtract the
sum �

As3yi

2−us

from Di. On the other hand, xi+1 doubles the danger of each survivor As � xi+1, that
is, we have to add the sum � As3xi+1

2−us back. If some survivor As contains both yi and
xi+1, then we do not have to give the corresponding term 2−us back because that As was
previously killed by yi.
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Now the natural choice for yi is that unoccupied z for which � As3z 2−us is maximum.
Then clearly

Di+1 � Di � �

As3yi

2−us +
�

As3xi+1

2−us

� Di � �

As3yi

2−us +
�

As3yi

2−us = Di.

In other words, the second player can force the decreasing property D0 � D1 � D2 �
���	� � Dend.

Second player’s ultimate goal is to prevent first player from completely occupying
some A0 � F , that is, to avoid u0 = 0. If u0 = 0, then Dend � 2−u0 = 1. On the other
hand,

D0 =
�

A : x1∈A∈F

2−k+1 +
�

A : x1 /∈A∈F

2−n � �F � � 2−n+1 < 1,

so by the decreasing property of the danger function, Dend < 1. Therefore, no play is
possible from an initial position if the target position has a higher value. This completes
the proof of the Erdős-Selfridge theorem. �

Theorem 3.4 is sharp. The full branches of a binary tree T with n levels form an n-
uniform family of 2n−1 winning sets (see Figure 3.7) such that the first player can occupy
a full branch in n moves.

Fig. 3.7. A board with 2n−1 winning lines where the first player wins.

The strategy of the first player is following. In the first step he takes the root. In
the second step he takes some point from the second level of vertices, then from the third
level, and so on. Finally, he takes some leaf. This all is done in such a way that the first
player keeps building a connected path from the root downwards. Each vertex v � T is a
root of some subtree of T , and every such v (except the leaves) has two sons v1, v2, which
are roots of two subtrees T1, T2.

The strategy is simple. Let us denote the bottom vertex of the actual path by v. First
player waits for the second player to move, i.e. to occupy a vertex y. If y � T1 then first
player takes v2, otherwise he takes v1. Clearly, the second player cannot prevent the first
player from taking a whole path from root to some leaf.
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3.3.3 Sufficient condition for weak win

A straightforward adaptation of the Erdős-Selfridge resource counting gives Weak Win
Criterion.

Theorem 3.5. (Weak Win Criterion) Assume that we are playing the weak game on a
k-uniform hypergraph � = (V, F ). Assume that, fixing any two distinct points of V , there
are no more than ∆2 = ∆2( � ) hyperedges A � F containing both points.

(a) If �F � > 2k−3 � ∆2 � �V � , then the maker has a weak win in � .
(b) In particular, for almost disjoint hypergraph � we have ∆2 = 1 and requirement
simplifies to �F � > 2k−3 � �V � .

Proof. The proof is a straightforward adaptation of the Erdős-Selfridge resource count-
ing. Assume we are at the stage of the play where the first player has already occupied
the points x1, x2, . . . , xi and the second player has occupied y1, y2, . . . , yi. The question is
how to choose first player’s next point xi+1. Those winning sets which contain at least one
yj, j � i, are useless for the first player. We call them dead sets. The winning sets which
are not dead (yet) are called survivors. The survivors have a chance to be completely
occupied by the first player (the weak win). What is the total “chance” of the position?

We evaluate the given position by the following chance function: Ci = � s∈S 2−us

where S is the set of survivor indices, us is the number of unoccupied points of the
survivor As, s � S, and index i indicates that we are at the stage of choosing the (i+1)-st
point xi+1 of first player. Note that the chance function can be much bigger that 1—this
is not a probability, but it is always non-negative.

A natural choice for xi+1 is to maximise the chance Ci+1 at the next stage. Let xi+1

and yi+1 denote the next moves of the two players. What is their effect on Ci+1? First
xi+1 doubles the chances for each survivor As � xi+1, that is, we have to add the sum� As3xi+1

2−us to Ci.
On the other hand, yi+1 kills all the survivors As � yi+1, which means we have to

subtract the sum �

As3yi+1

2−us

from Ci.
We have to make a correction of those survivors As which contain both xi+1 and yi+1.

These survivors As were doubled first and killed second. So what we have subtract from
Ci is not �

As⊇{xi+1,yi+1}
2−us

but the twice as large �

As⊇{xi+1,yi+1}
2−us+1.

It follows that

Ci+1 = Ci +
�

As3xi+1

2−us � �

As3yi+1

2−us � �

As⊇{xi+1,yi+1}
2−us.
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Now the natural choice for xi+1 is that unoccupied z for which � As3z 2−us is maximum.
Then clearly

Ci+1 � Ci � �

As⊇{xi+1,yi+1}
2−us.

We trivially have
�

As⊇{xi+1,yi+1}
2−us � ∆2

4
.

Indeed, there are at most ∆2 winning sets As containing the given two points
�
xi+1, yi+1 � ,

and 2−us � 2−2 since xi+1 and yi+1 were definitely unoccupied points at the previous
stage. Therefore,

Ci+1 � Ci � ∆2
4

.

What happens at the end? Let ` denote the number of stages, i.e. the `-th stage is the
last one. Clearly ` = �V � /2. Inequality C` = Clast > 0 means that the second player could
not kill (block) all the winning sets. Indeed, at the last stage all points are occupied, so
C` = Clast > 0 means that first player was able to completely occupy a winning set, i.e.
weak win.

So all what we have to check is that C` = Clast > 0. But this is trivial. Indeed,
C0 = �F � � 2−k, so we have

Clast � �F � � 2−k � �V �
2

∆2
4

.

It follows that Clast > 0 if �F � > 2k−3 � �V � � ∆2, which completes the proof of case (a).
Finally, if � is almost disjoint, then fixing any two points of the board V , there is at

most one winning set containing both of them. So ∆2 = ∆2( � ) = 1 and case (b) follows
from (a). �

We should mention that the proofs of Theorem 3.4 and Theorem 3.5 are constructive,
that means they give an explicit strategy description.

3.4 Degree game

Assume the board is a complete graph Kn on n vertices and two players alternately pick
previously unselected edges. For a given n, what is the largest star subgraph of Kn the
first player can build? Formally, let the edges of Kn are (partially) coloured by two
colours, for v � V (Kn) denote by d1(v) the number of edges incident with v that are
coloured by the first player’s colour. Let D∗(n) = maxv∈V (G) d1(v). For a given n, what is
the largest D∗(n) such that the first player has a winning strategy reaching this number
in edge-colouring weak game? This was originally a question of Erdős. We give a close
answer to this question.
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3.4.1 Discrepancy lemma

Let us first formulate and prove a technical lemma due to Beck [Be81]. However, our
proof goes into much more details, which are omitted in [Be81].

Lemma 3.6. Given a hypergraph � = (V, F ) and a real number α, 1/2 < α � 1, con-
sider the following two-player combinatorial game. The players alternately pick previously

unselected points of V and the second player (maker) wins if he can cover at least α �A �
points of some A � F . Otherwise the first player (breaker) wins. If

�

A∈F

�
2αα(1 � α)1−α � −|A|

< 1,

then the first player has a winning strategy.

Proof. The proof is another application of resource counting method, but we shall use
slightly different valuation method. Suppose we are at the stage when the i-th move
has just finished and the first and second players have previously picked the points X =�
x1, . . . , xi � and Y =

�
y1, . . . , yi � , respectively. We wish to choose a good point xi+1 for

breaker. Now we give each edge A � F a value wi(A) which is equal to

(1 + µ)|A∩Y |−α|A|(1 � µ)|A∩X|−(1−α)|A|

where µ = 2α � 1. Next, we give each point x � V a value wi(x) where

wi(x) =
�

A : x∈A∈F

wi(A).

Finally, we evaluate the total chance of breaker of the whole position by

Wi =
�

A∈F

wi(A).

The natural choice for xi+1 is to maximise the chance Wi+1. Therefore, in the (i + 1)-st
move we pick a point x of the greatest value wi(x). We prove this is the desired winning
strategy of breaker.

We claim Wi+1 � Wi. To do that, we compute how does the total chance change
during the (i+1)-st move. Let us consider the state immediately after breaker has picked
the previously mentioned xi+1. Consider some edge A � xi+1. How does the value of A
change? One point has been picked from A by breaker, so the difference of the value is

(1 + µ)|A∩Y |−α|A|(1 � µ)|A∩X|+1−(1−α)|A| � wi(A) = (1 � µ)wi(A) � wi(A) = � µwi(A).

That gives �

A3xi+1

� µwi(A) = � µwi(xi+1)
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contribution by the breaker’s move.
Now assume maker has picked some point yi+1. What is the change in the total

chance? Consider some edge A � yi+1. One point of A has been picked by maker,
therefore the difference is

(1 + µ)|A∩Y |+1−α|A|(1 � µ)|A∩X|−(1−α)|A| � wi(A) = µwi(A),

which gives �

A3yi+1

µwi(A) = µwi(yi+1)

in total. However, we have to take care of edges A such that
�
xi+1, yi+1 � � A. In this

case the difference is

(1 + µ)|A∩Y |+1−α|A|(1 � µ)|A∩X|+1−(1−α)|A| � wi(A) = � µ2wi(A).

In the total change, we have to add this number as a compensation. Therefore, the new
total chance is

Wi+1 = Wi � µwi(xi+1) + µwi(yi+1) � �

A⊇{xi+1,yi+1}
µ2wi(A)

� Wi � µwi(xi+1) + µwi(yi+1) � Wi,

since wi(xi+1) was maximum. This implies Wi � W0 for all i. By the hypothesis of the
lemma,

W0 =
�

A∈F

(1 + µ)−α|A|(1 � µ)−(1−α)|A| =
�

A∈F

(2α)−α|A|(2(1 � α))−(1−α)|A|

=
�

A∈F

�
2αα(1 � α)1−α � −|A|

< 1,

therefore Wi < 1 for all i.
Now, assume that maker can cover at least α �A � points of some A � F . That means

�A � Y � � α �A ��� 0 and �A � X � � (1 � α) �A � � 0, so wi(A) � 1 for some (large) i. From this
follows that 1 � wi(A) � Wi. Hence, our indirect assumption leads to contradiction. �
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3.4.2 Breaker’s winning condition

The following technical lemma is a preparation for Theorem 3.8.

Lemma 3.7. There exists a positive constant c such that the condition

n
�
2αα(1 � α)1−α � −(n−1) < 1

holds for α = 1
2 + cn− 1

2 log
1
2 n.

Proof. Assume we already know the constant c. After applying logarithm, this means
to check

log n < (n � 1) � 1 + α log
α

1 � α
+ log(1 � α)

�
.

Therefore, it is sufficient to show that 1 + α log α
1−α + log(1 � α) is greater than some

positive constant. To do this, recall the Taylor expansions

log(1 + x) =
∞�

i=1

( � 1)i+1x
i

i
and log

1 + x

1 � x
=

∞�

i=0

2
x2i+1

2i + 1

for � 1 < x < 1 (see e.g. [ST]). Let β = 2cn− 1
2 log

1
2 n. Because limn→∞ β = 0 we can set

the constant c such that β < 1 (this is in fact the place where we have established c).
Observe that

log(1 � α) = log(1 � β) � log 2 = � ∞�

i=1

βi

i

and

log
α

1 � α
= log

1 + β

1 � β
=

∞�

i=0

2
β2i+1

2i + 1
.

Therefore, 1 + α log α
1−α + log(1 � α) equals

1 � log 2 +
∞�

i=0

β2i+1

2i + 1
+

∞�

i=0

β2i+2

2i + 1
� ∞�

i=1

βi

i
= 1 � log 2 +

∞�

i=1

β2i
1

2i(2i � 1)
> 1 � log 2 > 0

because the sum � ∞
i=1 β

2i 1
2i(2i−1) is convergent and positive for β < 1. �

The following theorem is originally a result of Székely [Sz]. However, our proof shows
all the necessary details, which are missing from the original paper.

Theorem 3.8. Consider the degree game: the board consists of edges of Kn, breaker

and maker alternately select a previously unselected edge. Breaker marks his edges blue

and maker marks his edges red. The goal of maker is to build as large red substar as
possible. Then breaker can prevent a maker’s substar of size n

2 + c
�

n log n where c is a

fixed positive constant.
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Proof. We define the hypergraph � = (V, F ) such that playing the degree game on Kn

is equivalent with the weak game on � . This means, V = E(Kn) and the hyperedges are
all (n � 1)-stars in Kn, that is, F =

�
S � E(Kn); �S � = n � 1, � S = v � V � .

Assume we know c already, in fact we establish it later. Our goal is to apply Lemma 3.6
here. Note that �A � = n � 1 for A � F , and �F � = n. Let

α =
1
2

+ cn− 1
2 log

1
2 n.

In order to apply Lemma 3.6, we have to check the condition

�

A∈F

�
2αα(1 � α)1−α � −|A|

= n
�
2αα(1 � α)1−α � −(n−1) < 1.

This holds by Lemma 3.7, which also gives the desired constant c. Lemma 3.6 therefore
yields the desired star size at most αn = n

2 + c
�

n log n, which completes the deduction.�

3.4.3 Maker’s winning condition

In the other direction, we can prove that maker can achieve a star of size n
2+c

�
n with some

positive absolute constant c. We do this by modification of another proof, as suggested
by Beck [Be]. Consider the following row-column game: two players, maker and breaker,
alternately pick previously unselected points of an n � n chessboard. Then maker is able
to achieve a line (either row or column) containing at least n

2 +
√

n
32 points owned by him.

For the original proof see Beck [Be] or [Be93].

Theorem 3.9. Consider the degree game: the board consists of edges of Kn, breaker

and maker alternately select a previously unselected edge. Breaker marks his edges blue
and maker marks his edges red. Maker’s object is to achieve a red substar of at least n

2 +k,

k � 1, red edges. If k � √
n
32 , then maker has a winning strategy.

Proof. Consider a play in the degree game on the graph Kn. In this proof, wherever we
write about “substar”, we mean the set of edges A � E(Kn) such that they form a star in
Kn. By “star” we mean the maximal substar in Kn, i.e. on n vertices. Let x1, x2, . . . , xi be
the blue edges in the graph selected by breaker in his first i moves, and let y1, y2, . . . , yi−1
be the red edges selected by maker in his first (i � 1) moves. The question is how to find
maker’s optimal i-th move yi. Write

Xi =
�
x1, x2, . . . , xi � and Yi−1 =

�
y1, y2, . . . , yi−1 � .

Let A be a star in the graph Kn, and introduce the following “weight”:

wi(A) =

�
�A � Yi−1 � � �A � Xi � +

�
n

4 � +
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where �
α � + =

�
α if α > 0,

0 otherwise.

Let y be an arbitrary unselected edge, and write

wi(y) = wi(A) + wi(B),

where A and B are the two stars containing y.
Here is the maker’s winning strategy: at his i-th move he selects that previously

unselected edge y for which the maximum of the “weights”

max
y unselected

wi(y)

is attained.
The following total sum is a sort of “variance”:

Ti =
�

n stars A

(wi(A))2 .

The idea of the proof is to study the behaviour of Ti as i = 1, 2, 3, . . . and to show that
Tend is “large”.

First we compare Ti and Ti+1, that is, we study the effects of the edges yi and xi+1.
We distinguish two cases.

(1) The edges yi and xi+1 determine four different stars.
(2) The edges yi and xi+1 determine three different stars.

In case (1), an easy analysis shows that

Ti+1 � Ti + 1, (3.11)

except in the “unlikely situation” when wi(yi) = 0. Indeed,

wi(yi) = wi(A) + wi(B) � wi(xi+1) = wi(C) + wi(D),

and so
Ti+1 = Ti + 2wi(yi) � 2wi(xi+1) + β � Ti + β

where

β = ���� 2 if wi(A) > 0 and wi(B) > 0,

1 if max
�
wi(A), wi(B) � > 0 and min

�
wi(A), wi(B) � = 0,

0 if wi(A) = wi(B) = 0.

Even if the “unlikely situation” occurs, we have at least equality: Ti+1 = Ti. Because
yi was the edge of maximum weight, for xi+1 and for every other unselected edge x,
wi(x) = 0.
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Similarly, in case (2),
Ti+1 � Ti + 1 (3.12)

except in the following “unlikely situation”: wi(B) = 0 where A is the star containing
both yi and xi+1, and B is the other star containing yi. Even if this “unlikely situation”
occurs, we have at least equality: Ti+1 = Ti. Because yi was an edge of maximum weight,
it follows that wi(C) = 0 where C is the other star containing xi+1. Similarly, for every
other unselected edge x in star A, wi(Dx) = 0 where Dx is the other star containing x.

If i is an index for which the “unlikely situation” in case (1) occurs, let unsel(i) denote
the set of all unselected edges after breaker’s i-th move. Similarly, if i is an index for which
the “unlikely situation” in case (2) occurs, let unsel(i, A) denote the set of all unselected
edges after breaker’s (i + 1)-st move in star A containing both yi and xi+1, including yi

and xi+1.
If the “unlikely situation” occurs in less than 3(n

2)/10 moves (i.e. in less than 60% of
the total time), then we are done. Indeed, by (3.11) and (3.12),

Tend = T(n
2)/2 �

(n
2)
5

.

Since Tend is a sum of n terms, we have

max
n stars A

� w(n
2)/2(A)

� 2 � (n
2)/5
n

�
n

12
.

Equivalently, for some star A,

w(n
2)/2(A) =

�
�A � Y(n

2)/2−1 � � �A � X(n
2)/2 � +

�
n

4 � + ��� n/12.

So

�A � Y(n
2)/2−1 � � �A � X(n

2)/2 � ��� n/12 � �
n

4
>

�
n

30
,

and Theorem 3.9 follows.
If the “unlikely situation” in case (1) occurs in more that (n

2)/10 moves (i.e. in more
than 20% of the time), then let i0 be the first time when this happens. Clearly,

� unsel(i0) � > 2(n
2)/10 = (n

2)/5.

If follows that there are at least (n
2)/5

n−1 = n/10 stars D containing (at least one) element
of unsel(i0) each. So wi(D) = 0 for at least n/10 stars D, that is,

�D � Xi � � �D � Yi−1 � �
�

n

4

for at least n/10 stars D. Therefore, after breaker’s i0-th move,

�

n stars D

� �D � Xi � � �D � Yi−1 � � + >
n

10

�
n

4
. (3.13)
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Since

2 +
�

n stars D

� �D � Yi−1 � � �D � Xi � � + =
�

n stars D

� �D � Xi � � �D � Yi−1 � � + ,

by (3.13),
�

n stars D

� �D � Yi−1 � � �D � Xi � � + �
n3/2

20
� 1.

Since the number of terms on the left-side is less than n � n/5 = 4n/5, after breaker’s
i0-th move we have

max
D

� �D � Yi−1 � � �D � Xi � � >
n3/2/20 � 1

4n/5
>

�
n

20
.

Obviously, maker can keep this advantage of
�

n/20 for the rest of the game, and again
Theorem 3.9 follows.

Finally, we study the case when the “unlikely situation” of case (2) occurs for at least
(n
2)/5 moves (i.e. for at least 40% of the time). Without loss of generality, we can assume

there are at least (n
2)/10 “unlikely” indices i; denote the star containing both yi and xi+1

by A. We claim that there is an “unlikely” index i0 when

� unsel(i0, A) ��� (n � 1)/5. (3.14)

Indeed, by choosing yi and xi+1, in each “unlikely” move the set unsel(i, A) is decreasing
by 2, and because we have n stars, the number of “unlikely” indices i when unsel(i, A) <
(n � 1)/5 is altogether less than n (n−1)/52 = (n

2)/5.
Now we can complete the proof just like before. We recall that wi0(D) = 0 for those

stars D which contain some edge from unsel(i0, A) (here A is the star containing both yi0

and xi0+1). So by (3.14), wi0(D) = 0 for at least (n � 1)/5 stars, that is,

�D � Xi � � �D � Yi−1 � �
�

n

4

for at least (n � 1)/5 stars D. Therefore, after breaker’s i0-th move

�

n stars D

� �D � Xi � � �D � Yi−1 � � + >
n � 1

5

�
n

4
. (3.15)

Since

2 +
�

n stars D

� �D � Yi−1 � � �D � Xi � � + =
�

n stars D

� �D � Xi � � �D � Yi−1 � � + ,

by (3.15),
�

n stars D

� �D � Yi−1 � � �D � Xi � � + �
(n � 1)

�
n

20
� 1 �

n3/2

25

45



for n sufficiently large. Since the number of terms on the left-side is less than n � n/5 =
4n/5, after breaker’s i0-th move we have,

max
D

� �D � Yi−1 � � �D � Xi � � >
n3/2/25

4n/5
=

�
n

20
.

Obviously maker can keep this advantage of
�

n/20 for the rest of the game, and again
Theorem 3.9 follows. The proof is complete. �
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4. Ramsey Theorems and

Combinatorial Games

This chapter contains main and original results of this thesis. We study positional
games derived from Ramsey-type theorems, establish upper bounds guaranteeing the first
player’s win, and finally we show large gaps between these game numbers and Ramsey
numbers.

4.1 Ramsey theorems and positional games

What is the thing that connects Ramsey theory and positional games? Assume we play
strong game on a hypergraph � and assume that the hypergraph is Ramsey for two
colours. By Ramsey we mean that given arbitrary colouring of points of � by two colours,
there exists a monochromatic hyperedge in � . In other words, χ( � ) > 2. On many kinds
of hypergraphs (objects, boards) this condition depends only on the number of vertices, i.e.
on such a kind of hypergraph there is always a monochromatic edge, provided the number
of vertices is (very) large. So what does this all mean for the positional game theory?
Suppose we take the board large, large enough to fulfil conditions of the appropriate
Ramsey-type theorem. Then the game cannot be draw, someone must win!

Moreover, from the Strategy Stealing argument we know that in any strong game the
first player cannot lose. To sum it up, if the first player cannot lose and someone must
win, the first player wins. The same holds for the weak game. We formulate it precisely.

Theorem 4.1. Assume � is a hypergraph such that χ( � ) > 2 and assume two players
play strong or weak game on � . Then the first player wins.

Proof. By Strategy Stealing argument (Theorem 3.2), we know that the first player has
at least a drawing strategy S in the strong game on � , that is, he knows how to force draw
and maybe also how to win. Assume the first player uses the strategy S and the game
finishes as draw, i.e. there is no monochromatic hyperedge. But this is a contradiction with
the condition χ( � ) > 2, there must exist such an edge. Therefore, the only alternative
is that using the strategy S the first player wins. Finally, observe that the strategy S is
winning also in the weak game on � . �

We are mostly interested in “playing Ramsey-type theorems”. This means, to take
a hypergraph which is studied by a particular Ramsey-type theorem and try to find a
winning strategy of the first player. We are interested in the minimum number of vertices
such that the first player wins. However, analysis of strong games seems to be hopelessly
difficult in many cases. Therefore, in such cases we study the weak game instead.

The crucial point is that the board size providing first player’s weak win is usually
enormously lower than the Ramsey number.
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4.2 Arithmetic progression games

For two integers k � 3 and n, we define the weak (maker-breaker) arithmetic progression
game (also called van der Waerden game) on the set S =

�
1, 2, . . . , n � as follows: two

players are alternately colouring previously uncoloured points of S by two colours, both
players by their own. The first player (maker) wins if he is able to colour a k-term
subset forming arithmetic progression exclusively by his colour, otherwise the second
player (breaker) wins. By � ∗(k) we denote the smallest n such that maker has a winning
strategy. One can also consider the strong version of the arithmetic progression game,
that is, such player wins who is able to colour a k-term arithmetic progression first.

Analogously, for two integers k � 3 and n, we define the weak (maker-breaker) arith-
metic progression game with difference on the set S =

�
1, 2, . . . , n � as follows: The first

player (maker) is trying to colour a k-term arithmetic progression P as before, but now
together with the number d denoting the difference of P . That is, maker wins if he colours
some (k + 1)-tuple of S where k elements form an arithmetic progression P and the re-
maining element d denotes the difference of P . If he is unable to colour such set, the
second player (breaker) wins. By � ∗

d(k) we mean the smallest n such that maker has a
winning strategy. Again, one can also consider the strong version of this game.

The arithmetic progression games were investigated by Beck [Be81]. We generalise
the proof ideas of Beck to work also on arithmetic progression games with difference.

Theorem 4.2. Let k � 2 be an integer. Assume maker and breaker play the k-term

arithmetic progression game with difference (i.e. the weak game). Then the first player
has a winning strategy on board of size � (2kk3).

Proof. The idea of the proof is to reduce the game on general hypergraph game and
then apply results from Chapter 3, particularly Weak Win Criterion (Theorem 3.5). From
assumptions of Weak Win Criterion we compute the necessary board size such that maker
has a winning strategy.

For a fixed n, let us define a (k + 1)-uniform hypergraph � = (
�
1, . . . , n � , F ), the

board together with the winning lines F . The set F contains all (k + 1)-element subsets
S �

�
1, . . . , n � such that

(1) some k elements of S form an arithmetic progression P of length k,
(2) the one remaining element d of S denotes the difference d of P .

Clearly, playing the weak game on � is equivalent with the original weak arithmetic
progression game with difference.

1 2 3 4 5 6 7 8 9 10

Fig. 4.8. Example of edge in the hypergraph F for k = 3.

We are going to find the smallest n such that the inequality �F � > 2k−2 � n � ∆2( � ) from
Weak Win Criterion holds (note that � is (k + 1)-uniform), thus proving the existence of
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maker’s winning strategy. To do this, we find an upper bound d(n) on ∆2 = ∆2( � ) and
lower bound f(n) on �F � , and we solve the inequality f(n) > 2k−2 � n � d(n). Assume we
know n already, we compute it precisely later.

To establish d(n), let us fix two distinct points a, b � �
1, . . . , n � , a < b. We consider

the roles of a and b in a hyperedge S � F and we count the maximal number of edges
incident both with a and b. Three cases are possible:

(1) The point a denotes the arithmetic progression difference. Therefore, b can lay on
k positions of the arithmetic progression, so we get at most k possibilities.

(2) The point b denotes the difference. Similarly, there is at most k possibilities.
(3) Both a and b are members of the arithmetic progression. The number of possibil-

ities is therefore at most (k
2) as this is the number of all positions the two points

can occupy in a k-term progression.

Thus, we have (k
2) + 2k � ∆2( � ).

Let us establish a lower bound on �F � . For a difference d, a k-term arithmetic pro-
gression of difference d spans (k � 1)d + 1 elements. Thus for d < n−1

k−1 , there are at least
n � kd positions where to start the arithmetic progression. We have

�F � �
n−1
k−1

−1�

d=1

n � kd = n

�
n � 1
k � 1

� 1 � +
k(n � 1)
2(k � 1)

�
n � 1
k � 1

� 1 � � C
n2

k

for some fixed constant C. By solving the inequality

C
n2

k
> 2k−2 ��� k

2 � + 2k � n,

we get n = � (2kk3). By Weak Win Criterion, maker has a winning strategy on � with n

vertices, therefore also in the original game. This completes the proof. �

We also give a lower bound on the size of board for the arithmetic progression game
with difference. This means, we show that for small enough set S =

�
1, . . . , n � the first

player cannot win, both in the strong and weak game. Note that by Strategy Stealing
(Theorem 3.2) he also cannot lose, therefore the game is draw.

Theorem 4.3. Let k � 2 be an integer. Assume two players play the k-term arithmetic
progression game with difference on

�
1, . . . , n � . Then the second player can force a draw,

both in the strong and weak game for n = Ω(2k/2
�

k).

Proof. Similarly to the proof of Theorem 4.2, we construct an equivalent game on a
hypergraph such that we can apply the theorem of Erdős and Selfridge (Theorem 3.4)
and thus have the second player’s winning strategy.

Assume we already know the size n, we actually compute it later. Let us define
the (k + 1)-uniform hypergraph � = (

�
1, . . . , n � , F ). The edge set F contains all (k +

1)-element subsets S �
�
1, . . . , n � such that some k elements of S form an arithmetic

progression P of length k and the remaining element d denotes the difference of P . Our
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goal is to find the highest possible n such that �F � < 2k (note that � is (k + 1)-uniform),
i.e. n such that Theorem 3.4 holds.

To establish an upper bound on �F � , recall the method used in Theorem 4.2. For
difference d � � n/k � , there are at least n � kd positions where to start a progression,
therefore

�F � �
dn/ke�

d=1

n � kd =
n2

k
� k

( � n/k � )( � n/k � + 1)
2

� C
n2

k

for some fixed constant C. By solving the inequality Cn2k < 2k, we get n = � (2k/2
�

k).
Theorem 3.4 applied on � defined only on n vertices proves the existence of second
player’s drawing strategy. Note that a drawing strategy works both for the strong and
weak version of the game. �

As we have mentioned already, the method used in Theorem 4.2 is a generalisation
of the method used by Beck [Be81]. By small modifications of the proof of Theorem 4.2,
one can prove the following upper bound on the van der Waerden game number: � ∗(k) <

k32k−4. For the sake of completeness we briefly sketch the proof.

Theorem 4.4. (Beck 1981) Let k � 3 be an integer. Assume maker and breaker play
the k-term arithmetic progression game on S =

�
1, . . . , n � . If n = � (k32k) then maker

has a winning strategy.

Proof. Let maker and breaker play the game on the set S, we establish the size n later.
Let us define the equivalent game hypergraph � = (S,E) where edges are the k-term
subsets of S forming arithmetic progressions. Similarly to proof of Theorem 4.2, we count
the number of arithmetic progression in S, which is Θ(n2/k), therefore also �E � = Θ(n2/k).
And again by similar argument, ∆2( � ) � (k

2).
By satisfying the assumptions of Weak Win Criterion (Theorem 3.5), that is, by

solving the inequality �F � > 2k−3 � n � ∆2( � ), we estimate the size n of S such that maker
has a winning strategy. �

However, the lower bound established by Beck [Be81] is 2k−7k7/8 < � ∗(k) by using
number theory results, which are inapplicable in our case of arithmetic progression game
with difference. Therefore, we skip this proof. We only mention that the method used in
Theorem 4.3 works, yielding � ∗(k) = Ω(2k/2

�
k).

To sum the contents of this section, we formulate the following corollary.

Corollary 4.5. For an integer k � 2, we have

Ω(2k/2
�

k) = � ∗
d(k) = � (2kk3)

and
Ω(2k−7k7/8) = � ∗(k) = � (2kk3).

Proof. The first statement clearly follows from Theorem 4.2 and Theorem 4.3. The
second statement was proved by Beck, see Theorem 4.4 for the upper bound and consult
[Be81] for the lower bound. �
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4.3 Generalised Tic-Tac-Toe

Tic-Tac-Toe is probably the best known positional game, which was the original motiva-
tion for Hales and Jewett to prove Theorem 2.4. Let us first define the terms. By the nd

game we mean a positional game on board consisting of [n]d cube, where each winning
line is a combinatorial line in this cube (see Section 2.3 for definitions).

The strong nd game is not yet fully solved, therefore it still “remains funny” for human
players. However, many partial results have been obtained. We do not wish to list them,
as this topic is quite long. For details see Beck [Be].

We focus on the weak nd game. Recall the theorem of Hales and Jewett and ask the
appropriate game-related question: For a fixed integer n, what is the minimum dimension
d such that the first player has a winning strategy in the weak nd game? The following
result has been shown by Beck [Be].

Theorem 4.6. Let n and d be two positive integers. If d > c � n2 (c is an absolute
positive constant), then the first player (maker) has a winning strategy in the weak nd

game.

Proof. Let us apply Weak Win Criterion (Theorem 3.5) to the nd game.
We first need to count the number of winning lines. To do this, note that for each

j � �
1, 2, . . . , d � , the sequence a1j , a

2
j , . . . , a

n
j composed of the j-th coordinates of the points

on a winning line is either strictly increasing from 1 to n, or strictly decreasing from n to
1, or a constant c = cj � �

1, 2, . . . , n � . Since for each coordinate we have n+2 possibilities�
1, 2, . . . , n, increasing, decreasing � , this gives (n+2)d, but we have to subtract nd because

it is impossible that each coordinate is constant . Finally, we have to divide by 2, since
every line has two orientations. This yields the total of ((n + 2)d � nd)/2 possibilities.

An alternative geometric way of getting this number goes as follows. Imagine the
board nd surrounded by an additional layer of cells, one cell thick. This new object is
a cube (n + 2)d. It is easy to see that every winning line of the nd board extends to a
uniquely determined pair of cells in the new surface layer.

Another observation is that no two combinatorial lines share more than one common
point. Therefore, ∆2 = 1 for the nd game, i.e. the hypergraph is almost disjoint.

By Weak Win Criterion, it remains to verify the condition

(n + 2)d � nd

2
> 2n−3nd,

which is equivalent to �
1 +

2
n
� d

> 2n−2 + 1. (4.1)

Finally, note that inequality (4.1) holds for n < � 2d/ log 2, or equivalently, if d > (log 2) �
n2/2 (provided n is sufficiently large). The theorem follows. �
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4.4 Ramsey games

The original graph Ramsey theorem (Theorem 2.2) or the hypergraph Ramsey theorem
(Theorem 2.3) can serve as a basis for the following game. Let n be a positive integer and
consider a complete graph KN . Assume two players alternately pick previously unselected
edges of KN . The goal is to create a monochromatic Kn-subgraph, whoever creates it
first, wins. This is the strong Ramsey game. One can also consider the weak Ramsey
game, first player (maker) is trying to build a Kn-subgraph, second player (breaker) has
to prevent it. Both games can be played on general complete k-graphs.

In 1981, József Beck published the following famous result [Be81], where he also later
(see e.g. [Be]) improved the special case of k = 2.

Theorem 4.7. (Beck, 1981) Let k and n be positive integers. Consider the weak Ramsey
game, where the maker is trying to build a Kk

n subgraph of a complete k-graph Kk
N . Then

there is positive constant ck such that if N � 2ck·nk

then maker has a winning strategy.
Moreover, in the case of k = 2, maker wins if N � 2n+2.

For the proof, see [Be81] and [Be]. We only mention that proof of the general case is
an application of Weak Win Criterion.

We also mention the strong Ramsey game on infinite board. Consider a countable
infinite complete graph K∞. Two players alternately select previously unselected edges
of K∞. The player wins who first creates a K3 subgraph. This game is actually very easy,
one can easily find a winning strategy of the first player using 3 moves. The real problem
arises when we replace K3 by K4, i.e. the goal is to build a K4 subgraph. This has been
long time the open problem of Beck (see e.g. [Be]). Recently, Jelínek, Kára, Šámal and
Valla [KG] have found an explicit winning strategy of the first player. The paper is in
preparation.

4.5 Restricted Ramsey games

We will study positional games on k-graphs that do not contain some forbidden subgraph.
Note that for k = 2 these games reduce to games on ordinary graphs. Let us fix two
hypergraphs: the “forbidden” k-graph F and the “winning” k-graph W . From now we
consider only “playgrounds” that do not contain F as a subgraph. Given such a k-graph
G, two players alternately colour the edges of G by two colours, each player by his own.
The goal of the game is to colour a subgraph of G isomorphic to W .

We can consider the strong or weak game. That means, the player who first colours a
W -subgraph wins, and the first player wins if he is able to colour a W -subgraph, otherwise
the second wins (i.e. the maker-breaker game), respectively. Let us call these games strong
restricted Ramsey game and weak restricted Ramsey game, respectively.

Actually, we understand the strong restricted Ramsey game very little. In this section,
we are interested mostly in the weak game. One can also consider the similar game on a
k-graph G where players colour vertices instead of edges. This game actually turns out
to be quite easy for many kinds of winning and forbidden k-graphs.
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We are interested in finding the least number of vertices V , such that there exists a
k-graph G = (V,E) where the first player has a winning strategy.

Let us define the weak restricted Ramsey game precisely. Let us fix an integer k � 2
and let W and F be two fixed k-graphs. We define the number � ∗

k(W,F ) as the minimum
number of vertices V , such that there exists a k-graph G = (V,E) with the following
properties:

(1) G does not contain F as a subgraph.
(2) Consider the weak (maker-breaker) game on G played by colouring edges E. The

goal of maker is to colour the edges of a subgraph isomorphic to W , breaker is
trying to prevent it. Then maker has a winning strategy on G.

Analogously, we define �� ∗
k(W,F ) as the least number of vertices V , such that there

exists an F -free k-graph G = (V,E), where maker has a winning strategy in the similar
game of finding a W -subgraph by colouring just the vertices V .

Compared to arithmetic progression games (see Section 4.2), our task is more difficult
because first we have to construct (or somehow show that there exists) an F -free k-graph
G, and second prove that the first player has a winning strategy on G. Moreover, we are
trying to find G and the strategy such that the least possible number of vertices are used.

4.5.1 Colouring edges

We start with simpler theorem which we later generalise.

Theorem 4.8. Assume three integers k, p, q such that k � 2, q > p � 2. Then there
exists a Kk

q+1-free k-graph G on � (2(p
2)p3) vertices such that maker has a winning strategy

in weak restricted Ramsey game on G, trying to colour a Kk
q -subgraph.

Proof. We first construct a suitable k-graph G, the “playground” which does not contain
Kk

q+1 as a subgraph. Second, we construct a hypergraph � such that playing the weak
game on � is equivalent with the original game. Then we apply Weak Win Criterion
(Theorem 3.5) on � , proving there exists a maker’s winning strategy, and we estimate the
number n of vertices necessary.

Assume we already know the number of vertices n (we actually estimate n at the
end of the proof) and without loss of generality assume n/p is integer. Let us define
the k-graph G = (V,E) on n vertices to be the complete p-partite k-graph with p parts
of equal size s = n/p. To be exact, V =

� k
i=1 Vi where Vi =

�
vi,1, vi,2, . . . , vi,s � . There

are all k-edges except those having two vertices from the same part, that is, E =
�
S �

(V
k); �S � Vi � � 1 for every i � . Clearly, there is no Kk

q+1 subgraph in G by pigeonhole
principle. Two vertices x, y of Kk

q+1 would have to be in one part Vi, thus allowing no
edge containing both x and y.
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Fig. 4.9. Example of complete 4-partite 2-graph and its K2
4

subgraph.

Let us define the hypergraph � = (E,F ). Its vertex set consists of edges from G.
Each edge in F corresponds to one Kk

p -subgraph in G and contains all the appropriate
edges, that is, F =

�
S � ( E

(p
2)

); (
�

S, S) 
 Kk
p � . Observe, that vertex-colouring game on

� is equivalent with the original edge-colouring game on G.
The hypergraph � is (p

2)-uniform, �E � = (p
2)s
2 and �F � = sp, as the number of edges is

the same as the number of Kk
p -subgraphs in G. In order to use Weak Win Criterion, we

need to establish an upper bound on ∆2( � ). Let us consider two distinct points u, v � E,
i.e. two edges of G. We count the highest number of ways to extend the edges u, v into
Kk

p subgraph. There are two cases: u � v = � and u � v �= � . The case u � v �= � yields
higher number than the second. Three parts of G are occupied, we have to choose one
point from each remaining part, therefore ∆2( � ) � sp−3.

By solving the inequality�
n

p
� p

> 2(p
2)−3 � p

2 � � np � 2 � n

p
� p−3

,

we get n large enough to fulfil the assumptions of Weak Win Criterion. After simple
calculation,

n > 2(p
2)−3p � p

2 � ,

therefore there exists a k-graph G on n vertices (n satisfying the previous condition) where
maker has a winning strategy. �

We further generalise the method used in Theorem 4.8 for more combinations of
winning and forbidden subgraphs.

Theorem 4.9. Let k � 2 be an integer and let W (winning) and F (forbidden) be two

k-graphs such that there does not exist a homomorphism h : F � W . Let p = �V (W ) � and
q = �E(W ) � . Consider the weak restricted Ramsey game with winning subgraph W and
forbidden subgraph F . Then there exists a k-graph G on � (2qpq) vertices where maker
has a winning strategy.
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Proof. The proof is a generalisation of method used in Theorem 4.8. This means, we
first construct a suitable F -free game k-graph G, second construct a hypergraph � such
that playing the weak vertex-colouring game on � is equivalent with the original game
on G, and using Weak Win Criterion, we prove that maker has a winning strategy on � ,
thus also on G.

Assume we know n already (we compute it at the end) and without loss of generality,
assume n/p is integer. For W = (VW , EW ), VW =

�
w1, . . . , wp � , let us define the game

k-graph G = (VG, EG) on n vertices as “inflated” W in the following way. For s = [n/p]
the vertex set VG = V1

� �	��� �
Vp, where Vi =

�
vi,1, vi,2, . . . , vi,s � . Edges in EG resemble

the original edges of W , that is,

EG =

�
�
va1,b1, . . . , vak ,bk

� � � VG

k � ;
�
a1, . . . , ak � � EW � .

W
G

Fig. 4.10. Illustration of inflating the 2-graph W into G.

Assume there is a subgraph S � G, S 
 F . Let m : V (S) � �
w1, . . . , wp � be a

mapping that maps each vertex v � V (S) on the vertex wi such that v � Vi. But the
mapping m is exactly a homomorphism (S 
 F ) � W , which is contradiction. Therefore,
G is F -free.

Let us define a hypergraph � = (VG, EG) on the edge set of G, that is, VG = EG. One
edge of � contains all edges from EG that form a W -subgraph in G, i.e.

EG =

�
S � � VG

�EW � � ; ( � S, S) 
 W � .

The hypergraph � is q-uniform, on �EG � = qsk vertices and with sp edges; to see this,
recall the definition of EG and observe there are sp W -subgraphs in G. To estimate ∆2( � ),
fix two distinct elements S, T � VG, i.e. two edges of EG. The edges S and T cover at
least k + 1 points of W , therefore there are at most s|VG|−k−1 ways to extend S and T into
a W -subgraph. Provided the size n of G satisfies�

n

p
� p

> 2q−3q

�
n

p
� k � n

p
� p−k−1

,
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by Weak Win Criterion (Theorem 3.5) there exists a maker’s winning strategy. By simple
calculation, taking

n > 2q−3qp

is sufficient, which finishes the proof. �

Note that Theorem 4.9 implies Theorem 4.8.
Our understanding of strong restricted Ramsey games is rather limited and it seems

to be hopelessly hard to prove results similar to Theorem 4.8 and 4.9. However, we study
a special case of strong restricted Ramsey game.

Example 4.10. We give an example of small K4-free graph, where two players al-
ternately colour the edges, trying to colour their own K3 subgraph first (i.e. the strong
restricted Ramsey edge-colouring game). We show winning strategy of the first player.

vb1va1

c

va2

vb2

vb4

va4

va3vb3

Fig. 4.11. The K4-free playground.

The graph on Figure 4.11 does not contain K4 (easy observation) and there exists an
explicit winning strategy of the first player in the strong game. As a first move, the first
player takes the edge

�
c, va

1 � . Then the second player responds. Let us distinguish two
cases:

(1) Second player’s move was one of
�
c, va

i � or
�
va

i , v
a
j � . Then first player in the fol-

lowing 4 moves takes the edges
�
c, vb

1 � , � c, vb
2 � , � c, vb

3 � , � c, vb
4 � , respectively. The

second player is forced to take the edges
�
va
1 , v

b
1 � , � vb

1, v
b
2 � , � vb

2, v
b
3 � , � vb

3, v
b
4 � , re-

spectively, otherwise first player takes them and wins. After the fourth move, the
edge

�
vb
4, v

b
1 � is left unoccupied, thus allowing first player to win.

(2) Second player’s move was one of
�
c, vb

i � or
�
vb

i , v
b
j � or

�
v11, v

b
1 � . Then, first player

in the following 3 moves takes the edges
�
c, va

2 � , � c, va
3 � , � c, va

4 � , respectively. The
second player is forced to take the edges

�
va
1 , v

a
2 � , � va

2 , v
a
3 � , � va

3 , v
a
4 � , respectively,

otherwise first player takes them and wins. After the third move, the edge
�
va
4 , v

a
1 �

is left unoccupied, thus allowing first player to win.
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4.5.2 Colouring vertices

We can easily adapt the construction from the proof of Theorem 4.9 for the vertex-
colouring version of the restricted Ramsey game.

Theorem 4.11. Let k � 2 be an integer and W (winning) and F (forbidden) be two
k-graphs such that there does not exist a homomorphism h : F � W . Let p = �V (W ) � and
consider the strong version of the restricted Ramsey vertex-colouring game. Then there
exists an F -free k-graph G on 2p � 1 vertices, where the first player is able to colour a
W -subgraph first. Moreover, the number 2p � 1 is exact, i.e. there does not exist an F -free
graph G with maker’s winning strategy on less than 2p � 1 vertices.

Proof. For W = (
�
w1, . . . , wp � , EW ), let us define the game k-graph G = (V1

� ���	� �
Vp, EG)

as the “inflated W”, where V1 =
�
w1 � and Vi =

�
wi, w

′
i � for i � 2. Let the edge set be

EG =

�
�
va1,b1, . . . , vak ,bk

� � � VG

k � ;
�
a1, . . . , ak � � EW � .

W G

Fig. 4.12. Illustration of the 2-graph W and the corresponding G.

Assume there is a subgraph S � G, S 
 F . Let m : V (S) � �
w1, . . . , wp � be a

mapping that maps each vertex v � V (S) on the vertex wi such that v � Vi. But
the mapping m is exactly a homomorphism (S 
 F ) � W , which is a contradiction.
Therefore, G is F -free.

The strategy of the first player is following. In the first move occupy V1. When
opponent takes one point from Vi, take the remaining point from Vi. Observe that after
p moves the first player wins, leaving a monochromatic W subgraph.

Assume there exists a graph G on less than 2p � 1 vertices, where the first player is
able to win. Let the play finishes. Then at most p � 1 vertices can be coloured by the
first player, which is not enough to find a W -subgraph. �

Our previous results, both for vertex-colouring and edge-colouring, did not work for
the case when the forbidden k-graph F is a cycle, particularly an even cycle. Then the
inflation technique is simply not enough. We need some tool for constructing Cs-free
k-graphs.
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Our basic tool is the following lemma, which shows that there exist “dense” hyper-
graphs without short cycles. The proof is a clever application of probabilistic method,
invented by Erdős. See [ES] where the original proof can be found.

Lemma 4.12. For all positive integers k and s there exists a k-graph G = (V,E),
�V � = n without cycles of length < s and with �E � > n1+1/s edges for all n sufficiently
large.

Proof. We first sketch the idea of the proof. The idea is to take one k-graph with
approximately 2n1+1/s edges and delete all edges EC , which belong to cycles of length
< s. Therefore, if the number of edges EC is smaller than n1+1/s, we have the desired
k-graph G. The only problem is to find such a k-graph G. To do this, we consider the set
of all k-graphs with 2n1+1/s edges. We count the average number A of edges belonging
to cycles of length < s, over all such hypergraphs. However, if A < n1+1/s, there must
exist a k-graph with at least n1+1/s edges without short cycles! Let us execute the proof
formally.

Let us consider a set � V of all k-graphs (V,E), �V � = n with m = 2 � n1+1/s � edges.
Then

� � V � = � (n
k)
m � .

Consider a cycle Cj of length j. There are� n

j(k � 1) �
possibilities to place vertices of Cj on the set V and there are� (n

k) � j

m � j �
possibilities how to place the remaining edges on V , such that the resulting hypergraph
belongs to � V . Recall the well-known facts that (n

k) = n!
k!(n−k)! and that (n

k) = Θ(nk) =
n!

(n−k)! for k � n. On a cycle of length j, there can be at most

� j
2 � + � j

3 � + ���	� + � j
k � � kjk

edges adjacent to at least two vertices. Therefore, the average number of edges contained
in cycles of length j is less than

kjk � n

j(k � 1) �
� (n

k) � j

m � j �� (n
k)
m � .
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The average number of edges contained in cycles of length < s is thus less than

s−1�

j=2

kjk � n

j(k � 1) �
� (n

k) � j

m � j �� (n
k)
m � �

s−1�

j=2

�
�
nj(k−1) ((

n
k) � j)!m!

(n
k)!(m � j)!

�
�

s−1�

j=2

� � nj(k−1) mj

(n
k)j � �

s−1�

j=2

� � nj(k−1)n
j+j/s

nkj �
�

s−1�

j=2

� (nj/s) � � (n(s−1)/s).

Here the numbers j, k and s are constants, therefore all top-level expressions depending
only on j, k, s are “hidden” by the � notation.

Consequently, for all n sufficiently large (formally this means there is some constant n0
such that for n > n0 the following holds), there exists an example of a k-graph G = (V,E),
�V � = n, �E � = 2 � n1+1/s � such that G contains at most � n1+1/s � edges contained in cycles
of length < s. After deleting these edges we are left a k-graph with at least � n1+1/s � edges
without cycles of length < s. �

Note that the proof of Lemma 4.12 is not constructive, i.e. it gives the desired k-graph
G by purely existential argument. The following simple lemma will be necessary.

Lemma 4.13. Let � = (V, F ) be an arbitrary finite hypergraph. Assume there exists
a hypergraph � ′ = (V, F ′), F ′ � F such that the weak game on � ′ is win for the first

player. Then the first player has a winning strategy also in the weak game on � .

Proof. Consider the weak game on the hypergraph � ′ and the appropriate winning
strategy S of the first player. Then apply S in the weak game on � . Clearly, if we restrict
the winning lines on F ′ and the first player still wins, the second player is unable to block
him on the set F . �

Note that Lemma 4.13 does not hold for the class of strong games.
Now we are ready to apply the knowledge of existence of dense hypergraphs without

short cycles in restricted Ramsey games.

Theorem 4.14. Let k � 2 be an integer and W (winning) and F (forbidden) two

k-graphs. Let p = �V (W ) � and let there be an integer ` such that C` � F and C` �� W .
Then there exists an F -free k-graph G on � (2p`) vertices such that the first player has a
winning strategy in the weak restricted vertex-colouring Ramsey game on G with winning
subgraph W and forbidden subgraph F .

Proof. Let us first sketch the idea of the proof. Assume we know n = �V � already, we
compute it at the end. First, we use Lemma 4.12 to get a dense C`-free p-graph G = (V,E)
on n vertices. We need the density property for Weak Win Criterion to work. Second,
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we “stuff” each hyperedge of G by W , that is, we draw a copy of W on each A � E.
This means there are now many W -subgraphs in G. Third, using Weak Win Criterion we
prove the first player wins on such a stuffed graph and we compute the number n. Let us
do the proof precisely.

For the number of vertices n (we will establish the actual number later) there exists by
Lemma 4.12 a p-graph G = (V,E) such that G does not contain a cycle of length < ` + 1
and �E � > n1+1/(`+1). Let us define the k-graph G′ = (V,E ′) by taking G and arbitrarily
replacing each edge by a copy of W . That is, G′ =

�
S∈E(S,ES) where (S,ES) 
 W for

every S. The actual game takes place on G′.

W G G′

Fig. 4.13. “Stuffing” the p-graph G by copies of W for k = 2.

Let us show that G′ is F -free. Assume there is an F -subgraph in G′. Two cases can
occur:

(1) The vertices of F are entirely contained in a single hyperedge of G. The assumption
C` � F and C` �� W implies that F �� W (W is missing the cycle C`). Therefore,
this case cannot occur.

(2) The vertices of F are incident with more than one hyperedge of G. Restrict
ourselves only on such edges

�
E1, . . . , Et � � E that are incident with the cycle

C` � F , i.e. �Ei
� C` � � 1 for 1 � i � t � `. If C` � G′ there must exist a sequence

S = (Es1 , Es2 , . . . , Es`
) consisting of edges from

�
E1, . . . , ET � such that the vertices

of C` lay on edges from S, respectively. But the hypergraph (V (C`),
�
E1, . . . , Et � ) is

precisely a cycle of length ` in the hypergraph G. Therefore, we get a contradiction
with the fact that G does not contain a cycle of length < ` + 1.

Let us construct a hypergraph � = (VG, EG) such that playing weak game on � is
equivalent with the original game on G′. That is, VG = V and

EG =

�
S � � VG

�E(W ) � � ;
�
T � E(G′) : (S, T ) 
 W � ,

i.e. each edge in EG corresponds to a set of vertices on which there is a W -subgraph in
G′. Observe that G � � ; by the “stuffing” procedure, there are at least the edges of G in

� and maybe some more. Due to Lemma 4.13, we can restrict ourselves only to the weak
game on G; if we show the first player wins on G then he wins on � and therefore also on
G′.
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The k-graph � contains n vertices, at least n1+1/(c+1) edges, and is almost-disjoint
since it does not contain a 2-cycle. Provided the size n of G′ satisfies

n1+
1

c+1 > 2p−3 � n,

by Weak Win Criterion (Theorem 3.5) there exists a winning strategy of maker. By simple
calculation, taking n = Ω(2cp) is sufficient, which finishes the proof. �

Let us note that the proof of Theorem 4.14 is existential because the main tool for
finding the game hypergraph, Lemma 4.12, works by existential arguments.

4.5.3 Summary

Let us sum the results shown in Section 4.5.

Corollary 4.15. Let k � 2 be an integer. We have proved that

(1) � ∗
2(K3,K4) � 9,

(2) � ∗
k(Kk

p ,Kk
p+1) = � (2(p

2)p3),
(3) � ∗

k(W,F ) = � (2|E(W )| � �V (W ) � � �E(W ) � ) for two k-graphs W and F satisfying the

condition that there does not exist a homomorphism h : W � F ,
(4) �� ∗

k(W,F ) = 2 �V (W ) � � 1 for two k-graphs W and F satisfying the condition that

there does not exist a homomorphism h : W � F ,
(5) �� ∗

k(W,F ) = � (2c|V (W )|) for the k-graphs W and F satisfying the condition that

there is a number c such that Cc � F and Cc � W .

Proof. The results clearly follow from Example 4.10, Theorem 4.8, Theorem 4.9, Theo-
rem 4.11 and Theorem 4.14, respectively. �

4.6 Loebl game

Recall Conjecture 2.13 presented in Section 2.7. As we have already done for some kinds of
Ramsey objects, let us consider a weak game with the following rules. Given an arbitrary
tree T on n vertices, maker and breaker alternately pick edges of a complete graph KN .
Maker is trying to build a copy of T entirely by his colour, the goal of breaker is to prevent
this. We call it Loebl game. The question is, what is the least number N of vertices of
the KN such that maker has a winning strategy for arbitrary tree T on n vertices? Let
us denote by � ∗(n) the least number of vertices N such that the first player wins in the
weak Loebl game.

Theorem 4.16. Consider a strong Loebl game for trees on n vertices. Then the first

player is able to win on a complete graph KN for N = 2n � 2.

Proof. Let us fix a tree T and assume the play holds on the complete graph K2n−2. We
describe the simple strategy of the first player: he keeps building a connected subtree of
T , and after n � 1 moves he is left with the complete tree T .

61



We define the ordering of edges of T in which the first player should build them. Let
us root the tree T at an arbitrary vertex. The edges connecting vertices in level i with
level i+ 1 are prior to edges connecting levels j and j + 1 for j > i. The ordering of edges
inside one particular level is arbitrary. Maker keeps picking previously unselected edges
such that the tree T “grows from the root”, i.e. in every step first player’s edges form a
connected tree T ′ � T .

Finally, observe that 2n � 2 vertices are enough to complete the procedure. Just
before the i-th step, for each vertex at least 2(n � i) � 1 edges are unoccupied. Thus for
all i = 1, . . . , n � 1 steps, there is at least one edge free for the purposes of the first player.
Moreover, the second player does not have time to complete his own tree T because the
game ends exactly after n � 1 moves by the first player’s victory. �

Theorem 4.17. Consider the weak Loebl game for trees on n vertices. Then breaker
has a winning strategy on boards KN for N � 2n � c

�
n log n where c is an absolute

positive constant.

Proof. To prove this result, we need to find a suitable tree T on n vertices together with
breaker’s strategy able to prevent maker from building T on KN . We show that star on
n vertices is the right tree T . Assume maker has to create such a star T . But this is
precisely the “degree game” as presented in Section 3.4.

By Theorem 3.8, we know breaker is able to win if the goal of maker is to create star
of size N

2 + c
�

N log N for an absolute positive constant c (assuming we play on KN).
Therefore, it remains to solve the inequality

n >
N

2
+ c � N log N,

which is satisfied for N � 2n � 4c
�

n log n. The theorem follows. �

Corollary 4.18. There is a positive absolute constant c such that

2n � c � n log n � � ∗(n) � 2n � 2

for every positive integer n.

Proof. Follows immediately from Theorem 4.17 and Theorem 4.16. �
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4.7 Comparison of Ramsey and game numbers

The main goal of our work is to compare the two numbers of each object: its Ramsey
number � and its game number � ∗. This means, the minimum size such that given
arbitrary colouring there exists a monochromatic sub-object and the minimum size such
that the first player has a winning strategy.

However, establishing the number � ∗ for the case of strong games is immensely
complicated. Usually, by Theorem 4.1, our best bound is only � ∗ � � . Therefore,
we study the class of weak games, they are easier to analyse.

Often, the gap between � and � ∗ turns out to be enormous. In many Ramsey-type
theorems, even in the case of two colours, the object size which guarantees their validity
is not even primitive recursive (see Section 2.8 for details) and the game number is very
small.

We continue by the list of Ramsey-type theorems, both with the appropriate Ramsey
number upper bound a game number upper bound.

Corollary 4.19. (Arithmetic progression numbers) Let k be a positive integer. Then

� ∗(k) = � (2kk3) and � (k) � 22
22
2k+9

.

Proof. Clearly follows from Corollary 4.5 and Theorem 2.15. �

Similar gap arises in the case of arithmetic progression with difference. However, the
game number remains asymptotically the same as in arithmetic progression game only.

Corollary 4.20. (Arithmetic progression with difference numbers) Let k be a positive

integer. Then

� ∗
d(k) = � (2kk3) and � d(k) � 22

22
2k
2+k+9

.

Proof. See Corollary 4.5 and (2.12) in Section 2.8. �

Next, we compare the bounds on Hales-Jewett numbers. Let � ∗(n) be the smallest
dimension d such that the first player wins in the weak nd game (see Section 4.3).

Corollary 4.21. (Tic-Tac-Toe vs. Hales-Jewett) Let n be a positive integer. Then

� ∗(n) = � (n2) and � (n, 2) � f5(c � n),

where c is an absolute positive constant and f5 is the function from the Ackermann hier-
archy.

Proof. Follows directly from Theorem 4.6 and Corollary 2.14. �

Let us turn our attention to the original Ramsey theorem (see Section 2.2) and to
Ramsey games (see Section 4.4). By � ∗

k(n) we denote the smallest N such that first player
can build a Kk

n subgraph of Kk
N in the weak Ramsey game.
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Corollary 4.22. (Ramsey theorem vs. Ramsey game) Let k and n be two integers. Then

� ∗
k(n) � 2O(nk), � ∗

2(n) � 2n+2 and � k(n, 2) � 22
·
·
·
2O(n)

,

where there are k � 1 2’s on the stack.

Proof. See Theorem 4.7 and (2.10), (2.11) in Section 2.8. �

Another topic we have studied are the restricted Ramsey theorems (see Section 2.6)
and restricted Ramsey games (see Section 4.5). See Corollary 4.15 for the summary of
what we have been able to prove in the case of restricted Ramsey games. Usually, the
sufficient size of the game hypergraph is of the form of 2 to the size of the winning
subgraph. On the other hand, the upper bound on the restricted Ramsey theorem is not
known to be even primitive recursive.

4.8 Future work

First thing we believe to be possible to improve is the Loebl game. Theorem 4.16 gives
the upper bound 2n � 2, which works both for the strong and weak game. However, if
we consider only the weak game, Theorem 3.8 shows that for the class of stars we can
do much better than 2n � 2. This leads to the belief that for more tree classes or even
arbitrary trees we can achieve better upper bound.

Another goal is to prove Theorem 4.14 for the edge-colouring game. Moreover, we
think it could be possible to simplify and generalise assumptions in Theorem 4.9 and
Theorem 4.11. In the ideal case, to the generality level of Theorem 2.11.

There seems to be endless opportunities to work on, as there are many Ramsey-type
theorems and almost all can be taken as boards for a positional games and studied.

Finally, we present an open problem, which is unrelated to our other work. It is
inspired by the following famous theorem of Erdős and Szekeres.

Theorem 4.23. (Erdős, Szekeres) For every integer k there exists an integer N such

that any set of N points in plane in general position (no three points lie on a line) contains
k points forming convex k-polygon.

For the proof see e.g. Valla and Matoušek [VM].
Let us now consider the game version of Theorem 4.23. Two players alternately draw

points into plane such that no three lie on a line. If after some player’s move there is
a set forming convex k-polygon, this player wins. By Theorem 4.23 we know that after
finite number of moves someone must win. But who has winning strategy in this game
and how long does it take? Using case study one can show that for k = 3 it is win for the
first player, for k = 4 and k = 5 the second players wins. And this is all we know. We
consider this problem especially challenging.
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