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Abstract 

 

Coating porous materials is a potential pathway to improve Catalytic performance of 

heterogeneous catalysts. The unique properties of Metal organic frameworks (MOFs) like 

huge surface area, long range order and high tenability make them promising coating 

materials. However, two traditional MOF encapsulation methods have their own issues. 

Herein, we synthesized Pt/Pd metal nanoparticles @UiO-66-NH2 via a one-pot in situ 

method which has good control of nanoparticles size while avoids the introduction of 

capping agent. The catalytic performance of synthesized Pt@UiO-66-NH2 is tested via 

selective hydrogenation of Crotonaldehyde. And the selectivity of our desired product 

achieves 70.42% which is much higher than merchant Pt catalysts. A step further, we 

used linker exchange to replace the original NH2-BDC linker of which amine group plays 

an important role in the coating process. After linker exchanging, the significant 

decreasing in selectivity of our target product demonstrates that the interaction between 

Pt and amine group does have some positive impacts on their catalytic performance. We 

hope our research could provide some insights of the MOFs and nanoparticles interface 



  

and help rational design of catalysts with high performance. 
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Chapter 1  Introduction 

1.1  Metal Nanoparticles as Catalysts 

Nanomaterials are materials of which at least one dimension of a single unit is in 

nanoscales (usually defined as 1-100 nm). Differing from separated molecules/atoms or 

bulk materials, nanomaterials have unique optical, electronic, or mechanical properties 

due to high surface to volume ratio and high surface energy. Basically, nanoparticles are 

usually synthesized by three kinds of techniques: i) vapor condensation, ii) colloidal 

chemical reaction and iii) solid state processes. In recent 30 years, preparations and 

applications of different nanomaterials have been widely and rapidly developed by 

numerous talented scientists. Nowadays, not only pure nanomaterials but hybrid[1, 2] or 

complicated-structured ones can be controlled or half-controlled synthesized and are 

widely used in industry and our daily life, which are expected to play more and more 

important roles in solving some major issues of human society like energy shortage and 

environmental protection. Due to these unique properties, performing as catalysts is one 

of the greatest applications of nanoparticles.  

 

Catalysts can be divided into two categories, homogeneous and heterogeneous catalysts, 

depending on whether they occupy the same phase as the reaction mixture or not. 

Homogeneous catalysts which stay in the same phase with the reaction mixture are 

usually small organic/inorganic molecules or organometallic complexes. The relatively 

simple structures mean the precise control of synthesis process of homogeneous catalysts 

is technically accessible, which leads to well-defined active sites and higher selectivity 
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for certain reactions. Typically, organometallic complexes, as a widely used series of 

homogeneous catalysts, can be synthesized with rational design to achieve very high 

activity and selectivity for a target reaction. An experienced and skillful chemist can 

optimism the electronic and steric properties of an organometallic complex by simply 

altering the central transition metal and/or coordinated ligands, which can lead to 

predictable changes in activity and/or selectivity. Meanwhile, the efficient and powerful 

characterization methods for homogenous catalysts such as NMR spectroscopy and IR 

spectroscopy further predigest the problem. 

 

Heterogeneous catalysts have better potential for large-scale industry applications 

because they can be separated from reaction mixture and reused by easier ways, like 

filtration, due to the phase difference. Usually, heterogeneous catalysts are solids which 

means higher thermal and chemical stability comparing to homogenous catalysts. 

However, unlike the uniform active sites for homogeneous catalysts, the active sites 

which are usually defects on the catalysts surface are much more complicated and still 

lacking of control during the synthesis process, which leads to poor selectivity. 

Meanwhile, the phase difference in a heterogeneous catalytic reaction makes it much 

more complicated. Reaction can only occur in the interface of homogeneous catalysts and 

reaction mixture (gas or solution), so catalysts are loaded onto porous support materials 

and/or synthesized in nano scale to improve the surface to volume ratio to achieve higher 

activity. But the support materials will also influence the chemical and steric 

environments of the active sites, making the precise control of selectivity even harder. 

And for nanoparticle catalysts, a huge problem comes from the capping agents which are 
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widely used to tune the crystallization process to achieve desired geometry and stabilize 

the sub stable particles. These capping agents (usually surfactants) bind tightly on the 

nanoparticle surface and block active sites, causing the magnificent loss of catalytic 

activity and selectivity control. 

 

Based on the advantages and shortcomings of homogenous and heterogeneous catalysts,  

Great efforts are made by scientists to set up new strategies to take advantages of both 

kinds of catalysts, like fixing classical homogenous catalysts on supporting materials or 

making “single-atom” catalysts. [3-7]. Among those strategies, coating nanoparticle 

heterogeneous catalysts with porous materials is a promising solution to the poor control 

of the electronic and steric environments around active sites on heterogeneous catalysts. 

By modifying the chemical components or topological of the porous material, at the 

interface, the chemical environment around active sites can also be changed. Also, by 

replacing the absorbed capping agents on the nanoparticle surface, porous materials can 

act as stabilizer and improve its activity. In order to achieve this, we need to have a better 

understanding of what really happens in the interface of nanoparticles and coating 

materials as the electronic and spatial environments near the active sites is the key to get 

high activity and selectivity. Thus, metal organic frameworks (MOFs), as crystalline 

porous materials with fully tunable topological and chemical pore environments, were 

chosen to form metal nanoparticles@porous materials core-shell structure. It has been 

repeatedly reported that taking use of the tunability of MOFs to optimize the catalytic 

performance of metal nanoparticles@MOFs core-shell structure.[8, 9] 
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1.2 Metal Organic Frameworks 

Metal Organic Frameworks (MOFs) are a kind of organic-inorganic hybrid crystalline 

materials made up of metal-containing secondary building units (SBUs, usually metal 

notes or clusters) and organic linkers. These two parts are connected by coordination 

bonds and form a long-rang ordered crystalline structure with accessible channels. 

(Figure 1.1) In the recent 20 years, MOFs have drawn lots of attentions due to their high 

surface area, uniform pores and tunable chemical compositions [10]which demonstrate 

the tremendous potential applications of MOFs for gas separation and storage, catalysis, 

drug delivery and many other fields.[11] 

 

Figure 1.1 Scheme of typical preparation of MOFs. Combination of metal ions or 

clusters with organic linkers to form a cross-linked network.[12] 

SBUs and organic linkers in MOFs have many possible combinations, which leads to 

more than 20,000 found MOFs and the number is keeping increasing every day. (Figure 

1.2) The incredible tunability of building blocks gives MOFs great tunability. The 

coordination interaction between SBUs and organic linkers determines the topologies of 

the formed MOFs which alters with the nature of two parts and synthesis conditions. By 
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optimizing the chain length of the organic linker, different pore sizes can be easily 

achieved. Also, the functional groups on the side chain of organic linkers provides 

countless possibilities for MOFs. Also, unlike some zeolites or polymers which are not 

convenient to modify after solidify, MOFs can be also postsynthetic modified (PSM) by 

various pathways, like ligand incorporation, atomic layer deposition and linker exchange, 

which further expand their possible application range.[13, 14] 

 

Figure 1.2 Some typical MOFs with different SBUs and organic linkers.[15] 

 

However, the organic-inorganic hybrid nature of MOFs also results in some drawbacks. 

Comparing to pure inorganic materials like zeolite, MOFs usually can’t resist high 

temperature. And many MOFs will undergo hydrolysis process in strong/weak 

acidic/basic solutions due to the feature of coordination bonds. Lacking of thermal and 

chemical stability restricts the actual application of MOFs. Luckily, robust MOFs with 

hyper thermal and chemical stability were developed and widely studied. One of the most 
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robust one is the Zirconium-based MOF, UiO-66. UiO-66 is made up of zirconium-oxo 

cluster nodes (Zr6O4(OH)4 octahedra cluster) and terephthalic acid (also known as 1,4-

Benzenedioic acid, BDC) linkers. Each SBU is connected to 12 BDC linkers, forming 3D 

network with octahedral and tetrahedral cages (Figure 1.3). As expected, UiO-66 shows 

outstanding chemical and thermal stability because of the strong zirconium-oxygen bond. 

The MOF can maintain the structure under high temperature up to 500 oC and won’t 

break down till 800 oC. UiO-66 resists all regular strong acids and bases and can only be 

digested by HF. Meanwhile, UiO-66 has an aperture size of 0.5nm which is close to the 

size of small organic compounds, making it a promising catalyst support. The benzene 

ring of the BDC linker can be functionalized with ease, providing further tunability. With 

these superior properties, UiO series MOFs and their derivatives shows potential for 

numerous applications, such as catalysis, gas absorption, waste water treatment. [16-18] 

 

 

Figure 1.3 Structure of UiO-66[19] 
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1.3 Metal NPs@Metal Organic Frameworks Core-Shell Structure  

1.3.1  Properties Resulted from MOFs as Coating Shell  

Basically, NPs@MOFs core-shell structures can be divided into three types: one-to-one 

NP@MOF, multiple NPs@MOF and york-shell NP@hollow MOF (Figure 1.4). 

Different encapsulation forms have different properties and performance. The Tsung 

group have done some works about synthesis and properties of One-to-one NP@MOFs 

core-shell structures which have very uniform structures and good aliment between 

nanoparticles and MOFs, making them good samples for diffusion and mechanism 

studies. [9, 20]Metal nanoparticles’ size in multiple NPs@MOF is usually restricted by 

pore size of the MOF which may lead to higher activity (because of high surface to 

volume ratio) but also means less control of the nanoparticles’ size and distribution. [21-

27]There are more room and less restriction for york-shell NP@MOF structure which is 

good for encapsulation of homogeneous catalysts. In this thesis, we mainly synthesized 

and studied one type of multiple NPs @MOF. 

  

Figure 1.4 (a) One-to-one NP@MOF. (b) multiple NPs@MOF. (c) york-shell 

NP@hollow MOF. Reprinted with permission.[9] Copyright © 2014, American 

Chemical Society. 
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 Nowadays, it is highly desired to develop a systematic method to provide well-controlled 

coordination environment around active sites for heterogeneous catalysts. Applying 

porous materials on the surface of metal nanoparticles is a promising solution for this. 

Basically, those porous materials shells around metal NPs can provide physical protection 

which prevents aggregation of those metal NPs to increase their stability. Also, some 

porous materials like MOFs have uniform porous structures and their pore size varies 

with different types of MOFs, which can be used to introduce size selectivity for 

heterogeneous catalysts.[25, 28] Comparing with other porous materials, firstly, MOFs 

are crystalline materials which means MOFs coating layers will provide more uniform 

influence to metal NPs cores which is more convenient for deeper digging of mechanism 

and further modification. [29]Secondly, MOFs have a huge family which has more than 

20,000 members so that they can provide tons of different chemical/electronic and 

topological environments around metal NPs. Thirdly, since MOFs are made up of metal 

nodes and organic linkers via coordination interaction, they can be further modified even 

after synthesis. 

1.3.2 Approaches to Synthesize Metal NPs@MOFs  

Generally speaking, there are two widely used traditional strategies for encapsulating 

metal nanoparticles into metal organic frameworks. One is post impregnation approach 

(ship in bottle) and the one is de novo approach (bottle around ship).[30, 31] 
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Figure 1.5 Scheme of post impregnation approach (ship in bottle), small blue balls, huge 

blue balls and grey frameworks represent for nanoparticles precursors, nanoparticles and 

MOFs respectively 

 

For the post impregnation (ship in bottle) method, metal organic frameworks will be 

synthesized firstly, then precursors of metal nanoparticles will be mixed together with 

pre-synthesized metal organic frameworks.[32-35] And those precursors will infiltrate 

into the pores and cavities of those MOFs via diffusion or assisted diffusion. Sometimes, 

some functional groups will be introduced to the backbones of MOFs to increase their 

interaction with the nanoparticle precursors.  Then under certain conditions like reduction 

environment or calcination, those precursors will be transformed to metal nanoparticles. 

During the synthesis process, except for the size restriction due to the volume of the 

cages or pores, it is very likely to lose control of shape, size and amount of formed metal 

nanoparticles. Also, some metal NPs will form on the external surface of MOFs instead 

of inside. (Figure 1.5) 

 

For the de novo approach (bottle around ship), metal nanoparticles will be synthesized at 

very beginning, and then be added into the synthetic environment of metal organic 
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frameworks. [20, 21, 36, 37]Then MOFs will grow around those metal nanoparticles and 

finally form encapsulation structures. (Figure 1.6) For this approach, we can get well-

defined metal nanoparticles with decent shape and size control since nanoparticles are 

pre-synthesized. However, during the synthetic process of metal nanoparticles, capping 

agents such as PVP (polyvinyl pyrrolidone) or CTAB (Cetyltrimethylammonium 

bromide) are used to tune the growth of metal nanoparticles to achieve geometric control 

of them. And those capping agents are usually firmly bound to the surface of those 

nanoparticles and help to stabilize those active surfaces with high surface energy, which 

are hard to remove in washing and encapsulation process. As a result, those capping 

agents which usually bind to active sites of encapsulated nanoparticles will influence 

catalytic performance of those heterogeneous catalysts badly.  

 

Figure 1.6 Scheme of de novo approach (bottle around ship), blue cubes, yellow lines 

and grey frameworks represent for nanoparticles, capping agents and MOFs respectively 

 

Due to the major issues of these two traditional encapsulation methods, a new strategy 

called one pot approach has been developed recently.[38]Considering the interaction of 

MOF linkers with metal nanoparticles precursors and surfaces, it is possible for organic 
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linkers to replace the conventional capping agents. With this interaction, not only use of 

annoying capping agents can be avoided but the growth of metal nanoparticles can be 

better controlled. For one pot approach, nanoparticles precursors and metal organic 

framework precursors will be mixed together. Under certain reaction conditions, 

reduction of metal precursors and growth of MOFs on the surface of generated metal NPs 

will happen subsequently. (Figure 1.7) In order to achieve expected results, two critical 

problems of this method need to be solved: Well control of the interaction between MOFs 

linker and metal nanoparticles to ensure MOFs linkers play the role of capping agent to 

approve well- control of formed metal NPs, controlled formation of MOFs around 

generated metal NPs instead of homogeneous nucleation in solution. Because of the 

complexity of these reaction systems, only a part of metal NPs@MOFs can be 

synthesized by this method. However, for those limited types of NPs@MOFs synthesized 

by this method, we can hope to get well-defined metal NPs with controllable size, shape 

morphology and clean surface. In this thesis, we will study catalytic performance of a 

type of NPs@MOFs synthesized via one-pot approach.  
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Figure 1.7 Scheme of one pot approach, small blue balls, huge blue balls, short grey lines 

and grey frameworks represent for nanoparticles precursors, nanoparticles, MOF 

precursors and MOFs respectively 
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Chapter 2  Synthesis and Characterization of Metal NPs@UiO-66-

NH2 

2.1 Introduction 

Thanks to Dr. Allison Young for her great contribution for this part of work. 

As discussed in Chapter 1, encapsulating metal nanoparticles with MOFs has been 

considered as a promising approach to adjust their catalytic performance. Due to the 

drawbacks for two conventional encapsulation method, one-pot encapsulation strategy 

was developed to get nanoparticles inside with geometry control and clean surface. 

 

Inspired by Yingwei Li’ previous work[1], we successfully encapsulated Pt and Pd 

nanoparticles into UiO-66-NH2 Via an One-pot method. As discussed in Chapter 1, UiO-

66 was chosen as host material due to its high thermal and chemical stability.[2, 3] The 

introduction of amine group in the original linker is a key factor of the formation of the 

core-shell structure, during the synthesis process, the interaction between lone pair 

electrons of N in amine group and metal precursors will ensure the encapsulation. [4, 5]Pt 

and Pd are selected here due to their wide applications as catalysts. [6-15]In a typical 

synthesis procedure, Pd/Pt precursor, Zr precursor, BDC-NH2 and reaction modulator 

acetic acid are dissolved in DMF which acts as both solvent and reducing agent. Then the 

reaction mixture was heated to a certain temperature for 24 hours for the core-shell 

structure to form. (Figure 2.1) 
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Figure 2.1 Scheme of one-pot synthesis of Pt/Pd @UiO-66-NH2 

2.2 Characterization of synthesized materials 

 

Figure 2.2 left side: TEM image of (a) Pt@UiO-66-NH2 (b) Pt/UiO-66 (c) Pd@UiO-66-

NH2 (d) Pd/UiO-66 right side: XRD of Pt@UiO-66-NH2, Pd@UiO-66-NH2 and UiO-66-

NH2 

As shown in the TEM images (Figure 2.2 (a)(c)), UiO-66-NH2 forms very uniform 

octahedral particles with around 200-300nm diameter with many tiny metal nanoparticles 

inside. According to PXRD spectrum, synthesized Pt/Pd@UiO-66-NH2 have the same 
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peaks as the intrinsic UiO-66-NH2 which demonstrates that the coating MOF here still 

maintains the crystal structure.  

2.3 Tuning synthetic conditions 

The reaction time study (Figure 2.3) shows that formation process of the core-shell 

structure. TEM images of the synthetic solution at different reaction time were taken. At 

first, many metal nanoparticles generate in solution in 15 minutes while there is few 

MOF structure formed. When the reaction time goes to 45 minutes, MOFs start to form 

small spheres around metal NPs. After another 30 minutes, those spheres merge with 

each other and grow larger. The octahedral core-shell structures can already be 

recognized after reacting for 6.5 hours but the whole size is still smaller than the final 

product. The reaction time study demonstrates that the nucleation of metal nanoparticles 

and growth of MOFs outside the generated nanoparticles happen subsequently.  
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Figure 2.3 TEM images of Pd@UiO-66-NH2 at different encapsulation time (a) 0.25h (b) 

0.75h (c) 1.25h(d) 6.5h 

Figure 2.4 TEM images (upper) and particle size distribution (down, particle size 

collected manually) for Pd@UiO-66-NH2 synthesized at different temperatures (a) (d)150 

oC (b) (e)120 oC (c) (f) 90 oC 

By varying the reaction temperature, we could tune the size of encapsulated metal 

nanoparticles (Figure 2.4). When the reaction temperature raises from 90 oC to 150 oC, 

the average size of Pd nanoparticles decreases from 9.9nm to 3.6nm. This trends can be 

explained by crystallization theory[16, 17], When the temperature goes higher, which 

means the increasing of supersaturation of metal in solution, the nucleation rate of 

nanoparticles will increase faster than growth rate of formed metal nanoparticle nucleus, 

which means more nanoparticle nucleus will form without further growth. Also, the faster 

formation of MOF shell outside nanoparticles will further restricts their growth. 

Additionally, by modifying the initial ratio of Pt/Pd precursors, we can get encapsulated 

Pt/Pd alloys with different elemental ratios. (Table 1) 
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As mentioned in chapter 1, not all nanoparticles@MOFs structure can be synthesized by 

one-pot method. Herein, we assume the interaction between aminol group on the NH2-

BDC linker and metal precursors plays an important role in the coating process. In order 

to verify our hypothesis, with BDC linker which has no amino group replacing original 

NH2-BDC linker, the encapsulation reaction was repeated (Figure 2.2 left (b)(d)). Not 

surprisingly, many metal nanoparticles without uniform size distribution formed outside 

the MOF particles, which provides a strong support to our hypothesis.  

 

Table 1 Pd/Pt ration from different samples with different Pd/Pt precursor ratio (from 

ICP-OES) 

2.4 Methods 

General Considerations.  Unless otherwise stated, all the reactions were carried out in the 

air without taking any precaution to protect reactions from oxygen or moisture. 

zirconium(IV) chloride (ZrCl4, Aldrich, 99.5%), 2-aminoterephthalic acid (Aldrich, 

99%),  terephthalic acid (BDC, Sigma-Aldrich, 98%), acetic acid (Sigma-Aldrich, 

99.7%), N,N-Dimethylformamide (DMF, Sigma-Aldrich, 99.8%), palladium(II) 2,4-
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pentanedione (Pd(acac)2, Alfa Aesar, Pd 34.7%), platinum(II) acetylacetonate (Pt(acac)2, 

STREM CHEMICALS, 98%), Chloroplatinic acid hydrate (H2PtCl6, Sigma-Aldrich, 

99.995%), Palladium(II) chloride (PdCl2, Aldrich, 99%), ammonium 

tetrachloroplatinate(II) ((NH4)2PtCl4, Sigma-Aldrich, 99%) were purchased from the 

indicated sources and used without further purification.  

 

Scanning electron microscopy (SEM) was performed on a JOEL JSM6340F scanning 

electron microscope. Samples for SEM were prepared by diluting solid samples with 500 

μL methanol and placing 2.0 μL droplet onto silica wafer and drying under a heat lamp. 

Transmission electron microscopy (TEM) was performed on a JEOL JEM2010F electron 

microscope operated at 200kV. Samples for TEM were prepared by diluting solid 

samples with 500 μL methanol and placing 2.0 μL droplets onto carbon-coated copper 

grids and drying under a heat lamp. The powder x-ray diffraction patterns (PXRD) were 

collected on a Bruker AXS diffractometer with Cu Kα radiation (λ= 1.5418 Å). 

Inductively coupled plasma optical emission (ICP-OES) spectrometry was recorded in an 

Agilent 5100 instrument that was calibrated using known concentrations of standard 

solutions to quantify Pt and Pd. Pt (1000 ppm), Pd (1000 ppm) single elemental standards 

were purchased from Inorganic Ventures. 

 

Synthesis of UiO-66 and UiO-66-NH2[2, 3]: In a typical synthesis reaction for UiO-66, 

18.6 mg (0.08 mmol) ZrCl4 and 13.3 mg (0.08 mmol) terephthalic acid were dissolved in 

8.622 mL DMF, then 1.378 mL acetic acid was added into the solution to make the final 

volume to 10 mL. The solution was transferred into a 20mL scintillation vial and heated 
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for 24 hours in a 120 oC oil bath. After cooling down, the formed UiO-66 was collected 

by centrifugation. To form the UiO-66-NH2, the same reaction parameters were followed, 

just with the use of 14.5 mg (0.08 mmol) 2-aminoterephthalic acid to obtain the 

functionalized MOF.  The isolated samples were washed three times in methanol and 

dried under vacuum overnight. 

 

Synthesis of Pd@UiO-66-NH2 and Pd/UiO-66 composite: A typical synthesis reaction 

for Pd@UiO-66-NH2 composite follows a similar procedure as the synthesis of UiO-66-

NH2; 8 x 10-3 mmol Pd(acac)2 was dissolved in the DMF prior to the heating step. The 

reaction was then run for 24 hours at 120 °C and collected by centrifugation. To form the 

Pd/UiO-66 composite, the same reaction parameters were followed, just with the use of 

terephthalic acid instead of 2-aminoterephthalic acid.  The isolated samples were washed 

three times in methanol and dried in a vacuum oven at 150 °C overnight. 

 

Synthesis of Pt@UiO-66-NH2 and Pt/UiO-66 composite: 18.6 mg (0.08 mmol) ZrCl4, 

14.5 mg (0.08 mmol) 2-aminoterephthalic acid and 8 x 10-3 mmol H2PtCl6 were dissolved 

in 8.622 mL DMF, then 1.378 mL acetic acid was added into the solution to make the 

final volume to 10 mL. The solution was transferred into a 20mL scintillation vial and 

heated for 24 hours in a 120 oC oil bath. After cooling down, the formed Pt@UiO-66-

NH2 was collected by centrifugation. To form the Pt/UiO-66 composite, the same 

reaction parameters were followed, just with use 13.3 mg (0.08 mmol) terephthalic acid. 

The isolated samples were washed three times in methanol and dried under vacuum 

overnight. 
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Digestion of Pt/Pd@UiO-66-NH2 for ICP-OES analysis. Solid MOF material (5.00 

mg) was weight out into a 1.5 mL Teflon vial. DMSO (300 μL) and 1 drop of 15 wt.% 

aqueous hydrofluoric acid solution was added in sequence. The mixture was sonicated for 

1 minute and left to digest for 1 hour. The digested samples then heated to approximately 

150 °C overnight in a sand bath open to the air to remove solvent. The resulting solid was 

dissolved and transferred to a 20 mL glass scintillation vial using a mixture (10% v/v) of 

hydrochloric acid in deionized water (300 μL). Each sample was diluted with additional 

deionized water (3.7 mL) and analyzed by ICP-OES. 
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Chapter 3  Hydrogenation of Crotonaldehyde 

3.1 Introduction 

As mentioned in Chapter 2, Pt/Pd@UiO-66-NH2 have been successfully synthesized via 

one pot method and characterized. With the clean surface and well-controlled size and 

wide catalytic application spectrum of Pt/Pd nanoparticles, our materials are expected to 

have above-average level of catalytic performance, without mentioning the uniform pores 

in shell MOFs. Herein, selective hydrogenation of α, β-unsaturated aldehyde was selected 

to demonstrate the catalytic performance of our catalysts. 

3.2 Selective Hydrogenation of α, β-Unsaturated Aldehyde 

 

 

Figure 3.1 reaction pathways of α, β-unsaturated aldehyde hydrogenation 

It is an important step in industry to selective catalytically hydrogenate organic substrates 

with more than one unsaturated functional groups, which also draws a lot of attentions in 

fundamental research.[1-11] For example, unsaturated alcohols from hydrogenation of 
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the carbonyl groups of α, β-unsaturated aldehydes are valuable products in industry 

which can be used to make perfumes, flavoring and pharmaceuticals. However, in the 

presence of most traditional group VIII metal catalysts, α, β-unsaturated aldehydes are 

hydrogenated mainly to saturated aldehydes by reduction of the C=C group or fully 

hydrogenated to saturated alcohols. [1, 4]Therefore, it is highly desired to find a catalyst 

which can hydrogenate the carbonyl group effectively while keep the C=C double bond 

intact.  (Figure 3.1, reaction 1 vs. 2).  

 

Furthermore, in order to prevent fully hydrogenation to the saturate alcohol (Figure 3.1, 

reactions 3 and 4) and isomerization of the unsaturated alcohol (Figure 3.1, reaction 5), 

the catalyst must suppress these reaction pathways. Even all the pathways in figure 3.1 

are thermodynamically possible, the C=C double bond in α, β-unsaturated aldehyde is 

still more active and easier to be reduced than the C=O double bond. Thus, selectivity to 

unsaturated alcohol must be achieved by modifying the rate constants of two competitive 

reactions and the adsorption constants of the substrates.  

 

A lot of attempts have been made to develop a suitable catalytic system. And a huge part 

of previous works are based on transition metals like Pt/Pd. [3, 8, 12-14]According to 

previous works and thermodynamic and kinetic analysis, comparing to Pd-based 

catalysts, carbonyl group will be more active on Pt-based ones which means the 

selectivity towards unsaturated alcohol  will be higher.[2, 4, 5] While C=C double bond 

is so active for Pd-based catalysts that it is not hard to achieve 99% selectivity for sutured 
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aldehyde.[15, 16] It is worth nothing that our results match with those experimental and 

theoretical results, which will be discussed later in this chapter. 

3.3 Spatial Confinement of MOF 

 

Figure 3.2 spatial confinement of MOFs for reactant crotonaldehyde attaching to NP 

surface 

For our catalysts, we choose crotonaldehyde which has a suitable size to test the catalytic 

performance of our Pt/Pd@UiO-66-NH2 sample. We believe that the uniform channels in 

MOF crystal can provide a spatial confinement for the chosen reaction. The aperture size 

of the octahedron cages in UiO-66 is 5Å, which is a bit smaller than the axial length of 

Crotonaldehyde but larger than the width of the substrate molecule, which means the 

orientation that the substrate molecules get close to the active sites on nanoparticle 

surface is limited. Generally, two ends of the substrate molecules are more likely to get 

close to the active sites, which means the carbonyl group is more likely to be activated 
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and reduced (Down side of Figure 3.2) while the steric hinder from methyl group in C=C 

double bond suppress the 3,4-reduction. Additionally, the chain length of crotonaldehyde 

is larger than the aperture size, which means the 1,4-absorption and further 1,4-reduction 

are less likely to occur. (Upper side of Figure 3.2) In conclusion, due to the spatial 

confinement of MOF, 2-Butenol, the product come from 1,2-reduction, is expected to be 

the main product, which is exactly what we want.[14, 17] 

3.4 Determination of Reaction Condition 

For Crotonaldehyde, the substrate we choose to test the catalytic performance of our 

Pt@UiO-66-NH2 sample, the three possible reduction products of it are Butyraldehyde, 

Butanol and 2-Butenol (Upper side of Figure 3.3). Among these products, 2-Butenol is 

our target product. The liquid phase hydrogenation reaction is performed in a 500 mL 

stainless steel Parr reactor pressurized with pure H2 gas. A thermocouple inside the 

reactor chamber and a hot plate underneath are utilized to ensure thermostatic reactions. 

Substrate, catalyst, isopropanol solvent and a magnetic stir bar are mixed in ampules 

which are put into the reactor chamber to run parallel reactions. (Down side of Figure 

3.3) 

 

Before performing further experiments, we do the reaction condition scanning and choose 

3Mpa H2 pressure, 70 oC reaction temperature and reaction time of 18 hours for all 

control experiments. Under these reaction conditions, our core-shell Pt@UiO-66-NH2 

shows best catalytic performance. Interestingly, our Pd@UiO-66-NH2 shows pretty high 

selectivity towards Butyraldehyde with high activity, which matches with previous 

experimental and theoretical results that Pd catalyst has superior activity and selectivity 
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of reduction of C=C double bond. [2, 15]As Pd-based catalyst is not suitable for selective 

hydrogenation of carbonyl group, all the following experiments are about Pt-based ones. 

Since conversion of the reaction will also influence the selectivity, we tune the amount of 

each catalyst to make sure all the reactions stop at 30% conversion to make results 

comparable. Catalysts amount required to reach 30% selectivity are used to compare their 

relative activity. (Table 2) 

 

Figure 3.3 Upper side: Hydrogenation of Crotonaldehyde and three major products A 

Butyraldehyde B Butanol C 2-Butenol. Down side: reaction apparatus set up. 

3.5 Catalytic Performance 

At the very beginning, 5% Pt/SiO2 as a commercial catalyst is firstly applied in our 

reaction system to test our reactor and serves as a standard. Not surprisingly, Pt/SiO2 

catalyst shows low selectivity to our desired product (32.43% of 2-Butenol) but more 

likely to form Butyraldehyde (53.60%). As we mentioned before, C=C double bond is 
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more active and more likely to be reduced by H2. The product distribution here matches 

with literature reported and theoretical analysis [2-4, 15] Interestingly, commercial 

Pt/SiO2 shows the highest activity except for our one-pot Pt@UiO-66-NH2(Table 2), 

which makes sense especially when thinking about the diffusion barrier comes from PVP 

and/or coating MOFs in other cases. 

 

Figure 3.4 Catalytic performance of (a) commercial Pt/SiO2 (b) outside physical mixture 

of Pt (PVP) with UiO-66-NH2 (c) Impregnation Pt@UiO-66-NH2 synthesized via post 

impregnation approach (d) de novo Pt@UiO-66-NH2 synthesized via de novo approach 

(e) in situ Pt@UiO-66-NH2 synthesized via one-pot approach (f) Pt/SiO2 with PVP 



 31 

 

Table 2 catalysts amount required to achieve 30% conversion under our reaction 

conditions and relative activity comparing to commercial Pt/SiO2 

 

In order to confirm the clean surface of our one-pot in situ synthesized Pt@UiO-66-NH2, 

we did several control experiments. First of all, we need to make sure that surface-

attached PVP do have a negative influence on the catalytic performance of Pt catalysts. 

We use PVP to “poison” the merchant Pt/SiO2 catalyst, and compare its catalytic 

performance to the original one. According to the average of 3 trials, PVP “poisoned” 

Pt/SiO2 shows a 60% decrease in activity while its selectivity also decreases. (Table 2) 
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This control experiment successfully demonstrates that PVP on the surface of Pt catalyst 

will dramatically depress the activity and significantly influence the selectivity. 

 

Based on this result, we designed another control experiment. Our catalyst has a pretty 

fine selectivity towards our target product which is 70.42%, meanwhile, Pt (PVP)@UiO-

66-NH2 synthesized via ship around bottle approach only has about 8.71% selectivity and 

the latter one also has 10 times lower activity comparing to the former one. We believe 

the main difference of those two Pt-MOF core-shell nanoparticles is that Pt (PVP) one is 

synthesized via de novo approach, since Pt nanoparticles are formed in PVP solutions and 

stabilized by it, so it is nearly impossible to remove all the attached PVP during the 

coating of MOF, and those PVP will wrap those Pt nanoparticles and block lots of active 

sites.  

 

MOFs around nanoparticles not only played the role of capping agent during the 

synthesized, their limited pore size also provided a kind of size effect so that the reactant 

can only pass through it when the molecule is parallel with the channel, so that the 

carbonyl end will more likely get close to the active sites on Pt surface and the reaction 

will happen in our preferred way. In order to test this hypothesis, we simply mix Pt 

nanoparticles and UiO-66-NH2 particles and this Pt/UiO-66-NH2 physical mixture shows 

the lowest selectivity in all samples-only 6.9%, while the coated one is 10 times higher. 

We believe this mainly comes from lacking of the size confinement effect of MOFs. 
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Before we also mentioned about ship in a bottle approach. So, we also synthesized a 

sample via impregnation approach. This one has a 38.5% selectivity which is half of our 

sample but much better than outside ones and de novo ones, which is reasonable because 

in this one the size effect should also work. However, we believe that a part of Pt 

nanoparticles may formed on the surface of MOFs instead of inside during the reduction 

process and these Pt nanoparticles contribute to the low selectivity. Also, a better sharp 

and size control of our one-pot method may also take part in this, but we still need more 

evidence to support this hypothesis. 

3.6 Conclusion 

In the chapter, we compare catalytic performance of our one-pot synthesized Pt@UiO-66-

NH2 of selective hydrogenation of α, β-unsaturated aldehyde with commercial Pt catalysts 

and NP/MOF composites synthesized via other approaches. Among all these samples, the 

highest activity and selectivity of our sample demonstrates the advantages of clean surfaces 

and spatial confinement. This experimental result matches with the theoretical calculation 

that only a well-defined direct contact interface of metal nanoparticles and MOF could 

provide this spatial confinement to improve the selectivity towards unsaturated alcohols.   

[2, 9] However, what happens in the nanoparticles and MOF interface and the role of side 

chain functional group of the organic linker- amine group during the reaction are still 

unclear. In order to dig deeper in this question, we need alter the side chain of the BDC-

NH2 linker and test catalytic performance. 
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3.7 Methods 

General Considerations.  Unless otherwise stated, all the reactions were carried out in the 

air without taking any precaution to protect reactions from oxygen or moisture. 

zirconium(IV) chloride (ZrCl4, Aldrich, 99.5%), 2-aminoterephthalic acid (Aldrich, 

99%),  acetic acid (Sigma-Aldrich, 99.7%), N,N-Dimethylformamide (Sigma-Aldrich, 

99.8%), palladium(II) 2,4-pentanedione (Pd(acac)2, Alfa Aesar, Pd 34.7%), Platinum(II) 

acetylacetonate (Pt(acac)2, STREM CHEMICALS, 98%), Chloroplatinic acid hydrate 

(H2PtCl6, Sigma-Aldrich, 99.995%), Palladium(II) Chloride (PdCl2, Aldrich, 99%), 

ammonium tetrachloroplatinate(II) ((NH4)2PtCl4, Sigma-Aldrich, 99%), Sodium 

hydroxide (NaOH, Sigma-Aldrich, 98%), polyvinylpyrrolidone (PVP, Mw~40,000, 

Aldrich), tetramethylammonium bromide (N+(CH3)4Br-, Sigma-Aldrich, 99%), 

crotonaldehyde (predominantly trans, Sigma-Aldrich, >99%), 3-Buten-1-ol(Sigma-

Aldrich, 96%), 1-Butanol(anhydrous, Sigma-Aldrich, 99.8%), Butyraldehyde(anhydrous, 

Sigma-Aldrich, >99%), Isopropyl alcohol( Sigma-Aldrich, 98%), Diethyl Ether 

(Supelco), Dimethyl sulfoxide-d6(DMSO-d6, Sigma-Aldrich, 99.8% D), Hydrofluoric 

acid (HF, Supelco, 48%) were purchased from the indicated sources and used without 

further purification. Hydrogen (Airgas, 99.999%) and Nitrogen (Airgas, 99.999%) were 

used for heterogeneous catalysis. 

 

1H Nuclear magnetic resonance (NMR) spectroscopy was performed on Varian 500 MHz 

and 600 MHz NMR spectrometers. Tetramethylsilane ((CH3)4Si: 0.0 ppm) was used as an 

internal reference for 1H NMR spectra. Samples were prepared by digesting 

approximately 10 mg of UiO-66 or linker-exchanged UiO-66 samples with sonication in 
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580 μL of DMSO-d6 and 20 μL of HF (48% aqueous solution). All of the NMR 

measurements were performed with 90- degree pulse and a recycle delay larger than 5 

times of spin-lattice relaxation time between each transient to ensure complete relaxation 

of the observed spins.   

 

Synthesis of PVP Capped 5 nm Pt Nanocrystals: The synthesis was carried out 

following the previous report with slight modifications.[18] A total of 0.025 mmol of Pt 

ions (NH4)2PtCl4, 0.75 mmol of tetramethylammonium bromide, and 0.5 mmol of 

polyvinylpyrrolidone (in terms of the repeating unit; Mw 40 000) were dissolved into 5 

mL of ethylene glycol in a 25 mL round-bottom flask at room temperature. The mixed 

solution was stirring and heated to 200°C in an oil bath for 20 minutes.   

 

Synthesis of PVP coated 5nm Pt NPs@UiO-66-NH2 composite: Following a similar 

procedure as the synthesis of UiO-66-NH2, another 1 mL of 0.25 mg/mL of the DMF 

solution of PVP capped Pt particles was added to the UiO-66-NH2 synthetic solution to 

make the final volume to 10 mL. The solution was transferred into a 20mL scintillation 

vial and heated for 24 hours in a 120 oC oil bath. The isolated samples were washed three 

times in methanol and dried in a vacuum oven at 150 °C overnight. 

 

Synthesis of “Unprotected” Pt Nanoclusters: Pt nanoparticles were synthesized 

according to literature.[19] In a typical preparation, a glycol solution of NaOH (50 mL, 

0.5 M) was added into a glycol solution of H2PtCl6.6H2O (1.0 g, 1.93 mmol in 50 mL) 

with stirring to obtain a transparent yellow platinum hydroxide or oxide colloidal solution 

which was then heated at 160 °C for 3 h, with a N2 flow passing through the reaction 
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system to take away water and organic byproducts. Then add a dilute aqueous solution of 

HCl to adjust pH of the Pt nanocluster solution to a value lower than 4. The isolated 

samples were washed three times in methanol and dispersed in 10mL of methanol. 

 

Synthesis of “Unprotected” Pt NPs/UiO-66-NH2 composite: 40 mg of as synthesized 

UiO-66-NH2 was add to 16 mL of methanol, then the mixture was sonicated for 10 

minutes. Under stirring, 4 mL of 0.3 mg/mL of the methanol solution of “unprotected” Pt 

particles was added drop by drop. After that, keep stirring for 120 minutes. Then formed 

“Unprotected” Pt NPs/UiO-66-NH2 composite was collected by centrifugation. The 

isolated samples were washed three times in methanol and dried under vacuum overnight. 

 

Preparation of Pt/SiO2 with PVP: 100mg 5% Pt/SiO2 was added to 10ml PVP aqueous 

solution with 100mg PVP. The solution was sonicated and then stirred overnight. Then 

treated Pt/SiO2 were collected by centrifugation. The isolated samples were washed three 

times in ethanol and dried under vacuum overnight. 

 

Selective hydrogenation of crotonaldehyde: In a typical procedure, a certain amount of 

catalyst was dispersed in 2.4 mL isopropanol solution, and 100 μL trans-crotonaldehyde 

(1.19 mmol, Aldrich >99%) were added into the above solution. Subsequently, the 

solution was transferred into a 4.0-mL ampule using a 9” glass pipet. These ampules were 

arranged in a 500 mL stainless steel Parr reactor that contained a thermocouple to ensure 

thermostatic reactions. The reactor was placed on the top of a Ika RCT-basic hot plate. 

The reactor vessel was purged with H2 for 3 times, and the final H2 pressure of the vessel 
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was set at 3.0 MPa. During the catalytic process, the reaction solution was magnetically 

stirred with the speed of 800 rpm at desired temperature for the 18 hours. 

 After that, the catalysts were separated by centrifugation, and the obtained reaction 

solution was analyzed by gas chromatography-mass spectrometry (GC-MS, Shimadzu, 

GC-MS-QP2010 Ultra, column: SH-Rtx-Wax, 60 m × 0.25 mm × 0.5μm) 

 

Reaction system analysis: 

Firstly, we use 1H-NMR to analysis the reaction system to get the percentage of different 

products. However, due to the limitation of NMR, sometimes we will get different results 

when choosing different peak areas to calculate. Also, some of those peaks are collapsed 

and the whole graph become so difficult to read. In order to get more reliable and precise 

results, we start to use GC-MS to analysis and get pretty good results. (Figure 3.5) 
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Figure 3.5 GC-MS spectrum of the mixture of reactant and 3 products, all peaks are 

separated clearly. A Crotonaldehyde, B Butyraldehyde, C Butanol, D 2-Butenol 
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 The reaction solution was analyzed by gas chromatography-mass spectrometry (GC-MS, 

Shimadzu, GC-MS-QP2010 Ultra, column: Rtx-Wax, 60 m × 0.25 mm × 0.5μm). 

Typically, a 100 μL of reaction solution was diluted by 9.90mL of ethyl ether. Then 10 

μL of diluted solution was injected into GC-MS manually and run the process with 

following parameters (Table 2) 

 

The MS detector works in Scan and SIM mode so it gives out two chromatographs, one 

(from Scan mode) counts every fraction with m/z between 40-150, the other (from SIM 

mode) only counts fractions with several m/z (56 70 72). Quantified analysis mainly 

based on the second mode. 
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Table 3 GC-MS parameters 

 

Determination of Calibration Curves: 

Before analyzing the reaction solution, we need to build calibration curve using 

standards. Standards of reactants and products (Crotonaldehyde, Butyraldehyde, Butanol, 

2-Butenol) with certain concentrations were analyzed by GC-MS separately and together. 

From the GC-MS spectrum, we can see that all 4 peaks are separated pretty well with no 

overlapping with each other and their retention times maintain stable which means GC-

MS can be used to analyze reaction solution. 
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All standards are made by series dilution from a storage solution. A series of amounts 

(0.1-100μL) of standards (Crotonaldehyde, Butyraldehyde, Butanol, 2-Butenol) were 

diluted with reaction solvent (isopropanol) to 2.5mL, then 100μL mixed solutions were 

taken out and diluted by 9.90mL of diethyl ether. Then as-prepared diethyl ether 

solutions were analyzed by GC-MS. For each standard (reactant or products), at least 7 

different concentrations were tested to make sure their GC-MS peak areas have good 

liner relation shape with their concentrations. (Figure 3.6)  

 

Figure 3.6 Calibration curves of the reactant and 3 products, all R2 are larger than 0.99. 

a) Crotonaldehyde, b) Butyraldehyde, c) Butanol, d) 2-Buten-1-Ol 
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Chapter 4  Linker exchange  

4.1  Introduction 

In the former chapter, selective hydrogenation of crotonaldehyde was applied to test the 

catalytic performance of our one-pot synthesized Pt @UiO-66-NH2 catalyst and the 

results proof the existence of well-defined direct contact interface of metal and MOF and 

spatial confinement comes from MOF. We believe the NH2 group in NH2-BDC played an 

important role in the formation of Pt nanoparticle and coating of MOFs and the 

experiment replacing NH2-BDC with BDC provided a strong support on it. However, 

when the whole synthesis process is done, will the NH2 group still bond to the Pt atoms 

and will this interaction affect their catalytic performance? The steric and electronic 

effect of side chain functional group in MOF linker and it influence to the catalytic 

performance are still unclear. In order to explore this question, we need to get the same 

structure with removing or replacing the amine group and run the same reaction. 

However, as shown in Figure 2.2, Pt nanoparticles cannot be encapsulated into MOFs 

without amine group, which means Pt@UiO-66 with a replaced functional group cannot 

be directly manufactured by our one-pot method. Likely, the similarity between MOFs 

and conventional coordination compounds provides us another approach: Post synthetic 

linker exchange which allows to achieve our desired structures. (see 4.2)  

 

In this part of the thesis, we discussed the influence of the side chain of BDC linker to the 

catalytic performance of our Pt@UiO-66-NH2 samples. Linker exchange were utilized to 

replace the NH2-BDC linkers while maintain its topology. 
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4.2 Postsynthetic Linker Exchange 

Thanks to the coordination-driven self-assemble properties of MOFs, rational design of 

MOFs can be accessed via judicious choosing of secondary building units and organic 

linkers, achieving desired topologies and properties in a convenient and facile one-step 

synthesis. However, there are still some MOF structures cannot be directly produced in 

such “one-step” process, including the ones with incompatible motifs in reaction 

conditions. Also, undesired side products are sometimes generated because of the 

existence of several stable or sub stable structures for similar chemical components or 

catenation. Due to such shortcomings of conventional “one-step” synthesis, postsynthetic 

modification (PSM) in MOFs (e.g., protection and deprotection of active functional 

groups, and further modification of functional groups) was developed by scientists to 

expand the reachable range of MOF structures and components. This methodology shows 

the possibility of taking MOFs as “molecules”. 

 

Based on this concept, a new synthetic strategy, postsynthetic linker exchange (PSLE), 

also known as solvent-assisted linker exchange, was developed. Just like well-developed 

linker exchange strategy in coordination compounds, post synthetic linker exchange of 

MOFs is initiated by merging an existing MOF to a concentrated solution of a new linker. 

(Figure 4.1) Unlike the homogenous process of traditional homogenous process of 

coordination compounds, this heterogeneous reaction can partially or entirely exchange 

the structural linkers in pristine MOFs while maintains the topology of it. Nowadays, 

PSLE has already been successfully applied in numerous types of MOFs, even some 

extremely chemically stable and robust ones (e.g., UiO (University of Oslo, the 
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institution where the first UiO MOF was created) series discussed in this thesis), and 

leading to the formation of MOFs that had been challenging to prepare directly. PSLM 

can be used to (i) synthesize new MOFs or introduce new chemical functionalities in 

MOFs (which may not be accessible de novo), (ii) control pore size/shape, (iii) control 

catenation, and (iv) access topologies that are unknown for a particular linker/node 

combination.[1-6]   

 

Figure 4.1 Scheme of metal ion and ligand exchange for MOFs[3] 
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4.3 Microwave-assisted linker exchange 

Linker exchange of UiO-66 and its derivatives were well established by Seth Cohen and 

coworkers.[1] In a typical procedure, Solid MOF was mixed with same amount of new 

ligand potassium salt aqueous solution. And the exchange process will take 5 days under 

55-85 oC. After the exchange reaction, the Exchanged MOF was digested by HF in 

DMSO-d6, then was analyzed by NMR to get the molar ratio of new linkers and 

remaining original linkers. (Figure 4.2) The exchange ratio can achieve 76% for the 

exchange between UiO-66-Br and NH2-BDC after 5days under 85°C. While the 

exchange ratio for UiO-66-NH2 and Br-BDC is 43% under the same conditions.  

 

 

Figure 4.2 Scheme of conventional linker exchange of UiO-66-Br with NH2-BDC 

The reason why the regular linker exchange of UiO series takes so long time and its 

exchange ratio can’t reach 100% is the strong Zr-Oxo interaction. Following papers in 

1986[7], microwave heating has been widely utilized in the laboratory to achieve 1) 

reaction rate acceleration; 2) milder reaction conditions; 3) higher chemical yield;4) 

lower energy usage; 5) different reaction selectivity.[8-10]  
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Herein, we introduce microwave heating to accelerate the reaction and improve 

selectivity. Reaction mixture is transferred into a microwave glass tube and sealed, then 

the tube is put into a microwave reactor. The whole system is heated by microwave to 

95 °C for several hours. (Figure 4.3) 

 

Figure 4.3 Microwave assisted linker exchange of Pd@UiO-66-NH2 

BDC and two functionalized BDC are choose to do microwave assisted linker exchange. 

Reaction time and exchange ratio are shown in table 3. Surprisingly, the exchange ratio 

for 4F-BDC linker reaches 98% which is much higher than conventional heating 

result[1]. For Br-BDC and BDC linker, the exchange ratio is 49% (which is already 

higher than conventional heating) and 23%. For the later one, the exchange ratio jumps to 

54% when the reaction time extends to 3 hours. These results demonstrate that 

microwave assisted linker exchange can achieve the similar or even higher exchange ratio 

as the conventional heating in a much shorter time. 
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Table 4 Microwave-assisted Linker exchange ratio  
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4.4 Catalytic Performance of Exchanged Pt@MOFs 

 

Figure 4.4 Catalytic performance of linker exchange ones, Pt@UiO-66-NH2 exchanged 

with (a) NH2-BDC (the same linker); (b) 4F-BDC (98% changed); (c)Br-BDC (49%) ;(d) 

BDC (2hrs 23%); (e) BDC (3hrs 54%); Pt (PVP)@UiO-66-NH2 exchange with (f) 4F-

BDC (81%). 

After microwave assisted linker exchange, we run the same catalytic reaction in chapter 3 

to see the influence of the side chain group on BDC to the catalytic performance 

(Figure4.4). For the one exchanged with its original linker, NH2-BDC, there is no 

significant difference in catalytic performance comparing to the intrinsic one (Figure 

3.4), which demonstrates that the microwave heating process itself won’t influence 

catalytic performance of our catalysts. 
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For the 4F-BDC linker which almost replace all the original NH2-BDC linkers, the 

percentage of our target product, 2-Butenol, drops from 70% to 44.34% after exchanging. 

For the ones exchanged with Br-BDC and BDC, selectivity of 2-Butenol decreases even 

more. This general trend may indicate that either the electronic or steric effect of the 

amino group do have some positive influence in catalytic properties. The dramatic 

decrease of selectivity from 51.49% to 16.28% when exchange ratio increases from 23% 

to 54% for BDC exchanged ones also provide a strong support to this. 

 

Secondly, we do the same linker exchange for the Pt (PVP)@UiO-66-NH2, the exchange 

ratio is a little bit lower but still achieve 81%. Not surprisingly the reaction result 

suggests that there is no significant decrease in selectivity which matches with our 

hypothesis that steric effect do not work for Pt (PVP) since active sites of nanoparticles 

have already been blocked by long chain PVP. 

4.5 Conclusion 

In this chapter, microwave-assisted linker exchange was utilized to alter the amine group 

in the BDC-NH2 linker of our Pt@UiO-66-NH2 catalyst to explore influence of the side 

chain functional group to the catalytic performance. For several chosen linkers, relative 

high exchange ratio was achieved in a much shorter reaction time comparing to traditional 

heating process. Then these after-exchanged samples were tested by the same reaction as 

the intrinsic NP@MOF composite. For all selected linkers (BDC, 4F-BDC and 2-Br-BDC), 

the after-exchanged catalysts showed a decrease of selectivity of our desired product-

unsaturated alcohol. Based on these results, comparing to other functional group, the 
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existence of amine group does have a positive effect on the activity and selectivity of this 

reaction, which may be caused by the electronic density increase in Pt atom due to the Pt-

N interaction. 

 

However, it is still not clear that how the functional group on BDC linkers influence the 

catalytic performance. Briefly speaking, the functional groups have both electronic and 

steric effects to the active sites. Taft equation (Figure 4.5) which was developed by 

Robert W. Taft in 1952[11-13] is a linear free energy relationship (LFER) used to the 

study of reaction mechanisms in physical organic chemistry and build quantitative 

structure–activity relationships for organic compounds. By measuring the reaction rate 

constant of different functionalized linker exchanged catalyst and comparing to the rate 

constant of reference group, the sensitivity factors of electronic and steric effect can be 

solved and we can analyze the influence of function group to the active sites 

quantitatively. 

 

Figure 4.5 Taft equation 

In order to perform quantitative structure–activity study using Taft equation, we have to 

prepare entirely exchanged Pt@UiO-66-NH2 with functionalized linkers. Our microwave-

assisted linker exchange approach already shows better performance than the traditional 
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heating method. However, we still need to optimize reaction conditions to achieve 100% 

exchange ratio for more linkers. 

 

4.6 Methods 

General Considerations.  Unless otherwise stated, all the reactions were carried out in the 

air without taking any precaution to protect reactions from oxygen or moisture. N, N-

Dimethylformamide (Sigma-Aldrich, 99.8%), Potassium hydroxide (KOH, Sigma-

Aldrich, ≥85%), tetrafluoroterephthalic acid (4F-BDC, Sigma-Aldrich, 97%), terephthalic 

acid (BDC, Sigma-Aldrich, 98%), 2-bromoterephthalic acid (Br-BDC, Sigma-Aldrich, 

95%), hydrochloric acid (HCl, Sigma-Aldrich, 37%), crotonaldehyde (Sigma-

Aldrich, >99%) were purchased from the indicated sources and used without further 

purification. Hydrogen (Airgas, 99.999%) and Nitrogen (Airgas, 99.999%) were used for 

heterogeneous catalysis. 

 

1H and 19F Nuclear magnetic resonance (NMR) spectroscopy was performed on Varian 

500 MHz and 600 MHz NMR spectrometers. Samples were prepared by digesting 

approximately 10 mg of UiO-66-NH2 or linker-exchanged UiO-66-NH2 samples with 

sonication in 580 μL of DMSO-d6 and 20 μL of HF (48% aqueous solution). For 19F-

NMR, 10 μL of F-CH2COOH was added as an internal standard. All of the NMR 

measurements were performed with 90- degree pulse and a recycle delay larger than 5 

times of spin-lattice relaxation time between each transient to ensure complete relaxation 

of the observed spins. 
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Microwave assisted post synthetic linker exchange between UiO-66-NH2 and 4F-

BDC: Tetrafluoroterephthalic acid (57.6 mg, 0.2mmol) was dissolved in 4% KOH 

aqueous solution(2mL). 1M HCl aqueous solution was added drop by drop to neutralize 

the solution to pH=7. This solution and Pt@UiO-66-NH2 (57mg, 0.2mmol equiv. of 

benzene ring) were added to a 5mL microwave tube with a small magnetic stirring bar, 

then sealed with a cap. The sealed tube was put into a microwave reactor and 

microwaved to 95 oC for 2 hours with stirring. When the mixture cooled down to room 

temperature, the cap was removed by cap opener and the mixture was moved to a 

centrifuge tube. The mixture was centrifuged and the aqueous phase decanted. Then 

precipitant was washed with 10mL menthol for 3 times, and then vacuum dried 

overnight. Linker exchange of other ligands and MOFs mentioned in this chapter are 

performed by simply change the chemicals or reaction time in this procedure. 

 

Liquid Phase hydrogenation of crotonaldehyde: In a typical procedure, a certain 

amount of catalyst was dispersed in 2.4 mL isopropanol solution, and 100 μL trans-

crotonaldehyde (1.19 mmol, Aldrich >99%) were added into the above solution. 

Subsequently, the solution was transferred into a 4.0-mL ampule using a 9” glass pipet. 

These ampules were arranged in a 500 mL stainless steel Parr reactor that contained a 

thermocouple to ensure thermostatic reactions. The reactor was placed on the top of a Ika 

RCT-basic hot plate. The reactor vessel was purged with H2 for 3 times, and the final H2 

pressure of the vessel was set at 3.0 MPa. During the catalytic process, the reaction 

solution was magnetically stirred with the speed of 800 rpm at desired temperature for the 

18 hours. After that, the catalysts were separated by centrifugation, and the obtained 
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reaction solution was analyzed by gas chromatography-mass spectrometry (GC-MS, 

Shimadzu, GC-MS-QP2010 Ultra, column: SH-Rtx-Wax, 60 m × 0.25 mm × 0.5μm) 
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Chapter 5  Future Directions 

A series of metal nanoparticles@MOFs are synthesized via one-pot in situ method which 

take advantages of two traditional strategies and avoid their biggest issues. The amine 

group in the organic linker of UiO-66-NH2 take the place of capping agent PVP in the 

formation of metal nanoparticles which avoids the active sites of encapsulated metal 

nanoparticles being blocked by PVP. We tested its catalytic performance with the 

selective hydrogenation of a α, β-unsaturated aldehyde, crotonaldehyde, and our catalyst 

has much higher activity than the one with PVP. Additionally, we believe the uniform 

pores of UiO-66-NH2 could provide a steric effect to improve the selectivity of this 

reaction to our desired product, unsaturated aldehyde. And experiment results support 

this hypothesis, our catalyst can achieve 70% selectivity to 2-Butenol (our target 

product), which is higher than not only merchant Pt catalyst but also physical mixture of 

Pt nanoparticles and MOF. Furthermore, the amine group on the linker plays an 

important role in the synthesis process, but how will the side chain functional group 

influence the catalytic performance of our catalysts? Thus, we perform the linker 

exchange to replace the NH2-BDC linker with BDC and functionalized linkers and the 

replaced ones show a significant decay in selectivity of 2-Butenol which means the 

existence of amine group is essential to the catalytic performance of our catalysts. 

 

In this thesis, we demonstrate a synthetic mythology which is promising to adjust 

catalytic performance metal nanoparticles. A step further, we chose the selective 

hydrogenation of crotonaldehyde as model reaction to demonstrate the well-defined 

direct contact metal nanoparticles and MOF interface and spatial confinement of MOF 
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pores could increase the selectivity. However, the highest selectivity towards our desired 

product we achieved is still not as high as the state of art reported results of selective 

hydrogenation of other α, β-unsaturated aldehydes[1-3], which means there are still lots 

of works to do to optimize this system. One possible method is to replace the side chain 

function group to tune the electronic and steric environment of the metal-MOF interface, 

this requires deeper understanding of the impacts we are planning to do a systematic 

scanning of BDC derivatives and use Taft equation to analysis the electronic and steric 

effects of different side chain functional groups. As Pt/Pd are widely used as catalysts, 

the spatial confinement and clean surface of encapsulated nanoparticles should allow our 

catalyst to be utilized for other reactions, like selective oxidation of diols. [4] Also, some 

other MOFs like MIL-101[1, 5]which has a much larger pore size of 1.6nm can also be 

used to replace UiO-66-NH2, which could be utilized to achieve selectivity for other 

substrates and reactions. For the one-pot synthesis approach, by choosing proper metal 

percussors and organic linkers, this facile synthesis method should be expanded to other 

metal nanoparticles@MOFs structures. We believe our research could provide a choice to 

people who want to tune the catalytic performance of heterogenous catalysts. 
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