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The Lévy hypothesis states that inverse square Lévy walks are optimal search strategies because they
maximize the encounter rate with sparse, randomly distributed, replenishable targets. It has served as a
theoretical basis to interpret a wealth of experimental data at various scales, from molecular motors to
animals looking for resources, putting forward the conclusion that many living organisms perform Lévy
walks to explore space because of their optimal efficiency. Here we provide analytically the dependence on
target density of the encounter rate of Lévy walks for any space dimension d; in particular, this scaling is
shown to be independent of the Lévy exponent α for the biologically relevant case d ≥ 2, which proves that
the founding result of the Lévy hypothesis is incorrect. As a consequence, we show that optimizing the
encounter rate with respect to α is irrelevant: it does not change the scaling with density and can lead
virtually to any optimal value of α depending on system dependent modeling choices. The conclusion that
observed inverse square Lévy patterns are the result of a common selection process based purely on the
kinetics of the search behavior is therefore unfounded.
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Lévy walks [1] were introduced as a minimal random
walk model that displays a superdiffusive scaling, while
preserving a finite speed, and were originally motivated by
various physical processes such as phase diffusion in
Josephson junctions [2,3] or passive diffusion in turbulent
flow fields [4]. Shlesinger and Klafter [5] were the first to
report that, due to their weak oversampling properties,
Lévy walks provide a more efficient way to explore space
than normal random walks. This observation led
Viswanathan et al. [6,7] to propose the following Lévy
search model (Fig. 1): they consider a searcher that
performs ballistic flights of uniformly distributed random
directions and constant speed, whose lengths l are drawn
from a distribution with power law tails pðlÞ ∼ Csα=l1þα

(l → ∞) characterized by the Lévy exponent α ∈ ½0; 2�,
where s is a scale parameter and C a dimensionless
normalization constant. The authors of Ref. [7] consider
an infinite space of dimension d with Poisson distributed
(i.e., with uniform density) immobile targets of density ρ,
which are captured as soon as within a detection distance a
from the searcher. Two alternative hypotheses that lead to
two very different optimal strategies (i.e., strategies maxi-
mizing the capture rate η ¼ limt→∞ nt=t with respect to α,
where nt is the mean number of targets detected at time t)
are studied. (a) In the first case of “revisitable targets”,
meaning that, as soon as detected, a target reappears and

FIG. 1. The Lévy walk search model and its parameters. We
consider a slightly more general version of the model originally
introduced in Ref. [7], here in d ¼ 2. The pointlike searcher
performs ballistic flights at constant speed v (that can be set to 1) in
uniformly distributed randomdirections. The length l of each flight
is drawn from a distribution which satisfies pðlÞ ∼ Csα=l1þα. In
numerical simulationswe usedpðlÞ¼ð2πÞ−1lR eiklcosθe−sαkαkdkdθ
for d ¼ 2. Targets are immobile and uniformly distributed in
infinite space with density ρ. A target is captured as soon as
located within the detection radius a (that can be set to 1) of the
searcher, and is regenerated immediately after detection. To avoid
systematic recapture of the same target, an arbitrary rule is required,
such as a cutoff time τc > a=v before target regeneration, or a
cutoff distance from the target lc > a (which is the prescription that
we used in numerical simulations) fromwhich thewalk is restarted.
Finally, the model in its minimal form involves the following
parameters: a (that defines the unit length), v (that defines the unit
time), the target density ρ, the Lévy exponent α and scale s
necessary to define pðlÞ, and the cutoff length lc (or equivalently a
cutoff time τc).
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stays immobile at the same location, the authors claim that
in the small density limit the encounter rate is optimized for
a Lévy exponent α → 1, the so called inverse square Lévy
walk, and independently of the small scale characteristics
of pðlÞ or space dimension d. (b) In the second case of
“destructive search” where each target can be found only
once, the optimal strategy is not of Lévy type, but reduces
to a simple linear ballistic motion for all d.
The optimality of inverse square Lévy walks claimed

in Ref. [7] is at the core of the Lévy hypothesis, which has
been the reference theoretical framework for the analysis of
trajectories of broad classes of living systems, from
molecular motors [8] to cells [9] and foraging animals
[6,7,10–13]; many studies have indeed interpreted field
data as Lévy walks, thereby concluding that their obser-
vation was the result of a selection process based on the
optimality claimed in Ref. [7]. In fact, since then the
relevance to field data of the condition (a) of revisitable
targets has been questioned [14–17], and the identification
of Lévy patterns from real data has been debated [18,19].
On the theoretical side, several alternative models, or
variations of the original model [7] have been proposed
[20–23]. By allowing for more degrees of freedom, or by
modifying the hypothesis of the original optimization
problem, these were shown to potentially lead to different
optimal strategies. However, so far all studies acknowl-
edged the original result [7] as a founding benchmark in the
field, and none has contested its technical validity.
In this Letter, we show on the basis of the same model

that while the original analytical expression of the encoun-
ter rate with targets for Lévy walks proposed in Ref. [7] is
correct in space dimension d ¼ 1, it is incorrect for d ≥ 2.
As a consequence, the conclusion that inverse square Lévy
walks are optimal search strategies is not valid in the
biologically relevant case d ≥ 2. In fact, relying on a
recently developed framework to analyze non-Markovian
target search processes such as Lévy walks [24,25], we
show that, as opposed to what is claimed in Ref. [7], for
d ≥ 2 the encounter rate of Lévy walks with sparse Poisson
distributed targets (i) displays a linear dependence on the
concentration of targets for all values of the Lévy exponent,
and (ii) can therefore be only marginally maximized, and
for a broad range of values of the Lévy exponent
controlled by model dependent parameters, which makes
the optimization nonuniversal. This invalidates the claim
that inverse square Lévy walks are optimal search strategies
for d ≥ 2, and more generally makes the optimization of
Lévy search processes with respect to the Lévy exponent
nonrobust and thus irrelevant biologically for d ≥ 2. The
conclusion that observed inverse square Lévy patterns
across very different systems are the result of a common
selection process based purely on the kinetics of the search
behavior is therefore unfounded.
Technically, it is straightforward to show that for the case

(b) of destructive search the optimal search strategy is

achieved for α → 0 (straight ballistic motion), as stated in
Ref. [7]; the ballistic strategy indeedminimizes oversampling
of space, as discussed in Ref. [5]. This intuitive argument
however fails in the case (a) of revisitable targets, which we
discuss from now on. Let us first note that 1=η≡ T is the
mean time elapsed between successive capture events or in
other words themean first-passage time (MFPT) to any target
for a searcher that starts immediately after a capture event.
While the determination ofMFPTs of randomwalks has been
studied at length in the literature because of the relevance of
this observable to various fields [26–30], its analytical
calculation for non-Markovian random walks, such as
Lévywalks, has remaineduntil recently a technical challenge.
For that reason, the analytical determination of η proposed
originally in Ref. [7] involved uncontrolled hypotheses, and
this result was proved correct analytically later in Ref. [31],
but only ford ¼ 1. Of note, inRef. [7] the predicted scaling of
ηwith target densitywas supported bynumerical simulations,
but again only for d ¼ 1; in d ¼ 2, numerical simulations
were shown for a single value of the density, thereby
precluding any comparison with the predicted scaling.
Recently, new techniques have been introduced to deter-

mine analytically the MFPT of non-Markovian random
walks to a single target in a confining volume V in any
space dimension d in the large V limit, first in the case of
Gaussian processes [24], and lately for general scale-invari-
ant processes [25]. Following a classical mean-field type
argument [17,32], which was validated numerically, this
result also yields in the large V limit the MFPT to any target
in infinite space with a concentration of Poisson distributed
targets ρ≡ 1=V, which is precisely the quantity that we aim
at computing. We here apply these techniques to Lévy
walks, which, importantly, requires us to treat separately the
cases of compact and noncompact exploration.
In the case of a compact walk, which occurs for Lévy

walks for d ¼ 1, it is found [25] that the MFPT is given by

T ∼
V→∞

AVdwð1−θÞ=dlcdwθ ð1Þ

where A is a numerical constant, dw the walk dimension, θ
the persistence exponent, and lc the cutoff length intro-
duced in Fig. 1. The walk dimension is given by dw ¼ 1 for
α < 1, and dw ¼ α for α > 1, and the persistence exponent
is θ ¼ α=2 for α < 1 and θ ¼ 1=2 for α > 1 [25]. Thus,
we get

T ∼
V→∞

�
D1ðαÞV1−α=2 ðα < 1Þ
D1ðαÞVα=2 ðα > 1Þ ð2Þ

where D1 is a numerical constant independent of the
volume V.
In the case of noncompact random walks, which is the

case of Lévy walks for d ≥ 2, the MFPT satisfies [25]
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T ∼
V→∞

A
VðdwþψÞ=d

aψ

�
1 − B

�
a
lc

�
ψ
�
: ð3Þ

In the latter, A and B are numerical constants, dw denotes
the walk dimension, and ψ the transience exponent. Their
corresponding values for a Lévy walk of parameter α is
given by dw ¼ 1 and ψ ¼ d − 1 for α < 1, and dw ¼ α and
ψ ¼ d − α for α > 1 [25]. Hence, for any α ∈ ½0; 2�, we get

T ∼
V→∞

Ddðα; lc=aÞV ð4Þ

where Ddðα; lc=aÞ is a numerical constant depending on α,
d and the microscopic parameters lc and a, but not on the
volume V.
Using Eqs. (4) and (2) with ρ ¼ 1=V, we finally obtain

analytically the mean capture rate η, thereby solving
explicitly the original problem introduced in Ref. [7] and
recalled above (Fig. 1). It is found that

ηðρÞ ∼
ρ→0

�K1ðαÞρ1−α=2 d ¼ 1 and 0 < α < 1

K1ðαÞρα=2 d ¼ 1 and 1 < α < 2

KdðαÞρ d ≥ 2 and 0 < α < 2

; ð5Þ

where the constantsKd are independent of ρ, but depend on
the cutoff length lc that characterizes the condition of restart
after a capture event and the scale parameter s that enters
the definition of pðlÞ (see Fig. 1; this formulation contains
in particular the original model as introduced in Ref. [7]).
This result is valid asymptotically in the relevant limit of
sparse targets (ρ → 0), and was checked numerically in
Figs. 2 and 3.
Several comments are in order. (i) For d ¼ 1, the result of

Eq. (5) is consistent with the original result for ηðρÞ given in
Ref. [7], as confirmed numerically in Fig. 2(b) and
analytically in Ref. [31]; in particular, in the ρ → 0 limit,
η is maximized for the inverse square Lévy walk α ¼ 1, as
claimed in Ref. [7]. Of note, this optimum is robust in the
sense that the gain ηmax=η is arbitrarily large in the limit
ρ → 0 for all values of the parameters s and lc, and is
therefore critically controlled by the parameter α only
[Fig. 3(c)]. (ii) However, for the biologically relevant case
d ≥ 2 the prediction for ηðρÞ given in Ref. [7], claimed to
be identical to the d ¼ 1 case, is incorrect. Indeed, the result
of Eq. (5) shows that η depends linearly on ρ for all α in
contrast to the d ¼ 1 case [confirmed numerically in
Fig. 2(a)]. (iii) This has strong consequences on the
maximization of η. In fact, for d ≥ 2, the dependence of
η on α lies only in the prefactor Kd. This implies first
that the gain ηmax=η achieved by varying α is bounded even
in the limit ρ → 0. In other words, tuning α can only
yield a marginal gain, and therefore does not present a
decisive selective advantage, as opposed to the d ¼ 1 case
[Figs. 3(a) and 3(b)]. Second, as we show numerically
[Fig. 3(a)], KdðαÞ presents bounded variations that depend
drastically on the choice of parameters s and lc, which
could be arbitrary depending on the system studied. In
particular, by performing minute variations of s and lc it is

found that η can be maximised for a broad range of values
of α ∈ ½0; 2�, (Fig. 3). This overall makes the optimization
with respect to α biologically irrelevant for d ≥ 2, and in
particular invalidates the optimality of inverse square Lévy
walks claimed in Ref. [7] for generic values of s and lc.
These theoretical results have been fully validated by

numerical simulations (Figs. 2 and 3), which confirm in
particular the linear dependence of η on ρ independently of
α for d ¼ 2 as predicted by Eq. (2) [Fig. 2(a)], and the

(a)

(b)

FIG. 2. The capture rate of Lévy walkers has different scalings
with target density for d ¼ 2 and d ¼ 1. Capture rate η as a
function of target density (ρ) for different values of α. (a) Case
d ¼ 2. Simulations are performed with 4000 Poisson-distributed
targets of detection radius a ¼ 0.5 in a 2d square box of linear
size 200=

ffiffiffi
ρ

p
with periodic boundary conditions, following the

dynamics defined in Fig. 1 with s ¼ 0.1. Upon each detection
event, the searcher stops and restarts immediately from a distance
lc from the target. In all cases, it is found that η grows linearly
with ρ as predicted by Eq. (5). Numerical simulations (symbols
and plain lines) are compared to the predicted scaling of Ref. [7]
(dashed lines), and to our linear prediction (slope 1). (b) Case
d ¼ 1. Simulations are performed with Poisson distributed targets
and make use of the dynamics defined in Ref. [7]. The jump
distribution is a truncated Pareto law: pðlÞ ¼ C=l1þα for l > lc
and pðlÞ ¼ 0 for l < lc, where C is a normalization constant; here
lc ¼ a ¼ 1. Numerical simulations (symbols and plain lines) are
compared to the predicted scaling of [7] (dashed lines) that we
recover in this Letter.
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sensitivity of Kd to the system dependent parameters s and
lc [Fig. 3(a)]. In the context of animal foraging, the
diverging gain at low target density obtained for d ¼ 1
(which could be relevant to specific biological examples)
means that the implied optimal foraging behavior at α ¼ 1
is expected to be a robust property that does not depend on
the small scale characteristics of the specific biological
system under study. Conversely, for d ≥ 2, which is the
generic biologically relevant case, this conclusion does not
hold because the optimal foraging behavior presents only a
limited gain, and may change even if seemingly minor
changes are made to the system. For example, very
different optimal values of α can be obtained simply by
allowing the searcher to have a short-term memory that
would modify the small scale features of pðlÞ or the way in
which the first step after finding a target is performed
[Fig. 3(a)]. In fact, we found that α ¼ 1 optimizes the
encounter rate for d ¼ 2 only in the specific regime lc → a
and s ≪ a, for which the problem is indeed expected to be
effectively amenable to d ¼ 1 [see Fig. 3(a)]. Of note, for
d ≥ 2 it is found numerically that η seems to be always
maximized for α < 2, i.e., away from the Brownian limit,
thereby suggesting that in this model Lévy walks are more
efficient than Brownian walks. However, we stress again
that the scaling of η with target density is unchanged (up to
logarithmic corrections for d ¼ 2), which makes the
optimization overall of marginal importance.
Altogether, this shows that inverse square Lévy walks

are not generic optimal search strategies for d ≥ 2, and
therefore that the conclusion found in many studies that
observed inverse square Lévy patterns are the result of a
selection process is unfounded. Importantly, we stress first
that these results do not invalidate the original idea that
Lévy walks can be efficient to explore space [5], but
disprove the specific role of inverse square Lévy walks and
their optimality for d ≥ 2. Second, on the experimental
side, these results do not question the validity of observa-
tions of power-law-like patterns in field data, but refute the
classical hypothesis that the observation of inverse square
Lévy walks would be the result of a selection process based
on the kinetics of the search behavior. Alternatively the
observed patterns could be the result of various environ-
mental parameters, such as the spatial distribution of prey,
as suggested in Ref. [12] and observed in Ref. [33].
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[24] T. Guérin, N. Levernier, O. Bénichou, and R. Voituriez,
Nature (London) 534, 356 (2016).

[25] N. Levernier, O. Bénichou, T. Guérin, and R. Voituriez,
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