

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

FACULDADE DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Software Failure Prediction Based on Patterns of Multiple-Event
Failures

Caio Augusto Rodrigues dos Santos

Uberlândia, Minas Gerais

2021

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

FACULDADE DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Software Failure Prediction Based on Patterns of Multiple-event
Failures

Caio Augusto Rodrigues dos Santos

Tese de doutorado apresentada ao Programa
de Pós-Graduação da Faculdade de
Computação da Universidade Federal de
Uberlândia, Minas Gerais, como parte dos
requisitos exigidos para obtenção do título de
Doutor em Ciência da Computação.

Área de concentração: Ciência da Computação

Orientador: Prof. Dr. Rivalino Matias Júnior

Uberlândia, Minas Gerais

2021

Santos, Caio Augusto Rodrigues dos, 1989S237
2021 Software Failure Prediction Based on Patterns of

MultipleEvent Failures [recurso eletrônico] / Caio
Augusto Rodrigues dos Santos. 2021.

Orientador: Rivalino Matias Júnior.
Tese (Doutorado) Universidade Federal de Uberlândia,

Pósgraduação em Ciência da Computação.
Modo de acesso: Internet.

CDU: 681.3

1. Computação. I. Matias Júnior, Rivalino ,1971,
(Orient.). II. Universidade Federal de Uberlândia. Pós
graduação em Ciência da Computação. III. Título.

Disponível em: http://doi.org/10.14393/ufu.te.2021.202
Inclui bibliografia.
Inclui ilustrações.

Ficha Catalográfica Online do Sistema de Bibliotecas da UFU
com dados informados pelo(a) próprio(a) autor(a).

Bibliotecários responsáveis pela estrutura de acordo com o AACR2:

Gizele Cristine Nunes do Couto CRB6/2091

ACKNOWLEDGEMENT

I am deeply indebted to Prof. Rivalino Matias for providing me an opportunity to
be a part of his research group. His priceless advice, support, and everlasting
patience helped me finish this work.

I would like to thank the committee members - Prof. Kishor S. Trivedi, Prof. Artur
Andrzejak, Prof. Dilma da Silva, Prof. Marcelo Keese Albertini - for their feedback
and encouragement on this journey. I am especially grateful to Prof. Kishor S.
Trivedi for providing me the opportunity to visit his research group.

Thanks to my friends and family for the fun times and for cheering me up during
my gloomy days.

I also would like to thank the Federal University of Uberlândia and all its staff
members.

Lastly, I am grateful to CAPES for the financial support.

RESUMO

Uma necessidade fundamental para a engenharia de confiabilidade de software é
compreender como os sistemas de software falham, que significa entender a
dinâmica que governa os diferentes tipos de manifestação de falha. Esta pesquisa
apresenta um estudo exploratório sobre falhas de múltiplos eventos, que é uma
manifestação de falha caracterizada por sequências de eventos de falha que variam
em comprimento, duração e combinação de tipos de falha. Este estudo visa (i)
melhorar a compreensão das falhas de múltiplos eventos em sistemas de software
reais, investigando suas ocorrências, associações e causas; (ii) propor protocolos
de análise que levem em consideração as manifestações de falha de múltiplos
eventos; (iii) aproveitar a natureza sequencial desse tipo de falha de software para
realizar previsões. As falhas analisadas nesta pesquisa foram observadas
empiricamente. No total, foram analisadas 42.209 falhas reais de software de 644
computadores de diferentes locais de trabalho. As principais contribuições deste
estudo são um protocolo desenvolvido para investigar a existência de padrões de
associações de falha; um protocolo para descobrir padrões de sequências de falha;
e uma abordagem de previsão cuja principal ideia é calcular a probabilidade de um
determinado evento de falha ocorrer dentro de um intervalo de tempo após a
ocorrência de um padrão particular de falhas anteriores. Três métodos foram
utilizados para resolver o problema de previsão; Regressão Logística Multinomial
(com ou sem regularização Ridge), Decision Tree e Random Forest. Tais métodos
foram escolhidos devido à natureza dos dados de falha, nos quais os tipos de falha
devem ser tratados como variáveis categóricas. Inicialmente, foi realizada uma
análise de descoberta de associação de falhas que considerou apenas falhas de um
sistema operacional (SO) comercial amplamente utilizado. Como resultado, foram
descobertos 45 padrões de associação de falhas de sistema operacional com
153.511 ocorrências, compostos dos mesmos ou diferentes tipos de falha e
ocorrendo, sistematicamente, em intervalos de tempo bem estabelecidos. As
associações observadas sugerem a existência de mecanismos subjacentes que
regem essas ocorrências de falha, o que motivou o aprimoramento do método
anterior, com a criação de um protocolo para descobrir padrões de sequências de
falhas usando limites de tempo flexíveis e uma abordagem de previsão de falha.
Para ter uma visão abrangente de como as diferentes falhas de software podem
afetar umas às outras, os dois métodos foram aplicados a três amostras diferentes
— a primeira amostra contém apenas falhas do Sistema Operacional, a segunda
contém apenas falhas de Aplicativos do Usuário e a terceira engloba falhas do
Sistema Operacional e de Aplicativos de Usuário. Como resultado, foram
encontradas 165, 480 e 640 sequências de falha diferentes com milhares de
ocorrências, respectivamente. Por fim, a abordagem proposta foi capaz de prever
falhas com boa até alta precisão (86% a 93%).

Palavras-chave: Falhas de software; associações de falha; sequências de falha;
falhas de múltiplos eventos; padrões; predição.

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

FACULDADE DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Software Failure Prediction Based on Patterns of Multiple-Event
Failures

Caio Augusto Rodrigues dos Santos

Uberlândia, Minas Gerais

2021

UNIVERSIDADE FEDERAL DE UBERLÂNDIA
Coordenação do Programa de Pós-Graduação em Ciência da

Computação
Av. João Naves de Ávila, nº 2121, Bloco 1A, Sala 243 - Bairro Santa Mônica,

Uberlândia-MG, CEP 38400-902
Telefone: (34) 3239-4470 - www.ppgco.facom.ufu.br - cpgfacom@ufu.br

ATA DE DEFESA - PÓS-GRADUAÇÃO

Programa de
Pós-
Graduação
em:

Ciência da Computação

Defesa de: Tese de doutorado, 05/2021, PPGCO
Data: 29 de março de 2021 Hora de início: 11:00 Hora de

encerramento: 14:00

Matrícula do
Discente: 11613CCP009

Nome do
Discente: Caio Augusto Rodrigues dos Santos

Título do
Trabalho: Software Failure Prediction Based on Patterns of Multiple-Event Failures

Área de
concentração: Ciência da Computação

Linha de
pesquisa: Engenharia de Software

Projeto de
Pesquisa de
vinculação:

-

Reuniu-se, por videoconferência, a Banca Examinadora, designada pelo Colegiado do
Programa de Pós-graduação em Ciência da Computação, assim composta:
Professores Doutores: Marcelo Keese Albertini - FACOM/UFU, Kishor S. Trivedi - Duke
University; Artur Andrzejak - Heidelberg University; Dilma Menezes da Silva - Texas
A&M University e Rivalino Matias Júnior - FACOM/UFU orientador do candidato.
Os examinadores participaram desde as seguintes localidades: Kishor S. Trivedi -
 Durham, Carolina do Norte, Estados Unidos da América; Artur Andrzejak -
 Heidelberg, Baden-Württemberg, Alemanha; Dilma Menezes da Silva - College Station,
Texas, Estados Unidos da América; Marcelo Keese Albertini e Rivalino Matias Júnior -
Uberlândia/MG. O discente participou da cidade de Uberlândia/MG.
Iniciando os trabalhos o presidente da mesa, Prof. Dr. Rivalino Matias
Júnior, apresentou a Comissão Examinadora e o candidato, agradeceu a presença do
público, e concedeu ao Discente a palavra para a exposição do seu trabalho. A
duração da apresentação do Discente e o tempo de arguição e resposta foram
conforme as normas do Programa.
A seguir o senhor presidente concedeu a palavra, pela ordem sucessivamente,
aos examinadores, que passaram a arguir o candidato. Ultimada a arguição, que se
desenvolveu dentro dos termos regimentais, a Banca, em sessão secreta, atribuiu o
resultado final, considerando o candidato:

Aprovado.

Ata de Defesa PósGraduação 5 (2666991) SEI 23117.020718/202143 / pg. 1

Esta defesa faz parte dos requisitos necessários à obtenção do título de Doutor.
Ressalta-se que os examinadores Kishor S. Trivedi e Artur Andrzejak por serem
estrangeiros, residentes em outro país e não possuírem CPF registrado no Brasil não
podem assinar a ata de defesa.
O competente diploma será expedido após cumprimento dos demais requisitos,
conforme as normas do Programa, a legislação pertinente e a regulamentação
interna da UFU.

Nada mais havendo a tratar foram encerrados os trabalhos. Foi lavrada a presente
ata que após lida e achada conforme foi assinada pela Banca Examinadora.

Documento assinado eletronicamente por Rivalino Matias Júnior,
Professor(a) do Magistério Superior, em 31/03/2021, às 16:00, conforme
horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº
8.539, de 8 de outubro de 2015.
Documento assinado eletronicamente por Marcelo Keese Albertini,
Professor(a) do Magistério Superior, em 31/03/2021, às 16:21, conforme
horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº
8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Dilma Menezes Da Silva, Usuário
Externo, em 01/04/2021, às 15:32, conforme horário oficial de Brasília, com
fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site
https://www.sei.ufu.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código
verificador 2666991 e o código CRC D2BD8F0A.

Referência: Processo nº 23117.020718/2021-43 SEI nº 2666991

Ata de Defesa PósGraduação 5 (2666991) SEI 23117.020718/202143 / pg. 2

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
https://www.sei.ufu.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0

ABSTRACT

A fundamental need for software reliability engineering is to comprehend how
software systems fail, which means understanding the dynamics that govern
different types of failure manifestation. In this research, I present an exploratory
study on multiple-event failures, which is a failure manifestation characterized by
sequences of failure events, varying in terms of length, duration, and combination
of failure types. This study aims to (i) improve the understanding of multiple-event
failures in real software systems, investigating their occurrences, associations, and
causes; (ii) propose analysis protocols that take into account multiple-event failure
manifestations; (iii) take advantage of the sequential nature of this type of
software failure to perform predictions. The failures analyzed in this research were
observed empirically. In total, I analyzed 42,209 real software failures from 644
computers used in different workplaces. The major contributions of this study are
a protocol developed to investigate the existence of patterns of failure
associations; a protocol to discover patterns of failure sequences; and a prediction
approach whose main concept is to calculate the probability of a certain failure
event to occur within a time interval upon the occurrence of a particular pattern of
preceding failures. I used three methods to tackle the prediction problem;
Multinomial Logistic Regression (w/ and w/o Ridge regularization), Decision Tree,
and Random Forest. These methods were chosen due to the nature of the failure
data, in which the failure types must be handled as categorical variables. Initially, I
performed a failure association discovery analysis which only included failures
from a widely used commercial off-the-shelf Operating System (OS). As a result, I
discovered 45 OS failure association patterns with 153,511 occurrences, which
were composed of the same or different failure types and occurring within well-
established time intervals, systematically. The observed associations suggest the
existence of underlying mechanisms governing these failure occurrences, which
motivated the improvement of the previous method by creating a protocol to
discover patterns of failure sequences using flexible time thresholds and a failure
prediction approach. To have a comprehensive view of how different software
failures may affect each other, both methods were applied to three different
samples — the first sample contained only OS failures, the second contained only
User Application failures, and the third encompassed both OS and User Application
failures altogether. As a result, I found 165, 480, and 640 different failure
sequences with thousands of occurrences, respectively. Finally, the proposed
approach was able to predict failures with good to high accuracy (86% to 93%).

Keywords: Software failures; failure associations; failure sequences; multiple-
event failures; patterns; prediction.

CONTENTS

1. INTRODUCTION .. 1

1.1 CONTEXT .. 1

1.2 SIGNIFICANCE OF THE STUDY ... 3

1.3 RESEARCH QUESTIONS ... 5

1.4 HYPOTHESIS ... 5

1.5 GOALS ... 6

General: .. 6

Specifics: .. 6

1.6 OUTLINE ... 6

2. BACKGROUND ... 7

2.1 THEORETICAL FRAMEWORK .. 7

2.1.1 Software Failures.. 8

2.1.2 Software Failures Analyzed ... 9

2.1.3 Multinomial Logistic Regression ... 11

2.1.4 Multinomial Logistic Regression with Ridge Regularization 13

2.1.5 Decision Tree ... 14

2.1.6 Random Forest .. 17

2.1.7 Evaluating the Models Fit .. 18

2.2 RELATED WORK .. 18

3. MATERIAL ... 22

3.1 INTRODUCTION .. 22

3.2 SOFTWARE UNDER STUDY ... 22

3.3 DATA COLLECTION .. 23

3.4 DATA CHARACTERIZATION... 24

4. METHOD ... 30

4.1 INTRODUCTION .. 30

4.2 FAILURE ASSOCIATION DISCOVERY PROTOCOL ... 32

4.2.1 Taxonomy ... 33

4.2.2 Protocol .. 34

4.3 FAILURE SEQUENCE DISCOVERY PROTOCOL .. 39

4.4 FAILURE PREDICTION APPROACH ... 42

5. RESULTS ... 44

5.1 INTRODUCTION .. 44

5.2 OS FAILURE ASSOCIATIONS ... 45

5.2.1 Results Quality ... 48

5.2.2 Effects of Changing the Search Intervals ... 50

5.3 FAILURE SEQUENCES .. 52

5.3.1 Sequence Types ... 53

5.3.2 Sequence Classes ... 56

5.3.3 Sequence Lengths ... 57

5.3.4 Sequence Durations ... 58

5.4 FAILURE PREDICTION ... 61

5.4.1 Failure Prediction Based on Sequences of Two Failure Categories 61

5.4.2 Failure Prediction Based on Sequences of Two Failure Types 66

5.4.3 Failure Prediction Based on Sequences of Two Failure Types and the Δt
between them .. 69

5.4.4 Failure Prediction Based on Sequences of Three Failure Types 73

6. CONCLUSION ... 76

6.1 INTRODUCTION .. 76

6.2 DEPENDENCE OF SOFTWARE FAILURE EVENTS .. 77

6.3 PATTERNS OF MULTIPLE-EVENT FAILURES .. 77

6.4 PREDICTION OF SOFTWARE FAILURES ... 79

6.5 THREATS TO VALIDITY ... 80

6.5.1 Internal Validity .. 80

6.5.2 External Validity ... 81

6.6 CONTRIBUTIONS TO THE LITERATURE .. 81

6.7 FUTURE WORK .. 82

REFERENCES .. 83

APPENDIX ... 91

LIST OF TABLES

TABLE 1.1. THE OCCURRENCE PROBABILITY OF MULTIPLE-EVENT FAILURE PATTERNS. 5

TABLE 3.1. COMPUTER USAGE PROFILE PER GROUP. .. 25

TABLE 3.2. FAILURES CATEGORIZATION. .. 25

TABLE 3.3. FAILURE CHARACTERIZATION PER GROUP. .. 26

TABLE 3.4. TYPES OF OS KERNEL FAILURES. .. 27

TABLE 3.5. CONSISTENT FAILURE TYPES. ... 29

TABLE 4.1. EXAMPLES OF FAILURE ASSOCIATION CANDIDATES. .. 33

TABLE 4.2. GROUPS WITH PFES AND/OR NFES FOR RF = FAILURE_A. .. 35

TABLE 4.3. THEORETICAL FAILURE ASSOCIATION CANDIDATES FOR RF = FAILURE_A AND LCE-
FAILURE_A = {FAILURE_A, FAILURE_B}. ... 36

TABLE 5.1. OS FAILURE TYPES/SUBTYPES ACRONYMS USED IN THE RANKINGS. .. 45

TABLE 5.2. TOP FIVE ENTRIES IN RANKINGS OF THE CONFIGURATION FAC = PFE→RF. 45

TABLE 5.3. TOP FIVE ENTRIES IN RANKINGS OF THE CONFIGURATION FAC = RF→NFE. 46

TABLE 5.4. TOP FIVE ENTRIES IN RANKINGS OF THE CONFIGURATION FAC = PFE→RF→NFE. 46

TABLE 5.5. NUMBER OF FAILURE ASSOCIATION PATTERN OCCURRENCES PER CONFIGURATION. 50

TABLE 5.6. MOST CONSISTENT FAILURE SEQUENCES. .. 54

TABLE 5.7. MOST FREQUENT CAUSES IN THE FAILURE SEQUENCES. .. 55

TABLE 5.8. SEQUENCE CLASSES. ... 57

TABLE 5.9. TEN MOST FREQUENT SEQUENCE LENGTHS. .. 58

TABLE 5.10. SEQUENTIAL ASSOCIATIONS BASED ON FAILURE CATEGORIES. ... 62

TABLE 5.11. SUMMARY OF THE SEQUENCES’ DURATIONS (IN HOURS).. 69

TABLE 5.12. SUMMARY OF THE MODELS’ ACCURACY. .. 70

TABLE 5.13. MODELS’ ACCURACY (SEQUENCES OF THREE FAILURE TYPES). ... 73

TABLE A.1. REFERENCE FAILURES THAT APPEARED IN FOUR GROUPS. .. 91

TABLE A.2. REFERENCE FAILURES THAT APPEARED IN THREE GROUPS. .. 91

LIST OF FIGURES

FIGURE 1.1. AVOIDING FUTURE FAILURES BY EMPLOYING PREVENTIVE ACTIONS. .. 5

FIGURE 2.1. THE FUNDAMENTAL CHAIN OF DEPENDABILITY. ... 9

FIGURE 2.2. COMPARISON OF RELIABILITY CURVES. ... 10

FIGURE 2.3. EXAMPLE OF A GINI INDEX CALCULATION. ... 15

FIGURE 2.4. EXAMPLE OF A DECISION TREE. ... 16

FIGURE 2.5. EXAMPLE OF A RANDOM FOREST. ... 17

FIGURE 3.1. SYSTEMIC RELIABILITY. ... 23

FIGURE 3.2. RELIABILITY MONITOR. ... 24

FIGURE 3.3. AUTOMATIC FAILURE CATEGORIZATION. .. 26

FIGURE 3.4. DATASET STRATIFICATION.. 28

FIGURE 4.1. FAILURE ASSOCIATION VS FAILURE SEQUENCE. ... 31

FIGURE 4.2. SEARCHING FOR THE FAC = FAILURE_B→FAILURE_A. .. 36

FIGURE 4.3. PROTOCOL’S EXECUTION FLOW. ... 38

FIGURE 4.4. SEQUENCE DISCOVERY PROTOCOL. .. 40

FIGURE 4.5. FILTERING AND COLLECTING ΔTS BETWEEN FAILURES IN COMPUTER LOGS.......................... 42

FIGURE 4.6. INPUT TO THE PREDICTION MODELS. .. 43

FIGURE 5.1. OVERVIEW OF THE METHODS AND SAMPLES. .. 44

FIGURE 5.2. NUMBER OF FACS THAT REMAIN CONSTANT BY DECREASING THE SI. 51

FIGURE 5.3. NUMBER OF FACS THAT IS REDUCED BY DECREASING THE SI.. 51

FIGURE 5.4. NUMBER OF FACS THAT IS INCREASED BY DECREASING THE SI. ... 52

FIGURE 5.5. HISTOGRAM OF FAILURE SEQUENCE DURATIONS. ... 59

FIGURE 5.6. SEQUENCE LENGTH VS TIME DURATION.. 60

FIGURE 5.7. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE CATEGORIES (MULTINOMIAL

LOGISTIC REGRESSION AND DECISION TREE). .. 64

FIGURE 5.8. DECISION TREE BASED ON SEQUENCES OF TWO FAILURE CATEGORIES. 64

FIGURE 5.9. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE TYPES (MULTINOMIAL LOGISTIC

REGRESSION WITH RIDGE - SAMPLE_ALL). .. 67

FIGURE 5.10. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE TYPES (DECISION TREE -

SAMPLE_ALL). .. 67

FIGURE 5.11. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE TYPES (RANDOM FOREST -

SAMPLE_ALL). .. 68

FIGURE 5.12. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE TYPES AND THE ΔT BETWEEN

THEM (MULTINOMIAL LOGISTIC REGRESSION WITH RIDGE - SAMPLE_OS). 70

FIGURE 5.13. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE TYPES AND THE ΔT BETWEEN

THEM (DECISION TREE - SAMPLE_OS). .. 71

FIGURE 5.14. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE TYPES AND THE ΔT BETWEEN

THEM (RANDOM FOREST - SAMPLE_OS). .. 71

FIGURE 5.15. DECISION TREE BASED ON SEQUENCES OF TWO FAILURE TYPES AND THE ΔT BETWEEN

THEM (SAMPLE_OS). ... 72

FIGURE 5.16. PROBABILITIES BASED ON SEQUENCES OF THREE FAILURE TYPES (MULTINOMIAL

LOGISTIC REGRESSION WITH RIDGE – FILTERED SAMPLE_ALL). ... 74

FIGURE 5.17. PROBABILITIES BASED ON SEQUENCES OF THREE FAILURE TYPES (DECISION TREE –

FILTERED SAMPLE_ALL). ... 74

FIGURE 5.18. PROBABILITIES BASED ON SEQUENCES OF THREE FAILURE TYPES (RANDOM FOREST -

FILTERED SAMPLE_ALL). ... 75

FIGURE 6.1. EXAMPLE OF SOFTWARE FAILURES DEPENDENCY. ... 77

FIGURE A.1. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE CATEGORIES (RANDOM FOREST).
 ... 92

FIGURE A.2. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE TYPES (MULTINOMIAL LOGISTIC

REGRESSION WITH RIDGE - SAMPLE_OS). ... 92

FIGURE A.3. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE TYPES (DECISION TREE -

SAMPLE_OS). .. 93

FIGURE A.4. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE TYPES (RANDOM FOREST -

SAMPLE_OS). .. 93

FIGURE A.5. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE TYPES (MULTINOMIAL

LOGISTIC REGRESSION WITH RIDGE - SAMPLE_USERAPP). .. 94

FIGURE A.6. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE TYPES (DECISION TREE -

SAMPLE_USERAPP). ... 94

FIGURE A.7. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE TYPES (RANDOM FOREST -

SAMPLE_USERAPP). ... 95

FIGURE A.8. DECISION TREE BASED ON SEQUENCES OF TWO FAILURE TYPES (SAMPLE_OS). 95

FIGURE A.9. DECISION TREE BASED ON SEQUENCES OF TWO FAILURE TYPES (SAMPLE_USERAPP). 96

FIGURE A.10. DECISION TREE BASED ON SEQUENCES OF TWO FAILURE TYPES (SAMPLE_ALL). 97

FIGURE A.11. DECISION TREE BASED ON SEQUENCES OF TWO FAILURE TYPES AND THE ΔT BETWEEN

THEM (SAMPLE_USERAPP). .. 98

FIGURE A.12. DECISION TREE BASED ON SEQUENCES OF TWO FAILURE TYPES AND THE ΔT BETWEEN

THEM (SAMPLE_ALL). .. 99

FIGURE A.13. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE TYPES AND THE ΔT BETWEEN

THEM (MULTINOMIAL LOGISTIC REGRESSION WITH RIDGE - SAMPLE_USERAPP). 100

FIGURE A.14. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE TYPES AND THE ΔT BETWEEN

THEM (DECISION TREE - SAMPLE_USERAPP). .. 100

FIGURE A.15. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE TYPES AND THE ΔT BETWEEN

THEM (RANDOM FOREST - SAMPLE_USERAPP). ... 101

FIGURE A.16. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE TYPES AND THE ΔT BETWEEN

THEM (MULTINOMIAL LOGISTIC REGRESSION WITH RIDGE - SAMPLE_ALL). 101

FIGURE A.17. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE TYPES AND THE ΔT BETWEEN

THEM (DECISION TREE - SAMPLE_ALL). ... 102

FIGURE A.18. PROBABILITIES BASED ON SEQUENCES OF TWO FAILURE TYPES AND THE ΔT BETWEEN

THEM (RANDOM FOREST - SAMPLE_ALL). ... 102

FIGURE A.19. PROBABILITIES BASED ON SEQUENCES OF THREE FAILURE TYPES (MULTINOMIAL

LOGISTIC REGRESSION WITH RIDGE - SAMPLE_OS). ...103

FIGURE A.20. PROBABILITIES BASED ON SEQUENCES OF THREE FAILURE TYPES (DECISION TREE -

SAMPLE_OS). ..104

FIGURE A.21. PROBABILITIES BASED ON SEQUENCES OF THREE FAILURE TYPES (RANDOM FOREST -

SAMPLE_OS). ..104

FIGURE A.22. PROBABILITIES BASED ON SEQUENCES OF THREE FAILURE TYPES (MULTINOMIAL

LOGISTIC REGRESSION WITH RIDGE - SAMPLE_USERAPP). ..105

FIGURE A.23. PROBABILITIES BASED ON SEQUENCES OF THREE FAILURE TYPES (DECISION TREE -

SAMPLE_USERAPP). ...106

FIGURE A.24. PROBABILITIES BASED ON SEQUENCES OF THREE FAILURE TYPES (RANDOM FOREST -

SAMPLE_USERAPP). ...107

FIGURE A.25. PROBABILITIES BASED ON SEQUENCES OF THREE FAILURE TYPES (MULTINOMIAL

LOGISTIC REGRESSION WITH RIDGE - SAMPLE_ALL). ...108

FIGURE A.26. PROBABILITIES BASED ON SEQUENCES OF THREE FAILURE TYPES (DECISION TREE -

SAMPLE_ALL). ..109

FIGURE A.27. PROBABILITIES BASED ON SEQUENCES OF THREE FAILURE TYPES (RANDOM FOREST -

SAMPLE_ALL). ..110

FIGURE A.28. DECISION TREE BASED ON SEQUENCES OF THREE FAILURE TYPES (SAMPLE_OS).111

FIGURE A.29. DECISION TREE BASED ON SEQUENCES OF THREE FAILURE TYPES (SAMPLE_USERAPP).
 ...112

FIGURE A.30. DECISION TREE BASED ON SEQUENCES OF THREE FAILURE TYPES (SAMPLE_ALL).113

LIST OF ACRONYMS

ABB ASEA Brown Boveri

BOINC Berkeley Open Infrastructure For Network Computing

CART Classification and Regression Trees

CI Confidence Interval

CIMD Confidence Interval around the median

DLL Dynamic-link library

ERP Enterprise Resource Planning

EXP Explorer.exe

FA Failure Association

FAC Failure Association Candidate

GUI Graphical User Interface

HW Hardware

IBM International Business Machines Corporation

I/O Input/Output

ID Identification

IE Internet Explorer

IEU Internet Explorer Update

IT Information Technology

IV Independent Variable

LCE List of Candidate Events

lFAC Lists of Failure Association Candidates

LLNL Lawrence Livermore National Laboratory

LPS List of Potential Sequences

lrpn List containing all occurrences of the RF researched and its PFEs
and/or NFEs

macOS Macintosh Operating System

MD Median

MLR Multinomial Logistic Regression

MS Microsoft

N/A Not Applicable

NetU .Net Framework Update

NFE Next Failure Event

OffU Microsoft Office Update

OS Operating System

OSAPP OS Application

OSKNL OS Kernel

OSSVC OS Service

PFE Previous Failure Event

RAC Reliability Analysis Component

RAPP Reliability of the User Applications layer

RF Reference Failure

RHW Reliability of the Hardware layer

RM Reliability Monitor

ROS Reliability of the OS layer

RPC Remote Procedure Call

RSystem Reliability of the System

Sample_ALL Sample that contains both OS and User Application failures

Sample_OS Sample that contains OS failures.

Sample_USERAPP Sample that contains User Application failures

SD Standard Deviation

SDF SQL Compact Edition Database File

SI Search Interval

SIDS Sudden Infant Death Syndrome

SQL Structure Query Language

SVM Support Vector Machine

TG Time Generated

UB Upper Bound

USA United States of America

USERAPP USER Applications

UTC Universal Time Coordinated

VSU Visual Studio Update

WER Windows Error Reporting

Win7 Microsoft Windows 7

WinU Windows Update

WUS Windows Update Service

NOTATION

β Vector of parameters of the Multinomial Logistic Regression
(w/ and w/o Ridge regularization).

β0 Intercept of the Multinomial Logistic Regression (w/ and w/o
Ridge regularization).

βT Transpose of the parameters vector of the Multinomial
Logistic Regression with Ridge regularization.

Δt Time difference between two failure events.

λ Penalty applied to the parameters of the Multinomial Logistic
Regression with Ridge regularization.

 Probability of occurring a failure event.

F1→F2 The symbol “→” does not necessarily imply causation; this
symbol indicates the temporal order of the failures. F1 is the
first failure to occur followed by F2.

F1hh:mm→F2hh:mm The superscripts (hh:mm) indicate the respective failure times
in hours (hh) and minutes (mm).

F1Cause_A→F2Cause_B The superscripts (Cause_A and Cause_B) indicate the
respective failure causes. In Win7 they are usually shown as
hexadecimal codes, but their format is platform-specific.

Gini index Splitting criterion that is used to decide the order of the
independent variables in a Decision Tree.

IV_* Independent variable in the Decision Tree plot.

ln Natural logarithm.

 Probability of Y given X.

R2 The McFadden’s pseudo R2 measures the amount of change by
using the independent variables versus not using them.

s Spearman's Rank correlation coefficient.

XΔt Represents the Δt between failures in sequences composed of
two failure types, in the Multinomial Logistic Regression with
Ridge regularization.

xΔt Vector of two dummy independent variables of the Δt in
sequences composed of two failure types, in the Multinomial
Logistic Regression with Ridge regularization. The first
dummy variable refers to “Minimum ≤ Δt ≤ Median” and the
second to “Median < Δt ≤ Maximum”.

xb Vector of dummy independent variables of all possible failure
types that immediately precede the last failure (dependent
variable) of sequences composed of two failure types, in the
Multinomial Logistic Regression with Ridge regularization.

xb1 Vector of dummy independent variables of all possible failure

types that immediately precede the last failure (dependent
variable) of sequences composed of three failure types, in the
Multinomial Logistic Regression with Ridge regularization.

xb2 Vector of dummy independent variables of all possible failure
types that occurred previously to the Xbefore_1 in sequences
composed of three failure types, in the Multinomial Logistic
Regression with Ridge regularization.

XBefore Represents the failure event immediately preceding the last
failure (dependent variable) of sequences composed of two
failure types, in the Multinomial Logistic Regression with
Ridge regularization.

XBefore_1 Represents the failure event immediately preceding the last
failure (dependent variable) of sequences composed of three
failure types, in the Multinomial Logistic Regression with
Ridge regularization.

XBefore_2 Represents the failure event that occurred previously to the
Xbefore_1 in sequences composed of three failure types, in the
Multinomial Logistic Regression with Ridge regularization.

xKNL Dummy independent variable of the OSKNL category, indicating
that occurred (xKNL = 1) or not (xKNL = 0) immediately before
the last failure (dependent variable) of sequences composed of
two failure categories, in the Multinomial Logistic Regression.

xsvc Dummy independent variable of the OSSVC category, indicating
that occurred (xSVC = 1) or not (xSVC = 0) immediately before the
last failure (dependent variable) of sequences composed of
two failure categories, in the Multinomial Logistic Regression.

xUSERAPP Dummy independent variable of the USERAPP category,
indicating that occurred (xUSERAPP = 1) or not (xUSERAPP = 0)
immediately before the last failure (dependent variable) of
sequences composed of two failure categories, in the
Multinomial Logistic Regression.

Y Dependent variable of the Multinomial Logistic Regression
(w/ and w/o Ridge regularization).

 1

1. INTRODUCTION

1.1 Context
Nowadays, it is indisputable that software has become the backbone of

modern society. Critical systems, in areas such as energy and water supply,
transportation, telecommunication, finance, and many others, are extensively
dependent on software. This ubiquity of software makes the failures of such
systems have a significant impact on human lives, causing from simple
inconvenient to catastrophic damage (e.g., [1], [2]). Some examples of high impact
software failures follow:

 Therac-25: Problems in the software responsible for controlling the Therac-
25 radiation therapy machine caused a series of accidents between 1985
and 1987, in which patients were given overdoses of radiation, resulting in
deaths or serious injuries [3].

 Ariane 5: In June 1996, the unmanned Ariane 5 rocket exploded forty
seconds after its launch. The cost of the project was approximately $7
billion. The cause of the problem was a numerical conversion bug in the
rocket's inertial control software [4].

 Knight Capital Group: In August 2012, the American company Knight
Capital Group lost $440 million. Problems in the trading software from
Knight Capital Group caused a flood of erroneous orders on the New York
Stock Exchange, affecting both the company and the USA stock market [5].

 Boeing 737 Max: More than 300 people were killed after two crashes in
October 2018 and March 2019 of the aircraft model 737 Max. These
accidents were caused by failures on a stall-prevention software system
that pushed the nose of the planes down. The 737 Max family of aircraft has
been grounded by the USA since March 2019 and has cost Boeing and
airlines billions of dollars [6], [7].

Note that the concern with the reliability of computer systems should not be
exclusively on critical, specialized, and customized systems, since these systems
very often use parts of general-purpose software, especially operating systems. For
example, according to [8], critical USA Navy military navigation systems and ABB
power plan IT systems run on top of regular Windows operating systems, which is
a commercial off-the-shelf non-specialized software. In these examples, failures in
the Windows operating system can impair the operation of critical applications
that have high-reliability requirements. Another similar example is the wide use of

2

Linux operating systems on different non-critical and critical embedded systems
(e.g., [9], [10]).

Nowadays, software failures, instead of hardware or human failures, are
responsible for most of the computing systems downtime [11]. Because of the high
dependence of society on software systems, ensuring the quality of the software
has become a major requirement. We can measure the quality of software using
attributes like functionality, usability, capability, maintainability, reliability,
security, and performance. However, reliability is considered the principal quality
factor among these attributes, since it takes into account software failures that are
responsible for most of the unplanned inactivity of computer systems [12].
Formally, software reliability is defined as the probability of failure-free software
operation for a given time, in a particular execution environment [13].

Given the increasing importance of the correct functioning of software
systems, software reliability engineering emerges as a sub-discipline of system
engineering that focuses on engineering techniques that try to quantify and
guarantee the reliability of these systems. A fundamental need for software
reliability engineering is to comprehend how software systems fail, which means
understanding the dynamics that govern the manifestation of different types of
failures that threaten software reliability. In general, software systems fail due to
single-event failures or multiple-event failures [14]. The former is characterized by
a lone failure event, which happens suddenly, with no other associated
(predecessor/successor) failure events. On the other hand, the latter is
characterized by a sequence of failure events, which varies in terms of length,
duration, and combination of failure types. In both types of failure manifestation,
their practical effects on the system vary from service degradation and
malfunctioning to its hang or crash.

Reviewing the software reliability literature, we note that most of the
empirical and experimental studies in this field have focused on single-event
failures (e.g., [8], [15], [16], and [17]). In addition to investigating this type of
failure manifestation, I believe that learning about multiple-event failure patterns
is essential towards more effective and accurate software reliability approaches,
being valuable from different theoretical and practical perspectives:

 Failure prediction/avoidance can be improved through the runtime
detection of patterns of failure sequences.

 Software reliability assessment can benefit from analytical models that
consider different types of failure associations – most of the current models
assume that software failures are stochastically independent.

 The software testing process can be reduced by focusing efforts on failures
that initiate sequences of failures.

Hence, in this research, I present an exploratory study on multiple-event
failures. This study aims to (i) improve the understanding of multiple-event
failures in real software systems, investigating their occurrences, associations, and
causes; (ii) propose analysis protocols that take into account multiple-event failure
manifestations; (iii) take advantage of the sequential nature of this type of

 3

software failure to perform predictions. The failures analyzed in this research were
observed empirically. To have a complete comprehensive view of how different
software failures may affect each other, I investigated the failure behavior of a
commodity operating system (OS) and User Applications running on top of it. It is
important to point out that the proposed approach is not dependent on any
specific failure data type, so it also can be applied to failure data from any other
software systems, with minor changes.

1.2 Significance of the Study

Since the reliability of software systems has become a major requirement,
several analytical models have been proposed to evaluate and quantify software
reliability [18]. We can summarize these models as either black-box or white-box.
The black-box models estimate the reliability of the software through its failure
history, assuming a parametric model based on the time between failures or the
number of failures over a specific time interval [17]. From another perspective, the
white-box models estimate reliability through the representation of the software
structure and are, for the most part, restricted to the operational phase of the
software life cycle [19].

According to [20]-[22], a common characteristic among the majority of these
reliability models is to assume that software failures occur independently.
Although this assumption may interfere, significantly, with the results of the
software reliability assessment, it is often used to adapt analytical models to
mathematically treatable forms and simplify the estimation calculation of the
model parameters. The problem is that this assumption of independence can lead
to important consequences when the events of interest are not independent.

For example, in 2004, the British government announced that 258 murder
trials would be reviewed given the improper use of this assumption [23]. These
trials occurred in the context of sudden infant death syndrome (SIDS) or “cot
death” in Britain, which refers to the death of healthy infants. These are mysterious
circumstances that post-mortem exams cannot distinguish natural deaths from
parental negligence or abuse. Therefore, based on Meadow’s law, advocated by the
prosecution witness Professor Sir Roy Meadow, that “one cot death is a tragedy,
two cot deaths is suspicious and, until the contrary is proved, three cot deaths is
murder”, many innocent parents were sent to jail. This law assumes that cot deaths
are entirely random, however, these mysterious deaths could have been linked by
some unknown factors, something genetic for example, which would increase the
chance of a family that had suffered one cot death to suffer another [24].

To exemplify this problem in the context of software reliability, consider a
software system application composed of three modules arranged reliability-wise
in series, i.e., the failure of any module causes the failure of the whole application.
Suppose that the first module (m1) failed, consequently, the whole system went
down. However, whenever a module fails, it is restarted to get the system back up
and running. The reliability of each module is assumed to be 0.995, 0.987, and
0.973, respectively, for a 100-hour mission time. The system reliability (Rs) for that
mission time after a first m1 failure is calculated from the reliability of each
module (Rm1, Rm2, Rm3) as follows:

4

Now, suppose each time the system is restarted due to m1 failure, the m2
reliability is reduced by 20%. In this case, there is dependency among some
modules. Therefore, the system reliability after a first m1 failure can be calculated
as:

Note that when failures of the modules are assumed to be independent, the
estimated system reliability is 95.55%, otherwise, it is 75.32%. This example
shows that the accuracy of the reliability estimate of a system can be affected, in a
non-neglectable way, when considering or not the assumption of independence.
Hence, in contrast with the common practice of assuming failure independence in
software reliability modeling, I initially investigate the existence of failure
dependence in software systems. For this purpose, I create a data-driven approach
that looks for patterns of failure associations, which means to search for evidence
of failure dependence. This approach uses field failure records collected from
different computers and work environments, and it helps one to test whether the
failure independence assumption holds for a given real software system being
reliability-wise modeled.

Once patterns of failure associations are discovered for a given system under
study, the assumption of failure independence does not apply anymore, and
patterns of failure sequences can be characterized. For this purpose, I create a
method to search for patterns of failure sequences focusing on understanding the
underlying mechanisms governing the multiple-event failure behaviors. When
these behaviors can be understood then online failure prediction becomes feasible,
especially for cases in which the time between failures, in a sequence, is long
enough to anticipate actions. Since the impact of failures on software systems can
be massive, early prediction of their occurrence plays a significant role in
reliability engineering. Therefore, I conclude this study by proposing a statistical
prediction approach that estimates the failure occurrence probabilities based on
patterns of failure sequences.

Figure 1.1 shows a scenario of multiple-event failures (failures A, B, and C),
which can be proactively handled by the proposed approach once it knows the
ongoing pattern of chained events. In this example, given that failure A is known to
precede (→) failure B that in turn is also known to precede failure C, next time
failure A is perceived by a failure detector, it can perform actions to prevent the
occurrence of other failures expected to occur right after failure A (e.g., failures B
and C).

 5

Figure 1.1. Avoiding future failures by employing preventive actions.

As can be observed, the symbol “→” indicates the temporal order of the
failure occurrences belonging to the sequence analyzed and will be used
throughout the document. Moreover, note that more than one sequence of failures
can be initiated by the same failure type (Table 1.1), which requires analyzing the
different occurrence probabilities of the possible sequences to make a decision.
Once the next most probable event to occur is established, then proper preventive
measures can be employed to prevent that failure type.

Table 1.1. The occurrence probability of multiple-event failure patterns.

Pattern Probability

Failure A→Failure B→Failure C 70%

Failure A→Failure D 25%

Failure A→Failure E 5%

1.3 Research Questions

 Do software systems present systematic multiple-event failure
manifestations?

o If so, are these failure manifestations systematic enough to be
considered patterns?

o If so, could we use these patterns to predict future failures? At
what level of accuracy? Would it be feasible to be implemented
as part of an online failure prediction system?

 How OS and User Application failures affect each other?

1.4 Hypothesis

The first hypothesis tested in this study is that real software systems may
present systematic multiple-event failure manifestations; which is a behavior that
must be taken into account to fully assess the software reliability. Derived from
this hypothesis, the second hypothesis tested in this study is that patterns of
multiple-event failures could be used to prevent future failures given that we can
take advantage of the sequential nature of these failures to perform prediction and
preventive actions.

Proactively handle
future failures

Failure A → Failure B → Failure CFailure A

Failure A → Failure B →Failure A

Failure A →Failure A

6

1.5 Goals

General:

 Investigate how to incorporate patterns of multiple-event failures in
predictive models for software systems.

Specifics:

 Test the hypothesis of independence of failure events in real-world system
failure data.

 Check how OS and User Application failures affect each other.

 Discover and examine patterns of software failure occurrences in real
systems.

1.6 Outline

The remaining chapters of this work are organized as follows:

Chapter 2 presents the theoretical foundation that underpinned this study,
covering theoretical concepts of software failures, the type of failure categorization
adopted in this study, and the statistical methods used for failure prediction.
Finally, it brings a review of the related literature.

Chapter 3 describes the sample of failure data used in this study. First, it
explains the choice of the real-world commercial software product analyzed.
Subsequently, I present the failure data collection method used, how the failure
records were characterized, and finally a descriptive statistical analysis of the
whole dataset.

Chapter 4 introduces the protocol created to discover patterns of failure
associations, along with the taxonomy proposed to define various concepts used in
the protocol. Besides, this chapter describes the algorithm developed to discover
patterns of failure sequences. It concludes with the proposed prediction approach
based on failure sequence patterns.

Chapter 5 presents the results of this research. Based on an empirical
exploratory study, I evaluate the hypotheses presented in Chapter 1, as well as
assess the methods described in Chapter 4. These methods are applied to the
failure dataset detailed in Chapter 3, and I discuss the most relevant results and
findings observed.

Finally, Chapter 6 presents final considerations on this study, highlighting the
main results obtained, my conclusion, the threats to the validity of the research,
the contributions to the literature, and the next steps planned for this research.

 7

2. BACKGROUND

2.1 Theoretical Framework

The software failure taxonomy adopted in this study was defined in [25],
which has broad acceptance by the software reliability community. In addition to
the failure taxonomy, in [25] the authors present the main definitions related to
the dependability of computer systems, which is a general concept that
encompasses different system quality attributes. In this context, dependability is
concerned with the confidence one can have in the correct system operation.
Therefore, the dependability of a computer system is its ability to provide a service
in which its users can justifiably have confidence in its operation. The
dependability attributes defined in [25] are:

 Availability: readiness for correct service.

 Reliability: continuity of correct service.

 Safety: the absence of catastrophic consequences on the user(s) and the
environment.

 Integrity: the absence of improper system alterations.

 Maintainability: ability to undergo modifications and repairs.

This study focuses on the Reliability of software systems. I use one of the
main elements adopted to assess the reliability of a system, its failures. According
to [26], the failure time is the most important variable when it comes to reliability.
Both the black-box analytical models (e.g., [16], [18], and [27]) and the models
using the white-box approach (e.g., [22], [28]) require information about the
system failure behaviors. Therefore, it is essential to understand how failures
occur in a system to allow the assessment of its reliability and thus to fully
represent the real perception of its dependability.

Section 2.1.1 revisits the core concepts of software failures and how they
occur in general, both notions introduced by the seminal work presented in [25].

Section 2.1.2 presents the particular semantics of operating system failures
as considered in this study.

Sections 2.1.3, 2.1.4, 2.1.5, 2.1.6 describe the statistical models which I rely on
to predict future failures based on patterns found in field data.

Section 2.1.7 presents how the statistical models are evaluated.

Finally, in Section 2.2, I present and discuss the related work.

8

2.1.1 Software Failures

To define terms such as software errors and failures, firstly it is necessary to
present some basic concepts described in [25] to aid the understanding of these
terms. These concepts are:

 System: is an entity that interacts with other entities, i.e., other systems,
including hardware, software, humans.

 Environment: other systems that interact with a particular system are
referred to as the environment of that system.

 System boundary: is the common frontier between the system and its
environment.

 System function: is what the system is intended to do.

 System behavior: is what the system does to implement its function.

 User: is another system that receives service from the system provider.

 Service: the service delivered by a provider system is its behavior as it is
perceived by its user.

 Service interface: part of the provider’s system boundary where service
delivery takes place.

 Total state: is the set of the following states: computation, communication,
stored information, interconnection, and physical condition.

 External and internal state: the external state is the part of the provider’s
total state that is perceivable at the service interface; the remaining part is
the internal state. The delivered service is a sequence of the provider’s
external states.

 Use interface: the interface of the user at which the user receives the
service delivered by the provider system.

The service delivered by a system consists of a correct service when the
service implements the system function, i.e., the service provided is in accordance
with what the system is intended to do. A failure occurs when the delivered
service does not comply with the functional specification, or when this
specification does not adequately describe the function of the system. A system is
considered to have failed when its output is received by the system user and is
perceived as an unexpected or wrong result, i.e., the service provided does not
follow the specified functional specification.

Since the delivered service is a sequence of external states of the system
provider, a service failure means that at least one (or more) external system
state(s) deviated from the correct service state. This deviation is called an error.
Therefore, an error is the part of the system state that can lead to service failure.

Errors can be successively transformed into other errors; this transformation
is called error propagation. Error propagation causes a system to fail if the error is
propagated to the system service interface, causing the service to deviate from its
specification, which is perceived by the system user as different from the expected
result.

 9

Figure 2.1. The fundamental chain of dependability.
Source: Aviz ienis et al. (2 4) [25]

Although the perception of the error occurs at the time of service delivery,
the system could have been in error long before. Therefore, failure is the
perception by the system user of an error in the service provided. Many errors do
not reach the external state of the system and therefore do not cause a failure.

The cause of an error is the activation of a fault (defect or bug). A fault is
considered dormant until it is activated. Therefore, activating a fault causes an
error, which may or may not reach the system service interface.

The three dependability threats (i.e., Fault, Error, and Failure) have a causal
relationship called the fundamental chain of dependability. This chain is shown in
Figure 2.1.

When a previously dormant fault is activated by a computation process, it is
referred to as an internal fault. In this case, the execution of a given input causes
the activation of the dormant fault. For example, suppose that a programmer
incorrectly declares the type of a variable in the C programming language,
declaring the variable as int instead of long int. In this case, the fault will lead to an
error only when the variable reaches long int values, exceeding the int type storage
capacity causing an overflow.

The activation of an external fault occurs when the failure of a system
causes a fault (external) on another system (user) that receives the services of the
failed provider system. This case is observed at the end of the fundamental chain of
dependability representation (Figure 2.1).

The following is a description of the semantics of failures considered in this
study.

2.1.2 Software Failures Analyzed

In this study, I analyzed two varieties of software failures — User Application
and Operating System (OS) failures. The first refers to failures in any application
that runs on top of the operating system that does not implement any OS
functionality. The latter comprehends any failure in the operating system.

Specifically for the OS failures, I used an approach introduced in [29], which
determines that if any component of the operating system does not deliver the
correct service as specified for it, then there is an OS failure manifestation.
Therefore, different from the common-sense notion of OS failure, in this study, an
OS failure does not always result in a system hang/crash. This has to do with the
fact that the malfunctioning of the failed OS component may not be severe enough
to prevent the execution of the rest of the system; however, the OS parts that
depend on the failed component may not run properly [30].

10

Note that studies on OS reliability (e.g., [16], [17], [27], [31], and [32]) have
predominantly considered only OS failures in the Kernel space. However, as
explained in [29], the assessment of an OS reliability by focusing on only Kernel-
space failures is inaccurate since modern operating systems have several
components running in both the Kernel and the User spaces. The components in
the first space are critical OS subsystems that run in privileged mode and the ones
in the second space are, in general, integrated OS programs that run in non-
privileged mode. The OS components running in the User space perform their
functions either in the foreground (e.g., OS programs like window manager) or in
the background (e.g., OS services like print spooler). Widely used OS families like
Windows, macOS, and Android, as well as new promising launches such as
HarmonyOS [33], follow the similar architectural design in which the OS failure
semantics above described and adopted in this study apply.

As mentioned above, an example of an OS component running in the User
space and important for the system operation is the window manager application,
which exists in GUI-based operating systems, such as the explorer.exe program [34]
present in operating systems from the Windows OS family. Disrupting the
operation of this program severely affects the user experience, for example,
preventing users from accessing files and running programs. In this example, even
if the OS Kernel is running correctly, from the user's point of view the OS failed
[30].

Based on quantitative analyses, the studies in [29] and [35] demonstrate that
OS reliability metrics computed considering failures in both levels (Kernel and
User spaces) are more accurate than metrics that consider only failures in the
Kernel space. Figure 2.2 compares the OS reliability considering only Kernel
failures (traditional approach) with an approach that considers OS failures at both
Kernel and User spaces. It becomes evident that following the traditional approach
(dashed line) the OS reliability would be considered higher; nevertheless, the
authors of [35] advocate that this result is not representative of the user
experience since, from his or her perspective, the OS reliability is affected by any
failure that causes the impairment or interruption of its features or services
instead of only those confined to its Kernel space.

Figure 2.2. Comparison of reliability curves.
Source: Dos Santos et al. (2018) [35]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
(t)

Time (hour)

ROS(t) RKNL(t)ROS(t) RKNL(t)

 11

The authors in [35] state that the solid curve (see Figure 2.2) would better
represent the OS reliability perception by the users, which can be observed in
practice, for any OS, by comparing the reliability figures provided by the
manufacturer (based on the traditional approach) with the actual users’ quality of
experience regarding the OS reliability. Therefore, following the approach
introduced in [29], this study considered OS failures observed at both (Kernel and
User) spaces. Moreover, the approach considers three categories of OS failures: OS
Application (OSAPP), OS Service (OSSVC), and OS Kernel (OSKNL).

 OSAPP: encompasses failures caused by malfunctioning of OS applications
that run in the User space and on user demand. The Win7 programs
msseces.exe [36] and explorer.exe are examples of OS applications.

 OSSVC: includes failures of OS service components, such as WER [37] and
MsInstaller [38], that run in the background and with minimal or no user
interaction.

 OSKNL: contains failures of OS Kernel subsystems that typically cause the
system to hang or crash.

A detailed description of how the failures were classified is presented in
Chapter 3. The following sections describe the methods used to predict multiple-
event failures.

2.1.3 Multinomial Logistic Regression

Like any other regression model, the goal of analyzing data with logistic
regression is to find the best fitting and most parsimonious model that describes
the relationship between a dependent variable and a set of independent variables
[39]. Note that the logistic regression is used to model a binary or dichotomous
dependent variable (e.g., Success = 0, Failure = 1) by computing the probability
that the dependent variable takes one of the two possible values. The logistic
regression function [39] is expressed as follows:

 (|)

 (1)

where π is the probability of occurrence of an event, β0 is the intercept, β1 to βp are
the regression parameters, and x1 to xp are the independent variables. Note that
this function is nonlinear in its parameters. However, it can be linearized by the
logit transformation [39]. Given π is the probability of an event occurring, the
probability of the event not occurring is:

 (|)

 (2)

therefore, using the odds ratio (i.e., π / (1 - π)), one obtains:

 (3)

12

Finally, taking the natural logarithm of both sides produces a linear function
of the parameters:

 (

) (4)

 Equations 3 and 4 represent the logit transformation, in which the natural
logarithm of the odds ratio is the logit. The importance of this transformation is
that Equation 4 has many desirable properties of a linear regression model, like
being linear in its parameters, the logit, ln (odds ratio), may be continuous and
may range from -∞ to +∞, depending on the range of x [39].

 I focused on a special case of Logistic Regression, the Multinomial Logistic
Regression, which extends the simple Logistic Regression by allowing the
dependent variable to assume more than two values; in this study, this
multinomial regression is necessary due to the varying number of software failure
types investigated. The Multinomial Logistic Regression produces a logit for every
binary relationship. Since the dependent variable can assume any number of
categorical values (with a minimum of three), one of its possible values is placed as
a reference, and the other values are analyzed, in a binary fashion, with respect to
the selected reference. The choice of the reference value may be arbitrary and
changing it does not change the quality of the model; it only modifies the
interpretation of the estimated parameters. Consequently, given k possible values
of the dependent variable, k – 1 logits are created.

 For example, if we wish to analyze the occurrences of one failure
immediately after another (F1→F2), we will be analyzing the relationship of two
categorical variables in which we want to predict F2 based on F1. Values A, B, and
C are the three possible values (i.e., failure types) for the dependent variable (F2),
and values D, E, and F for the independent variable (F1). Since the dependent
variable assumes three levels, we need to create two logit functions, gA(·) and gB(·),
in order to model this problem. In this example, C is used as the reference value,

 (

), (

).

Given that the independent variable is also categorical, it is necessary to use
dummy variables to represent it. The dummy variables are binary variables that
take values 0 or 1, which indicates if an observation does or does not contain the
value that the variable represents. As they are binary, to represent n values, n – 1
dummy variables are needed. Thus, two dummy variables (e.g., xD and xE) are
needed to represent the three levels of the independent variable in the example
above. Hence, the resulting two logit functions are:

 (

) (5)

 (

) (6)

 13

where xD equals 1 if the independent variable assumes the value D, and 0
otherwise; and where xE is 1 if the independent variable assumes the value E, and 0
otherwise. When both xD and xE are equal to zero, then it represents the case that
the independent variable assumes the value F. Note that C is the reference value for
the dependent variable in the logit functions. Thus, gA is a comparison between A
and C. In the same way, gB is a comparison between B and C. The parameters (β0,
β1, β2) are estimated for both logits using the maximum likelihood technique.
Subsequently, one can calculate the probability of each possible value of the
dependent variable given the set of independent variable values [39]. The resulting
conditional probabilities equations are:

 (7)

 (8)

 (9)

Equations 7, 8, and 9 provide the probabilities for all combinations of values
between the dependent and independent variables, i.e., Pr(Y = A, or Y = B, or Y = C |
D, or E, or F). So, one of the main goals of this model is to predict the probabilities
of occurrence of the values of the dependent variable given the values taken by the
independent variables. In this study, the values of the dependent and independent
variables are failure types selected from failure sequence patterns found in the
system logs.

2.1.4 Multinomial Logistic Regression with Ridge Regularization

A challenge in using the Multinomial Logistic Regression is dealing with
sparse data [40], i.e. when there is not enough data to cover all possible
combinations between the dependent and independent variables. For example,
suppose that in the example presented in Section 2.1.3, there is only log data of
failures D occurring before failures A (D→A), but not a single occurrence of D
before B (D→B).

Categorical variables, which are dealt with in this study, are often a challenge
to sparsity, even in seemingly low-dimensional models (i.e., few independent
variables), because typically at least one parameter is needed for each category
(i.e., dummy variables) [41], [42].

Normally, the parameters (β) of the Multinomial Logistic Regression are
estimated using the Maximum Likelihood method. However, when the data is
sparse, the method fails the estimation process [43]. To deal with this drawback of
the Multinomial Logistic Regression, I had to incorporate a regularization method
named Ridge [44]. The Ridge regularization adds a penalty to the estimation
process, shrinking the parameters based on a penalty given by λ * (β2) so that
independent variables with a minor contribution to the outcome have their

14

parameters close to zero. The larger the value of λ, the greater the amount of
shrinkage towards zero, but the parameters never reach zero. On the other hand, if
λ equals zero, there is no penalty in the estimation process. I computed the best
level of penalty using 10-fold cross-validation. To perform the regularization, I
used the glmnet library [45], where the multinomial model of a dependent variable
with k levels Y = {c1, c2, …, ck} is given by:

∑

∑

where, in this study, X represents patterns of preceding failures, x is a vector of
dummy independent variables, β0 is the intercept, βT is the transpose of the
regression parameters vector.

An equation is created for each level of the dependent variable. Note that the
probability of each level is divided by the probability of all other levels. Essentially,
for each level’s equation (e.g., equations above), the Ridge regularization penalizes
its parameters, in which the less relevant ones for the model are forced to be close
to zero. In general, the Ridge helps on reducing the variance and thus making the
model less sensitive to the training data [44].

2.1.5 Decision Tree

Similar to the Logistic Regression, Decision Trees are used to predict
different levels (classes) of the dependent variable, considering the values taken by
the independent variables [46]. As the name indicates, this method creates a tree
structure that segments the training data by applying a series of decision rules. The
tree is created in a top-down fashion (i.e., from the Root to the Leaf nodes). The
Leaf nodes predict the outcomes of the dependent variable and each internal node
acts as a test case for the independent variables where each edge corresponds to
the possible answers to the test cases.

I adopted a well-known algorithm called CART [47] to build the decision
trees in this study. The basic methodology is similar in all trees’ algorithms, but
their main differences rely on the tree structure, the splitting criteria, among other
details. What stands out in the CART algorithm is the lower impact of outliers [48].
Moreover, the trees constructed by the CART algorithm only have binary splits,
simplifying the splitting criterion that is used to decide the order of the
independent variables in the tree (Internal nodes). This simplification of the
splitting criterion makes it faster than the criterion used in the commonly adopted
C4.5 algorithm [49]. The most common splitting criteria used in CART is named
Gini index, which is defined as follows [49]:

 15

 ∑

 (10)

where n indicates the number of levels (classes) of the dependent variable. ci is the
level (class) and si is the number of samples belonging to class ci. Finally, pi = si/S is
the relative frequency of class ci in the data.

The first step to build a Decision Tree is to decide which independent
variable will be the Root node. Therefore, for each of these variables, we calculate
its Gini index. A lower value in the Gini index indicates a high segmentation of the
training sample by the independent variable, placing it in higher positions of the
tree. Figure 2.3 shows how the Gini index is calculated for the independent variable
xD in an example of failure sequences where one failure occurs immediately after
another (F1→F2). The values A and B are the two possible values (i.e., failure
types) for the dependent variable (F2), and values D, E, and F for the independent
variable (F1). Similar to the Logistic Regression, it is necessary to use dummy
variables to represent the categorical values of the independent variables.

Every independent variable acts as a decision in the tree. In the example
depicted in Figure 2.3, the variable xD indicates whether the previous failure is of
type D or not (i.e., can be either E or F). Based on this decision, the training sample
is divided into sequences that have and do not have the type D as the previous
failure. Next, the Gini index is calculated for each subsample (DYes and DNo,
respectively). If all occurrences of failure D happened before the same failure type,
for example, type A (i.e., D→A), Gini(DYes) would reach its lowest value (zero). On
the other hand, if 50% of sequences were composed of D→A and, consequently, the
other 50% of D→B, Gini(DYes) would reach its highest value (0.5), indicating a poor
segmentation of the training sample. Finally, after calculating the Gini index for
both subsamples (Gini(DYes) and Gini(DNo)), we can calculate the Total Gini index
when using xD to separate the training sample, which is calculated by the weighted
average of both subsamples since they have a different number of values.

Figure 2.3. Example of a Gini index calculation.

xD

A: 23, B:106 A: 201, B:45

No Yes

Independent Variables
Dependent

Variable xD xE xF

A 201 10 13
B 45 94 12

16

Figure 2.4. Example of a Decision Tree.

The Total Gini index of xE (Gini(E) = 0.288) and xF (Gini(F) = 0.317) are
calculated in the same fashion. Next, the Total indexes are compared and the
smallest (i.e., Gini(E) = 0.288) is placed as the Root node. Figure 2.4 shows the
resulting Decision tree. Note that both internal nodes (i.e., IV_E and IV_D) have
three attributes:

1. IV_* ≤ 0.5: indicates the decision based on the independent variable
(IV), which, in this case, is whether the previous failure is of a certain
type in a sequence of two failures. For example, the decision in the
Root node, i.e., IV_E ≤ 0.5, indicates that if the previous failure is not of
type E (i.e., IV_E = 0) go to the left edge (IV_E ≤ 0.5 is True), and if the
previous failure is of type E (i.e., IV_E = 1) go to the right edge (IV_E ≤
0.5 is False). Note that the independent variables are either 0 or 1
since they are dummy variables.

2. Sample_Size: indicates the number of training data in the node.
Therefore, the Root node contains the whole training sample. The
other nodes segment the training data based on the decisions. For
example, the internal node to the left of the Root node shows that 271
of the 375 sequences in the training data do not have the failure E as
the previous failure.

3. Class: indicates the dependent variable value with the highest
occurrence for the training data in a node. For example, the Root node
shows that most sequences in the training sample have failure A as the
last failure.

The only attribute Leaf nodes do not have is the first, which indicates the
decision in the internal nodes. Moreover, the last attribute of the Leaf nodes (Class)
indicates the predicted outcome of the dependent variable. Therefore, the Decision
Tree shown in Figure 2.4 can be interpreted as a series of “ifs and elses”:

 If the previous failure is E, the next failure is B

 Else if the previous failure is D, the next failure is A

 Else the next failure is A

 17

Note that it is not necessary to include an internal node to represent failures
of type F, because, in this example, if the previous failure is neither E nor D, it is of
type F.

2.1.6 Random Forest

Decision Trees are considered as easy to build and interpret models (if the
tree is small). Therefore, it emerged as one of the most adopted methods. However,
the Decision Tree models suffer in terms of accuracy [42]. In other words, these
models can have a great fit to the training sample, but they are ineffective when it
comes to classifying new data.

Random Forest combines the simplicity of the Decision Tree with the
flexibility to classify new data. It is part of ensemble methods, which, in this case,
operates by constructing a collection of Decision Trees. These trees are generated
from bootstrap samples from the training dataset. The classification occurs when
the same input is applied to all trees and the most popular class is chosen [50].
Figure 2.5 presents an example of how a Random Forest is created and used. The
red arrows indicate decision paths on every tree for a determined input.

It is important to point out that there is no rule of thumb to determine the
number of trees on a Random Forest. According to [51], Radom Forests should
have a number between 64 and 128 trees. However, this number may change due
to the characteristics of the training data. Therefore, I evaluate 7 setups, starting by
the default value 10 and ending in 128 (i.e., 10, 29, 49, 69, 88, 108, and 128), in
every Random Forest model created and used the most accurate one.

Figure 2.5. Example of a Random Forest.

Training
Data

Bootstrapped
Sample 1

Bootstrapped
Sample 2

Bootstrapped
Sample n...

Decision Decision Decision

Majority of the Decisions

Decision

18

2.1.7 Evaluating the Models Fit

Exclusive for the Multinomial Logistic Regression models without Ridge
regularization I checked how well the models fitted the data using the coefficient of
determination (R2), which indicates the variance in the dependent variable that is
predictable from the independent variable(s) [52]. There are many different ways
to calculate the R2 for Logistic Regression. Unfortunately, there is no consensus on
which R2 measure is the best. According to [53] and [54], the most prominent one
and most often reported in statistical software is the McFadden’s pseudo R2 [55].
Therefore, I choose it to compute the models’ goodness of fit. The McFadden’s
pseudo R2 measures the amount of change by using the independent variables
versus not using them. Thus, it indicates the difference of fit between using the
model relative to using no model at all [54]. The pseudo R2 < 0.05 indicates poor fit
and the pseudo R2 > 0.20 indicates a very good fit. A pseudo R2 > 0.40 is rarely
observed [53]. The maximum value (pseudo R2 = 1) is a theoretical value that
implies that all predicted probabilities would either be one value or the other in
the binary relation of the logit; which is impossible to fit with a logistic curve, given
that multinomial logistic models assume that the dependent variable cannot be
perfectly predicted in any case [53].

For all models, I adopted a cross-validation approach to measuring how
accurate the model is to predict the dependent variable based on the independent
variables. In order to calculate this measurement, I split the work sample into
training and test samples. To decrease the bias of selecting between these two data
sets, I randomly split the data as follows: training (70%) and test (30%). I estimate
the models based on the training set and test their accuracy against the test set,
which contains data unseen during the model fitting phase; this approach provides
an unbiased evaluation of the models’ accuracy. The model’s accuracy is defined as
the number of correctly predicted values of the dependent variable with respect to
the total number of sequences in the test set.

2.2 Related Work

Looking at the software reliability literature, especially related to operating
system reliability, it can be seen that most of the studies are based on failure logs.
Hence, next, I review works that proposed models for estimating software
reliability by taking into account the dependency of failure events. Subsequently, I
analyze works that proposed approaches to handle sequential pattern analysis.
Finally, I discuss studies that proposed failure prediction approaches.

The authors in [27] collected and analyzed 1,546 Microsoft Windows XP
failures from 200 computers from an academic environment. To collect the failure
data, they used Microsoft’s Corporate Error Reporting software. The authors
concluded that OS failures were much less frequent than User Application failures.
They conjecture that this prevalence can be explained by the interaction of
applications, as well as the extensive use of dynamically linked library files that are
invoked by multiple applications and are not robust enough.

In [16], the authors used the BOINC Crash Collector to collect and classify
2,528 Windows XP Kernel failures. BOINC is a platform for grouping resources

 19

from volunteer computers to collect data and perform distributed calculations. As
a result, the authors collected OS Kernel failures from 617 volunteer computers.
Through failure data-mining, they found that poorly written device drivers caused
more than 75% of the operating system failures.

Corroborating the results presented in [16], the authors in [17] also reported
that device drivers were the main cause of OS Kernel failures in the systems they
investigated. The authors pointed out that device drivers accounted for more than
70% of the Linux Kernel code at that time, and Windows XP introduced more than
35,000 different device drivers. They concluded that third-party extensions, at the
Kernel space, were a major cause of failures of Windows XP, with device drivers
accounting for 85% of reported failures.

Note that the three above-mentioned studies only considered Kernel-space
failures as OS failures, which does not offer an accurate analysis of the OS
reliability as a whole, since modern operating systems have parts running at both
Kernel and User spaces [29]. In order to cover this issue, the authors in [56] used
the OS failure classification proposed in [29], which considers not only Kernel
failures as OS failures, but also OS application and OS service failures; these two
other failure categories are observed at the User space. They found that OS service
failures prevailed over OS Kernel and OS application failures, which had similar
occurrence frequencies. Based on the statistical analysis of the OS failure times, the
authors found that the density functions that best fitted the failure times were
Gamma and Weibull.

All the above-cited works did not consider the dependence between OS
failures, which can result in less accurate, or even erroneous, reliability
assessments. As mentioned in Section 1.2, most software reliability models in the
literature assume that software failures occur as statistically independent events,
mainly to mathematically simplify the reliability analysis. As a result, the estimated
reliability metrics obtained employing these models may differ significantly from
the real reliability in cases where failures are not independent.

In [22], a software reliability-modeling framework that considers the
dependency between failures was proposed. The framework uses the Markov
renewal modeling approach [57], which is flexible enough to model failure
dependency; but the large state space problem can be a serious drawback.
According to the authors, to apply their framework in real scenarios, it is necessary
to develop more detailed and specific models within the framework, as well as the
use of statistical inference for the models’ parameters. Such inferences are only
possible based on field failure data. Other research works (e.g., [20], [28]) also
proposed theoretical models to estimate software reliability incorporating failure
dependence. However, none of them used empirical evidence to support or
validate their models.

In [58], the authors showed that assessing the reliability of software in an
artificial environment can produce an incomplete and imprecise estimate of its
reliability due to the significant influence of the system environment. They
highlight the importance of using real field data for reliability modeling purposes.
Performing an empirical study on more than 200,000 computers running the
Microsoft Windows operating system, they analyzed User Application failures and

20

found that the reliability of individual applications is affected by other applications
installed on the system. Moreover, environmental factors such as the hardware
and workload also influence the reliability of the applications analyzed. Therefore,
the analysis in a single environment can result in a less accurate assessment. To
mitigate the effect of a particular environment, in this study I consider as patterns
only those failure combinations that regularly occurred in different computers
from different workplaces.

In this study, I analyzed failure logs, which are, essentially, sequences of
events ordered by their timestamp. Since sequence data is frequently observed in
many fields, I searched for approaches that dealt with discovering sequential
patterns. In the sequential pattern mining field, I found several approaches whose
task is to find all frequent subsequences in a sequence database. In this case, a
subsequence is classified as a frequent or a sequential pattern if it occurred in no
less than a user-specified threshold [59]. The most popular approaches are GSP
[60], Spade [61], PrefixSpan [62], Spam [63], and Lapin [64]. All these methods
take as input a sequence dataset and the user-specified frequency threshold. These
approaches only differ on how they discover the sequential patterns. Therefore,
they should have the same output when running with the same input [59]. Besides
the need for a threshold specified by the user, these methods allow gaps between
consecutive events [65]. For example, if a sequence dataset has three sequences: S1
= {CAGAAGT}, S2 = {ACAGT}, and S3 = {GAAGT} and threshold of three (i.e.,
sequential patterns should be present in each sequence), then the subsequence
{AT} is considered a pattern although these two events are not consecutively after
each other in the sequences. As a consequence of allowing gaps between
consecutive events, these methods are not suited for this work because gaps may
lead to erroneous decisions when analyzing distant (in time) failure events as if
they happened together, which is undesired in the problem under study.

In the search for a new approach to discover sequence patterns without gaps
between consecutive events, I found the substring mining field. The most common
approach to mine substrings is called suffix tree [65], which, as the name suggests,
creates a tree of suffixes for a string. Other strings can be incorporated into the
suffix tree of a string and the frequency of a certain suffix (substring) occurring in
multiple strings can be calculated. In this study, the suffixes would be considered
as subsequences of failure within the failure logs (dataset), which would be treated
as sequences. However, the timestamp of the events is neglect in both substring
and sequential pattern mining. Differently, in my proposed approach, the
timestamp is essential to the analysis because it provides information about the
consistency of the associations. Moreover, I ensured that the associations found
were patterns that repeated themselves in various groups of the dataset since I am
interested in only systematic associations. It is important to point out that, after
searching the literature, I did not find well-known methods that could be used to
discover patterns of failure sequences, which ruled out the possibility of
comparison analyzes between my approach and an alternative one.

Concerning failure prediction, the authors in [66] analyzed failure events of
the IBM BlueGene/L supercomputer located at the Lawrence Livermore National
Laboratory (LLNL). They analyzed more than a million events occurring in various
system components, in which the failure events were extracted and categorized
according to the subsystem in which they occur: memory, network, application

 21

I/O, midplane switch, and node card failures. However, they did not describe the
types of failures occurring in each subsystem, which is important to fully
understand and characterize the behavior of such failures. The authors partitioned
the time into fixed intervals and then tried to forecast whether there would be
failure events in each interval based on the event characteristics of the preceding
intervals. They could predict 80% of the memory and network failures, and 47% of
the application I/O failures. Moreover, the authors observed that fatal failure
events (i.e., failure events that caused system crash/hang) usually occurred after
non-fatal events. However, they noticed that the time interval had a substantial
impact on prediction accuracy. As this time decreased, the prediction difficulty
increased rapidly, leading to degraded performance. Given this drawback, in this
study, I adopted a data-driven approach in which a failure sequence is only
considered as input to the prediction methods when the time between the failures
composing it is similar and consistently observed on other occurrences of the same
sequence in the dataset.

The authors in [67] used random indexing to represent the sequence of
operations extracted from system logs and then applied Support Vector Machines
(SVM) to separate normal and abnormal sequences. They reported that their
predictor was able to almost perfectly detect non-failure conditions but was poor
at identifying failure ones. They had better results, with most true positive rates
higher than 0.50, by using a weighted SVM to account for this discrepancy by
assigning a larger penalty for false negatives than false positives. However, I
conjecture that it is infeasible to perform this analysis in large software systems
because the system would have to store an enormous amount of both non-failure
and failure events. Moreover, using non-failure events to predict failures could
generate numerous false positives.

As can be observed in this section, in general, most empirical studies on
software reliability do not consider the possible relationships between failure
events. This work not only provides empirical evidence of dependency between
failures but also investigates the nature of this dependency, that is, how different
failures relate to each other. Different from the studies that proposed theoretical
models to estimate software reliability based on the correlation between failures,
but without using the information on actual failure data, the present study
investigates these failure associations based on failures observed in real work
environments. Moreover, this work presents a prediction approach using sequence
patterns of multiple-event failures.

22

3. MATERIAL

3.1 Introduction

The purpose of this chapter is to describe the failure dataset analyzed in this
study, as well as the details involved in its collection and how its failures are
categorized. It is important to point out that the dataset’s failure collection process
was not part of this research, but it was performed during [29] and [56].

In Section 3.2, the software system under study is presented, as well as the
justifications of its adoption in this study.

Section 3.3 describes the mechanism for collecting the failure data.

Finally, in Section 3.4, I explain the dataset-stratification approach adopted
and present a detailed description of the work sample.

3.2 Software Under Study

In most computer systems, the software layer is divided into User
Application software (or simply application) and Operating System software. Given
the hierarchical nature of these two tiers, applications fully depend on the
operating system (OS) to be executed [35]. Due to this technical dependence, OS
failures can severely impair even the most reliable application software [30].
Therefore, if the OS layer does not guarantee, at least, the same level of reliability
expected for the user-level application, the whole system reliability is
compromised [56].

Figure 3.1 illustrates the above-mentioned scenario, in which the computer
system’s reliability as a whole decreases due to the lower OS reliability, although
the other system’s layers (hardware and applications) are highly reliable
(99.999%). Despite the evident importance of an OS failure-free operation to help
ensure system reliability, an extensive review of the software reliability literature
shows a lack of research works targeting operating systems.

Given the importance and lack of research in this field, this empirical study
initially focused on operating system software reliability. In particular, I assessed a
commercial off-the-shelf operating system, given that nowadays this class of OS
has been used in systems requiring high reliability [8]-[10]. Moreover, to have a
holistic viewpoint on the reliability of the software layer, I also considered User
Application failures (USERAPP). User Applications are usually installed by the user
or are installed along with the OS installation but do not implement any OS

 23

Figure 3.1. Systemic reliability.
Source: Dos Santos et al. (2018) [35]

functionality. The Microsoft Internet Explorer and Microsoft Notepad programs
are examples of User Applications that are installed together with the Microsoft
Windows 7 OS.

The field data used in this study were collected between the years 2010 and
2014 [56]. The analyzed dataset is composed of failure records collected from logs
of computers running Microsoft Windows 7 (Win7) in different production
environments. Note that, at the above-mentioned collecting period, Win7 was the
most used commodity OS, and nowadays this is still one of the most used OS
having more than 23% of the market share [68]. Moreover, I conjecture that most
of the empirical findings revealed in this study may be analogous in other
operating systems from the same OS family (e.g., Windows 8/8.1/10).

Due to its wide utilization in different work environments, Win7 was chosen
as the target software of this study. The next section explains how Win7 logs and
stores its failures and the mechanism that was used to collect them.

3.3 Data Collection

Windows 7 provides detailed failure records through its Reliability Analysis
Component (RAC) [69]. The RAC stores Win7’s failure data into a single file (SQL
Compact Edition Database File) named RacWmiDatabase.sdf. The RAC collects all
failure events on the computer since the OS installation date, and it is
automatically enabled during the installation of the operating system. Then, it
starts creating and storing a log record for every failure event in the computer
[70], which contains ten fields as described below:

 ComputerName: specifies the canonical name of the computer in which the
failure record was generated.

 EventIdentifier: identifies the failure event — a numerical value assigned to
the source (application, service, or Kernel subsystem) that stored the failure
record into the log file.

 InsertionStrings: contains textual information (detail strings) that
supplements the failure report.

 Logfile: specifies the name of the event log file.
 Message: specifies the event message as it appears in the event log file.
 ProductName: specifies the product (program) name that is associated with

the failure event.
 RecordNumber: identifies the failure record entry within the event log file.

24

 SourceName: specifies the name of the source (application, service, or
Kernel subsystem) that generated the failure event.

 TimeGenerated: specifies the time in UTC at which the source generated the
event, that is, the moment that the failure event was registered by RAC.

 User: specifies the username of the logged-on user when the failure event
occurred.

The data collected by RAC is used in the Reliability Monitor (RM). RM is a tool
that tracks hardware and software problems and other computer changes,
providing the computer’s stability index, which is a value from 0 to 10. The higher
this index, the more stable the system is [71]. Figure 3.2 shows the main screen of
the RM. The data collected by the RAC is visualized through a chart. Note that the
circles represent the events and the line represents the stability index. It can be
seen that the failure of the explorer.exe program, which occurred on 05/21/2012,
directly affected the stability index. By clicking on a specific event one can get
details about it.

Two methods were adopted for data collection [56]. Initially, the RAC files
(.sdf) were manually copied from the surveyed computers, which required local
access to the computers. For every file copied, a paper form was filled out with
information regarding the system’s usage profile and running applications, in
order to characterize the surveyed computer. Complementarily to the onsite data
collection, an online web page was also created to upload the RAC files remotely,
where copies of the characterization form are completed online and assigned to
the uploaded RAC files [72].

Figure 3.2. Reliability Monitor.

3.4 Data Characterization

In total, 644 computers were surveyed, which resulted in 42,209 software
failures. The collected failure data were organized into four groups (G1 to G4).
Failures in the first three groups were collected onsite, and failures in G4 were

 25

collected through the online web form mentioned in Section 3.3. Table 3.1 shows
the usage profiles of the four groups.

Groups G1 and G2 contain failures from computers used in a university
campus. G1 contains failures from computers used in undergraduate teaching
laboratories. These computers are mainly used by students to run applications like
text and graphics editing, web and software development, and Internet browsing.
G2 contains failures from computers used in the university’s administrative offices;
not related to teaching laboratories. Furthermore, the failures in G3 came from a
corporate workplace.

The first three groups are homogeneous, i.e., each one contains failure data
collected from computers located at the same workplace. On the other hand, G4 is
a heterogeneous group, i.e., it contains failure data collected from computers
located at different workplaces, varying from corporate, academic, and
home/personal computers.

Initially, it was performed a manual classification of the failure events found
in a pilot sample of the collected RAC files [56]. The manual classification relied on
the fields EventIdentifier, ProductName, and SourceName. Table 3.2 presents an
example of the failure categorization approach. Most failure events were
categorized based on the fields EventIdentifier and SourceName. However, note
that the first two failure events in Table 3.2 have the same EventIdentifier (1000)
and SourceName (Application Error). Therefore, in this case, it also needed to
analyze the field ProductName. Based on this further analysis, we know that the
second event is related to the chrome.exe program, which is a User Application and
not an OS Application. On the other hand, the first entry is related to explorer.exe,
which is an OS (Win7) Application.

Table 3.1. Computer usage profile per group.

Group Workplace Application Profile

G1 Academic Office apps, graphic editing, software & web development.

G2 Corporate Office apps, graphic editing, software & web development.

G3 Corporate Office apps, software & web development.

G4 Heterogeneous

Office apps, graphic editing, software & web development,
multimedia, scientific & engineering, games, ERP apps.,
point of sale, antivirus, servers: database, web, application,
e-mail, directory, and file/printer.

Table 3.2. Failures categorization.

Event Identifier SourceName ProductName OS Failure Category

1000 Application Error explorer.exe OS Application

1000 Application Error chrome.exe N/A

1002 Application Hang rundll32.exe OS Application

1137 WindowsStartupRepair Windows OS Kernel

20 WindowsUpdate client Windows Update OS Service

26

Figure 3.3. Automatic failure categorization.
Source: Dos Santos, Matias, and Trivedi (2019) [14]

Based on the pilot sample, filters were used to automate the process of
classifying the failures of the whole dataset, based on script programming. Since
the filters were initially created based on a pilot sample, they were refined
progressively, incorporating new failure classification rules as the classification
process evolved to cover the whole dataset.

Figure 3.3 gives an overview of the automatic categorization of the dataset. In
addition to the fields EventIdentifier, ProductName, and SourceName, the script
creates an ID field to identify each failure uniquely in the failure database, and a
Category field that is filled out after the failure categorization. Next, the script
checks whether the failure event, characterized by the fields EventIdentifier,
ProductName, and SourceName, has the corresponding classification implemented
by the filters. If the failure event is known, one of the four categories considered in
this study (OSKNL, OSSVC, OSAPP, and USERAPP) is assigned to the Category field
created for each failure event; otherwise, the script identifies and stores this
failure event record into a list of unknown failure events, which have to be
classified manually through a detailed analysis of all fields of the failure record.
Therefore, if a new RAC file is added to the dataset and contains failure events with
no corresponding classification rules, then the scripts are prepared to identify all
these cases, support their manual classification, and incorporate the newly created
classification rules into the filtering rules database [14]. Table 3.3, shows a
summary of the whole failure dataset per group. Note that in terms of the number
of failures, the most prevalent failure category is USERAPP, followed by OSSVC, OSKNL,
and OSAPP.

Table 3.3. Failure characterization per group.

G1 G2 G3 G4 Total

Sampling period (days) 331 592 378 1,408 2,709

Total of computers 259 262 37 106 644

Total of failures 2,955 21,490 2,299 15,465 42,209

% OSKNL 31.03 1.76 1.52 1.38 3.66

% OSSVC 3.82 12.40 9.31 8.13 10.07

% OSAPP 2.03 1.88 2.48 4.49 2.88

%USERAPP 63.11 83.96 86.69 85.99 83.39

OS failures normalized by
total of computers

11.41 82.02 62.14 145.90 65.54

SourceName

ProductName

EventIdentifier

ID

C
a

te
g

o
ry

EventIdentifier

ProductName

SourceName

ID

Category

ID

OS Failure records

Unknown EventsFiltersOS Failures DatabaseRAC File

 27

Only in G1, Kernel failures predominated in relation to the failures of the
other OS failure categories (OSSVC and OSAPP). This may indicate the influence of
environmental factors (e.g., computer configurations and workloads) present in
this group, which contributed to these failures [30]. Note that the computers with
the greatest number of failures in the four categories were concentrated in groups
G2 and G4.

The data collecting and characterization of the field failure data presented so
far were part of previous related work (e.g., [29], [56]) developed in our research
group. Hence, the contribution of this thesis for this chapter follows.

To identify the main failed components in each category, all failures in the
dataset were subdivided into 1,366 failure types; 35 belong to the OSKNL category,
55 to OSSVC, 23 to OSAPP, and 1,264 to USERAPP. I relied on the field ProductName to
subdivide most failures. However, I also had to analyze the field InsertionStrings
for most OSKNL failures. For example, in Table 3.4 the five OSKNL failure events have
the same SourceName (MS-Windows-WER-SystemError Reporting) and
ProductName (Windows), however, they have different hexadecimal values for the
field InsertionStrings. These hexadecimal values, named Stop Codes, indicate the OS
Kernel component that failed and the possible causes of the failure. The meaning of
each Stop Code was obtained from the official OS technical documentation [73].
The column “OS Failure Type” contains the OSKNL failed components obtained
through the Stop Codes.

Investigating the OS Service category in detail, I found, based on the
SourceName field of its failure records, that 41.81% (23 out of 55) of the failure
types were related to software updates performed by the Windows Update Service
(WUS), which is the standard software update mechanism in Win7; i.e., failures of
this service while executing software update procedures. These WUS failures
corresponded to 87.95% of the total amount of failures in the OS service category
(3,737 out of 4,249). Given this prevalence of WUS-related failures in the OS
Service category, they were grouped into 23 subtypes within the type WUS.

Figure 3.4 gives an overview of the data stratification performed in this
study. I first stratified the failures into failure categories, and then into failure
types. Specifically for the Windows Update Service (WUS), which targets different
software components in the OS, I created subtypes to precisely identify which
update routine failed while it was performing software update maintenance tasks.

Table 3.4. Types of OS Kernel failures.

InsertionStrings SourceName ProductName OS Failure Type

0x00000116
MS-Windows-WER

-SystemErrorReporting
Windows VIDEO_TDR_ERROR

0x000000c2
MS-Windows-WER

-SystemErrorReporting
Windows STORAGE_DRIVER

0x00009088
MS-Windows-WER

-SystemErrorReporting
Windows BAD_POOL_CALLER

0x00000024
MS-Windows-WER

-SystemErrorReporting
Windows NTFS_FILE_SYSTEM

0x000000f4
MS-Windows-WER

-SystemErrorReporting
Windows CRITICAL_OBJECT_TERMINATION

28

Figure 3.4. Dataset stratification.
Adapted: Dos Santos et al. (2018) [35]

Table 3.5 lists the five types of failures that consistently occurred in the
dataset analyzed. They were ranked by three criteria; (i) greater number of groups
the type is observed in; (ii) greater number of computers the type is observed in;
(iii) greater number of occurrences of the type. The numbers in parentheses
represent the total number of each element, e.g., the number in parentheses in
column Category indicates that there are, in total, 4 different categories of failures
in our dataset.

The most consistent failure in the dataset is the iexplore, which is a failure in
the Internet Explorer browser. Other consistent USERAPP failures are from
productivity applications of Microsoft Office, Microsoft Word (winword), and
Microsoft Excel (excel). The sole representative of the OS Application category was
the explorer.exe. This application is responsible for two important features in the
Win7 operating system: window and file management. The former implements the
default desktop environment in Win7’s graphical interface, while the latter is used
to access and navigate the file system in the disk and network storage drives, at the
file and directory levels. Both features are commonly labeled Windows shell in the
Windows OS family’s jargon. The most commonly observed type of Kernel failure
was StartupRepair, which indicates that unspecified changes to the OS
configuration occurred and it restarted to an earlier restore point [74].

I created three different work samples extracted from the above-described
dataset — the first sample contains only OS failures (Sample_OS), the second
contains only User Application failures (Sample_USERAPP), and the third
encompasses the whole dataset, i.e., both OS and User Application failures
(Sample_ALL).

Failures
WUS

SW Failure Failure Category

Failure Type

IEU

Failure Subtype
OSKNL

OSAPP

OSSVC
42,209

3.66%

10.07%

2.88%

87.95% 42.44%

...

...

...

...

Failed Component

USERAPP

83.39%

 29

Table 3.5. Consistent failure types.

Category

(4)

Type [Subtype]

(1,366)

Groups

(4)

Computers

(644)

Occurrence

(42,209) %

USERAPP iexplore 4 329 6,495 15.39

OSAPP explorer 4 205 586 1.39

USERAPP winword 4 197 1,057 2.50

USERAPP excel 4 160 874 2.07

OSKNL StartupRepair 4 160 237 0.56

30

4. METHOD

4.1 Introduction

In this chapter, I describe the method proposed to analyze and predict
multiple-event failure occurrences. It is important to point out that all the
described procedures are automated.

Section 4.2 describes my proposed method to discover patterns of failure
associations. Along with this approach, a taxonomy designed to define several
concepts used is also presented.

Section 4.3 describes the algorithm developed to discover patterns of failure
sequences.

Section 4.4 describes the proposed prediction method based on patterns of
failure sequences.

Note that I used the concepts of failure association (Section 4.2) and failure
sequence (Sections 4.3 and 4.4) to determine the relationship patterns among the
multiple-event failures investigated. Figure 4.1 compares both concepts by
applying the methods described in sections 4.2 and 4.3 on the same failure log.
Section 4.4 adopts a similar approach as presented in Section 4.3 to find patterns
of failure sequences, which later are used in the proposed prediction method.

Observe that for Failure Association in Figure 4.1, the method identifies
failures before and/or after, within a fixed search interval, from two occurrences of
Failure_C. In this case, Failure_C is considered a reference to search for associations
where the failures before and/or after should occur consistently with the
reference. The references are failures that occurred in the greatest number of
groups in the failure sample (i.e., at least three out of the four groups considered in
this research). Moreover, observe that the failure associations have three types of
configurations, reference with only a failure after (e.g., Failure_C→Failure_H),
reference with failures before and after (e.g., Failure_A→Failure_C→Failure_D), and
reference with only a failure before, which is not shown in Figure 4.1. Therefore,
the associations have a maximum length (i.e., number of failures in the association)
of three failures. Furthermore, the repetition of the same failure event is allowed in
multiple associations, as can be seen for Failure_A in Figure 4.1, which is part of the
associations Failure_A→Failure_C→Failure_D and Failure_A→Failure_C→Failure_E.
Finally, the associations can be composed of consecutive failures (e.g.,
Failure_C→Failure_H) or not (e.g., there is a Failure_B between Failure_A and
Failure_C that does not belong to any association because Failure_B is a random
failure that does not occur consistently with Failure_C in other logs of the sample).

 31

Failure Association

Failure Sequence

Figure 4.1. Failure association vs failure sequence.

In contrast, Failure Sequence refers to consecutive failures with no length
limitation. Moreover, a failure event can only compose one sequence (i.e., event
repetition is not allowed). To discover the sequences, the method checks if pairs of
failures systematically occur in multiple computers and groups of computers. For
example, the first pair of failures depicted in Figure 4.1 is Failure_A→Failure_B. If
this pair is not observed in other groups of computers, it is not considered.
Consequently, different from the first method, there is no relationship between
Failure_A and Failure_C for this occurrence of multiple-event failures because of
the random Failure_B between them. However, since Failure_B is just a random
failure that occurred at that time, other occurrences of Failure_A happening
immediately before Failure_C may be observed in the sample and the relationship
may be considered. Furthermore, note that there is no fixed search interval in the
Failure Sequence analysis. In this case, the method analyzes every pair of
consecutive failures, and only the ones with Δt less or equal to the Upper Bound
(UB) of the confidence interval for the median values of Δts are considered. The
confidence interval is calculated by grouping the Δt of all occurrences of a pair in

08/12/2012
08:52

08/12/2012
06:20

08/12/2012
06:11

08/12/2012
06:10

08/12/2012
05:54

08/13/2012
10:10

08/12/2012
05:58

08/12/2012
10:00

Search
Interval

Search
Interval

Associations:

Search
Interval

Failure_a → Failure_c → Failure_dFailure_A Failure_C Failure_D

Failure_a → Failure_c → Failure_dFailure_A Failure_C Failure_E

Failure_c → Failure_dFailure_C Failure_H

Search
Interval

Time

08/12/2012
06:20

08/12/2012
06:11

08/12/2012
06:10

08/12/2012
05:54

08/13/2012
10:10

08/12/2012
05:58

08/12/2012
10:00

Failure_c → Failure_d → Failure_e → Failure_g → Failure_c → Failure_h

08/12/2012
08:52

Failure_C Failure_D Failure_E Failure_G Failure_C Failure_H

≤ UBC→D ≤ UBD→E ≤ UBE→G ≤ UBG→C ≤ UBC→H

Sequence:

Time

32

the sample. For example, the method groups all occurrences of the pair
Failure_C→Failure_D in the sample then calculates the confidence interval for the
median values of their Δts, and subsequently, the Upper Bound (UBC→D) is also
calculated. Finally, the method checks if the current occurrence been analyzed has
a Δt less or equal to UBC→D. What stands out the most in this approach is the
flexibility of using different time thresholds to determine the relationships of the
failures. As can be seen in Figure 4.1, Failure_G was not considered in the first
method because of the fixed time interval but was considered in the second, which
uses a particular time threshold based on Upper Bounds for every pair of failures.

Important to highlight that my approach is not related to pattern recognition,
but pattern discovery. Although it is not uncommon that both terms are used
interchangeably, I emphasize that this method discovers patterns rather than
recognizes them. The main difference is that in the former there is no prior
knowledge of the patterns, as it is necessary for the latter; that is why this study is
classified as an exploratory one.

The proposed method took advantage of the temporal order of the failure
occurrences recorded as time series. According to [76], time-series data occur
naturally in different application areas, such as economics, environmental
modeling, and demographics, among others. Therefore, discovering patterns in
time series is considered an important problem since it could help understand the
phenomenon or problem, and even predict future behaviors. It is known from the
literature that a time series is a set of ordered observations on a quantitative
characteristic of an individual or collective phenomenon, taken at different points
of time. Although theoretically, it is not essential, in practical terms most time
series techniques assume that these data points are equidistant in time [77]. In the
problem investigated in this study, the dataset is a series of OS failure records
ordered in time; however, the observations are not equidistant in time.

The approach to analyzing unevenly spaced time series is to transform the
data points into equally spaced observations, and then applying existing time-
series methods for equally spaced data. However, according to the literature (e.g.,
[78], [79], [80], [81], and [82]), transforming data in such a way very often
introduces significant and hard to quantify biases. In addition to that, since my
analyses involve not a single type of OS failure, but multiple types of OS failures
ordered in time, multivariate time series methods should be applied to evaluate
possible failure associations and related properties. This could amplify the above-
mentioned biases transformation problem, given that the multiple series I deal
with in this study show not only unequal observations in time but also different
numbers of observations spread to different computers. For these reasons, I
decided to propose a new approach that takes into consideration all these specifics
inherent to the investigated problem domain [30].

4.2 Failure Association Discovery Protocol
First, I investigate the existence of patterns of failure associations. For this

purpose, I introduce a failure association discovery protocol that identifies failure
associations exhibiting consistency across different computers used in the same as
well as different workplaces. Initially, a taxonomy had to be established to define

 33

several concepts used in the failure association discovery protocol itself. The
following section contains a description of the elements of this taxonomy.

4.2.1 Taxonomy

 Reference failure (RF): A failure that serves as a base reference to search
for failure associations.

 Previous failure event (PFE): Any failure event that occurs before an RF.
The time gap between a PFE and an RF is called ΔtP.

 Next failure event (NFE): Any failure event that occurs after an RF. The
time gap between an RF and an NFE is called ΔtN.

 Search Interval (SI): The time gap before and after an RF used to search
for PFEs and NFEs.

 Failure Association Candidate (FAC): A combination of failure events,
found when PFEs and/or NFEs occur alongside an RF within a given SI. This
protocol considers three FAC configurations:

o PFE→RF: corresponds to a combination of events obtained from the
analysis of failure events that occurred before a reference failure in a
defined SI.

o RF→NFE: corresponds to a combination of events obtained from the
analysis of failure events that occurred after a reference failure in a
defined SI.

o PFE→RF→NFE: corresponds to a combination of events obtained
from the analysis of failure events that occurred before and after a
reference failure in a defined SI.

Note that in this representation of the three FAC configurations, the reference
failures are always underlined and that the symbol “→” does not necessarily imply
causation; this symbol indicates the temporal order of the failures belonging to the
combination analyzed. Table 4.1 lists examples of all three considered FAC
configurations.

Table 4.1. Examples of failure association candidates.

FAC Configuration ProductName SourceName TimeGenerated

PFE→RF

dllhost.exe
Application

Error
12/11/2012 09:29

explorer.exe
Application

Hang
12/11/2012 09:54

svchost.exe
Application

Error
12/11/2012 18:06

RF→NFE

rundll32.exe
Application

Error
03/12/2012 06:59

explorer.exe
Application

Hang
03/12/2012 14:28

dllhost.exe
Application

Error
03/12/2012 14:46

PFE→RF→NFE

dllhost.exe
Application

Error
08/06/2012 18:59

explorer.exe
Application

Hang
08/06/2012 19:03

dllhost.exe
Application

Error
08/06/2012 19:11

34

These examples in Table 4.1 are shown for didactical purposes only and are
not part of the study results. Each example is a combination of failure events that
occurred within a search interval of 2 h, before and/or after the reference failure.
Through analysis of the RAC record field TimeGenerated (Section 3.3), which
provides the date and time the failure was recorded, it is possible to identify the
time order the failures occur. The shaded rows highlight the failure events that
compose the FACs, while the rows with the underlined field ProductName indicate
the respective reference failures (RFs). All reference failures listed in the table are
related to the explore.exe program (OS Application).

For the FAC configuration PFE→RF, the combination of failure events is
represented by dllhost.exe→explorer.exe. Thus, all dllhost.exe failures that occurred
before the explorer.exe failures, within the 2 h search interval, shall be investigated.
The same rationale applies to the other two configuration examples (RF→NFE and
PFE→RF→NFE).

Despite the case shown in the third combination, in Table 4.1, having PFE
equal to NFE, the occurrences in which both failures are different were also
considered in this study, such as in svchost.exe→explorer.exe→dllhost.exe.

 Failure Association (FA): An FA is detected when the same FAC repeats
itself, systematically, in multiple computers from different groups.

 Rankings: To help identify an FA, a ranking is created with the FACs
ordered by the number of occurrences in different computers and groups.
The more a FAC repeats itself in different computers from different groups,
the higher it will be ranked; this indicates that the candidate association has
consistent evidence to be considered a failure association pattern.

In this study, rankings were created for each search interval and FAC
configuration (e.g., ranking of the FAC configuration PFE→RF for the SI of 4 h). The
composition of a ranking obeys the following criteria, ordered according to their
importance for this study:

1. Greater number of groups the FAC is observed in.

2. Greater number of computers the FAC is observed in.

3. Greater number of occurrences of the FAC.

4. The smaller standard deviation of ΔtP and/or ΔtN for the FAC.

Therefore, firstly, FACs that appear in many different groups have more
evidence to be considered association patterns. In case of a tie in one or more
criteria, then the next criterion is evaluated following the order cited above. To
apply these concepts above-mentioned, I propose a failure association discovery
protocol that consists of seven major stages, which are described below.

4.2.2 Protocol

First Stage:

The first stage selects the reference failures (RFs) and defines the search
intervals (SIs) of interest. To define the reference failures (RFs), the occurrence of
all OS failure types found in the dataset, per group of computers, must be

 35

examined; the more occurrences of the same failure type are observed in different
groups, the greater its consistency and thus its importance for this study.
Therefore, given that the dataset is composed of four groups of computers (G1, G2,
G3, and G4), I defined that the RFs are failures whose occurrences are observed in
at least three groups. In total, 28 reference failures with 6,351 occurrences were
found, from which 56.24% appear in three groups and 43.76% appear in four
groups. Tables A.1 and A.2, in the appendix, show the RFs found.

Regarding the search intervals (SIs), given that the investigated failures are
from desktop computers, I adopted three intervals: 2 h, 4 h, and 8 h, which are
supposedly close to the average working time of these desktop computers in their
respective work environments.

Second Stage:

In this stage, the protocol identifies all previous failure events (PFEs) and/or
next failure events (NFEs) for each RF, within the SIs of interest. First, it identifies
an occurrence of the RF investigated, and based on the field TimeGenerated (TG),
the ΔtP and ΔtN of the failure events that occurred before and after the RF,
respectively, are calculated to determine which of these events occurred within a
given SI, so that they can be added to the lrpn list.

The lrpn is a list containing all occurrences of the RF researched and its PFEs
and/or NFEs that are within the investigated SI. Therefore, each RF has one lrpn
per SI, e.g., RF = Failure_A has three lrpn lists: lrpn- Failure_A-2 h, lrpn- Failure_A-4
h, and lrpn- Failure_A-8 h.

Third Stage:

At this stage, the protocol searches for all PFEs and/or NFEs in all lrpn lists
created in the previous stage, to identify the failure types that occurred along with
a given RF in at least three groups, since it wants to find failure association
patterns that consistently appear in multiple groups. The found failure types are
added to a list of candidate failure events (LCE) per RF.

Table 4.2 shows an example of the failure events added to the LCE for the
case where RF = Failure_A. Only failures of Failure_A and Failure_B are added to the
LCE-Failure_A since they occurred in at least three groups. From the LCE list, all
theoretical possibilities of failure association candidates are generated to be
considered in the next three stages of the protocol, as illustrated in Table 4.3.
Based on this table, one can see that the case where RF = Failure_A and LCE-
Failure_A = {Failure_A, Failure_B} produced eight theoretically possible candidates
of failures association.

Table 4.2. Groups with PFEs and/or NFEs for RF = Failure_A.

RF PFE/NFE Groups with PFE/NFE

Failure_A

Failure_A G1, G2, G3, G4

Failure_B G1, G2, G4

Failure_C G2, G4

36

Table 4.3. Theoretical failure association candidates for RF = Failure_A and
LCE-Failure_A = {Failure_A, Failure_B}.

FAC Configuration FAC Event Combinations

PFE→RF
Failure_A→Failure_A

Failure_B→Failure_A

RF→NFE
Failure_A→Failure_A

Failure_A→Failure_B

PFE→RF→NFE

Failure_A→Failure_A→Failure_A

Failure_A→Failure_A→Failure_B

Failure_B→Failure_A→Failure_A

Failure_B→Failure_A→Failure_B

Fourth Stage:

 This stage consists of searching the dataset for failure event combinations
that match the theoretical FACs generated in the previous stage, for the first
configuration, i.e., PFE→RF. Considering the same example from Table 4.3, in this
stage, the protocol would search the dataset for two possible (theoretical) FACs:
Failure_A→Failure_A and Failure_B→Failure_A.

Figure 4.2 illustrates the execution of this protocol stage, based on the
example described in the previous stage (Table 4.3), and considering the FAC event
combination researched as Failure_B→Failure_A, i.e., PFE = Failure_B and RF =
Failure_A within a search interval of 2 h. First, the protocol identifies an occurrence
of the RF investigated; in Figure 4.2, the Failure_A that occurred at 13:10 is the first
RF occurrence. Next, instead of verifying the PFEs, it verifies the failure events that
occurred right after the RF = Failure_A13:10 (i.e., NFEs) that are within the 2 h SI.
The only result found is NFE = Failure_B13:11. Since this NFE’s failure type
(Failure_B) belongs to the LCE-Failure_A (Table 4.3), this occurrence is discarded.

Figure 4.2. Searching for the FAC = Failure_B→Failure_A.

TG

08/12/2012
18:3008/12/2012

18:26

08/12/2012
18:22

08/12/2012
18:20

08/12/2012
13:11

08/12/2012
13:10

08/12/2012
12:54

SI = 2 hours SI = 2 hours

Number of FACs = 0 Number of FACs = 1

 37

The first combination of failure is not considered because the protocol, in this
stage, skips all cases in which the NFEs have the same types found in the LCE, given
that these cases are already considered in the sixth stage of the protocol. For
example, the first occurrence of RF at 13:10 comprises the combination of events
represented by Failure_B→Failure_A→Failure_B, which is related to the FAC
configuration PFE→RF→NFE that is analyzed in the sixth stage. Consequently,
whenever the FAC configuration PFE→RF→NFE occurs, the other two
configurations (PFE→RF and RF→NFE) do not occur.

Subsequently, once the protocol identifies the second occurrence of the RF
(Failure_A18:26), it finds one occurrence of the FAC investigated, given that the
found NFE does not have the same type present in LCE-Failure_A; thus, there are
no possible occurrences of the FAC configuration PFE→RF→NFE and the protocol
found a failure event with the same type of the PFE searched for the FAC
investigated (Failure_B→Failure_A). In Figure 4.2, the combination of events that
compose the FAC discovered (Failure_B18:20→Failure_A18:26) is marked with the
symbol (∗). All occurrences of the FAC are stored in the corresponding lFAC lists
(i.e., Lists of Failure Association Candidates), which contains all occurrences of a
FAC for a given SI.

Fifth and Sixth Stages:

These two stages of the protocol are similar to the fourth stage; focusing on
finding the two remaining FACs configuration: RF→NFE and PFE→RF→NFE.

Seventh Stage:

In the seventh stage, the lFAC lists are analyzed. For each SI, the protocol
counts the number of groups where it found the FAC occurrences and, based on the
field ComputerName, the number of computers where these FACs appear.
Subsequently, the number of PFEs and/or NFEs are accounted to identify the
number of FACs occurrences. Finally, it calculates the standard deviations of ΔtPs
and/or ΔtNs of all FACs discovered. Through the analysis of these quantities, the
rankings of failure association candidates are created and ordered according to the
four criteria presented in Section 4.2.1. Thus, the top-most entries in the rankings
have the strongest evidence to be considered failure association patterns. Figure
4.3 gives an overview of all stages of the protocol.

38

Figure 4.3. Protocol’s execution flow.
Adapted: Dos Santos and Matias (2018)

Failure
Dataset

Second stage
 Detect all PFEs and/or NFEs for each RF, within the

SIs of interest.
 Store all occurrences of the PFEs and/or NFEs found

in the lrpn list. The lrpn is a list containing all
occurrences of the RF researched and its PFEs and/
or NFEs that are within the investigated SI.
Therefore, each RF has one lrpn per SI.

Third stage
 Search for all PFEs and/or NFEs in all lrpn lists

created in the previous step, in order to identify the
failure types/subtypes that occurred along with a
given RF in at least three groups.

 The found failure types/subtypes are added to a list
of candidate failure events (LCE) per RF. From the
LCE list, all theoretical possibilities of failure
association candidates are generated.

Reference
Failures

lrpns

LECs

lFAC

PFE RF

lFAC

RF NFE

lFAC

PFE RF NFE

First stage
 Identify the reference failures

Seventh stage
 The FACs rankings are created using the defined

criteria. The top-most entries in the rankings have
the strongest evidences to be considered failure
association patterns

Theoretical

PFE RF

Theoretical

RF NFE

Theoretical

PFE RF NFE

Fourth stage
 Search in the dataset for failure event combinations

that match the theoretical FACs that occurred
before a reference failure for a given SI, i.e.,
PFE RF. If a theoretical FPC occurs in at least three
groups, it is considered a FAC. All occurreces of the
FACs found are stored in lFAC lists.

Fifth stage
 Search in the dataset for failure event combinations

that match the theoretical FACs that occurred after
a reference failure for a given SI, i.e., RF NFE. If a
theoretical FAC occurs in at least three groups, it is
considered a FAC. All occurreces of the FACs found
are stored in lFAC lists.

Sixth stage
 Search in the dataset for failure event combinations

that match the theoretical FACs that occurred
before and after a reference failure for a given SI,
i.e., PFE RF NFE. If a theoretical FAC occurs in at
least three groups, it is considered a FAC. All
occurreces of the FACs found are stored in lFPC
lists.

Rankings

PFE RF

Rankings

RF NFE

Rankings

PFE RF NFE

 39

4.3 Failure Sequence Discovery Protocol
The protocol described in Section 4.2 was designed to discover patterns of

failure associations based on fixed search intervals. The adopted search intervals
were defined in accordance with the average working times of the computers used
in this research. However, to generalize the approach to any type of software
system, I improved the previous method by developing the sequence discovery
protocol presented in this section, whose objective is to find sequences of multiple-
event failures under flexible search intervals. The protocol consists of five major
stages:

First Stage:

For each computer failure log, the protocol finds its first failure and check if
its next failure occurred on the same day or the next day. If so, the protocol stores
the type and cause of its next failure and the Δt between them into two additional
fields (NextFailure and Δt) created in the failure sample, for each failure event.
Otherwise, the protocol moves to the next failure in the log and repeats the same
procedure. Finally, it removes all failure records with no value in the two above-
mentioned fields from the failure sample, i.e., all failure records with no
subsequent failure events that occurred on the same day or the following day are
removed [14].

 In the example presented in Figure 4.4 (1st stage), F1 is the first failure
record in the log and has F2 as its next failure, which occurred on the
same day as F1; the same occurs with F2 and F3, but in this case, F3
occurred on the following day. On the other hand, F3 does not have a
subsequent failure, since F4 occurred two days apart; thus F3 does not
contain a NextFailure, as well as the corresponding Δt. Since F4 is the
last failure of the log, it also does not contain values assigned to fields
NextFailure and Δt. Finally, the protocol removes both F3 and F4 from
the failure sample, since they do not have subsequent failures. Note
that the protocol is initially analyzing the association between two
failures (i.e., pairs composed of a failure with its subsequent failure).

Second Stage:

Next, after checking for associations of failure pairs in all failure logs, the
protocol filters the remaining sample to only include pairs that occurred in at least
three out of the four groups of the sample (see Section 3.4), because the protocol
was developed to identify recurrent and systematic associations between failure
events [14].

 As shown in Figure 4.4 (2nd stage), the protocol groups all failure pair
occurrences and check how many groups they were observed in. In
the example, the pair F3→F4 was removed from the analysis because
it was only observed in group G1.

40

Figure 4.4. Sequence discovery protocol.

TG

08/14/2012
01:20

08/13/2012
23:11

08/13/2012
23:08

Next Failure
• F2

Δt
• 0.05 hours

Current Failure
• F1

Next Failure
• F3

Δt
• 2.15 hours

Current Failure
• F2

Next Failure
• Null

Δt
• Null

Current Failure
• F3

F1→F2

Log Pair ∆t (hours) Group
Log_1 F1→F2 2.15 G1
Log_23 F1→F2 1.28 G2
Log_42 F1→F2 6.45 G3
Log_42 F1→F2 1.24 G3

… … … …
F3→F4

Log Pair ∆t (hours) Group
Log_8 F3→F4 2.15 G1
Log_8 F3→F4 3.97 G1

08/16/2012
02:33

Next Failure
• Null

Δt
• Null

Current Failure
• F4

08/13/2012
23:11

08/13/2012
23:08

Next Failure
• F2

Δt
• 0.05 hours

Current Failure
• F1

Next Failure
• F3

Δt
• 2.15 hours

Current Failure
• F2

F1 → F2 → F3

List of Potential
Sequences

(LPS)

F1 →List of Potential
Sequences

(LPS) Initiated sequences in
at least 3 groups

F1 → F2 → F3
is a sequence

 41

Third Stage:

The protocol includes failure pairs in which one failure occurred in one day
and the other on the next day to account for failures occurring overnight (i.e.,
between 23:00 and 1:00). However, this can encompass outliers in the analysis.
For example, if most occurrences of a failure pair have Δts less or equal to 2 hours,
but in only one occurrence, the first failure occurred in the early morning (e.g.,
03/20/2014 01:30) and its subsequent failure in the evening of the following day
(e.g., 03/21/2014 23:45), the Δt between them would be of 46.25 hours, which is
an outlier and must be disregarded. Thus, to avoid outliers and to guarantee a time
consistency of the failure pairs, the protocol groups all occurrences of the same
pairs of failures and computed the confidence interval around the median value of
their Δts. The median was adopted instead of the mean because of the high
variability of Δt values given the inclusion of overnight failures in the associations’
time intervals. Next, the protocol computes the 95% confidence interval (CI) for
the median values of Δt using the bootstrap resampling statistical approach, which
according to [83] is an efficient, statistically sound, and accurate method to
calculate confidence intervals for normal and non-normal datasets. Finally, the
protocol removes all occurrences of failure pairs with Δt less or equal to the upper
bound of the calculated confidence intervals [14].

 Figure 4.4 (3rd stage) shows this step for the pair F1→F2. Note that the
protocol groups all occurrences of F1→F2 in the sample and calculate
the confidence interval for the median (CIMD) of the Δts of all the
failure occurrences found. Later, the first occurrence of the pair
F1→F2 in Log_42 is removed because its Δt (6.45 h) is greater than the
calculated upper bound.

Fourth Stage:

The next stage is to discover possible sequences of failures in the remaining
sample. For each computer log, the protocol identifies the first occurrence of a
failure that has a subsequent failure (i.e., its field NextFailure is not Null) and sets it
as an OriginFailure. Then, it checks if its next failure also has a subsequent failure,
and so on, until there is no next failure. Following, the sequence found is added to a
List of Potential Sequences (LPS) [14].

 In Figure 4.4 (4th stage) the first failure that has a subsequent failure is
F1. Therefore, I set F1 as an OriginFailure and check if the next failures
also have a subsequent failure until no subsequent failure is found.
Consequently, the discovered sequence (i.e., F1→F2→F3) is stored in
the LPS.

Fifth Stage:

In the last stage, the protocol filters the LPS to extract only sequences in
which the first failure, to be called hereafter as OriginFailure, initiates sequences in
at least three of the four groups of the dataset, given that the more occurrences of
similar sequences are observed in different computers and groups, the greater
their consistency and thus their importance for this study [14].

42

 As shown in Figure 4.4 (5th step), the protocol checks if F1 is the
OriginFailure in potential sequences that occurred in at least three out
of the four groups. If so, the potential sequence F1→F2→F3 is
considered a sequence pattern.

4.4 Failure Prediction Approach

Based on the knowledge gained analyzing the outputs of the protocols
described in sections 4.2 and 4.3, I developed an approach to predict failures based
on patterns of previous failure events. As with any data-driven approach, it must
contain the important requirement of efficiently process large datasets. Another
important requisite to this approach is the ability to perform the pattern discovery
and the failure probability computation steps automatically since my ultimate goal
is to use this approach to implement online failure prediction. Considering the
nature of the failure records found in real computer logs, in which most of the time
the failure types must be handled as categorical variables, I found three promising
methods to tackle this research problem; Multinomial Logistic Regression (w/ and
w/o Ridge regularization), Decision Tree, and Random Forest.

I use patterns of failure sequences as input to the multinomial models.
Following a similar rationale presented in Section 4.3, to find consistent sequences,
the approach calculates the time between failures for each computer failure log
using the steps shown in Figure 4.5.

Figure 4.5. Filtering and collecting Δts between failures in computer logs.
Source: Dos Santos et al. (2020) [75]

Failure
Sample

Find a
computer log

Find its last
Failure

Is the previous failure
on the same date?

Is the previous failure on the
previous day?

Calculate
and store

the Δt

Yes

Is there another
Failure in the log

No

Yes

Jump to the
previous
Failure

No

Yes

No

 43

Note that different from Section 4.3, the last failure of a sequence is the
essential element of this analysis because it is the target event by the prediction
analysis. Therefore, for each computer log in the sample, the approach finds its last
failure record and then check if its previous failure occurred on the same day or
the previous day. Next, the Δt between the last failure and next-to-last failure is
computed. Finally, the category and type of the next-to-last failure and the
computed Δt are stored into the three fields created for this purpose
(Previous_Fcategory, Previous_Ftype, and Δt) in the last failure. Otherwise, the
approach moves to the previous failure and repeats the same steps for its
precedent failure. Finally, the approach removes all failure records with no value
in the three above-mentioned fields from the failure sample, i.e., all failure records
with no previous failure events that occurred on the same day or the previous day
are removed [75].

Similar to Section 4.3, I avoid outliers by calculating the confidence intervals
of all failure pairs found and selecting only those pairs in which their Δts are no
longer than the upper bound value. For example, I found that the upper bound of
the confidence intervals for the median value of Δts between OSAPP failures
occurring before OSSVC was 4.42 hours. Therefore, the approach checked if every
occurrence of OSAPP before OSSVC has a Δt less or equal to 4.42 hours, otherwise,
they were removed from the work sample [75].

In addition, since I am interested in finding sequence patterns, the approach
only considers sequences in which their last failure occurred as the last failure of
sequences in at least three out of the four groups investigated in this study. Finally,
I add these systematic sequences of failures as input to the prediction models, in
which the first failures of the sequences (Previous Failures) represent the possible
values for the independent variables and the last failures the possible values for
the dependent variable. For example, suppose I discovered nine systematic
sequences of two failures as shown in Figure 4.6. In this case, Failure_D, Failure_E,
Failure_F are placed as the possible values of the independent variables (Previous
Failures), and Failure_A, Failure_B, Failure_C are the possible values of the
dependent variables (Last Failures). Finally, the prediction models calculate the
probabilities for all combinations of values between the dependent and
independent variables.

Figure 4.6. Input to the prediction models.

Failure_D → Failure_A Failure_D → Failure_B Failure_D → Failure_C
Failure_E → Failure_A Failure_E → Failure_B Failure_E → Failure_C
Failure_F → Failure_A Failure_F → Failure_B Failure_F → Failure_C

Independent
Variable

(Previous Failure)

Dependent
Variable

(Last Failure)

Independent
Variable

(Previous Failure)

Dependent
Variable

(Last Failure)

Independent
Variable

(Previous Failure)

Dependent
Variable

(Last Failure)

)

)

)

)

)

)

)

)

)

Statistical Models Statistical Models Statistical Models

44

5. RESULTS

5.1 Introduction

This chapter presents the results of the empirical exploratory study
conducted in this research. All methods explained in Chapter 4 are applied to the
failure data described in Section 3.4.

Section 5.2 presents the results obtained discovering patterns of failure
associations.

Section 5.3 presents the results obtained discovering patterns of failure
sequences.

Section 5.4 presents the results obtained predicting failures based on
patterns of failure sequences.

Figure 5.1 presents an overview of how the methods were applied to the
failure data. The method to discover patterns of failure associations, which
provided an initial analysis of multiple-event failures, was applied to only the OS
failure sample (see Sample_OS in Section 3.4) in search for the three possible
configurations of associations considered. The following methods (i.e., Failure
sequence discovery protocol and Failure prediction approach), which are updated
versions of the first, were applied to all three samples (see Sample_OS,
Sample_USERAPP, and Sample_ALL in Section 3.4) studied in this research to
provide a holistic view of multiple-event failures at the software layer.

Figure 5.1. Overview of the methods and samples.

PFE→RF

RF→NFE

PFE→RF→NFE

F1→F2→F3→... F1→F2→F3

Pr(F3|F1→F2)

Failure Association Failure Sequence Failure Prediction

Statistical Models

Sample_OS Sample_USERAPP Sample_ALL

 45

In the case of the Failure Sequence, the first failure (OriginFailure) is the
essential element to discover failure sequences. On the other hand, the last failure
is the essential element for Failure Prediction since its main concept is to calculate
the probability of the last failure event to occur within a time interval upon the
occurrence of a particular pattern of preceding failures (see Section 4.4).

5.2 OS Failure Associations

In this section, I present the results obtained applying the failure association
discovery protocol to the Sample_OS. Table 5.1 lists the acronyms of OS failure
types/WUS[subtypes] used in the rankings of failure association candidates (FACs)
discussed in this section.

Tables 5.2, 5.3, and 5.4 present the top five FACs of all rankings. Each table
shows three rankings according to the SIs investigated (2 h, 4 h, and 8 h). The
column “Rank” contains the position of each FAC in the ranking.

It is noteworthy that the same combination of OS failure events can compose
FACs in the three rankings of the same table, however, their positions may not be
the same in all these rankings. For example, in Table 5.2, the FAC = NetU→NetU
ranks third in both 8-hour and 4-hour rankings and also appears in the 2-hour
ranking, but in the fourth position.

Table 5.1. OS failure types/subtypes acronyms used in the rankings.

Category OS Failure types [Subtype] Acronym

OSAPP explorer.exe EXP

OSSVC WUS [Windows Update] WinU

OSSVC WUS [.Net Framework Update] NetU

OSSVC WUS [Internet Explorer Update] IEU

OSSVC WUS [Office Update] OffU

Table 5.2. Top five entries in rankings of the configuration FAC = PFE→RF.

SI Rank PFE RF
No. of

Groups with
the FAC

% of Computer
with the FAC

No. of FAC
Occurrences

SD

8
 h

o
u

rs
 1 EXP EXP 4-4 6.3604 98 0.0913

2 WinU WinU 4-4 5.8304 554 0.0645
3 NetU NetU 4-3 2.4735 129 0.1139
4 IEU WinU 4-3 2.4735 28 0.0103
5 OffU OffU 4-3 2.1201 65 0.0542

4
 h

o
u

rs
 1 EXP EXP 4-4 6.3604 (−) 81 0.0451

2 WinU WinU 4-4 5.8304 (−) 535 0.0504
3 NetU NetU 4-3 2.4735 (−) 111 0.0596
4 IEU WinU 4-3 2.4735 28 0.0103
(۸) 5 NetU WinU 4-3 2.1201 55 0.0091

2
 h

o
u

rs
 1 EXP EXP 4-4 (−) 6.1837 (−) 7 0.0257

2 WinU WinU 4-4 (−) 5.6537 (−) 436 0.0176
(۸) 3 IEU WinU 4-3 2.4735 28 0.0103
(۷) 4 NetU NetU 4-3 (−) 2.2968 (−) 85 0.0251
5 NetU WinU 4-3 2.1201 55 0.0091

46

Table 5.3. Top five entries in rankings of the configuration FAC = RF→NFE.

SI Rank RF NFE
No. of

Groups with
the FAC

% of Computer
with the FAC

No. of FAC
Occurrences

SD

8
 h

o
u

rs

1 EXP EXP 4-4 6.3604 95 0.0957
2 WinU WinU 4-4 6.0071 484 0.1057
3 NetU NetU 4-3 3.5336 151 0.1081
4 WinU IEU 4-3 3.0035 61 0.0852
5 OffU OffU 4-3 2.1201 82 0.0499

4
 h

o
u

rs

1 EXP EXP 4-4 6.3604 (−) 82 0.0460
2 WinU WinU 4-4 6.0071 (−) 398 0.0575
3 NetU NetU 4-3 (−) 3.3569 (−) 121 0.0602
4 WinU IEU 4-3 (−) 2.8269 (−) 56 0.0468
5 OffU OffU 4-3 (−) 1.9435 (−) 79 0.0062

2
 h

o
u

rs

1 EXP EXP 4-4 (−) 6.1837 (−) 7 0.0244
2 WinU WinU 4-4 (−) 5.83 4 (−) 291 0.0205
3 NetU NetU 4-3 (−) 3.18 2 (−) 95 0.0247
4 WinU IEU 4-3 2.8269 (−) 55 0.0093
5 OffU OffU 4-3 1.9435 79 0.0062

Table 5.4. Top five entries in rankings of the configuration FAC =
PFE→RF→NFE.

SI Rank PFE RF NFE
No. of

Groups with
the FAC

% of Computer
with the FAC

No. of FAC
Occurrences

SD

8
 h

o
u

rs

1 WinU WinU WinU 4-4 5.3004 23337 0.0354
2 WinU WinU IEU 4-3 2.8269 6099 0.0502
3 WinU WinU NetU 4-3 2.6502 12203 0.0371
4 IEU WinU IEU 4-3 2.4735 860 0.0813
5 IEU WinU WinU 4-3 2.2968 8622 0.0190

4
 h

o
u

rs

1 WinU WinU WinU 4-4 5.3004 (−) 227 2 0.0085
2 WinU WinU IEU 4-3 2.8269 (−) 5247 0.0156
3 WinU WinU NetU 4-3 2.6502 (−) 11873 0.0071
4 IEU WinU IEU 4-3 2.4735 (−) 69 0.0247
5 IEU WinU WinU 4-3 2.2968 (−) 8579 0.0061

2
 h

o
u

rs

1 WinU WinU WinU 4-4 5.3004 (−) 22574 0.0021
2 WinU WinU IEU 4-3 2.8269 (−) 5157 0.0032
3 WinU WinU NetU 4-3 2.6502 (−) 11834 0.0006
4 IEU WinU IEU 4-3 (−) 2.2968 (−) 64 0.0069
5 IEU WinU WinU 4-3 (−) 2.12 1 (−) 8537 0.0020

To highlight the FACs position change in the ranks, I compared the three
rankings from top to bottom, i.e., compared the 8-hour ranking with the 4-hour
ranking and the 4-hour ranking with the 2-hour ranking. To show the changes and
their directions, the symbol (۸) in the column “Rank” is added once the FAC
increases in the ranking, and the symbol (۷) is added once it decreases. The symbol
(−) is also added to the tables to identify the decrease in the number of
occurrences of a given FAC, or the decrease in the number of computers that
contains the FAC’s occurrences. This decreasing behavior is observed when
comparing the occurrences of the same FAC in a ranking with lower SI to another
ranking with the same FAC configuration, but larger SI.

In Table 5.2, an example of the decreasing behavior is the combination of
events represented by EXP→EXP, which ranks first in the 8-hour and 4-hour

 47

rankings, but the number of occurrences of this FAC in the 8-hour ranking, namely
98 occurrences, is higher than in the 4-hour ranking (81 occurrences). The same
decreasing pattern can be observed for this FAC when comparing the 4-hour and
the 2-hour rankings.

I created three codes to account for the number of groups that contain the
FAC (fifth column): 4-4, 4-3, and 3-3. The first and the second digits in this code
represent the number of groups with the RF and the number of groups with the
FAC, respectively. The columns “PFE”, “RF”, and “NFE” list the types/subtypes of
failures that compose the FAC configuration researched. The column “SD” contains
the standard deviation values of ΔtP and/or ΔtN per FAC. This SD value indicates
how much variation occurred between the average temporal proximity of a given
RF and its PFEs and/or NFEs. Therefore, this value should be as low as possible,
which indicates a greater consistency of the OS failure events that compose the
FAC.

It has been observed that the FACs that appear on the top of all PFE→RF
(Table 5.2) and RF→NFE (Table 5.3) rankings, for the three search intervals, are
related to failures in the program explorer.exe. I found these FACs in several
computers of different groups repeating systematically. As mentioned in Section
2.1.2, the explorer.exe provides important and largely used OS functionalities,
making it very ubiquitous. In [84], the use of household computers of 1,434 users
was studied for 19 months and the author found that the explorer.exe was the only
program executed by all users, ranking second in global execution time. Such
extensive use could be an explanation for its leading position in the rankings of
failure association patterns presented here.

In second place, all rankings in tables 5.2 and 5.3 show the Windows Update
(WinU). Similar to the explorer.exe failures, its FACs of configurations PFE→RF and
RF→NFE are composed of failures of the same type/subtype.

In Table 5.2, in the 8-hour and 4-hour rankings, the third place is the .Net
Framework Update, which occurs both as PFE and RF. In the 2-hour search interval,
this failure event descends to fourth place in the ranking due to its lower
occurrence with respect to the number of computers in which it appears. Thus, for
the 2-hour search interval in third place is the Internet Explorer Update as PFE and
Windows Update as the RF. This combination of events also appears in fourth place
in the search intervals of 8 h and 4 h. The fifth place for the 8-hour search interval
is Office Update as both PFE and RF. For the 4-hour and 2-hour search intervals, the
pattern changes to .Net Framework Update as PFE and Windows Update as the RF.

In Table 5.3, third place in all rankings always shows .Net Framework Update
as RF and NFE. Similarly, fourth place in all rankings is the combination of
Windows Update as RF and Internet Explorer Update as NFE. Fifth place in the
rankings in this table shows Office Update as both the RF and NFE for all search
intervals.

In Table 5.4, where the PFE is analyzed simultaneously with the NFE, the first
event combination in all rankings, FAC = WinU→WinU→WinU, follows the same
arrangement as the other first FACs in the other rankings, i.e., having the RF of the
same type/subtype as PFE and NFE. However, this is not true for the other

48

positions in this table. Observe that the other association candidates have the same
reference failure (WinU) and all PFEs and NFEs are also from the OS Service
category and related to software updates. Therefore, they belong to the type
Windows Update Service (WUS). Note that all top five failure association candidates
maintained the same ranking positions for the different search intervals analyzed,
making them strong candidates to be considered as genuine failure association
patterns (FAs).

Comparing all rankings, note that the first association candidates in all of
them are similar since in all cases the PFE and/or NFE are of the same
type/subtype as the reference failure (RF). This behavior was also observed in
other positions of the rankings, for the configurations PFE→RF and RF→NFE. This
failure association pattern suggests two possible scenarios [30]:

 The first scenario is the case where the same OS part (application/
service/Kernel) failed multiple times, one execution at a time, through
repeated executions. For example, the OS application explorer.exe, which runs
as a single task, fails and must be restarted, where the new task fails
subsequently.

 The second scenario is the simultaneous execution of multiple tasks of the
same OS part, in which two or more tasks fail at the same time or
approximately at the same time. For example, the OS service svchost.exe runs as
multiple tasks and a few of them could fail within a close time interval.

The same failure events that composed the FACs in all rankings of Table 5.2
also composed the FACs in all rankings of Table 5.3. This is due to several
occurrences of the same type/subtype of RF in which the search interval of each
one comprises all the other occurrences, which makes them PFEs or NFEs.

For example, let us analyze the occurrence of two consecutive explorer.exe
failures one minute apart, i.e., explorer.exe12:54 and explorer.exe12:55. For the 2-hour
search interval, FAC = explorer.exe12:54→explorer.exe12:55 is found when the failure
events occurring before the RF are researched (Table 5.2). On the other hand,
when the failure events occurring after the RF (Table 5.3) are researched, then FAC
= explorer.exe12:54→explorer.exe12:55 is also found. Therefore, the same combination
of failures is detected for the two FAC configurations, which makes the
composition of the FACs similar in both tables. This behavior explains why the
number of FAC occurrences (256,434) is higher than the total number of OS
failures (7,010) since a given failure can occur as RF a single time for each of the
three possible FAC configurations, but it can occur as PFE and NFE countless times.

5.2.1 Results Quality

In this subsection, I discuss the soundness of the presented findings. To
discover genuine failure association patterns, the consistency of the failure
association candidates is a major requirement.

In this study, consistency is directly related to how often a given combination
of failure events (a failure association candidate) repeats itself across different
computers from different groups (workplaces). In addition to comparing the

 49

similarity of different occurrences of the same failure events combination
concerning the temporal order of the failures, I further evaluate their variability in
terms of the time between their failures.

Hence, to obtain quality results, I defined that the rankings must be created
only with FACs occurring in at least three groups (out of four), thus guaranteeing
that each failure association candidate appears in at least 75% of the groups
investigated in this study.

In addition to observing the occurrence of the same failure association
candidate in multiple computer groups, another important factor to evaluate the
quality of the results is the standard deviation (SD) computed on the ΔtP and/or
ΔtN values, for each FAC.

Based on values from column “SD” in tables 5.2, 5.3, and 5.4, it can be seen
that all failure association candidates discovered do have low SD values, although
the first entries in all rankings do not contain the lowest values. The analysis of
these values for all association candidates shows that the difference between the
highest and lowest standard deviations, of each ranking, is noticeably small. This
low variability in the times between the RF and its PFE and/or NFE, across the
different groups of computers analyzed, indicates good consistency of the failure
association candidates discovered [30].

Although the dataset shows failures in the OS Kernel category, mainly in
group G1 with over 80% of its failures in that category, only two FACs belonging to
the OS Kernel were identified when analyzing all event combinations in the
rankings; one for configuration PFE→RF and the other for RF→NFE, both within
the search interval of 8 h. These two configurations were composed of the same
type of failure (DRIVER_POWER_STATE_FAILURE), i.e., PFE for the first
configuration, NFE for the second, and the RF for both were failures of the type
DRIVER_POWER_ STATE_FAILURE. This type of failure occurs when a device
driver or an OS routine running at the Kernel level enters in an inconsistent or
invalid energy state [73]. This finding corroborates results from previous studies,
where OS Kernel failures were less frequent than user-level applications’ failures
(e.g., [27], [29], and [56]). A likely reason why there were not many association
candidates for the OS Kernel category is the system reboot that very often occurs
when most of these failures happen, which lowers the chances of further failures of
this category within the same search interval.

Based on the above-mentioned analyses, I evaluated all 256,434 FACs
discovered in the Sample_OS and selected the top five FACs in each ranking to
classify as genuine failure association patterns (FAs). This selection resulted in the
45 patterns shown in tables 5.2, 5.3, and 5.4. These FAs appear systematically,
153,511 times, in the analyzed work sample. Table 5.5 shows the number of
occurrences of the FAs for the SIs and pattern configurations investigated. Through
the column “Total”, it can be seen that the configuration PFE→RF→NFE has a
greater number of occurrences. This finding indicates that most of the OS failures
observed in this study occur following a specific temporal order, which is evidence
of association patterns among these OS failures [30].

50

Table 5.5. Number of failure association pattern occurrences per
configuration.

SI PFE→RF RF→NFE PFE→RF→NFE Total

8 h 874 873 51,121 52,868

4 h 810 736 49,091 50,637

2 h 674 590 48,742 50,006

Total 2,358 2,199 148,954 153,511

5.2.2 Effects of Changing the Search Intervals

This subsection discusses the behavior of the failure association candidates
when changing the search intervals (SI) parameters.

It is intuitive to expect that the number of computers with the same FAC, as
well as the number of occurrences of the same FAC, would remain constant, or
would decrease in shorter search intervals than in longer search intervals [30].
The first case happens due to the nearness of the time occurrence of the RF with its
PFEs and/or NFEs, i.e., the PFEs and/or NFEs within a smaller or equal to the
smallest defined SI (SI = 2 h) with respect to the RF. Thus, even though the SI is
reduced (8 h to 4 h, or 4 h to 2 h) the number of FAC occurrences remains constant.

Figure 5.2 shows an example of the above-mentioned scenario with the
combination of events represented by WinU→IEU, where there is only one
occurrence of the FAC. The time difference between the PFE = WinU13:00 and RF =
IEU13:30 is 0.5 h. Therefore, this FAC is present in all SIs (8 h, 4 h, and 2 h).

There is also the case of reducing the number of occurrences of a particular
FAC, as well as the number of computers with these occurrences when the SI is
decremented. This situation indicates that the time difference between the RF and
its PFEs and/or NFEs is greater than the SI.

Figure 5.3 shows an example of this scenario, considering WinU→IEU. Note
that the number of FACs changes according to the SI. For example, for SI = 8 h
there are three occurrences, where the combination of events is represented by
the following PFEs: WinU08:00, WinU10:30, and WinU13:00; all with respect to RF =
IEU13:30. For SI = 4 h, the number of occurrences of this FAC decreases to 2, and the
combination of events is represented by the PFEs WinU10:30 and WinU13:00, for RF =
IEU13:30. Lastly, for SI = 2 h there is only one FAC occurrence, which is
WinU13:00→IEU13:30.

In addition to the two behaviors described above, I observed the increase of
FACs and the number of computers containing these FACs occurrences when the
SIs were decremented. This can only occur for the configurations PFE→RF and
RF→NFE. This behavior was observed for the FACs with the configuration
PFE→RF→NFE in the longest SIs; which prevents the occurrence of the other two
configurations (PFE→RF and RF→NFE). This increase occurs when the SI is
decremented (e.g., 8 h to 4 h) and a combination of events with the configuration
PFE→RF→NFE, observed in the longest SI (8 h), does not occur in the reduced SI (4
h). Therefore, the combination of events with the configuration PFE→RF→NFE is

 51

undone to the lower SI; consequently, it enables the discovery of combinations
with the configuration PFE→RF or RF→NFE. As a result, there is an increase of
FACs with configurations PFE→RF or RF→NFE, also causing an increase in the
number of computers with these FACs. This behavior was observed twice in the
results of this study for the configuration RF→NFE for a 4-hour SI (IEU→IEU and
IEU→WinU).

Figure 5.4 shows an example of this scenario with the combination of events
represented by WinU→IEU. Note that there is one occurrence of
WinU13:00→IEU13:30→WinU17:00, and according to the proposed protocol (Section
4.2.2), there is no occurrence of the FAC being investigated (WinU→IEU). However,
for SI = 2 h, the FAC with the configuration PFE→RF→NFE is undone because the
NFE = WinU17:00 is not within this new SI being analyzed, composing one
occurrence of WinU13:00→IEU13:30.

Figure 5.2. Number of FACs that remain constant by decreasing the SI.
Source: Dos Santos and Matias (2018) [30]

Figure 5.3. Number of FACs that is reduced by decreasing the SI.
Source: Dos Santos and Matias (2018) [30]

ComputerName ProductName TimeGenerated Group

Comp14 explorer.exe 03/02/2012 02:34

G1

Comp14 WinU 03/02/2012 03:34

Comp14 dllhost.exe 03/02/2012 08:00

Comp14 mmc.exe 03/02/2012 08:30

Comp14 dllhost.exe 03/02/2012 10:30

Comp14 mscorsvw.exe 03/02/2012 12:30

Comp14 WinU 03/02/2012 13:00

Comp14 dllhost.exe 03/02/2012 13:16

Comp14 IEU 03/02/2012 13:30

Comp14 mscorsvw.exe 03/03/2012 19:00

Comp14 explorer.exe 03/03/2012 19:00

Comp14 explorer.exe 03/03/2012 19:00

SI=8 hours

SI=4 hours

SI=2 hours

ComputerName ProductName TimeGenerated Group

Comp14 explorer.exe 03/02/2012 02:34

G1

Comp14 mmc.exe 03/02/2012 03:34

Comp14 WinU 03/02/2012 08:00

Comp14 mmc.exe 03/02/2012 08:30

Comp14 WinU 03/02/2012 10:30

Comp14 mscorsvw.exe 03/02/2012 12:30

Comp14 WinU 03/02/2012 13:00

Comp14 dllhost.exe 03/02/2012 13:16

Comp14 IEU 03/02/2012 13:30

Comp14 mscorsvw.exe 03/03/2012 19:00

Comp14 explorer.exe 03/03/2012 19:00

Comp14 explorer.exe 03/03/2012 19:00

SI=8 hours

SI=4 hours

SI=2 hours

52

Figure 5.4. Number of FACs that is increased by decreasing the SI.
Source: Dos Santos and Matias (2018) [30]

5.3 Failure Sequences

Based on the association patterns discovered and discussed in Section 5.2, it
can be seen that the independence assumption is not met for the software failure
events analyzed in the OS work sample (Sample_OS). Moreover, the findings
indicate that most OS failures observed occur following a specific temporal order,
which raises the following research questions:

Do these OS failures occur in a sequential pattern? If so, do the observed
patterns reflect a causal relationship between the failures? To shed some light on
these questions, I searched for patterns of failure sequences in the OS failure
sample (Sample_OS). Furthermore, I extended the analysis to include User
Application failures (Sample_USERAPP), and I also analyzed the whole dataset,
which encompasses both USERAPP and OS failures (Sample_ALL).

Hereafter, I adopt the following notation to represent a sequence type:
Failure_ACause_V→Failure_BCause_W, which means failures of type B occurred after
failures of type A. The superscripts indicate the failure cause and usually are
shown as hexadecimal codes that are platform-specific. In the samples analyzed in
this study, I found hundreds of failure sequences that met the criteria discussed in
Section 4.3. To group them and make a more general analysis, I differentiated the
failure sequence types by four characteristics:

• Failure types that compose the sequences

e.g., Failure_ACause_V→Failure_BCause_W ≠ Failure_CCause_V→Failure_BCause_W

• The sequence order of failure types

e.g., Failure_ACause_V→Failure_BCause_W ≠ Failure_BCause_V→Failure_ACause_W

• Length of the sequences

e.g., Failure_ACause_V→Failure_BCause_W ≠ Failure_AVCause_V→Failure_BCause_W→Failure_CCause_Z

ComputerName ProductName TimeGenerated Group

Comp14 mmc.exe 03/12/2012 08:30

G1

Comp14 dllhost.exe 03/12/2012 10:30

Comp14 mscorsvw.exe 03/12/2012 12:30

Comp14 WinU 03/12/2012 13:00

Comp14 dllhost.exe 03/12/2012 13:16

Comp14 IEU 03/12/2012 13:30

Comp14 mscorsvw.exe 03/12/2012 15:00

Comp14 explorer.exe 03/12/2012 15:10

Comp14 WinU 03/12/2012 17:00

Comp14 explorer.exe 03/12/2012 17:10

SI=4 hours

SI=2 hours

SI=4 hours

 53

• Cause of failures that compose the sequences

e.g., Failure_ACause_V→Failure_BCause_W ≠ Failure_ACause_V→Failure_BCause_Z

The information that identifies the failure causes was found parsing the RAC
fields Message and InsertionStrings. For software update failures (WUS subtypes),
this information was obtained through the Error Codes. These codes are
hexadecimal values present in the field Message of each WUS failure record. For
OSSVC failures not related to software updates, OSAPP, and USERAPP failures, I
analyzed the Exception Codes to obtain their causes. The Exception Codes were also
found in the fields Message and InsertionStrings. However, the Exception Codes are
not available in all failure records; I observed cases in which the system could not
identify the causes of failure and other cases in which the component failed due to
a hang. Therefore, I assigned “unknown” to the failure causes of the first case and
“Hang” to the second. I did not perform this analysis for OSKNL failures since their
types, obtained through the Stop Codes (see Section 3.4), already identify their
causes.

5.3.1 Sequence Types

Since I am analyzing 3 different samples, I found, as a result: 165 different OS
failures sequences with 806 occurrences; 480 User Application failures sequences
with 1,718 occurrences; and 640 sequences containing both OS and User
Application failures with a total of 2,509 occurrences.

For the first sample (i.e., Only OS failures), all sequences found were
composed of OS failures from the same category, in which most sequences
(91.56%) consisted of OSSVC failures, followed by OSAPP (7.07%) and OSKNL (1.36%).
The second sample contains only User Application failures. Finally, for the third
sample, most sequences encompassed failures from the same category, but I also
observed few occurrences of USER Application failures with OS failures. The
majority of sequences consisted of User Application failures (66.56%), followed by
{OSSVC} (29.10%), {OSAPP} (2.07%), {USERAPP, OSAPP} (0.99%), {USERAPP, OSKNL}
(0.52%), {USERAPP, OSSVC} (0.40%), and {OSKNL} (0.36%). Note that sequences
composed of OSKNL failures are barely observed because these failures usually
cause system reboots decreasing the chances of other failures nearby.

Since this study is focused on finding systematic and consistent patterns, I
ranked the failure sequences by two criteria; (i) greater number of computers the
sequence is observed in; and (ii) greater number of occurrences of the sequence.
Table 5.6 presents the ranking result for each sample considered. The numbers in
parentheses in the column labels represent the total number of each element, e.g.,
for the OS failures sample, the total number of computers that contain the
sequences is 128 and the total number of sequence occurrences is 806. In general, I
observed that, besides been consisted of failures from the same category, most
sequences are composed of failures of the same type. Noticeably, the failures in
both the application (iexplore) and update (IEU) of the Internet Explorer browser
are predominant in the sequences.

54

Table 5.6. Most consistent failure sequences.

Sample_OS

Sequence
of Computers

(128)
Occurrence

(806)
%

ExplorerHang→ExplorerHang 18 30 3.72

IEU80242016→IEU80242016 14 14 1.74

IEU80242016→WinU80242016→IEU80242016 8 8 0.99

WinU800f0902→WinU800f0902 6 6 0.74

IEU80070643→IEU80070643 5 316 39.21

Sample_USERAPP

Sequence
of Computers

(276)
Occurrence

(1,718)
%

iexplore0xc0000005→iexplore0xc0000005 77 215 12.51

iexplorerHang→iexplorerHang 77 152 8.85

winwordhang→winwordhang 29 47 2.74

iexplore0xc0000005→iexplore0xc0000005→iexplore0xc0000005 28 43 2.50

iexplore0xc0000005→iexplore0xc000041d 25 43 2.50

Sample_ALL

Sequence
of Computers

(319)
Occurrence

(2,509)
%

iexplore0xc0000005→iexplore0xc0000005 78 219 8.73

iexplorerHang→iexplorerHang 75 149 5.94

winwordhang→winwordhang 30 48 1.91

iexplore0xc0000005→iexplore0xc0000005→iexplore0xc0000005 28 41 1.63

iexplore0xc0000005→iexplore0xc000041d 25 41 1.63

For the Sample_OS in Table 5.6, the highest-ranked sequence consists of
explorer.exe failures from the OSAPP category, which is the only non-update OS
failures observed in the rank. The explorer.exe is an OS program responsible for the
GUI window and file navigation management. All other sequences are composed of
WUS failures, specifically IEU and WinU. Note that the sequence IEU80070643→
IEU80070643 is observed in five computers but represented almost 40% of the
sequence occurrences found. For the entire first sample, around 46% of the
failures that composed the sequences were Internet Explorer Update failures,
followed by Windows Update (23.83%), .Net Framework Update(9.63%), Visual
Studio Update (5.61%), and Office Update (5.08%).

Regarding the second sample (Sample_USERAPP), the majority of the
sequences consisted of iexplore failure associations. The only sequence that did not
encompass iexplore failures in the rank was composed of associations of Microsoft
Word failures (winword), which ranked third. Most sequences of the second
sample are composed of iexplore failures (62.56%), followed by winword (9.38%),
excel (7.90%), acrord32 (6.45%), and chrome (4.22%).

Since USER Application failures are abundant, the rank of the third sample
(Sample_ALL), which included both OS and User Application failures, is the same as
the second sample (Sample_USERAPP). However, note that some occurrence values
from the rank of the second sample are different from the third.

 55

Table 5.7. Most frequent causes in the failure sequences.

Sample_OS

Cause
Occurrence

(2,673)
% Description

80070643 1,307 48.90
Indicates a failure during the software update installation
process, whose most common cause is the malfunctioning of
the .Net Framework installed on the system [85].

800706ba 429 16.05
Indicates a failure in the WUS (Windows Update Service)
caused by the unavailability of the RPC (remote procedure
call) server [86].

800b0100 181 6.77
This indicates that the files needed for the WUS to update the
software were missing or corrupted [87].

c8000710 103 3.85
This indicates that the failure occurred due to the
unavailability of disk space during the update installation
process [88].

hang 95 3.55 Hang.

Sample_USERAPP

Cause
Occurrence

(4,648)
% Description

0xc0000005 2,124 45.70
“STATUS_ACCESS_VIOLATION”, The instruction at x% 8lx
referenced memory at 0x%08lx. The memory could not be
%s [89]

hang 1,437 30.92 Hang.

0xc0000374 285 6.13
“STATUS_HEAP_CORRUPTION”, A heap has been corrupted
[89].

0xc0000096 259 5.57
“STATUS_PRIVILEGED_INSTRUCTION”, {EXCEPTION}
Privileged instruction [89].

0xc000041d 104 2.24
An unhandled exception was encountered during a user
callback [90].

Sample_ALL

Cause
Occurrence

(7,180)
% Description

0xc0000005 2,146 29.89

Already described in the table.

hang 1,493 20.79

80070643 1,245 17.34

800706ba 428 5.96

0xc0000374 320 4.46

Table 5.7 lists the most frequently observed causes of failures that compose
the sequences found for the three samples analyzed. Note that the Occurrence and
% columns regard the number of failures with each cause in the sequences found.

The first four causes of failures in the OS sample indicate that external factors
(e.g., malfunctioning of the .Net Framework and unavailability of the RPC server)
upon which the Windows Update Service (WUS) depends, generated failures on its
normal execution. Thus, preventive management of these factors is a possible
action to improve the reliability of this OS Service. Furthermore, the causes
80242016 and 800f0902, which are the cause of some of the most consistent
sequences within the Sample_OS (see Table 5.6), indicate that the state of the
update after its post-reboot operation has completed is unexpected [91] and the
software updating routine could not be completed because Win7 was performing
another servicing operation [92], respectively.

56

As for the User Applications sample, most causes of failures are related to
problems related to memory management (i.e., 0xc0000005 and 0xc0000374).
Also, there is a high incidence of failures due to hangs, which I could not obtain the
specific cause. Furthermore, I collected and analyzed the Faulting Modules of all
USER Applications failures, based on the fields Message and InsertionStrings of the
event records, and observed that the ntdll.dll library that manages allocations
inside large memory areas [73] is the most frequent module (14.05%) to fail in the
sample, followed by mshtml.dll (13.36%), which is responsible for loading, parsing,
and displaying HTML content in the Internet Explorer browser [93], and Unknown
(6.38%).

Finally, for the third sample (Sample_ALL), the most common causes have
already been described in Table 5.7 for the other samples.

It is intuitive to expect that the number of the same sequence occurrences
would remain constant, or would decrease in the third sample given that this
sample was created by adding OS failures to the second sample, which could not
interfere with User Application sequences when OS failures occurred on a different
timestamp from USERAPP failures or could prevent User Application sequences
from happening when OS failures occurred between USERAPP failures, lowering the
number of USERAPP sequences. But I also observed the increase of sequence
occurrences, for example, the sequence winwordhang→winwordhang occurred 47
times in the second sample and 48 in the third (see Table 5.6).

This increase behavior occurred when longer sequences observed in the
second sample (e.g., winwordhang→winwordhang→iexplorehang) do not occur in the
third sample, but parts of the longer sequence compose smaller sequences in the
third sample (e.g., winwordhang→winwordhang). This happened because the inclusion
of OS failures in the second sample changed the associations and ∆ts observed in
the second sample. Regarding only the number of occurrences, the most frequent
failures observed in sequences in the third sample are iexplore failures (40.21%),
followed by IEU (16.62%), WinU (8.64%), winword (5.61%), and excel (5.08%).

5.3.2 Sequence Classes

Looking at the patterns shown in Table 5.6, there is a predominance of
sequences composed of failures of the same type. Therefore, I further investigated
the relationship between the failures in sequences by dividing the sequences into
classes. The Sequence Type Class refers to the types/subtypes that compose the
sequences, having three possibilities:

 Homogeneous: Sequences where all of the subsequent failures have
the same type of the OriginFailure (see Section 4.3).

 Entirely Heterogeneous: Sequences where all of the subsequent
failures have a different type of the OriginFailure.

 Partially Heterogeneous: Sequences where at least one subsequent
failure has the same type of the OriginFailure.

I also classified sequences based on their causes (Sequence Cause Class):

 57

 Same: Sequences where all of the subsequent failures have the same
cause of the OriginFailure.

 Entirely Different: Sequences where all of the subsequent failures
have a different cause of the OriginFailure.

 Partially Different: Sequences where at least one subsequent failure
has the same cause of the OriginFailure.

Table 5.8 presents the frequency of sequences belonging to all combinations
of classes considered above, based on every sample analyzed. Note that failures
with the same type/subtype and cause are predominant in all samples, which
indicate recurrent failure patterns formed by these sequences; this is useful
information regarding the occurrence dynamics of these failures in the sequences,
being valuable for the prediction models. Moreover, most sequences present
common causes that provoke multiple failures over time (see Table 5.7), with no
evidence of a causal relationship among the failures in the sequences. From a
practical perspective, this finding indicates that fixing the common problem (e.g.,
missing files) would prevent new failures in the sequence.

Table 5.8. Sequence classes.

 OS USERAPP All

Seq. Type Class Seq. Cause Class
Freq.
(806)

%
Freq.

(1,718)
%

Freq.
(2,509)

%

Homogeneous Same 704 87.34 1,102 64.14 1,784 71.10

Homogeneous Entirely Different 17 2.11 226 13.15 236 9.41

Homogeneous Partially Different 1 0.12 120 6.98 120 4.78

Entirely Heterogeneous Same 16 1.99 75 4.37 94 3.75

Entirely Heterogeneous Entirely Different 8 0.99 127 7.39 143 5.70

Entirely Heterogeneous Partially Different - - 4 0.23 4 0.16

Partially Heterogeneous Same 42 5.21 19 1.11 59 2.35

Partially Heterogeneous Entirely Different 3 0.37 10 0.58 16 0.64

Partially Heterogeneous Partially Different 15 1.86 35 2.04 53 2.11

5.3.3 Sequence Lengths

Next, I analyzed the length of the sequences, which is the number of failures
that compose them. Table 5.9 shows the five most observed lengths in each
sample. Note that sequences composed of two failures, which is the minimum
length of a sequence, are the most frequent in any sample. This is another valuable
piece of information for the prediction models since we can conclude that given the
predominance of this pattern the prediction should be focused on shorter
sequence lengths. In general, we can see a clear negative correlation between the
sequence lengths and the number of sequence occurrences, which is confirmed by
the Spearman correlation coefficients calculated for each sample s(OS) = -0.85,
s(USERAPP) = -0.96, and s(ALL) = -0.88. Therefore, the longer the sequence, the rarer
they were observed in the samples; the longest sequence found has 58 OS failures
and occurred once.

58

 Table 5.9. Ten most frequent sequence lengths.

Sample_OS

Length
Frequency

(806)
% Total

2 497 61.66

93.17%

3 154 19.11

4 60 7.44

5 30 3.72

6 10 1.24

Sample_USERAPP

Length
Frequency

 (1,718)
% Total

2 1,149 66.88

97.62%

3 301 17.52

4 145 8.44

5 58 3.38

6 24 1.40

Sample_ALL

Length
Frequency

 (2,509)
% Total

2 1,651 65.80

96.45

3 456 18.17

4 198 7.89

5 82 3.27

6 33 1.32

5.3.4 Sequence Durations

Another important property of the failure sequences is their time duration,
which is the summation of all times between failures, Δts, in a sequence. First, we
analyzed the median duration of sequences in each sample.

I observed that 2.81 hours (95% CI of 2.54 to 2.88) was the median duration
of sequences in the Sample_OS; 0.043 hours (95% CI of 0.038 to 0.049) in the
Sample_USERAPP; and 0.089 hours (95% CI of 0.072 to 0.108) in the Sample_ALL.
Figure 5.5 presents histograms of sequence durations for each sample. The
logarithmic scale ln(x+1) is used to display the wide range of duration values since
I found that some sequences have durations equal to zero hours, which occur when
the Δts are less than one second since seconds is the lowest time unit recorded by
the RAC instrumentation.

I noted that most sequences from the OS sample (Sample_OS) last for a time
between 0 and 0.22 hours (approximately 13 minutes), followed by sequences
with a duration between 2.32 to 3.06 hours. The durations of USERAPP sequences
are concentrated between 0 and 0.11 hours (approximately 6 minutes). Therefore,
I investigate in more detail the sequences within the intervals 0 to 0.22 hours and
2.32 to 3.06 hours in the Sample_OS and the sequences within the interval 0 to 0.11
hours in the Sample_USERAPP.

 59

Sample_OS

Sample_USERAPP

Sample_ALL

Figure 5.5. Histogram of failure sequence durations.

5.64.84.03.22.41.60.80.0

250

200

150

100

50

0

Duration (hour in logarithmic scale)

F
re

q
u

e
n

c
y

Bin (0.2)

3.53.02.52.01.51.00.50.0

1200

1000

800

600

400

200

0

Duration (hour in logarithmic scale)

F
re

q
u

e
n

c
y

Bin (0.1)

4.94.23.52.82.11.40.70.0

1400

1200

1000

800

600

400

200

0

Duration (hour in logarithmic scale)

F
re

q
u

e
n

c
y

Bin (0.1)

60

Sample_OS

Sample_USERAPP

Sample_ALL

Figure 5.6. Sequence length vs time duration.

6543210

60

50

40

30

20

10

0

Duration (hour in logarithmic scale)

L
e
n

g
th

43210

30

25

20

15

10

5

0

Duration (hour in logarithmic scale)

L
e
n

g
th

543210

60

50

40

30

20

10

0

Duration (hour in logarithmic scale)

L
e
n

g
th

 61

The sequences within the first interval (i.e., 0 to 0.22 hours) of the Sample_OS
are highly diverse, encompassing 124 different sequences with a total of 224
occurrences. The most recurrent sequence observed in this interval is
WinU800b0100→WinU800b0100 with 8.22% of the occurrences. This most frequent
sequence indicates a repetition of failures due to corruption of files needed for the
WUS to update the Win7 core components. Furthermore, it is also observed a high
variety of sequence lengths in this interval, in which the most common (54.46%)
combinations are no longer than two OS failures. On the other hand, in the second
interval (i.e., 2.32 to 3.06 hours), I only observed six different sequences (187
occurrences in total), in which the most prevalent (89.30%) have the configuration
IEU80070643→IEU80070643, which indicates successive failures during the installation
of Internet Explorer updates caused by malfunctions in the .Net Framework
software. Sequences with two OS failures prevailed (94.12%) in the second
interval.

For the time interval between 0 and 0.11 hours, I found 228 sequences with
1,092 occurrences in the Sample_USERAPP. The most frequent sequence within the
above-mentioned interval is iexplore0xc0000005→iexplore0xc0000005 with 15.75% of
occurrences. Moreover, most sequences in the interval are composed of two
failures (74.45%).

Looking for patterns combining sequence lengths and sequence durations, I
analyzed the scatterplots shown in Figure 5.6. Note that, in Sample_OS, the
majority of sequences with more than three failures present shorter durations
when compared to the majority of smaller sequences. Thus, at least for the longer
OS sequences, this finding corroborates my previous assumption of a common
cause for the multiple failures in a sequence (see Section 5.3.2). On the other hand,
longer USERAPP are concentrated within the interval 0.4 (24 minutes) to 2 hours.

5.4 Failure Prediction

In this thesis, the approach proposed for software failure prediction uses
patterns of failure sequences as input to the predictive models. To do that, the two
required input raw data necessary are the ‘failure type’ and the ‘failure event
timestamp’. The failure type is any information that allows identifying a software
failure, such as a numerical code (e.g., EventIdentifier in Win7, see Table 3.2), the
canonical name of the failed software/component (e.g., explorer.exe), the category
of the failed software (e.g., OS or USERAPP), and so forth. These two required fields
are present in most system logs, making this approach as general as possible.
Different from the sequence analysis discussed in sections 4.3 and 5.3, for the
failure prediction I avoid using very specific data in the models, like the ‘failure
causes’, which are not easily found in system logs.

5.4.1 Failure Prediction Based on Sequences of Two Failure Categories

To conduct a higher-level analysis using the whole dataset (Sample_ALL), I
set the failure categories considered in this study (i.e., OSKNL, OSSVC, OSAPP, and
USERAPP) as the four possible values of the dependent variable (see Section 4.4)
and compute their probability of occurring given the occurrence of other failures
immediately before them (independent variable). The independent variable also

62

assumes one of the failure category values. Table 5.10 shows all possible
sequential associations found between the values of the dependent (Last Failure)
and independent (Previous Failure) variables, and the upper bounds of the
confidence intervals for the median value of their Δts. Note that the highest upper
bounds are related to OSKNL failures. Moreover, the association between OSKNL
failures with failures from other categories amounted to only 1.91% of all
associations analyzed. This low percentage may be due to the effect of system
reboots that regularly occur right after OSKNL failures, lowering the likelihood of
nearby failures. Besides, kernel subsystems run at the kernel space, thus in a
protected operating mode, which makes it less likely to be affected by failures from
other categories that run at the User space.

Next, as mentioned in Section 4.4, I select all occurrences of the failure
sequences whose Δts are less or equal to the upper bound value of their respective
median’s confidence interval; otherwise, I remove them from the work sample.
Subsequently, to decrease the bias of selecting between the training and test data
sets, I randomly split the work sample into 70% and 30% respectively.

Since the work sample contains all possible combinations between the
dependent and independent variables (i.e., every failure category occurred along
with the others), it is not necessary to apply regularization to the Multinomial
Logistic Regression (see Section 2.1.4). Therefore, equations 11, 12, and 13 show
the three resulting logits that model the four failure categories on both dependent
and independent variables. Note that the OSAPP category was chosen as the
reference value for the dependent variable and it was omitted on the dummy
variables created for the categorical independent variable.

Table 5.10. Sequential associations based on failure categories.

Sequential Association 95% CI for the Median of Δts

Independent
Variable

(Previous Failure)

Dependent
Variable

(Last Failure)

Lower
(hour)

Median
(hour)

Upper
(hour)

OSKNL OSKNL 0.276 1.143 1.521

OSKNL OSSVC 0.234 1.755 10.483

OSKNL OSAPP 16.445 22.855 31.252

OSKNL USERAPP 1.390 5.520 7.614

OSSVC OSKNL 1.467 7.207 17.467

OSSVC OSSVC 2.432 2.636 2.865

OSSVC OSAPP 0.129 1.508 5.978

OSSVC USERAPP 5.368 6.234 7.814

OSAPP OSKNL 1.442 6.943 24.006

OSAPP OSSVC 0.823 2.803 4.419

OSAPP OSAPP 0.001 0.003 0.011

OSAPP USERAPP 2.255 4.638 6.823

USERAPP OSKNL 9.999 13.934 21.594

USERAPP OSSVC 1.827 2.448 2.664

USERAPP OSAPP 1.042 2.632 3.328

USERAPP USERAPP 0.115 0.130 0.143

 63

 (

)

(11)

 (

)

(12)

 (

)

(13)

The McFadden’s pseudo R2 value calculated for the model is 0.55, which
indicates very good adherence of the model to the training data set [53]. Moreover,
evaluating the model’s predictions against the test data set, it obtains a prediction
accuracy of 93.88%. Both Decision Tree and Random Forest models have the same
accuracy result.

In order to have a closer view of how the three models reach such accuracy, I
calculated the probabilities of all dependent variable values based on the values of
the independent variable (previous failure event). The Multinomial Logistic
Regression and Decision Tree models presented the same values of probabilities.
Figure 5.7 shows the probabilities obtained by both models. The letters K, S, A, and
U on both axis represent the failures categories OSKNL, OSSVC, OSAPP, and USERAPP,
respectively. The blue color indicates a low probability (around 0%) of occurring a
certain failure given the occurrence of a previous failure while the red color
indicates a high probability (around 100%). Moreover, the grey color refers to a
medium probability of occurrence (around 50%). The Random Forest model has a
slight difference in the probabilities compared to the Multinomial Logistic
Regression and Decision Tree models (see Figure A.1 in the Appendix).

Note that the probability is higher when both last (dependent variable) and
previous (independent variable) failures have the same category, especially for
USERAPP and OSSVC failures. This finding indicates that it is more likely that a failure
occurs along with other failures of the same failure category, regardless of the
category. I conjecture that this failure pattern explains the high McFadden’s
pseudo R2 value observed in the Multinomial Logistic Regression, given that the
dependent variables were almost perfectly predicted in cases where the
independent and dependent variables had the same values.

However, as shown in the last row of Figure 5.7, there is also a significantly
higher probability of occurring USERAPP failures after all other categories,
especially after OSKNL and OSAPP failures. This may have happened due to the high
prevalence of USERAPP failures in the dataset (83.39%) compared to the other
categories (i.e., OSKNL(3.66%), OSSVC (10.07%), OSAPP (2.88%)).

64

Figure 5.7. Probabilities based on sequences of two failure categories
(Multinomial Logistic Regression and Decision Tree).

Figure 5.8. Decision Tree based on sequences of two failure categories.

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

Independent Variable
(Previous Failure)

 65

Figure 5.8 presents the resulting Decision Tree. Note that the internal nodes,
which represent the independent variables (Previous Failure), have three
attributes. The only attribute Leaf nodes do not have is the first, which indicates
the decision based on the independent variable. The three attributes of the internal
nodes are:

1. IV_* ≤ 0.5: indicates the decision based on the independent variable
(IV), which, in this case, is whether the previous failure is of a certain
category in a sequence of two failures. For example, the decision in the
Root node, i.e., IV_S ≤ 0.5, indicates that if the previous failure is not an
OSSVC failure (i.e., IV_S = 0) go to the left edge (IV_S ≤ 0.5 is True), and
if the previous failure is an OSSVC failure (i.e., IV_S = 1) go to the right
edge (IV_S ≤ 0.5 is False). Note that the independent variables are
either 0 or 1 since they are dummy variables.

2. Sample_Size: indicates the number of training data in the node.
Therefore, the Root node contains the whole training sample. The
other nodes segment the training data based on the decisions. For
example, the internal node to the left of the Root node shows that
9,308 of the 10,667 sequences in the training data do not have an
OSSVC failure as previous failure.

3. Class: indicates the dependent variable value with the highest
occurrence for the training data in a node. For example, the Root node
shows that most sequences in the training sample have a USERAPP
failure as the last failure.

Note that the last attribute of the Leaf nodes (Class) indicates the predicted
outcome of the dependent variable. Therefore, the Decision Tree shown in Figure
5.8 can be interpreted as a series of “ifs and elses”:

 If the previous failure is OSSVC, the next failure is OSSVC

 Else if the previous failure is USERAPP, the next failure is USERAPP

 Else if the previous failure is OSAPP, the next failure is OSAPP

 Else the next failure is OSKNL

Observe that the Decision Tree also depicts the pattern where sequences
having both previous and last failure of the same category are more probable of
occurring in the sample, forming a long ramification to the left side of the tree.
Moreover, it is not necessary to include an internal node (independent variable) to
represent OSKNL failures, because if the previous failure of a sequence is neither of
the other three failure categories (i.e., OSSVC or USERAPP or OSAPP), it is OSKNL.

Finally, regarding the number of trees in the Random Forest model, of the
seven values tested (10, 29, 49, 69, 88, 108, and 128), the best amount of trees in
the model was 10 (default value).

66

5.4.2 Failure Prediction Based on Sequences of Two Failure Types

Next, I followed the same rationale used in Section 5.4.1, in which I computed
the probability of failures to occur (dependent variable) given the occurrence of
other failures immediately before (independent variable). However, in this case, I
set sequences of two failure Types (instead of failure Categories) as input to the
models. Moreover, I considered sequences from each of the three samples adopted
in this study — the first sample containing only OS failures (Sample_OS), the
second containing only User Application failures (Sample_USERAPP), and the third
represents the whole dataset i.e., both OS and User Application failures
(Sample_ALL).

Given the sparsity problem (see Section 2.1.4) that emerges when dealing
with the great number of failure types, it is necessary to use the Multinomial
Logistic Regression with Ridge regularization. The following equations present a
general representation of the Multinomial Logistic Regression with Ridge
regularization models needed to represent the failure types on both dependent
and independent variables.

∑

∑

where the dependent variable Y = { f1, …, fk} has k levels (i.e., k possible failure
types). Note that an equation is created for each level of the dependent variable
and the probability of each level is divided by the probability of all other levels.
Xbefore represents the failure event immediately preceding the last failure
(dependent variable) of the sequences and xb is a vector of dummy independent
variables of all possible failure types that immediately precede the last failure. Due
to the regularization, I did not calculate the McFadden’s pseudo R2 , which
measures how well the models fitted the training data since the regularization
introduces a penalization that makes the model less sensitive to the training data.

By evaluating the three (i.e., Multinomial Logistic Regression with Ridge
regularization, Decision Tree, and Random Forest) models’ predictions against the
test data set, I obtained the same prediction accuracy of 86.99% for the Sample_OS,
90.89% for the Sample_USERAPP, and 88.28% for the Sample_ALL. To find an
explanation of why three different models are having the same accuracy, figures
5.9, 5.10, and 5.11 show the probabilities calculated by each model for sequences
in the Sample_ALL. As mentioned in Section 2.1.4, the Ridge regularization
introduces a penalization to the model’s parameters forcing the less relevant ones
to be close, but never reach zero. Therefore, all possible combinations between the
dependent and independent variables have a probability. On the other hand, both
Decision Tree and Random Forest models only calculate the probability of
combinations present in the training sample. Consequently, the blank
(whitespaces) probabilities in Figures 5.10 and 5.11 indicate combinations that
were not observed in the training data and the models could not calculate them.

 67

Figure 5.9. Probabilities based on sequences of two failure types
(Multinomial Logistic Regression with Ridge - Sample_ALL).

Figure 5.10. Probabilities based on sequences of two failure types
(Decision Tree - Sample_ALL).

OSKNL

OSAPP

OSSVC

USERAPP

Independent Variable
(Previous Failure)

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

OSKNL

OSAPP

OSSVC

USERAPP

Independent Variable
(Previous Failure)

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

68

Figure 5.11. Probabilities based on sequences of two failure types
(Random Forest - Sample_ALL).

Note that the same pattern observed in Figure 5.7 in which the main diagonal
has the highest probabilities is also observed in figures 5.9, 5.10, and 5.11.
Therefore, as observed in Section 5.4.1 for failure Categories, there is also a high
pattern of multiple same-type failures on the sequences of two failure types
analyzed. Thus, a possible explanation of why the models are having the same
accuracy is the simplicity of their inputs (sequences with only two failures),
together with the strong pattern of multiple same-type failures.

Besides the pattern of multiple same-type failures observed, it is important to
emphasize that sequences of iexplore (USERAPP) occurring after OSKNL failures
(DRIVER_POWER_STATE_FAILURE and StartupRepair) are also observed. However,
they are among the least frequent sequences found with 0.28% and 0.24% of the
occurrences. The same is observed for devenv→iexplore (0.24%) and
setup→iexplore (0.19%). Therefore, these sequences may have occurred due to the
predominance of iexplore failures in the dataset (see Table 3.5).

Figures A.2 to A.7, in the Appendix, present the probabilities obtained for
Sample_OS and Sample_USERAPP, respectively, using the three proposed models.
The same pattern of the highest probabilities occurring in the main diagonal is also
observed in both OS and USERAPP samples. Moreover, Figures A.8 to A.10, in the
Appendix, show the Decision Trees for each of the three samples considered in this
study. All trees presented the same long ramification to the left side of the tree as
observed in Figure 5.8, which also indicates patterns of multiple same-type

OSKNL

OSAPP

OSSVC

USERAPP

Independent Variable
(Previous Failure)

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

 69

failures. Finally, similar to Section 5.4.1, the best amount of trees in the Random
Forest model was 10 (default value) for all of the three samples analyzed.

5.4.3 Failure Prediction Based on Sequences of Two Failure Types and
the Δt between them

One of the most important properties that provide a better assessment of
how the failure sequences occur is their Δt values. Hence, I extend the analyses
presented in Section 5.4.2 by including the Δt of the failure sequences as an
additional independent variable (IV) to the multinomial models. First, the
sequences’ Δts are categorized by computing the minimum, median, and maximum
of their values.

Table 5.11 shows the Δt statistics for each sample. Due to the continuous
nature of the Δt values, I group them into two classes, “Minimum ≤ Δt ≤ Median”
and “Median < Δt ≤ Maximum”, in order to use them as input in the prediction
models. It is noteworthy that the time precision recorded by the RAC
instrumentation is one second. So, if two failure events occur within a Δt < 1 s they
are registered with the same timestamp, which explains the occurrences of
minimum values of Δt equal to 0.

Analyzing the whole dataset, most sequences with the highest median Δts are
composed of iexplore failures with other failure types. In fact, of the nine sequences
with the longest Δt median, only two (i.e., DRIVER_POWER_STATE_FAILURE→
DRIVER_POWER_STATE_FAILURE and VSU→VSU) do not include iexplore failures,
which strengthen the hypothesis that these sequences may have occurred due to
the predominance of iexplore failures in the dataset. Once again, I use the
Multinomial Logistic Regression with Ridge regularization because of the great
number of values in the dependent and independent variables, causing the sparsity
problem. The following equations depict the regression with the addition of the Δts
as a second independent variable.

∑

…

∑

Table 5.11. Summary of the sequences’ durations (in hours).

 OS USERAPP All Failures

Minimum 0.000 0.000 0.000

Median 0.177 0.019 0.019

Maximum 28.668 30.378 30.378

70

In this case, the accuracy of the Multinomial Logistic Regression with Ridge
regularization models are slightly different from the Decision Tree and Random
Forest models applied to all samples. Table 5.12 presents the accuracies from each
model per sample. The numbers in parenthesis indicate how much the accuracy
increased (+) or decreased (-) in relation to the analysis performed in Section 5.4.2.

Note that the accuracies of all models do not change much (e.g., the maximum
change is 0.46% in the accuracy) in relation to the ones observed in Section 5.4.2.
However, I discovered new other failure sequence patterns by analyzing the
calculated probabilities of all models. Figures 5.12, 5.13, and 5.14 show the
probabilities calculated by the Logistic Regression with Ridge regularization,
Decision Tree, and Random Forest models, respectively, for sequences in the
Sample_OS.

Table 5.12. Summary of the models’ accuracy.

 OS USERAPP All Failures

Model Accuracy Accuracy Accuracy

MLR with Ridge (0.00) 86.99% (0.46) 90.43% (0.43) 87.85%

Decision Tree (+0.35) 87.34% (0.46) 90.43% (+0.44) 88.72%

Random Forest (+0.35) 87.34% (0.46) 90.43% (+0.44) 88.72%

Figure 5.12. Probabilities based on sequences of two failure types and the Δt
between them (Multinomial Logistic Regression with Ridge - Sample_OS).

OSKNL

OSAPP

OSSVC

Independent Variable
(Previous Failure)

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

 71

Figure 5.13. Probabilities based on sequences of two failure types and the Δt
between them (Decision Tree - Sample_OS).

Figure 5.14. Probabilities based on sequences of two failure types and the Δt
between them (Random Forest - Sample_OS).

Note that the above figures present two heatmaps — the first displays the
probabilities of sequences within the interval “Minimum ≤ Δt ≤ Median” and the
second displays the probabilities of sequences within the interval “Median < Δt ≤
Maximum”. New failure sequence patterns were found based on the calculated
probabilities. For example, note that sequences with Windows Update failures
(WinU) are more probable to occur after most other update failures in smaller Δts,

OSKNL

OSAPP

OSSVC

Independent Variable
(Previous Failure)

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

OSKNL

OSAPP

OSSVC

Independent Variable
(Previous Failure)

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

72

which is depicted by figures 5.12, 5.13, and 5.14 as a lighter strip of squares for the
WinU (y-axis) where Δts are between 0.0 h and 0.177 h. On the opposite side,
Internet Explorer Update failures (IEU) have a high probability of occurring in
longer Δts. Note that some probabilities in certain intervals could not be calculated
by both Decision Tree and Random Forest models, because both models can only
compute factual probabilities of sequences that occur in the training sample. For
example, the probability of occurring a DRIVER_POWER_STATE_FAILURE failure
after other DRIVER_POWER_STATE_FAILURE is high for both Δt intervals in the
models of Multinomial Logistic Regression with Ridge (see Figure 5.12). However,
for the first Δt interval (i.e., 0.000 h ≤ Δt ≤ 0.177 h), in figures 5.13 and 5.14, no
probability is calculated since the training sample does not have any occurrence of
the sequence DRIVER_POWER_STATE_FAILURE→DRIVER_POWER_STATE_FAILURE
in the first interval. Figure 5.15 presents the Decision Tree created from the
Sample_OS, which shows that the resulting Decision Tree does not have any
DRIVER_POWER_STATE_FAILURE leaf node in the first interval, explaining the lack
of probabilities in the above-mentioned figures. Figures A.11 and A.12, in the
Appendix, show the Decision Trees created from Sample_USERAPP and Sample_ALL,
respectively. All Decision Trees continue to present patterns of multiple same-type
failures having a long ramification to the left side.

Figures A.13 to A.18 (in Appendix) present the calculated probabilities for
the Sample_USERAPP and Sample_ALL, respectively. Regarding User Application
failures, I observe a higher probability of occurring iexplore failures with other
failure types in longer Δts, as observed at the beginning of this section. Finally,
once more, the best amount of trees in the Random Forest models is 10 (default)
for Sample_OS and Sample_USERAPP. However, this number changes to 29 for
Sample_ALL.

Figure 5.15. Decision tree based on sequences of two failure types and the Δt
between them (Sample_OS).

 73

5.4.4 Failure Prediction Based on Sequences of Three Failure Types

Since one of the most common lengths observed in the failure sequences
analyzed in this study is three (see Section 5.3.3), I also calculate the probability of
a failure to occur (dependent variable) given the occurrence of other two
preceding failures (independent variables). The following equations represent the
Multinomial Logistic Regression with Ridge regularization models needed to
represent this type of sequence:

∑

…

∑

where Xbefore_1 represents the failure event immediately preceding the last failure
(dependent variable) of the sequences and Xbefore_2 the one that occurred
previously to the Xbefore_1. Table 5.13 presents the accuracies from each model per
sample. Note that all models present similar accuracies, where the greatest
difference among them is 2.34% between the highest accuracy (88.28%) obtained
by the Multinomial Logistic Regression with Ridge regularization and the lowest
(85.94) obtained by the Random Forest in the Sample_OS.

Figures 5.16, 5.17, and 5.18, present the probabilities calculated for the
Logistic Regression with Ridge regularization, Decision Tree, and Random Forest
models, respectively, based on Sample_ALL. The x-axis represents the Xbefore_1
failures and each graph indicates one possible value for Xbefore_2. Given the high
number of Xbefore_2 values, I filter the data to present only the most frequently
observed in the sample. Note that that the number of failure types decreased given
that several types do not occur in sequences composed of three failures. Moreover,
when the first failure (Xbefore_2) of the sequences occurs, the probability of the last
failure (dependent variable) having the same type as the first increases. There are
also cases where the last failures have a high probability of being the same type as
its closest failure (Xbefore_1). Both cases occur due to the pattern of multiple same-
type failures observed throughout the prediction analysis. However, there is also a
significant probability of occurring iexplore failures (see Figure 5.16), which, as
stated in the previous sections, may occur due to the high frequency of this failure
in the dataset. Figures A.19 to A.27 (in the Appendix) present all calculated
probabilities from each model per sample.

Table 5.13. Models’ accuracy (sequences of three failure types).

 OS USERAPP All Failures

Model Accuracy Accuracy Accuracy

MLR with Ridge 88.28% 92.50% 92.31%

Decision Tree 86.72% 91.58% 92.01%

Random Forest 85.94% 91.58% 92.33%

74

Figure 5.16. Probabilities based on sequences of three failure types
(Multinomial Logistic Regression with Ridge – Filtered Sample_ALL).

Figure 5.17. Probabilities based on sequences of three failure types
(Decision Tree – Filtered Sample_ALL).

Independent Variable
(Xbefore_1)

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)
OSSVC

USERAPP

OSAPP

Independent Variable
(Xbefore_1)

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

OSSVC

USERAPP

OSAPP

 75

Figure 5.18. Probabilities based on sequences of three failure types
(Random Forest - Filtered Sample_ALL).

Figures A.28 to A.30, in the Appendix, show the Decision Trees created from
each sample. The long ramification to the left side is still present in all trees.
Finally, the best number of trees in the Random Forest was 49 for Sample_OS, 88
for Sample_USERAPP, and 49 for Sample_ALL.

In general, all models presented good to high accuracies (86% to 93%)
throughout all the prediction analyses performed. The Decision Tree models have
the advantage of creating a tree that easily displays how the values are distributed
in the samples. However, as the tree grows, its interpretability is impaired. The
Random Forest is a black-box model that tries to mitigate the overfitting in
Decision Trees, which occurs when the model has a great fit to the training data,
but a poor fit to the test data. However, like the Decision Tree, it could not estimate
reliable probabilities from unseen data during the training phase (see Section
5.4.2). On the other hand, the Multinomial Logistic Regression with Ridge
regularization was capable of estimating the probabilities in such cases. Therefore,
the Multinomial Logistic Regression with Ridge regularization is chosen to be used
in future works to implement online failure prediction.

For example, as observed in Section 5.4.3, there is no occurrence in the
training sample of DRIVER_POWER_STATE_FAILURE events occurring before any
failure within the interval Minimum ≤ Δt ≤ Median. Therefore, both Decision Tree
and Random Forest models could not calculate such probability. Consequently, if a
DRIVER_POWER_STATE_FAILURE event occurs within interval Minimum ≤ Δt ≤
Median, the online failure prediction using the probabilities obtained by both
Decision Tree and Random Forest models, would not able to provide any
preventive measures.

Independent Variable
(Xbefore_1)

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

OSSVC

USERAPP

OSAPP

76

6. CONCLUSION

6.1 Introduction

This chapter presents the final considerations of the empirical exploratory
study conducted in this research.

Section 6.2 provides a summary of the empirical findings regarding the
dependency of software failure events.

Section 6.3 highlights the main results and conclusion drawn by discovering
patterns of multiple-event failures.

Section 6.4 highlights the main results and conclusion drawn by predicting
failures based on patterns of failure sequences.

Section 6.5 presents the threats to the validity of the research.

Section 6.6 presents the contributions to the literature.

Section 6.7 presents the next steps planned for this research.

This research presents an exploratory study on multiple-event failure
manifestations observed empirically in four different real workplaces and
proposes a statistical approach to predict failures based on patterns of this type of
failure manifestation. To have a complete comprehensive view of how multiple-
event failures occur in the software layer of computer systems, I investigate the
failure behavior of a commodity operating system (OS) and User Applications
running on top of it.

Different from the traditional approach of analyzing OS failures that only
considers failures that occurred in the Kernel space, I followed the method
introduced in [29] that states that assessing an OS reliability by focusing on only
Kernel-space failures is inaccurate since modern operating systems have several
components running in both the Kernel and the User spaces. Consequently, the
used method classifies the OS failures into three categories: OS Application (OSAPP),
OS Service (OSSVC), and OS Kernel (OSKNL).

I highlight that the OS Kernel failures represented only 22.03% of all OS
failures observed in the dataset, and the most prevalent OS failures were related to
OS services (60.61%). Therefore, corroborating the study in [29], it can be seen
that software reliability studies focused on operating systems should not restrict
their analyses to only OS Kernel failures as has been the norm in the literature.

 77

I also found that failures in the Windows Update Service (WUS) were
predominant among the OS services failures, which means that the software
update malfunctioning has a high impact on the OS reliability.

6.2 Dependence of Software Failure Events

A common characteristic among the majority of software reliability models is
to assume that software failures occur independently [20]-[22]. This assumption is
often used to adapt analytical models to mathematically treatable forms and
simplify the estimation calculation of the model parameters [30]. However, this
independence assumption may interfere, significantly, with the results of the
software reliability assessment when the events of interest are not independent.
Therefore, I tested the hypothesis of independence of failure events in real-world
system failure data and found empirical evidence that the assumption of
independence does not hold for many of the failures analyzed in this work. Figure
6.1 shows one of these real examples of failure dependence observed in the failure
dataset analyzed. In this case, the failure of the RPC (Remote Procedure Call)
server, which is used by the Windows Update Service and other running services in
Windows 7, caused a failure in the Windows Update Service that, consequently,
caused the failure of all updates being performed by the Windows Update Service.

Figure 6.1. Example of software failures dependency.

6.3 Patterns of Multiple-Event Failures

This research investigates the dynamics of multiple-event failure
manifestations. Therefore, the first question I wanted to answer was: Q1: Do
software systems present systematic multiple-event failure manifestations?

RPC
server

Windows Update Service
(WUS)

In
te

rn
et

 E
xp

lo
re

r
U

p
d

at
e

V
is

u
al

 S
tu

d
io

 U
p

d
at

e

W
in

d
o

w
s

U
p

d
at

e

In
te

rn
et

 E
xp

lo
re

r
U

p
d

at
e

Dependency

Ti
m

e

The RPC server fails

Causing the failure of
the WUS

Causing the failure of
all updates being

performed

78

To work through this question, I initially propose a method to discover
patterns of failure associations (see Sections 4.2 and 5.2), which was applied to
failures from a widely used commercial off-the-shelf Operating System
(Sample_OS). As a result, I discovered 45 systematic OS failure associations with
153,511 occurrences, which are composed of the same or different failure types.
Besides been the predominant OS failure in the dataset, failures in the Windows
Update Service (WUS) are also prevalent in the associations. Most associations are
composed of repetitions of WUS failures, which suggests that the Windows Update
Service may have tried repeatedly and unsuccessfully to update the same
component, which generated patterns of multiple same-type WUS failures.
Moreover, associations composed of different WUS failures are also observed,
suggesting that failures in the Windows Update Service could cause failures in all
updates being performed by the service at the same time.

Answering Q1, the associations found indicate that most OS failures observed
occur following a specific temporal order, which is robust evidence of systematic
manifestations of multiple-event failures.

Multiple-event failures are characterized by sequences of failure events,
varying in terms of length, duration, and combination of failure types. Therefore,
two more questions were raised: Q2: Do software failures occur in a sequential
pattern? If so, Q3: Do the observed sequential patterns reflect a causal relationship
between the failures?

To answer these questions, I propose an improvement of the previous
method by creating a protocol to discover patterns of failure sequences using
varying time thresholds (see Sections 4.3 and 5.3). To provide a holistic view of
multiple-event failures at the whole software layer, this method was applied to all
three samples (see Sample_OS, Sample_USERAPP, and Sample_ALL in Section 3.4)
analyzed in this work. As a result, I found 165 different OS failure sequences with
806 occurrences; 480 User Application failure sequences with 1,718 occurrences;
and 640 sequences containing both OS and User Application failures with a total of
2,509 occurrences.

Hence, answering Q2, the sequences found are evidence of sequential
patterns of different types of software failures.

Examining the failure sequences, I found that the most common sequence
length is two, in any sample, which is the minimum number of failures that
compose the sequences. Moreover, most sequences are composed of failures with
the same type and cause. System-wide component failures, like the malfunctioning
of frameworks and missing or corrupted system files, are the main cause of OS
failures in the sequences analyzed (Section 5.3.1). Specifically, for User Application
failures, problems related to memory management are their main cause. All of
these failure causes are common problems that provoke multiple failures over
time. Thus, proactive management of these factors (e.g., preventive maintenance of
frameworks or check for missing files before performing update installation
procedures) focused on their higher availability is a possible action to avoid
failures in sequence and thus improve the system reliability.

 79

Hence, answering Q3, based on the evidence obtained for the failures
observed in the sequences, which were mainly caused by the above-mentioned
system-wide component failures, it is not possible to confirm the existence of
causal relationship among them.

I also investigate if OS and User Application failures may affect each other.
Despite observing some occurrences of these failures together, they are rare
(1.19% of the sequences found) and I could not determine how one affected the
other. The more plausible explanation is the high frequency of some User
Application failures in the dataset, which are so numerous that they occur together
with some OS failures in different computer systems, and, consequently, are
considered as associations/sequences by the proposed protocols. For example, the
total amount of OS failures in the dataset is 7,010 while the total amount of failures
of only the User application iexplorer.exe is 6,495 (see Table 3.5).

In summary, I found occurrences of associations and sequences in the failure
dataset analyzed, which is empirical evidence that demonstrates the existence of
well-established manifestations of multiple-event failures in a real software
system. Lastly, this evidence raises the following question: Q4: Are these failure
manifestations systematic enough to be considered genuine patterns?

Answering Q4, given the diversity of the groups evaluated, and the number of
occurrences detected, such evidence strengthens my conclusion that the failure
associations and sequences found are genuine patterns of multiple-event failures.

6.4 Prediction of Software Failures

To take advantage of the sequential nature of the multiple-event failures, as
summarized in Section 6.3, the following questions were also addressed: Q5: Could
we use these patterns to predict future failures? If so, Q6: At what level of
accuracy? Q7: Would it be feasible to be implemented as part of an online failure
prediction system?

Answering Q5, I used three methods to tackle the prediction problem;
Multinomial Logistic Regression (w/ and w/o Ridge regularization), Decision Tree,
and Random Forest. Based on failure sequences observed in all samples analyzed,
the methods calculate the probability of a certain failure event to occur within a
time interval upon the occurrence of a particular pattern of preceding failures. In
other words, these methods can predict the most probable failure to occur (i.e., the
most probable future failure) based on patterns of the preceding failures.

Answering Q6, the proposed prediction approach was able to estimate
models to predict software failures with good to high accuracy (86% to 93%),
considering different input data such as categories, types of failures, and Δt
between failures.

I observed that failures of the same type are more probable of occurring
together and this pattern was observed throughout the prediction analysis in all
samples analyzed. Moreover, the resulting models showed robust enough to deal
with different prediction time intervals, varying the time between failures from
seconds to hours with no degrading effect on their accuracy.

80

Answering Q7, the empirical evidence observed in this research seems
promising and suggests the feasibility of using the proposed approach to
implement online failure prediction, which must be composed of two main tasks.
One task is related to continuously calibrating the model’s parameters with new
incoming failure records, and the other task is performing the probability
estimation of the next failures to occur, as well as the appropriate preventive
actions based on these outputs (e.g., reinstall a DLL file upon its failed update). The
calibrating task can be performed either offline or online, and the prediction task
must be done online.

6.5 Threats to Validity

Like any empirical research work, this study has limitations that must be
considered when interpreting its results. In this subsection, I highlight these
validity threats [94] and the strategies adopted to mitigate them.

6.5.1 Internal Validity

This validity addresses the quality of evidence adopted to support my study’s
conclusions.

Since this study is an observational study rather than a controlled study, the
failures analyzed here were collected from computers in real production
environments and not obtained by controlled experiments. Consequently, my
conclusions are drawn from findings obtained from associations and sequences of
observed failure events and not based on the direct manipulation of the system
under study to produce the failure events analyzed.

We know from the literature (e.g., [94], [95]) that controlled experiments
offer a higher internal validity than observational ones. On the other hand, they
impose important limitations in terms of external validity. To achieve a balance
between both validities, I chose the observational approach and worked with a
dataset composed of failures from different populations (or groups). Based on this
approach, I aim at mitigating mainly validity threats such as systematic errors and
selection bias.

In this study, systematic errors could be caused by environmental factors,
such as the same administrative policy and OS settings applied to the entire group
of computers. The proposed methods were designed to mitigate these threats,
considering as failure patterns only the combinations of failures observed
consistently in multiple groups of computers.

Selection bias is another threat to internal validity that arises in this study,
which was also mitigated to the extent that we collected the failure samples from
various computers (644 in total) of dissimilar workplaces. Three (G1, G2, and G4)
out of four workplaces were under different administration policies and they were
all under varying workloads, which intentionally aimed at greater diversity in
terms of possible failure scenarios covered by the dataset.

 81

Another important aspect related to internal validity that must be considered
is related to the failure causes discussed in this work. This information was
obtained through the Error Codes, Exception Codes, and Stop Codes. The assignment
of these codes to the failure records was performed by Win7 itself, at the failure
time; thus, their correctness is assumed to be right. My understanding when
learning about the Codes was based on official Microsoft technical documentation,
which is always susceptible to misinterpretation. However, given that the
description of most Codes used in this study was straightforward, I consider this
issue of minor threat.

The evaluation of the temporal occurrence of the failures was based on the
RAC’s record field, TimeGenerated, also created by Win7 automatically at the
failure time. It is important to highlight that this field stores the time in seconds, so
two failures that occur consecutively within a time interval of less than one second
are registered with the same timestamp value. In this case, these two failures
would be considered erroneously, as occurring at the same time. Therefore, the Δt
between them is equal to zero. This is a time precision limitation of Win7’s RAC
instrumentation. However, part of the percentage of Δts equal to zero may
represent failure events that correctly occurred at the same time.

6.5.2 External Validity

This validity addresses the extent to which my results can be generalized.
First, it is important to highlight that all empirical results presented in this study
apply to Windows 7 operating systems. As mentioned in Section 3.2, my choice for
this specific OS is due to the fact that this is one of the most widely used mass-
market OS nowadays. Thus, although limited to this OS platform, it is expected that
the applicability of my empirical results is wide-spread.

Hence, if one wants to generalize this work’s empirical results to another
population of Win7 machines, then I consider that the external validity of this
study is high, especially due to the size and diversity of the analyzed dataset.
Though the reported empirical results are based on Win7, I conjecture that similar
findings may be found investigating other operating systems from the Windows OS
family that are architecturally close to Win7, such as XP, Vista, Win8/8.1, and
Win10.

In addition to the empirical results, it is important to consider the
generalizability of the methods proposed. The methods are general enough to be
applied to failure data from other software systems if their failure records contain
at least the following information: failed software identification (Failure category
and/or type/subtype), and failure time stamp. The majority of software systems
keep this information in their event logs.

6.6 Contributions to the literature

The results of this work were the basis for writing three papers. The first,
entitled, “Failure Patterns in Operating Systems: An Exploratory and Observational
Study” [30], is published in the 2018 edition of the Journal of Systems and

82

Software. It describes in detail the protocol developed for discovering failure
association patterns.

The second, entitled “An Empirical Exploratory Analysis of Failure Sequences
in a Commodity Operating System” [14], is published in the Proceedings of the
2019 edition of the Brazilian Symposium on Computing Systems Engineering. The
paper won the best paper award of the symposium. It presents the protocol
developed to discover patterns of failure sequences.

Finally, the third paper, entitled “A Statistical Approach to Predict Operating
System Failures Based on Multiple Failures Association” [75], is published in the
Proceedings of the 2020 edition of the Brazilian Symposium on Computing
Systems Engineering.

6.7 Future Work

Based on the results of this research, we are working on two ideas. The first,
as mentioned in Section 6.4, is to implement an online failure prediction analysis
based on the probabilities obtained in the prediction analysis. The second is to
replicate this study using a dataset based on failure records from Win10.
Therefore, the main idea is to test the hypothesis of similarity in failure patterns in
both operating systems. Besides, we will test other prediction methods (e.g.,
Neural Networks) and collect complete logs from the system, not just failure logs.
Consequently, other variables will be considered in the prediction models, like the
workload in progress when the failure occurred, for example.

 83

REFERENCES

[1] C. Jee and T. Macaulay, “Top software failures in recent history,”
https://www.computerworld.com/article/3412197/top-software-failures-
in-recent-history.html (Accessed: January 20, 2021).

[2] R. Charette, “The Biggest IT Failures of 2 18,”
https://spectrum.ieee.org/riskfactor/computing/it/it-failures-2018-all-
the-old-familiar-faces (Accessed: January 20, 2021).

[3] N. G. Leveson and C. S. Turner, “An Investigation of the Therac-25 Accidents”,
IEE Computer, vol. 26, no.7, pp.18-41. DOI:
https://doi.org/10.1109/MC.1993.274940

[4] M. Dowson, "The Ariane 5 software failure," ACM SIGSOFT Software Engineering
Notes, vol. 22, no. 2, pp. 84, 1997. DOI:
https://doi.org/10.1145/251880.251992

[5] J. J. Angel, "When finance meets physics: Impact of the speed of light on
financial markets and their regulation," The Financial Review, vol. 49, no. 2,
pp. 271-281, 2014. DOI: https://doi.org/10.1111/fire.12035

[6] A. Levin, “Latest 737 Max Fault That Alarmed Test Pilots Rooted in Software,”
https://www.bloomberg.com/news/articles/2019-07-27/latest-737-max-
fault-that-alarmed-test-pilots-rooted-in-software (Accessed: January 20,
2021).

[7] R. Wall and M. Sherman, “The Multiple Problems, and Potential Fixes, With the
Boeing 737 MAX,” https://www.wsj.com/articles/fixing-the-problems-
with-boeings-737-max-11566224866 (Accessed: January 20, 2021).

[8] P.L. Li, M. Ni, S. Xue, J.P. Mullally, M. Garzia, and M. Khambatti, "Reliability
Assessment of Mass-Market Software: Insights from Windows Vista," in
Proceedings of the 19th International Symposium on Software Reliability
Engineering, 2008, pp. 265-270. DOI:
https://doi.org/10.1109/issre.2008.60

[9] G. Bruzzone, M. Caccia, A. Bertone, and G. Ravera, “Standard Linux for
Embedded Real-Time Robotics and Manufacturing Control Systems”, in
Proceedings of the 14th Mediterranean Conference on Control and
Automation, 2006, pp. 01-06. DOI:
https://doi.org/10.1109/med.2006.328773

84

[1] D. Abbott, “Linux for Embedded and Real-time Applications,” Newnes, 3ª ed.,
296 pgs, 2012.

[11] F. Salfner, M. Schieschke, and M. Malek, "Predicting failures of computer
systems: a case study for a telecommunication system," in Proceedings of
the 20th International Conference on Parallel and distributed processing,
2006, pp. 348-348. DOI: https://doi.org/10.1109/ipdps.2006.1639672

[12] M. Lyu, "Software Reliability Engineering: A Roadmap," in Proceedings of the
29th International Conference Software Engineering, Future Software
Engineering, 2007, pp. 153 -170. DOI:
https://doi.org/10.1109/fose.2007.24

[13] ANSI/IEEE, Standard Glossary of Software Engineering Terminology, STD-
729-1991, 1991.

[14] C.A.R. Dos Santos, R. Matias, and K. S. Trivedi, “An Empirical Exploratory
Analysis of Failure Sequences in a Commodity Operating System,” in
Proceedings of the Brazilian Symposium on Computing Systems
Engineering, 2019. DOI:
https://doi.org/10.1109/sbesc49506.2019.9046072

[15] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” in Proceedings of the International
Conference on Dependable Systems and Networks, 2006, pp.249-258. DOI:
https://doi.org/10.1109/dsn.2006.5

[16] A. Ganapathi, V. Ganapathi and D. Patterson, “Windows XP kernel crash
analysis,” in Proceedings of the Conference on Large Installation System
Administration, 2006, pp. 149-159.

[17] M. M. Swift, B. N. Bershad and H. M. Levy, “Improving the reliability of
commodity operating systems,” in Proceedings of the ACM Symposium on
Operating Systems Principles, 2003, pp.207-222. DOI:
https://doi.org/10.1145/945445.945466

[18] G. J. Pai "A Survey of Software Reliability Models". Technical Report CS 651:
Dependable Computing. Department of ECE, University of Virginia, 2002.

[19] K. Goseva-Popstojanova and K. S. Trivedi, "Architecture Based Software
Reliability Prediction," Computers & Mathematics with Applications, vol. 46,
no. 7, pp. 1023-1036, 2003. DOI: https://doi.org/10.1016/S0898-
1221(03)90116-7

[20] K. Goseva-Popstojanova and K. S. Trivedi, "The Effects of Failure Correlation
on Software Reliability and Performability," in Proceedings of the 29th
International Symposium Fault Tolerant Computing, 1999, pp. 45-46.

[21] K. Goseva-Popstojanova and K. S. Trivedi, "Effects of Failure Correlation on
Software in Operation," in Proceedings of the Pacific Rim International
Symposium on Dependable Computing, 2000, pp. 69-76. DOI:
https://doi.org/10.1109/prdc.2000.897286

 85

[22] K. Goseva-Popstojanova and K. S. Trivedi, "Failure Correlation in Software
Reliability Models," IEEE Trans. On Reliability, vol.49, no.1, pp. 37-48, 2000.
DOI: https://doi.org/10.1109/24.855535

[23] C. Dyer and M. Taylor, “Cot deaths: law in disarray as 258 cases of convicted
parents to be reviewed,” https://www.theguardian.com/society/
2004/jan/20/health.childprotection (Accessed: January 20, 2021).

[24] R. Hill, "Reflections on the cot death cases," Significance, 2, pp. 13-15, 2005.
DOI: https://doi.org/10.1111/j.1740-9713.2005.00077.x

[25] A. Aviz ienis, J.-C. Laprie, B. Randell, and C. Landwehr, "Basic Concepts and
Taxonomy of Dependable and Secure Computing," IEEE Transactions on
Dependable and Secure Computing, vol. 1, no. 1, pp. 11-33, 2004. DOI:
https://doi.org/10.1109/TDSC.2004.2

[26] E. E. Lewis, “Introduction to Reliability Engineering,” Wiley Publishing, 2ª ed.,
464 pgs, 1995.

[27] A. Ganapathi and D. Patterson, “Crash Data Collection: A Windows Case
Study,” in Proceedings of the International Conference on Dependable
Systems and Networks, 2005, pp. 280-285. DOI:
https://doi.org/10.1109/dsn.2005.32

[28] Y. S. Dai , M. Xie, and K. L. Poh, “Modeling and Analysis of Correlated Software
Failures of Multiple Types, ” IEEE Transactions on Reliability, vol. 54, no. 1),
pp. 100-106, 2005. DOI: https://doi.org/10.1109/tr.2004.841709

[29] R. Matias, G. Oliveira, L. Araujo, "Operating system reliability from the qual-
ity of experience viewpoint: an exploratory study," in Proceedings of the
28th ACM Symposium on Applied Computing, 2013, pp. 1644–1649. DOI:
https://doi.org/10.1145/2480362.2480669

[3] C.A.R. Dos Santos and R. Matias, “Failure Patterns in Operating Systems: An
Exploratory and Observational Study,” Elsevier Journal of Systems and
Software, vol. 137, pp. 512-530, March 2018. DOI:
https://doi.org/10.1016/j.jss.2017.03.058

[31] M. Kalyanakrishnam, Z. Kalbarczyk, R. Iyer, "Failure data analysis of a LAN of
Windows NT based computers,"in Proceedings of the 18th IEEE Symposium
on Reliable Distributed Systems, 1999, pp. 178–187. DOI:
https://doi.org/10.1109/reldis.1999.805094

[32] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, "An empirical study of oper-
ating systems errors," in Proceedings of the 18th ACM Symposium on
Operating Systems Principles, 2001, pp. 73–88. DOI:
https://doi.org/10.1145/502059.502042

 [33] R. Lai, “Huawei reveals HarmonyOS, its alternative to Android,”
https://www.engadget.com/2019/08/09/huawei-harmony-os-hongmeng-
android/ (Accessed: December 27, 2019).

86

[34] M. Golemati, A. Katifori, E. Giannopoulou, I. Daradimos, and C. Vassilakis,
“Evaluating the significance of the Windows Explorer visualization in
personal information management browsing tasks,” in Proceedings of the
International Conference on Information Visualization, 2007, pp. 93-100.
DOI: https://doi.org/10.1109/iv.2007.46

[35] C.A.R. Dos Santos, M. Antunes, R. Matias, L. Assunção, and V. Maciel,
“Reliability Assessment of Commercial Off-the-Shelf Operating System
Software: An Empirical Study,” in Proceedings of the Brazilian Symposium
on Computing Systems Engineering, 2018. DOI:
https://doi.org/10.1109/sbesc.2018.00038

[36] Microsoft, “Microsoft Security Essentials,” https://www.microsoft.com/en-
us/download/details.aspx?id=5201 (Accessed: December 27, 2019).

[37] Microsoft, “Windows Error Reporting,” http://msdn.microsoft.com/en-
us/library/bb513613(v=vs.85).aspx (Accessed: December 27, 2019).

[38] Microsoft, “Windows Installer,” http://msdn.microsoft.com/en-
us/library/cc185688%28VS. 85%29.aspx (Accessed: December 27, 2019).

[39] D. Hosmer, S. Lemeshow, and R. Sturdivant, "Applied Logistic Regression," 3rd
ed., John Wiley & Sons, 500 pgs, 2013.

[40] I. H. Witten, E. Frank, and M. A. Hall, "Data Mining: Practical Machine Learning
Tools and Techniques," Morgan Kaufmann, 664 pgs, 2011.

[41] P. Bühlmann and S. van de Geer, "Statistics for High-Dimensional Data:
Methods, Theory and Applications," Springer, 558 pgs, 2011.

[42] T. Hastie, R. Tibshirani, and J. Friedman" The Elements of Statistical Learning:
Data Mining, Inference, and Prediction," Springer, 745 pgs, 2019.

[43] G. Tutz and J. Gertheiss, “Regularized regression for categorical data,”
Statistical Modelling, vol. 16, no.3, pp.161-200, 2016. DOI:
https://doi.org/10.1177/1471082x16642560

[44] A. E. Hoerl and R. W. Kennard, “Ridge Regression: Biased Estimation for
Nonorthogonal Problems,” Technometrics, vol. 12, no.1, pp.55-67, 1970.
DOI: https://doi.org/10.1080/00401706.1970.10488634

[45] J. Friedman, T. Hastie , and R. Tibshirani, “Regularization Paths for
Generalized Linear Models via Coordinate Descent,” Journal of Statistical
Software, vol. 33, no.1, pp.01-22, 2010. DOI:
https://doi.org/10.18637/jss.v033.i01

[46] F. Gorunescu "Data Mining: Concepts, Models and Techniques," Springer, 372
pgs, 2011.

[47] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone "Classification and
Regression Trees," CRC Press, 358 pgs, 1984.

 87

[48] D. Esposito and F. Esposito "Introducing Machine Learning," Microsoft Press,
400 pgs, 2020.

[49] M. Kantardzic "Data Mining: Concepts, Models, Methods, and Algorithms,"
Wiley-IEEE Press, 672 pgs, 2020.

[50] J. Han, M. Kamber, and J. Pei "Data Mining: Concepts and Techniques," Morgan
Kaufmann, 703 pgs, 2011.

[51] T. Oshiro, P. Perez, and J. Baranauskas " How Many Trees in a Random
Forest?," Lecture notes in computer science, 2012.

[52] J. A. Rosenthal, "Statistics and Data Interpretation for Social Work," Springer,
506 pgs, 2011.

[53] H-J Andreß, K. Golsch, and A. Schmidt, "Applied Panel Data Analysis for
Economic and Social Surveys," Springer, 344 pgs, 2013.

[54] K. Pituch and J. Stevens, "Applied Multivariate Statistics for the Social
Sciences: Analyses with SAS and SPSS," 6th ed., Routledge, 814 pgs, 2015.

[55] D. McFadden, “Conditional logit analysis of qualitative choice behavior,” In
Frontiers in Econometrics, P. Zarembka (ed.), 1974, pp 105-142.

 [56] R. Matias, M. Prince, L. Borges, C. Sousa, and L. Henrique, “An Empirical
Exploratory Study on Operating System Reliability,” In Proceedings 29th
ACM Symposium on Applied Computing, 2014, pp. 1523–1528. DOI:
https://doi.org/doi.org/10.1145/2554850.2555021

[57] K. S. Trivedi, "Probability and Statistics with Reliability, Queuing, and
Computer Science Applications," 2nd ed., vol. 1. Wiley, 830 pgs, 2001.

[58] C. Bird, V.P. Ranganath, T. Zimmermann, N. Nagappan, and A. Zeller. “Extrinsic
Influence Factors in Software Reliability: A Study of 200,000 Windows
Machines,” In Proceedings 36th International Conference on Software
Engineering, 2014, pp. 205-214. DOI:
https://doi.org/10.1145/2591062.2591173

[59] P. Fournier-Viger, J. Lin, R. Kiran, Y. Koh, and R. Thomas, “A Survey of
Sequential Pattern Mining”, Data Science and Pattern Recognition, vol. 1,
no.1, pp.54-77.

[60] R. Srikant, and R. Agrawal, “Mining sequential patterns: Generalizations and
performance improvements,” Proceedings of the 5th International
Conference on Extending Database Technology, 1996, pp. 3–17. DOI:
https://doi.org/10.1007/BFb0014140

[61] M. J. Zaki, “SPADE: An efficient algorithm for mining frequent sequences,”
Machine learning, vol. 42, no.1, pp.31-60. DOI:
https://doi.org/10.1023/A:1007652502315

[62] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M. C.
Hsu, “Mining sequential patterns by pattern-growth: The prefixspan

88

approach,” IEEE Transactions on knowledge and data engineering, vol. 16,
no.11, pp.1424-1440. DOI: https://doi.org/10.1109/TKDE.2004.77

[63] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential pattern mining using a
bitmap representation,” Proceedings of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2002, pp. 429–435.
DOI: https://doi.org/10.1145/775047.775109

[64] Z. Yang, and M. Kitsuregawa, “LAPIN-SPAM: An improved algorithm for
mining sequential pattern,” Proceedings of the 21st International
Conference on Data Engineering Workshops, 2005, pp. 1222–1222. DOI:
https://doi.org/10.1109/ICDE.2005.235

[65] M. J, Zaki and W. Meira, "Data Mining and Machine Learning: Fundamental
Concepts and Algorithms," Cambridge University Press, 775 pgs, 2020.

[66] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R. Sahoo, “BlueGene/L
Failure Analysis and Prediction Models,” In Proceedings International
Conference on Dependable Systems and Networks, 2006, pp. 425–434. DOI:
https://doi.org/10.1109/DSN.2006.18

[67] Fronza, A. Sillitti, G. Succi, M. Terho, J. Vlasenko, “Failure Prediction Based on
Log Files Using Random Indexing and Support Vector Machines”, Journal of
Systems and Software, vol. 86, no. 1, pp. 2-11, 2013. DOI:
https://doi.org/10.1016/j.jss.2012.06.025

[68] NetMarketShare, “Desktop Operating System Market Share,”
https://netmarketshare.com/operating-system-market-
share.aspx?id=platformsDesktopVersions (Accessed: January 20, 2021).

[69] Microsoft, “Reliability analysis component,” http://technet.microsoft.com/en-
us/library/cc774636(v=ws.10).aspx (Accessed: January 20, 2021).

[7] Microsoft, “Win_32 ReliabilityRecord class,” https://msdn.microsoft.com/en-
us/library/windows/desktop/ee706630%28v=vs.85%29.aspx?f=255&MS
PPError=-2147217396 (Accessed: January 20, 2021).

[71] Microsoft, “Understanding the System Stability Index,”
https://technet.microsoft.com/en-us/library/cc749032(v=ws.10).aspx
(Accessed: January 20, 2021).

[72] HPDCS, “Survey on OS Failures,” http://hpdcs.facom.ufu.br/osr-
team/index.php (Accessed: January 20, 2021).

[73] M. Russinovich, D. A. Solomon, and A. Ionescu, "Microsoft Windows Internals,"
7th ed., Microsoft Press, 900 pgs, 2009.

[74] Microsoft, “Did system uptime error cause chkdisk,”
https://answers.microsoft.com/en-us/windows/forum/all/did-system-
uptime-error-cause-chkdisk/8d55525c-9f5b-4278-bd87-1598bce009ee
(Accessed: January 20, 2021).

 89

[75] C.A.R. Dos Santos, R. Matias, and K. S. Trivedi, “A Statistical Approach to
Predict Operating System Failures Based on Multiple Failures Association,”
in Proceedings of the Brazilian Symposium on Computing Systems
Engineering, 2020, pp. 1–8. DOI:
https://doi.org/10.1109/SBESC51047.2020.9277859

[76] E. Volna, M. Kotyrba, and M. Janosek, "Pattern recognition and classification in
time series data," Advances in Computational Intelligence and Robotics, 1st
ed. IGI Global, 282 pgs, 2016.

[77] F.H. Marriott, "A Dictionary of Statistical Terms," Longman Scientific & Techni-
cal/Wiley, 223 pgs, 1990.

[78] M. Scholes, and J. Williams, "Estimating betas from nonsynchronous data,"
Journal of Financial Economics, vol 5, no. 3, pp. 309–327, 1977. DOI:
https://doi.org/10.1016/0304-405X(77)90041-1

[79] M.C. Lundin, M.M. Dacorogna, and U. A. Müller, "Correlation of high frequency
financial time series". Lequex, P. (Ed.), The Financial Markets Tick by Tick,
Chapter 4. John Wiley & Sons, pp. 91-126, 1999.

[80] T. Hayashi, N. Yoshida, "On covariance estimation of non-synchronously ob-
served diffusion processes", Bernoulli, vol 11, no. 2 , pp. 359–379, 2005.
DOI: https://doi.org/10.3150/bj/1116340299

[81] K. Rehfeld, N. Marwan, J. Heitzig, and J.Kurths, "Comparison of correlation
analy- sis techniques for irregularly sampled time series," Nonlinear
Processes Geophys, vol. 18, no. 3, pp. 389-404, 2011. DOI:
https://doi.org/10.5194/npg-18-389-2011

[82] A. Eckner, “A framework for the analysis of unevenly-spaced time series data,”
http://eckner.com/papers/unevenly_spaced_time_series_analysis.pdf
(Accessed: January 20, 2021).

[83] B. Desharnais, F. Camirand-Lemyre, P. Mireault, and C.Skinner,
“Determination of confidence intervals in non-normal data: application of
the bootstrap to cocaine concentration in femoral blood,” Journal of
analytical toxicology, vol. 39, pp. 113-117, 2015. DOI:
https://doi.org/10.1093/jat/bku127

[84] T. Beauvisage, "Computer usage in daily life," in Proceedings of International
Conference on Human Factors in Computing Systems, 2009, pp. 575-584.
DOI: https://doi.org/10.1145/1518701.1518791

[85] Microsoft, “Windows update showing error 8 7 643,”
http://answers.microsoft.com/en-us/insider/forum/insider_wintp-
insider_update/windows-update-showing-error-80070643/0e53bf0f-
8843-45a1-b3c4-0940c516c8d9 (Accessed: January 20, 2021).

 [86] Microsoft, “Troubleshooting Issues When You Use the Discovery Wizard to
Install an Agent,” https://docs.microsoft.com/en-us/previous-
versions/system-center/operations-manager-2007-

90

r2/ff358634(v=technet.10)?redirectedfrom=MSDN (Accessed: January 20,
2021).

[87] Microsoft, “Windows 7 Update Problems - Code 8 B 1 ,”
https://answers.microsoft.com/en-us/windows/forum/all/windows-7-
update-problems-code-800b0100/c2d0f18b-dbef-455d-a32e-
b730ebd2370f (Accessed: January 20, 2021).

[88] Microsoft, “Windows Update Agent - Error Codes,” http://social.technet.
microsoft.com/wiki/contents/articles/15260.windows-update-agent-
error-codes. aspx . (Accessed: January 20, 2021).

[89] Microsoft, “NTSTATUS Values,” https://docs.microsoft.com/en-
us/openspecs/windows_protocols/ms-erref/596a1078-e883-4972-9bbc-
49e60bebca55?redirectedfrom=MSDN (Accessed: January 20, 2021).

[9] Microsoft, “NTSTATUS xc 41d,” https://support.microsoft.com/en-
us/help/2856748/ntstatus-0xc000041d-error-occurs-when-you-click-a-
link-in-a-web-based (Accessed: January 20, 2021).

[91] Microsoft, “Windows Update error 8 242 16,”
https://docs.microsoft.com/en-
us/windows/deployment/update/windows-update-error-reference
(Accessed: January 20, 2021).

[92] Microsoft, “Add-WindowsFeature sometimes fails with error x8 f 9 2,”
https://social.technet.microsoft.com/Forums/lync/en-US/1eb8c5c2-64bf-
4d07-8020-dac902230688/addwindowsfeature-sometimes-fails-with-
error-0x800f0902-the-operation-cannot-be-completed-
because?forum=winservermanager (Accessed: January 20, 2021).

[93] M. Crowley, "Pro Internet Explorer 8 & 9 Development: Developing Powerful
Applications for The Next Generation of IE," Apress, 446 pgs, 2010.

[94] J. Siegmund, N. Siegmund, and S. Apel, "Views on internal and external validity
in empirical software engineering," In Proceedings 37th International
Conference on Software Engineering, 2015, pp. 9-19. DOI:
https://doi.org/10.1109/ICSE.2015.24

[95] R. Feldt and A. Magazinius, "Validity threats in empirical software engineering
research - An initial survey, " in Proceedings 22nd International Conference
on Software Engineering and Knowledge Engineering, 2010, pp. 374-379.

 91

APPENDIX

Table A.1. Reference Failures that appeared in four groups.

Category OS Failure Type [Subtype] G1 G2 G3 G4 Total

OSSVC WUS [Windows Update] 23 613 5 523 1,164

OSAPP explorer.exe 35 226 29 296 586

OSSVC WUS [.Net Framework Update] 3 187 3 116 309

OSSVC WUS [Office Update] 44 87 1 134 266

OSKNL Windows-StartupRepair 66 135 2 34 237

OSSVC msiexec.exe 31 3 3 23 60

OSSVC dllhost.exe 2 28 13 4 47

OSKNL
SYSTEM_THREAD_ EXCEPTION_NOT

 HANDLED
1 30 7 3 41

OSSVC services.exe 1 16 5 19 41

OSAPP mmc.exe 3 10 4 7 24

OSSVC taskhost.exe 1 1 1 1 4

Table A.2. Reference Failures that appeared in three groups.

Category OS Failure Type [Subtype] G1 G2 G3 G4 Total

OSSVC WUS [Internet Explorer Update] 7 1,461 - 118 1,586

OSKNL VIDEO_TDR_ERROR 825 62 - 11 898

OSAPP mscorsvw.exe - 115 6 159 280

OSSVC WUS [Visual Studio Update] - 55 103 41 199

OSAPP rundll32.exe - 19 7 155 181

OSKNL DRIVER_POWER _STATE_FAILURE - 22 23 78 123

OSSVC svchost.exe - 28 24 53 105

OSSVC WUS [MS C++ Update] - 16 5 19 40

OSSVC WUS [XML Update] - 16 1 16 33

OSKNL CRITICAL_ OBJECT_TERMINATION 18 4 - 6 28

OSKNL MEMORY _MANAGEMENT - 22 1 2 25

OSKNL PAGE_FAULT_IN_NONPAGED_AREA - 7 1 10 18

OSKNL DRIVER_IRQL_ NOT_LESS_OR_EQUAL 1 11 - 5 17

OSSVC WUS [MS Silverlight Update] - 4 2 11 17

OSAPP dwm.exe 4 - 1 4 9

OSSVC WUS [Visio Viewer Update] 1 5 - 2 8

OSKNL CLOCK_WATCHDOG _TIMEOUT 1 3 - 1 5

92

Figure A.1. Probabilities based on sequences of two failure categories
(Random Forest).

Figure A.2. Probabilities based on sequences of two failure types
(Multinomial Logistic Regression with Ridge - Sample_OS).

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

Independent Variable
(Previous Failure)

Independent Variable
(Previous Failure)

D
e

p
en

d
e

n
t

V
ar

ia
b

le
(L

as
t

Fa
ilu

re
)

OSKNL

OSAPP

OSSVC

 93

Figure A.3. Probabilities based on sequences of two failure types
(Decision Tree - Sample_OS).

Figure A.4. Probabilities based on sequences of two failure types
(Random Forest - Sample_OS).

Independent Variable
(Previous Failure)

D
e

p
en

d
e

n
t

V
ar

ia
b

le
(L

as
t

Fa
ilu

re
)

OSKNL

OSAPP

OSSVC

Independent Variable
(Previous Failure)

D
e

p
en

d
e

n
t

V
ar

ia
b

le
(L

as
t

Fa
ilu

re
)

OSKNL

OSAPP

OSSVC

94

Figure A.5. Probabilities based on sequences of two failure types
(Multinomial Logistic Regression with Ridge - Sample_USERAPP).

Figure A.6. Probabilities based on sequences of two failure types
(Decision Tree - Sample_USERAPP).

Independent Variable
(Previous Failure)

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

USERAPP

Independent Variable
(Previous Failure)

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

USERAPP

 95

Figure A.7. Probabilities based on sequences of two failure types
(Random Forest - Sample_USERAPP).

Figure A.8. Decision Tree based on sequences of two failure types
(Sample_OS).

Independent Variable
(Previous Failure)

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

USERAPP

96

Figure A.9. Decision Tree based on sequences of two failure types
(Sample_USERAPP).

 97

Figure A.10. Decision Tree based on sequences of two failure types
(Sample_ALL).

98

Figure A.11. Decision Tree based on sequences of two failure types and the Δt between them (Sample_USERAPP).

 99

Figure A.12. Decision Tree based on sequences of two failure types and the Δt between them (Sample_ALL).

100

Figure A.13. Probabilities based on sequences of two failure types and the Δt
between them (Multinomial Logistic Regression with Ridge -

Sample_USERAPP).

Figure A.14. Probabilities based on sequences of two failure types and the Δt
between them (Decision Tree - Sample_USERAPP).

USERAPP

Independent Variable
(Previous Failure)

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

USERAPP

Independent Variable
(Previous Failure)

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

 101

Figure A.15. Probabilities based on sequences of two failure types and the Δt
between them (Random Forest - Sample_USERAPP).

Figure A.16. Probabilities based on sequences of two failure types and the Δt
between them (Multinomial Logistic Regression with Ridge - Sample_ALL).

USERAPP

Independent Variable
(Previous Failure)

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

OSKNL

OSAPP

OSSVC

USERAPP

Independent Variable
(Previous Failure)

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

102

Figure A.17. Probabilities based on sequences of two failure types and the Δt
between them (Decision Tree - Sample_ALL).

Figure A.18. Probabilities based on sequences of two failure types and the Δt
between them (Random Forest - Sample_ALL).

OSKNL

OSAPP

OSSVC

USERAPP

Independent Variable
(Previous Failure)

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

OSKNL

OSAPP

OSSVC

USERAPP

Independent Variable
(Previous Failure)

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

 103

Figure A.19. Probabilities based on sequences of three failure types
(Multinomial Logistic Regression with Ridge - Sample_OS).

OSAPP

OSSVC

D
e

p
en

d
e

n
t

V
ar

ia
b

le
(L

as
t

Fa
ilu

re
)

Independent Variable
(Xbefore_1)

OSAPP

OSSVC

D
e

p
en

d
e

n
t

V
ar

ia
b

le
(L

as
t

Fa
ilu

re
)

Independent Variable
(Xbefore_1)

104

Figure A.20. Probabilities based on sequences of three failure types
(Decision Tree - Sample_OS).

Figure A.21. Probabilities based on sequences of three failure types
(Random Forest - Sample_OS).

OSAPP

OSSVC

D
e

p
en

d
e

n
t

V
ar

ia
b

le
(L

as
t

Fa
ilu

re
)

Independent Variable
(Xbefore_1)

 105

Figure A.22. Probabilities based on sequences of three failure types
(Multinomial Logistic Regression with Ridge - Sample_USERAPP).

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

Independent Variable
(Xbefore_1)

106

Figure A.23. Probabilities based on sequences of three failure types
(Decision Tree - Sample_USERAPP).

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

Independent Variable
(Xbefore_1)

 107

Figure A.24. Probabilities based on sequences of three failure types
(Random Forest - Sample_USERAPP).

D
e

p
en

d
e

n
t

V
ar

ia
b

le
(L

as
t

Fa
ilu

re
)

Independent Variable
(Xbefore_1)

108

Figure A.25. Probabilities based on sequences of three failure types (Multinomial Logistic Regression with Ridge - Sample_ALL).

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

Independent Variable
(Xbefore_1)

 109

Figure A.26. Probabilities based on sequences of three failure types (Decision Tree - Sample_ALL).

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

Independent Variable
(Xbefore_1)

110

Figure A.27. Probabilities based on sequences of three failure types (Random Forest - Sample_ALL).

D
e

p
e

n
d

e
n

t
V

ar
ia

b
le

(L
as

t
Fa

ilu
re

)

Independent Variable
(Xbefore_1)

 111

Figure A.28. Decision Tree based on sequences of three failure types (Sample_OS).

112

Figure A.29. Decision Tree based on sequences of three failure types (Sample_USERAPP).

 113

Figure A.30. Decision Tree based on sequences of three failure types (Sample_ALL).

