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RESUMO 

 

Uma necessidade fundamental para a engenharia de confiabilidade de software é 
compreender como os sistemas de software falham, que significa entender a 
dinâmica que governa os diferentes tipos de manifestação de falha. Esta pesquisa 
apresenta um estudo exploratório sobre falhas de múltiplos eventos, que é uma 
manifestação de falha caracterizada por sequências de eventos de falha que variam 
em comprimento, duração e combinação de tipos de falha. Este estudo visa (i) 
melhorar a compreensão das falhas de múltiplos eventos em sistemas de software 
reais, investigando suas ocorrências, associações e causas; (ii) propor protocolos 
de análise que levem em consideração as manifestações de falha de múltiplos 
eventos; (iii) aproveitar a natureza sequencial desse tipo de falha de software para 
realizar previsões. As falhas analisadas nesta pesquisa foram observadas 
empiricamente. No total, foram analisadas 42.209 falhas reais de software de 644 
computadores de diferentes locais de trabalho. As principais contribuições deste 
estudo são um protocolo desenvolvido para investigar a existência de padrões de 
associações de falha; um protocolo para descobrir padrões de sequências de falha; 
e uma abordagem de previsão cuja principal ideia é calcular a probabilidade de um 
determinado evento de falha ocorrer dentro de um intervalo de tempo após a 
ocorrência de um padrão particular de falhas anteriores. Três métodos foram 
utilizados para resolver o problema de previsão; Regressão Logística Multinomial 
(com ou sem regularização Ridge), Decision Tree e Random Forest. Tais métodos 
foram escolhidos devido à natureza dos dados de falha, nos quais os tipos de falha 
devem ser tratados como variáveis categóricas. Inicialmente, foi realizada uma 
análise de descoberta de associação de falhas que considerou apenas falhas de um 
sistema operacional (SO) comercial amplamente utilizado. Como resultado, foram 
descobertos 45 padrões de associação de falhas de sistema operacional com 
153.511 ocorrências, compostos dos mesmos ou diferentes tipos de falha e 
ocorrendo, sistematicamente, em intervalos de tempo bem estabelecidos. As 
associações observadas sugerem a existência de mecanismos subjacentes que 
regem essas ocorrências de falha, o que motivou o aprimoramento do método 
anterior, com a criação de um protocolo para descobrir padrões de sequências de 
falhas usando limites de tempo flexíveis e uma abordagem de previsão de falha. 
Para ter uma visão abrangente de como as diferentes falhas de software podem 
afetar umas às outras, os dois métodos foram aplicados a três amostras diferentes 
— a primeira amostra contém apenas falhas do Sistema Operacional, a segunda 
contém apenas falhas de Aplicativos do Usuário e a terceira engloba falhas do 
Sistema Operacional e de Aplicativos de Usuário. Como resultado, foram 
encontradas 165, 480 e 640 sequências de falha diferentes com milhares de 
ocorrências, respectivamente. Por fim, a abordagem proposta foi capaz de prever 
falhas com boa até alta precisão (86% a 93%). 

 

Palavras-chave: Falhas de software; associações de falha; sequências de falha; 
falhas de múltiplos eventos; padrões; predição. 
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ABSTRACT 

 

A fundamental need for software reliability engineering is to comprehend how 
software systems fail, which means understanding the dynamics that govern 
different types of failure manifestation. In this research, I present an exploratory 
study on multiple-event failures, which is a failure manifestation characterized by 
sequences of failure events, varying in terms of length, duration, and combination 
of failure types. This study aims to (i) improve the understanding of multiple-event 
failures in real software systems, investigating their occurrences, associations, and 
causes; (ii) propose analysis protocols that take into account multiple-event failure 
manifestations; (iii) take advantage of the sequential nature of this type of 
software failure to perform predictions. The failures analyzed in this research were 
observed empirically. In total, I analyzed 42,209 real software failures from 644 
computers used in different workplaces. The major contributions of this study are 
a protocol developed to investigate the existence of patterns of failure 
associations; a protocol to discover patterns of failure sequences; and a prediction 
approach whose main concept is to calculate the probability of a certain failure 
event to occur within a time interval upon the occurrence of a particular pattern of 
preceding failures. I used three methods to tackle the prediction problem; 
Multinomial Logistic Regression (w/ and w/o Ridge regularization), Decision Tree, 
and Random Forest. These methods were chosen due to the nature of the failure 
data, in which the failure types must be handled as categorical variables. Initially, I 
performed a failure association discovery analysis which only included failures 
from a widely used commercial off-the-shelf Operating System (OS). As a result, I 
discovered 45 OS failure association patterns with 153,511 occurrences, which 
were composed of the same or different failure types and occurring within well-
established time intervals, systematically. The observed associations suggest the 
existence of underlying mechanisms governing these failure occurrences, which 
motivated the improvement of the previous method by creating a protocol to 
discover patterns of failure sequences using flexible time thresholds and a failure 
prediction approach. To have a comprehensive view of how different software 
failures may affect each other, both methods were applied to three different 
samples — the first sample contained only OS failures, the second contained only 
User Application failures, and the third encompassed both OS and User Application 
failures altogether. As a result, I found 165, 480, and 640 different failure 
sequences with thousands of occurrences, respectively. Finally, the proposed 
approach was able to predict failures with good to high accuracy (86% to 93%). 

 

Keywords: Software failures; failure associations; failure sequences; multiple-
event failures; patterns; prediction. 
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NOTATION 

 

β Vector of parameters of the Multinomial Logistic Regression 
(w/ and w/o Ridge regularization). 

β0 Intercept of the Multinomial Logistic Regression (w/ and w/o 
Ridge regularization). 

βT Transpose of the parameters vector of the Multinomial 
Logistic Regression with Ridge regularization. 

Δt Time difference between two failure events. 

λ Penalty applied to the parameters of the Multinomial Logistic 
Regression with Ridge regularization. 

  Probability of occurring a failure event. 

F1→F2 The symbol “→” does not necessarily imply causation; this 
symbol indicates the temporal order of the failures. F1 is the 
first failure to occur followed by F2. 

F1hh:mm→F2hh:mm The superscripts (hh:mm) indicate the respective failure times 
in hours (hh) and minutes (mm). 

F1Cause_A→F2Cause_B The superscripts (Cause_A and Cause_B) indicate the 
respective failure causes. In Win7 they are usually shown as 
hexadecimal codes, but their format is platform-specific. 

Gini index Splitting criterion that is used to decide the order of the 
independent variables in a Decision Tree. 

IV_* Independent variable in the Decision Tree plot. 

ln Natural logarithm. 

         Probability of Y given X. 

R2 The McFadden’s pseudo R2 measures the amount of change by 
using the independent variables versus not using them. 

s Spearman's Rank correlation coefficient. 

XΔt Represents the Δt between failures in sequences composed of 
two failure types, in the Multinomial Logistic Regression with 
Ridge regularization. 

xΔt Vector of two dummy independent variables of the Δt in 
sequences composed of two failure types, in the Multinomial 
Logistic Regression with Ridge regularization. The first 
dummy variable refers to “Minimum ≤ Δt ≤ Median” and the 
second to “Median < Δt ≤ Maximum”. 

xb Vector of dummy independent variables of all possible failure 
types that immediately precede the last failure (dependent 
variable) of sequences composed of two failure types, in the 
Multinomial Logistic Regression with Ridge regularization. 

xb1 Vector of dummy independent variables of all possible failure 



 

types that immediately precede the last failure (dependent 
variable) of sequences composed of three failure types, in the 
Multinomial Logistic Regression with Ridge regularization.  

xb2 Vector of dummy independent variables of all possible failure 
types that occurred previously to the Xbefore_1 in sequences 
composed of three failure types, in the Multinomial Logistic 
Regression with Ridge regularization. 

XBefore Represents the failure event immediately preceding the last 
failure (dependent variable) of sequences composed of two 
failure types, in the Multinomial Logistic Regression with 
Ridge regularization. 

XBefore_1 Represents the failure event immediately preceding the last 
failure (dependent variable) of sequences composed of three 
failure types, in the Multinomial Logistic Regression with 
Ridge regularization. 

XBefore_2 Represents the failure event that occurred previously to the 
Xbefore_1 in sequences composed of three failure types, in the 
Multinomial Logistic Regression with Ridge regularization. 

xKNL Dummy independent variable of the OSKNL category, indicating 
that occurred (xKNL = 1) or not (xKNL = 0) immediately before 
the last failure (dependent variable) of sequences composed of 
two failure categories, in the Multinomial Logistic Regression. 

xsvc Dummy independent variable of the OSSVC category, indicating 
that occurred (xSVC = 1) or not (xSVC = 0) immediately before the 
last failure (dependent variable) of sequences composed of 
two failure categories, in the Multinomial Logistic Regression. 

xUSERAPP Dummy independent variable of the USERAPP category, 
indicating that occurred (xUSERAPP = 1) or not (xUSERAPP = 0) 
immediately before the last failure (dependent variable) of 
sequences composed of two failure categories, in the 
Multinomial Logistic Regression. 

Y Dependent variable of the Multinomial Logistic Regression 
(w/ and w/o Ridge regularization). 
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1.   INTRODUCTION 

1.1 Context 
Nowadays, it is indisputable that software has become the backbone of 

modern society. Critical systems, in areas such as energy and water supply, 
transportation, telecommunication, finance, and many others, are extensively 
dependent on software. This ubiquity of software makes the failures of such 
systems have a significant impact on human lives, causing from simple 
inconvenient to catastrophic damage (e.g., [1], [2]). Some examples of high impact 
software failures follow: 

  Therac-25: Problems in the software responsible for controlling the Therac-
25 radiation therapy machine caused a series of accidents between 1985 
and 1987, in which patients were given overdoses of radiation, resulting in 
deaths or serious injuries [3]. 

  Ariane 5: In June 1996, the unmanned Ariane 5 rocket exploded forty 
seconds after its launch. The cost of the project was approximately $7 
billion. The cause of the problem was a numerical conversion bug in the 
rocket's inertial control software [4]. 

  Knight Capital Group: In August 2012, the American company Knight 
Capital Group lost $440 million. Problems in the trading software from 
Knight Capital Group caused a flood of erroneous orders on the New York 
Stock Exchange, affecting both the company and the USA stock market [5]. 

  Boeing 737 Max: More than 300 people were killed after two crashes in 
October 2018 and March 2019 of the aircraft model 737 Max. These 
accidents were caused by failures on a stall-prevention software system 
that pushed the nose of the planes down. The 737 Max family of aircraft has 
been grounded by the USA since March 2019 and has cost Boeing and 
airlines billions of dollars [6], [7]. 

Note that the concern with the reliability of computer systems should not be 
exclusively on critical, specialized, and customized systems, since these systems 
very often use parts of general-purpose software, especially operating systems. For 
example, according to [8], critical USA Navy military navigation systems and ABB 
power plan IT systems run on top of regular Windows operating systems, which is 
a commercial off-the-shelf non-specialized software. In these examples, failures in 
the Windows operating system can impair the operation of critical applications 
that have high-reliability requirements. Another similar example is the wide use of 
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Linux operating systems on different non-critical and critical embedded systems 
(e.g., [9], [10]). 

Nowadays, software failures, instead of hardware or human failures, are 
responsible for most of the computing systems downtime [11]. Because of the high 
dependence of society on software systems, ensuring the quality of the software 
has become a major requirement. We can measure the quality of software using 
attributes like functionality, usability, capability, maintainability, reliability, 
security, and performance. However, reliability is considered the principal quality 
factor among these attributes, since it takes into account software failures that are 
responsible for most of the unplanned inactivity of computer systems [12]. 
Formally, software reliability is defined as the probability of failure-free software 
operation for a given time, in a particular execution environment [13]. 

Given the increasing importance of the correct functioning of software 
systems, software reliability engineering emerges as a sub-discipline of system 
engineering that focuses on engineering techniques that try to quantify and 
guarantee the reliability of these systems. A fundamental need for software 
reliability engineering is to comprehend how software systems fail, which means 
understanding the dynamics that govern the manifestation of different types of 
failures that threaten software reliability. In general, software systems fail due to 
single-event failures or multiple-event failures [14]. The former is characterized by 
a lone failure event, which happens suddenly, with no other associated 
(predecessor/successor) failure events. On the other hand, the latter is 
characterized by a sequence of failure events, which varies in terms of length, 
duration, and combination of failure types. In both types of failure manifestation, 
their practical effects on the system vary from service degradation and 
malfunctioning to its hang or crash. 

Reviewing the software reliability literature, we note that most of the 
empirical and experimental studies in this field have focused on single-event 
failures (e.g., [8], [15], [16], and [17]). In addition to investigating this type of 
failure manifestation, I believe that learning about multiple-event failure patterns 
is essential towards more effective and accurate software reliability approaches, 
being valuable from different theoretical and practical perspectives: 

  Failure prediction/avoidance can be improved through the runtime 
detection of patterns of failure sequences. 

  Software reliability assessment can benefit from analytical models that 
consider different types of failure associations – most of the current models 
assume that software failures are stochastically independent. 

  The software testing process can be reduced by focusing efforts on failures 
that initiate sequences of failures. 

Hence, in this research, I present an exploratory study on multiple-event 
failures. This study aims to (i) improve the understanding of multiple-event 
failures in real software systems, investigating their occurrences, associations, and 
causes; (ii) propose analysis protocols that take into account multiple-event failure 
manifestations; (iii) take advantage of the sequential nature of this type of 
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software failure to perform predictions. The failures analyzed in this research were 
observed empirically. To have a complete comprehensive view of how different 
software failures may affect each other, I investigated the failure behavior of a 
commodity operating system (OS) and User Applications running on top of it. It is 
important to point out that the proposed approach is not dependent on any 
specific failure data type, so it also can be applied to failure data from any other 
software systems, with minor changes. 

1.2 Significance of the Study 

Since the reliability of software systems has become a major requirement, 
several analytical models have been proposed to evaluate and quantify software 
reliability [18]. We can summarize these models as either black-box or white-box. 
The black-box models estimate the reliability of the software through its failure 
history, assuming a parametric model based on the time between failures or the 
number of failures over a specific time interval [17]. From another perspective, the 
white-box models estimate reliability through the representation of the software 
structure and are, for the most part, restricted to the operational phase of the 
software life cycle [19]. 

According to [20]-[22], a common characteristic among the majority of these 
reliability models is to assume that software failures occur independently. 
Although this assumption may interfere, significantly, with the results of the 
software reliability assessment, it is often used to adapt analytical models to 
mathematically treatable forms and simplify the estimation calculation of the 
model parameters. The problem is that this assumption of independence can lead 
to important consequences when the events of interest are not independent. 

For example, in 2004, the British government announced that 258 murder 
trials would be reviewed given the improper use of this assumption [23]. These 
trials occurred in the context of sudden infant death syndrome (SIDS) or “cot 
death” in Britain, which refers to the death of healthy infants. These are mysterious 
circumstances that post-mortem exams cannot distinguish natural deaths from 
parental negligence or abuse. Therefore, based on Meadow’s law, advocated by the 
prosecution witness Professor Sir Roy Meadow, that “one cot death is a tragedy, 
two cot deaths is suspicious and, until the contrary is proved, three cot deaths is 
murder”, many innocent parents were sent to jail. This law assumes that cot deaths 
are entirely random, however, these mysterious deaths could have been linked by 
some unknown factors, something genetic for example, which would increase the 
chance of a family that had suffered one cot death to suffer another [24]. 

To exemplify this problem in the context of software reliability, consider a 
software system application composed of three modules arranged reliability-wise 
in series, i.e., the failure of any module causes the failure of the whole application. 
Suppose that the first module (m1) failed, consequently, the whole system went 
down. However, whenever a module fails, it is restarted to get the system back up 
and running. The reliability of each module is assumed to be 0.995, 0.987, and 
0.973, respectively, for a 100-hour mission time. The system reliability (Rs) for that 
mission time after a first m1 failure is calculated from the reliability of each 
module (Rm1, Rm2, Rm3) as follows: 
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Now, suppose each time the system is restarted due to m1 failure, the m2 
reliability is reduced by 20%. In this case, there is dependency among some 
modules. Therefore, the system reliability after a first m1 failure can be calculated 
as: 

                         

                            

                    

Note that when failures of the modules are assumed to be independent, the 
estimated system reliability is 95.55%, otherwise, it is 75.32%. This example 
shows that the accuracy of the reliability estimate of a system can be affected, in a 
non-neglectable way, when considering or not the assumption of independence. 
Hence, in contrast with the common practice of assuming failure independence in 
software reliability modeling, I initially investigate the existence of failure 
dependence in software systems. For this purpose, I create a data-driven approach 
that looks for patterns of failure associations, which means to search for evidence 
of failure dependence. This approach uses field failure records collected from 
different computers and work environments, and it helps one to test whether the 
failure independence assumption holds for a given real software system being 
reliability-wise modeled. 

Once patterns of failure associations are discovered for a given system under 
study, the assumption of failure independence does not apply anymore, and 
patterns of failure sequences can be characterized. For this purpose, I create a 
method to search for patterns of failure sequences focusing on understanding the 
underlying mechanisms governing the multiple-event failure behaviors. When 
these behaviors can be understood then online failure prediction becomes feasible, 
especially for cases in which the time between failures, in a sequence, is long 
enough to anticipate actions. Since the impact of failures on software systems can 
be massive, early prediction of their occurrence plays a significant role in 
reliability engineering. Therefore, I conclude this study by proposing a statistical 
prediction approach that estimates the failure occurrence probabilities based on 
patterns of failure sequences. 

Figure 1.1 shows a scenario of multiple-event failures (failures A, B, and C), 
which can be proactively handled by the proposed approach once it knows the 
ongoing pattern of chained events. In this example, given that failure A is known to 
precede (→) failure B that in turn is also known to precede failure C, next time 
failure A is perceived by a failure detector, it can perform actions to prevent the 
occurrence of other failures expected to occur right after failure A (e.g., failures B 
and C).  
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Figure 1.1. Avoiding future failures by employing preventive actions. 

As can be observed, the symbol “→” indicates the temporal order of the 
failure occurrences belonging to the sequence analyzed and will be used 
throughout the document. Moreover, note that more than one sequence of failures 
can be initiated by the same failure type (Table 1.1), which requires analyzing the 
different occurrence probabilities of the possible sequences to make a decision. 
Once the next most probable event to occur is established, then proper preventive 
measures can be employed to prevent that failure type. 

Table 1.1. The occurrence probability of multiple-event failure patterns. 

Pattern Probability 

Failure A→Failure B→Failure C 70% 

Failure A→Failure D 25% 

Failure A→Failure E 5% 

1.3 Research Questions 

  Do software systems present systematic multiple-event failure 
manifestations?  

o  If so, are these failure manifestations systematic enough to be 
considered patterns?  

o  If so, could we use these patterns to predict future failures? At 
what level of accuracy? Would it be feasible to be implemented 
as part of an online failure prediction system? 

  How OS and User Application failures affect each other? 

1.4 Hypothesis 

The first hypothesis tested in this study is that real software systems may 
present systematic multiple-event failure manifestations; which is a behavior that 
must be taken into account to fully assess the software reliability. Derived from 
this hypothesis, the second hypothesis tested in this study is that patterns of 
multiple-event failures could be used to prevent future failures given that we can 
take advantage of the sequential nature of these failures to perform prediction and 
preventive actions. 

Proactively handle 
future failures

Failure A   →  Failure B   →  Failure CFailure A

Failure A   →  Failure B   →Failure A

Failure A   →Failure A



 

6  

1.5 Goals 

General: 

  Investigate how to incorporate patterns of multiple-event failures in 
predictive models for software systems. 

Specifics: 

  Test the hypothesis of independence of failure events in real-world system 
failure data. 

  Check how OS and User Application failures affect each other. 

  Discover and examine patterns of software failure occurrences in real 
systems. 

1.6 Outline 

The remaining chapters of this work are organized as follows: 

Chapter 2 presents the theoretical foundation that underpinned this study, 
covering theoretical concepts of software failures, the type of failure categorization 
adopted in this study, and the statistical methods used for failure prediction. 
Finally, it brings a review of the related literature. 

Chapter 3 describes the sample of failure data used in this study. First, it 
explains the choice of the real-world commercial software product analyzed. 
Subsequently, I present the failure data collection method used, how the failure 
records were characterized, and finally a descriptive statistical analysis of the 
whole dataset. 

Chapter 4 introduces the protocol created to discover patterns of failure 
associations, along with the taxonomy proposed to define various concepts used in 
the protocol. Besides, this chapter describes the algorithm developed to discover 
patterns of failure sequences. It concludes with the proposed prediction approach 
based on failure sequence patterns. 

Chapter 5 presents the results of this research. Based on an empirical 
exploratory study, I evaluate the hypotheses presented in Chapter 1, as well as 
assess the methods described in Chapter 4. These methods are applied to the 
failure dataset detailed in Chapter 3, and I discuss the most relevant results and 
findings observed. 

Finally, Chapter 6 presents final considerations on this study, highlighting the 
main results obtained, my conclusion, the threats to the validity of the research, 
the contributions to the literature, and the next steps planned for this research.  
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2.   BACKGROUND 

2.1 Theoretical Framework 

The software failure taxonomy adopted in this study was defined in [25], 
which has broad acceptance by the software reliability community. In addition to 
the failure taxonomy, in [25] the authors present the main definitions related to 
the dependability of computer systems, which is a general concept that 
encompasses different system quality attributes. In this context, dependability is 
concerned with the confidence one can have in the correct system operation. 
Therefore, the dependability of a computer system is its ability to provide a service 
in which its users can justifiably have confidence in its operation. The 
dependability attributes defined in [25] are: 

  Availability: readiness for correct service. 

  Reliability: continuity of correct service.  

  Safety: the absence of catastrophic consequences on the user(s) and the 
environment. 

  Integrity: the absence of improper system alterations. 

  Maintainability: ability to undergo modifications and repairs. 

This study focuses on the Reliability of software systems. I use one of the 
main elements adopted to assess the reliability of a system, its failures. According 
to [26], the failure time is the most important variable when it comes to reliability. 
Both the black-box analytical models (e.g., [16], [18], and [27]) and the models 
using the white-box approach (e.g., [22], [28]) require information about the 
system failure behaviors. Therefore, it is essential to understand how failures 
occur in a system to allow the assessment of its reliability and thus to fully 
represent the real perception of its dependability. 

Section 2.1.1 revisits the core concepts of software failures and how they 
occur in general, both notions introduced by the seminal work presented in [25]. 

Section 2.1.2 presents the particular semantics of operating system failures 
as considered in this study. 

Sections 2.1.3, 2.1.4, 2.1.5, 2.1.6 describe the statistical models which I rely on 
to predict future failures based on patterns found in field data. 

Section 2.1.7 presents how the statistical models are evaluated. 

Finally, in Section 2.2, I present and discuss the related work. 
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2.1.1 Software Failures 

To define terms such as software errors and failures, firstly it is necessary to 
present some basic concepts described in [25] to aid the understanding of these 
terms. These concepts are: 

  System: is an entity that interacts with other entities, i.e., other systems, 
including hardware, software, humans. 

  Environment: other systems that interact with a particular system are 
referred to as the environment of that system. 

  System boundary: is the common frontier between the system and its 
environment. 

  System function: is what the system is intended to do. 

  System behavior: is what the system does to implement its function. 

  User: is another system that receives service from the system provider. 

  Service: the service delivered by a provider system is its behavior as it is 
perceived by its user. 

  Service interface: part of the provider’s system boundary where service 
delivery takes place. 

  Total state: is the set of the following states: computation, communication, 
stored information, interconnection, and physical condition.  

  External and internal state: the external state is the part of the provider’s 
total state that is perceivable at the service interface; the remaining part is 
the internal state. The delivered service is a sequence of the provider’s 
external states. 

  Use interface: the interface of the user at which the user receives the 
service delivered by the provider system. 

The service delivered by a system consists of a correct service when the 
service implements the system function, i.e., the service provided is in accordance 
with what the system is intended to do. A failure occurs when the delivered 
service does not comply with the functional specification, or when this 
specification does not adequately describe the function of the system. A system is 
considered to have failed when its output is received by the system user and is 
perceived as an unexpected or wrong result, i.e., the service provided does not 
follow the specified functional specification. 

Since the delivered service is a sequence of external states of the system 
provider, a service failure means that at least one (or more) external system 
state(s) deviated from the correct service state. This deviation is called an error. 
Therefore, an error is the part of the system state that can lead to service failure. 

Errors can be successively transformed into other errors; this transformation 
is called error propagation. Error propagation causes a system to fail if the error is 
propagated to the system service interface, causing the service to deviate from its 
specification, which is perceived by the system user as different from the expected 
result. 



 

   9 

 

Figure 2.1. The fundamental chain of dependability. 
Source: Aviz ienis et al. (2  4) [25] 

Although the perception of the error occurs at the time of service delivery, 
the system could have been in error long before. Therefore, failure is the 
perception by the system user of an error in the service provided. Many errors do 
not reach the external state of the system and therefore do not cause a failure. 

The cause of an error is the activation of a fault (defect or bug). A fault is 
considered dormant until it is activated. Therefore, activating a fault causes an 
error, which may or may not reach the system service interface. 

The three dependability threats (i.e., Fault, Error, and Failure) have a causal 
relationship called the fundamental chain of dependability. This chain is shown in 
Figure 2.1. 

When a previously dormant fault is activated by a computation process, it is 
referred to as an internal fault. In this case, the execution of a given input causes 
the activation of the dormant fault. For example, suppose that a programmer 
incorrectly declares the type of a variable in the C programming language, 
declaring the variable as int instead of long int. In this case, the fault will lead to an 
error only when the variable reaches long int values, exceeding the int type storage 
capacity causing an overflow.  

The activation of an external fault occurs when the failure of a system 
causes a fault (external) on another system (user) that receives the services of the 
failed provider system. This case is observed at the end of the fundamental chain of 
dependability representation (Figure 2.1). 

The following is a description of the semantics of failures considered in this 
study. 

2.1.2 Software Failures Analyzed 

In this study, I analyzed two varieties of software failures — User Application 
and Operating System (OS) failures. The first refers to failures in any application 
that runs on top of the operating system that does not implement any OS 
functionality. The latter comprehends any failure in the operating system. 

Specifically for the OS failures, I used an approach introduced in [29], which 
determines that if any component of the operating system does not deliver the 
correct service as specified for it, then there is an OS failure manifestation. 
Therefore, different from the common-sense notion of OS failure, in this study, an 
OS failure does not always result in a system hang/crash. This has to do with the 
fact that the malfunctioning of the failed OS component may not be severe enough 
to prevent the execution of the rest of the system; however, the OS parts that 
depend on the failed component may not run properly [30]. 
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Note that studies on OS reliability (e.g., [16], [17], [27], [31], and [32]) have 
predominantly considered only OS failures in the Kernel space. However, as 
explained in [29], the assessment of an OS reliability by focusing on only Kernel-
space failures is inaccurate since modern operating systems have several 
components running in both the Kernel and the User spaces. The components in 
the first space are critical OS subsystems that run in privileged mode and the ones 
in the second space are, in general, integrated OS programs that run in non-
privileged mode. The OS components running in the User space perform their 
functions either in the foreground (e.g., OS programs like window manager) or in 
the background (e.g., OS services like print spooler). Widely used OS families like 
Windows, macOS, and Android, as well as new promising launches such as 
HarmonyOS [33], follow the similar architectural design in which the OS failure 
semantics above described and adopted in this study apply. 

As mentioned above, an example of an OS component running in the User 
space and important for the system operation is the window manager application, 
which exists in GUI-based operating systems, such as the explorer.exe program [34] 
present in operating systems from the Windows OS family. Disrupting the 
operation of this program severely affects the user experience, for example, 
preventing users from accessing files and running programs. In this example, even 
if the OS Kernel is running correctly, from the user's point of view the OS failed 
[30]. 

Based on quantitative analyses, the studies in [29] and [35] demonstrate that 
OS reliability metrics computed considering failures in both levels (Kernel and 
User spaces) are more accurate than metrics that consider only failures in the 
Kernel space. Figure 2.2 compares the OS reliability considering only Kernel 
failures (traditional approach) with an approach that considers OS failures at both 
Kernel and User spaces. It becomes evident that following the traditional approach 
(dashed line) the OS reliability would be considered higher; nevertheless, the 
authors of [35] advocate that this result is not representative of the user 
experience since, from his or her perspective, the OS reliability is affected by any 
failure that causes the impairment or interruption of its features or services 
instead of only those confined to its Kernel space.  

 

Figure 2.2. Comparison of reliability curves. 
Source: Dos Santos et al. (2018) [35] 
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The authors in [35] state that the solid curve (see Figure 2.2) would better 
represent the OS reliability perception by the users, which can be observed in 
practice, for any OS, by comparing the reliability figures provided by the 
manufacturer (based on the traditional approach) with the actual users’ quality of 
experience regarding the OS reliability. Therefore, following the approach 
introduced in [29], this study considered OS failures observed at both (Kernel and 
User) spaces. Moreover, the approach considers three categories of OS failures: OS 
Application (OSAPP), OS Service (OSSVC), and OS Kernel (OSKNL). 

  OSAPP: encompasses failures caused by malfunctioning of OS applications 
that run in the User space and on user demand. The Win7 programs 
msseces.exe [36]  and explorer.exe are examples of OS applications. 

  OSSVC: includes failures of OS service components, such as WER [37] and 
MsInstaller [38], that run in the background and with minimal or no user 
interaction. 

  OSKNL: contains failures of OS Kernel subsystems that typically cause the 
system to hang or crash. 

A detailed description of how the failures were classified is presented in 
Chapter 3. The following sections describe the methods used to predict multiple-
event failures. 

2.1.3 Multinomial Logistic Regression 

Like any other regression model, the goal of analyzing data with logistic 
regression is to find the best fitting and most parsimonious model that describes 
the relationship between a dependent variable and a set of independent variables 
[39]. Note that the logistic regression is used to model a binary or dichotomous 
dependent variable (e.g., Success = 0, Failure = 1) by computing the probability 
that the dependent variable takes one of the two possible values. The logistic 
regression function [39] is expressed as follows: 

    (   |       )   
                

                  
   (1) 

where π is the probability of occurrence of an event, β0 is the intercept, β1 to βp are 
the regression parameters, and x1 to xp are the independent variables. Note that 
this function is nonlinear in its parameters. However, it can be linearized by the 
logit transformation [39]. Given π is the probability of an event occurring, the 
probability of the event not occurring is: 

      (   |      )   
 

                  
   (2) 

therefore, using the odds ratio (i.e., π / (1 - π)), one obtains: 

 

   
                    (3) 
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Finally, taking the natural logarithm of both sides produces a linear function 
of the parameters: 

  (
 

   
)                    (4) 

 Equations 3 and 4 represent the logit transformation, in which the natural 
logarithm of the odds ratio is the logit. The importance of this transformation is 
that Equation 4 has many desirable properties of a linear regression model, like 
being linear in its parameters, the logit, ln ( odds ratio ), may be continuous and 
may range from -∞ to +∞, depending on the range of x [39]. 

 I focused on a special case of Logistic Regression, the Multinomial Logistic 
Regression, which extends the simple Logistic Regression by allowing the 
dependent variable to assume more than two values; in this study, this 
multinomial regression is necessary due to the varying number of software failure 
types investigated. The Multinomial Logistic Regression produces a logit for every 
binary relationship. Since the dependent variable can assume any number of 
categorical values (with a minimum of three), one of its possible values is placed as 
a reference, and the other values are analyzed, in a binary fashion, with respect to 
the selected reference. The choice of the reference value may be arbitrary and 
changing it does not change the quality of the model; it only modifies the 
interpretation of the estimated parameters. Consequently, given k possible values 
of the dependent variable, k – 1 logits are created. 

 For example, if we wish to analyze the occurrences of one failure 
immediately after another (F1→F2), we will be analyzing the relationship of two 
categorical variables in which we want to predict F2 based on F1. Values A, B, and 
C are the three possible values (i.e., failure types) for the dependent variable (F2), 
and values D, E, and F for the independent variable (F1). Since the dependent 
variable assumes three levels, we need to create two logit functions, gA(·) and gB(·), 
in order to model this problem. In this example, C is used as the reference value, 

     (
       

       
),           (

       

       
). 

Given that the independent variable is also categorical, it is necessary to use 
dummy variables to represent it. The dummy variables are binary variables that 
take values 0 or 1, which indicates if an observation does or does not contain the 
value that the variable represents. As they are binary, to represent n values, n – 1 
dummy variables are needed. Thus, two dummy variables (e.g., xD and xE) are 
needed to represent the three levels of the independent variable in the example 
above. Hence, the resulting two logit functions are: 
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where xD equals 1 if the independent variable assumes the value D, and 0 
otherwise; and where xE is 1 if the independent variable assumes the value E, and 0 
otherwise. When both xD and xE are equal to zero, then it represents the case that 
the independent variable assumes the value F. Note that C is the reference value for 
the dependent variable in the logit functions. Thus, gA is a comparison between A 
and C. In the same way, gB is a comparison between B and C. The parameters (β0, 
β1, β2) are estimated for both logits using the maximum likelihood technique. 
Subsequently, one can calculate the probability of each possible value of the 
dependent variable given the set of independent variable values [39]. The resulting 
conditional probabilities equations are: 

                
   

         
 (7) 

                
   

         
 (8) 

                
 

         
 (9) 

Equations 7, 8, and 9 provide the probabilities for all combinations of values 
between the dependent and independent variables, i.e., Pr(Y = A, or  Y = B, or Y = C |  
D, or E, or F). So, one of the main goals of this model is to predict the probabilities 
of occurrence of the values of the dependent variable given the values taken by the 
independent variables. In this study, the values of the dependent and independent 
variables are failure types selected from failure sequence patterns found in the 
system logs. 

2.1.4 Multinomial Logistic Regression with Ridge Regularization 

A challenge in using the Multinomial Logistic Regression is dealing with 
sparse data [40], i.e. when there is not enough data to cover all possible 
combinations between the dependent and independent variables. For example, 
suppose that in the example presented in Section 2.1.3, there is only log data of 
failures D occurring before failures A (D→A), but not a single occurrence of D 
before B (D→B).  

Categorical variables, which are dealt with in this study, are often a challenge 
to sparsity, even in seemingly low-dimensional models (i.e., few independent 
variables), because typically at least one parameter is needed for each category 
(i.e., dummy variables) [41], [42].  

Normally, the parameters (β) of the Multinomial Logistic Regression are 
estimated using the Maximum Likelihood method. However, when the data is 
sparse, the method fails the estimation process [43]. To deal with this drawback of 
the Multinomial Logistic Regression, I had to incorporate a regularization method 
named Ridge [44]. The Ridge regularization adds a penalty to the estimation 
process, shrinking the parameters based on a penalty given by λ * (β2) so that 
independent variables with a minor contribution to the outcome have their 
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parameters close to zero. The larger the value of λ, the greater the amount of 
shrinkage towards zero, but the parameters never reach zero. On the other hand, if 
λ equals zero, there is no penalty in the estimation process. I computed the best 
level of penalty using 10-fold cross-validation. To perform the regularization, I 
used the glmnet library [45], where the multinomial model of a dependent variable 
with k levels Y = {c1, c2, …, ck} is given by: 

               
          

  

∑         
    

    

  

   

               
     

     
  

∑        
    

    

  

where, in this study, X represents patterns of preceding failures, x is a vector of 
dummy independent variables, β0 is the intercept, βT is the transpose of the 
regression parameters vector.  

An equation is created for each level of the dependent variable. Note that the 
probability of each level is divided by the probability of all other levels. Essentially, 
for each level’s equation (e.g., equations above), the Ridge regularization penalizes 
its parameters, in which the less relevant ones for the model are forced to be close 
to zero. In general, the Ridge helps on reducing the variance and thus making the 
model less sensitive to the training data [44]. 

2.1.5 Decision Tree 

Similar to the Logistic Regression, Decision Trees are used to predict 
different levels (classes) of the dependent variable, considering the values taken by 
the independent variables [46]. As the name indicates, this method creates a tree 
structure that segments the training data by applying a series of decision rules. The 
tree is created in a top-down fashion (i.e., from the Root to the Leaf nodes). The 
Leaf nodes predict the outcomes of the dependent variable and each internal node 
acts as a test case for the independent variables where each edge corresponds to 
the possible answers to the test cases.  

I adopted a well-known algorithm called CART [47] to build the decision 
trees in this study. The basic methodology is similar in all trees’ algorithms, but 
their main differences rely on the tree structure, the splitting criteria, among other 
details.  What stands out in the CART algorithm is the lower impact of outliers [48]. 
Moreover, the trees constructed by the CART algorithm only have binary splits, 
simplifying the splitting criterion that is used to decide the order of the 
independent variables in the tree (Internal nodes). This simplification of the 
splitting criterion makes it faster than the criterion used in the commonly adopted 
C4.5 algorithm [49]. The most common splitting criteria used in CART is named 
Gini index, which is defined as follows [49]: 
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        ∑  
 

   

   

 (10) 

where n indicates the number of levels (classes) of the dependent variable. ci is the 
level (class) and si is the number of samples belonging to class ci. Finally, pi = si/S is 
the relative frequency of class ci in the data. 

The first step to build a Decision Tree is to decide which independent 
variable will be the Root node. Therefore, for each of these variables, we calculate 
its Gini index. A lower value in the Gini index indicates a high segmentation of the 
training sample by the independent variable, placing it in higher positions of the 
tree. Figure 2.3 shows how the Gini index is calculated for the independent variable 
xD in an example of failure sequences where one failure occurs immediately after 
another (F1→F2). The values A and B are the two possible values (i.e., failure 
types) for the dependent variable (F2), and values D, E, and F for the independent 
variable (F1). Similar to the Logistic Regression, it is necessary to use dummy 
variables to represent the categorical values of the independent variables. 

Every independent variable acts as a decision in the tree. In the example 
depicted in Figure 2.3, the variable xD indicates whether the previous failure is of 
type D or not (i.e., can be either E or F). Based on this decision, the training sample 
is divided into sequences that have and do not have the type D as the previous 
failure. Next, the Gini index is calculated for each subsample (DYes and DNo, 
respectively). If all occurrences of failure D happened before the same failure type, 
for example, type A (i.e., D→A), Gini(DYes) would reach its lowest value (zero). On 
the other hand, if 50% of sequences were composed of D→A and, consequently, the 
other 50% of D→B, Gini(DYes) would reach its highest value (0.5), indicating a poor 
segmentation of the training sample. Finally, after calculating the Gini index for 
both subsamples (Gini(DYes) and Gini(DNo)), we can calculate the Total Gini index 
when using xD to separate the training sample, which is calculated by the weighted 
average of both subsamples since they have a different number of values. 

 

Figure 2.3. Example of a Gini index calculation. 

xD

A: 23, B:106 A: 201, B:45

No Yes

Independent Variables
Dependent 

Variable xD xE xF

A 201 10 13
B 45 94 12
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Figure 2.4. Example of a Decision Tree. 

The Total Gini index of xE (Gini(E) = 0.288) and xF  (Gini(F) = 0.317) are 
calculated in the same fashion. Next, the Total indexes are compared and the 
smallest (i.e., Gini(E) = 0.288) is placed as the Root node. Figure 2.4 shows the 
resulting Decision tree. Note that both internal nodes (i.e., IV_E and IV_D) have 
three attributes:  

1.  IV_* ≤ 0.5: indicates the decision based on the independent variable 
(IV), which, in this case, is whether the previous failure is of a certain 
type in a sequence of two failures. For example, the decision in the 
Root node, i.e., IV_E ≤ 0.5, indicates that if the previous failure is not of 
type E (i.e., IV_E = 0) go to the left edge (IV_E ≤ 0.5 is True), and if the 
previous failure is of type E (i.e., IV_E = 1) go to the right edge (IV_E ≤ 
0.5 is False). Note that the independent variables are either 0 or 1 
since they are dummy variables. 

2.  Sample_Size: indicates the number of training data in the node. 
Therefore, the Root node contains the whole training sample. The 
other nodes segment the training data based on the decisions. For 
example, the internal node to the left of the Root node shows that 271 
of the 375 sequences in the training data do not have the failure E as 
the previous failure. 

3.  Class: indicates the dependent variable value with the highest 
occurrence for the training data in a node. For example, the Root node 
shows that most sequences in the training sample have failure A as the 
last failure. 

The only attribute Leaf nodes do not have is the first, which indicates the 
decision in the internal nodes. Moreover, the last attribute of the Leaf nodes (Class) 
indicates the predicted outcome of the dependent variable. Therefore, the Decision 
Tree shown in Figure 2.4 can be interpreted as a series of “ifs and elses”: 

  If the previous failure is E, the next failure is B 

  Else if the previous failure is D, the next failure is A 

  Else the next failure is A 
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Note that it is not necessary to include an internal node to represent failures 
of type F, because, in this example, if the previous failure is neither E nor D, it is of 
type F. 

2.1.6 Random Forest 

Decision Trees are considered as easy to build and interpret models (if the 
tree is small). Therefore, it emerged as one of the most adopted methods. However, 
the Decision Tree models suffer in terms of accuracy [42]. In other words, these 
models can have a great fit to the training sample, but they are ineffective when it 
comes to classifying new data.  

Random Forest combines the simplicity of the Decision Tree with the 
flexibility to classify new data. It is part of ensemble methods, which, in this case, 
operates by constructing a collection of Decision Trees. These trees are generated 
from bootstrap samples from the training dataset. The classification occurs when 
the same input is applied to all trees and the most popular class is chosen [50]. 
Figure 2.5 presents an example of how a Random Forest is created and used. The 
red arrows indicate decision paths on every tree for a determined input.  

It is important to point out that there is no rule of thumb to determine the 
number of trees on a Random Forest. According to [51], Radom Forests should 
have a number between 64 and 128 trees. However, this number may change due 
to the characteristics of the training data. Therefore, I evaluate 7 setups, starting by 
the default value 10 and ending in 128 (i.e., 10, 29, 49, 69, 88, 108, and 128), in 
every Random Forest model created and used the most accurate one. 

 

Figure 2.5. Example of a Random Forest. 
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2.1.7 Evaluating the Models Fit 

Exclusive for the Multinomial Logistic Regression models without Ridge 
regularization I checked how well the models fitted the data using the coefficient of 
determination (R2), which indicates the variance in the dependent variable that is 
predictable from the independent variable(s) [52]. There are many different ways 
to calculate the R2 for Logistic Regression. Unfortunately, there is no consensus on 
which R2 measure is the best. According to [53] and [54], the most prominent one 
and most often reported in statistical software is the McFadden’s pseudo R2 [55]. 
Therefore, I choose it to compute the models’ goodness of fit. The McFadden’s 
pseudo R2 measures the amount of change by using the independent variables 
versus not using them. Thus, it indicates the difference of fit between using the 
model relative to using no model at all [54]. The pseudo R2 < 0.05 indicates poor fit 
and the pseudo R2 > 0.20 indicates a very good fit. A pseudo R2 > 0.40 is rarely 
observed [53]. The maximum value (pseudo  R2 = 1)  is a  theoretical value that 
implies that all predicted probabilities would either be one value or the other in 
the binary relation of the logit; which is impossible to fit with a logistic curve, given 
that multinomial logistic models assume that the dependent variable cannot be 
perfectly predicted in any case [53]. 

For all models, I adopted a cross-validation approach to measuring how 
accurate the model is to predict the dependent variable based on the independent 
variables. In order to calculate this measurement, I split the work sample into 
training and test samples. To decrease the bias of selecting between these two data 
sets, I randomly split the data as follows: training (70%) and test (30%). I estimate 
the models based on the training set and test their accuracy against the test set, 
which contains data unseen during the model fitting phase; this approach provides 
an unbiased evaluation of the models’ accuracy. The model’s accuracy is defined as 
the number of correctly predicted values of the dependent variable with respect to 
the total number of sequences in the test set. 

2.2 Related Work 

Looking at the software reliability literature, especially related to operating 
system reliability, it can be seen that most of the studies are based on failure logs. 
Hence, next, I review works that proposed models for estimating software 
reliability by taking into account the dependency of failure events. Subsequently, I 
analyze works that proposed approaches to handle sequential pattern analysis. 
Finally, I discuss studies that proposed failure prediction approaches. 

The authors in [27] collected and analyzed 1,546 Microsoft Windows XP 
failures from 200 computers from an academic environment. To collect the failure 
data, they used Microsoft’s Corporate Error Reporting software. The authors 
concluded that OS failures were much less frequent than User Application failures. 
They conjecture that this prevalence can be explained by the interaction of 
applications, as well as the extensive use of dynamically linked library files that are 
invoked by multiple applications and are not robust enough. 

In [16], the authors used the BOINC Crash Collector to collect and classify 
2,528 Windows XP Kernel failures. BOINC is a platform for grouping resources 
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from volunteer computers to collect data and perform distributed calculations. As 
a result, the authors collected OS Kernel failures from 617 volunteer computers. 
Through failure data-mining, they found that poorly written device drivers caused 
more than 75% of the operating system failures. 

Corroborating the results presented in [16], the authors in [17] also reported 
that device drivers were the main cause of OS Kernel failures in the systems they 
investigated. The authors pointed out that device drivers accounted for more than 
70% of the Linux Kernel code at that time, and Windows XP introduced more than 
35,000 different device drivers. They concluded that third-party extensions, at the 
Kernel space, were a major cause of failures of Windows XP, with device drivers 
accounting for 85% of reported failures. 

Note that the three above-mentioned studies only considered Kernel-space 
failures as OS failures, which does not offer an accurate analysis of the OS 
reliability as a whole, since modern operating systems have parts running at both 
Kernel and User spaces [29]. In order to cover this issue, the authors in [56] used 
the OS failure classification proposed in [29], which considers not only Kernel 
failures as OS failures, but also OS application and OS service failures; these two 
other failure categories are observed at the User space. They found that OS service 
failures prevailed over OS Kernel and OS application failures, which had similar 
occurrence frequencies. Based on the statistical analysis of the OS failure times, the 
authors found that the density functions that best fitted the failure times were 
Gamma and Weibull. 

All the above-cited works did not consider the dependence between OS 
failures, which can result in less accurate, or even erroneous, reliability 
assessments. As mentioned in Section 1.2, most software reliability models in the 
literature assume that software failures occur as statistically independent events, 
mainly to mathematically simplify the reliability analysis. As a result, the estimated 
reliability metrics obtained employing these models may differ significantly from 
the real reliability in cases where failures are not independent. 

In [22], a software reliability-modeling framework that considers the 
dependency between failures was proposed. The framework uses the Markov 
renewal modeling approach [57], which is flexible enough to model failure 
dependency; but the large state space problem can be a serious drawback. 
According to the authors, to apply their framework in real scenarios, it is necessary 
to develop more detailed and specific models within the framework, as well as the 
use of statistical inference for the models’ parameters. Such inferences are only 
possible based on field failure data. Other research works (e.g., [20], [28]) also 
proposed theoretical models to estimate software reliability incorporating failure 
dependence. However, none of them used empirical evidence to support or 
validate their models. 

In [58], the authors showed that assessing the reliability of software in an 
artificial environment can produce an incomplete and imprecise estimate of its 
reliability due to the significant influence of the system environment. They 
highlight the importance of using real field data for reliability modeling purposes. 
Performing an empirical study on more than 200,000 computers running the 
Microsoft Windows operating system, they analyzed User Application failures and 
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found that the reliability of individual applications is affected by other applications 
installed on the system. Moreover, environmental factors such as the hardware 
and workload also influence the reliability of the applications analyzed. Therefore, 
the analysis in a single environment can result in a less accurate assessment. To 
mitigate the effect of a particular environment, in this study I consider as patterns 
only those failure combinations that regularly occurred in different computers 
from different workplaces. 

In this study, I analyzed failure logs, which are, essentially, sequences of 
events ordered by their timestamp. Since sequence data is frequently observed in 
many fields, I searched for approaches that dealt with discovering sequential 
patterns. In the sequential pattern mining field, I found several approaches whose 
task is to find all frequent subsequences in a sequence database. In this case, a 
subsequence is classified as a frequent or a sequential pattern if it occurred in no 
less than a user-specified threshold [59]. The most popular approaches are GSP 
[60], Spade [61], PrefixSpan [62], Spam [63], and Lapin [64]. All these methods 
take as input a sequence dataset and the user-specified frequency threshold. These 
approaches only differ on how they discover the sequential patterns. Therefore, 
they should have the same output when running with the same input [59]. Besides 
the need for a threshold specified by the user, these methods allow gaps between 
consecutive events [65]. For example, if a sequence dataset has three sequences: S1 
= {CAGAAGT}, S2 = {ACAGT}, and S3 = {GAAGT} and threshold of three (i.e., 
sequential patterns should be present in each sequence), then the subsequence 
{AT} is considered a pattern although these two events are not consecutively after 
each other in the sequences. As a consequence of allowing gaps between 
consecutive events, these methods are not suited for this work because gaps may 
lead to erroneous decisions when analyzing distant (in time) failure events as if 
they happened together, which is undesired in the problem under study. 

In the search for a new approach to discover sequence patterns without gaps 
between consecutive events, I found the substring mining field. The most common 
approach to mine substrings is called suffix tree [65], which, as the name suggests, 
creates a tree of suffixes for a string. Other strings can be incorporated into the 
suffix tree of a string and the frequency of a certain suffix (substring) occurring in 
multiple strings can be calculated. In this study, the suffixes would be considered 
as subsequences of failure within the failure logs (dataset), which would be treated 
as sequences. However, the timestamp of the events is neglect in both substring 
and sequential pattern mining. Differently, in my proposed approach, the 
timestamp is essential to the analysis because it provides information about the 
consistency of the associations. Moreover, I ensured that the associations found 
were patterns that repeated themselves in various groups of the dataset since I am 
interested in only systematic associations. It is important to point out that, after 
searching the literature, I did not find well-known methods that could be used to 
discover patterns of failure sequences, which ruled out the possibility of 
comparison analyzes between my approach and an alternative one. 

Concerning failure prediction, the authors in [66] analyzed failure events of 
the IBM BlueGene/L supercomputer located at the Lawrence Livermore National 
Laboratory (LLNL). They analyzed more than a million events occurring in various 
system components, in which the failure events were extracted and categorized 
according to the subsystem in which they occur: memory, network, application 



 

   21 

I/O, midplane switch, and node card failures. However, they did not describe the 
types of failures occurring in each subsystem, which is important to fully 
understand and characterize the behavior of such failures. The authors partitioned 
the time into fixed intervals and then tried to forecast whether there would be 
failure events in each interval based on the event characteristics of the preceding 
intervals. They could predict 80% of the memory and network failures, and 47% of 
the application I/O failures. Moreover, the authors observed that fatal failure 
events (i.e., failure events that caused system crash/hang) usually occurred after 
non-fatal events. However, they noticed that the time interval had a substantial 
impact on prediction accuracy. As this time decreased, the prediction difficulty 
increased rapidly, leading to degraded performance. Given this drawback, in this 
study, I adopted a data-driven approach in which a failure sequence is only 
considered as input to the prediction methods when the time between the failures 
composing it is similar and consistently observed on other occurrences of the same 
sequence in the dataset. 

The authors in [67] used random indexing to represent the sequence of 
operations extracted from system logs and then applied Support Vector Machines 
(SVM) to separate normal and abnormal sequences. They reported that their 
predictor was able to almost perfectly detect non-failure conditions but was poor 
at identifying failure ones. They had better results, with most true positive rates 
higher than 0.50, by using a weighted SVM to account for this discrepancy by 
assigning a larger penalty for false negatives than false positives. However, I 
conjecture that it is infeasible to perform this analysis in large software systems 
because the system would have to store an enormous amount of both non-failure 
and failure events. Moreover, using non-failure events to predict failures could 
generate numerous false positives. 

As can be observed in this section, in general, most empirical studies on 
software reliability do not consider the possible relationships between failure 
events. This work not only provides empirical evidence of dependency between 
failures but also investigates the nature of this dependency, that is, how different 
failures relate to each other. Different from the studies that proposed theoretical 
models to estimate software reliability based on the correlation between failures, 
but without using the information on actual failure data, the present study 
investigates these failure associations based on failures observed in real work 
environments. Moreover, this work presents a prediction approach using sequence 
patterns of multiple-event failures. 
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3.   MATERIAL 

3.1 Introduction 

The purpose of this chapter is to describe the failure dataset analyzed in this 
study, as well as the details involved in its collection and how its failures are 
categorized. It is important to point out that the dataset’s failure collection process 
was not part of this research, but it was performed during [29] and [56]. 

In Section 3.2, the software system under study is presented, as well as the 
justifications of its adoption in this study.  

Section 3.3 describes the mechanism for collecting the failure data.  

Finally, in Section 3.4, I explain the dataset-stratification approach adopted 
and present a detailed description of the work sample. 

3.2 Software Under Study 

In most computer systems, the software layer is divided into User 
Application software (or simply application) and Operating System software. Given 
the hierarchical nature of these two tiers, applications fully depend on the 
operating system (OS) to be executed [35]. Due to this technical dependence, OS 
failures can severely impair even the most reliable application software [30]. 
Therefore, if the OS layer does not guarantee, at least, the same level of reliability 
expected for the user-level application, the whole system reliability is 
compromised [56].  

Figure 3.1 illustrates the above-mentioned scenario, in which the computer 
system’s reliability as a whole decreases due to the lower OS reliability, although 
the other system’s layers (hardware and applications) are highly reliable 
(99.999%). Despite the evident importance of an OS failure-free operation to help 
ensure system reliability, an extensive review of the software reliability literature 
shows a lack of research works targeting operating systems. 

Given the importance and lack of research in this field, this empirical study 
initially focused on operating system software reliability. In particular, I assessed a 
commercial off-the-shelf operating system, given that nowadays this class of OS 
has been used in systems requiring high reliability [8]-[10]. Moreover, to have a 
holistic viewpoint on the reliability of the software layer, I also considered User 
Application failures (USERAPP). User Applications are usually installed by the user  
or  are  installed  along  with  the OS installation but do not implement any OS  
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Figure 3.1. Systemic reliability. 
Source: Dos Santos et al. (2018) [35] 

functionality. The Microsoft Internet Explorer and Microsoft Notepad programs 
are examples of User Applications that are installed together with the Microsoft 
Windows 7 OS. 

The field data used in this study were collected between the years 2010 and 
2014 [56]. The analyzed dataset is composed of failure records collected from logs 
of computers running Microsoft Windows 7 (Win7) in different production 
environments. Note that, at the above-mentioned collecting period, Win7 was the 
most used commodity OS, and nowadays this is still one of the most used OS 
having more than 23% of the market share [68]. Moreover, I conjecture that most 
of the empirical findings revealed in this study may be analogous in other 
operating systems from the same OS family (e.g., Windows 8/8.1/10).  

Due to its wide utilization in different work environments, Win7 was chosen 
as the target software of this study. The next section explains how Win7 logs and 
stores its failures and the mechanism that was used to collect them. 

3.3 Data Collection 

Windows 7 provides detailed failure records through its Reliability Analysis 
Component (RAC) [69]. The RAC stores Win7’s failure data into a single file (SQL 
Compact Edition Database File) named RacWmiDatabase.sdf. The RAC collects all 
failure events on the computer since the OS installation date, and it is 
automatically enabled during the installation of the operating system. Then, it 
starts creating and storing a log record for every failure event in the computer 
[70], which contains ten fields as described below: 

  ComputerName: specifies the canonical name of the computer in which the 
failure record was generated. 

  EventIdentifier: identifies the failure event — a numerical value assigned to 
the source (application, service, or Kernel subsystem) that stored the failure 
record into the log file. 

  InsertionStrings: contains textual information (detail strings) that 
supplements the failure report. 

  Logfile: specifies the name of the event log file. 
  Message: specifies the event message as it appears in the event log file. 
  ProductName: specifies the product (program) name that is associated with 

the failure event. 
  RecordNumber: identifies the failure record entry within the event log file. 
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  SourceName: specifies the name of the source (application, service, or 
Kernel subsystem) that generated the failure event. 

  TimeGenerated: specifies the time in UTC at which the source generated the 
event, that is, the moment that the failure event was registered by RAC. 

  User: specifies the username of the logged-on user when the failure event 
occurred. 

The data collected by RAC is used in the Reliability Monitor (RM). RM is a tool 
that tracks hardware and software problems and other computer changes, 
providing the computer’s stability index, which is a value from 0 to 10. The higher 
this index, the more stable the system is [71]. Figure 3.2 shows the main screen of 
the RM. The data collected by the RAC is visualized through a chart. Note that the 
circles represent the events and the line represents the stability index. It can be 
seen that the failure of the explorer.exe program, which occurred on 05/21/2012, 
directly affected the stability index. By clicking on a specific event one can get 
details about it. 

Two methods were adopted for data collection [56]. Initially, the RAC files 
(.sdf) were manually copied from the surveyed computers, which required local 
access to the computers. For every file copied, a paper form was filled out with 
information regarding the system’s usage profile and running applications, in 
order to characterize the surveyed computer. Complementarily to the onsite data 
collection, an online web page was also created to upload the RAC files remotely, 
where copies of the characterization form are completed online and assigned to 
the uploaded RAC files [72]. 

 

Figure 3.2. Reliability Monitor. 

3.4 Data Characterization 

In total, 644 computers were surveyed, which resulted in 42,209 software 
failures. The collected failure data were organized into four groups (G1 to G4). 
Failures in the first three groups were collected onsite, and failures in G4 were 
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collected through the online web form mentioned in Section 3.3. Table 3.1 shows 
the usage profiles of the four groups. 

Groups G1 and G2 contain failures from computers used in a university 
campus. G1 contains failures from computers used in undergraduate teaching 
laboratories. These computers are mainly used by students to run applications like 
text and graphics editing, web and software development, and Internet browsing. 
G2 contains failures from computers used in the university’s administrative offices; 
not related to teaching laboratories. Furthermore, the failures in G3 came from a 
corporate workplace. 

The first three groups are homogeneous, i.e., each one contains failure data 
collected from computers located at the same workplace. On the other hand, G4 is 
a heterogeneous group, i.e., it contains failure data collected from computers 
located at different workplaces, varying from corporate, academic, and 
home/personal computers. 

Initially, it was performed a manual classification of the failure events found 
in a pilot sample of the collected RAC files [56]. The manual classification relied on 
the fields EventIdentifier, ProductName, and SourceName. Table 3.2 presents an 
example of the failure categorization approach. Most failure events were 
categorized based on the fields EventIdentifier and SourceName. However, note 
that the first two failure events in Table 3.2 have the same EventIdentifier (1000) 
and SourceName (Application Error). Therefore, in this case, it also needed to 
analyze the field ProductName. Based on this further analysis, we know that the 
second event is related to the chrome.exe program, which is a User Application and 
not an OS Application. On the other hand, the first entry is related to explorer.exe, 
which is an OS (Win7) Application. 

Table 3.1. Computer usage profile per group. 

Group Workplace Application Profile 

G1 Academic Office apps, graphic editing, software & web development. 

G2 Corporate Office apps, graphic editing, software & web development. 

G3 Corporate Office apps, software & web development. 

G4 Heterogeneous 

Office apps, graphic editing, software & web development, 
multimedia, scientific & engineering, games, ERP apps., 
point of sale, antivirus, servers: database, web, application, 
e-mail, directory, and file/printer. 

Table 3.2. Failures categorization. 

Event Identifier SourceName ProductName OS Failure Category 

1000 Application Error explorer.exe OS Application 

1000 Application Error chrome.exe N/A 

1002 Application Hang rundll32.exe OS Application 

1137 WindowsStartupRepair Windows OS Kernel 

20 WindowsUpdate client Windows Update OS Service 
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Figure 3.3. Automatic failure categorization. 
Source: Dos Santos, Matias, and Trivedi (2019) [14] 

Based on the pilot sample, filters were used to automate the process of 
classifying the failures of the whole dataset, based on script programming. Since 
the filters were initially created based on a pilot sample, they were refined 
progressively, incorporating new failure classification rules as the classification 
process evolved to cover the whole dataset.  

Figure 3.3 gives an overview of the automatic categorization of the dataset. In 
addition to the fields EventIdentifier, ProductName, and SourceName, the script 
creates an ID field to identify each failure uniquely in the failure database, and a 
Category field that is filled out after the failure categorization. Next, the script 
checks whether the failure event, characterized by the fields EventIdentifier, 
ProductName, and SourceName, has the corresponding classification implemented 
by the filters. If the failure event is known, one of the four categories considered in 
this study (OSKNL, OSSVC, OSAPP, and USERAPP) is assigned to the Category field 
created for each failure event; otherwise, the script identifies and stores this 
failure event record into a list of unknown failure events, which have to be 
classified manually through a detailed analysis of all fields of the failure record. 
Therefore, if a new RAC file is added to the dataset and contains failure events with 
no corresponding classification rules, then the scripts are prepared to identify all 
these cases, support their manual classification, and incorporate the newly created 
classification rules into the filtering rules database [14]. Table 3.3, shows a 
summary of the whole failure dataset per group. Note that in terms of the number 
of failures, the most prevalent failure category is USERAPP, followed by OSSVC, OSKNL, 
and OSAPP. 

Table 3.3. Failure characterization per group. 

 
G1 G2 G3 G4 Total 

Sampling period (days) 331 592 378 1,408 2,709 

Total of computers 259 262 37 106 644 

Total of failures 2,955 21,490 2,299 15,465 42,209 

% OSKNL 31.03 1.76 1.52 1.38 3.66 

% OSSVC 3.82 12.40 9.31 8.13 10.07 

% OSAPP 2.03 1.88 2.48 4.49 2.88 

%USERAPP 63.11 83.96 86.69 85.99 83.39 

OS failures normalized by  
total of computers 

11.41 82.02 62.14 145.90 65.54 
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Only in G1, Kernel failures predominated in relation to the failures of the 
other OS failure categories (OSSVC and OSAPP). This may indicate the influence of 
environmental factors (e.g., computer configurations and workloads) present in 
this group, which contributed to these failures [30]. Note that the computers with 
the greatest number of failures in the four categories were concentrated in groups 
G2 and G4. 

The data collecting and characterization of the field failure data presented so 
far were part of previous related work (e.g., [29], [56]) developed in our research 
group. Hence, the contribution of this thesis for this chapter follows. 

To identify the main failed components in each category, all failures in the 
dataset were subdivided into 1,366 failure types; 35 belong to the OSKNL category, 
55 to OSSVC, 23 to OSAPP, and 1,264 to USERAPP. I relied on the field ProductName to 
subdivide most failures. However, I also had to analyze the field InsertionStrings 
for most OSKNL failures. For example, in Table 3.4 the five OSKNL failure events have 
the same SourceName (MS-Windows-WER-SystemError Reporting) and 
ProductName (Windows), however, they have different hexadecimal values for the 
field InsertionStrings. These hexadecimal values, named Stop Codes, indicate the OS 
Kernel component that failed and the possible causes of the failure. The meaning of 
each Stop Code was obtained from the official OS technical documentation [73]. 
The column “OS Failure Type” contains the OSKNL failed components obtained 
through the Stop Codes. 

Investigating the OS Service category in detail, I found, based on the 
SourceName field of its failure records, that 41.81% (23 out of 55) of the failure 
types were related to software updates performed by the Windows Update Service 
(WUS), which is the standard software update mechanism in Win7; i.e., failures of 
this service while executing software update procedures. These WUS failures 
corresponded to 87.95% of the total amount of failures in the OS service category 
(3,737 out of 4,249). Given this prevalence of WUS-related failures in the OS 
Service category, they were grouped into 23 subtypes within the type WUS. 

Figure 3.4 gives an overview of the data stratification performed in this 
study. I first stratified the failures into failure categories, and then into failure 
types. Specifically for the Windows Update Service (WUS), which targets different 
software components in the OS, I created subtypes to precisely identify which 
update routine failed while it was performing software update maintenance tasks. 

Table 3.4. Types of OS Kernel failures. 

InsertionStrings SourceName ProductName OS Failure Type 

0x00000116 
MS-Windows-WER 

-SystemErrorReporting 
Windows VIDEO_TDR_ERROR 

0x000000c2 
MS-Windows-WER 

-SystemErrorReporting 
Windows STORAGE_DRIVER 

0x00009088 
MS-Windows-WER 

-SystemErrorReporting 
Windows BAD_POOL_CALLER 

0x00000024 
MS-Windows-WER 

-SystemErrorReporting 
Windows NTFS_FILE_SYSTEM 

0x000000f4 
MS-Windows-WER 

-SystemErrorReporting 
Windows CRITICAL_OBJECT_TERMINATION 
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Figure 3.4. Dataset stratification. 
Adapted: Dos Santos et al. (2018) [35 ] 

Table 3.5 lists the five types of failures that consistently occurred in the 
dataset analyzed. They were ranked by three criteria; (i) greater number of groups 
the type is observed in; (ii) greater number of computers the type is observed in; 
(iii) greater number of occurrences of the type. The numbers in parentheses 
represent the total number of each element, e.g., the number in parentheses in 
column Category indicates that there are, in total, 4 different categories of failures 
in our dataset. 

The most consistent failure in the dataset is the iexplore, which is a failure in 
the Internet Explorer browser. Other consistent USERAPP failures are from 
productivity applications of Microsoft Office, Microsoft Word (winword), and 
Microsoft Excel (excel). The sole representative of the OS Application category was 
the explorer.exe. This application is responsible for two important features in the 
Win7 operating system: window and file management. The former implements the 
default desktop environment in Win7’s graphical interface, while the latter is used 
to access and navigate the file system in the disk and network storage drives, at the 
file and directory levels. Both features are commonly labeled Windows shell in the 
Windows OS family’s jargon.  The most commonly observed type of Kernel failure 
was StartupRepair, which indicates that unspecified changes to the OS 
configuration occurred and it restarted to an earlier restore point [74].  

I created three different work samples extracted from the above-described 
dataset — the first sample contains only OS failures (Sample_OS), the second 
contains only User Application failures (Sample_USERAPP), and the third 
encompasses the whole dataset, i.e., both OS and User Application failures 
(Sample_ALL). 

Failures
WUS

SW Failure Failure Category

Failure Type

IEU

Failure Subtype
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42,209
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10.07%

2.88%
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Table 3.5. Consistent failure types. 

Category 

(4) 

Type [Subtype] 

(1,366) 

Groups 

(4) 

Computers 

(644) 

Occurrence 

(42,209) % 

USERAPP iexplore 4 329 6,495 15.39 

OSAPP explorer 4 205 586  1.39 

USERAPP winword 4 197 1,057 2.50 

USERAPP excel 4 160 874 2.07 

OSKNL StartupRepair 4 160 237 0.56 
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4.  METHOD 

4.1 Introduction 

In this chapter, I describe the method proposed to analyze and predict 
multiple-event failure occurrences. It is important to point out that all the 
described procedures are automated. 

Section 4.2 describes my proposed method to discover patterns of failure 
associations. Along with this approach, a taxonomy designed to define several 
concepts used is also presented. 

Section 4.3 describes the algorithm developed to discover patterns of failure 
sequences.  

Section 4.4 describes the proposed prediction method based on patterns of 
failure sequences. 

Note that I used the concepts of failure association (Section 4.2) and failure 
sequence (Sections 4.3 and 4.4) to determine the relationship patterns among the 
multiple-event failures investigated. Figure 4.1 compares both concepts by 
applying the methods described in sections 4.2 and 4.3 on the same failure log. 
Section 4.4 adopts a similar approach as presented in Section 4.3 to find patterns 
of failure sequences, which later are used in the proposed prediction method. 

Observe that for Failure Association in Figure 4.1, the method identifies 
failures before and/or after, within a fixed search interval, from two occurrences of 
Failure_C. In this case, Failure_C is considered a reference to search for associations 
where the failures before and/or after should occur consistently with the 
reference. The references are failures that occurred in the greatest number of 
groups in the failure sample (i.e., at least three out of the four groups considered in 
this research). Moreover, observe that the failure associations have three types of 
configurations, reference with only a failure after (e.g., Failure_C→Failure_H), 
reference with failures before and after (e.g., Failure_A→Failure_C→Failure_D), and 
reference with only a failure before, which is not shown in Figure 4.1. Therefore, 
the associations have a maximum length (i.e., number of failures in the association) 
of three failures. Furthermore, the repetition of the same failure event is allowed in 
multiple associations, as can be seen for Failure_A in Figure 4.1, which is part of the 
associations Failure_A→Failure_C→Failure_D and Failure_A→Failure_C→Failure_E. 
Finally, the associations can be composed of consecutive failures (e.g., 
Failure_C→Failure_H) or not (e.g., there is a Failure_B between Failure_A and 
Failure_C that does not belong to any association because Failure_B is a random 
failure that does not occur consistently with Failure_C in other logs of the sample). 
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Failure Association 

 
Failure Sequence 

 

Figure 4.1. Failure association vs failure sequence. 

In contrast, Failure Sequence refers to consecutive failures with no length 
limitation. Moreover, a failure event can only compose one sequence (i.e., event 
repetition is not allowed). To discover the sequences, the method checks if pairs of 
failures systematically occur in multiple computers and groups of computers. For 
example, the first pair of failures depicted in Figure 4.1 is Failure_A→Failure_B. If 
this pair is not observed in other groups of computers, it is not considered. 
Consequently, different from the first method, there is no relationship between 
Failure_A and Failure_C for this occurrence of multiple-event failures because of 
the random Failure_B between them. However, since Failure_B is just a random 
failure that occurred at that time, other occurrences of Failure_A happening 
immediately before Failure_C may be observed in the sample and the relationship 
may be considered. Furthermore, note that there is no fixed search interval in the 
Failure Sequence analysis. In this case, the method analyzes every pair of 
consecutive failures, and only the ones with Δt less or equal to the Upper Bound 
(UB) of the confidence interval for the median values of Δts are considered. The 
confidence interval is calculated by grouping the Δt of all occurrences of a pair in 
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the sample. For example, the method groups all occurrences of the pair 
Failure_C→Failure_D in the sample then calculates the confidence interval for the 
median values of their Δts, and subsequently, the Upper Bound (UBC→D) is also 
calculated. Finally, the method checks if the current occurrence been analyzed has 
a Δt less or equal to UBC→D. What stands out the most in this approach is the 
flexibility of using different time thresholds to determine the relationships of the 
failures. As can be seen in Figure 4.1, Failure_G was not considered in the first 
method because of the fixed time interval but was considered in the second, which 
uses a particular time threshold based on Upper Bounds for every pair of failures. 

Important to highlight that my approach is not related to pattern recognition, 
but pattern discovery. Although it is not uncommon that both terms are used 
interchangeably, I emphasize that this method discovers patterns rather than 
recognizes them. The main difference is that in the former there is no prior 
knowledge of the patterns, as it is necessary for the latter; that is why this study is 
classified as an exploratory one. 

The proposed method took advantage of the temporal order of the failure 
occurrences recorded as time series. According to [76], time-series data occur 
naturally in different application areas, such as economics, environmental 
modeling, and demographics, among others. Therefore, discovering patterns in 
time series is considered an important problem since it could help understand the 
phenomenon or problem, and even predict future behaviors. It is known from the 
literature that a time series is a set of ordered observations on a quantitative 
characteristic of an individual or collective phenomenon, taken at different points 
of time. Although theoretically, it is not essential, in practical terms most time 
series techniques assume that these data points are equidistant in time [77]. In the 
problem investigated in this study, the dataset is a series of OS failure records 
ordered in time; however, the observations are not equidistant in time. 

The approach to analyzing unevenly spaced time series is to transform the 
data points into equally spaced observations, and then applying existing time-
series methods for equally spaced data. However, according to the literature (e.g., 
[78], [79], [80], [81], and [82]), transforming data in such a way very often 
introduces significant and hard to quantify biases. In addition to that, since my 
analyses involve not a single type of OS failure, but multiple types of OS failures 
ordered in time, multivariate time series methods should be applied to evaluate 
possible failure associations and related properties. This could amplify the above-
mentioned biases transformation problem, given that the multiple series I deal 
with in this study show not only unequal observations in time but also different 
numbers of observations spread to different computers. For these reasons, I 
decided to propose a new approach that takes into consideration all these specifics 
inherent to the investigated problem domain [30]. 

4.2 Failure Association Discovery Protocol 
First, I investigate the existence of patterns of failure associations. For this 

purpose, I introduce a failure association discovery protocol that identifies failure 
associations exhibiting consistency across different computers used in the same as 
well as different workplaces. Initially, a taxonomy had to be established to define 
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several concepts used in the failure association discovery protocol itself. The 
following section contains a description of the elements of this taxonomy. 

4.2.1 Taxonomy 

  Reference failure (RF): A failure that serves as a base reference to search 
for failure associations. 

  Previous failure event (PFE): Any failure event that occurs before an RF. 
The time gap between a PFE and an RF is called ΔtP. 

  Next failure event (NFE): Any failure event that occurs after an RF. The 
time gap between an RF and an NFE is called ΔtN. 

  Search Interval (SI): The time gap before and after an RF used to search 
for PFEs and NFEs. 

  Failure Association Candidate (FAC): A combination of failure events, 
found when PFEs and/or NFEs occur alongside an RF within a given SI. This 
protocol considers three FAC configurations: 

o  PFE→RF: corresponds to a combination of events obtained from the 
analysis of failure events that occurred before a reference failure in a 
defined SI.  

o  RF→NFE: corresponds to a combination of events obtained from the 
analysis of failure events that occurred after a reference failure in a 
defined SI. 

o  PFE→RF→NFE: corresponds to a combination of events obtained 
from the analysis of failure events that occurred before and after a 
reference failure in a defined SI. 

Note that in this representation of the three FAC configurations, the reference 
failures are always underlined and that the symbol “→” does not necessarily imply 
causation; this symbol indicates the temporal order of the failures belonging to the 
combination analyzed. Table 4.1 lists examples of all three considered FAC 
configurations.  

Table 4.1. Examples of failure association candidates. 

FAC Configuration ProductName SourceName TimeGenerated 

PFE→RF 

dllhost.exe 
Application 

Error 
12/11/2012 09:29 

explorer.exe 
Application 

Hang 
12/11/2012 09:54 

svchost.exe 
Application 

Error 
12/11/2012 18:06 

RF→NFE 

rundll32.exe 
Application 

Error 
03/12/2012 06:59 

explorer.exe 
Application 

Hang 
03/12/2012 14:28 

dllhost.exe 
Application 

Error 
03/12/2012 14:46 

PFE→RF→NFE 

dllhost.exe 
Application 

Error 
08/06/2012 18:59 

explorer.exe 
Application 

Hang 
08/06/2012 19:03 

dllhost.exe 
Application 

Error 
08/06/2012 19:11 
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These examples in Table 4.1 are shown for didactical purposes only and are 
not part of the study results. Each example is a combination of failure events that 
occurred within a search interval of 2 h, before and/or after the reference failure. 
Through analysis of the RAC record field TimeGenerated (Section 3.3), which 
provides the date and time the failure was recorded, it is possible to identify the 
time order the failures occur.  The shaded rows highlight the failure events that 
compose the FACs, while the rows with the underlined field ProductName indicate 
the respective reference failures (RFs). All reference failures listed in the table are 
related to the explore.exe program (OS Application). 

For the FAC configuration PFE→RF, the combination of failure events is 
represented by dllhost.exe→explorer.exe. Thus, all dllhost.exe failures that occurred 
before the explorer.exe failures, within the 2 h search interval, shall be investigated. 
The same rationale applies to the other two configuration examples (RF→NFE and 
PFE→RF→NFE).  

Despite the case shown in the third combination, in Table 4.1, having PFE 
equal to NFE, the occurrences in which both failures are different were also 
considered in this study, such as in svchost.exe→explorer.exe→dllhost.exe. 

  Failure Association (FA): An FA is detected when the same FAC repeats 
itself, systematically, in multiple computers from different groups. 

  Rankings: To help identify an FA, a ranking is created with the FACs 
ordered by the number of occurrences in different computers and groups. 
The more a FAC repeats itself in different computers from different groups, 
the higher it will be ranked; this indicates that the candidate association has 
consistent evidence to be considered a failure association pattern. 

In this study, rankings were created for each search interval and FAC 
configuration (e.g., ranking of the FAC configuration PFE→RF for the SI of 4 h). The 
composition of a ranking obeys the following criteria, ordered according to their 
importance for this study: 

1. Greater number of groups the FAC is observed in. 

2. Greater number of computers the FAC is observed in. 

3. Greater number of occurrences of the FAC.  

4. The smaller standard deviation of ΔtP and/or ΔtN for the FAC.  

Therefore, firstly, FACs that appear in many different groups have more 
evidence to be considered association patterns. In case of a tie in one or more 
criteria, then the next criterion is evaluated following the order cited above. To 
apply these concepts above-mentioned, I propose a failure association discovery 
protocol that consists of seven major stages, which are described below. 

4.2.2 Protocol 

First Stage: 

The first stage selects the reference failures (RFs) and defines the search 
intervals (SIs) of interest. To define the reference failures (RFs), the occurrence of 
all OS failure types found in the dataset, per group of computers, must be 
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examined; the more occurrences of the same failure type are observed in different 
groups, the greater its consistency and thus its importance for this study. 
Therefore, given that the dataset is composed of four groups of computers (G1, G2, 
G3, and G4), I defined that the RFs are failures whose occurrences are observed in 
at least three groups. In total, 28 reference failures with 6,351 occurrences were 
found, from which 56.24% appear in three groups and 43.76% appear in four 
groups. Tables A.1 and A.2, in the appendix, show the RFs found. 

Regarding the search intervals (SIs), given that the investigated failures are 
from desktop computers, I adopted three intervals: 2 h, 4 h, and 8 h, which are 
supposedly close to the average working time of these desktop computers in their 
respective work environments. 

Second Stage: 

In this stage, the protocol identifies all previous failure events (PFEs) and/or 
next failure events (NFEs) for each RF, within the SIs of interest. First, it identifies 
an occurrence of the RF investigated, and based on the field TimeGenerated (TG), 
the ΔtP and ΔtN of the failure events that occurred before and after the RF, 
respectively, are calculated to determine which of these events occurred within a 
given SI, so that they can be added to the lrpn list.  

The lrpn is a list containing all occurrences of the RF researched and its PFEs 
and/or NFEs that are within the investigated SI. Therefore, each RF has one lrpn 
per SI, e.g., RF = Failure_A has three lrpn lists: lrpn- Failure_A-2 h, lrpn- Failure_A-4 
h, and lrpn- Failure_A-8 h. 

Third Stage: 

At this stage, the protocol searches for all PFEs and/or NFEs in all lrpn lists 
created in the previous stage, to identify the failure types that occurred along with 
a given RF in at least three groups, since it wants to find failure association 
patterns that consistently appear in multiple groups. The found failure types are 
added to a list of candidate failure events (LCE) per RF. 

Table 4.2 shows an example of the failure events added to the LCE for the 
case where RF = Failure_A. Only failures of Failure_A and Failure_B are added to the 
LCE-Failure_A since they occurred in at least three groups. From the LCE list, all 
theoretical possibilities of failure association candidates are generated to be 
considered in the next three stages of the protocol, as illustrated in Table 4.3. 
Based on this table, one can see that the case where RF = Failure_A and LCE-
Failure_A = {Failure_A, Failure_B} produced eight theoretically possible candidates 
of failures association. 

Table 4.2. Groups with PFEs and/or NFEs for RF = Failure_A. 

RF PFE/NFE Groups with PFE/NFE 

Failure_A 

Failure_A G1, G2, G3, G4 

Failure_B G1, G2, G4 

Failure_C G2, G4 
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Table 4.3. Theoretical failure association candidates for RF = Failure_A and 
LCE-Failure_A = {Failure_A, Failure_B}. 

FAC Configuration FAC Event Combinations 

PFE→RF 
Failure_A→Failure_A 

Failure_B→Failure_A 

RF→NFE 
Failure_A→Failure_A 

Failure_A→Failure_B 

PFE→RF→NFE 

Failure_A→Failure_A→Failure_A 

Failure_A→Failure_A→Failure_B 

Failure_B→Failure_A→Failure_A 

Failure_B→Failure_A→Failure_B 

Fourth Stage: 

 This stage consists of searching the dataset for failure event combinations 
that match the theoretical FACs generated in the previous stage, for the first 
configuration, i.e., PFE→RF. Considering the same example from Table 4.3, in this 
stage, the protocol would search the dataset for two possible (theoretical) FACs: 
Failure_A→Failure_A and Failure_B→Failure_A.  

Figure 4.2 illustrates the execution of this protocol stage, based on the 
example described in the previous stage (Table 4.3), and considering the FAC event 
combination researched as Failure_B→Failure_A, i.e., PFE = Failure_B and RF = 
Failure_A within a search interval of 2 h. First, the protocol identifies an occurrence 
of the RF investigated; in Figure 4.2, the Failure_A that occurred at 13:10 is the first 
RF occurrence. Next, instead of verifying the PFEs, it verifies the failure events that 
occurred right after the RF = Failure_A13:10 (i.e., NFEs) that are within the 2 h SI. 
The only result found is NFE = Failure_B13:11. Since this NFE’s failure type 
(Failure_B) belongs to the LCE-Failure_A (Table 4.3), this occurrence is discarded. 

 

Figure 4.2. Searching for the FAC = Failure_B→Failure_A. 
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The first combination of failure is not considered because the protocol, in this 
stage, skips all cases in which the NFEs have the same types found in the LCE, given 
that these cases are already considered in the sixth stage of the protocol. For 
example, the first occurrence of RF at 13:10 comprises the combination of events 
represented by Failure_B→Failure_A→Failure_B, which is related to the FAC 
configuration PFE→RF→NFE that is analyzed in the sixth stage. Consequently, 
whenever the FAC configuration PFE→RF→NFE occurs, the other two 
configurations (PFE→RF and RF→NFE) do not occur. 

Subsequently, once the protocol identifies the second occurrence of the RF 
(Failure_A18:26), it finds one occurrence of the FAC investigated, given that the 
found NFE does not have the same type present in LCE-Failure_A; thus, there are 
no possible occurrences of the FAC configuration PFE→RF→NFE and the protocol 
found a failure event with the same type of the PFE searched for the FAC 
investigated (Failure_B→Failure_A). In Figure 4.2, the combination of events that 
compose the FAC discovered (Failure_B18:20→Failure_A18:26) is marked with the 
symbol (∗). All occurrences of the FAC are stored in the corresponding lFAC lists 
(i.e., Lists of Failure Association Candidates), which contains all occurrences of a 
FAC for a given SI. 

Fifth and Sixth Stages: 

These two stages of the protocol are similar to the fourth stage; focusing on 
finding the two remaining FACs configuration:  RF→NFE and PFE→RF→NFE. 

Seventh Stage: 

In the seventh stage, the lFAC lists are analyzed. For each SI, the protocol 
counts the number of groups where it found the FAC occurrences and, based on the 
field ComputerName, the number of computers where these FACs appear. 
Subsequently, the number of PFEs and/or NFEs are accounted to identify the 
number of FACs occurrences. Finally, it calculates the standard deviations of ΔtPs 
and/or ΔtNs of all FACs discovered. Through the analysis of these quantities, the 
rankings of failure association candidates are created and ordered according to the 
four criteria presented in Section 4.2.1. Thus, the top-most entries in the rankings 
have the strongest evidence to be considered failure association patterns. Figure 
4.3 gives an overview of all stages of the protocol. 
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Figure 4.3. Protocol’s execution flow. 
Adapted: Dos Santos and Matias (2018) 
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4.3 Failure Sequence Discovery Protocol 
The protocol described in Section 4.2 was designed to discover patterns of 

failure associations based on fixed search intervals. The adopted search intervals 
were defined in accordance with the average working times of the computers used 
in this research. However, to generalize the approach to any type of software 
system, I improved the previous method by developing the sequence discovery 
protocol presented in this section, whose objective is to find sequences of multiple-
event failures under flexible search intervals. The protocol consists of five major 
stages: 

First Stage: 

For each computer failure log, the protocol finds its first failure and check if 
its next failure occurred on the same day or the next day. If so, the protocol stores 
the type and cause of its next failure and the Δt between them into two additional 
fields (NextFailure and Δt) created in the failure sample, for each failure event. 
Otherwise, the protocol moves to the next failure in the log and repeats the same 
procedure. Finally, it removes all failure records with no value in the two above-
mentioned fields from the failure sample, i.e., all failure records with no 
subsequent failure events that occurred on the same day or the following day are 
removed [14]. 

  In the example presented in Figure 4.4 (1st stage), F1 is the first failure 
record in the log and has F2 as its next failure, which occurred on the 
same day as F1; the same occurs with F2 and F3, but in this case, F3 
occurred on the following day. On the other hand, F3 does not have a 
subsequent failure, since F4 occurred two days apart; thus F3 does not 
contain a NextFailure, as well as the corresponding Δt. Since F4 is the 
last failure of the log, it also does not contain values assigned to fields 
NextFailure and Δt. Finally, the protocol removes both F3 and F4 from 
the failure sample, since they do not have subsequent failures. Note 
that the protocol is initially analyzing the association between two 
failures (i.e., pairs composed of a failure with its subsequent failure). 

Second Stage: 

Next, after checking for associations of failure pairs in all failure logs, the 
protocol filters the remaining sample to only include pairs that occurred in at least 
three out of the four groups of the sample (see Section 3.4), because the protocol 
was developed to identify recurrent and systematic associations between failure 
events [14]. 

  As shown in Figure 4.4 (2nd stage), the protocol groups all failure pair 
occurrences and check how many groups they were observed in. In 
the example, the pair F3→F4 was removed from the analysis because 
it was only observed in group G1. 
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Figure 4.4. Sequence discovery protocol. 
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Third Stage: 

The protocol includes failure pairs in which one failure occurred in one day 
and the other on the next day to account for failures occurring overnight (i.e., 
between 23:00 and 1:00). However, this can encompass outliers in the analysis. 
For example, if most occurrences of a failure pair have Δts less or equal to 2 hours, 
but in only one occurrence, the first failure occurred in the early morning (e.g., 
03/20/2014 01:30) and its subsequent failure in the evening of the following day 
(e.g., 03/21/2014 23:45), the Δt between them would be of 46.25 hours, which is 
an outlier and must be disregarded. Thus, to avoid outliers and to guarantee a time 
consistency of the failure pairs, the protocol groups all occurrences of the same 
pairs of failures and computed the confidence interval around the median value of 
their Δts. The median was adopted instead of the mean because of the high 
variability of Δt values given the inclusion of overnight failures in the associations’ 
time intervals. Next, the protocol computes the 95% confidence interval (CI) for 
the median values of Δt using the bootstrap resampling statistical approach, which 
according to [83] is an efficient, statistically sound, and accurate method to 
calculate confidence intervals for normal and non-normal datasets. Finally, the 
protocol removes all occurrences of failure pairs with Δt less or equal to the upper 
bound of the calculated confidence intervals [14]. 

  Figure 4.4 (3rd stage) shows this step for the pair F1→F2. Note that the 
protocol groups all occurrences of F1→F2 in the sample and calculate 
the confidence interval for the median (CIMD) of the Δts of all the 
failure occurrences found. Later, the first occurrence of the pair 
F1→F2 in Log_42 is removed because its Δt (6.45 h) is greater than the 
calculated upper bound. 

Fourth Stage: 

The next stage is to discover possible sequences of failures in the remaining 
sample. For each computer log, the protocol identifies the first occurrence of a 
failure that has a subsequent failure (i.e., its field NextFailure is not Null) and sets it 
as an OriginFailure. Then, it checks if its next failure also has a subsequent failure, 
and so on, until there is no next failure. Following, the sequence found is added to a 
List of Potential Sequences (LPS) [14]. 

  In Figure 4.4 (4th stage) the first failure that has a subsequent failure is 
F1. Therefore, I set F1 as an OriginFailure and check if the next failures 
also have a subsequent failure until no subsequent failure is found. 
Consequently, the discovered sequence (i.e., F1→F2→F3) is stored in 
the LPS. 

Fifth Stage: 

In the last stage, the protocol filters the LPS to extract only sequences in 
which the first failure, to be called hereafter as OriginFailure, initiates sequences in 
at least three of the four groups of the dataset, given that the more occurrences of 
similar sequences are observed in different computers and groups, the greater 
their consistency and thus their importance for this study [14]. 
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  As shown in Figure 4.4 (5th step), the protocol checks if F1 is the 
OriginFailure in potential sequences that occurred in at least three out 
of the four groups. If so, the potential sequence F1→F2→F3 is 
considered a sequence pattern. 

4.4 Failure Prediction Approach 

Based on the knowledge gained analyzing the outputs of the protocols 
described in sections 4.2 and 4.3, I developed an approach to predict failures based 
on patterns of previous failure events. As with any data-driven approach, it must 
contain the important requirement of efficiently process large datasets. Another 
important requisite to this approach is the ability to perform the pattern discovery 
and the failure probability computation steps automatically since my ultimate goal 
is to use this approach to implement online failure prediction. Considering the 
nature of the failure records found in real computer logs, in which most of the time 
the failure types must be handled as categorical variables, I found three promising 
methods to tackle this research problem; Multinomial Logistic Regression (w/ and 
w/o Ridge regularization), Decision Tree, and Random Forest.  

I use patterns of failure sequences as input to the multinomial models. 
Following a similar rationale presented in Section 4.3, to find consistent sequences, 
the approach calculates the time between failures for each computer failure log 
using the steps shown in Figure 4.5.  

 

Figure 4.5. Filtering and collecting Δts between failures in computer logs. 
Source: Dos Santos et al. (2020) [75] 
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Note that different from Section 4.3, the last failure of a sequence is the 
essential element of this analysis because it is the target event by the prediction 
analysis. Therefore, for each computer log in the sample, the approach finds its last 
failure record and then check if its previous failure occurred on the same day or 
the previous day. Next, the Δt between the last failure and next-to-last failure is 
computed. Finally, the category and type of the next-to-last failure and the 
computed Δt are stored into the three fields created for this purpose 
(Previous_Fcategory, Previous_Ftype, and Δt) in the last failure. Otherwise, the 
approach moves to the previous failure and repeats the same steps for its 
precedent failure. Finally, the approach removes all failure records with no value 
in the three above-mentioned fields from the failure sample, i.e., all failure records 
with no previous failure events that occurred on the same day or the previous day 
are removed [75]. 

Similar to Section 4.3, I avoid outliers by calculating the confidence intervals 
of all failure pairs found and selecting only those pairs in which their Δts are no 
longer than the upper bound value. For example, I found that the upper bound of 
the confidence intervals for the median value of Δts between OSAPP failures 
occurring before OSSVC was 4.42 hours. Therefore, the approach checked if every 
occurrence of OSAPP before OSSVC has a Δt less or equal to 4.42 hours, otherwise, 
they were removed from the work sample [75]. 

In addition, since I am interested in finding sequence patterns, the approach 
only considers sequences in which their last failure occurred as the last failure of 
sequences in at least three out of the four groups investigated in this study. Finally, 
I add these systematic sequences of failures as input to the prediction models, in 
which the first failures of the sequences (Previous Failures) represent the possible 
values for the independent variables and the last failures the possible values for 
the dependent variable. For example, suppose I discovered nine systematic 
sequences of two failures as shown in Figure 4.6. In this case, Failure_D, Failure_E, 
Failure_F are placed as the possible values of the independent variables (Previous 
Failures), and Failure_A, Failure_B, Failure_C are the possible values of the 
dependent variables (Last Failures). Finally, the prediction models calculate the 
probabilities for all combinations of values between the dependent and 
independent variables. 

 

Figure 4.6. Input to the prediction models. 
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5.    RESULTS 

5.1 Introduction 

This chapter presents the results of the empirical exploratory study 
conducted in this research. All methods explained in Chapter 4 are applied to the 
failure data described in Section 3.4.  

Section 5.2 presents the results obtained discovering patterns of failure 
associations. 

Section 5.3 presents the results obtained discovering patterns of failure 
sequences.  

Section 5.4 presents the results obtained predicting failures based on 
patterns of failure sequences. 

Figure 5.1 presents an overview of how the methods were applied to the 
failure data. The method to discover patterns of failure associations, which 
provided an initial analysis of multiple-event failures, was applied to only the OS 
failure sample (see Sample_OS in Section 3.4) in search for the three possible 
configurations of associations considered. The following methods (i.e., Failure 
sequence discovery protocol and Failure prediction approach), which are updated 
versions of the first, were applied to all three samples (see Sample_OS, 
Sample_USERAPP, and Sample_ALL in Section 3.4) studied in this research to 
provide a holistic view of multiple-event failures at the software layer.  

 

Figure 5.1. Overview of the methods and samples. 
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In the case of the Failure Sequence, the first failure (OriginFailure) is the 
essential element to discover failure sequences. On the other hand, the last failure 
is the essential element for Failure Prediction since its main concept is to calculate 
the probability of the last failure event to occur within a time interval upon the 
occurrence of a particular pattern of preceding failures (see Section 4.4). 

5.2 OS Failure Associations 

In this section, I present the results obtained applying the failure association 
discovery protocol to the Sample_OS. Table 5.1 lists the acronyms of OS failure 
types/WUS[subtypes] used in the rankings of failure association candidates (FACs) 
discussed in this section.   

Tables 5.2, 5.3, and 5.4 present the top five FACs of all rankings. Each table 
shows three rankings according to the SIs investigated (2 h, 4 h, and 8 h). The 
column “Rank” contains the position of each FAC in the ranking. 

It is noteworthy that the same combination of OS failure events can compose 
FACs in the three rankings of the same table, however, their positions may not be 
the same in all these rankings. For example, in Table 5.2, the FAC = NetU→NetU 
ranks third in both 8-hour and 4-hour rankings and also appears in the 2-hour 
ranking, but in the fourth position.  

Table 5.1. OS failure types/subtypes acronyms used in the rankings. 

Category OS Failure types [Subtype] Acronym 

OSAPP explorer.exe EXP 

OSSVC WUS [Windows Update] WinU 

OSSVC WUS [.Net Framework Update] NetU 

OSSVC WUS [Internet Explorer Update] IEU 

OSSVC WUS [Office Update] OffU 

Table 5.2. Top five entries in rankings of the configuration FAC = PFE→RF. 

SI Rank PFE RF 
No. of 

Groups with 
the FAC 

% of Computer 
with the FAC 

No. of FAC 
Occurrences 

SD 

8
 h

o
u

rs
 1 EXP EXP 4-4 6.3604 98 0.0913 

2 WinU WinU 4-4 5.8304 554 0.0645 
3 NetU NetU 4-3 2.4735 129 0.1139 
4 IEU WinU 4-3 2.4735 28 0.0103 
5 OffU OffU 4-3 2.1201 65 0.0542 

4
 h

o
u

rs
 1 EXP EXP 4-4 6.3604 (−) 81 0.0451 

2 WinU WinU 4-4 5.8304 (−) 535 0.0504 
3 NetU NetU 4-3 2.4735 (−) 111 0.0596 
4 IEU WinU 4-3 2.4735 28 0.0103 
(۸)   5 NetU WinU 4-3 2.1201 55 0.0091 

2
 h

o
u

rs
 1 EXP EXP 4-4                  (−) 6.1837 (−) 7  0.0257 

2 WinU WinU 4-4                  (−) 5.6537 (−) 436 0.0176 
(۸)   3 IEU WinU 4-3 2.4735 28 0.0103 
(۷)   4 NetU NetU 4-3                  (−) 2.2968 (−) 85 0.0251 
5 NetU WinU 4-3 2.1201 55 0.0091 
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Table 5.3. Top five entries in rankings of the configuration FAC = RF→NFE. 

SI Rank RF NFE 
No. of 

Groups with 
the FAC 

% of Computer 
with the FAC 

No. of FAC 
Occurrences 

SD 

8
 h

o
u

rs
 

1 EXP EXP 4-4 6.3604 95 0.0957 
2 WinU WinU 4-4 6.0071 484 0.1057 
3 NetU NetU 4-3 3.5336 151 0.1081 
4 WinU IEU 4-3 3.0035 61 0.0852 
5 OffU OffU 4-3 2.1201 82 0.0499 

4
 h

o
u

rs
 

1 EXP EXP 4-4 6.3604 (−) 82 0.0460 
2 WinU WinU 4-4 6.0071 (−) 398 0.0575 
3 NetU NetU 4-3                   (−) 3.3569 (−) 121 0.0602 
4 WinU IEU 4-3                   (−) 2.8269 (−) 56 0.0468 
5 OffU OffU 4-3                   (−) 1.9435 (−) 79 0.0062 

2
 h

o
u

rs
 

1 EXP EXP 4-4                   (−) 6.1837 (−) 7  0.0244 
2 WinU WinU 4-4                   (−) 5.83 4 (−) 291 0.0205 
3 NetU NetU 4-3                   (−) 3.18 2 (−) 95 0.0247 
4 WinU IEU 4-3 2.8269 (−) 55 0.0093 
5 OffU OffU 4-3 1.9435  79 0.0062 

Table 5.4. Top five entries in rankings of the configuration FAC = 
PFE→RF→NFE. 

SI Rank PFE RF NFE 
No. of 

Groups with 
the FAC 

% of Computer 
with the FAC 

No. of FAC 
Occurrences 

SD 

8
 h

o
u

rs
 

1 WinU WinU WinU 4-4 5.3004 23337 0.0354 
2 WinU WinU IEU 4-3 2.8269 6099 0.0502 
3 WinU WinU NetU 4-3 2.6502 12203 0.0371 
4 IEU WinU IEU 4-3 2.4735 860 0.0813 
5 IEU WinU WinU 4-3 2.2968 8622 0.0190 

4
 h

o
u

rs
 

1 WinU WinU WinU 4-4 5.3004 (−) 227 2 0.0085 
2 WinU WinU IEU 4-3 2.8269 (−) 5247 0.0156 
3 WinU WinU NetU 4-3 2.6502 (−) 11873 0.0071 
4 IEU WinU IEU 4-3 2.4735 (−) 69  0.0247 
5 IEU WinU WinU 4-3 2.2968 (−) 8579 0.0061 

2
 h

o
u

rs
 

1 WinU WinU WinU 4-4 5.3004 (−) 22574 0.0021 
2 WinU WinU IEU 4-3 2.8269 (−) 5157 0.0032 
3 WinU WinU NetU 4-3 2.6502 (−) 11834 0.0006 
4 IEU WinU IEU 4-3 (−) 2.2968 (−) 64  0.0069 
5 IEU WinU WinU 4-3 (−) 2.12 1 (−) 8537 0.0020 

To highlight the FACs position change in the ranks, I compared the three 
rankings from top to bottom, i.e., compared the 8-hour ranking with the 4-hour 
ranking and the 4-hour ranking with the 2-hour ranking. To show the changes and 
their directions, the symbol (۸) in the column “Rank” is added once the FAC 
increases in the ranking, and the symbol (۷) is added once it decreases. The symbol 
(−) is also added to the tables to identify the decrease in the number of 
occurrences of a given FAC, or the decrease in the number of computers that 
contains the FAC’s occurrences. This decreasing behavior is observed when 
comparing the occurrences of the same FAC in a ranking with lower SI to another 
ranking with the same FAC configuration, but larger SI. 

In Table 5.2, an example of the decreasing behavior is the combination of 
events represented by EXP→EXP, which ranks first in the 8-hour and 4-hour 
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rankings, but the number of occurrences of this FAC in the 8-hour ranking, namely 
98 occurrences, is higher than in the 4-hour ranking (81 occurrences). The same 
decreasing pattern can be observed for this FAC when comparing the 4-hour and 
the 2-hour rankings.   

I created three codes to account for the number of groups that contain the 
FAC (fifth column): 4-4, 4-3, and 3-3. The first and the second digits in this code 
represent the number of groups with the RF and the number of groups with the 
FAC, respectively. The columns “PFE”, “RF”, and “NFE” list the types/subtypes of 
failures that compose the FAC configuration researched. The column “SD” contains 
the standard deviation values of ΔtP and/or ΔtN per FAC. This SD value indicates 
how much variation occurred between the average temporal proximity of a given 
RF and its PFEs and/or NFEs. Therefore, this value should be as low as possible, 
which indicates a greater consistency of the OS failure events that compose the 
FAC.  

It has been observed that the FACs that appear on the top of all PFE→RF 
(Table 5.2) and RF→NFE (Table 5.3) rankings, for the three search intervals, are 
related to failures in the program explorer.exe. I found these FACs in several 
computers of different groups repeating systematically. As mentioned in Section 
2.1.2, the explorer.exe provides important and largely used OS functionalities, 
making it very ubiquitous. In [84], the use of household computers of 1,434 users 
was studied for 19 months and the author found that the explorer.exe was the only 
program executed by all users, ranking second in global execution time. Such 
extensive use could be an explanation for its leading position in the rankings of 
failure association patterns presented here. 

In second place, all rankings in tables 5.2 and 5.3 show the Windows Update 
(WinU). Similar to the explorer.exe failures, its FACs of configurations PFE→RF and 
RF→NFE are composed of failures of the same type/subtype.  

In Table 5.2, in the 8-hour and 4-hour rankings, the third place is the .Net 
Framework Update, which occurs both as PFE and RF. In the 2-hour search interval, 
this failure event descends to fourth place in the ranking due to its lower 
occurrence with respect to the number of computers in which it appears. Thus, for 
the 2-hour search interval in third place is the Internet Explorer Update as PFE and 
Windows Update as the RF. This combination of events also appears in fourth place 
in the search intervals of 8 h and 4 h. The fifth place for the 8-hour search interval 
is Office Update as both PFE and RF. For the 4-hour and 2-hour search intervals, the 
pattern changes to .Net Framework Update as PFE and Windows Update as the RF.   

In Table 5.3, third place in all rankings always shows .Net Framework Update 
as RF and NFE. Similarly, fourth place in all rankings is the combination of 
Windows Update as RF and Internet Explorer Update as NFE. Fifth place in the 
rankings in this table shows Office Update as both the RF and NFE for all search 
intervals.  

In Table 5.4, where the PFE is analyzed simultaneously with the NFE, the first 
event combination in all rankings, FAC = WinU→WinU→WinU, follows the same 
arrangement as the other first FACs in the other rankings, i.e., having the RF of the 
same type/subtype as PFE and NFE. However, this is not true for the other 
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positions in this table. Observe that the other association candidates have the same 
reference failure (WinU) and all PFEs and NFEs are also from the OS Service 
category and related to software updates. Therefore, they belong to the type 
Windows Update Service (WUS). Note that all top five failure association candidates 
maintained the same ranking positions for the different search intervals analyzed, 
making them strong candidates to be considered as genuine failure association 
patterns (FAs).   

Comparing all rankings, note that the first association candidates in all of 
them are similar since in all cases the PFE and/or NFE are of the same 
type/subtype as the reference failure (RF). This behavior was also observed in 
other positions of the rankings, for the configurations PFE→RF and RF→NFE. This 
failure association pattern suggests two possible scenarios [30]: 

  The first scenario is the case where the same OS part (application/ 
service/Kernel) failed multiple times, one execution at a time, through 
repeated executions. For example, the OS application explorer.exe, which runs 
as a single task, fails and must be restarted, where the new task fails 
subsequently. 

  The second scenario is the simultaneous execution of multiple tasks of the 
same OS part, in which two or more tasks fail at the same time or 
approximately at the same time. For example, the OS service svchost.exe runs as 
multiple tasks and a few of them could fail within a close time interval. 

The same failure events that composed the FACs in all rankings of Table 5.2 
also composed the FACs in all rankings of Table 5.3. This is due to several 
occurrences of the same type/subtype of RF in which the search interval of each 
one comprises all the other occurrences, which makes them PFEs or NFEs.  

For example, let us analyze the occurrence of two consecutive explorer.exe 
failures one minute apart, i.e., explorer.exe12:54 and explorer.exe12:55. For the 2-hour 
search interval, FAC = explorer.exe12:54→explorer.exe12:55 is found when the failure 
events occurring before the RF are researched (Table 5.2). On the other hand, 
when the failure events occurring after the RF (Table 5.3) are researched, then FAC 
= explorer.exe12:54→explorer.exe12:55 is also found. Therefore, the same combination 
of failures is detected for the two FAC configurations, which makes the 
composition of the FACs similar in both tables. This behavior explains why the 
number of FAC occurrences (256,434) is higher than the total number of OS 
failures (7,010) since a given failure can occur as RF a single time for each of the 
three possible FAC configurations, but it can occur as PFE and NFE countless times. 

5.2.1 Results Quality 

In this subsection, I discuss the soundness of the presented findings. To 
discover genuine failure association patterns, the consistency of the failure 
association candidates is a major requirement.  

In this study, consistency is directly related to how often a given combination 
of failure events (a failure association candidate) repeats itself across different 
computers from different groups (workplaces). In addition to comparing the 
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similarity of different occurrences of the same failure events combination 
concerning the temporal order of the failures, I further evaluate their variability in 
terms of the time between their failures. 

Hence, to obtain quality results, I defined that the rankings must be created 
only with FACs occurring in at least three groups (out of four), thus guaranteeing 
that each failure association candidate appears in at least 75% of the groups 
investigated in this study.  

In addition to observing the occurrence of the same failure association 
candidate in multiple computer groups, another important factor to evaluate the 
quality of the results is the standard deviation (SD) computed on the ΔtP and/or 
ΔtN values, for each FAC. 

Based on values from column “SD” in tables 5.2, 5.3, and 5.4, it can be seen 
that all failure association candidates discovered do have low SD values, although 
the first entries in all rankings do not contain the lowest values. The analysis of 
these values for all association candidates shows that the difference between the 
highest and lowest standard deviations, of each ranking, is noticeably small. This 
low variability in the times between the RF and its PFE and/or NFE, across the 
different groups of computers analyzed, indicates good consistency of the failure 
association candidates discovered [30].  

Although the dataset shows failures in the OS Kernel category, mainly in 
group G1 with over 80% of its failures in that category, only two FACs belonging to 
the OS Kernel were identified when analyzing all event combinations in the 
rankings; one for configuration PFE→RF and the other for RF→NFE, both within 
the search interval of 8 h. These two configurations were composed of the same 
type of failure (DRIVER_POWER_STATE_FAILURE), i.e., PFE for the first 
configuration, NFE for the second, and the RF for both were failures of the type 
DRIVER_POWER_ STATE_FAILURE. This type of failure occurs when a device 
driver or an OS routine running at the Kernel level enters in an inconsistent or 
invalid energy state [73]. This finding corroborates results from previous studies, 
where OS Kernel failures were less frequent than user-level applications’ failures 
(e.g., [27], [29], and [56]). A likely reason why there were not many association 
candidates for the OS Kernel category is the system reboot that very often occurs 
when most of these failures happen, which lowers the chances of further failures of 
this category within the same search interval.  

Based on the above-mentioned analyses, I evaluated all 256,434 FACs 
discovered in the Sample_OS and selected the top five FACs in each ranking to 
classify as genuine failure association patterns (FAs). This selection resulted in the 
45 patterns shown in tables 5.2, 5.3, and 5.4. These FAs appear systematically, 
153,511 times, in the analyzed work sample. Table 5.5 shows the number of 
occurrences of the FAs for the SIs and pattern configurations investigated. Through 
the column “Total”, it can be seen that the configuration PFE→RF→NFE has a 
greater number of occurrences. This finding indicates that most of the OS failures 
observed in this study occur following a specific temporal order, which is evidence 
of association patterns among these OS failures [30]. 
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Table 5.5. Number of failure association pattern occurrences per 
configuration. 

SI PFE→RF RF→NFE PFE→RF→NFE Total 

8 h 874 873 51,121 52,868 

4 h 810 736 49,091 50,637 

2 h 674 590 48,742 50,006 

Total 2,358 2,199 148,954 153,511 

5.2.2 Effects of Changing the Search Intervals 

This subsection discusses the behavior of the failure association candidates 
when changing the search intervals (SI) parameters.  

It is intuitive to expect that the number of computers with the same FAC, as 
well as the number of occurrences of the same FAC, would remain constant, or 
would decrease in shorter search intervals than in longer search intervals [30]. 
The first case happens due to the nearness of the time occurrence of the RF with its 
PFEs and/or NFEs, i.e., the PFEs and/or NFEs within a smaller or equal to the 
smallest defined SI (SI = 2 h) with respect to the RF. Thus, even though the SI is 
reduced (8 h to 4 h, or 4 h to 2 h) the number of FAC occurrences remains constant.  

Figure 5.2 shows an example of the above-mentioned scenario with the 
combination of events represented by WinU→IEU, where there is only one 
occurrence of the FAC. The time difference between the PFE = WinU13:00 and RF = 
IEU13:30 is 0.5 h. Therefore, this FAC is present in all SIs (8 h, 4 h, and 2 h).  

There is also the case of reducing the number of occurrences of a particular 
FAC, as well as the number of computers with these occurrences when the SI is 
decremented. This situation indicates that the time difference between the RF and 
its PFEs and/or NFEs is greater than the SI.  

Figure 5.3 shows an example of this scenario, considering WinU→IEU. Note 
that the number of FACs changes according to the SI. For example, for SI = 8 h 
there are three occurrences, where the combination of events is represented by 
the following PFEs: WinU08:00, WinU10:30, and WinU13:00; all with respect to RF = 
IEU13:30. For SI = 4 h, the number of occurrences of this FAC decreases to 2, and the 
combination of events is represented by the PFEs WinU10:30 and WinU13:00, for RF = 
IEU13:30. Lastly, for SI = 2 h there is only one FAC occurrence, which is 
WinU13:00→IEU13:30. 

In addition to the two behaviors described above, I observed the increase of 
FACs and the number of computers containing these FACs occurrences when the 
SIs were decremented. This can only occur for the configurations PFE→RF and 
RF→NFE. This behavior was observed for the FACs with the configuration 
PFE→RF→NFE in the longest SIs; which prevents the occurrence of the other two 
configurations (PFE→RF and RF→NFE). This increase occurs when the SI is 
decremented (e.g., 8 h to 4 h) and a combination of events with the configuration 
PFE→RF→NFE, observed in the longest SI (8 h), does not occur in the reduced SI (4 
h). Therefore, the combination of events with the configuration PFE→RF→NFE is 
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undone to the lower SI; consequently, it enables the discovery of combinations 
with the configuration PFE→RF or RF→NFE. As a result, there is an increase of 
FACs with configurations PFE→RF or RF→NFE, also causing an increase in the 
number of computers with these FACs. This behavior was observed twice in the 
results of this study for the configuration RF→NFE for a 4-hour SI (IEU→IEU and 
IEU→WinU).  

Figure 5.4 shows an example of this scenario with the combination of events 
represented by WinU→IEU. Note that there is one occurrence of 
WinU13:00→IEU13:30→WinU17:00, and according to the proposed protocol (Section 
4.2.2), there is no occurrence of the FAC being investigated (WinU→IEU). However, 
for SI = 2 h, the FAC with the configuration PFE→RF→NFE is undone because the 
NFE = WinU17:00 is not within this new SI being analyzed, composing one 
occurrence of WinU13:00→IEU13:30. 

 

Figure 5.2. Number of FACs that remain constant by decreasing the SI. 
Source: Dos Santos and Matias (2018) [30] 

 

Figure 5.3. Number of FACs that is reduced by decreasing the SI. 
Source: Dos Santos and Matias (2018) [30] 

ComputerName ProductName TimeGenerated Group

Comp14 explorer.exe 03/02/2012 02:34

G1

Comp14 WinU 03/02/2012 03:34

Comp14 dllhost.exe 03/02/2012 08:00

Comp14 mmc.exe 03/02/2012 08:30

Comp14 dllhost.exe 03/02/2012 10:30

Comp14 mscorsvw.exe 03/02/2012 12:30

Comp14 WinU 03/02/2012 13:00

Comp14 dllhost.exe 03/02/2012 13:16

Comp14 IEU 03/02/2012 13:30

Comp14 mscorsvw.exe 03/03/2012 19:00

Comp14 explorer.exe 03/03/2012 19:00

Comp14 explorer.exe 03/03/2012 19:00

SI=8 hours

SI=4 hours

SI=2 hours

ComputerName ProductName TimeGenerated Group

Comp14 explorer.exe 03/02/2012 02:34

G1

Comp14 mmc.exe 03/02/2012 03:34

Comp14 WinU 03/02/2012 08:00

Comp14 mmc.exe 03/02/2012 08:30

Comp14 WinU 03/02/2012 10:30

Comp14 mscorsvw.exe 03/02/2012 12:30

Comp14 WinU 03/02/2012 13:00

Comp14 dllhost.exe 03/02/2012 13:16

Comp14 IEU 03/02/2012 13:30

Comp14 mscorsvw.exe 03/03/2012 19:00

Comp14 explorer.exe 03/03/2012 19:00

Comp14 explorer.exe 03/03/2012 19:00

SI=8 hours

SI=4 hours

SI=2 hours
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Figure 5.4. Number of FACs that is increased by decreasing the SI. 
Source: Dos Santos and Matias (2018) [30] 

5.3 Failure Sequences 

Based on the association patterns discovered and discussed in Section 5.2, it 
can be seen that the independence assumption is not met for the software failure 
events analyzed in the OS work sample (Sample_OS). Moreover, the findings 
indicate that most OS failures observed occur following a specific temporal order, 
which raises the following research questions:  

Do these OS failures occur in a sequential pattern? If so, do the observed 
patterns reflect a causal relationship between the failures?  To shed some light on 
these questions, I searched for patterns of failure sequences in the OS failure 
sample (Sample_OS). Furthermore, I extended the analysis to include User 
Application failures (Sample_USERAPP), and I also analyzed the whole dataset, 
which encompasses both USERAPP and OS failures (Sample_ALL). 

Hereafter, I adopt the following notation to represent a sequence type:      
Failure_ACause_V→Failure_BCause_W, which means failures of type B occurred after 
failures of type A. The superscripts indicate the failure cause and usually are 
shown as hexadecimal codes that are platform-specific. In the samples analyzed in 
this study, I found hundreds of failure sequences that met the criteria discussed in 
Section 4.3. To group them and make a more general analysis, I differentiated the 
failure sequence types by four characteristics: 

• Failure types that compose the sequences           

e.g., Failure_ACause_V→Failure_BCause_W   ≠   Failure_CCause_V→Failure_BCause_W 

• The sequence order of failure types                                  

e.g., Failure_ACause_V→Failure_BCause_W   ≠   Failure_BCause_V→Failure_ACause_W 

• Length of the sequences                                                           

e.g., Failure_ACause_V→Failure_BCause_W   ≠   Failure_AVCause_V→Failure_BCause_W→Failure_CCause_Z  

ComputerName ProductName TimeGenerated Group

Comp14 mmc.exe 03/12/2012 08:30

G1

Comp14 dllhost.exe 03/12/2012 10:30

Comp14 mscorsvw.exe 03/12/2012 12:30

Comp14 WinU 03/12/2012 13:00

Comp14 dllhost.exe 03/12/2012 13:16

Comp14 IEU 03/12/2012 13:30

Comp14 mscorsvw.exe 03/12/2012 15:00

Comp14 explorer.exe 03/12/2012 15:10

Comp14 WinU 03/12/2012 17:00

Comp14 explorer.exe 03/12/2012 17:10

SI=4 hours

SI=2 hours

SI=4 hours
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• Cause of failures that compose the sequences  

e.g., Failure_ACause_V→Failure_BCause_W   ≠   Failure_ACause_V→Failure_BCause_Z 

The information that identifies the failure causes was found parsing the RAC 
fields Message and InsertionStrings. For software update failures (WUS subtypes), 
this information was obtained through the Error Codes. These codes are 
hexadecimal values present in the field Message of each WUS failure record. For 
OSSVC failures not related to software updates, OSAPP, and USERAPP failures, I 
analyzed the Exception Codes to obtain their causes. The Exception Codes were also 
found in the fields Message and InsertionStrings. However, the Exception Codes are 
not available in all failure records; I observed cases in which the system could not 
identify the causes of failure and other cases in which the component failed due to 
a hang. Therefore, I assigned “unknown” to the failure causes of the first case and 
“Hang” to the second. I did not perform this analysis for OSKNL failures since their 
types, obtained through the Stop Codes (see Section 3.4), already identify their 
causes. 

5.3.1 Sequence Types 

Since I am analyzing 3 different samples, I found, as a result: 165 different OS 
failures sequences with 806 occurrences; 480 User Application failures sequences 
with 1,718 occurrences; and 640 sequences containing both OS and User 
Application failures with a total of 2,509 occurrences.  

For the first sample (i.e., Only OS failures), all sequences found were 
composed of OS failures from the same category, in which most sequences 
(91.56%) consisted of OSSVC failures, followed by OSAPP (7.07%) and OSKNL (1.36%). 
The second sample contains only User Application failures. Finally, for the third 
sample, most sequences encompassed failures from the same category, but I also 
observed few occurrences of USER Application failures with OS failures. The 
majority of sequences consisted of User Application failures (66.56%), followed by 
{OSSVC} (29.10%), {OSAPP} (2.07%), {USERAPP, OSAPP} (0.99%), {USERAPP, OSKNL} 
(0.52%), {USERAPP, OSSVC} (0.40%), and {OSKNL} (0.36%). Note that sequences 
composed of OSKNL failures are barely observed because these failures usually 
cause system reboots decreasing the chances of other failures nearby.  

Since this study is focused on finding systematic and consistent patterns, I 
ranked the failure sequences by two criteria; (i) greater number of computers the 
sequence is observed in; and (ii) greater number of occurrences of the sequence. 
Table 5.6 presents the ranking result for each sample considered. The numbers in 
parentheses in the column labels represent the total number of each element, e.g., 
for the OS failures sample, the total number of computers that contain the 
sequences is 128 and the total number of sequence occurrences is 806. In general, I 
observed that, besides been consisted of failures from the same category, most 
sequences are composed of failures of the same type. Noticeably, the failures in 
both the application (iexplore) and update (IEU) of the Internet Explorer browser 
are predominant in the sequences. 
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Table 5.6. Most consistent failure sequences. 

Sample_OS 

Sequence 
# of Computers 

(128) 
Occurrence 

(806) 
% 

ExplorerHang→ExplorerHang 18 30 3.72 

IEU80242016→IEU80242016 14 14 1.74 

IEU80242016→WinU80242016→IEU80242016 8 8 0.99 

WinU800f0902→WinU800f0902 6 6 0.74 

IEU80070643→IEU80070643 5 316 39.21 

Sample_USERAPP 

Sequence 
# of Computers 

(276) 
Occurrence 

(1,718) 
% 

iexplore0xc0000005→iexplore0xc0000005 77 215 12.51 

iexplorerHang→iexplorerHang 77 152 8.85 

winwordhang→winwordhang 29 47 2.74 

iexplore0xc0000005→iexplore0xc0000005→iexplore0xc0000005 28 43 2.50 

iexplore0xc0000005→iexplore0xc000041d 25 43 2.50 

Sample_ALL 

Sequence 
# of Computers 

(319) 
Occurrence 

(2,509) 
% 

iexplore0xc0000005→iexplore0xc0000005 78 219 8.73 

iexplorerHang→iexplorerHang 75 149 5.94 

winwordhang→winwordhang 30 48 1.91 

iexplore0xc0000005→iexplore0xc0000005→iexplore0xc0000005 28 41 1.63 

iexplore0xc0000005→iexplore0xc000041d 25 41 1.63 

For the Sample_OS in Table 5.6, the highest-ranked sequence consists of 
explorer.exe failures from the OSAPP category, which is the only non-update OS 
failures observed in the rank. The explorer.exe is an OS program responsible for the 
GUI window and file navigation management. All other sequences are composed of 
WUS failures, specifically IEU and WinU. Note that the sequence IEU80070643→ 
IEU80070643 is observed in five computers but represented almost 40% of the 
sequence occurrences found. For the entire first sample, around 46% of the 
failures that composed the sequences were Internet Explorer Update failures, 
followed by Windows Update (23.83%), .Net Framework Update(9.63%), Visual 
Studio Update (5.61%), and Office Update (5.08%). 

Regarding the second sample (Sample_USERAPP), the majority of the 
sequences consisted of iexplore failure associations. The only sequence that did not 
encompass iexplore failures in the rank was composed of associations of Microsoft 
Word failures (winword), which ranked third. Most sequences of the second 
sample are composed of iexplore failures (62.56%), followed by winword (9.38%), 
excel (7.90%), acrord32 (6.45%), and chrome (4.22%). 

Since USER Application failures are abundant, the rank of the third sample 
(Sample_ALL), which included both OS and User Application failures, is the same as 
the second sample (Sample_USERAPP). However, note that some occurrence values 
from the rank of the second sample are different from the third. 
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Table 5.7. Most frequent causes in the failure sequences. 

Sample_OS 

Cause 
Occurrence 

(2,673) 
% Description 

80070643 1,307 48.90 
Indicates a failure during the software update installation 
process, whose most common cause is the malfunctioning of 
the .Net Framework installed on the system [85]. 

800706ba 429 16.05 
Indicates a failure in the WUS (Windows Update Service) 
caused by the unavailability of the RPC (remote procedure 
call) server [86]. 

800b0100 181 6.77 
This indicates that the files needed for the WUS to update the 
software were missing or corrupted [87]. 

c8000710 103 3.85 
This indicates that the failure occurred due to the 
unavailability of disk space during the update installation 
process [88]. 

hang 95 3.55 Hang. 

Sample_USERAPP 

Cause 
Occurrence 

(4,648) 
% Description 

0xc0000005 2,124 45.70 
“STATUS_ACCESS_VIOLATION”, The instruction at  x% 8lx 
referenced memory at 0x%08lx. The memory could not be 
%s [89] 

hang 1,437 30.92 Hang. 

0xc0000374 285 6.13 
“STATUS_HEAP_CORRUPTION”, A heap has been corrupted 
[89]. 

0xc0000096 259 5.57 
“STATUS_PRIVILEGED_INSTRUCTION”, {EXCEPTION} 
Privileged instruction [89]. 

0xc000041d 104 2.24 
An unhandled exception was encountered during a user 
callback [90]. 

Sample_ALL 

Cause 
Occurrence 

(7,180) 
% Description 

0xc0000005 2,146 29.89 

Already described in the table. 

hang 1,493 20.79 

80070643 1,245 17.34 

800706ba 428 5.96 

0xc0000374 320 4.46 

Table 5.7 lists the most frequently observed causes of failures that compose 
the sequences found for the three samples analyzed. Note that the Occurrence and 
% columns regard the number of failures with each cause in the sequences found.  

The first four causes of failures in the OS sample indicate that external factors 
(e.g., malfunctioning of the .Net Framework and unavailability of the RPC server) 
upon which the Windows Update Service (WUS) depends, generated failures on its 
normal execution. Thus, preventive management of these factors is a possible 
action to improve the reliability of this OS Service.  Furthermore, the causes 
80242016 and 800f0902, which are the cause of some of the most consistent 
sequences within the Sample_OS (see Table 5.6), indicate that the state of the 
update after its post-reboot operation has completed is unexpected [91] and the 
software updating routine could not be completed because Win7 was performing 
another servicing operation [92], respectively. 
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As for the User Applications sample, most causes of failures are related to 
problems related to memory management (i.e., 0xc0000005 and 0xc0000374). 
Also, there is a high incidence of failures due to hangs, which I could not obtain the 
specific cause. Furthermore, I collected and analyzed the Faulting Modules of all 
USER Applications failures, based on the fields Message and InsertionStrings of the 
event records, and observed that the ntdll.dll library that manages allocations 
inside large memory areas [73] is the most frequent module (14.05%) to fail in the 
sample, followed by mshtml.dll (13.36%), which is responsible for loading, parsing, 
and displaying HTML content in the Internet Explorer browser [93], and Unknown 
(6.38%). 

Finally, for the third sample (Sample_ALL), the most common causes have 
already been described in Table 5.7 for the other samples. 

It is intuitive to expect that the number of the same sequence occurrences 
would remain constant, or would decrease in the third sample given that this 
sample was created by adding OS failures to the second sample, which could not 
interfere with User Application sequences when OS failures occurred on a different 
timestamp from USERAPP failures or could prevent User Application sequences 
from happening when OS failures occurred between USERAPP failures, lowering the 
number of USERAPP sequences. But I also observed the increase of sequence 
occurrences, for example, the sequence winwordhang→winwordhang occurred 47 
times in the second sample and 48 in the third (see Table 5.6).  

This increase behavior occurred when longer sequences observed in the 
second sample (e.g., winwordhang→winwordhang→iexplorehang) do not occur in the 
third sample, but parts of the longer sequence compose smaller sequences in the 
third sample (e.g., winwordhang→winwordhang). This happened because the inclusion 
of OS failures in the second sample changed the associations and ∆ts observed in 
the second sample. Regarding only the number of occurrences, the most frequent 
failures observed in sequences in the third sample are iexplore failures (40.21%), 
followed by IEU (16.62%), WinU (8.64%), winword (5.61%), and excel (5.08%). 

5.3.2 Sequence Classes 

Looking at the patterns shown in Table 5.6, there is a predominance of 
sequences composed of failures of the same type. Therefore, I further investigated 
the relationship between the failures in sequences by dividing the sequences into 
classes. The Sequence Type Class refers to the types/subtypes that compose the 
sequences, having three possibilities: 

  Homogeneous: Sequences where all of the subsequent failures have 
the same type of the OriginFailure (see Section 4.3).  

  Entirely Heterogeneous: Sequences where all of the subsequent 
failures have a different type of the OriginFailure. 

  Partially Heterogeneous: Sequences where at least one subsequent 
failure has the same type of the OriginFailure. 

I also classified sequences based on their causes (Sequence Cause Class): 
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  Same: Sequences where all of the subsequent failures have the same 
cause of the OriginFailure.  

  Entirely Different: Sequences where all of the subsequent failures 
have a different cause of the OriginFailure. 

  Partially Different: Sequences where at least one subsequent failure 
has the same cause of the OriginFailure. 

Table 5.8 presents the frequency of sequences belonging to all combinations 
of classes considered above, based on every sample analyzed. Note that failures 
with the same type/subtype and cause are predominant in all samples, which 
indicate recurrent failure patterns formed by these sequences; this is useful 
information regarding the occurrence dynamics of these failures in the sequences, 
being valuable for the prediction models. Moreover, most sequences present 
common causes that provoke multiple failures over time (see Table 5.7), with no 
evidence of a causal relationship among the failures in the sequences. From a 
practical perspective, this finding indicates that fixing the common problem (e.g., 
missing files) would prevent new failures in the sequence. 

Table 5.8. Sequence classes. 

  OS USERAPP All 

Seq. Type Class Seq. Cause Class 
Freq. 
(806) 

% 
Freq. 

(1,718) 
% 

Freq. 
(2,509) 

% 

Homogeneous Same 704 87.34 1,102 64.14 1,784 71.10 

Homogeneous Entirely Different 17 2.11 226 13.15 236 9.41 

Homogeneous Partially Different 1 0.12 120 6.98 120 4.78 

Entirely Heterogeneous Same 16 1.99 75 4.37 94 3.75 

Entirely Heterogeneous Entirely Different 8 0.99 127 7.39 143 5.70 

Entirely Heterogeneous Partially Different - - 4 0.23 4 0.16 

Partially Heterogeneous Same 42 5.21 19 1.11 59 2.35 

Partially Heterogeneous Entirely Different 3 0.37 10 0.58 16 0.64 

Partially Heterogeneous Partially Different 15 1.86 35 2.04 53 2.11 

5.3.3 Sequence Lengths 

Next, I analyzed the length of the sequences, which is the number of failures 
that compose them. Table 5.9 shows the five most observed lengths in each 
sample. Note that sequences composed of two failures, which is the minimum 
length of a sequence, are the most frequent in any sample. This is another valuable 
piece of information for the prediction models since we can conclude that given the 
predominance of this pattern the prediction should be focused on shorter 
sequence lengths. In general, we can see a clear negative correlation between the 
sequence lengths and the number of sequence occurrences, which is confirmed by 
the Spearman correlation coefficients calculated for each sample s(OS) = -0.85, 
s(USERAPP) = -0.96, and s(ALL) = -0.88. Therefore, the longer the sequence, the rarer 
they were observed in the samples; the longest sequence found has 58 OS failures 
and occurred once. 
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  Table 5.9. Ten most frequent sequence lengths. 

Sample_OS 

Length 
Frequency 

(806) 
% Total 

2 497 61.66 

93.17% 

3 154 19.11 

4 60 7.44 

5 30 3.72 

6 10 1.24 

Sample_USERAPP 

Length 
Frequency 

 (1,718) 
% Total 

2 1,149 66.88 

97.62% 

3 301 17.52 

4 145 8.44 

5 58 3.38 

6 24 1.40 

Sample_ALL 

Length 
Frequency 

 (2,509) 
% Total 

2 1,651 65.80 

96.45 

3 456 18.17 

4 198 7.89 

5 82 3.27 

6 33 1.32 

5.3.4 Sequence Durations 

Another important property of the failure sequences is their time duration, 
which is the summation of all times between failures, Δts, in a sequence. First, we 
analyzed the median duration of sequences in each sample.  

I observed that 2.81 hours (95% CI of 2.54 to 2.88) was the median duration 
of sequences in the Sample_OS; 0.043 hours (95% CI of 0.038 to 0.049) in the 
Sample_USERAPP; and 0.089 hours (95% CI of 0.072 to 0.108) in the Sample_ALL. 
Figure 5.5 presents histograms of sequence durations for each sample. The 
logarithmic scale ln(x+1) is used to display the wide range of duration values since 
I found that some sequences have durations equal to zero hours, which occur when 
the Δts are less than one second since seconds is the lowest time unit recorded by 
the RAC instrumentation. 

I noted that most sequences from the OS sample (Sample_OS) last for a time 
between 0 and 0.22 hours (approximately 13 minutes), followed by sequences 
with a duration between 2.32 to 3.06 hours. The durations of USERAPP sequences 
are concentrated between 0 and 0.11 hours (approximately 6 minutes). Therefore, 
I investigate in more detail the sequences within the intervals 0 to 0.22 hours and 
2.32 to 3.06 hours in the Sample_OS and the sequences within the interval 0 to 0.11 
hours in the Sample_USERAPP. 
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Sample_OS 

 
Sample_USERAPP 

 
Sample_ALL 

 

Figure 5.5. Histogram of failure sequence durations. 
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Sample_OS 

 
Sample_USERAPP 

 
Sample_ALL 

 

Figure 5.6. Sequence length vs time duration. 
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The sequences within the first interval (i.e., 0 to 0.22 hours) of the Sample_OS 
are highly diverse, encompassing 124 different sequences with a total of 224 
occurrences. The most recurrent sequence observed in this interval is 
WinU800b0100→WinU800b0100 with 8.22% of the occurrences. This most frequent 
sequence indicates a repetition of failures due to corruption of files needed for the 
WUS to update the Win7 core components. Furthermore, it is also observed a high 
variety of sequence lengths in this interval, in which the most common (54.46%) 
combinations are no longer than two OS failures. On the other hand, in the second 
interval (i.e., 2.32 to 3.06 hours), I only observed six different sequences (187 
occurrences in total), in which the most prevalent (89.30%) have the configuration 
IEU80070643→IEU80070643, which indicates successive failures during the installation 
of Internet Explorer updates caused by malfunctions in the .Net Framework 
software. Sequences with two OS failures prevailed (94.12%) in the second 
interval. 

For the time interval between 0 and 0.11 hours, I found 228 sequences with 
1,092 occurrences in the Sample_USERAPP. The most frequent sequence within the 
above-mentioned interval is iexplore0xc0000005→iexplore0xc0000005 with 15.75% of 
occurrences. Moreover, most sequences in the interval are composed of two 
failures (74.45%). 

Looking for patterns combining sequence lengths and sequence durations, I 
analyzed the scatterplots shown in Figure 5.6. Note that, in Sample_OS, the 
majority of sequences with more than three failures present shorter durations 
when compared to the majority of smaller sequences. Thus, at least for the longer 
OS sequences, this finding corroborates my previous assumption of a common 
cause for the multiple failures in a sequence (see Section 5.3.2). On the other hand, 
longer USERAPP are concentrated within the interval 0.4 (24 minutes) to 2 hours. 

5.4 Failure Prediction 

In this thesis, the approach proposed for software failure prediction uses 
patterns of failure sequences as input to the predictive models. To do that, the two 
required input raw data necessary are the ‘failure type’ and the ‘failure event 
timestamp’. The failure type is any information that allows identifying a software 
failure, such as a numerical code (e.g., EventIdentifier in Win7, see Table 3.2), the 
canonical name of the failed software/component (e.g., explorer.exe), the category 
of the failed software (e.g., OS or USERAPP), and so forth.  These two required fields 
are present in most system logs, making this approach as general as possible. 
Different from the sequence analysis discussed in sections 4.3 and 5.3, for the 
failure prediction I avoid using very specific data in the models, like the ‘failure 
causes’, which are not easily found in system logs. 

5.4.1 Failure Prediction Based on Sequences of Two Failure Categories 

To conduct a higher-level analysis using the whole dataset (Sample_ALL), I 
set the failure categories considered in this study (i.e., OSKNL, OSSVC, OSAPP, and 
USERAPP) as the four possible values of the dependent variable (see Section 4.4) 
and compute their probability of occurring given the occurrence of other failures 
immediately before them (independent variable). The independent variable also 
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assumes one of the failure category values. Table 5.10 shows all possible 
sequential associations found between the values of the dependent (Last Failure) 
and independent (Previous Failure) variables, and the upper bounds of the 
confidence intervals for the median value of their Δts. Note that the highest upper 
bounds are related to OSKNL failures. Moreover, the association between OSKNL 
failures with failures from other categories amounted to only 1.91% of all 
associations analyzed. This low percentage may be due to the effect of system 
reboots that regularly occur right after OSKNL failures, lowering the likelihood of 
nearby failures. Besides, kernel subsystems run at the kernel space, thus in a 
protected operating mode, which makes it less likely to be affected by failures from 
other categories that run at the User space. 

Next, as mentioned in Section 4.4, I select all occurrences of the failure 
sequences whose Δts are less or equal to the upper bound value of their respective 
median’s confidence interval; otherwise, I remove them from the work sample. 
Subsequently, to decrease the bias of selecting between the training and test data 
sets, I randomly split the work sample into 70% and 30% respectively.  

Since the work sample contains all possible combinations between the 
dependent and independent variables (i.e., every failure category occurred along 
with the others), it is not necessary to apply regularization to the Multinomial 
Logistic Regression (see Section 2.1.4). Therefore, equations 11, 12, and 13 show 
the three resulting logits that model the four failure categories on both dependent 
and independent variables. Note that the OSAPP category was chosen as the 
reference value for the dependent variable and it was omitted on the dummy 
variables created for the categorical independent variable. 

Table 5.10. Sequential associations based on failure categories. 

Sequential Association 95% CI for the Median of Δts 

Independent 
Variable 

(Previous Failure) 

Dependent 
Variable 

(Last Failure) 

Lower 
(hour) 

Median 
(hour) 

Upper 
(hour) 

OSKNL OSKNL 0.276 1.143 1.521 

OSKNL OSSVC 0.234 1.755 10.483 

OSKNL OSAPP 16.445 22.855 31.252 

OSKNL USERAPP 1.390 5.520 7.614 

OSSVC OSKNL 1.467 7.207 17.467 

OSSVC OSSVC 2.432 2.636 2.865 

OSSVC OSAPP 0.129 1.508 5.978 

OSSVC USERAPP 5.368 6.234 7.814 

OSAPP OSKNL 1.442 6.943 24.006 

OSAPP OSSVC 0.823 2.803 4.419 

OSAPP OSAPP 0.001 0.003 0.011 

OSAPP USERAPP 2.255 4.638 6.823 

USERAPP OSKNL 9.999 13.934 21.594 

USERAPP OSSVC 1.827 2.448 2.664 

USERAPP OSAPP 1.042 2.632 3.328 

USERAPP USERAPP 0.115 0.130 0.143 
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The McFadden’s pseudo R2 value calculated for the model is 0.55, which 
indicates very good adherence of the model to the training data set [53]. Moreover, 
evaluating the model’s predictions against the test data set, it obtains a prediction 
accuracy of 93.88%. Both Decision Tree and Random Forest models have the same 
accuracy result. 

In order to have a closer view of how the three models reach such accuracy, I 
calculated the probabilities of all dependent variable values based on the values of 
the independent variable (previous failure event). The Multinomial Logistic 
Regression and Decision Tree models presented the same values of probabilities. 
Figure 5.7 shows the probabilities obtained by both models. The letters K, S, A, and 
U on both axis represent the failures categories OSKNL, OSSVC, OSAPP, and USERAPP, 
respectively. The blue color indicates a low probability (around 0%) of occurring a 
certain failure given the occurrence of a previous failure while the red color 
indicates a high probability (around 100%). Moreover, the grey color refers to a 
medium probability of occurrence (around 50%). The Random Forest model has a 
slight difference in the probabilities compared to the Multinomial Logistic 
Regression and Decision Tree models (see Figure A.1 in the Appendix). 

Note that the probability is higher when both last (dependent variable) and 
previous (independent variable) failures have the same category, especially for 
USERAPP and OSSVC failures. This finding indicates that it is more likely that a failure 
occurs along with other failures of the same failure category, regardless of the 
category. I conjecture that this failure pattern explains the high McFadden’s 
pseudo R2 value observed in the Multinomial Logistic Regression, given that the 
dependent variables were almost perfectly predicted in cases where the 
independent and dependent variables had the same values.  

However, as shown in the last row of Figure 5.7, there is also a significantly 
higher probability of occurring USERAPP failures after all other categories, 
especially after OSKNL and OSAPP failures. This may have happened due to the high 
prevalence of USERAPP failures in the dataset (83.39%) compared to the other 
categories (i.e., OSKNL(3.66%), OSSVC (10.07%), OSAPP (2.88%)). 
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Figure 5.7. Probabilities based on sequences of two failure categories 
(Multinomial Logistic Regression and Decision Tree). 

 

Figure 5.8. Decision Tree based on sequences of two failure categories. 
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Figure 5.8 presents the resulting Decision Tree. Note that the internal nodes, 
which represent the independent variables (Previous Failure), have three 
attributes. The only attribute Leaf nodes do not have is the first, which indicates 
the decision based on the independent variable. The three attributes of the internal 
nodes are: 

1.  IV_* ≤ 0.5: indicates the decision based on the independent variable 
(IV), which, in this case, is whether the previous failure is of a certain 
category in a sequence of two failures. For example, the decision in the 
Root node, i.e., IV_S ≤ 0.5, indicates that if the previous failure is not an 
OSSVC failure (i.e., IV_S = 0) go to the left edge (IV_S ≤ 0.5 is True), and 
if the previous failure is an OSSVC failure (i.e., IV_S = 1) go to the right 
edge (IV_S ≤ 0.5 is False). Note that the independent variables are 
either 0 or 1 since they are dummy variables. 

2.  Sample_Size: indicates the number of training data in the node. 
Therefore, the Root node contains the whole training sample. The 
other nodes segment the training data based on the decisions. For 
example, the internal node to the left of the Root node shows that 
9,308 of the 10,667 sequences in the training data do not have an 
OSSVC failure as previous failure. 

3.  Class: indicates the dependent variable value with the highest 
occurrence for the training data in a node. For example, the Root node 
shows that most sequences in the training sample have a USERAPP 
failure as the last failure. 

Note that the last attribute of the Leaf nodes (Class) indicates the predicted 
outcome of the dependent variable. Therefore, the Decision Tree shown in Figure 
5.8 can be interpreted as a series of “ifs and elses”: 

  If the previous failure is OSSVC, the next failure is OSSVC 

  Else if the previous failure is USERAPP, the next failure is USERAPP 

  Else if the previous failure is OSAPP, the next failure is OSAPP 

  Else the next failure is OSKNL 

Observe that the Decision Tree also depicts the pattern where sequences 
having both previous and last failure of the same category are more probable of 
occurring in the sample, forming a long ramification to the left side of the tree. 
Moreover, it is not necessary to include an internal node (independent variable) to 
represent OSKNL failures, because if the previous failure of a sequence is neither of 
the other three failure categories (i.e., OSSVC or USERAPP or OSAPP), it is OSKNL.  

Finally, regarding the number of trees in the Random Forest model, of the 
seven values tested (10, 29, 49, 69, 88, 108, and 128), the best amount of trees in 
the model was 10 (default value).  
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5.4.2 Failure Prediction Based on Sequences of Two Failure Types 

Next, I followed the same rationale used in Section 5.4.1, in which I computed 
the probability of failures to occur (dependent variable) given the occurrence of 
other failures immediately before (independent variable). However, in this case, I 
set sequences of two failure Types (instead of failure Categories) as input to the 
models. Moreover, I considered sequences from each of the three samples adopted 
in this study — the first sample containing only OS failures (Sample_OS), the 
second containing only User Application failures (Sample_USERAPP), and the third 
represents the whole dataset i.e., both OS and User Application failures 
(Sample_ALL). 

Given the sparsity problem (see Section 2.1.4) that emerges when dealing 
with the great number of failure types, it is necessary to use the Multinomial 
Logistic Regression with Ridge regularization. The following equations present a 
general representation of the Multinomial Logistic Regression with Ridge 
regularization models needed to represent the failure types on both dependent 
and independent variables. 
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where the dependent variable Y = { f1, …, fk} has k levels (i.e., k possible failure 
types). Note that an equation is created for each level of the dependent variable 
and the probability of each level is divided by the probability of all other levels.  
Xbefore represents the failure event immediately preceding the last failure 
(dependent variable) of the sequences and xb is a vector of dummy independent 
variables of all possible failure types that immediately precede the last failure. Due 
to the regularization, I did not calculate the McFadden’s pseudo R2 , which 
measures how well the models fitted the training data since the regularization 
introduces a penalization that makes the model less sensitive to the training data. 

By evaluating the three (i.e., Multinomial Logistic Regression with Ridge 
regularization, Decision Tree, and Random Forest) models’ predictions against the 
test data set, I obtained the same prediction accuracy of 86.99% for the Sample_OS, 
90.89% for the Sample_USERAPP, and 88.28% for the Sample_ALL. To find an 
explanation of why three different models are having the same accuracy, figures 
5.9, 5.10, and 5.11 show the probabilities calculated by each model for sequences 
in the Sample_ALL. As mentioned in Section 2.1.4, the Ridge regularization 
introduces a penalization to the model’s parameters forcing the less relevant ones 
to be close, but never reach zero. Therefore, all possible combinations between the 
dependent and independent variables have a probability. On the other hand, both 
Decision Tree and Random Forest models only calculate the probability of 
combinations present in the training sample. Consequently, the blank 
(whitespaces) probabilities in Figures 5.10 and 5.11 indicate combinations that 
were not observed in the training data and the models could not calculate them. 
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Figure 5.9. Probabilities based on sequences of two failure types 
(Multinomial Logistic Regression with Ridge - Sample_ALL). 

 

Figure 5.10. Probabilities based on sequences of two failure types     
(Decision Tree - Sample_ALL). 
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Figure 5.11. Probabilities based on sequences of two failure types      
(Random Forest - Sample_ALL). 

Note that the same pattern observed in Figure 5.7 in which the main diagonal 
has the highest probabilities is also observed in figures 5.9, 5.10, and 5.11. 
Therefore, as observed in Section 5.4.1 for failure Categories, there is also a high 
pattern of multiple same-type failures on the sequences of two failure types 
analyzed. Thus, a possible explanation of why the models are having the same 
accuracy is the simplicity of their inputs (sequences with only two failures), 
together with the strong pattern of multiple same-type failures. 

Besides the pattern of multiple same-type failures observed, it is important to 
emphasize that sequences of iexplore (USERAPP) occurring after OSKNL failures 
(DRIVER_POWER_STATE_FAILURE and StartupRepair) are also observed. However, 
they are among the least frequent sequences found with 0.28% and 0.24% of the 
occurrences. The same is observed for devenv→iexplore (0.24%) and 
setup→iexplore (0.19%). Therefore, these sequences may have occurred due to the 
predominance of iexplore failures in the dataset (see Table 3.5). 

Figures A.2 to A.7, in the Appendix, present the probabilities obtained for 
Sample_OS and Sample_USERAPP, respectively, using the three proposed models. 
The same pattern of the highest probabilities occurring in the main diagonal is also 
observed in both OS and USERAPP samples. Moreover, Figures A.8 to A.10, in the 
Appendix, show the Decision Trees for each of the three samples considered in this 
study. All trees presented the same long ramification to the left side of the tree as 
observed in Figure 5.8, which also indicates patterns of multiple same-type 
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failures. Finally, similar to Section 5.4.1, the best amount of trees in the Random 
Forest model was 10 (default value) for all of the three samples analyzed. 

5.4.3 Failure Prediction Based on Sequences of Two Failure Types and 
the Δt between them 

One of the most important properties that provide a better assessment of 
how the failure sequences occur is their Δt values. Hence, I extend the analyses 
presented in Section 5.4.2 by including the Δt of the failure sequences as an 
additional independent variable (IV) to the multinomial models. First, the 
sequences’ Δts are categorized by computing the minimum, median, and maximum 
of their values.  

Table 5.11 shows the Δt statistics for each sample. Due to the continuous 
nature of the Δt values, I group them into two classes, “Minimum ≤ Δt ≤ Median” 
and “Median < Δt ≤ Maximum”, in order to use them as input in the prediction 
models. It is noteworthy that the time precision recorded by the RAC 
instrumentation is one second. So, if two failure events occur within a Δt < 1 s they 
are registered with the same timestamp, which explains the occurrences of 
minimum values of Δt equal to 0. 

Analyzing the whole dataset, most sequences with the highest median Δts are 
composed of iexplore failures with other failure types. In fact, of the nine sequences 
with the longest Δt median, only two (i.e., DRIVER_POWER_STATE_FAILURE→ 
DRIVER_POWER_STATE_FAILURE and VSU→VSU) do not include iexplore failures, 
which strengthen the hypothesis that these sequences may have occurred due to 
the predominance of iexplore failures in the dataset. Once again, I use the 
Multinomial Logistic Regression with Ridge regularization because of the great 
number of values in the dependent and independent variables, causing the sparsity 
problem. The following equations depict the regression with the addition of the Δts 
as a second independent variable. 
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Table 5.11. Summary of the sequences’ durations (in hours). 

  OS  USERAPP   All Failures 

Minimum  0.000  0.000  0.000 

Median  0.177  0.019  0.019 

Maximum  28.668  30.378  30.378 
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In this case, the accuracy of the Multinomial Logistic Regression with Ridge 
regularization models are slightly different from the Decision Tree and Random 
Forest models applied to all samples. Table 5.12 presents the accuracies from each 
model per sample. The numbers in parenthesis indicate how much the accuracy 
increased (+) or decreased (-) in relation to the analysis performed in Section 5.4.2.  

Note that the accuracies of all models do not change much (e.g., the maximum 
change is 0.46% in the accuracy) in relation to the ones observed in Section 5.4.2. 
However, I discovered new other failure sequence patterns by analyzing the 
calculated probabilities of all models. Figures 5.12, 5.13, and 5.14 show the 
probabilities calculated by the Logistic Regression with Ridge regularization, 
Decision Tree, and Random Forest models, respectively, for sequences in the 
Sample_OS. 

Table 5.12. Summary of the models’ accuracy. 

  OS  USERAPP   All Failures 

Model  Accuracy   Accuracy  Accuracy 

MLR with Ridge  (0.00) 86.99%   (0.46) 90.43%  (0.43) 87.85% 

Decision Tree  (+0.35) 87.34%  (0.46) 90.43%  (+0.44) 88.72% 

Random Forest  (+0.35) 87.34%  (0.46) 90.43%  (+0.44) 88.72% 

 

 

Figure 5.12. Probabilities based on sequences of two failure types and the Δt 
between them (Multinomial Logistic Regression with Ridge - Sample_OS). 
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Figure 5.13. Probabilities based on sequences of two failure types and the Δt 
between them (Decision Tree - Sample_OS). 

 

Figure 5.14. Probabilities based on sequences of two failure types and the Δt 
between them (Random Forest - Sample_OS). 
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which is depicted by figures 5.12, 5.13, and 5.14 as a lighter strip of squares for the 
WinU (y-axis) where Δts are between 0.0 h and 0.177 h. On the opposite side, 
Internet Explorer Update failures (IEU) have a high probability of occurring in 
longer Δts. Note that some probabilities in certain intervals could not be calculated 
by both Decision Tree and Random Forest models, because both models can only 
compute factual probabilities of sequences that occur in the training sample. For 
example, the probability of occurring a DRIVER_POWER_STATE_FAILURE failure 
after other DRIVER_POWER_STATE_FAILURE is high for both Δt intervals in the 
models of Multinomial Logistic Regression with Ridge (see Figure 5.12). However, 
for the first Δt interval (i.e., 0.000 h ≤ Δt ≤ 0.177 h), in figures 5.13 and 5.14, no 
probability is calculated since the training sample does not have any occurrence of 
the sequence DRIVER_POWER_STATE_FAILURE→DRIVER_POWER_STATE_FAILURE 
in the first interval. Figure 5.15 presents the Decision Tree created from the 
Sample_OS, which shows that the resulting Decision Tree does not have any 
DRIVER_POWER_STATE_FAILURE leaf node in the first interval, explaining the lack 
of probabilities in the above-mentioned figures. Figures A.11 and A.12, in the 
Appendix, show the Decision Trees created from Sample_USERAPP and Sample_ALL, 
respectively. All Decision Trees continue to present patterns of multiple same-type 
failures having a long ramification to the left side. 

Figures A.13 to A.18 (in Appendix) present the calculated probabilities for 
the Sample_USERAPP and Sample_ALL, respectively. Regarding User Application 
failures, I observe a higher probability of occurring iexplore failures with other 
failure types in longer Δts, as observed at the beginning of this section. Finally, 
once more, the best amount of trees in the Random Forest models is 10 (default) 
for Sample_OS and Sample_USERAPP. However, this number changes to 29 for 
Sample_ALL. 

 

Figure 5.15. Decision tree based on sequences of two failure types and the Δt 
between them (Sample_OS). 
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5.4.4 Failure Prediction Based on Sequences of Three Failure Types 

Since one of the most common lengths observed in the failure sequences 
analyzed in this study is three (see Section 5.3.3), I also calculate the probability of 
a failure to occur (dependent variable) given the occurrence of other two 
preceding failures (independent variables). The following equations represent the 
Multinomial Logistic Regression with Ridge regularization models needed to 
represent this type of sequence: 
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where Xbefore_1 represents the failure event immediately preceding the last failure 
(dependent variable) of the sequences and Xbefore_2 the one that occurred 
previously to the Xbefore_1. Table 5.13 presents the accuracies from each model per 
sample. Note that all models present similar accuracies, where the greatest 
difference among them is 2.34% between the highest accuracy (88.28%) obtained 
by the Multinomial Logistic Regression with Ridge regularization and the lowest 
(85.94) obtained by the Random Forest in the Sample_OS. 

Figures 5.16, 5.17, and 5.18, present the probabilities calculated for the 
Logistic Regression with Ridge regularization, Decision Tree, and Random Forest 
models, respectively, based on Sample_ALL. The x-axis represents the Xbefore_1  
failures and each graph indicates one possible value for Xbefore_2. Given the high 
number of Xbefore_2 values, I filter the data to present only the most frequently 
observed in the sample. Note that that the number of failure types decreased given 
that several types do not occur in sequences composed of three failures. Moreover, 
when the first failure (Xbefore_2) of the sequences occurs, the probability of the last 
failure (dependent variable) having the same type as the first increases. There are 
also cases where the last failures have a high probability of being the same type as 
its closest failure (Xbefore_1). Both cases occur due to the pattern of multiple same-
type failures observed throughout the prediction analysis. However, there is also a 
significant probability of occurring iexplore failures (see Figure 5.16), which, as 
stated in the previous sections, may occur due to the high frequency of this failure 
in the dataset.  Figures A.19 to A.27 (in the Appendix) present all calculated 
probabilities from each model per sample.  

Table 5.13. Models’ accuracy (sequences of three failure types). 

  OS  USERAPP   All Failures 

Model  Accuracy   Accuracy  Accuracy 

MLR with Ridge  88.28%   92.50%  92.31% 

Decision Tree  86.72%  91.58%  92.01% 

Random Forest  85.94%  91.58%  92.33% 
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Figure 5.16. Probabilities based on sequences of three failure types 
(Multinomial Logistic Regression with Ridge – Filtered Sample_ALL). 

 

 

Figure 5.17. Probabilities based on sequences of three failure types  
(Decision Tree – Filtered Sample_ALL). 
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Figure 5.18. Probabilities based on sequences of three failure types  
(Random Forest - Filtered Sample_ALL). 

Figures A.28 to A.30, in the Appendix, show the Decision Trees created from 
each sample. The long ramification to the left side is still present in all trees. 
Finally, the best number of trees in the Random Forest was 49 for Sample_OS, 88 
for Sample_USERAPP, and 49 for Sample_ALL. 

In general, all models presented good to high accuracies (86% to 93%) 
throughout all the prediction analyses performed. The Decision Tree models have 
the advantage of creating a tree that easily displays how the values are distributed 
in the samples. However, as the tree grows, its interpretability is impaired. The 
Random Forest is a black-box model that tries to mitigate the overfitting in 
Decision Trees, which occurs when the model has a great fit to the training data, 
but a poor fit to the test data. However, like the Decision Tree, it could not estimate 
reliable probabilities from unseen data during the training phase (see Section 
5.4.2). On the other hand, the Multinomial Logistic Regression with Ridge 
regularization was capable of estimating the probabilities in such cases. Therefore, 
the Multinomial Logistic Regression with Ridge regularization is chosen to be used 
in future works to implement online failure prediction. 

For example, as observed in Section 5.4.3, there is no occurrence in the 
training sample of DRIVER_POWER_STATE_FAILURE events occurring before any 
failure within the interval Minimum ≤ Δt ≤ Median. Therefore, both Decision Tree 
and Random Forest models could not calculate such probability. Consequently, if a 
DRIVER_POWER_STATE_FAILURE event occurs within interval Minimum ≤ Δt ≤ 
Median, the online failure prediction using the probabilities obtained by both 
Decision Tree and Random Forest models,  would not able to provide any 
preventive measures. 
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6.   CONCLUSION 

6.1 Introduction 

This chapter presents the final considerations of the empirical exploratory 
study conducted in this research. 

Section 6.2 provides a summary of the empirical findings regarding the 
dependency of software failure events. 

Section 6.3 highlights the main results and conclusion drawn by discovering 
patterns of multiple-event failures.  

Section 6.4 highlights the main results and conclusion drawn by predicting 
failures based on patterns of failure sequences. 

Section 6.5 presents the threats to the validity of the research. 

Section 6.6 presents the contributions to the literature. 

Section 6.7 presents the next steps planned for this research. 

This research presents an exploratory study on multiple-event failure 
manifestations observed empirically in four different real workplaces and 
proposes a statistical approach to predict failures based on patterns of this type of 
failure manifestation. To have a complete comprehensive view of how multiple-
event failures occur in the software layer of computer systems, I investigate the 
failure behavior of a commodity operating system (OS) and User Applications 
running on top of it. 

Different from the traditional approach of analyzing OS failures that only 
considers failures that occurred in the Kernel space, I followed the method 
introduced in [29] that states that assessing an OS reliability by focusing on only 
Kernel-space failures is inaccurate since modern operating systems have several 
components running in both the Kernel and the User spaces. Consequently, the 
used method classifies the OS failures into three categories: OS Application (OSAPP), 
OS Service (OSSVC), and OS Kernel (OSKNL). 

I highlight that the OS Kernel failures represented only 22.03% of all OS 
failures observed in the dataset, and the most prevalent OS failures were related to 
OS services (60.61%). Therefore, corroborating the study in [29], it can be seen 
that software reliability studies focused on operating systems should not restrict 
their analyses to only OS Kernel failures as has been the norm in the literature. 
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I also found that failures in the Windows Update Service (WUS) were 
predominant among the OS services failures, which means that the software 
update malfunctioning has a high impact on the OS reliability. 

6.2 Dependence of Software Failure Events 

A common characteristic among the majority of software reliability models is 
to assume that software failures occur independently [20]-[22]. This assumption is 
often used to adapt analytical models to mathematically treatable forms and 
simplify the estimation calculation of the model parameters [30]. However, this 
independence assumption may interfere, significantly, with the results of the 
software reliability assessment when the events of interest are not independent. 
Therefore, I tested the hypothesis of independence of failure events in real-world 
system failure data and found empirical evidence that the assumption of 
independence does not hold for many of the failures analyzed in this work. Figure 
6.1 shows one of these real examples of failure dependence observed in the failure 
dataset analyzed. In this case, the failure of the RPC (Remote Procedure Call) 
server, which is used by the Windows Update Service and other running services in 
Windows 7, caused a failure in the Windows Update Service that, consequently, 
caused the failure of all updates being performed by the Windows Update Service. 

 

Figure 6.1. Example of software failures dependency. 

6.3 Patterns of Multiple-Event Failures 

This research investigates the dynamics of multiple-event failure 
manifestations. Therefore, the first question I wanted to answer was: Q1: Do 
software systems present systematic multiple-event failure manifestations?  
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To work through this question, I initially propose a method to discover 
patterns of failure associations (see Sections 4.2 and 5.2), which was applied to 
failures from a widely used commercial off-the-shelf Operating System 
(Sample_OS). As a result, I discovered 45 systematic OS failure associations with 
153,511 occurrences, which are composed of the same or different failure types.  
Besides been the predominant OS failure in the dataset, failures in the Windows 
Update Service (WUS) are also prevalent in the associations. Most associations are 
composed of repetitions of WUS failures, which suggests that the Windows Update 
Service may have tried repeatedly and unsuccessfully to update the same 
component, which generated patterns of multiple same-type WUS failures. 
Moreover, associations composed of different WUS failures are also observed, 
suggesting that failures in the Windows Update Service could cause failures in all 
updates being performed by the service at the same time.  

Answering Q1, the associations found indicate that most OS failures observed 
occur following a specific temporal order, which is robust evidence of systematic 
manifestations of multiple-event failures. 

Multiple-event failures are characterized by sequences of failure events, 
varying in terms of length, duration, and combination of failure types. Therefore, 
two more questions were raised: Q2: Do software failures occur in a sequential 
pattern? If so, Q3: Do the observed sequential patterns reflect a causal relationship 
between the failures? 

To answer these questions, I propose an improvement of the previous 
method by creating a protocol to discover patterns of failure sequences using 
varying time thresholds (see Sections 4.3 and 5.3). To provide a holistic view of 
multiple-event failures at the whole software layer, this method was applied to all 
three samples (see Sample_OS, Sample_USERAPP, and Sample_ALL in Section 3.4) 
analyzed in this work. As a result, I found 165 different OS failure sequences with 
806 occurrences; 480 User Application failure sequences with 1,718 occurrences; 
and 640 sequences containing both OS and User Application failures with a total of 
2,509 occurrences.  

Hence, answering Q2, the sequences found are evidence of sequential 
patterns of different types of software failures.  

Examining the failure sequences, I found that the most common sequence 
length is two, in any sample, which is the minimum number of failures that 
compose the sequences. Moreover, most sequences are composed of failures with 
the same type and cause. System-wide component failures, like the malfunctioning 
of frameworks and missing or corrupted system files, are the main cause of OS 
failures in the sequences analyzed (Section 5.3.1). Specifically, for User Application 
failures, problems related to memory management are their main cause. All of 
these failure causes are common problems that provoke multiple failures over 
time. Thus, proactive management of these factors (e.g., preventive maintenance of 
frameworks or check for missing files before performing update installation 
procedures) focused on their higher availability is a possible action to avoid 
failures in sequence and thus improve the system reliability.  
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Hence, answering Q3, based on the evidence obtained for the failures 
observed in the sequences, which were mainly caused by the above-mentioned 
system-wide component failures, it is not possible to confirm the existence of 
causal relationship among them. 

I also investigate if OS and User Application failures may affect each other. 
Despite observing some occurrences of these failures together, they are rare 
(1.19% of the sequences found) and I could not determine how one affected the 
other. The more plausible explanation is the high frequency of some User 
Application failures in the dataset, which are so numerous that they occur together 
with some OS failures in different computer systems, and, consequently, are 
considered as associations/sequences by the proposed protocols. For example, the 
total amount of OS failures in the dataset is 7,010 while the total amount of failures 
of only the User application iexplorer.exe is 6,495 (see Table 3.5). 

In summary, I found occurrences of associations and sequences in the failure 
dataset analyzed, which is empirical evidence that demonstrates the existence of 
well-established manifestations of multiple-event failures in a real software 
system. Lastly, this evidence raises the following question: Q4: Are these failure 
manifestations systematic enough to be considered genuine patterns?  

Answering Q4, given the diversity of the groups evaluated, and the number of 
occurrences detected, such evidence strengthens my conclusion that the failure 
associations and sequences found are genuine patterns of multiple-event failures. 

6.4 Prediction of Software Failures 

To take advantage of the sequential nature of the multiple-event failures, as 
summarized in Section 6.3, the following questions were also addressed: Q5: Could 
we use these patterns to predict future failures? If so, Q6: At what level of 
accuracy? Q7: Would it be feasible to be implemented as part of an online failure 
prediction system?  

Answering Q5, I used three methods to tackle the prediction problem; 
Multinomial Logistic Regression (w/ and w/o Ridge regularization), Decision Tree, 
and Random Forest. Based on failure sequences observed in all samples analyzed, 
the methods calculate the probability of a certain failure event to occur within a 
time interval upon the occurrence of a particular pattern of preceding failures. In 
other words, these methods can predict the most probable failure to occur (i.e., the 
most probable future failure) based on patterns of the preceding failures. 

Answering Q6, the proposed prediction approach was able to estimate 
models to predict software failures with good to high accuracy (86% to 93%), 
considering different input data such as categories, types of failures, and Δt 
between failures.  

I observed that failures of the same type are more probable of occurring 
together and this pattern was observed throughout the prediction analysis in all 
samples analyzed. Moreover, the resulting models showed robust enough to deal 
with different prediction time intervals, varying the time between failures from 
seconds to hours with no degrading effect on their accuracy.  
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Answering Q7, the empirical evidence observed in this research seems 
promising and suggests the feasibility of using the proposed approach to 
implement online failure prediction, which must be composed of two main tasks. 
One task is related to continuously calibrating the model’s parameters with new 
incoming failure records, and the other task is performing the probability 
estimation of the next failures to occur, as well as the appropriate preventive 
actions based on these outputs (e.g., reinstall a DLL file upon its failed update). The 
calibrating task can be performed either offline or online, and the prediction task 
must be done online. 

6.5 Threats to Validity 

Like any empirical research work, this study has limitations that must be 
considered when interpreting its results. In this subsection, I highlight these 
validity threats [94] and the strategies adopted to mitigate them. 

6.5.1 Internal Validity 

This validity addresses the quality of evidence adopted to support my study’s 
conclusions. 

Since this study is an observational study rather than a controlled study, the 
failures analyzed here were collected from computers in real production 
environments and not obtained by controlled experiments. Consequently, my 
conclusions are drawn from findings obtained from associations and sequences of 
observed failure events and not based on the direct manipulation of the system 
under study to produce the failure events analyzed. 

We know from the literature (e.g., [94], [95]) that controlled experiments 
offer a higher internal validity than observational ones. On the other hand, they 
impose important limitations in terms of external validity. To achieve a balance 
between both validities, I chose the observational approach and worked with a 
dataset composed of failures from different populations (or groups). Based on this 
approach, I aim at mitigating mainly validity threats such as systematic errors and 
selection bias. 

In this study, systematic errors could be caused by environmental factors, 
such as the same administrative policy and OS settings applied to the entire group 
of computers. The proposed methods were designed to mitigate these threats, 
considering as failure patterns only the combinations of failures observed 
consistently in multiple groups of computers.  

Selection bias is another threat to internal validity that arises in this study, 
which was also mitigated to the extent that we collected the failure samples from 
various computers (644 in total) of dissimilar workplaces. Three (G1, G2, and G4) 
out of four workplaces were under different administration policies and they were 
all under varying workloads, which intentionally aimed at greater diversity in 
terms of possible failure scenarios covered by the dataset.   
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Another important aspect related to internal validity that must be considered 
is related to the failure causes discussed in this work. This information was 
obtained through the Error Codes, Exception Codes, and Stop Codes. The assignment 
of these codes to the failure records was performed by Win7 itself, at the failure 
time; thus, their correctness is assumed to be right. My understanding when 
learning about the Codes was based on official Microsoft technical documentation, 
which is always susceptible to misinterpretation. However, given that the 
description of most Codes used in this study was straightforward, I consider this 
issue of minor threat.  

The evaluation of the temporal occurrence of the failures was based on the 
RAC’s record field, TimeGenerated, also created by Win7 automatically at the 
failure time. It is important to highlight that this field stores the time in seconds, so 
two failures that occur consecutively within a time interval of less than one second 
are registered with the same timestamp value. In this case, these two failures 
would be considered erroneously, as occurring at the same time. Therefore, the Δt 
between them is equal to zero. This is a time precision limitation of Win7’s RAC 
instrumentation. However, part of the percentage of Δts equal to zero may 
represent failure events that correctly occurred at the same time. 

6.5.2 External Validity 

This validity addresses the extent to which my results can be generalized. 
First, it is important to highlight that all empirical results presented in this study 
apply to Windows 7 operating systems. As mentioned in Section 3.2, my choice for 
this specific OS is due to the fact that this is one of the most widely used mass-
market OS nowadays. Thus, although limited to this OS platform, it is expected that 
the applicability of my empirical results is wide-spread. 

Hence, if one wants to generalize this work’s empirical results to another 
population of Win7 machines, then I consider that the external validity of this 
study is high, especially due to the size and diversity of the analyzed dataset. 
Though the reported empirical results are based on Win7, I conjecture that similar 
findings may be found investigating other operating systems from the Windows OS 
family that are architecturally close to Win7, such as XP, Vista, Win8/8.1, and 
Win10. 

In addition to the empirical results, it is important to consider the 
generalizability of the methods proposed. The methods are general enough to be 
applied to failure data from other software systems if their failure records contain 
at least the following information: failed software identification (Failure category 
and/or type/subtype), and failure time stamp. The majority of software systems 
keep this information in their event logs. 

6.6 Contributions to the literature 

The results of this work were the basis for writing three papers. The first, 
entitled, “Failure Patterns in Operating Systems: An Exploratory and Observational 
Study” [30], is published in the 2018 edition of the Journal of Systems and 
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Software. It describes in detail the protocol developed for discovering failure 
association patterns. 

The second, entitled “An Empirical Exploratory Analysis of Failure Sequences 
in a Commodity Operating System” [14], is published in the Proceedings of the 
2019 edition of the Brazilian Symposium on Computing Systems Engineering. The 
paper won the best paper award of the symposium. It presents the protocol 
developed to discover patterns of failure sequences. 

Finally, the third paper, entitled “A Statistical Approach to Predict Operating 
System Failures Based on Multiple Failures Association” [75], is published in the 
Proceedings of the 2020 edition of the Brazilian Symposium on Computing 
Systems Engineering.  

6.7 Future Work 

Based on the results of this research, we are working on two ideas. The first, 
as mentioned in Section 6.4, is to implement an online failure prediction analysis 
based on the probabilities obtained in the prediction analysis. The second is to 
replicate this study using a dataset based on failure records from Win10. 
Therefore, the main idea is to test the hypothesis of similarity in failure patterns in 
both operating systems. Besides, we will test other prediction methods (e.g., 
Neural Networks) and collect complete logs from the system, not just failure logs. 
Consequently, other variables will be considered in the prediction models, like the 
workload in progress when the failure occurred, for example.  



 

   83 

REFERENCES 

[1] C. Jee and T. Macaulay, “Top software failures in recent history,” 
https://www.computerworld.com/article/3412197/top-software-failures-
in-recent-history.html (Accessed: January 20, 2021). 

[2] R. Charette, “The Biggest IT Failures of 2 18,” 
https://spectrum.ieee.org/riskfactor/computing/it/it-failures-2018-all-
the-old-familiar-faces (Accessed: January 20, 2021). 

[3] N. G. Leveson and C. S. Turner, “An Investigation of the Therac-25 Accidents”, 
IEE Computer, vol. 26, no.7, pp.18-41. DOI: 
https://doi.org/10.1109/MC.1993.274940 

[4] M. Dowson, "The Ariane 5 software failure," ACM SIGSOFT Software Engineering 
Notes, vol. 22, no. 2, pp. 84, 1997. DOI: 
https://doi.org/10.1145/251880.251992 

[5] J. J. Angel,  "When finance meets physics: Impact of the speed of light on 
financial markets and their regulation," The Financial Review, vol. 49, no. 2, 
pp. 271-281, 2014. DOI: https://doi.org/10.1111/fire.12035 

[6] A. Levin, “Latest 737 Max Fault That Alarmed Test Pilots Rooted in Software,” 
https://www.bloomberg.com/news/articles/2019-07-27/latest-737-max-
fault-that-alarmed-test-pilots-rooted-in-software (Accessed: January 20, 
2021). 

[7] R. Wall and M. Sherman, “The Multiple Problems, and Potential Fixes, With the 
Boeing 737 MAX,” https://www.wsj.com/articles/fixing-the-problems-
with-boeings-737-max-11566224866 (Accessed: January 20, 2021). 

[8] P.L. Li, M. Ni, S. Xue, J.P. Mullally, M. Garzia, and M. Khambatti, "Reliability 
Assessment of Mass-Market Software: Insights from Windows Vista," in 
Proceedings of the 19th International Symposium on Software Reliability 
Engineering, 2008, pp. 265-270. DOI: 
https://doi.org/10.1109/issre.2008.60 

[9] G. Bruzzone, M. Caccia, A. Bertone, and G. Ravera,  “Standard Linux for 
Embedded Real-Time Robotics and Manufacturing Control Systems”, in 
Proceedings of the 14th Mediterranean Conference on Control and 
Automation, 2006, pp. 01-06. DOI: 
https://doi.org/10.1109/med.2006.328773 



 

84  

[1 ] D. Abbott, “Linux for Embedded and Real-time Applications,” Newnes, 3ª ed., 
296 pgs, 2012. 

[11] F. Salfner, M. Schieschke, and M. Malek, "Predicting failures of computer 
systems: a case study for a telecommunication system," in Proceedings  of 
the 20th International Conference on Parallel and distributed processing, 
2006, pp. 348-348. DOI: https://doi.org/10.1109/ipdps.2006.1639672 

[12] M. Lyu, "Software Reliability Engineering: A Roadmap," in Proceedings of the 
29th International Conference Software Engineering, Future Software 
Engineering, 2007, pp. 153 -170. DOI: 
https://doi.org/10.1109/fose.2007.24 

[13] ANSI/IEEE, Standard Glossary of Software Engineering Terminology, STD-
729-1991, 1991. 

[14] C.A.R. Dos Santos, R. Matias, and K. S. Trivedi, “An Empirical Exploratory 
Analysis of Failure Sequences in a Commodity Operating System,” in 
Proceedings of the Brazilian Symposium on Computing Systems 
Engineering, 2019. DOI: 
https://doi.org/10.1109/sbesc49506.2019.9046072 

[15] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” in Proceedings of the International 
Conference on Dependable Systems and Networks, 2006, pp.249-258. DOI: 
https://doi.org/10.1109/dsn.2006.5 

[16] A. Ganapathi, V. Ganapathi and D. Patterson, “Windows XP kernel crash 
analysis,” in Proceedings of the Conference on Large Installation System 
Administration, 2006, pp. 149-159. 

[17] M. M. Swift, B. N. Bershad and H. M. Levy, “Improving the reliability of 
commodity operating systems,” in Proceedings of the ACM Symposium on 
Operating Systems Principles, 2003, pp.207-222. DOI: 
https://doi.org/10.1145/945445.945466 

[18] G. J. Pai "A Survey of Software Reliability Models". Technical Report CS 651: 
Dependable Computing. Department of ECE, University of Virginia, 2002. 

[19] K. Goseva-Popstojanova and K. S. Trivedi, "Architecture Based Software 
Reliability Prediction," Computers & Mathematics with Applications, vol. 46, 
no. 7, pp. 1023-1036, 2003. DOI: https://doi.org/10.1016/S0898-
1221(03)90116-7 

[20] K. Goseva-Popstojanova and K. S. Trivedi, "The Effects of Failure Correlation 
on Software Reliability and Performability," in Proceedings of the 29th 
International Symposium Fault Tolerant Computing, 1999, pp. 45-46. 

[21] K. Goseva-Popstojanova and K. S. Trivedi, "Effects of Failure Correlation on 
Software in Operation," in Proceedings of the Pacific Rim International 
Symposium on Dependable Computing, 2000, pp. 69-76. DOI: 
https://doi.org/10.1109/prdc.2000.897286 



 

   85 

[22] K. Goseva-Popstojanova and K. S. Trivedi, "Failure Correlation in Software 
Reliability Models," IEEE Trans. On Reliability, vol.49, no.1, pp. 37-48, 2000. 
DOI: https://doi.org/10.1109/24.855535 

[23] C. Dyer and M. Taylor, “Cot deaths: law in disarray as 258 cases of convicted 
parents to be reviewed,” https://www.theguardian.com/society/ 
2004/jan/20/health.childprotection (Accessed: January 20, 2021). 

[24] R. Hill, "Reflections on the cot death cases," Significance, 2, pp. 13-15, 2005. 
DOI: https://doi.org/10.1111/j.1740-9713.2005.00077.x 

[25] A. Aviz ienis, J.-C. Laprie, B. Randell, and C.  Landwehr, "Basic Concepts and 
Taxonomy of Dependable and Secure Computing," IEEE Transactions on 
Dependable and Secure Computing, vol. 1, no. 1, pp. 11-33, 2004. DOI: 
https://doi.org/10.1109/TDSC.2004.2 

[26] E. E. Lewis, “Introduction to Reliability Engineering,” Wiley Publishing, 2ª ed., 
464 pgs, 1995. 

[27] A. Ganapathi and D. Patterson, “Crash Data Collection: A Windows Case 
Study,” in Proceedings of the International Conference on Dependable 
Systems and Networks, 2005, pp. 280-285. DOI: 
https://doi.org/10.1109/dsn.2005.32 

[28] Y. S. Dai , M. Xie, and K. L. Poh, “Modeling and Analysis of Correlated Software 
Failures of Multiple Types, ” IEEE Transactions on Reliability, vol. 54, no. 1), 
pp. 100-106, 2005. DOI: https://doi.org/10.1109/tr.2004.841709 

[29] R. Matias, G. Oliveira,  L. Araujo, "Operating system reliability from the qual- 
ity of experience viewpoint: an exploratory study," in Proceedings of the 
28th ACM Symposium on Applied Computing, 2013, pp. 1644–1649. DOI: 
https://doi.org/10.1145/2480362.2480669 

[3 ] C.A.R. Dos Santos and R. Matias, “Failure Patterns in Operating Systems: An 
Exploratory and Observational Study,” Elsevier Journal of Systems and 
Software, vol. 137, pp. 512-530, March 2018. DOI: 
https://doi.org/10.1016/j.jss.2017.03.058 

[31] M. Kalyanakrishnam, Z. Kalbarczyk, R. Iyer, "Failure data analysis of a LAN of 
Windows NT based computers,"in Proceedings of the 18th IEEE Symposium 
on Reliable Distributed Systems, 1999, pp. 178–187. DOI: 
https://doi.org/10.1109/reldis.1999.805094 

[32] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, "An empirical study of oper- 
ating systems errors," in Proceedings of the 18th ACM Symposium on 
Operating Systems Principles, 2001, pp. 73–88. DOI: 
https://doi.org/10.1145/502059.502042 

 [33] R. Lai, “Huawei reveals HarmonyOS, its alternative to Android,” 
https://www.engadget.com/2019/08/09/huawei-harmony-os-hongmeng-
android/ (Accessed: December 27, 2019). 



 

86  

[34] M. Golemati, A. Katifori, E. Giannopoulou, I. Daradimos, and C. Vassilakis, 
“Evaluating the significance of the Windows Explorer visualization in 
personal information management browsing tasks,” in Proceedings of the 
International Conference on Information Visualization, 2007, pp. 93-100. 
DOI: https://doi.org/10.1109/iv.2007.46 

[35] C.A.R. Dos Santos, M. Antunes, R. Matias, L. Assunção, and V. Maciel, 
“Reliability Assessment of Commercial Off-the-Shelf Operating System 
Software: An Empirical Study,” in Proceedings of the Brazilian Symposium 
on Computing Systems Engineering, 2018. DOI: 
https://doi.org/10.1109/sbesc.2018.00038 

[36] Microsoft, “Microsoft Security Essentials,” https://www.microsoft.com/en-
us/download/details.aspx?id=5201 (Accessed: December 27, 2019). 

[37] Microsoft, “Windows Error Reporting,” http://msdn.microsoft.com/en-
us/library/bb513613(v=vs.85).aspx (Accessed: December 27, 2019). 

[38] Microsoft, “Windows Installer,” http://msdn.microsoft.com/en-
us/library/cc185688%28VS. 85%29.aspx (Accessed: December 27, 2019). 

[39] D. Hosmer, S. Lemeshow, and R. Sturdivant, "Applied Logistic Regression," 3rd 
ed., John Wiley & Sons, 500 pgs, 2013. 

[40] I. H. Witten, E. Frank, and M. A. Hall, "Data Mining: Practical Machine Learning 
Tools and Techniques," Morgan Kaufmann, 664 pgs, 2011. 

[41] P. Bühlmann and S. van de Geer, "Statistics for High-Dimensional Data: 
Methods, Theory and Applications," Springer, 558 pgs, 2011. 

[42] T. Hastie, R. Tibshirani, and J. Friedman" The Elements of Statistical Learning: 
Data Mining, Inference, and Prediction," Springer, 745 pgs, 2019. 

[43] G. Tutz and J. Gertheiss, “Regularized regression for categorical data,” 
Statistical Modelling, vol. 16, no.3, pp.161-200, 2016. DOI: 
https://doi.org/10.1177/1471082x16642560 

[44] A. E. Hoerl and R. W. Kennard, “Ridge Regression: Biased Estimation for 
Nonorthogonal Problems,” Technometrics, vol. 12, no.1, pp.55-67, 1970. 
DOI: https://doi.org/10.1080/00401706.1970.10488634 

[45] J. Friedman,  T. Hastie , and R. Tibshirani, “Regularization Paths for 
Generalized Linear Models via Coordinate Descent,” Journal of Statistical 
Software, vol. 33, no.1, pp.01-22, 2010. DOI: 
https://doi.org/10.18637/jss.v033.i01 

[46] F. Gorunescu "Data Mining: Concepts, Models and Techniques," Springer, 372 
pgs, 2011. 

[47] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone "Classification and 
Regression Trees," CRC Press, 358 pgs, 1984. 



 

   87 

[48] D. Esposito and F. Esposito "Introducing Machine Learning," Microsoft Press, 
400 pgs, 2020. 

[49] M. Kantardzic "Data Mining: Concepts, Models, Methods, and Algorithms," 
Wiley-IEEE Press, 672 pgs, 2020. 

[50] J. Han, M. Kamber, and J. Pei "Data Mining: Concepts and Techniques," Morgan 
Kaufmann, 703 pgs, 2011. 

[51] T. Oshiro, P. Perez, and J. Baranauskas " How Many Trees in a Random 
Forest?," Lecture notes in computer science, 2012. 

[52] J. A. Rosenthal, "Statistics and Data Interpretation for Social Work," Springer, 
506 pgs, 2011. 

[53] H-J Andreß, K. Golsch, and A. Schmidt, "Applied Panel Data Analysis for 
Economic and Social Surveys," Springer, 344 pgs, 2013. 

[54] K. Pituch and J. Stevens, "Applied Multivariate Statistics for the Social 
Sciences: Analyses with SAS and SPSS," 6th ed., Routledge, 814 pgs, 2015. 

[55] D. McFadden, “Conditional logit analysis of qualitative choice behavior,” In 
Frontiers in Econometrics, P. Zarembka (ed.), 1974, pp 105-142. 

 [56] R. Matias, M. Prince, L. Borges, C. Sousa, and L. Henrique, “An Empirical 
Exploratory Study on Operating System Reliability,” In Proceedings 29th 
ACM Symposium on Applied Computing, 2014, pp. 1523–1528. DOI: 
https://doi.org/doi.org/10.1145/2554850.2555021 

[57] K. S. Trivedi, "Probability and Statistics with Reliability, Queuing, and 
Computer Science Applications," 2nd ed., vol. 1. Wiley, 830 pgs, 2001. 

[58] C. Bird, V.P. Ranganath, T. Zimmermann, N. Nagappan, and A. Zeller. “Extrinsic 
Influence Factors in Software Reliability: A Study of 200,000 Windows 
Machines,” In Proceedings 36th International Conference on Software 
Engineering, 2014, pp. 205-214. DOI: 
https://doi.org/10.1145/2591062.2591173 

[59] P. Fournier-Viger, J. Lin, R. Kiran, Y. Koh, and R. Thomas, “A Survey of 
Sequential Pattern Mining”, Data Science and Pattern Recognition, vol. 1, 
no.1, pp.54-77. 

[60] R. Srikant, and R. Agrawal, “Mining sequential patterns: Generalizations and 
performance improvements,” Proceedings of the 5th International 
Conference on Extending Database Technology, 1996, pp. 3–17. DOI: 
https://doi.org/10.1007/BFb0014140 

[61] M. J. Zaki, “SPADE: An efficient algorithm for mining frequent sequences,” 
Machine learning, vol. 42, no.1, pp.31-60. DOI: 
https://doi.org/10.1023/A:1007652502315 

[62] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M. C. 
Hsu, “Mining sequential patterns by pattern-growth: The prefixspan 



 

88  

approach,” IEEE Transactions on knowledge and data engineering, vol. 16, 
no.11, pp.1424-1440. DOI: https://doi.org/10.1109/TKDE.2004.77 

[63] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential pattern mining using a 
bitmap representation,” Proceedings of the 8th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, 2002, pp. 429–435. 
DOI: https://doi.org/10.1145/775047.775109 

[64] Z. Yang, and M. Kitsuregawa, “LAPIN-SPAM: An improved algorithm for 
mining sequential pattern,” Proceedings of the 21st International 
Conference on Data Engineering Workshops, 2005, pp. 1222–1222. DOI: 
https://doi.org/10.1109/ICDE.2005.235 

[65] M. J, Zaki and W. Meira, "Data Mining and Machine Learning: Fundamental 
Concepts and Algorithms," Cambridge University Press, 775 pgs, 2020. 

[66] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R. Sahoo, “BlueGene/L 
Failure Analysis and Prediction Models,” In Proceedings International 
Conference on Dependable Systems and Networks, 2006, pp. 425–434. DOI: 
https://doi.org/10.1109/DSN.2006.18 

[67] Fronza, A. Sillitti, G. Succi, M. Terho, J. Vlasenko, “Failure Prediction Based on 
Log Files Using Random Indexing and Support Vector Machines”, Journal of 
Systems and Software, vol. 86, no. 1, pp. 2-11, 2013. DOI: 
https://doi.org/10.1016/j.jss.2012.06.025 

[68] NetMarketShare, “Desktop Operating System Market Share,” 
https://netmarketshare.com/operating-system-market-
share.aspx?id=platformsDesktopVersions (Accessed: January 20, 2021). 

[69] Microsoft, “Reliability analysis component,” http://technet.microsoft.com/en-
us/library/cc774636(v=ws.10).aspx (Accessed: January 20, 2021). 

[7 ] Microsoft, “Win_32 ReliabilityRecord class,” https://msdn.microsoft.com/en-
us/library/windows/desktop/ee706630%28v=vs.85%29.aspx?f=255&MS
PPError=-2147217396 (Accessed: January 20, 2021). 

[71] Microsoft, “Understanding the System Stability Index,” 
https://technet.microsoft.com/en-us/library/cc749032(v=ws.10).aspx 
(Accessed: January 20, 2021). 

[72] HPDCS, “Survey on OS Failures,” http://hpdcs.facom.ufu.br/osr-
team/index.php (Accessed: January 20, 2021). 

[73] M. Russinovich, D. A. Solomon, and A. Ionescu, "Microsoft Windows Internals," 
7th ed., Microsoft Press, 900 pgs, 2009. 

[74] Microsoft, “Did system uptime error cause chkdisk,” 
https://answers.microsoft.com/en-us/windows/forum/all/did-system-
uptime-error-cause-chkdisk/8d55525c-9f5b-4278-bd87-1598bce009ee 
(Accessed: January 20, 2021). 



 

   89 

[75] C.A.R. Dos Santos, R. Matias, and K. S. Trivedi, “A Statistical Approach to 
Predict Operating System Failures Based on Multiple Failures Association,” 
in Proceedings of the Brazilian Symposium on Computing Systems 
Engineering, 2020, pp. 1–8. DOI: 
https://doi.org/10.1109/SBESC51047.2020.9277859 

[76] E. Volna, M. Kotyrba, and M. Janosek, "Pattern recognition and classification in 
time series data," Advances in Computational Intelligence and Robotics, 1st 
ed. IGI Global, 282 pgs, 2016. 

[77] F.H. Marriott, "A Dictionary of Statistical Terms," Longman Scientific & Techni- 
cal/Wiley,  223 pgs, 1990. 

[78] M. Scholes, and J. Williams, "Estimating betas from nonsynchronous data," 
Journal of Financial Economics, vol 5, no. 3, pp. 309–327, 1977. DOI: 
https://doi.org/10.1016/0304-405X(77)90041-1 

[79] M.C. Lundin, M.M. Dacorogna, and U. A. Müller, "Correlation of high frequency 
financial time series". Lequex, P. (Ed.), The Financial Markets Tick by Tick, 
Chapter 4. John Wiley & Sons, pp. 91-126, 1999. 

[80] T. Hayashi, N. Yoshida, "On covariance estimation of non-synchronously ob- 
served diffusion processes", Bernoulli, vol 11, no. 2 , pp. 359–379, 2005. 
DOI: https://doi.org/10.3150/bj/1116340299 

[81] K. Rehfeld, N. Marwan, J. Heitzig, and J.Kurths, "Comparison of correlation 
analy- sis techniques for irregularly sampled time series," Nonlinear 
Processes Geophys, vol. 18, no. 3, pp. 389-404, 2011. DOI: 
https://doi.org/10.5194/npg-18-389-2011 

[82] A. Eckner, “A framework for the analysis of unevenly-spaced time series data,” 
http://eckner.com/papers/unevenly_spaced_time_series_analysis.pdf 
(Accessed: January 20, 2021). 

[83] B. Desharnais, F. Camirand-Lemyre, P. Mireault, and C.Skinner, 
“Determination of confidence intervals in non-normal data: application of 
the bootstrap to cocaine concentration in femoral blood,” Journal of 
analytical toxicology, vol. 39, pp. 113-117, 2015. DOI: 
https://doi.org/10.1093/jat/bku127 

[84] T. Beauvisage, "Computer usage in daily life," in Proceedings of International 
Conference on Human Factors in Computing Systems, 2009, pp. 575-584. 
DOI: https://doi.org/10.1145/1518701.1518791 

[85] Microsoft, “Windows update showing error 8  7 643,” 
http://answers.microsoft.com/en-us/insider/forum/insider_wintp-
insider_update/windows-update-showing-error-80070643/0e53bf0f-
8843-45a1-b3c4-0940c516c8d9 (Accessed: January 20, 2021). 

 [86] Microsoft, “Troubleshooting Issues When You Use the Discovery Wizard to 
Install an Agent,” https://docs.microsoft.com/en-us/previous-
versions/system-center/operations-manager-2007-



 

90  

r2/ff358634(v=technet.10)?redirectedfrom=MSDN (Accessed: January 20, 
2021). 

[87] Microsoft, “Windows 7 Update Problems - Code 8  B 1  ,” 
https://answers.microsoft.com/en-us/windows/forum/all/windows-7-
update-problems-code-800b0100/c2d0f18b-dbef-455d-a32e-
b730ebd2370f  (Accessed: January 20, 2021). 

[88] Microsoft, “Windows Update Agent - Error Codes,” http://social.technet. 
microsoft.com/wiki/contents/articles/15260.windows-update-agent-
error-codes. aspx . (Accessed: January 20, 2021). 

[89] Microsoft, “NTSTATUS Values,” https://docs.microsoft.com/en-
us/openspecs/windows_protocols/ms-erref/596a1078-e883-4972-9bbc-
49e60bebca55?redirectedfrom=MSDN (Accessed: January 20, 2021). 

[9 ] Microsoft, “NTSTATUS  xc    41d,” https://support.microsoft.com/en-
us/help/2856748/ntstatus-0xc000041d-error-occurs-when-you-click-a-
link-in-a-web-based (Accessed: January 20, 2021). 

[91] Microsoft, “Windows Update error 8 242 16,” 
https://docs.microsoft.com/en-
us/windows/deployment/update/windows-update-error-reference 
(Accessed: January 20, 2021). 

[92] Microsoft, “Add-WindowsFeature sometimes fails with error  x8  f 9 2,” 
https://social.technet.microsoft.com/Forums/lync/en-US/1eb8c5c2-64bf-
4d07-8020-dac902230688/addwindowsfeature-sometimes-fails-with-
error-0x800f0902-the-operation-cannot-be-completed-
because?forum=winservermanager (Accessed: January 20, 2021). 

[93] M. Crowley, "Pro Internet Explorer 8 & 9 Development: Developing Powerful 
Applications for The Next Generation of IE," Apress, 446 pgs, 2010. 

[94] J. Siegmund, N. Siegmund, and S. Apel, "Views on internal and external validity 
in empirical software engineering," In Proceedings 37th International 
Conference on Software Engineering, 2015, pp. 9-19. DOI: 
https://doi.org/10.1109/ICSE.2015.24 

[95] R. Feldt and A. Magazinius, "Validity threats in empirical software engineering 
research - An initial survey, " in Proceedings 22nd International Conference 
on Software Engineering and Knowledge Engineering, 2010, pp. 374-379. 

 

 

 

 

 

 



 

   91 

APPENDIX 

Table A.1. Reference Failures that appeared in four groups. 

Category OS Failure Type [Subtype] G1 G2 G3 G4 Total 

OSSVC WUS [Windows Update] 23 613 5 523 1,164 

OSAPP explorer.exe 35 226 29 296 586 

OSSVC WUS [.Net Framework Update] 3 187 3 116 309 

OSSVC WUS [Office Update] 44 87 1 134 266 

OSKNL Windows-StartupRepair 66 135 2 34 237 

OSSVC msiexec.exe 31 3 3 23 60 

OSSVC dllhost.exe 2 28 13 4 47 

OSKNL 
SYSTEM_THREAD_ EXCEPTION_NOT 

 HANDLED 
1 30 7 3 41 

OSSVC services.exe 1 16 5 19 41 

OSAPP mmc.exe 3 10 4 7 24 

OSSVC taskhost.exe 1 1 1 1 4 

Table A.2. Reference Failures that appeared in three groups. 

Category OS Failure Type [Subtype] G1 G2 G3 G4 Total 

OSSVC WUS [Internet Explorer Update] 7 1,461 - 118 1,586 

OSKNL VIDEO_TDR_ERROR 825 62 - 11 898 

OSAPP mscorsvw.exe - 115 6 159 280 

OSSVC WUS [Visual Studio Update] - 55 103 41 199 

OSAPP rundll32.exe - 19 7 155 181 

OSKNL DRIVER_POWER _STATE_FAILURE - 22 23 78 123 

OSSVC svchost.exe - 28 24 53 105 

OSSVC WUS [MS C++ Update] - 16 5 19 40 

OSSVC WUS [XML Update] - 16 1 16 33 

OSKNL CRITICAL_ OBJECT_TERMINATION 18 4 - 6 28 

OSKNL MEMORY _MANAGEMENT - 22 1 2 25 

OSKNL PAGE_FAULT_IN_NONPAGED_AREA - 7 1 10 18 

OSKNL DRIVER_IRQL_ NOT_LESS_OR_EQUAL 1 11 - 5 17 

OSSVC WUS [MS Silverlight Update] - 4 2 11 17 

OSAPP dwm.exe 4 - 1 4 9 

OSSVC WUS [Visio Viewer Update] 1 5 - 2 8 

OSKNL CLOCK_WATCHDOG _TIMEOUT 1 3 - 1 5 
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Figure A.1. Probabilities based on sequences of two failure categories 
(Random Forest). 

 

Figure A.2. Probabilities based on sequences of two failure types 
(Multinomial Logistic Regression with Ridge - Sample_OS). 
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Figure A.3. Probabilities based on sequences of two failure types         
(Decision Tree - Sample_OS). 

 

Figure A.4. Probabilities based on sequences of two failure types         
(Random Forest - Sample_OS). 
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Figure A.5. Probabilities based on sequences of two failure types         
(Multinomial Logistic Regression with Ridge - Sample_USERAPP). 

 

Figure A.6. Probabilities based on sequences of two failure types         
(Decision Tree - Sample_USERAPP). 
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Figure A.7. Probabilities based on sequences of two failure types         
(Random Forest - Sample_USERAPP). 

 

Figure A.8. Decision Tree based on sequences of two failure types 
(Sample_OS). 
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Figure A.9. Decision Tree based on sequences of two failure types 
(Sample_USERAPP). 
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Figure A.10. Decision Tree based on sequences of two failure types 
(Sample_ALL). 
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Figure A.11. Decision Tree based on sequences of two failure types and the Δt between them (Sample_USERAPP). 
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Figure A.12. Decision Tree based on sequences of two failure types and the Δt between them (Sample_ALL). 
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Figure A.13. Probabilities based on sequences of two failure types and the Δt 
between them (Multinomial Logistic Regression with Ridge - 

Sample_USERAPP). 

 

Figure A.14. Probabilities based on sequences of two failure types and the Δt 
between them (Decision Tree - Sample_USERAPP). 
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Figure A.15. Probabilities based on sequences of two failure types and the Δt 
between them (Random Forest - Sample_USERAPP). 

 

Figure A.16. Probabilities based on sequences of two failure types and the Δt 
between them (Multinomial Logistic Regression with Ridge - Sample_ALL). 
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Figure A.17. Probabilities based on sequences of two failure types and the Δt 
between them (Decision Tree - Sample_ALL). 

 

Figure A.18. Probabilities based on sequences of two failure types and the Δt 
between them (Random Forest - Sample_ALL). 
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Figure A.19. Probabilities based on sequences of three failure types        
(Multinomial Logistic Regression with Ridge - Sample_OS). 
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Figure A.20. Probabilities based on sequences of three failure types        
(Decision Tree - Sample_OS). 

 

Figure A.21. Probabilities based on sequences of three failure types        
(Random Forest - Sample_OS). 
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Figure A.22. Probabilities based on sequences of three failure types        
(Multinomial Logistic Regression with Ridge - Sample_USERAPP). 
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Figure A.23. Probabilities based on sequences of three failure types        
(Decision Tree - Sample_USERAPP). 
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Figure A.24. Probabilities based on sequences of three failure types        
(Random Forest - Sample_USERAPP). 
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Figure A.25. Probabilities based on sequences of three failure types (Multinomial Logistic Regression with Ridge - Sample_ALL). 
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Figure A.26. Probabilities based on sequences of three failure types (Decision Tree - Sample_ALL). 
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Figure A.27. Probabilities based on sequences of three failure types (Random Forest - Sample_ALL). 
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Figure A.28. Decision Tree based on sequences of three failure types (Sample_OS). 
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Figure A.29. Decision Tree based on sequences of three failure types (Sample_USERAPP). 
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Figure A.30. Decision Tree based on sequences of three failure types (Sample_ALL). 


