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This dissertation consists of two essays in market design. 

 In the first chapter, we study affirmative action policies in college admissions and 

hiring. A college or firm makes admissions or hiring decisions in which each candidate is 

characterized by priority ranking and type, which may depend on race, gender, or 

socioeconomic status. The admissions or hiring committee faces a trade-off between 

meritocracy and diversity: while a merit-first choice rule may admit candidates of the 

same type, a diversity-first choice rule may be unfair due to priority violations. To 

formalize this trade-off, we introduce a measure of meritocracy and a measure of 

diversity for choice rules. Then, we investigate how to resolve the tension between them. 

A choice rule that uses both reserves and quotas can be viewed as a compromise and is a 

generalization of the two extreme rules. The first result is comparative statics for this 

class of choice rules: we show that as parameters change and the choice rule becomes 

more meritorious, it also becomes less diverse. The second result is a characterization of 

the choice rule, which may help admissions or hiring committees to decide their policies. 

 In the second chapter, we introduce a method to measure manipulability of a 

matching mechanism and use theory and simulation to study constrained mechanisms in 



  

school choice. First, we show that the implications from existing measures are strongly 

dependent on the full preference domain assumption. Our measure is more robust. The 

implications from existing measures can be carried over as well: while the recent school 

admissions reforms did not fully eliminate incentives to manipulate, they discouraged 

manipulation. Second, we use simulations for quantitative analysis. Our results support 

the recent school admissions reforms quantitatively, as well as qualitatively: they largely 

eliminated the incentives to manipulate. In addition, while the qualitative implications 

from theory are parallel to existing measures, the quantitative implications from 

simulations confirm a significant difference. 
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Chapter 1

Meritocracy versus Diversity

1.1 Introduction

Affirmative action is a scheme to promote diversity based on different characteristics, such

as gender and race. Furthermore, it is used to close socioeconomic gaps that exist between

various groups in society. To this end, it involves policies designed to increase the par-

ticipation of underrepresented groups in public areas such as employment, education, and

business contracting, thereby giving these groups a higher chance of participation.

Affirmative action policies highlight the basic tension between meritocracy and diver-

sity. Since they give a higher chance to underrepresented groups, they may not be meritori-

ous: while a more meritorious candidate may be rejected, a less meritorious candidate from

an underrepresented group may be admitted. On the other hand, a policy based on only

merit does not promote diversity, as many candidates from the overrepresented group may

be admitted, since they are likely to be more meritorious than candidates from the other

groups.

The tension between meritocracy and diversity can be a very contentious issue. For

example, Harvard’s college admissions policies were brought to court by an organization

representing a group of Asian-American students called “Students for Fair Admissions.”

The plaintiffs claimed that Harvard used race and ethnicity as a predominant factor in ad-
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missions decisions for diversity purposes, which intentionally discriminated against Asian-

American applicants.1 However, this claim was rejected by a federal judge who stated that

the university met the strict constitutional standards for considering race in its admissions

process. Moreover, the judge discussed the benefits of diversity, such as fostering toler-

ance, acceptance, and understanding that will ultimately make race-conscious admissions

obsolete. She further stated that it was not yet time to look beyond race in college admis-

sions, which suggests that the current race-conscious admissions process should be justified

due to diversity concerns.2

While there is rich market-design literature on how to incorporate various diversity con-

straints into a choice rule, little attention has been paid to how the choice of these constraints

affects meritocracy. In this paper, we propose a measure of meritocracy and a measure of di-

versity to formalize the tension and a potential resolution. We obtain a choice rule generated

by reserves and quotas (reserves-and-quotas rule) as a resolution of the tension. Reserves

provide soft lower bounds while quotas provide hard upper bounds on the number of can-

didates of different types. The first result is comparative statics in this class of choice rules:

as parameters change and the choice rule becomes more meritorious, it also becomes less

diverse. While we focus on the specific class of choice rules, it includes choice rules in

market-design literature. We obtain two choice rules from the literature—the responsive

rule and the ideal-distribution rule—as two extremes of the class of reserves-and-quotas

rules. The responsive rule is the most meritorious and least diverse rule among this class,

whereas the ideal-distribution rule is the least meritorious and most diverse rule.

The second result is a characterization of the reserves-and-quotas rule, which could help

colleges or firms decide their admissions or hiring policies. Two out of the four axioms are

particularly important. The first axiom is across-types ≻-compatibility. We face the trade-

off between meritocracy and diversity. This axiom states when the college uses the priority
1Students for Fair Admissions also accused the University of North Carolina and the University of Texas

of discrimination. See https://candidatesforfairadmissions.org/about/.
2For more details, see the following NY Times article: https://www.nytimes.com/2019/10/01/us/harvard-

admissions-lawsuit.html.
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and when it concerns diversity. The other axiom is substitutability, which is necessary

for the existence of stable (or fair) matchings. It also enables us to use the most popular

mechanism in practice—the deferred acceptance algorithm—to find a stable matching.

The reserves-and-quotas rule is also closely related to the recently developed reserve

system literature, which analyzes the allocation of resources by reserves. A key observa-

tion is that allocation depends on not only the size of reserve but also the order which seat

is processed (Dur et al. [21]). In terms of the order, our choice rule processes all reserves

before open seats. We provide another characterization to understand the relationship be-

tween our choice rule and alternative reserve systems. In particular, we introduce a new

axiom meritorious monotonicity in reserve and quota size, which is motivated by our com-

parative statics. This axiom ensures transparency: when a diversity constraint by reserves

and quotas is relaxed, a choice rule becomes more meritorious. The reserves-and-quotas

rule is the only natural choice rule which satisfy the new axiom. In terms of reserves system,

processing reserves first is the only transparent way.

We provide two additional results. First, we study the case of endogenous priorities.

The priority is exogenous in our model. The first characterization is generalized to the case

in which not only reserves and quotas, but also the priority, are endogenous. Second, we

study a separable choice rule. This property states that the college never uses the priority to

compare candidates of different types. While the ideal-distribution rule is separable, there

are other separable choice rules. We study the class of separable choice rules with the new

property.

The rest of Chapter 1 is organized as follows. Section 2 presents the model. Section 3

presents our main results. Section 4 provides a characterization. Section 5 provides addi-

tional results. Section 6 provides the concluding remarks. Appendix provides the proofs of

the results and verifies the independence of the axioms.
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1.1.1 Related literature

Our results are closely related to the results obtained by Echenique and Yenmez [24]. They

study the tension between the existence of stable matchings and diversity concerns. Three

choice rules are proposed to resolve this tension; specifically, they characterize the ideal-

distribution rule, the reserves rule, and the quotas rule. Doğan [20] corrects the mistake

in the characterization of the reserves rule. These choice rules are included in the class

of our reserves-and-quotas rules. While our first characterization builds on their results,

there are two major differences in our results. First, we identify the role of substitutabil-

ity, which is the main axiom in Echenique and Yenmez’s characterizations, by providing

another characterization of our choice rule without substitutability. Second, and perhaps

more importantly, we provide not only the characterizations but also the trade-off between

meritocracy and diversity, which is the main topic in our work.

In two recent papers, Erdil and Kumano [26] and Kojima et al. [37] consider choice rules

similar to the ideal-distribution rule. However, their models and motivations are different

from those in this paper. First, their models are different. Erdil and Kumano [26] allow

indifferences in the priority, whereas the preference is strict in our model. Also, while their

choice rule assigns empty reserved seats for one type to other types of candidates, the ideal-

distribution rule never assigns them due to diversity concerns. Kojima et al. [37] consider

a matching market in which there are multiple colleges and multiple candidates. However,

this paper mainly focuses on the case of one college and multiple candidates. Also, Kojima

et al. [37] do not assume types of candidates. Second, the motivations in their papers differ.

Erdil and Kumano [26] focus on inefficiency due to indifferences and study how to improve

this. Kojima et al. [37] study how to incorporate distributional constraints into matching

theory. To do so, Kojima et al. [37] change the definition of stability and show the existence

of stable matchings using techniques in discrete convex analysis. We study how diversity

constraints affect meritocracy and provide a formal trade-off.

Diversity concerns have been widely studied in school choice literature. Abdulka-
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diroğlu and Sönmez [2] note the problem of school choice with diversity concerns. They

propose a choice rule generated by quotas, which have been analyzed by Abdulkadiroğlu

[1] and Ergin and Sönmez [27]. Kojima [35] shows an impossibility result: affirmative

action policies based on majority quotas may hurt minority candidates. To overcome this

difficulty, Hafalir et al. [32] propose an affirmative action based on minority reserves.

Doğan [19] proposes another solution which never hurts minority candidates. More gen-

erally, Ehlers et al. [25] study affirmative action policies when there are both upper and

lower type-specific bounds. They propose solutions based on whether these bounds are

hard or soft. The reserves-and-quotas rule in this paper can be regarded as a choice rule

with hard upper and soft lower type-specific bounds. The hard lower type-specific bounds

are further analyzed by Fragiadakis [28], Fragiadakis and Troyan [29], and Tomoeda [48].

Other papers consider specific choice rules similar to the choice rule generated by reserves

(Aygun and Bó [4]; Dur et al. [21]; Dur et al. [22]; Kominers and Sönmez [38]; Westkamp

[49]). These papers study how to incorporate diversity constraints into school choice. In

this paper, we investigate the impact of diversity constraints on meritocracy.

Recently, affirmative action with complex constraints have been studied in various set-

tings (Aygun and Turhan [6]; Baswana et al. [8]; Hamada et al. [39]; Sönmez and Yenmez

[45] and [46]; Thakur [47]). For example, several papers study a model in which candi-

dates possibly have multiple types. However, this paper assumes that each candidate has

one type. These models are outside the scope of our analysis.

1.2 Preliminaries

This section presents the model and preliminary results. We describe the model in the first

subsection and the choice rules in the literature in the second subsection. Then, in the third

subsection, we study the ideal-distribution rule by introducing a new property.
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1.2.1 Model

LetS = {s1, ..., sn} be a nonempty finite set of candidates. There is a college. The college’s

choice rule C is a function that maps for each nonempty set S ⊆ S to a subset C(S) ⊆ S.

Let k denote the capacity of the college. It is such that |C(S)| ≤ k for each S ⊆ S . A

priority is a binary relation ≻ on S that is complete, transitive and antisymmetric. The

candidates is partitioned into d different types. Let T = {t1, ..., td} be the set of types and

τ : S → T be the type function. Let St be the set of type t candidates; i.e., St ≡ {s ∈

S : τ(s) = t}. Similarly, for each S ⊆ S , let St be the set of type t candidates in S; i.e.,

St ≡ S ∩ St. We use a function ξ : 2S → Zd
+ to describe the number of candidates of each

type in each particular set. Thus, ξ(S) ≡ (|St1 |, ..., |Std|) ∈ Zd
+ consists of the number of

candidates of each type in S. We term ξ(S) the distribution of candidates in S. We shall

assume that the college is not large enough to admit all candidates of a given type: k < |St|

for every t ∈ T .

1.2.2 Choice rules

We introduce two choice rules. The first choice rule is a responsive rule as meritocracy

first. The other choice rule is an ideal-distribution rule as diversity first.

First, we introduce a responsive rule. This rule is meritocracy first: the college always

uses the priority to compare candidates of different types.

Definition 1. A choice rule C is responsive if for all S ⊆ S

C(S) =


S if |S| ≤ k

{s∗1, ..., s∗k} otherwise

where s∗1 = arg max≻ S, and for all i = 2, ..., k, s∗i = arg max≻ S \ {s∗1, ..., s∗i−1}.

Next, we introduce an ideal-distribution rule proposed by Echenique and Yenmez [24].
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In this rule, the college sets an ideal distribution of candidate types and minimizes the dis-

tance to it.

Definition 2 (Ideal-distribution rule). A choice rule C is generated by an ideal distri-

bution for priority ≻ if there exists a vector z∗ ∈ Zd
+ with

∑
t∈T z

∗
t ≤ k such that for all

S ⊆ S ,

(i) ξ(C(S)) is the closest vector to z∗ (in Euclidean distance) inB(ξ(S)), whereB(x) ≡

{y ∈ Zd
+ :

∑
i∈T yi ≤ k and ∀i ∈ T, yi ≤ xi} and

(ii) type-t candidates in C(S) have a higher priority than all type-t candidate in S \C(S)

for all t ∈ T .

In words, the ideal-distribution rule consists of two stages. First, the college chooses

a distribution of candidates ξ(C(S)) that is as close to z∗ as possible. Second, given the

distribution ξ(C(S)), it admits the highest priority candidates up to ξ(C(S))t for each type

t.

𝑡2

𝑡1

𝑧∗

𝜉(𝑆)

𝜉(𝐶 𝑆 )

𝑡1 and 𝑡2: Types
𝑧∗: Ideal distribution
𝜉(𝑆): Distribution of 𝑆

*

𝑘

𝑘

1

Figure 1.1: Ideal-distribution rule.
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1.2.3 Separability: alternative characterization of ideal-distribution

rule

We study the ideal-distribution rule by introducing a new property. While the ideal-distribution

rule is intuitive and simple, it is extreme: the college never uses the priority to compare can-

didates of different types. Echenique and Yenmez [24] describe it as diversity first: the rule

emphasizes diversity over individual candidates’ priorities. We introduce a new property

for choice rules to formalize the idea.

Definition 3. A choice rule C is separable if there exists a collection of choice rules

{Ct}t∈T such that

(i) Ct is a choice rule defined on St for each type t and

(ii) C(S) = ∪t∈TCt(St) for all S ⊆ S .

We provide an alternative characterization of the ideal-distribution rule based on sepa-

rability. The proof is contained in Appendix.

Proposition 1. A choice rule C is generated by an ideal distribution if and only if there

exists z∗ ∈ Zd
+ with

∑
t∈T z

∗
t ≤ k such that C is separable and for each type t, Ct is a

responsive rule whose capacity is z∗t .

The ideal-distribution rule is extreme in its view of how to resolve the tension between

meritocracy and diversity. The college insists in achieving the diversity objective z∗. There

are two disadvantages. First, it would create many priority violations: while low priority

candidates are admitted, high priority candidates of other types are rejected. Second, it

would create many empty seats: if no candidates from some type t apply to this college,

zt seats are unassigned, even if candidates of other types are rejected. We will discuss this

issue in the next section.
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1.3 Main results

In this section, we study a reserves-and-quotas rule as a potential flexible choice rule. The

key property of the ideal-distribution rule is separability: the college never uses the priority

to compare candidates of different types. The reserves-and-quota rule relaxes it: the college

sometimes uses the priority to compare candidates of different types. We provide two results

for this choice rule. The first result is the trade-off between meritocracy and diversity. The

second result is the characterizations.

1.3.1 Reserves-and-quotas rule

We define our main rule, the reserves-and-quotas rule. Reserves provide soft lower bounds

while quotas provide hard upper bounds on the number of candidates of different types. The

college can use the priority to compare two candidates of different types when their types

meet minimum and maximum requirements.

To define the choice rule, given S ⊆ S , let H(S, l, (lt)t∈T ) be the largest subset of S

that includes the highest priority candidates in S according to ≻ such that there are no more

than l candidates in total and lt candidates of type t. Formally, for all S ′ ⊆ S such that

|S ′| ≤ l and |S ′
t| ≤ lt for each t ∈ T , H(S, l, (lt)t∈T ) satisfies

(i) |S ′| ≤ |H(S, l, (lt)t∈T )| and

(ii) if |S ′| = |H(S, l, (lt)t∈T )| and S ′ ̸= H(S, l, (lt)t∈T ), then for all s ∈ H(S, l, (lt)t∈T )\

S ′ and s′ ∈ S ′ \H(S, l, (lt)t∈T ), we have s ≻ s′.

Definition 4 (Reserves-and-quotas rule). A choice rule C is generated by reserves and

quotas for priority ≻ if there exist parameters r = (rt)t∈T and q = (qt)t∈T such that rt ≤ qt

9



for each type t,
∑

t∈T rt ≤ k ≤
∑

t∈T qt, and for all S ⊆ S , C(S) = C1(S)∪C2(S) where

C1(S) ≡ H(S, k, (rt)t∈T ) and

C2(S) ≡ H(S \ C1(S), k − |C1(S)|, (qt − rt)t∈T ).

In words, the reserves-and-quotas rule consists of two stages. First (reserves stage), the

college considers each type t separately and admits min{|St|, rt} type-t candidates with the

highest priority. Second (open seat stage), the college considers the candidates from all

types that are rejected at the first stage. Then, it admits these candidates with the highest

priority up to its remaining capacity, while keeping its hard upper type-specific bound qt

for each type t.

It is important to mention four points related to the reserves-and-quotas rule. First, the

class of reserves-and-quotas rules includes a lot of choice rules in market-design litera-

ture. The responsive rule and the ideal-distribution rule are obtained as special cases. The

reserves-and-quotas rule is the responsive rule when for each type t, the number of reserves

is equal to zero, and the number of quotas is greater than or equal to the capacity, that is,

rt = 0 and qt ≥ k for all t ∈ T . The reserves-and-quotas rule is the ideal-distribution rule

when for each type t, the numbers of reserves and quotas equal the diversity goal z∗t , that is,

rt = z∗t = qt for all t ∈ T .3 Clearly, the class of the reserves-and-quotas rule also includes

the reserves rule and the quotas rule proposed by Hafalir et al. [32] and Abdulkadiroğlu

and Sönmez [2], respectively. Our contribution is to provide the unified framework, the

reserves-and-quotas rule, and show the trade-off between meritocracy and diversity based

on the parameters (rt)t∈T and (qt)t∈T .

Second, the reserves-and-quotas rule is a variant of the choice rules proposed in the liter-

ature. Ehlers et al. [25] propose the choice rule with soft lower bounds (rt)t∈T and soft up-

per bounds (qt)t∈T . The reserves-and-quotas rule is generated by soft lower bounds (rt)t∈T
3The proofs are provided in Appendix.
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and hard upper bounds (qt)t∈T . The difference between these rules is that the reserves-

and-quotas rule does not admit more than qt students of type t, whereas the choice rule by

Ehlers et al. [25] sometimes admits more than qt students of type t. Formally, we obtain

their choice rule by adding the third stage C3 to the reserves-and-quotas rule where for all

S ⊆ S ,

C3(S) ≡ H(S \ (C1(S) ∪ C2(S)), k − |C1(S) ∪ C2(S)|, (k − qt)t∈T ).

Third, the reserves-and-quotas rule is not a unique choice rule to satisfy the constraint

by soft lower bounds (rt)t∈T and hard upper bounds (qt)t∈T ; there are other choice rules

to implement the same number of reserves and quotas. A real-life example is the choice

rule used in elite public high schools in Chicago (Kominers and Sönmez [38]; Dur et al.

[22]) or the vertical reserves in India (Sönmez and Yenmez [45] and [46]). In words, this

choice rule also consists of two stages.4 First, it considers candidates from all types and

admits k −
∑

t∈T rt candidates with the highest priority. Second, it considers each type

t separately and type-t candidates that are rejected at the first stage. Then, it admits rt

candidates with the highest priority for each type t. Intuitively, this rule assigns reserves at

the second stage. Thus, this rule implements the reserves in the opposite order to our rule:

the reserves-and-quotas rule assigns reserves at the first stage. It is worth noting that our

results on the reserves-and-quotas rule cannot be carried out with the reserves rule used in

Chicago. We discuss this issue in the following sections.

Last, the reserves-and-quotas rule sometimes creates empty seats even if it rejects some

candidates. It is observed in practice to leave seats empty due to diversity concerns. An

example is the kindergarten assignment in Louisville, KY. Parents who tried to enroll their

children in kindergarten sued the Louisville school district. They argued that there was a

racial quota since the schools did not accept them although there were plenty of empty seats.

The school district contends that it’s not discriminating against anyone, but instead is trying
4This rule has no quotas.

11



to maintain racially balanced and integrated schools for the benefit of all.5
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𝑘

1

Figure 1.2: Reserves-and-quotas rule.

1.3.2 Trade-off between meritocracy and diversity

In this section, we investigate the trade-off between meritocracy and diversity. The respon-

sive rule cannot promote diversity, and the ideal-distribution rule is unfair due to many

priority violations. The reserves-and-quotas rule lies between the two rules. We formally

discuss the trade-off by introducing a measure of meritocracy and a measure of diversity

for choice rules.

First, we introduce a measure of meritocracy. Upon enumerating S from highest to

lowest according to s∗1 ≻ s∗2 ≻ s∗3 ≻ ... ≻ s∗n, we define FS for all S ⊆ S and l ∈ {1, ..., n}

as follows.

FS(l) = |{s ∈ S : s ⪰ s∗l }|.

Definition 5. A choice rule C is more meritorious than C ′ if for all S ⊆ S and l ∈
5For more details, see the following ABC News article:

http://abcnews.go.com/Politics/SupremeCourt/story?id=2693451.
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{1, ..., n}, we have FC(S)(l) ≥ FC′(S)(l).6

In words, for all priority ranking l, C always admits more candidates whose priority

ranking is weakly higher than l. A more meritorious choice rule reduces the numbers of

priority violations and empty seats. For example, F{s∗1,s∗2}(l) ≥ F{s∗2,s∗3}(l) and F{s∗1,s∗2}(l) ≥

F{s∗1}(l) for all l ∈ {1, ..., n}.

Next, we introduce a measure of diversity. Suppose that the college has a diversity goal

z∗ with
∑

t∈T z
∗
t ≤ k on the distribution of candidate types. The measure of diversity here is

a distance from the diversity goal z∗, considering the Manhattan norm (or L1 norm), which

is defined as ∥x∥ ≡
∑d

i=1 |xi|.7

Definition 6. A choice rule C is less diverse than C ′ if for all S ⊆ S ,

∥z∗ − ξ(C(S))∥ ≥ ∥z∗ − ξ(C ′(S))∥.

Now we provide our first main result. It formalizes the trade-off between meritocracy

and diversity in the class of reserves-and-quotas rules. The proof is contained in Appendix.

Theorem 1. LetC be a choice rule generated by reserves r and quotas q andC ′ be a choice

rule generated by reserves r′ and quotas q′. Suppose rt ≤ r′t ≤ z∗t ≤ q′t ≤ qt for every type

t ∈ T . Then C is more meritorious than C ′ and C is less diverse than C ′.

Theorem 1 yields the following result: the responsive rule and the ideal-distribution

rule are two extremes in the class of reserves-and-quotas rules. The proof is contained in

Appendix.
6This is equivalent to the following definition. Let R(S, l) be the lth highest priority candidate in S.

Formally, |{s ∈ S : s ⪰ R(S, l)}| = l when l ≤ |S|. For a case of |S| < l, let introduce a fictitious
candidate s∅ whose priority is lower than any other candidate s ∈ S i.e., for all s ∈ S , we have s ≻ s∅. For
|S| < l, define R(S, l) = s∅. We say that a function f : S → R is compatible with ≻ when for all s, s′ ∈ S ,
s ≻ s′ if and only if f(s) > f(s′). A choice rule C is more meritorious than C ′ if and only if for all S ⊆ S ,
l ∈ {1, ..., n}, and f compatible with ≻, we have

∑l
i=1 f(R(C(S), i)) ≥

∑l
i=1 f(R(C ′(S), i)).

7Our results rely on this norm. For example, Theorem 1 cannot be extend to the measure of diversity based
on L2. On the other hand, the ideal-distribution rule works with any Lp norm for p < ∞.

13



𝑡2

𝑡1

𝑧∗

𝑟

𝑞
𝑘

𝑘

1

𝑞′

𝑟′

Figure 1.3: Trade-off between meritocracy and diversity.

Proposition 2. The responsive rule is more meritorious and less diverse than any other

reserves-and-quotas rules. Any reserves-and-quotas rules are more meritorious and less

diverse than the ideal-distribution rule.

While the class of reserves-and-quotas rules has the trade-off, it is unclear in other

classes of choice rules for diversity. For example, the reserves rule in public high schools

in Chicago does not have such a trade-off: reducing reserves does not mean that it is more

meritorious. The following example illustrates the fact.

Example 1. There are three candidates s1, s2, and s3 and two types t1 and t2. Suppose

that τ(s1) = τ(s3) = t1 and τ(s2) = t2. A priority ≻ ranks them from first to last as

s1 ≻ s2 ≻ s3. A capacity k is equal to 2. Let C be the choice rule used in Chicago

generated by rt1 = rt2 = 1. Also, let C ′ be the choice rule used in Chicago generated by

r′t1 = 1 and r′t2 = 0. Notice that C ′ is obtained from C by reducing a reserve for t2. The

choice rule C admits s1 and s2. On the other hand, the choice rule C ′ admits s1 and s3.

Thus, C ′ is not more meritorious than C since F{s1,s2}(2) > F{s1,s3}(2).

The example leads to a natural question: what a class of choice rules does have the trade-
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off? In Section 4, we will answer this question: The reserves-and-quotas rule is the one and

only natural choice rule which has the trade-off.

1.3.3 Characterizations of reserves-and-quotas rule

This section provides a characterization of the reserves-and-quotas rule using four axioms.

Also, we provide another characterization in a different case in which reserves and quotas

are exogenously specified to identify the role of substitutability—one of the main axioms.

Characterization

We introduce four axioms. The first axiom is substitutability, as introduced by Kelso and

Crawford [33], which is necessary for the existence of stable or fair matchings. Substi-

tutability, together with the irrelevance of rejected contracts introduced by Aygün and Sön-

mez [5], is sufficient for the existence of stable matchings.8 This also enables us to use

the most popular mechanism in practice, the deferred acceptance algorithm, to find a stable

matching. This axiom states that if a candidate s is chosen in a set of candidates S, s is

chosen in any subset of S including her.

Definition 7. A choice rule C satisfies substitutability if for all S ⊆ S ′ ⊆ S and s ∈ S,

s ∈ C(S ′) implies s ∈ C(S).

The second axiom is within-type ≻-compatibility introduced by Echenique and Yenmez

[24]. This is fairness within type: the college should always use the priority to compare

candidates of the same type.9 This axiom states that if a candidate s is chosen over another

s′ of the same type, s has a higher priority than s′.

Definition 8. A choice rule C satisfies within-type ≻-compatibility if for all S ⊆ S and

s, s′ ∈ S, whenever s ∈ C(S), s′ ∈ S \ C(S) and τ(s) = τ(s′), we have s ≻ s′.
8Substitutability and rejection maximality, the third axiom, imply the irrelevance of rejected contracts.

Thus, the reserves-and-quotas rule satisfies sufficiency for the existence of stable matchings.
9It is also referred to as inter se merit in the context of affirmative action in India; see Sönmez and Yenmez

[45] and [46] for more detail.
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The third axiom is rejection maximality introduced by Echenique and Yenmez [24].

This is a weak efficiency condition: acceptance implies rejection maximality.10 In words,

if a type-t candidate is rejected from a set when there is an empty seat, then the number of

type-t candidates chosen from this set is weakly greater than the corresponding number for

any set that does not have more type-t candidates than this set.

Definition 9. A choice rule C satisfies rejection maximality if for all s ∈ S ⊆ S , s ∈

S\C(S) and |C(S)| < k implies that for all S ′ with |S ′
τ(s)| ≤ |Sτ(s)|, we have |C(S ′)τ(s)| ≤

|C(S)τ(s)|.

The last axiom is our new axiom, across-types ≻-compatibility. We face the trade-off

between meritocracy and diversity. Thus, the key point is to determine when the college uses

the priority and when it concerns diversity. This axiom states that the number of candidates

of each type determines when the priority is used.

To introduce this axiom, we need two concepts introduced by Echenique and Yenmez

[24] and Doğan [20]. A type t is saturated in a set of candidates S if there exists S ′ such that

|S ′
t| = |C(S)t| and |C(S ′)t| < |C(S)t|. Saturation says that the number of admitted type-t

candidates inS is judged to be enough for diversity. This is because the college admits fewer

type-t candidates in another situation S ′ though the number of available type-t candidates

is the same for that of the admitted type-t candidates in S. A type t is demanded in a set

of candidates S if there exists S ′ such that |S ′
t| = |St| and |C(S ′)t| > |C(S)t|. Demanded

type t means the college can admit more type-t candidates without sacrificing diversity.

This is because the college admits more type-t candidates in another situation S ′, though

the number of available type-t candidates is the same in S.

Now, we can introduce our new axiom.

Definition 10. A choice ruleC satisfies across-types ≻-compatibility if for all S ⊆ S and

s, s′ ∈ S, whenever s ∈ C(S), s′ ∈ S \C(S), τ(s) is saturated in S, and τ(s′) is demanded

in S, we have s ≻ s′.
10A choice rule C satisfies acceptance if for all S ⊆ S , |C(S)| = min{k, |S|}.
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This axiom decides when to use the priority. If a saturated type candidate s is admitted

and a demanded type candidate s′ is rejected, then the admission of s is explained by the high

priority of s and the rejection of s′ is explained by the low priority of s′. From a different

view, the axiom states that when the college focuses on diversity. Consider a situation S

where the college rejects a candidate s and admits a candidate s′, whereas s has the higher

priority than s′: i.e., s ∈ S \ C(S), s′ ∈ C(S), and s ≻ s′. According to the axiom, the

college overrules an objection by s for either or both of two diversity reasons. First, τ(s) is

the non-demanded type, meaning that there are many type-τ(s) candidates relative to some

diversity objectives. Thus, the college cannot admit more type-τ(s) candidates to promote

diversity. Second, for another admitted candidate s′, τ(s′) is non-saturated, meaning that

there are few type-τ(s′) candidates relative to some diversity objectives. Thus, the college

must admit s′ regardless of the priority.

We provide our second main result. The proof is contained in Appendix. We also verify

the independence axioms in Appendix.

Theorem 2. A choice rule is generated by reserves and quotas for priority ≻ if and only

if it satisfies substitutability, within-type ≻-compatibility, rejection maximality, and across-

types ≻-compatibility.

Another characterization: role of substitutability

In this section, we discuss the role of substitutability in our characterization. One might

think that it is difficult to label substitutability as an axiom. While substitutability is neces-

sary for the existence of stable matchings, stability is not a concept of choice rules. Neither

stability nor substitutability is necessary, especially in the case of one college. We iden-

tify the role of substitutability: it constructs reserves and quotas. Specifically, we show

that in the case where reserves and quotas are exogenously specified, substitutability can

be dropped from our characterization, with small modifications. In contrast, the reserves

and quotas are not exogenously specified in the first characterization: our axioms do not

17



involve the reserves and quotas. In practice, colleges or firms often specify the number of

reserves and quotas. Thus, our characterization without substitutability is still helpful for

admissions or hiring committees in deciding their policies.

Exogenously given the reserves r and the quotas q, we focus on a class of choice rules

satisfying the constraints by r and q. Specifically, a choice rule C satisfies the feasi-

ble constraints by the reserves r and quotas q if for all S ⊆ S and t ∈ T , we have

min{rt, |St|} ≤ |C(S)t| ≤ qt. Also, we slightly change the two axioms to suit the case of

exogenous reserves r and quotas q.

Definition 11. A choice rule C satisfies rejection maximality* if for all s ∈ S ⊆ S ,

whenever s ∈ S \ C(S) and |C(S)| < k, we have |C(S)τ(s)| = qτ(s).

Definition 12. A choice ruleC satisfies across-types*≻-compatibility if for allS ⊆ S and

s, s′ ∈ S, whenever s ∈ C(S), s′ ∈ S \ C(S), |C(S)τ(s)| > rτ(s), and |C(S)τ(s′)| < qτ(s′),

we have s ≻ s′.

Recall that there are many ways to satisfy the feasible constraints: the reserves-and-

quotas rule is not unique. An example is the reserves rule used in public high schools in

Chicago or the vertical reserves rule in India.11 While this rule satisfies the feasible con-

straints by the reserves and quotas, it violates across-types* ≻-compatibility. The following

example illustrates the fact.

Example 2. There are four candidates s1, s2, s3 and s4 and two types t1 and t2. Suppose

that τ(s1) = τ(s2) = τ(s3) = t1 and τ(s4) = t2. A priority ≻ ranks them from first to

last as s1 ≻ s4 ≻ s2 ≻ s3. A capacity k is equal to 2. There is one reserve for t1 and no

reserve for t2, rt1 = 1 and rt2 = 0. There are non-binding quotas for t1 and t2, qt1 = qt2 =

2. Let C be the choice rule used in Chicago. Since C({s1, s2, s4}) = {s1, s2}, we have

|C({s1, s2, s4})t1| = 2 > 1 and |C({s1, s2, s4})t2| = 0 < 2. However s2 ∈ C({s1, s2, s4}),

s4 ∈ S \ C({s1, s2, s4}) and s4 ≻ s2, a violation of across-types* ≻-compatibility.12

11See Section 3 for how the reserves rule used in Chicago works.
12This rule also violates across-types ≻-compatibility. Notice that t1 is saturated in {s1, s2, s4} since
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Our third result states that the three axioms are enough to characterize the reserves-

and-quotas rule in the class of choice rules satisfying feasible constraints by the exogenous

reserves and quotas. The proof is contained in Appendix. We also verify the independence

axioms in Appendix.

Theorem 3. Let r and q be reserves and quotas, respectively. Suppose that a choice rule

satisfies feasibility constraints by r and q. Then it is the reserves-and-quotas rule for priority

≻ if and only if it satisfies within-type ≻-compatibility, rejection maximality*, and across-

types* ≻-compatibility.

1.4 Comparative statics as axiom

In this section, we provide the third characterization of the class of the reserves-and-quotas

rules. We introduce a new axiom, meritorious monotonicity in reserve and quota size. This

axiom (i) is motivated by our comparative statics in Theorem 1 and (ii) is transparency for

a practitioner and individuals in a market. Then, we discuss the relationship between our

new axiom and the choice rules in the literature, reserve system and soft reserves and soft

quotas.

1.4.1 New axiom

Our axiom states that as a constraint generated by reserves and quotas is relaxed, a choice

rule should become more meritorious. To capture a change of a constraint, we focus on a

class of choice rule parameterized by reserves r and quotas q. Specifically, the college’s

choice rule C is a function that maps for each nonempty set S ⊆ S and non-zero vectors

r, q ∈ Zd
+ to a subset C(S : r, q) ⊆ S. It is such that C(S : r, q) ⊆ S and |C(S : r, q)| ≤ k

|{s2, s3, s4}t1 | = |C({s1, s2, s4})t1 | and |C({s2, s3, s4})t1 | < |C({s1, s2, s4})t1 |. Also, note that t2 is
demanded in {s1, s2, s4} since |{s1, s2, s4}t2 | = |{s4}t2 | and |C({s1, s2, s4})t1 | < |C({s4})t1 |. However
s2 ∈ C({s1, s2, s4}), s4 ∈ S \ C({s1, s2, s4}) and s4 ≻ s2, a violation of across-types ≻-compatibility.
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for each S ⊆ S and r, q ∈ Zd
+. C(S : r, q) means the set of admitted candidates in S given

the reserves r and quotas q. Now we introduce our new axiom.

Definition 13. A choice function C satisfies meritorious monotonicity in reserve and

quota size if for all S ⊆ S , r, r′ ∈ Zd
+ and q, q′ ∈ Zd

+, whenever rt ≤ r′t and q′t ≤ qt for all

t ∈ T , C(: r, q) is more meritorious than C(: r′, q′).

It is important to mention two points related to our axiom. First, our axiom is motivated

by Theorem 1. Thus, the class of the reserves-and-quotas rules clearly satisfies it. As we

have seen in Example 1, the reserves rule used in Chicago public high school choice (Dur

et al. [22]) violates it. In addition, as we will see the next section, the other rules proposed

in the literature violate our axiom as well. Therefore, the class of reserves-and-quotas rule

is the only natural class that has clear comparative statics.13

Second, this axiom ensures transparency of rule to a practitioner and participants in the

market. Affirmative action is often implemented through a reserves system (Pathak et al.

[43]). However, the functioning of the systems is counter intuitive, and thus a practitioner

and participants in the market often misunderstand it (Dur et al. [21]; Pathak et al. [41];

Delacrétaz [18]). In addition, a reserve and quota size often changes in real life. For ex-

ample, to promote diversity, each public school in Chicago increase the reserve size for

students from specific neighborhoods in 2012 (Dur et al. [22]). The elimination of re-

serves for local neighborhood applicants in Boston’s school choice system (Dur et al. [21])

serves as another example. Given the complexity of the system, it is not easy to understand

what will happen with these changes. Our axiom ensures that the rule works the way the

practitioner and participants intended it to.

We need additional concepts. Exogenously given the reserves r and the quotas q, we

focus on a class of choice rules satisfying the constraints by r and q. Specifically, a choice

rule C satisfies the feasible constraints by the reserves r and quotas q if for all S ⊆ S
13We can define a monotonicity axiom about diversity. However, our axiom is enough to characterize the

class of reserves-and-quotas rules. We will discuss it more in-depth in the Appendix.
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and t ∈ T , we have min{rt, |St|} ≤ |C(S)t| ≤ qt. Also, we slightly change the two axioms

to suit this case.

Definition 14. A choice rule C satisfies within-type ≻-compatibility if for all S ⊆ S ,

r, q ∈ Zd
+ and s, s′ ∈ S, whenever s ∈ C(S : r, q), s′ ∈ S \ C(S : r, q) and τ(s) = τ(s′),

we have s ≻ s′.

Definition 15. A choice rule C satisfies rejection maximality* if for all s ∈ S ⊆ S and

r, q ∈ Zd
+, whenever s ∈ S \ C(S : r, q) and |C(S : r, q)| < k, we have |C(S : r, q)τ(s)| =

qτ(s).

We provide our third characterization. The proof is contained in Appendix. We also

verify the independence axioms in Appendix.

Theorem 4. Let C be a feasible choice rule. Then it is the reserves-and-quotas rule for

priority ≻ if and only if it satisfies within-type ≻-compatibility, rejection maximality*, and

meritorious monotonicity in reserve and quota size.

1.4.2 Choice rule in literature

Reserve system

Pathak et al. [43] propose a reserve system to allocate medical resources (e.g., ventilators,

ICU beds, drugs, and vaccines) to reconcile various ethical values. Their concept general-

izes a reserve system with sequential processing introduced by Kominers and Sönmez [38].

Recently, the importance of the precedence order is identified in the literature. Practical

examples are affirmative action in India (Sönmez and Yenmez [45]; Sönmez and Yenmez

[46]), school choice in the U.S. (Dur et al. [21]), and H1B visa allocation (Pathak et al.

[40]).

The reserves-and-quotas rule is closely related to the reserve system literature. In terms

of the order, our choice rule processes all reserves before open seats. While that approach
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is similar to our reserves-and-quotas rule, there are at least two important differences. First,

the reserve system does not have quotas. Extending this rule to incorporate quotas would

be a non-trivial and interesting question. Second, perhaps more importantly, the reserves-

and-quotas rule is not included in the class of the reserve systems even without quotas.

Specifically, a reserve system with any precedence order is not equivalent to the reserves-

and-quotas rule.14 On the other hand, any reserve system satisfies feasibility, within-type

≻-compatibility, and rejection maximality*. Therefore, Theorem 4 imply that it violates

only meritorious monotonicity in reserve and quota size. In other words, this new axiom

makes the difference.

Soft reserves and soft quotas

Ehlers et al. [25] propose the choice rule with soft lower bounds (rt)t∈T and soft upper

bounds (qt)t∈T .15 The reserves-and-quotas rule is a variant of this choice rule. However, this

class of choice rules has no comparative statics as we study in Theorem 1. The following

example illustrates that the class of the choice rules violate meritorious monotonicity in

reserve and quota size.

Example 3. There are five candidates s1, s2, s3, s4 and s5 and tree types t1, t2 and t3. Sup-

pose that τ(s1) = τ(s4) = t1, τ(s2) = τ(s4) = t2 and τ(s5) = t3. A priority ≻ ranks

them from first to last as s1 ≻ s2 ≻ s3 ≻ s4 ≻ s5. A capacity k is equal to 3. Let C

be the choice rule proposed by Ehlers et al. [25] generated by rt1 = rt2 = rt2 = 0 and

qt1 = 2, qt1 = qt1 = 1. Also, let C ′ be the choice rule proposed by Ehlers et al. [25]

generated by rt1 = rt2 = rt2 = 0 and qt1 = qt1 = qt1 = 1. Notice that C is obtained from

C ′ by relaxing the constraint by soft reserves and soft quotas. The choice rule C admits s1,

s2 and s4. On the other hand, the choice rule C ′ admits s1, s2 and s3. This is a violation of

meritorious monotonicity in reserve and quota size: C is not more meritorious than C since
14The cause of the difference is how to allocate empty reserves. While the reserve system with the order

converts an empty reserve to an open seat immediately, the reserves-and-quotas moves an empty reserve last.
15The formal definition is provided in Section 3
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F{s1,s2,s3}(3) > F{s1,s2,s4}(3).

1.5 Additional results

1.5.1 Endogenous priority

In this section, we generalize Theorem 2 so that the class of reserves-and-quotas rules does

not depend on a particular priority. We introduce a property based on the strong axiom of

revealed preference. This axiom allows for the endogenous construction of a priority over

candidates.

Definition 16. A choice rule C satisfies across-types strong axiom of revealed prefer-

ence if there are no sequences {sk}Kk=1 and {Sk}Kk=1, candidates and sets of candidates,

respectively, such that, for all k

(i) sk+1 ∈ C(Sk+1) and sk ∈ Sk+1 \ C(Sk+1);

(ii) τ(sk+1) = τ(sk) or τ(sk) is demanded in Sk+1 and τ(sk+1) is saturated in Sk+1.

(using addition mod K).

This axiom excludes the existence of certain cycles in the revealed preference. There

are two cases to consider. First, if τ(sk+1) = τ(sk), it is revealed that sk+1 has a higher

priority than sk. Second, if τ(sk+1) ̸= τ(sk), we require τ(sk) is demanded in Sk+1 and

τ(sk+1) is saturated in Sk+1. In this case, we can say that sk+1 has a higher priority than sk

in the revealed preference, even if they have different types.

Theorem 5. A choice rule is generated by reserves and quotas for some priority ≻ if and

only if it satisfies substitutability, rejection maximality, and across-types strong axiom of

revealed preference.

Proof. Suppose that C satisfies the axioms. We show that C is generated by reserves and

quotas for some ≻.
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Step 1: Construction of a binary relation ≻∗ over S.

Define the binary relation ≻∗ over S as follows. For each s, s′ ∈ S such that τ(s) =

τ(s′), s ≻∗ s′ if and only if there exists S ⊆ S such that s ∈ C(S) and s′ ∈ S \ C(S). For

each s, s′ ∈ S such that τ(s) ̸= τ(s′), s ≻∗ s′ if and only if there exists S ⊆ S such that

s ∈ C(S), s′ ∈ S \ C(S), τ(s) is saturated in S, and τ(s′) is demanded in S. While ≻∗

is not a complete order, ≻∗ has a linear extension ≻ to S by across-types strong axiom of

revealed preference. Specifically, there exists a linear order ≻ over S such that for every

s, s′ ∈ S , s ≻∗ s′ imply s ≻ s′.

Step 2: C satisfies within-type ≻-compatibility and across-types ≻-compatibility for

the constructed ≻.

For all S ⊆ S and s, s′ ∈ S, if s ∈ C(S), s′ ∈ S \C(S) and τ(s) = τ(s′), then s ≻∗ s′

by the definition of ≻∗. We also get s ≻ s′ since ≻ is a linear extension of ≻∗. Thus, C

satisfies within-type ≻-compatibility. For every S ⊆ S and every s, s′ ∈ S, if s ∈ C(S),

s′ ∈ S \ C(S), τ(s) is saturated in S, and τ(s′) is demanded in S, then s ≻∗ s′ by the

definition of ≻∗. Again, we also get s ≻ s′ since ≻ is a linear extension of ≻∗. Thus, C

satisfies across-types ≻-compatibility.

Note that C satisfies all axioms in Theorem 1. Thus, C is generated by reserves-and-

quotas.

For the other direction, it is enough to show C generated by reserves and quotas for ≻

satisfies across-types strong axiom of revealed preference. Suppose toward a contradiction:

there are sequences {s}Kk=1 and {S}Kk=1, of candidates and sets of candidates, respectively,

with the properties in the definition. This means ≻ admits a cycle: sK ≻ sK−1 ≻ ... ≻

s1 ≻ sK , a contradiction to ≻ being a linear order.

1.5.2 Separable choice rules

In this section, we study the class of separable choice rules. While the ideal-distribution

rule is separable, it is not a unique separable choice rule. We introduce a new monotonicity
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property and show that together with substitutability, the choice rule is still separable. Then,

we study the class of choice rules.

New monotonicity

We introduce a new monotonicity property. Echenique and Yenmez [24] introduce mono-

tonicity, which is the key axiom in their characterization of the ideal-distribution rule. The

definition is as follows.

Definition 17. A choice rule C satisfies monotonicity if for all S, S ′ ⊆ S such that |St| ≤

|S ′
t| for every type t, we have |C(S)t| ≤ |C(S ′)t| for every type t.

This new property relaxes monotonicity based on the law of aggregate demand.16 A

choice rule satisfying this property compares two sets of candidates with respect to a set

inclusion of each type, instead of the number of each type.

Definition 18. A choice ruleC satisfies the type law of aggregate demand if for allS, S ′ ⊆

S such that St ⊆ S ′
t for every t ∈ T , we have |C(S)t| ≤ |C(S ′)t| for every t ∈ T .

We show that a choice rule satisfying substitutability and the type law of aggregate

demand is still separable.

Theorem 6. If a choice rule satisfies substitutability and the type law of aggregate demand,

then it is separable.

Proof. We show that for all t ∈ T and all S, S ′ ⊆ S with St = S ′
t, we haveC(S)t = C(S ′)t.

For all t ∈ T and all S, S ′ ⊆ S with St = S ′
t, we have |C(S)t| ≤ |C(S ∪ S ′)t|. This is

because for every t′ ∈ T , we have St′ ⊆ (S ∪ S ′)t′ and the type law of aggregate demand.

By substitutability, we have C(S ∪ S ′)t ∩ St ⊆ C(S)t. Since St = (S ∪ S ′)t, we have

C(S ∪ S ′)t ∩ St = C(S ∪ S ′)t. Since |C(S)t| ≤ |C(S ∪ S ′)t| and C(S ∪ S ′)t ⊆ C(S)t,

we have C(S)t = C(S ∪ S ′)t. Similarly we have C(S ′)t = C(S ∪ S ′)t and thus C(S)t =

C(S ′)t.
16A choice rule C satisfies the law of aggregate demand if for all S, S′ ⊆ S such that S ⊆ S′, we have

|C(S)| ≤ |C(S′)|.
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Class of separable choice rules

We study the class of choice rules that satisfy substitutability, the type law of aggregate de-

mand, and within-type≻-compatibility. This class is larger than the class of ideal-distribution

rules: Echenique and Yenmez [24] characterize the ideal-distribution rule by substitutabil-

ity, monotonicity, and within-type ≻-compatibility. First, we give an example in which a

choice rule is in our class, but not the ideal-distribution rule. Second, we show that our rule

also has a representation based on the reserves and quotas. Then, the ideal-distribution rule

appears again, when reserves equal quotas. Third, however, the class of choice rules has

no clear trade-off between meritocracy and diversity as in the class of reserves-and-quotas

rules.

In the following example, a choice rule satisfies substitutability, the type law of aggre-

gate demand, and within-type ≻-compatibility, but violates monotonicity. Thus it is not the

ideal-distribution rule.

Example 4. There are three candidates s1, s2 and s3. Suppose that τ(s1) = τ(s2) = τ(s3).

A priority ranks them from first to last as s1 ≻ s2 ≻ s3. Consider the following choice rule.

C(S) =


{s1, s2} if {s1, s2} ⊆ S

arg max≻ S otherwise

It is easy to check that C satisfies substitutability. Since all candidates are the same type, C

satisfies the type law of aggregate demand and within-type ≻-compatibility. However, it vi-

olates monotonicity: |{s1, s2}| = |{s1, s3}| and |C({s1, s2})| = |{s1, s2}| ̸= |C({s1, s3})| =

|{s1}|. Thus, C is not the ideal-distribution rule.

In the example, while the college admits all candidates when the first and second highest

priority candidates are available, it admits only one candidate otherwise. In other words,

the college’s capacity depends on the set of candidates.

The choice rule also has a representation based on reserves and quotas. The proof is
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contained in Appendix.

Proposition 3. Suppose that a choice ruleC satisfies substitutability, the type law of aggre-

gate demand, and within-type≻-compatibility. Then there exist reserves r and quotas q such

that C satisfies the feasible constraints by r and q. Moreover, C is the ideal-distribution

rule when rt = qt for each type t.

By Proposition 1, the ideal-distribution rule allocates the fixed capacity for each type

and applies the responsive rule. Here, the choice rule allocates a flexible capacity for each

type. As long as the choice rule satisfies the feasible constraint, it can change the capacity

depending on the set of candidates. For example, suppose that rt = 50 and qt = 100

for some t. Then, the college admits 100 candidates of type t when the highest priority

candidates apply. On the other hand, it admits only 50 candidates of type t when the lowest

priority candidates apply.

While the choice rule also has a representation based on reserves and quotas, it has no

clear trade-off between meritocracy and diversity as in our reserves-and-quota rule. Either

reducing reserves or increasing quotas possibly leads to more priority violations. This is

because we cannot use the priority to compare candidates of different types by separability.

1.6 Concluding remarks

Affirmative action is used in various settings to promote diversity and has caused a debate

about meritocracy and diversity. In this paper, we study the tension between meritocracy

and diversity, with the reserves-and-quotas rule provided as a compromise solution.

First, we formalize the trade-off between meritocracy and diversity by introducing the

two measures of choice rules. We show the clear trade-off in the class of reserves-and-

quotas rules: as the number of reserves and quotas changes so that the rule becomes more

meritorious, it is less diverse. As a by-product of this result, we provide a unified view

of the choice rules in market design literature. The responsive rule is most meritorious and
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least diverse, while the ideal-distribution rule is least meritorious and most diverse. Second,

we provide characterizations of reserves-and-quotas rules. These results help organizations

that want to promote diversity, to decide on their policies. Also, we identify the role of

substitutability, one of the main axioms in our result and the characterizations by Echenique

and Yenmez [24].

While we focus on the class of the reserves-and-quotas rules, some choice rules for

diversity in the literature are not included in this class. We illustrate that one such rule, the

reserves rule as used in public high schools in Chicago, has no clear trade-off based on our

measures. Two possible directions for future research are as follows. The first direction

is to show a trade-off in this class of choice rules by providing a new measure of choice

rules. The other direction is to provide a characterization of the choice rule. These remain

possible avenues for future research.
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1.7 Appendix

1.7.1 Omitted Proofs

Proof of Theorem 1

The proof consists of two steps. We start with lemmas.

Lemma 1. Suppose that C(S) \ C ′(S) ̸= ∅ and C ′(S) \ C(S) ̸= ∅. Then, for all s ∈

C(S) \ C ′(S) and s′ ∈ C ′(S) \ C(S), we have s ≻ s′.

Proof. s ∈ S \ C ′(S) implies |C ′(S)τ(s)| ≥ r′τ(s) ≥ rτ(s). s ∈ C(S) implies |C(S)τ(s)| >

|C ′(S)τ(s)|. Together with facts, we have |C(S)τ(s)| > rτ(s). Since s′ ∈ C ′(S) \ C(S),

we have qτ(s′) ≥ q′τ(s′) ≥ |C ′(S)τ(s′)| > |C(S)τ(s′)|. Since C satisfies across-types* ≻-

compatibility, we have s ≻ s′.

Lemma 2. Let C1 be a choice rule generated by reserves r1 and quotas q1 and C2 be it

generated by reserves r2 and quotas q2. Suppose q1t ≤ q2t for every t ∈ T . Then, for all

S ⊆ S , we have |C1(S)| ≤ |C2(S)|.

Proof. Suppose not: there exists S ⊆ S such that |C2(S)| < |C1(S)|. Thus, there exists

t ∈ T such that |C2(S)t| < |C1(S)t|. This implies St \ C2(S)t ̸= ∅. By the definition of

the capacity, |C2(S)| < |C1(S)| ≤ k. Since C2 satisfies rejection maximality*, we have

|C2(S)t| = q2t . However, this implies q1t ≤ q2t = |C2(S)t| < |C1(S)t|, a contradiction to

the definition of q1t .

Step 1: C is more meritorious than C ′.

By Lemma 2, for allS ⊆ S , we have |C ′(S)| ≤ |C(S)|. There are two cases to consider.

Case 1: C ′(S) ⊆ C(S).

For all l ∈ {1, ..., n}, we have {s ∈ C ′(S) : s ⪰ s∗l } ⊆ {s ∈ C(S) : s ⪰ s∗l }. Thus,

we have FC′(S)(l) ≤ FC(S)(l).

Case 2: C ′(S) ̸⊆ C(S).
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By Lemma 1 and |C ′(S)| ≤ |C(S)|, for all l ∈ {1, ..., n}, we have |{s ∈ C ′(S)\C(S) :

s ⪰ s∗l }| ≤ |{s ∈ C(S) \ C ′(S) : s ⪰ s∗l }|. Thus, we have

FC′(S)(l) = |{s ∈ C ′(S) \ C(S) : s ⪰ s∗l }|+ |{s ∈ C ′(S) ∩ C(S) : s ⪰ s∗l }|

≤ |{s ∈ C(S) \ C ′(S) : s ⪰ s∗l }|+ |{s ∈ C ′(S) ∩ C(S) : s ⪰ s∗l }|

= FC(S)(l).

We complete Step 1.

Step 2: C is less diverse than C ′.

Fix any type t ∈ T with rt < z∗t . Construct another choice ruleC∗ generated by reserves

r∗ and quotas q∗. r∗ and q∗ are defined as follows. r∗t = rt + 1 for t and r∗t′ = rt′ for t′ ̸= t

and q∗t′ = qt′ for all t′ ∈ T . In words, the choice rule C∗ is obtained from C by increasing

reserves for t by one and keeping other reserves and quotas same.

Step 2-1. C is less diverse than C∗.

Claim 1. For all S ⊆ S , |C∗(S) \ C(S)| ≤ 1.

Proof. Suppose not. There existsS ⊆ S such that |C∗(S)\C(S)| > 1. Pick for any s1, s2 ∈

C∗(S)\C(S). Note thatC(S)τ(si) ⊊ C∗(S)τ(si) for i = 1, 2 by within-type≻-compatibility

of C and C∗. Thus, |C∗(S)τ(si)| > rτ(si). By the construction of r∗, without loss of gen-

erality, we can assume that |C∗(S)τ(s1)| > r∗τ(s1). By Lemma 2, |C(S)| = |C∗(S)|. Thus,

|C(S) \ C∗(S)| > 1. Pick s′ ∈ C(S) \ C∗(S). Note that C∗(S)τ(s′) ⊊ C(S)τ(s′) and thus

|C∗(S)τ(s′)| < |C(S)τ(s′)| ≤ qτ(s′) = q∗τ(s′). By across-types* ≻-compatibility of C∗, we

have s1 ≻ s′. However, by Lemma 1, s′ ≻ s1, a contradiction.

Claim 2. For all S ⊆ S , if |C∗(S) \ C(S)| = 1, then (1) τ(s) = t for s ∈ C∗(S) \ C(S)

and (2) |C(S)t| = rt.

Proof. First part: suppose not. There exists S ⊆ S such that |C∗(S) \ C(S)| = 1, but

τ(s) ̸= t for s ∈ C∗(S) \ C(S). Following the same argument in Claim 1, rτ(s) <
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|C∗(S)τ(s)| < qτ(s) = q∗τ(s). By the assumption τ(s) ̸= t, we have rτ(s) = r∗τ(s) and

thus r∗τ(s) < |C∗(S)τ(s)|. By Lemma 2, |C(S)| = |C∗(S)|. Thus, |C(S) \ C∗(S)| = 1.

Pick s′ ∈ C(S) \ C∗(S). Following the same argument in Claim 1, |C∗(S)τ(s′)| < q∗τ(s′).

By across-types* ≻-compatibility of C∗, we have s ≻ s′. However, by Lemma 1, s′ ≻ s,

a contradiction.

Second part: suppose not. There exists S ⊆ S such that |C∗(S) \ C(S)| = 1, but

|C(S)t| ̸= rt. Since s ∈ S \C(S), |C(S)t| > rt. By the first part in this claim, |C∗(S)t| =

|C(S)t| + 1 > rt + 1 = r∗t . By Lemma 2, |C(S)| = |C∗(S)|. Thus, |C(S) \ C∗(S)| =

1. Pick s′ ∈ C(S) \ C∗(S). Following the same argument in Claim 1, |C∗(S)τ(s′)| <

q∗τ(s′). By across-types* ≻-compatibility of C∗, s ≻ s′. However, by Lemma 1, s′ ≻ s, a

contradiction.

Now we show that C is less diverse than C∗: for all S ⊆ S , ∥z∗ − ξ(C(S))∥ ≥ ∥z∗ −

ξ(C∗(S))∥. If C(S) ̸= C∗(S), then by Lemma 2, |C(S)| = |C∗(S)|. By Claim 1, |C∗(S) \

C(S)| = 1 and |C(S) \ C∗(S)| = 1. By Claim 2, τ(s) = t for s ∈ C∗(S) \ C(S) and

|C(S)t| = rt. Thus, we have |z∗−rt|−|z∗t −r∗t | = 1. Let t′ be τ(s′) for s′ ∈ C(S)\C∗(S).

Since |C∗(S) \ C(S)| ≤ 1, we have |z∗t′ − ξ(C(S))t′ | − |z∗t′ − ξ(C∗(S))t′ | ≥ −1. The two

inequalities imply

∥z∗ − ξ(C(S))∥ − ∥z∗ − ξ(C∗(S))∥ = |z∗t − ξ(C(S))t| − |z∗t − ξ(C∗(S))t|

+ |z∗t′ − ξ(C(S))t′ | − |z∗t′ − ξ(C∗(S))t′ |

= |z∗t − rt| − |z∗t − r∗t |

+ |z∗t′ − ξ(C(S))t′ | − |z∗t′ − ξ(C∗(S))t′ |

≥ 0.

We complete Step 2-1.

Fix any type t ∈ T with z∗t < qt. Construct another choice rule Ĉ generated by reserves

r̂ and quotas q̂. r̂ and quotas q̂ are defined as follows. r̂t′ = rt′ for all t′ ∈ T and q̂t = q̂− 1
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for t and q̂t′ = qt′ for t′ ̸= t. In words, Ĉ is obtained from C by decreasing quotas for t by

one and keeping other reserves and quotas same.

Step 2-2. C is less diverse than Ĉ.

Claim 3. For all S ⊆ S , |C(S) \ Ĉ(S)| ≤ 1.

Proof. Suppose not. There exists S ⊆ S such that |C(S) \ Ĉ(S)| > 1. Pick for any

s1, s2 ∈ C(S) \ Ĉ(S). Note that Ĉ(S)τ(si) ⊊ C(S)τ(si) for i = 1, 2. Thus, |Ĉ(S)τ(si)| <

|C(S)τ(si)| ≤ qτ(si) for i = 1, 2. By the construction of q̂, without loss of generality,

we can assume that |Ĉ(S)τ(s1)| < q̂τ(s1). By s1 ∈ S \ Ĉ(S), |Ĉ(S)τ(s1)| < q̂τ(s1) and

rejection maximality* of Ĉ, we have |Ĉ(S)τ(s1)| = k. Thus, |Ĉ(S) \ C(S)| > 1. Pick

s′ ∈ Ĉ(S) \C(S). Note that C(S)τ(s′) ⊊ Ĉ(S)τ(s′) and thus r̂τ(s′) = rτ(s′) ≤ |C(S)τ(s′)| <

|Ĉ(S)τ(s′)|. By across-types* ≻-compatibility of Ĉ, s′ ≻ s1. However, by Lemma 1,

s1 ≻ s′, a contradiction.

Claim 4. For all S ⊆ S , if |C(S) \ Ĉ(S)| = 1, then (1) τ(s) = t for s ∈ C(S) \ Ĉ(S) and

(2) |C(S)t| = qt.

Proof. First part: suppose not. There exists S ⊆ S such that |C(S) \ Ĉ(S)| = 1, but

τ(s) ̸= t for s ∈ C(S) \ Ĉ(S). Following the same argument in Claim 3, |Ĉ(S)τ(s)| <

|C(S)τ(s)| ≤ qτ(s). By the assumption τ(s) ̸= t, qτ(s) = q̂τ(s). Following the same argument

in Claim 3, there exists s′ ∈ Ĉ(S) \ C(S) such that r̂τ(s′) < |Ĉ(S)τ(s′)|. By across-types*

≻-compatibility of Ĉ, s′ ≻ s. However, by Lemma 1, s ≻ s′, a contradiction.

Second part: suppose not. There exists S ⊆ S such that |C(S) \ Ĉ(S)| = 1, but

|C(S)t| < qt. By the first part in this claim, |Ĉ(S)t| = |C(S)t| − 1 < qt − 1 = q̂t. Since

s ∈ S \ Ĉ(S), |Ĉ(S)t| < q̂t, and rejection maximality* of Ĉ, we have |Ĉ(S)| = k. Thus,

|Ĉ(S) \ C(S)| > 1. Pick s′ ∈ Ĉ(S) \ C(S). Following the same argument in Claim 3,

r̂τ(s′) < |Ĉ(S)τ(s′)|. By across-types* ≻-compatibility of Ĉ, s′ ≻ s. However, by Lemma

1, s ≻ s′, a contradiction.
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Now we show that C is less diverse than Ĉ: for all S ⊆ S , ∥z∗ − ξ(C(S))∥ ≥ ∥z∗ −

ξ(Ĉ(S))∥. IfC(S) ̸= Ĉ(S), then by Lemma 2, |C(S)| ≥ |Ĉ(S)|. Thus, |C(S)\Ĉ(S)| = 1

and |Ĉ(S) \ C(S)| ≤ 1. By Claim 4, τ(s) = t for s ∈ C(S) \ Ĉ(S) and |C(S)t| = qt.

Thus, |z∗t − qt| − |z∗t − q̂t| = 1. If Ĉ(S) \ C(S) ̸= ∅, let t′ be τ(s′) for s′ ∈ Ĉ(S) \ C(S).

Since |Ĉ(S) \ C(S)| ≤ 1, we have |z∗t′ − ξ(C(S))t′| − |z∗t′ − ξ(Ĉ(S))t′| ≥ −1. The two

inequalities imply

∥z∗ − ξ(C(S))∥ − ∥z∗ − ξ(Ĉ(S))∥ = |z∗t − ξ(C(S))t| − |z∗t − ξ(Ĉ(S))t|

+ |z∗t′ − ξ(C(S))t′ | − |z∗t′ − ξ(Ĉ(S))t′ |

= |z∗t − qt| − |z∗t − q̂t|

+ |z∗t′ − ξ(C(S))t′| − |z∗t′ − ξ(Ĉ(S))t′ |

≥ 0.

We complete Step 2-2.

To complete Step 2, note that C ′ can be obtained from C by sequentially constructing

C∗ and Ĉ from C. By Step 2-1 and Step 2-2, C is less diverse than C ′.

Proof of Theorem 2

We show the first part: when C satisfies the axioms, there exist r = (rt)t∈T ∈ Zd
+ and q =

(qt)t∈T ∈ Zd
+ such that C can be regard as the reserves-and-quotas rule. Let qt ≡ |C(St)|.

We construct the reserve of type t as follows. Let Xt ≡ {S ⊂ S : ∃s ∈ C(S),∃s′ ∈

S \ C(S) such that τ(s) = t, τ(s′) ̸= t, |C(S)τ(s′)| < qτ(s′) and s′ ≻ s} and let rt ≡

maxS∈Xt |C(S)t|. If Xt = ∅, set rt = 0. We also need the following property of choice

rules.

Definition 19. A choice rule C satisfies the irrelevance of rejected candidates (IRS) if for

all S, S ′ ⊆ S , C(S ′) ⊆ S ⊆ S ′ imply that C(S) = C(S ′).

Substitutability and IRS are equivalent to the following property.
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Definition 20. A choice rule C is path independent (PI) if for all S, S ′ ⊆ S , C(S ∪ S ′) =

C(S ∪ C(S ′)).

To prove the first part, we will establish claims.

Claim 5. If C satisfies substitutability and rejection maximality, it also satisfies PI.

Proof. It is enough to showC satisfies IRC. First, we show that rejection maximality imply

the law of aggregate demand. Consider any S, S ′ ⊆ S with S ⊆ S ′. If |C(S ′)| = k, then

|C(S)| ≤ |C(S ′)|. Thus, suppose |C(S ′)| < k. There are two cases to consider. Case

1: S ′ \ C(S ′) = ∅. Since S ⊆ S ′, we have S ⊆ C(S ′) and |C(S)| ≤ |C(S ′)|. Case 2:

S ′ \ C(S ′) ̸= ∅. Notice that for all t ∈ T , |St| ≤ |S ′
t| since S ⊆ S ′. For all t ∈ T such that

|C(S ′)t| < |S ′
t|, by rejection maximality, we have |C(S)t| ≤ |C(S ′)t|. For all t ∈ T such

that |C(S ′)t| = |S ′
t|, we have |C(S)t| ≤ |C(S ′)t|. Thus, we have |C(S)| ≤ |C(S ′)|.

Second, we show that substitutability and the law of aggregate demand imply IRC.

Consider any S, S ′ ⊆ S with C(S ′) ⊆ S ⊆ S ′. Since S ⊆ S ′ and the law of aggregate

demand, we have |C(S)| ≤ |C(S ′)|. Since C(S ′) ⊆ S ⊆ S ′ and substitutability, we

have C(S ′) ∩ S = C(S ′) ⊆ C(S). By |C(S)| ≤ |C(S ′)| and C(S ′) ⊆ C(S), we have

C(S ′) = C(S).

Claim 6. For all S ⊆ S and t ∈ T , if rt < |C(S)t|, then t is saturated in S.

Proof. By the definition of rt, there exists S∗ ∈ Xt such that |C(S∗)t| = rt. Let S ′ be the

set obtained by adding |C(S)t|− rt type t candidates to C(S∗). Specifically, S ′ = C(S∗)∪

{s1, ..., s|C(S)t|−rt}where {s1, ..., s|C(S)t|−rt} ⊆ St\C(S∗)t. Notice that |S ′
t| = |C(S)t|. We

show that |C(S ′)t| < |S ′
t| = |C(S)t|, and t is saturated in S. Suppose not: |C(S ′)t| = |S ′

t|.

Since S∗ ∈ Xt, there exist s ∈ C(S∗) and s′ ∈ S \ C(S∗) such that τ(s) = t, τ(s′) ̸= t,

|C(S∗)τ(s′)| < qτ(s′) and s′ ≻ s. Consider S∗ ∪ {s1, ..., s|C(S)t|−rt}. Since C(S∗) ⊆ S ′ and
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|C(S ′)t| = |S ′
t|, we have s ∈ C(S ′). By path independence,

C(S∗ ∪ {s1, ..., s|C(S)t|−rt})

= C(C(S∗) ∪ {s1, ..., s|C(S)t|−rt})

= C(S ′)

Since C(S∗ ∪ {s1, ..., s|C(S)t|−rt}) = C(S ′), we have s ∈ C(S∗ ∪ {s1, ..., s|C(S)t|−rt}),

s′ ∈ S\C(S∗∪{s1, ..., s|C(S)t|−rt}) and |C(S∗∪{s1, ..., s|C(S)t|−rt})τ(s′)| < qτ(s′). However,

rt = |C(S∗)t| < |S ′
t| = |C(S ′)t| = |C(S∗ ∪ {s1, ..., s|C(S)t|−rt})t|, we get a contradiction

to maximality of rt.

Claim 7. For all S ⊆ S and t ∈ T , if |C(S)t| < min{|St|, qt}, then t is demanded in S.

Proof. There are two cases to consider. Case 1: |St| ≤ qt. By the definition of qt, we have

qt = |C(St)|. Let be the set S ′ obtained from C(St) by removing qt − |St| candidates.

Specifically, S ′ = C(St) \ {s1, ..., sqt−|St|} where {s1, ..., sqt−|St|} ⊆ C(St). By substi-

tutability, we have C(S ′) = S ′. Since |St| = |S ′
t| and |C(S)t| < |C(S ′)|t, t is demanded

in S. Case 2: qt < |St|. Notice that |St| ≤ |St|. Let S ′ be the set obtained from St by

removing |St| − |St| rejected candidates. Specifically, S ′ = St \ {s1, ..., s|St|−|St|} where

{s1, ..., s|St|−|St|} ⊆ (St \ C(St)). By IRC, we have C(S ′) = C(St). Since |St| = |S ′
t| and

|C(S)t| < |C(S ′)|t, t is demanded in S.

Claim 8. For all S ⊆ S and t ∈ T , if |C(S)t| < min{|St|, qt}, then |C(S)| = k.

Proof. Suppose not: there exist S ∈ S and t ∈ T such that |C(S)t| < min{|St|, qt}, and

|C(S)| < k. By the definition of qt, |C(St)| = qt. There are two cases to consider. Case 1:

qt ≤ |St|. Since |C(St)t| ≤ |St| and |C(S)t| < |C(St)t|, we get a contradiction to rejection

maximality. Case 2: qt > |St|. Let S ′ be the set obtained from C(St) by removing qt− |St|

candidates. Specifically, S ′ = C(St) \ {s1, ..., sqt−|St|} where {s1, ..., sqt−|St|} ⊆ C(St).

By substitutability, C(S ′) = S ′. However, we have |S ′
t| = |St| and |C(S)t| < |C(S ′)t|, a

contradiction to rejection maximality.
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Claim 9. For all S ⊆ S and t ∈ T , min{rt, |St|} ≤ |C(S)t| ≤ qt.

Proof. First we show that |C(S)t| ≤ qt. By the definition of qt, we have |C(St)| = qt. If

|C(St)| = k, then it is clear |C(S)t| ≤ |C(St)| = qt. Thus, suppose |C(St)| < k. By the

definition of St, we have |St| ≤ |St|. Since we assume k < |St|, we have St \ C(St) ̸= ∅.

By rejection maximality, |C(S)t| ≤ |C(St)| = qt.

Second, we show that min{rt, |St|} ≤ |C(S)t|. Suppose by way of contradiction that

|C(S)t| < |St| and |C(S)t| < rt. By the definition of rt, there is S ′ ∈ Xt such that

|C(S ′)t| = rt. Let S∗ ≡ S ′ \ (S ′
t \ C(S ′)t). In words, S∗ is obtained from S ′ by removing

rejected type-t candidates in S ′. By IRS, we have C(S ′) = C(S∗). Notice that all type t

candidates in S∗ are admitted and |S∗
t | = |C(S∗)t| = rt. There two cases to consider. Case

1: |St| ≤ rt. Let S ′′ be the set of candidate obtained from S by adding rt − |St| type t

candidates so that |S ′′
t | = rt. By substitutability, we have |C(S ′′)t| ≤ |C(S)t|+ rt− |St| <

rt = |C(S∗)t|. By Claim 6, type t is saturated in S∗. However, S∗ ∈ Xt, a contradiction to

across-types ≻-compatibility. Case 2: |St| > rt. Let S ′′ be the set of candidates obtained

from S by removing |St| − rt rejected type t candidates from S. By IRS, we have C(S) =

C(S ′′). Now type t is saturated in S∗ because |C(S ′′)t| < |S ′′
t | = rt = |C(S∗)t| and Claim

6. However, S∗ ∈ Xt, a contradiction to across-types ≻-compatibility.

Given these claims, we prove the first part. The proof consists of three steps.

Step 1: For all S ⊆ S , C1(S) ⊆ C(S).

Recall that C1(S) ≡ H(S, k, (rt)t∈T ). Suppose not: there exist S ⊆ S and s ∈ S

such that s ∈ C1(S) and s ∈ S \ C(S). Since s ∈ C1(S), s is the at least rtth highest

priority candidate of type τ(s) in S that is, |{s′ ∈ S : τ(s′) = τ(s), s′ ≻ s}| < rt. Since

s ∈ S \ C(S) and Claim 9, rτ(s) ≤ |C(S)τ(s)|. Thus, there exists s̃ such that s̃ ∈ C(S),

τ(s̃) = τ(s), and s ≻ s̃, a contradiction to within-type ≻-compatibility.

Step 2: For all S ⊆ S , C2(S) ⊆ C(S).
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Suppose not: there exist S ⊆ S and s ∈ S such that s ∈ C2(S) and s ∈ S \ C(S).

By within-type ≻-compatibility of C and the definition of C1 and C2, we have C(S)τ(s) ⊊

(C1(S) ∪ C2(S))τ(s). Thus, |C(S)τ(s)| < qτ(s). By Claim 7, τ(s) is demanded in S. By

Claim 8, |C(S)| = k, and thus there exists s′ ∈ S such that s′ ∈ C(S) \ (C1(S) ∪ C2(S)).

By within-type ≻-compatibility, τ(s′) ̸= τ(s) and (C1(S)∪C2(S))τ(s′) ⊊ C(S)τ(s′). Thus,

rτ(s′) < |C(S)τ(s′)|. By Claim 6, τ(s′) is saturated in S. By across-types ≻-compatibility,

s′ ≻ s. However, |(C1(S) ∪ C2(S))τ(s)| > rτ(s) since s ∈ C2(S). Also, |(C1(S) ∪

C2(S))τ(s′)| < qτ(s′) since (C1(S) ∪ C2(S))τ(s′) ⊊ C(S)τ(s′). By the definition of C1 and

C2, we have s ≻ s′, a contradiction.

Step 3: C is generated by reserves r and quotas q for priority ≻.

We show that C1(S) ∪ C2(S) = C(S). Suppose not: C1(S) ∪ C2(S) ⊊ C(S).

Then, |C1(S) ∪ C2(S)| < |C(S)|. By the definition of C1 and C2, either |C(S)| > k

or |C(S)t| > qt for some t ∈ T , a contradiction. We complete the first part in Theorem 2.

To prove the second part in Theorem 2, suppose that C is generated by reserves r =

(rt)t∈T ∈ Zd
+ and quotas q = (qt)t∈T ∈ Zd

+ for ≻. We show thatC satisfies the four axioms.

By the definition of C1 and C2 , C satisfies within-type ≻-compatibility. For all S ⊆ S ,

if s ∈ S \ C(S) and |C(S)| < k, then |C(S)τ(s)| = qτ(s). Thus, C satisfies rejection

maximality. Given r = (rt)t∈T ∈ Zd
+ and q = (qt)t∈T ∈ Zd

+, it is easy to see that for

all t ∈ T and S ⊆ S , if t is saturated in S, then |C(S)t| > rt; if t is demanded in S, then

|C(S)t| < qt. Thus, C satisfies across-types ≻-compatibility. We show thatC also satisfies

substitutability: for all s ∈ S ⊆ S ′ ⊆ S , s ∈ S \ C(S) implies s ∈ S ′ \ C(S ′). To see

that, let l(s, S) be the priority ranking of s in S. There are two cases to consider. Case 1:

|C(S)τ(s)| = qτ(s). l(s, Sτ(s)) > qτ(s) since s ∈ S \ C(S) and the definition of C. S ⊆ S ′

implies l(s, S ′
τ(s)) ≥ l(s, Sτ(s)) > qτ(s) and thus s ∈ S ′ \ C(S ′). Case 2: |C(S)| < qτ(s).

s ∈ S \ C(S) implies s ∈ S \ C1(S) and rτ(s) < l(s, Sτ (s)). Since Sτ(s) ⊆ S ′
τ(s), we
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have rt < l(s, Sτ(s)) ≤ l(s, S ′
τ(s)). Thus, s ∈ S ′ \ C1(S ′). Also s ∈ S \ C(S) implies

s ∈ S \ C2(S). Consider a student of the lowest priority in C2(S): i.e., arg min≻H(S \

C1(S), k−|C1(S)|, (qt−rt)t∈T ). Since s ∈ S\C2(S), we have arg min≻H(S\C1(S), k−

|C1(S)|, (qt−rt)t∈T ) ≻ s. Since S ⊆ S ′, we have |C1(S)| ≤ |C1(S ′)| and arg min≻H(S ′\

C1(S ′), k − |C1(S ′)|, (qt − rt)t∈T ) ⪰ arg min≻H(S \ C1(S), k − |C1(S)|, (qt − rt)t∈T ).

Thus, arg min≻H(S ′\C1(S ′), k−|C1(S ′)|, (qt−rt)t∈T ) ≻ s and s ∈ S ′\C2(S ′). Together

with these facts, s ∈ S ′ \ C(S ′).

Proof of Theorem 3

We show that the first part: C is the reserves-and-quotas rule if it satisfies within-type ≻-

compatibility, rejection maximality*, and across-types* ≻-compatibility. The proof con-

sists of three steps.

Step 1: For all S ⊆ S , C1(S) ⊆ C(S).

Suppose not: there exist S ⊆ S and s ∈ S such that s ∈ C1(S) and s ∈ S \ C(S).

Since s ∈ C1(S), s is the at least rtth highest priority candidate of type τ(s) in S that is,

|{s′ ∈ S : τ(s′) = τ(s), s′ ≻ s}| < rt. Since s ∈ S \ C(S) and C satisfies the feasible

constraints by r and q, we have rτ(s) ≤ |C(S)τ(s)|. Thus, there exists s̃ such that s̃ ∈ C(S),

τ(s̃) = τ(s), and s ≻ s̃, a contradiction to within-type ≻-compatibility.

Step 2: For all S ⊆ S , C2(S) ⊆ C(S).

Suppose not: there exist S ⊆ S and s ∈ S such that s ∈ C2(S) and s ∈ S \ C(S). By

within-type ≻-compatibility of C and the definition of C1 and C2, C(S)τ(s) ⊊ (C1(S) ∪

C2(S))τ(s). Thus, |C(S)|τ(s) < qτ(s). By rejection maximality*, |C(S)| = k and thus there

exists s′ ∈ S such that s′ ∈ C(S) \ (C1(S) ∪ C2(S)). By within-type ≻-compatibility of

C and the definition of C1 and C2, τ(s′) ̸= τ(s) and (C1(S) ∪ C2(S))τ(s′) ⊊ C(S)τ(s′).

Thus, rτ(s′) < |C(S)τ(s′)|. By across-types* ≻-compatibility, we have s′ ≻ s. However,

|(C1(S) ∪ C2(S))τ(s)| > rτ(s) since s ∈ C2(S). Also, |(C1(S) ∪ C2(S))τ(s′)| < qτ(s′)
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since (C1(S) ∪ C2(S))τ(s′) ⊊ C(S)τ(s′). By the definition of C1 and C2, we have s ≻ s′,

a contradiction.

Step 3: C is generated by reserves r and quotas q for priority ≻.

We show that C1(S) ∪ C2(S) = C(S). Suppose not: C1(S) ∪ C2(S) ⊊ C(S). Then

|C1(S)∪C2(S)| < |C(S)|. By the definition ofC1 andC2, either |C(S)| > k or |C(S)t| >

qt for some t ∈ T , a contradiction.

Next, we show the second part. Suppose that C is generated by reserves r and quotas q.

By the definition of C1 and C2, C satisfies the feasible constraints by r and q. By Theorem

2, we haven shown C satisfies within-type ≻-compatibility. For rejection maximality*,

suppose by way of contradiction that there exists s ∈ S ⊆ S such that s ∈ S \ C(S),

|C(S)| < k, and |C(S)τ(s)| < qτ(s). Notice that |C(S) ∪ {s}| ≤ k and |C(S)τ(s) ∪

{s}| ≤ qτ(s), we get a contradiction to the maximality of C1 and C2. For across-types*

≻-compatibility, suppose by way of contradiction that there exist S ⊆ S and s, s′ ∈ S such

that s ∈ C(S), s′ ∈ S \ C(S), |C(S)τ(s)| > rτ(s), |C(S)τ(s′)| < qτ(s′), and s′ ≻ s. Since

s′ ∈ S \ C(S), |C(S)τ(s′)| < qτ(s′), and rejection* maximality of C, we have |C(S)| = k.

Let S∗ ≡ (C(S) \ {s}) ∪ {s′}. Notice that |S∗| = k, |S∗
τ(s)| ≥ rτ(s) and |S∗

τ(s′)| ≤ qτ(s′).

This contradicts that C1 and C2 chooses the highest priority candidates with respect to the

constraints.

Proof of Proposition 1

Suppose that there exists z∗ such that C is separable and for each type t, Ct is a responsive

rule on St whose capacity is z∗t . Echenique and Yenmez [24] show that the ideal-distribution

rule is characterized by substitutability, monotonicity, and within-type ≻-compatibility.

Thus, it is enough to check that C satisfies these three axioms. Since Ct is responsive

on St for each t ∈ T , C satisfies substitutability and within-type ≻-compatibility. We show

that for all S, S ′ ⊆ S and t ∈ T , if |St| ≤ |S ′
t|, then |C(S)t| ≤ |C(S ′)t|. Suppose not:
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there exist S, S ′ ⊆ S and t ∈ T such that |St| ≤ |S ′
t| and |C(S)t| > |C(S ′)t|. Notice that

|C(S ′)t| < |C(S)t| ≤ |St| ≤ |S ′
t|. Since Ct satisfies acceptance on St, |C(S ′)t| < |S ′

t|

imply |C(S ′)t| = z∗t . This implies z∗t < |C(S)t|, a contradiction for the fact that Ct is a

responsive rule whose capacity is z∗t . This property is stronger than monotonicity, and thus

C satisfies monotonicity.

Proof of Proposition 2

We show that the class of reserves and quotas rules includes the responsive rule and the

ideal-distribution rule as special cases. Then, Proposition 2 follows from Theorem 1.

First, we show that C is the responsive rule when rt = 0 and qt ≥ k for all t ∈ T . Since

rt = 0 for all t ∈ T , we have C1(S) = ∅ for all S ⊆ S . Since qt ≥ k for all t ∈ T , C = C2

satisfies acceptance. LetC ′ be the responsive rule whose capacity is k. We show that for all

S ⊆ S , C(S) = C ′(S). Suppose not: there exists S ⊆ S such that C(S) ̸= C ′(S). Since

bothC andC ′ satisfy acceptance, |C(S)| = |C ′(S)| = k. Thus, there are s ∈ C(S)\C ′(S)

and s′ ∈ C ′(S) \ C(S). Since s ∈ C(S), s′ ∈ S \ C(S), C1(S) = ∅, and the definition of

C2, we have s ≻ s′. However, since s′ ∈ C ′(S), s ∈ S \ C ′(S), and the definition of the

responsive rule, we have s′ ≻ s, a contradiction.

Next, we show that C is the ideal-distribution rule when rt = z∗t = qt for all t ∈ T .

Since rt = z∗t = qt for all t ∈ T , we have C2(S) = ∅ for all S ⊆ S . This means C = C1,

and thus C is separable. For each t ∈ T , Ct is the responsive rule whose capacity is z∗t

since rt = z∗t and the definition of C1. By Proposition 1, C is the ideal-distribution rule.

Proof of Proposition 3

For each type t, the reserves rt and quotas qt are defined as rt ≡ minS⊆S{|St| : |C(S)t| =

|St|} and qt ≡ maxS⊆S |C(S)t|, respectively. By the definitions of r and q, the choice rule

C satisfies the feasible constraints by r and q. By Theorem 5, C is separable. For each

t ∈ T , if rt = qt, then Ct is the responsive rule on St. By Proposition 1, C is the ideal
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distribution rule.

Proof of Theorem 4

Proof. Let C be the reserves-and-quotas rule. Let C ′ be a choice rule satisfying the four

axioms. By a way of contradiction, suppose that for some S ⊆ S and r, q ∈ Zd
+, we have

C(S, r, q) ̸= C ′(S, r, q).

Claim 10. |C(S, r, q)| = |C ′(S, r, q)| = k.

Proof. First we show |C(S, r, q)| = |C ′(S, r, q)|. Suppose not: |C(S, r, q)| ̸= |C ′(S, r, q)|.

There are two cases to consider. Case 1: |C(S, r, q)| > |C ′(S, r, q)|. There exists t ∈ T such

that |C(S, r, q)t| > |C ′(S, r, q)t|. By the feasible constraint, we have qt > |C(S, r, q)t| >

|C ′(S, r, q)t|. Note that St \ C ′(S, r, q)t ̸= ∅ since |C(S, r, q)| ̸= |C ′(S, r, q)|. However,

|C(S, r, q)| > |C ′(S, r, q)| imply k > |C ′(S, r, q)|, a violation of rejection maximality.

Case 2: |C(S, r, q)| < |C ′(S, r, q)|. Since the reserves-and-quotas rule C satisfies rejection

maximality, we can apply the same argument in Case 1.

Second we show |C(S, r, q)| = k. Suppose not: |C(S, r, q)| < k. Since C(S, r, q) ̸=

C ′(S, r, q) and |C(S, r, q)| = |C ′(S, r, q)|, we haveC ′(S, r, q)\C(S, r, q) ̸= ∅. Pick any s ∈

C ′(S, r, q)\C(S, r, q). Since C ′ satisfies the feasible constraint, we have |C ′(S, r, q)τ(s)| ≤

qτ(s). By within-type ≻-compatibility of C ′ and s ∈ C ′(S, r, q) \ C(S, r, q), we have

C(S, r, q)τ(s) ⊊ C ′(S, r, q)τ(s) and thus |C(S, r, q)τ(s)| < qτ(s). However, together with

|C(S, r, q)| < k and s ∈ S \ C(S, r, q), it contradicts C satisfies rejection maximality.

Lemma 3. FC(S,r,q)(l) ≥ FC′(S,r,q)(l) for all l ∈ {1, ..., n}.

Proof. Since C(S, r, q) ̸= C ′(S, r, q) and |C(S, r, q)| = |C ′(S, r, q)|, we have C(S, r, q) \

C ′(S, r, q) ̸= ∅, C ′(S, r, q) \ C(S, r, q) ̸= ∅, and |C(S, r, q) \ C ′(S, r, q)| = |C ′(S, r, q) \

C(S, r, q)|. It is suffice to show that for all s ∈ C(S, r, q)\C ′(S, r, q) and s′ ∈ C ′(S, r, q)\

C(S, r, q), we have s ≻ s′. First, we show that |C(S, r, q)τ(s)| > rτ(s). s ∈ S \C ′(S) imply

|C ′(S, r)τ(s)| ≥ rτ(s). By within-type ≻-compatibility of C and s ∈ C(S, r, q)\C ′(S, r, q),
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we have C ′(S, r, q)τ(s) ⊊ C(S, r, q)τ(s) and thus |C(S, r, q)τ(s)| > rτ(s). Second, we

show that |C(S, r, q)τ(s′)| < qτ(s′). Since C ′ satisfies the feasible constraint, we have

|C ′(S, r, q)τ(s′)| ≤ qτ(s). By within-type ≻-compatibility of C and s′ ∈ C ′(S, r, q) \

C(S, r, q), we have C(S, r, q)τ(s′) ⊊ C ′(S, r, q)τ(s′) and thus |C(S, r, q)τ(s′)| < qτ(s′). By

the definition of the reserves-and-quotas rule, we have s ≻ s′.

Now we prove Theorem 4. Define r′, q′ ∈ Zd
+ by setting r′t = |C(S, r, q)t| = q′t for

all t ∈ T . Notice that
∑

t∈T r
′
t = k =

∑
t∈T q

′
t by Claim. Together with these facts,

ξ(C(S, r, q)) is a unique solution for the feasible constraint by r′ and q′. Thus, we have

ξ(C ′(S, r′, q′)) = ξ(C(S, r, q)). Since C ′ satisfy within-type ≻-compatibility, we have

C ′(S, r′, q′) = C(S, r, q). By Lemma, we have FC′(S,r′,q′)(l) ≥ FC′(S,r,q)(l) for all l ∈

{1, ..., n}. However, we have rt ≤ |C(S, r, q)t| = r′t and q′t = |C(S, r, q)t| ≤ qt for all

t ∈ T , a contradiction.

1.7.2 Independence of Axioms

We show the independence of axioms in Theorem 2, 3, 4, and 5.

Axioms in Theorem 5

Example 1 (Violating only rejection maximality). Let S = {s1, s2, s3}, k = 2 and τ(s1) =

τ(s2) = τ(s3) = t. Consider the following choice rule: C({s1, s2, s3}) = C({s1, s2}) =

C({s1, s3}) = C({s1}) = {s1}, C({s2, s3}) = {s2, s3}, C({s2}) = {s2} and C({s3}) =

{s3}. C satisfies substitutability. C also satisfies across-types strong axiom of revealed

preference since all candidates are the same type. It violates rejection maximality since

|{s1, s2, s3}t| > |{s2, s3}t| and |C({s1, s2, s3})t| < |C({s2, s3})t| = k.

Example 2 (Violating only substitutability). Let S = {s1, s2, s3, s4}, k = 2 and τ(s1) =

τ(s2) = τ(s3) = t1 and τ(s4) = t2. Consider the following choice rule: C({s1, s2, s3, s4}) =
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C({s1, s2, s3}) = {s1, s2},C({s1, s2, s4}) = C({s1, s3, s4}) = {s1, s4},C({s2, s3, s4}) =

{s2, s4}, C({s1, s2}) = C({s1, s3}) = {s1}, C({s2, s3}) = {s2}, and C(S) = S for the

remaining S.

Let ≻ be defined as follows: s ≻ s′ if there exists S ⊇ {s.s′} such that s ∈ C(S) and

s′ ̸∈ C(S) and either τ(s) = τ(s′) or τ(s) is saturated and τ(s′) is demanded in S. Notice

that t1 is neither demanded nor saturated in any S ⊆ S . Thus, we focus on t1 only and get

s1 ≻ s2 ≻ s3. Since there is no cycle, across-types strong axiom of revealed preference

is satisfied. For rejection maximality, there are three cases where |C(S)| < k. Rejection

maximality is satisfied since |C({s1, s2})| = |C({s1, s3})| = |C({s2, s3})|. To see that

substitutability is not satisfied, note s2 ∈ C({s1, s2, s3, s4}) and s2 ̸∈ C({s1, s2, s4}).

Example 3 (Violating only across-types strong axiom of revealed preference). Let S =

{s1, s2, s3, s4}, k = 2 and τ(s1) = τ(s2) = τ(s3) = τ(s4) = t. Consider the fol-

lowing choice rule: C({s1, s2, s3, s4}) = C({s1, s2, s3}) = C({s1, s2, s4}) = {s1, s2},

C({s1, s3, s4}) = {s1, s3}, C({s2, s3, s4}) = {s2, s4} and C(S) = S for the remaining

S. C satisfies rejection maximality and substitutability. But it does not satisfy across-

types strong axiom of revealed preference since s3, s4 and {{s2, s3, s4}, {s1, s3, s4}} sat-

isfies s4 ∈ C({s2, s3, s4}), s3 ∈ {s2, s3, s4} \ C({s2, s3, s4}), s3 ∈ C({s1, s3, s4}), s4 ∈

{s1, s3, s4} \ C({s1, s3, s4}), and τ(s3) = τ(s4) = t.

Axioms in Theorem 2

Example 4 (Violating only rejection maximality). Consider the choice rule in Example 1.

Let ≻ be as follows: s1 ≻ s2 ≻ s3. As argued in Example 1, C satisfies substitutability but

not rejection maximality. Moreover, C satisfies within-type ≻-compatibility and across-

types ≻-compatibility for ≻.
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Example 5 (Violating only substitutability). Consider the choice rule in Example 2. Let ≻

be as follows: s1 ≻ s2 ≻ s3 ≻ s4. As argued in Example 2, C satisfies rejection maximal-

ity but not substitutability. It is easy to see C satisfies within-type ≻-compatibility. t1 is

neither demanded nor saturated in any S ⊆ S , as argued in Example 2. Thus, across-types

≻-compatibility is also satisfied.

Example 6 (Violating only within-type ≻-compatibility). Consider the choice rule in Ex-

ample 3. As argued in Example 3, C satisfies rejection maximality and substitutabil-

ity. Across-types ≻-compatibility is also satisfied since there is only one type. But it

fails within-type ≻-compatibility for any ≻; s4 ∈ C({s2, s3, s4}) and s3 ∈ {s2, s3, s4} \

C({s2, s3, s4}) imply s4 ≻ s3; s3 ∈ C({s1, s3, s4}) and s4 ∈ {s1, s3, s4} \ C({s1, s3, s4})

imply s3 ≻ s4.

Example 7 (Violating only across-types ≻-compatibility). Consider the choice rule in Ex-

ample 3 but suppose that all candidates have different types. As argued in Example 3, C

satisfies rejection maximality and substitutability. Within-type ≻-compatibility is also sat-

isfied since all candidates have different types. But it fails across-types ≻-compatibility

for any ≻. Since s4 ∈ C({s2, s3, s4}), s3 ∈ {s2, s3, s4} \ C({s2, s3, s4}), τ(s4) is satu-

rated in {s2, s3, s4}, and τ(s3) is demanded in {s2, s3, s4}, we have s4 ≻ s3. On the other

hand, since s3 ∈ C({s1, s3, s4}), s4 ∈ {s1, s3, s4} \ C({s1, s3, s4}), τ(s3) is saturated in

{s1, s3, s4}, and τ(s4) is demanded in {s1, s3, s4}, we have s3 ≻ s4.

Axioms in Theorem 3

Example 8 (Violating only rejection maximality*). Consider the choice rule in Example

1. Let ≻ be as follows: s1 ≻ s2 ≻ s3. Let rt = 0 and qt = 2. C satisfies feasible

constraints by r and q. C violates rejection maximality* since |C({s1, s2, s3})t| < qt and
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|C({s1, s2, s3})| < k. Moreover,C satisfies within-type≻-compatibility and across-types*

≻-compatibility for ≻.

Example 9 (Violating only within-type ≻-compatibility). Consider the choice rule in Ex-

ample 3. Let rt = 0 and qt = 2. C satisfies feasible constraints by r and q. Note

that C satisfies acceptance which is stronger than rejection maximality*. Across-types*

≻-compatibility is also satisfied since there is only one type. But it fails within-type ≻-

compatibility for any ≻; s4 ∈ C({s2, s3, s4}) and s3 ∈ {s2, s3, s4} \ C({s2, s3, s4}) imply

s4 ≻ s3; s3 ∈ C({s1, s3, s4}) and s4 ∈ {s1, s3, s4} \ C({s1, s3, s4}) imply s3 ≻ s4.

Example 10 (Violating only across-types*≻-compatibility). Consider the choice rule in Ex-

ample 3 but suppose that all candidates have different types. Let rτ(si) = 0 and qτ(si) = 2

for i = 1, ..., 4. C satisfies feasible constraints by r and q. Note that C satisfies acceptance

which is stronger than rejection maximality*. Within-type ≻-compatibility is also satisfied

since all candidates have different types. But it fails across-types* ≻-compatibility for any

≻. Since s4 ∈ C({s2, s3, s4}), s3 ∈ {s2, s3, s4} \ C({s2, s3, s4}), |C({s2, s3, s4})τ(s4)| >

rτ(s4), and |C({s2, s3, s4})τ(s3)| < qτ(s3), we have s4 ≻ s3. On the other hand, since

s3 ∈ C({s1, s3, s4}), s4 ∈ {s1, s3, s4} \ C({s1, s3, s4}), |C({s1, s3, s4})τ(s3)| > rτ(s3),

and |C({s1, s3, s4})τ(s4)| < qτ(s4), we have s3 ≻ s4.

Axioms in Theorem 4

Example 11 (Violating only within-type ≻-compatibility). Let S = {s1, s2}, k = 1

τ(s1) = τ(s2) = t, and s1 ≻ s2. Consider the following choice rule: C({s1, s2}) = {s2}

and C(S) = S for the remaining S. C satisfies feasibility, rejection maximality* and

meritorious monotonicity in reserve and quota size. But it does not satisfy within-type ≻-

compatibility.
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Example 12 (Violating only rejection maximality*). Fix any type t. Consider the following

choice rule. For all r and q, C(: r, q) is the reserves-and-quotas rule generated by r and q

except that for all S ⊆ S , |C(S)t| = min{rt, |St|}. By the definition of the rule, C satisfies

feasibility and within-type ≻-compatibility. It also satisfies meritorious monotonicity in

reserve and quota size by Theorem 1. But it dose not satisfy rejection maximality*.

Example 12 (Violating only meritorious monotonicity in reserve and quota size). As we

discussed in Section 3.2, the reserves rule in public high schools in Chicago does not satisfy

the reserves rule in public high schools in Chicago. On the other hand, it satisfies feasibility,

within-type ≻-compatibility and rejection maximality*.
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Chapter 2

Measuring Manipulability of Matching

Mechanisms

Coauthored with: Kentaro Tomoeda (University of Technology Sydney).

2.1 Introduction

In the last decades, policymakers in several school districts have attempted to simplify the

strategic aspects of school admissions in their school choice plans. A first change occurred

to Boston’s grade K-12 assignment system, known as the Boston mechanism, in place since

1999. Abdulkadiroğlu and Sönmez [2] show that this mechanism is vulnerable to strategic

manipulation, and suggest two alternatives which are not. In June 2005, the Boston school

committee voted to replace the Boston mechanism with the student proposing deferred ac-

ceptance (DA) mechanism (Gale and Shapley [30]), a mechanism where participants can

do no better than report their preferences truthfully.

While the transition from the Boston mechanism to the DA mechanism is clear in terms

of discouraging manipulation, many school admissions reforms include variants of the two

mechanisms. These mechanisms are constrained in the sense that they consider a subset of

choices on a student’s rank order list. Due to the constraint, all these mechanisms are ma-
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nipulable. For example, two admissions reforms took place in Chicago public high school

choice. The first reform was the transition from the constrained Boston mechanism to the

constrained DA mechanism. Both the mechanisms consider the first four choices on a stu-

dent’s rank order list. The second reform changed to the constrained DA that considers

the first six choices. Besides, similar school admissions reforms took place in England and

other places. A natural idea is that the new mechanisms are ”less manipulable” than the

abandoned mechanisms even that all of them are manipulable.

We introduce a method to measure manipulability of a matching mechanism. Our mea-

sure counts the number of students who can manipulate a mechanism for each preference

profile. We use theory and simulation to apply our measure to the constrained mechanisms

DAk and BOSk where these mechanisms consider the first k choices on a student’s rank

order list. First, to motivate to study our measure, we demonstrate a problem of the existing

measure introduced by Pathak and Sönmez [42]. They show that (i) manipulability ofDAk

decreases in k, and (ii) DAk is less manipulable than BOSk. These results support recent

admissions reforms: while the recent school admissions reforms did not fully eliminate in-

centives to manipulate, they discouraged manipulation. We find that the implications from

their measure are strongly dependent on the full preference domain assumption. Specifi-

cally, we show that the mechanisms in their results are equally manipulable under tiered

preference domain.

Second, we show that our measure is more robust. The implications from existing mea-

sures can be carried over in both the full and the tiered preference domains. In addition,

while these results are parallel to the results in the literature, the proof is different. We

use the key property of DA, individual rational monotonicity proposed by Kojima and

Manea [36], to prove them which are theoretically interesting for themselves. These results

confirm parallel to results in literature and provide further justifications for admissions re-

forms in Chicago, England, and other places (Pathak and Sönmez [42]; Decerf and Van der

Linden[17]; Bonkoungou and Nesterov [9]).
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Third, we use simulation for quantitative analysis. The first simulation is on our ma-

nipulability measure and provides further quantitative analysis of our theoretical results.

Two implications obtained from the simulations are particularly important; (i) switching

fromBOSk toDAk largely reduce manipulability; (ii) long preference list is not necessary

if we can allow small manipulability under DAk. These implications support the recent

school admissions reforms quantitatively, as well as qualitatively: they largely eliminated

the incentive to manipulate. The second simulation is on the measure by Pathak and Sönmez

[42]. While our qualitative results from theory are parallel to their measure, the quantitative

results from simulations confirm a significant difference.

The rest of Chapter 2 is organized as follows. Section 2 presents the model. Section 3

presents the mechanisms that we study in this paper. Section 4 reviews the measure in the

literature. Section 5 provides our main results. Section 6 provides the concluding remarks.

Appendix provides the omitted proofs.

2.1.1 Related literature

Our results are closely related to the results obtained by Pathak and Sönmez [42]. They in-

troduce a method to compare mechanisms by their vulnerability to manipulation and justify

recent school admissions reforms. While our qualitative results from theory are parallel to

their measures, there are two major differences in our results. First, our measure is more

robust to a restricted domain. Second, our paper also provides new insights by quantita-

tive analysis via simulations. In two recent papers, Decerf and Van der Linden [17] and

Bonkoungou and Nesterov [9] also study manipulability in school choice. Decerf and Van

der Linden [17] focus on dominant strategies and rely on a measure introduced by Arribil-

laga and Massó [3] in the context of voting. While their implication is parallel to that by

Pathak and Sönmez [42], they also study tie-breaking rule from a manipulability perspec-

tive. Bonkoungou and Nesterov [9] introduce a new concept, strategic accessibility, and

correct mistakes one of the results by Pathak and Sönmez [42] while keeping their implica-
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tions. As we discuss later, all comparison criteria have limitations, and our analysis should

be viewed as complementary to these approaches. All approaches are complementary, as

they provide different measures available for market designers to choose from depending

on the purpose of the application at hand.

Our paper contributes to the literature on constrained school choice. Haeringer and Klijn

[31] introduce the constrained school choice problem and study the efficiency and stabil-

ity properties of the Nash equilibria of constrained school choice mechanisms. Chen and

Kesten [13] study a variant of constrained mechanism which is used in Chinese college ad-

missions. Calsamiglia et al. [10] and Chen and Kesten [14] study constrained mechanisms

experimentally replicating the design of Chen and Sönmez [15]. Recently, Dur and Morrill

[23] and Decerf and Van der Linden [16] show how constraints on the number of schools

students can report can make the constrained DA more efficient than the unconstrained DA.

The efficiency of constrained DA is also discussed by Che and Tercieux [12].

Our paper also contributes to the literature on a measure of incentives to mechanisms.

In the market design literature, Azevedo and Budish [7] propose a relaxation of strategy-

proofness based on the idea that vulnerability to manipulation disappears in large economies

for some mechanisms, but not others. Focusing on voting applications, Peleg [44] introduce

a profile-counting approach, which is similar to ours. Carroll [11] proposes another criterion

to evaluate voting mechanisms based on the extent to which they encourage manipulation.

Arribillaga and Massó [3] introduce a measure that focuses on the number of dominant

strategies that a voting mechanism provides.

2.2 Model

There is a finite set of students I = {i1, ..., in} and a finite set of schools S = {s1, ..., sm}

where m ≥ 2. A student can be unassigned to any school in S. ∅ represents not being

assigned to any school in S. Each student i has a preference relation Ri over S ∪ {∅},
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where Pi is the strict counter part ofRi. We denote Ri by the set of all preference relations.

Let R = (Ri)i∈I ∈ ×i∈IRi denote the preference profile. We denote R ≡ ×i∈IRi by the

set of all preference profiles. A (preference) domain is a set D ≡ ×Di ⊆ R. We say that

D is the full domain if D = R. A school s is acceptable for student i if sPi∅. Each school

s has a priority ≻s and capacity qs. ≻s is a strict ranking over I , and qs is the number of

seats in s. Let ≻= (≻s)s∈S and q = (qs)s∈S denote the priority profile and the capacity

profile, respectively. Let Fs and F denote the set of all priorities and the set of all priority

profiles, respectively.

A matching µ is a function from S ∪ I to 2I∪S such that (i) for all student i ∈ I ,

|µ(i)| ≤ 1 and µ(i) ⊆ S; (ii) for all school s ∈ S, |µ(s)| ≤ qs and µ(s) ⊆ I; (iii) for

all pair of student and school (i, s) ∈ I × S, µ(i) = {s} if and only if i ∈ µ(s). When

µ(i) ̸= {∅}, µ(i) denotes the school that student i is assigned to. µ(s) denotes the set of

students who are assigned to school s. Under a matching, every student is assigned to a

school or unassigned, and every school s can accept at most qs students.

Given priority and capacity profiles (≻, q), the matching outcome is determined accord-

ing to the mechanism based only on the submitted preferences of students. A mechanism φ

is a function from the set of preference profile to the set of matching. For ease of notation,

we will sometimes use φi(R) to refer to φ(R)(i).

In this paper, we focus on a constrained version of mechanism φ. Let φk be a con-

strained mechanism that considers the first k choices on a student’s preference profile.

To formally define φk, we need to introduce Rk, which is obtained from R as follows. If

|{s : sPi∅}| > k, then Rk
i satisfies (1) for all s, s′ ∈ S, sRis

′ if and only if sRk
i s

′, and (2)

|{s ∈ S : sP k
i ∅}| = k − 1. If |{s : sPi∅}| ≤ k, then Rk

i = Ri. Given this concept, a

constrained mechanism is defined by φk(R) ≡ φ(Rk).
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2.3 Mechanisms

In this section, we describe the two mechanism that we study in the context of school choice:

the Boston mechanism and the student proposing deferred acceptance (DA) mechanism.

2.3.1 The Boston mechanism

Consider a preference profile R submitted by the students. The Boston mechanism finds a

matching through the following procedure.

Step 1. Set q1s ≡ qs for all s ∈ S. Each student i proposes to the school that is ranked

first inRi (if ∅ is ranked first inRi, then i remains unassigned). Each school s assigns up to

q1s seats to its proposers one at a time following the priority order ≻s. Remaining students

are rejected. Let q2s denote the number of available seats at school s.

Step l, l ≥ 2. Each student i that is rejected in Step l − 1 proposes to the school that is

ranked lth in Ri (if ∅ is ranked lth in Ri, then i remains unassigned). School s assigns up

to qls seats to its (new) proposers one at a time following the priority order ≻s. Remaining

students are rejected. Let ql+1
s denote the number of available seats at school s.

The procedure stops when no student is rejected. Any remaining student remains unas-

signed. LetBOS(R) denote the matching. The mechanismBOS is the Boston mechanism,

or BOS for short.

2.3.2 The student proposing deferred acceptance mechanism

The student proposing deferred acceptance (DA) mechanism was introduced by Gale and

Shapley [30] and was studied in the context of school choice by Abdulkadiroğlu and Sönmez

[2]. Let R be a preference profile submitted by the students. The DA mechanism finds a

matching through the following procedure.

Step 1. Each student i proposes to the school that is ranked first in Ri (if there is no

such school then i remains unassigned). Each school s tentatively assigns up to qs seats to
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its proposers one at a time following the priority order ≻s. Remaining students are rejected.

Step l, l ≥ 2. Each student i that is rejected in Step l − 1 proposes to the next school

in the ordered list Ri (if there is no such school then i remains unassigned). Each school

s considers the new proposers and the students that have a (tentative) seat at s. School s

tentatively assigns up to qs seats to these students one at a time following the priority order

≻s. Remaining students are rejected.

The algorithm stops when no student is rejected. Each student is assigned to his final

tentative school. Let DA(R) denote the matching. The mechanism DA is the student

proposing deferred acceptance mechanism, or DA for short.

2.4 Manipulability measure by Pathak and Sönmez (2013)

In this section, we study the manipulability measure introduced by Pathak and Sönmez

[42]. First, we define their measure and introduce their results. Second, we illustrate that

this measure sometimes leads to counter intuitive results. Third, based the observation from

examples, we show that the measure does not work under some preference domain.

2.4.1 Definition

We need several concepts to define the manipulability measure. A mechanism φ is ma-

nipulable by student i at preference profile R if there exists a preference R̃i such that

φi(R̃i, R−i)Piφi(R). We will say that preference profile R is vulnerable under mecha-

nism φ if φ is manipulable by some student at R. A mechanism is strategy-proof if it is

not manipulable by any player at any problem. It is known that DA is strategy-proof, but

BOS is not. Moreover, neither constrained DAk nor BOSk is strategy-proof.

Now we describe the manipulability measure by Pathak and Sönmez [42].

Definition 21. A mechanism ψ is at least as manipulable as mechanism φ on domain D
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if for all R ∈ D,

R is vulnerable under mechanism φ⇒ R is vulnerable under mechanism ψ.

Two mechanisms can be equally manipulable if they are manipulable for exactly the

same set of preference profiles. The next definition rules out this possibility.

Definition 22. A mechanism ψ is more manipulable than mechanism φ on domain D if

(i) ψ is at least as manipulable as φ on domain and D

(ii) there exists R ∈ D such that R is vulnerable under mechanism ψ but not under φ.

Pathak and Sönmez [42] support recent admissions reforms in Chicago, England and

other places. According to their measure, while the reforms did not fully eliminate incen-

tives to manipulate, they discourage manipulation.

Theorem 7 (Pathak and Sönmez [42]). For all k and l with 1 ≤ k < l ≤ |S|,

(i) BOSl is more manipulable than DAl on the full domain R;

(ii) DAk is more manipulable than DAl on the full domain R.

The measure introduced by Pathak and Sönmez [42] makes weak requirement that pref-

erence profile R is vulnerable under mechanism φ. If there is any one student can manipu-

late φ atR,R is vulnerable under mechanism φ. Due to the weak requirement, this measure

sometimes leads to counter intuitive results: there are preference profile R and two mech-

anisms such that while R is vulnerable under both mechanisms, it is natural that R is ”less

vulnerable” under one than the other in some way. The following examples illustrate this

fact.

Example 5. Let I = {i1, i2, i3, i4}, S = {s1, s2, s3}, and q1 = q2 = q3 = 1. Each school s

has a common prioirty, i1 ≻s i2 ≻s i3 ≻s i4. Let R be as given below, where vertical dots

represent arbitrary rankings of remaining schools.
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Ri1 Ri2 Ri3 Ri4

s1 s1 s1 s2
... s2 s2 s3

s3 s3
...

Consider DA2. The matching produced by DA2 at R is given by

DA2(R) =

 s1 s2 s3

i1 i2 i4

 .

Consider BOS2. The matching produced by BOS2 at R is given by

BOS2(R) =

 s1 s2 s3

i1 i4 ∅

 .

DA2 is manipulable by i3 at R since i3 can be better off by reporting s3 as the first

choice. BOS2 is manipulable by i2 at R since i2 can be better off by reporting s3 as the

first choice. Similarly, BOS2 is manipulable by i3 at R. Note that the set of students who

can manipulate DA2 at R is strictly included in that of BOS2 at R i.e., {i3} ⊆ {i2, i3}.

Example 6. Let I = {i1, i2, i3}, S = {s1, s2, s3}, and q1 = q2 = q3 = 1. Each school s

has a common prioirty, i1 ≻s i2 ≻s i3. Let R be as given below.

Ri1 Ri2 Ri3

s1 s1 s1
... s2 s2

... s3

Consider DA2. The matching produced by DA2 at R is given by

DA2(R) =

 s1 s2 s3

i1 i2 ∅

 .
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Consider DA1. The matching produced by DA1 at R is given by

DA1(R) =

 s1 s2 s3

i1 ∅ ∅

 .

DA2 is manipulable by i3 at R since i3 can be better off by reporting s3 as the first

choice. DA1 is manipulable by i2 at R since i2 can be better off by reporting s3 as the first

choice. Similarly, DA1 is manipulable by i3 at R. Note that the set of students who can

manipulate DA2 at R is strictly included in that of DA1 at R i.e., {i3} ⊆ {i2, i3}.

In the examples, one might thinkDA2 is less manipulable thanBOS2 (DA1) atR since

the set of students who can manipulate DA2 at R is strictly included. However, preference

profileR is equally vulnerable under the both mechanisms in terms of the measure by Pathak

and Sönmez [42]. This is because the requirement for preference to be vulnerable is weak:

if any one student s can manipulate φ at R, then R is vulnerable under φ. It is natural that

R is ”more vulnerable” under BOS2 (DA1) in some sense.

The weak requirement for preference to be vulnerable causes at least two problems.

First, two mechanisms are often equally manipulable since a preference profile is often

vulnerable under both mechanisms. Second, even if one mechanism is more manipulable

than another, the difference by this measure would be small. These are disadvantages since

we want to compare mechanisms by their vulnerability to manipulation. We will discuss

the first issue by theory and the second by simulation the following sections.

2.4.2 Measure on restricted domain

Based on the observation from the examples, we show that the measure by Pathak and

Sönmez [42] does not work under some preference domain: the mechanisms in Theorem 1

are equally manipulable.

We consider a tiered preference domain studied by Kesten and Kurino [34]. For T ⊊ S,
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the set of T-tier preferences is defined as

Ri(T ) ≡ {Ri ∈ Ri : ∀t ∈ T, ∀s ∈ S \ T, tPis and tPi∅}.

In words, under preference Ri ∈ Ri(T ) agent i’s top |T | choices in T . Denote R(T ) ≡

×i∈IRi(T ). We say that a domain D is the T-tiered preference domain if D ≡ R(T ).

In addition, we impose two assumptions.

Assumption 1. The school capacities are in short supply: |I| > |
∑

s∈S qs|.

Assumption 2. For each student i, all school s are acceptable: for all i ∈ I , Ri ∈ Ri(T )

and s ∈ S, sPi∅.

Pathak and Sönmez [42] impose Assumption 1 and 2 to analyze the admissions reforms

in Chicago public high school choice.

Proposition 4. Suppose Assumption 1 and 2 and let T ⊊ S. Then for all k and l with

1 ≤ k < l ≤ |T |,

(i) DAl is at least as manipulable as BOSl on the T -tiered preference domain R(T );

(ii) DAl is at least as manipulable as DAk on the T -tiered preference domain R(T ).

Proof. It is suffice to show that for all R ∈ R(T ), R is vulnerable under DAl. There exists

student i such that DAl
i(R) = ∅ since |I| > |

∑
s∈T qs| by the first assumption. Notice that

for all s ∈ S \ T , DAl
s(R) = ∅. By the second assumption, we have sPi∅. Thus, i can

manipulate DAl at R: s = DAl(R̃i, R−i)PiDA
l
i(R) where s is the first choice at R̃i.

This result states that the implication in Theorem 1 cannot be carried over the T -tired

preference domain. By the definition of vulnerability, a preference profile is often vulner-

able under any mechanism. Due to this problem, any preference profile from the natural

domain is always vulnerable under many mechanisms. As a results, we cannot distinguish

the mechanisms by their vulnerability of manipulation. This motivates to introduce our

manipulability measure.
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2.5 Main results

In this section, we provide our main results. First, we define our measure using a motivating

example. Second, we show that our measure can carry out the implications by Pathak and

Sönmez [42] in the general preference domain. Third, we show that our measure is more

robust: it works under the tier preference domain as well. Fourth, we run simulations for

quantitative analysis and support the recent admissions reforms quantitatively, as well as

qualitatively.

2.5.1 New measure

We motivate to introduce our measure by using a example. Example 1 and Example 2

provide preferences that the set of students who can manipulate the mechanism is strictly

included in the other. A natural conjecture is that if student i cannot manipulate DAk at

preference profile R, then i cannot also manipulate DAk+1 at R.1 That is, opportunities

of manipulation for each student i is decreasing in k for each preference profile R. The

following example illustrates that this is not in case

Example 7. Let I = {i1, i2, i3, i4}, S = {s1, s2, s3}, and q1 = q2 = q3 = 1. Each school s

has a common prioirty, i1 ≻s i2 ≻s i3 ≻s i4. Let R be as given below.

Pi1 Pi2 Pi3 Pi4

s1 s1 s2 s2
... s2 s1 s3

s3 s3
...

Consider DA1. The matching produced by DA1 at R is given by

DA1(R) =

 s1 s2 s3

i1 i3 ∅

 .

1This measure is studied in Pathak and Sönmez [42] as the strong manipulability. In terms of the measure,
Example 3 illustrates that DAk is not strongly manipulable than DAk+1.
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Consider DA2. The matching produced by DA2 at R is given by

DA2(R) =

 s1 s2 s3

i1 i2 i4

 .

DA1 is manipulable by i2 at R since i2 can be better off by reporting s3 as the first choice.

Similarly, DA1 is manipulable by i4. DA2 is manipulable by i3 at R since i3 can be better

off by reporting s3 as the first choice. Note that the set of students who can manipulate

DA2 at R is not included in that of DA1 at R i.e., {i3} ⊆ {i2, i4}. However, the number of

students who can manipulate DA2 is smaller i.e., |{i3}| < |{i2, i4}|.

Now we introduce our measure. Our notion is based on the following idea. For prefer-

ence profile R, we count the number of students who can manipulate φ at R. According to

our measure,R is more vulnerable in number underBOS2 than that underDA2 in Example

7. We formalize our measure as follows.

Definition 23. A mechanism ψ is at least as manipulable in number as mechanism φ on

domain D if for all R ∈ D,

|{i ∈ I : ψ is manipulable by i at R}| ≥ |{i ∈ I : φ is manipulable by i at R}|.

Definition 24. A mechanism ψ is more manipulable in number than mechanism φ on

domain D if

(i) ψ is at least as manipulable in number as φ on domain D and

(ii) there exists R ∈ D such that

|{i ∈ I : ψ is manipulable by i at R}| > |{i ∈ I : φ is manipulable by i at R}|.
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2.5.2 Theoretical results

In this section, we provide our theoretical results. First we show that our measure can

keep the implications in Theorem 1 by Pathak and Sönmez [42]. While these results are

parallel to the results in literature, the proof is different. We use the key property of DA,

individual rational monotonicity proposed by Kojima and Manea [36], to prove them which

are theoretically interesting for themselves. Second, unlike Pathak and Sönmez [42], our

measure keeps the implication under the tier preference domain as well.

New Measure on full domain

First, we show that how the implications in Theorem 1 can be carried out under our measure

as well. While this result is parallel to the result by Pathak and Sönmez [42], its proof is

different. Our measure makes analysis hard since we need to count the number of students

who can manipulate. We use the property of the DA mechanism, individual rational (IR)

monotonicity proposed by Kojima and Manea [36]. Intuitively, IR monotonicity states that

all students be weakly better off when some students claim fewer schools. A key observa-

tion is that Rk can be seen that all students claim fewer schools from Rk+1. Thus, we can

apply IR monotonicity.

Now we provide the first theoretical result.

Theorem 8. For all k and l with 1 ≤ k < l ≤ |S|,

(i) BOSl is more manipulable in number than DAl on the full domain R;

(ii) DAk is more manipulable in number than DAl on the full domain R.

Proof. First part. The proof is contained in Appendix.

Second part. We use individual rational monotonicity, introduced by Kojima and Manea

[36].2 We say that R′
i is an individually rational monotonic transformation of Ri at

2Kojima and Manea [36] provide a characterization of the DA mechanism based on individual rational
monotonicity.
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s ∈ S ∪ {∅} (R′
i i.r.m.t. Ri at s) if for each t ∈ S ∪ {∅}, tP ′

is and tP ′
i∅ implies tPis. In

words, any school ranked above both s and ∅ atR′
i is also ranked above s atRi. We say that

R′ is an individually rational monotonic transformation of R at a matching µ (R′ i.r.m.t. R

at µ) if for each i ∈ I , R′
i i.r.m.t. Ri at µi. We write µ′Rµ if and only if for each i ∈ N ,

µ′
iRiµi.

Definition 25. A mechanismφ satisfies individual rational monotonicity if for allR,R′ ∈

R,

R′ i.r.m.t. R at φ(R) ⇒ φ(R′)R′φ(R).

In words, individual rational monotonicity states that if students change their preference

profile according to an individual rational monotonic transformation, then the matching is

weakly preferable for all students to the original matching.

We start with lemmas.

Lemma 4. Let k with 1 ≤ k ≤ |S|. For all student i ∈ I and preference profile R ∈ R, if

DAk is manipulable by i at R, then DAk
i (R) = ∅.

Proof. For the sake of contradiction, suppose that DAk
i (R) ̸= ∅. By the definition of the

constrained mechanism, we have DAk
i (R) = DAi(R

k). Since DAk
i (R) ̸= ∅, we have

DAi(R
k) = DAi(Ri, R

k
−i). Since DAk is manipulable by i at R, there exists R̃i such that

DAk
i (R̃i, R−i)PiDA

k
i (R). Again, by definition of the constrained mechanism, we have

DAk
i (R̃i, R−i) = DAi(R̃

k
i , R

k
−i). Together with these facts, we haveDAi(R̃

k
i , R

k
−i)PiDAi(Ri, R

k
−i)i,

which is a contradiction to strategy-proofness of DA.

Define Si(R−i, φ) ≡ {s ∈ S : s = φi(R̃i, R−i) for some R̃i}. In words, Si(R−i, φ) is

a set of schools that i can be potentially matched at R−i under φ.
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Lemma 5. Let k with 1 ≤ k < |S|. For all preference profile R ∈ R, student i ∈ I , and

school s ∈ S,

Si(R−i, DA
k+1) ⊆ Si(R−i, DA

k).

Proof. Pick any s ∈ Si(R−i, DA
k+1) with s = DAk+1

i (R̃i, R−i). Construct R̂i from R̃i

by ranking s first, that is, sR̂is
′ for all s′ ∈ S ∪ {∅}. Notice R̂k

i i.r.m.t. R̃k+1
i at s =

DAk+1
i (R̃i, R−i). We also note Rk

j i.r.m.t. Rk+1
j at DAk+1

j (R̃i, R−i) for every j ∈ S \ {i}.

Thus, we have (R̂k
i , R

k
−i) i.r.m.t. (R̃k+1

i , Rk+1
−i ) at DA(R̃k+1

i , Rk+1
−i ). By individual rational

monotonicity, we have DA(R̂k
i , R

k
−i)R̂iDAi(R̃

k+1
i , Rk+1

−i ) = s. Since s is ranked fist at

R̂i, we have DA(R̂k
i , R

k
−i) = s. Thus, we have s ∈ Si(R−i, DA

k), which completes the

proof.

Let I(φ, ψ,R) be the set of students who manipulate under mechanism φ but not under

mechanism ψ at preference profile R.

Lemma 6. Let k with 1 ≤ k < |S|. For all preference profile R ∈ R and student i ∈ I ,

i ∈ I(DAk+1, DAk, R) ⇒ DAk+1
i (R) = ∅ and DAk

i (R) ̸= ∅.

Proof. DAk+1
i (R) = ∅ follow from Lemma 1. SupposeDAk

i (R) = ∅. Since i ∈ I(DAk+1, DAk, R),

i can manipulate DAk+1 at R. Thus, there exits s ∈ S such that s ∈ Si(R−i, DA
k+1) and

sPi∅. We have s ∈ Si(R−i, DA
k) by Lemma 3 and thus sPiDA

k
i (R), which contradicts

that i cannot manipulate DAk at R.

Lemma 7. Let k with 1 ≤ k < |S|. For all preference profile R ∈ R and student i ∈ I ,

DAk
i (R) = ∅ and DAk+1

i (R) ̸= ∅ ⇒ i ∈ I(DAk, DAk+1, R).

Proof. By Lemma 1, i cannot manipulateDAk+1 atR. By Lemma 2, we haveDAk+1
i (R) ∈
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Si(R−i, DA
k). Thus, i can manipulate DAk at R.

Lemma 8. Let k with 1 ≤ k < |S|. For all preference profile R ∈ R, we have

|{i ∈ I : DAk
i (R) ̸= ∅}| ≤ |{i ∈ I : DAk+1

i (R) ̸= ∅}|.

Proof. For the sake of contradiction, suppose that

|{i ∈ I : DAk
i (R) ̸= ∅}| > |{i ∈ I : DAk+1

i (R) ̸= ∅}|.

By the definition of a matching,

∑
s∈S

|{i ∈ I : DAk
i (R) = s}| = |{i ∈ I : DAk

i (R) ̸= ∅}|

> |{i ∈ I : DAk+1
i (R) ̸= ∅}|

=
∑
s∈S

|{i ∈ I : DAk+1
i (R) = s}|.

Thus, there exists school s ∈ S such that

|{i ∈ I : DAk
i (P,≻) = s}| > {i ∈ I : DAk+1

i (P,≻) = s}|.

This implies that there exists student j ∈ I such that DAk+1
j (R) ̸= s and DAk

j (R) = s.

Notice Rk i.r.m.t. Rk+1 at DA(Rk+1). By individual rational monotonicity, we have

DA(Rk)RkDA(Rk+1). For student j, we have s = DAj(R
k)P k

j DAj(R
k+1). Together

with sP k
j ∅, sP k

j DAj(R
k+1), andRk

j i.r.m.t. Rk+1
j atDAj(R

k+1), we have sP k+1
j DAj(R

k+1).

However, |{i ∈ I : DAk+1
i (R) = s}| < qs, which is a contradiction to non-wastefulness

of DA.
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Now we show Theorem 1. It is sufficient to show that

|I(DAk+1, DAk+1, R)| ≤ |I(DAk, DAk+1, R)|.

By the lemmas, we have

|I(DAk+1, DAk, R)| ≤ |{i ∈ I : DAk+1
i (R) ̸= ∅, DAk

i = ∅}|

≤ |{i ∈ I : DAk
i (R) ̸= ∅, DAk+1

i = ∅}|

≤ |I(DAk, DAk+1, R)|.

The first inequality follows from Lemma 3, the second inequality follows from Lemma 5,

and the third inequality follows from Lemma 4.

Measure in restricted domain

We show that our measure is more robust. Our measure works under the tier preference do-

main as well. Specifically, implications in Theorem 1 can be carried over the tier preference

domain based on our measure.

We provide the second theoretical result. Here, we impose same assumptions in Section

4.2.

Proposition 5. Suppose Assumption 1 and 2 and let T ⊊ S. Then for all k and l with

1 ≤ k < l ≤ |T |,

(i) BOSl is more manipulable in number than DAl on the T -tiered preference domain

R(T );

(ii) DAk is more manipulable in number than DAl on the T -tiered preference domain

R(T ).
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Proof. First part: By Theorem 8, BOSl is at least as manipulable in number as DAl on

the T -tiered preference domain R(T ). The following example illustrates that there exists

R ∈ R(T ) such that

|I(DA2, BOS2, R)| < |I(BOS2, DA2, R)|.

Thus, we show that BOS2 is more manipulable in number than DA2 on the T -tiered pref-

erence domain R(T ).

Example 8. Let I = {i1, i2, i3, i4, i5}, S = {s1, s2, s3, s4}, T = {s1, s2, s3}, and q1 = q2 =

q3 = q4 = q5 = 1. Each school s has a common prioirty, i1 ≻s i2 ≻s i3 ≻s i4 ≻ i5. Let R

be as given below.

Ri1 Ri2 Ri3 Ri4 Ri5

s1 s1 s1 s2 s1
... s2 s2 s3 s2

s3 s3
...

...

Consider DA2. The matching produced by DA2 at R is given by

DA2(R) =

 s1 s2 s3 s4

i1 i2 i4 ∅

 .

i3 and i5 have the incentive to manipulate to report s4 as the first choice. Consider BOS2.

The matching produced by BOS2 at R is given by

BOS2(R) =

 s1 s2 s3 s4

i1 i4 ∅ ∅

 .
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i2, i3 and i5 have the incentive to manipulate to report s4 as the first choice. Thus, we have

|I(DA2, BOS2, R)| < |I(BOS2, DA2, R)|.

We can generalize this example: for all k with 2 < k ≤ |T |,BOSk is more manipulable

in number than DAk on R(T ). Pick any k with 2 < k ≤ |T |. Consider additional k − 1

schools and k − 1 students, {s∗1, ..., s∗k−1} and {i∗1, ..., i∗k−1}. Let T = {s∗1, ..., s∗k−1} and

ql = 1 for all l ∈ {1, ..., k − 1}. We also consider that

• s∗Pjs for all j ∈ {i1, ..., i5}, s∗ ∈ {s∗1, ..., s∗k−1}, and s ∈ {s1, s2, s3, s4};

• i∗l ranks s∗l first for all l ∈ {1, ..., k − 1};

• Each school s has a common prioirty, i∗1 ≻ i∗2 ≻ ... ≻ i∗k−1 ≻ i1 ≻ i2 ≻ i3 ≻ i4 ≻ i5.

Notice that i∗l has no incentive to manipulate since i∗l is assigned her first choice s∗l under

both BOSk and DAk. Thus, as in the example above, we have

|I(DAk, BOSk, R)| < |I(BOSk, DAk, R)|.

Second part: By Theorem 8, DAk−1 is at least as manipulable in number as DAk on

the T -tiered preference domain R(T ). The following example illustrates that there exists

R ∈ R(T ) such that

|I(DA2, DA1, R)| < |I(DA1, DA2, R)|.

Thus, we show that DA1 is more manipulable in number than DA2 on the T -tiered prefer-

ence domain R(T ).

Example 9. Let I = {i1, i2, i3, i4}, S = {s1, s2, s3}, T = {s1, s2}, and q1 = q2 = q3 = 1.

Each school s has a common prioirty, i1 ≻s i2 ≻s i3 ≻s i4. Let R be as given below.
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Ri1 Ri2 Ri3 Ri4

s1 s1 s1 s1
... s2 s2 s2

s3 s3 s3

Consider DA1. The matching produced by DA1 at R is given by

DA1(R) =

 s1 s2 s3

i1 ∅ ∅

 .

i2, i3 and i4 have the incentive to manipulate to report s3 as the first choice. ConsiderDA2.

The matching produced by DA2 at R is given by

DA2(R) =

 s1 s2 s3

i1 i2 ∅

 .

i3 and i4 has the incentive to manipulate to report s3 as the first choice. Thus, we have

|I(DA2, DA1, R)| < |I(DA2, DA1, R)|.

We can generalize this example: for all kwith 2 < k ≤ |T |,DAk−1 is more manipulable

in number than DAk on R(T ). Pick any k with 2 < k ≤ |T |. Consider additional k − 1

schools and k − 1 students, {s∗1, ..., s∗k−1} and {i∗1, ..., i∗k−1}. Let T = {s∗1, ..., s∗k−1} and

ql = 1 for all l ∈ {1, ..., k − 1}. We also consider that

• s∗Pjs for all j ∈ {i1, ..., i5}, s∗ ∈ {s∗1, ..., s∗k−1}, and s ∈ {s1, s2, s3};

• i∗l ranks s∗l first for all l ∈ {1, ..., k − 1}, and

• Each school s has a common prioirty, i∗1 ≻ i∗2 ≻ ... ≻ i∗k−1 ≻ i1 ≻ i2 ≻ i3 ≻ i4 ≻ i5.

Notice that i∗l has no incentive to manipulate since i∗l is assigned her first choice s∗l under
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both DAk−1 and DAk. Thus, as in the example above, we have

|I(DAk, DAk−1, R)| < |I(DAk−1, DAk, R)|.

The results in this section qualitatively support school admissions reforms in school

districts: the admission reforms successfully discourage manipulation. These implications

lead to a quantitative question: How much these reforms reduce manipulability? We will

answer this question by using simulation the following section.

2.5.3 Simulation

In this section, we use simulations for quantitative analysis. The first simulation is on our

manipulability measure and provides further quantitative analysis of our theoretical results.

The second simulation is on the measure by Pathak and Sönmez [42]. While our qualitative

results from theory are parallel to their measure, the quantitative results from simulations

confirm a significant difference.

There are at least two advantages for qualitative analysis. First, quantitative analysis

enables us to measure the magnitude of manipulability. We want to know how much the

current school choice mechanisms are manipulable since they are still manipulable. The

second advantage is a clear understanding of the differences between the two measures.

While the two measures differ qualitatively in the restricted domain, they lead to the same

implications in the full domain. If there is a quantitative difference in the general domain,

we might understand each measure better. However, it is hard to get a quantitative result by

theoretical analysis. Thus, we run simulations to get observations for quantitative analysis.

For quantitative analysis, we define a magnitude of manipulability of mechanism φ in

terms of our measure,
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M(φ) ≡
∑

R∈R |{i ∈ I : φ is manipulable by i at R}|
|R| × |I|

.

Similarly, we define a magnitude of manipulability of mechanism φ in terms of the measure

by Pathak and Sönmez [42],

MPS(φ) =
|{R ∈ R : R is vulnerable under mechanism φ}|

|R|
.

To run simulation, we impose several assumptions throughout this section.3 First, we

assume that every student accepts all schools, and every school accepts all students. Second,

the number of students is equal to the number of total capacities of schools i.e., |I| =∑
s∈S qs. Third, we assume homogeneous capacities i.e., qs = qs’ for all s, s’ ∈ S. The

setting of our simulation is as follows. The number of students is 50. We run three types of

simulations by setting that a pair of the number of schools and capacities (|S|, qs) to (25, 2),

(10, 5), and (5, 10). Each school s draws priority ≻s from a uniform distribution over Fs.

This priority profile ≻ is fixed. Then, for computational burden, we run the mechanisms

100 times where each agent i draws a preference relation Ri from a uniform distribution

over Ri.

The first set of simulations suggests two implications ofDAk on our measure: Figure 1,

2, and 3 show that (i)M(DAk) is quickly decreasing, and (ii) large k is not necessary if we

can allow a small level of M(DAk). These implications possibly support the recent school

admissions reforms quantitatively, as well as qualitatively. While the current matching

mechanisms are still manipulable, their manipulability would be sufficiently low.

The second set of simulations suggests two implications of the measure by Pathak and

Sönmez [42]. Figure 4, 5, and 6 provides a contrast with our measure: (i) MPS(DA
k) is

not quickly decreasing, and (ii) large k is necessary even if we can allow a small level of
3Our theoretical results do not rely on these assumptions.
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MPS(DA
k). The definition of vulnerability would explain the difference between the two

measures. It is rare that no one has an incentive to manipulate, especially for small k.
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Figure 2.1: M(DAk) with (|S|, qs) = (25, 2).

Figure 2.2: M(DAk) with (|S|, qs) = (10, 5).
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Figure 2.3: M(DAk) with (|S|, qs) = (5, 10).

Figure 2.4: MPS(DA
k) with (|S|, qs) = (25, 2).
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Figure 2.5: MPS(DA
k) with (|S|, qs) = (10, 5).

Figure 2.6: MPS(DA
k) with (|S|, qs) = (5, 10).
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2.6 Appendix: Omitted proofs

Proof of the first part in Theorem 2

Proof of the first part in Theorem 2

Proof. Fix any preference profile R. Pick any student i such that i can manipulate DAk at

R. The proof consists of two steps.

Step 1: There exists student j(i), possibly j(i) = i, such that j(i) can manipulate BOSk at

R.

By the definition of DAk, if DAk
i (R) ̸= ∅, then i cannot manipulate DAk(R). Thus,

we have DAk
i (R) = ∅. There are two cases to consider.

Case 1: BOSk
i (R) = ∅. We show that i can manipulate BOSk(R). Suppose not. Since i

can manipulateDAk atR, there exists R̃i and s ∈ S such that s = DAk
i (R̃i, R−i)PiDA

k
i (R).

By Lemma 1, there exists student j such that BOSk
j (R) = s, j ≻s i, and r(s,Rj) =

1. Since s = DAk
i (R̃i, R−i), we have DAk

j (R̃i, R−i) ̸= s. However, this violates that

DAk(R̃i, R−i) is stable at (R̃k
i , R

k
−i).

Case 2: BOSk
i (R) ̸= ∅.

Construct a sequence of students (i0, ..., im) such that

(i) i0 = i;

(ii) For all l ∈ {1, ...,m − 1}, we have BOSk
il−1

(R) = DAk
il
(R) ̸= ∅ and BOSk

il
(R) =

DAk
il+1

(R);

(iii) Form,DAk
im(R) = BOSk

im−1
(R) ̸= ∅ and eitherBOSk

im(R) = ∅ orBOSk
im(R) = s

where DAk
s(R) = ∅.

For student i, we have BOSk
i (R)PjDA

k
i (P ) = ∅. Also, we have DAk

im(R)PimBOS
k
im(R)

since DAk
im(R) ̸= ∅ and DAk

s(R) = ∅. Thus, there exists m′ ≤ m such that (i) for all

l < m′, we haveBOSk
il
(R)PilDA

k
il
(R) and (ii)DAk

im′ (R)Pim′BOS
k
im′ (R). Notice that im′
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can manipulate BOSk(R). This is because DAk
im′ (R) = BOSk

im′−1
(R)Pim′−1

DAk
im′−1

(R)

and stability of DAk at Rk imply im′ ≻BOSk
im′−1

(R) im′−1.

Step 2: If students i1 and i2 with i1 ̸= i2 can manipulate DAk at R, then j(i1) ̸= j(i2).

If either i1 = j(i1) or i2 = j(i2), then j(i1) ̸= j(i2). Thus, suppose i1 ̸= j(i1) and

i2 ̸= j(i2). By the argument in Case 2, there exist sequences of students (i10, ..., i
1
m) and

(i20, ..., i
2
p). We show that {i10, ..., i1m} ∩ {i20, ..., i2p} = ∅. The proof proceeds by induction

on l ∈ {0, 1, ...,m}.

Base step: Since DAk
i10
(R) = ∅ and DAk

j (R) ̸= ∅ for all j ∈ {i21, ..., i2p}, we have i10 ̸= j.

By the assumption in Step 2, we have i10 ̸= i20. Thus, i10 ̸∈ {i20, ..., i2p}.

Inductive step: Suppose that i1l ∈ {i20, ..., i2p}. We show that i1l+1{i20, ..., i2p}. Suppose not.

By the construction of the sequence of (i20, ..., i2p), there exists j ∈ {i20, ..., i2p} such that

BOSk
j (R) = DAk

i1l+1
(R). By the construction of the sequence of (i10, ..., i1m), BOSk

i1l
(R) =

DAk
i1l+1

(R). However, we have i1l ̸= j by the inductive hypothesis, a contradiction for

one-to-one matching.
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