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ABSTRACT
Background  Malignant pleural mesothelioma (MPM) 
is a rare and aggressive neoplasia affecting the lung 
mesothelium. Immune checkpoint inhibitors (ICI) in MPM 
have not been extremely successful, likely due to poor 
identification of suitable candidate patients for the therapy. 
We aimed to identify cellular immune fractions associated 
with clinical outcome and classify patients with MPM 
based on their immune contexture. For each defined 
group, we sought for molecular specificities that could 
help further define our MPM classification at the genomic 
and transcriptomic level, as well as identify differential 
therapeutic strategies based on transcriptional signatures 
predictive of drug response.
Methods  The abundance of 20 immune cell fractions in 
516 MPM samples from 7 gene expression datasets was 
inferred using gene set variation analysis. Identification 
of clinically relevant fractions was performed with Cox 
proportional-hazards models adjusted for age, stage, sex, 
and tumor histology. Immune-based groups were defined 
based on the identified fractions.
Results  T-helper 2 (T

H2) and cytotoxic T (TC) cells were 
found to be consistently associated with overall survival. 
Three immune clusters (IG) were subsequently defined 
based on T

H2 and TC immune infiltration levels: IG1 (54.5%) 
was characterized by high TH2 and low TC levels, IG2 (37%) 
had either low or high levels of both fractions, and IG3 
(8.5%) was defined by low TH2 and high TC levels. IG1 
and IG3 groups were associated with worse and better 
overall survival, respectively. While no differential genomic 
alterations were identified among immune groups, at the 
transcriptional level, IG1 samples showed upregulation 
of proliferation signatures, while IG3 samples presented 
upregulation of immune and inflammation-related 
pathways. Finally, the integration of gene expression with 
functional signatures of drug response showed that IG3 
patients might be more likely to respond to ICI.
Conclusions  This study identifies a novel immune-based 
signature with potential clinical relevance based on T

H2 and 
TC levels, unveiling a fraction of patients with MPM with 
better prognosis and who might benefit from immune-
based therapies. Molecular specificities of the different 
groups might be used to tailor specific potential therapies 
in the future.

BACKGROUND
Malignant pleural mesothelioma (MPM) 
is a rare and highly aggressive neoplasia 
arising in the pleural cavity, and its inci-
dence is increasing worldwide. MPM tumors 
are classified into three distinct histological 
subtypes: epithelioid, biphasic, and sarco-
matoid. Median overall survival in patients 
with MPM is approximately 12 months, 
although patients with epithelioid tumors 
usually have better prognosis than individ-
uals with biphasic or sarcomatoid MPM.1 
Furthermore, most patients are diagnosed 
in advanced stages, which still aggravates the 
burden caused by the disease. The use of 
surgery in patients with MPM is very limited, 
and current standard of care treatment for 
patients with MPM is chemotherapy with 
platinum combined with pemetrexed, which 
has been shown to improve overall survival 
and quality of life.2 However, benefits from 
chemotherapy are generally modest and 
prognosis remains dismal with 5-year survival 
rates lower than 5%.3 Furthermore, there 
is no standard second-line treatment when 
tumor progresses to front-line chemotherapy.

Immunotherapy based on monoclonal 
antibodies against programmed cell death 
protein 1 (PD-1) and programmed death-
ligand 1 (PD-L1) have been tested in clinical 
trials in MPM. Several nonrandomized phase 
I/II trials testing single-agent immune check-
point inhibitors (ICI) showed antitumor 
activity (9%–29%) and median progression-
free survival ranging from 2.8 to 6.2 months.4 
Preliminary results from phase II clinical 
trials combining in second-line inhibitors of 
cytotoxic T-lymphocyte-associated antigen 4 
(CTLA4) plus anti-PD1/PD-L1, such as ipili-
mumab and nivolumab or tremelimumab 
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and durvalumab, showed promising efficacy results and 
also significant toxicity.5 In those clinical trials, PD-L1 
expression had limited value to predict benefit from ICI. 
Moreover, tumor mutational burden (TMB) which is 
generally low in MPM6 is not likely to become a predictive 
marker in this tumor. Therefore, it is essential to further 
study the role of the different components of the immune 
system in the evolution and prognosis of MPM, as well as 
the identification of additional biomarkers of immuno-
therapy response beyond PD-L1 immunohistochemical 
expression.

In this study, our aim is to capture the landscape of 
the immune microenvironment in a large collection of 
516 MPM gene expression profiles comprised in seven 
different publicly available datasets.6–12 Once the immune 
contexture is determined for every tumor, we will iden-
tify those immune cell fractions with potential prognostic 
ability and classify MPM samples based on these previ-
ously identified clinically relevant immune cell types. We 
will subsequently use the defined MPM groups to iden-
tify genomic and transcriptomic group specificities and 
evaluate functional signatures of drug response to suggest 
possible therapeutic strategies.

METHODS
Data collection and processing
A systematic search to identify publicly available datasets 
was performed in January 2018 using the query “pleural 
mesothelioma” and filtering to keep only human samples 
and expression profiling experiments in multiple open 
access repositories. We also filtered datasets with less than 
30 samples and kept experiments that covered most of 
the transcriptome. Raw data were downloaded when-
ever possible and subsequently processed accordingly 
as summarized hereafter: for whole-exome sequencing 
data, Broad’s Genome Analysis Toolkit best practices were 
followed, RNA-sequencing data were processed according 
to an in-house pipeline based on ENCODE best practices, 
and for expression arrays, robust multiarray average algo-
rithm was used to normalize the data. A detailed descrip-
tion of data identification and data processing is available 
in online supplemental extended methods.

Association of immune fractions with overall survival
The immune infiltrate composition of 20 different cell 
types was deconvoluted from the obtained gene expres-
sion profiles using gene set variation analysis (GSVA) 
method.13 Briefly, for each sample and immune cellular 
fraction, we obtained a score between [−1,+1], with 
extreme values close to 1 or −1 indicating a relative strong 
presence or absence of a fraction in a specific sample, 
respectively. Similarly, GSVA scores close to 0 correspond 
to an unbiased distribution (ie, centered or randomly 
distributed) of the genes across the whole gene expres-
sion profile. A more detailed explanation on how this 
algorithm works or why its application is more robust 
to batch effect than other deconvolution methods can 

be found in Hänzelmann et al13 and Tamborero et al,14 
respectively.

Gene signatures of the different immune fractions 
were obtained from a previous study15 in which signa-
tures for a total of 24 different immune cell types were 
generated, including innate immune cells (eg, dendritic 
cells, eosinophils, mast cells, macrophages, natural killer 
cells, neutrophils) and adaptive immune cells (eg, B 
cells, T cells). Since GSVA can only deconvolute multi-
gene signatures, we replaced two single-gene signatures 
(plasmacytoid dendritic cells and regulatory T cells) with 
their corresponding multigene signatures from another 
study.16 Additionally, when more specific categories were 
available for a cellular fraction (eg, NK CD56dim and 
NK CD56bright), general categories (eg, NK cells) were 
removed to avoid signature redundancy.

Once relative abundances for each immune fraction 
and sample were obtained, Cox proportional-hazards 
models adjusted for sex, stage, age, and histology were 
fitted using the largest dataset with available survival infor-
mation as the discovery dataset,6 and setting the optimal 
cut point that maximized survival differences for each 
immune fraction using R packages survival (V.3.1.7) and 
survMisc (V.0.5.5). Using the GSVA cut-points defined in 
the discovery dataset, Cox proportional-hazards models 
adjusted for age, stage, sex, and histology were fitted in 
two additional validation datasets.7 10 After verifying there 
was no association of neoadjuvant therapy status with 
clinical outcome in Bueno et al6 (p=0.2, data not shown), 
we did not adjust for neoadjuvant therapy status due 
to lack of information in Bott et al10 and lack of diver-
sity in Hmeljak et al7 (all patients are naïve) in order to 
have equivalent models to test the association of clinical 
outcome with the immune fractions. Fractions associated 
to clinical outcome were determined as those significant 
(p<0.05) after false discovery rate (FDR) adjustment in 
the discovery dataset and at least one validation dataset, 
and with a consistent HR across the three datasets.

Group characterization
Clinicopathological variables
Association with clinicopathological variables (age, sex, 
stage, tumor histology, asbestos exposure, and neoad-
juvant therapy) was done using compareGroups package 
for R (V.4.2.0). For categorical variables, a χ² test was 
performed, and continuous variables were tested using 
Kruskal-Wallis test. Moreover, a multivariate analysis was 
performed using a multinomial logistic regression model.

Immune checkpoints and T cell exhaustion status
To assess immune checkpoints status and T cell exhaus-
tion status in the different immune groups, multiple 
sets of genes were obtained from previous studies, 
including lists of immune checkpoint activators, ICI,17 
and T cell exhaustion and effector markers.18 For each 
gene, we performed a linear model adjusted for sex, age, 
stage, and histology in each dataset, where the immune 
group was codified as a numeric variable and the gene 
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expression was the dependent variable. Datasets with less 
than three samples in any immune group were discarded. 
The weighted Z method from the survcomp package 
(V.1.36.0) was used to combine the p-values obtained for 
the different datasets. Bonferroni adjusted p values lower 
than 0.05 were considered as significant. β values were 
combined using the weighted mean.

Genomic alterations
Both Bueno et al6 and Hmeljak et al7 datasets had somatic 
variant data available to evaluate the mutational burden. 
The total number of variants per sample was calculated 
excluding non-exonic and synonymous mutations. Using 
somatic single nucleotide variants, mutational signatures 
were inferred using the R package deconstructSigs (V.1.8.0). 
Neoepitope binding affinity was also derived from somatic 
single nucleotide variants. More details on these analyses 
are available in online supplemental extended methods.

Copy number alteration burden was evaluated in the 
samples from the Hmeljak et al dataset. Fisher tests were 
computed to assess the differences between immune 
groups in terms of number of altered/lost/gained genes. 
R package copynumber (V.1.24.0) was used to plot the 
genome overview of altered samples.

Transcriptomic analysis
The association of the expression levels of individual 
genes with the immune groups was done as described in 
the immune checkpoint evaluation section. For pathway 
analysis, a preranked gene set enrichment analysis 
(GSEA) was run with genes ranked using the product of 
the slope and the negative log10(p value) from the linear 
model used to assess transcriptomic status at the single-
gene level. Gene sets tested included hallmarks and 
canonical pathways (KEGG, Biocarta, Reactome) from 
MSigDB V.6.1.19

Assessment of response to therapy
Transcriptional signatures of sensitivity or resistance to 
specific treatments were used to compute GSVA scores for 
each sample. The tested signatures were: pemetrexed resis-
tance,20 cisplatin resistance,21 PARP inhibitors sensitivity,22 
and palbociclib resistance,23 as well as multiple signatures 
predictive of benefit to immunotherapy found after a system-
atic search literature. A total of seven previously published 
studies with publicly available transcriptomic signatures were 
found.24–30 Signatures with less than 10 genes were filtered 
out and linear models were fitted to obtain the slope of the 
signature correlation with the immune groups. Analysis 
of variance was used to test for significance of the models 
adjusted for histology and dataset.

RESULTS
Profiling of immune fractions in a large cohort of MPM tumors 
leads to clinically relevant immune cell populations
In order to identify clinically relevant immune-cell frac-
tions in MPM tumors, we collected data from seven 

MPM gene expression datasets that fulfilled our selec-
tion criteria.6–12 Overall, we collected 516 MPM gene 
expression profiles, with available survival information 
and covariates for 300 patients (58%). A summary of the 
clinicopathological characteristics of the samples in each 
dataset is available in online supplemental table S1.

For each sample included in the analysis, we quantified 
the abundance of 20 immune-cell populations by applying 
GSVA13 on a previously established set of immune-specific 
gene signatures (online supplemental table S2).15 16

Once the abundance of all immune fractions was quan-
tified in the full cohort of samples, we aimed to assess 
whether there existed any individual fractions associated 
with overall patient survival using Cox proportional-
hazards regression models adjusted for potential 
confounders (ie, age, sex, tumor stage, histology, and 
dataset). Thus, for each cell type, we identified the cut 
point that maximized the survival differences between 
high versus low using the largest available dataset (Bueno et 
al6). The cut points obtained in the discovery dataset were 
further validated in the two additional cohorts with avail-
able survival information (Hmeljak et al7 and Bott et al10). 
Out of the 20 studied immune cell types, T-helper 2 (TH2) 
and cytotoxic T cells (TC) showed a consistent association 
with patient survival across datasets based on our criteria 
(Cox p<0.05 in at least two of the three datasets, and the 
remaining dataset showing a consistent trend, although 
not necessarily significant). In our analysis, higher levels 
of TH2 cells (GSVA score >−0.16) were associated with 
worse outcome (HRBueno=2.1, p=0.00015; HRHmeljak=2.6, 
p=0.0021; HRBott=2.3, p=0.066; HRCombined=2.1, p=7.6·10-7) 
(figure 1A), while higher levels of TC (GSVA score >0.40) 
were associated with better prognosis (HRBueno=0.57, 
p=0.0091; HRHmeljak=0.73, p=0.39; HRBott=0.29, p=0.016; 
HRCombined=0.59, p=0.00094) (figure 1B). Survival analysis 
results for the complete set of immune fractions can be 
found in online supplemental figure S1. When individ-
uals were stratified in four groups based on the combina-
tion of the abundance (ie, low versus high) of both TH2 
and TC cells, patients with MPM with low abundance of 
TH2 and high TC infiltration consistently showed the best 
overall survival when compared with patients with high 
levels of TH2 and low levels of TC (HRBueno=0.34, p=0.00022; 
HRHmeljak=0.20, p=0.0080; HRBott=0.12, p=0.020; HRCom-

bined=0.31, p=2.7×10−7) (figure 1C). Additionally, patients 
with either both high (IG2-H) or low abundance levels 
of both cell types (IG2-L) showed intermediate prog-
nosis, suggesting some type of compensatory effect 
between these two immune cell types. Moreover, we do 
not observe statistically significant differences in survival 
when comparing IG2-H and IG2-L in any of the datasets. 
In Hmeljak et al cohort where although IG2-H patients 
(n=10) have a similar survival to IG1 patients, the HR and 
95% CI between IG2-L and IG2-H (HRIG2-L=0.39 (0.15 to 
1.02)) is not statistically significant, with IG3 being the 
only group that shows an improved survival in that cohort. 
Therefore, we decided to merge these two groups into 
a single category to create a final classification of three 
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immune-based groups: TH2High-TCLow (IG1, worse prog-
nosis, 54.5% of the patients), TH2High-TCHigh or TH2Low-
TCLow (IG2, intermediate prognosis, 37% of the patients, 
HRCombined=0.52), TH2Low-TCHigh (IG3, better prognosis, 
8.5% of the patients, HRCombined=0.32) (figure 1D).

Once the immune-based MPM groups were defined, 
we aimed to identify any potential differences in the 
remaining immune fractions among them. Groups 
IG1 and IG2 comprised a mixture of samples with both 
strongly and less immune-enriched tumors, while on 

average, group IG3 showed significant higher abundance 
for 13 of the 20 immune cell fractions (figure 2A, online 
supplemental figure S2). These results suggest that the 
combination of these two immune fractions interplays 
with the remaining immune cell types and contributes 
to identify a subset of highly immune-infiltrated MPM 
tumors with improved prognosis, as already reported in 
previous publications.14

Regarding tumors in IG2 (figure 2A), we observe that 
samples from the cluster on the left-side are mainly from 

Figure 1  Overall survival by significant immune fractions. Kaplan-Meier curves of T-helper 2 cells (A), cytotoxic T cells (B), 
the combination of both fractions in four groups (C), and in three groups (D). HR and p values come from a Cox proportional-
hazards model adjusted for age, sex, stage, and histology.
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IG2-L, although 6.06% (n=6/105) is composed by IG2-H 
samples. On the right-side, consisting mainly of IG2-H 
samples, 41.0% of the samples (n=25/86) are from IG2-L, 
suggesting that samples with similar survival rates can 

have a heterogeneous landscape regarding immune cell 
abundance.

In order to explore potential additional clinical 
correlates of the three identified MPM immune groups, 

Figure 2  Overview of MPM groups at the immune level. (A) Relative abundances of the 20 immune fractions among 516 MPM 
tumors. Samples are stratified in each group and clustered using Ward’s method and Euclidean distance. Class 4 groups: 
classification in four groups as reported in figure 1C. (B) Volcano plot of immune checkpoints inhibitors (triangle) and activators 
(dot). Effect size (β) correlates with immune groups: negative β values correspond to decreasing expression from IG1 to IG3, 
while positive values indicate increasing expression from IG1 to IG3. Grey-colored dots are not significant. (C) Volcano plot of 
T-cell exhaustion (triangle) and effector (dot) markers. Effect size (β) correlates with immune groups. Grey-colored dots are not 
significant. MPM, malignant pleural mesothelioma.

 on M
arch 25, 2021 by guest. P

rotected by copyright.
http://jitc.bm

j.com
/

J Im
m

unother C
ancer: first published as 10.1136/jitc-2020-001601 on 25 F

ebruary 2021. D
ow

nloaded from
 

http://jitc.bmj.com/


6 Alay A, et al. J Immunother Cancer 2021;9:e001601. doi:10.1136/jitc-2020-001601

Open access�

we analyzed their association with available clinical covari-
ates: age, sex, tumor stage at the time of diagnosis, tumor 
histology, asbestos exposure, and neoadjuvant therapy. 
Out of all the variables explored, we identified a signifi-
cant association with age and histology (table 1). Patients’ 
median age in group IG1 is 66 years, compared with 63.7 
years and 63.2 years for groups IG2 and IG3, respectively 
(p=0.021). Regarding tumor histology, IG3 showed a 
strong enrichment in epithelioid tumors (90.70% in IG3 
vs 62.04% in IG1 and 73.68% in IG2, p=0.001).

A multivariate analysis with the observations with 
complete data for all the covariates (n=231) confirmed 
the association with histology and age, and the lack of 
association of our classification with sex and stage (online 
supplemental table S3). A slight increase of asbestos expo-
sure in IG2 as well as a marginal association with neoadju-
vant therapy in IG2 was also observed.

To further exclude a potential confounding role of the 
tumor histology on the differential survival among the 
immune groups, we evaluated whether the immune-based 
classification still was associated with patient survival 
within both epithelioid and non-epithelioid tumors. In 
epithelioid tumors, we observed improved survival in 
IG2 and IG3 patients compared with IG1 (HRIG2=0.47, 
HRIG3=0.24, p=3.3×10−8) (online supplemental figure 
S3A). For non-epithelioid tumors, the very small number 
of IG3 patients (n=3) prevented us from obtaining reli-
able results for this subgroup, but we still observed a trend 

towards better survival in IG2 patients compared with IG1 
(HRIG2=0.60, p=0.074) (online supplemental figure S3B).

Finally, a comparison with previously published classifi-
cations6 7 9 was done. While the immune-based classifica-
tion was not associated to De Reyniès et al9 classification, 
it was associated to Bueno et al6 classification, where IG3 
is enriched in samples from Epithelioid subtype, and 
Hmeljak et al7 classification, where IG3 is enriched in S1 
samples which is also enriched in epithelioid histology 
and has the best prognosis.

Immune groups correlate with most immune checkpoint 
markers and markers of effector and exhausted T cells
To further evaluate the potential clinical relevance of the 
identified immune groups, we evaluated the expression 
of a wide selection of ICI and activators. We observed a 
significant increasing expression pattern across MPM 
immune groups for most of the evaluated checkpoint 
markers (figure  2B). TNFRSF14, IL2RB, TNFRSF18 
(GITR), CD27, and ICOS were among the strongest 
positively associated activator markers with the immune 
groups. Regarding ICI, LAG3, TIGIT, VSIR (VISTA), IDO1, 
CTLA4, and PDCD1 (PD-1) were the strongest correlated 
markers. In opposition, CD276 (B7-H3) showed negative 
correlation with the immune groups, being its expres-
sion higher in IG1 tumors than tumors in IG2 and IG3 
groups. Detailed expression of CD274 (PD-L1), PDCD1 
(PD-1), CTLA4, CD276 (B7-H3), and VSIR (VISTA) in 

Table 1  Summary of clinicopathological variables by immune group

N

IG1 IG2 IG3

P valueN=281 N=191 N=44

Age, median (range) 385 66.00 (28.00–86.00) 63.70 (30.20–84.50) 63.20 (18.80–76.00) 0.021

Sex, N (%) 385 0.115

 � Male 166 (83.42%) 120 (81.63%) 27 (69.23%)

 � Female 33 (16.58%) 27 (18.37%) 12 (30.77%)

Stage, N (%) 348 0.888

 � Stage I 10 (5.32%) 9 (7.26%) 3 (8.33%)

 � Stage II 33 (17.55%) 21 (16.94%) 7 (19.44%)

 � Stage III 108 (57.45%) 68 (54.84%) 22 (61.11%)

 � Stage IV 37 (19.68%) 26 (20.97%) 4 (11.11%)

Histology, N (%) 507 0.001

 � Epithelioid 170 (62.04%) 140 (73.68%) 39 (90.70%)

 � Biphasic 84 (30.66%) 39 (20.53%) 4 (9.30%)

 � Sarcomatoid 20 (7.30%) 11 (5.79%) 0 (0.00%)

Asbestos exposure, N (%) 351 0.068

 � No 41 (22.53%) 42 (31.82%) 15 (40.54%)

 � Possible 1 (0.55%) 2 (1.52%) 1 (2.70%)

 � Yes 140 (76.92%) 88 (66.67%) 21 (56.76%)

Neoadjuvant therapy, N (%) 325 0.11

 � No 163 (93.68%) 101 (87.07%) 30 (85.71%)

 � Yes 11 (6.32%) 15 (12.93%) 5 (14.29%)
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each dataset is available in online supplemental figure 
S4A, showing the distribution of tumors in each group. 
An overall higher expression of VSIR with respect to the 
other immune checkpoints is observed, as previously 
reported in other publications.7 31 Importantly, immune 
groups still show significant differences in prognosis 
independently of the expression level of any of these five 
immune checkpoints (online supplemental figure S4B). 
Additionally, we also evaluated markers of effector and 
exhausted T cells correlated with the identified MPM 
immune groups (figure 2C). In our analysis, all evaluated 
markers—excluding CD44—showed a positive correla-
tion with the immune group classification, with a majority 
being significantly enriched in IG3 (PRF1, GZB, TBX21, 
EOMES, PDCD1).

Genomic characterization shows no differences in genomic 
instability among immune groups
Once we identified the different immune-based groups 
in MPM tumors and established their potential clinical 
relevance, we wanted to characterize the different groups 
at the genomic level to identify any potential differential 
genomic patterns. These analyses were performed using 
Bueno et al6 and Hmeljak et al7 datasets.

Using whole-exome data from Bueno et al6 and 
Hmeljak et al7 datasets, we assessed if immune groups 
were different in terms of TMB, mutational signatures,32 
or antigen immunogenicity (figure 3A–C). Although we 
did not find statistically significant differences among 
immune groups for any of the previous analyses, we did 
observe a slight decrease of mutational Signature 3 in IG3 
tumors compared with IG1 and IG2 patients. Signature 3 
is associated with homologous recombination deficiency 
and BRCA1/2 deficiency.32 Additionally, at the single-gene 
level, no gene was found to be preferentially mutated in 
any group (data not shown).

Copy number alterations were assessed for Hmeljak et 
al dataset.7 There were no significant differences between 
immune groups in the overall number of altered genes 
per sample, although tumors in IG3 tend to have fewer 
copy number alterations overall compared with the other 
groups as shown in figure 3D. Figure 3E shows the overall 
percentage of altered samples across the genome for each 
immune group. Regarding MPM landmark genes, genes 
like BAP1, SETD2, LATS2, TP53, and NF2 did not show 
differences between groups. CDKN2A is altered in 81% 
of IG1 patients, 47% of IG2 patients, and 14% of IG3 
patients, but it does not reach statistical significance after 
multiple testing correction, probably due to small sample 
size. Online supplemental figure S5 shows expression of 
frequent tumor suppressor genes inactivated in MPM.3 
For the case of CDKN2A, we see an increasing expression 
IG1<IG2<IG3, which is in agreement with the pattern 
observed at the genomic level.

We also evaluated differences in methylation data at the 
single-gene level and no significant results were found 
after adjusting for multiple testing (data not shown).

Transcriptional cell cycle/immune system activity trade-off 
across immune groups
Next, we sought for gene expression differences among 
the three immune groups, to identify those genes with an 
increasing or decreasing pattern among the three groups. 
The results are depicted in figure 4A, which shows a high 
number of genes with decreasing expression from IG1 to 
IG3 tumors related to cell proliferation such as CENPF 
(centromere protein also known as mitosin), BIRC5 
(otherwise known as survivin, preventing apoptotic cell 
death), or kinesins like KIF23, involved in cell division. 
On the other hand, genes positively correlated with the 
immune groups include immune system related genes 
such as HSH2D, a target of T-cell activation signaling path-
ways, and GNLY, which encodes for a protein present in 
cytotoxic granules of cytotoxic T lymphocytes.

In order to capture more precisely the enriched path-
ways and biological functions of the genes identified in 
the previous analysis, we performed a preranked GSEA 
using a set of transcriptional signatures covering a wide 
range of pathways, and the genes ranked according to 
their linear association with the immune groups. The 
results are shown in figure 4B and we observed that signa-
tures more positively correlated with the immune group 
(ie, more expressed in IG3 tumors) were mostly related 
to immune system and inflammatory response processes. 
Contrarily, signatures negatively correlated with the 
immune groups mostly relate to cell cycle and epithelial 
mesenchymal transition, suggesting a trade-off between 
these molecular processes and the immune system.

Finally, since IG1 tumors appeared to be driven by cell 
cycle deregulation, we assessed the potential confounder 
effect among cell proliferation and immune groups. 
Therefore, we tested the association between the surro-
gate cell proliferation marker MKI67 and the immune 
groups. Notably, regardless of MKI67 expression levels, 
the association of the improving survival pattern across 
immune groups is upheld (online supplemental figure 
S6), meaning that our classification is not confounded 
with cell proliferation.

Potential therapeutic strategies
To further evaluate the potential clinical benefit of the 
immune-based MPM classification, we decided to assess 
the behavior of different treatment-response signatures 
among the three groups. We first wanted to identify 
whether there were any differences in the response to 
the currently available standard chemotherapy treat-
ment based on the combination of cisplatin and peme-
trexed. We obtained two expression-based signatures 
derived from non-small cell lung cancer that predicted 
resistance to pemetrexed20 and to cisplatin.21 Figure 5A 
displays GSVA scores for the two signatures across the 
three MPM immune groups. Overall, the results of the 
analysis suggested that on average, MPM tumors in 
IG1 might be more resistant to pemetrexed, while IG3 
tumors show a trend to lower resistance. On the other 
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Figure 3  Genomic characterization. (A) Tumor mutational burden among immune groups. Mean number of variants 
per sample. Error bars indicate SD. (B) Distribution of COSMIC mutational signatures among each immune group. (C) 
Immunogenicity as the mean of IC50 affinity of mutations among immune groups. (D) Copy number burden among immune 
groups. Mean number of altered genes per sample. Error bars indicate SD. Lighter colors show copy number gains while darker 
ones depict copy number losses. (E) Genomic overview showing the percentage of samples with copy number alterations 
among each immune group. Landmark MPM genes are depicted according to their genomic location. MPM, malignant pleural 
mesothelioma.
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Figure 4  Transcriptomic characterization. (A) Volcano plot of gene expression. Effect size (β) correlates with immune groups. 
(B) Significant pathways from preranked GSEA. Positive normalized enrichment scores correlate with an increasing expression 
of pathway from IG1 to IG3, while negative ones depict higher pathway expression for IG1 tumors versus IG3 tumors. Pathways 
are clustered using Ward’s method and an OR-based distance. GSEA, gene set enrichment analysis.
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Figure 5  Assessment of gene expression signatures predictive of benefit or resistance to multiple treatments. (A) Enrichment 
assessment for signatures of resistance to currently established first-line chemotherapy in patients with MPM (pemetrexed—
left panel, cisplatin—mid and right panels). Each MPM tumor is represented with a dot, and GSVA scores (y-axis) indicate 
upregulation or downregulation of the signature in each patient (as indicated in each plot title). Signature of resistance to 
cisplatin is divided into two subsignatures of upregulated and downregulated genes in cisplatin resistant cells. (B) Assessment 
of response to multiple ICI therapies. Each line represents a different ICI predictive signature. Signatures 1–9 are upregulated in 
ICI responders, while signatures 10 and 11 are downregulated in ICI responders, based on the literature. For each signature, we 
represent the β coefficient and the 95% CI of the linear model of the GSVA scores across the three immune groups. Positive β 
values indicate increasing GSVA scores (IG1<IG2<IG3) and negative β values indicate decreasing GSVA scores (IG1>IG2>IG3). 
Superscripts in immunotherapy signatures correspond to bibliographic references (C) Analogously to panel A, assessment 
for signatures of resistance or sensitivity to targeted therapy (palbociclib—left panel, PARP inhibitors—mid and right panels). 
Signature of sensitivity to PARP inhibitors is divided into two subsignatures of upregulated and downregulated genes in 
PARP inhibitors sensitive cells. GSVA, gene set variation analysis; HNSC, head and neck squamous carcinoma; ICI, immune 
checkpoint inhibitor; IFN, interferon; MHC, major histocompatibility complex; NSCLC, non-small cell lung carcinoma; PARP, 
poly ADP ribose polymerase; PD1, programmed cell death protein 1; TLR, toll-like receptor; UP/DN, up/down-regulated gene 
signature in either sensitive or resistant cells for the specified treatment.
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hand, cisplatin resistance analysis showed no differences 
between immune groups.

Next, we tested a large set of gene-expression signatures 
predictive of benefit from ICI treatment24–30 to formally 
evaluate if MPM tumors in IG3 could benefit from an 
immune-based therapeutic approach (figure  5B). The 
overlap between these signatures and the classifier is 
almost non-existent (three shared genes at most). We 
observed that all signatures were positively correlated 
with the immune groups (ie, higher GSVA scores in 
IG3 for upregulated signatures (signatures 1 to 9) and 
lower GSVA scores in IG3 for downregulated signatures 
(signatures 10 and 11)), with IG3 tumors presenting a 
significant association for all but two of the signatures 
(signatures 9 and 10).

Given the increased activation of cell cycle and DNA 
repair processes in the IG1 group of MPM tumors, we 
wanted to explore whether any differences in sensitivity 
to cyclin-dependent kinase inhibitors and to drugs that 
inhibit DNA repair among the three groups. To do that, we 
collected a signature of resistance to palbociclib derived 
from breast cancer23 and another computationally-
derived signature predicting sensitivity to DNA repair 
inhibition with PARP inhibitors22 (figure  5C). Despite 
a higher cycling nature of tumors in group IG1, they 
appear to be more resistant to palbociclib than tumors 
in other groups, based on this predictive signature. Strik-
ingly, tumors in IG1 showed increased sensitivity to PARP 
inhibitors compared with the other groups.

DISCUSSION
In this study, we performed a comprehensive analysis of 
publicly available transcriptome data from more than 
500 MPM tumors in order to characterize the immune 
landscape of this disease. By the identification of immune 
cells associated with clinical outcome, we classified MPM 
tumors according to their T-helper 2 and cytotoxic T cell 
abundance levels. This classification stratifies patients 
into three groups that represent different immune infil-
tration patterns and are associated with distinct survival 
outcomes. The group with the shortest overall survival, 
IG1, represents more than 50% of the analyzed tumors, 
while IG3, with better prognosis, accounts for only 8.5% 
of the tumors. We observed an increasing pattern of 
abundance for most immune fractions across the three 
immune groups. Interestingly, the survival benefit of this 
classification is consistent in both epithelioid and non-
epithelioid tumors. We further characterized these three 
MPM immune groups at the genomic and transcriptomic 
levels and identified potential therapeutic strategies using 
predictive signatures and large-scale pharmacogenomics 
data.

Different immune-related MPM phenotypes have 
already been described in recent studies using compre-
hensive approaches.33–37 These studies use different tech-
niques such as Nanostring technology,34 mass cytometry,33 
or RNA-sequencing.36 The diversity of obtained results 

suggests that the composition and role of the tumor 
microenvironment in MPM is remarkably complex and 
controversial, and thus further studies will contribute to 
elucidate this question.

In our work, MPM tumors are classified based on TH2 
and TC cells abundance, as previously stated. TH2 are CD4+ 
T cells which are induced by the presence of interleukin 4 
(IL4) via STAT6 signaling and regulate humoral immune 
responses and responses to extracellular pathogens. TH2 
cells secrete IL4, IL5, IL10, and IL13 which promote 
immune suppression by inhibiting T-helper 1 cytokine 
production. Additionally, a recent study identified higher 
levels of IL5 and IL13 after exposure to asbestos in meso-
thelial cells.38 The role of TH2 cells in cancer has been 
found to be dual and context-dependent. While they 
can generate antitumor immunity by recruiting specific 
populations of innate immune cells, they have also been 
found to increase tumorigenicity in certain experimental 
models.39 Consistent with our results, higher levels of 
TH2 cells have already been associated with poor prog-
nosis in multiple cancer types.40–42 Finally, in the analysis 
performed by Hmeljak et al,7 this signature has already 
been associated to the group with the worst prognosis.

On the other hand, CD8+ TC cells are essential actors 
of the effector function of adaptive cellular immune 
response.43 Along with natural killer (NK) cells, TC cells 
are ultimately responsible for targeting and attacking 
cancer cells by secreting cytotoxins (eg, granzymes and 
perforins) which reach the tumor cell cytoplasm and 
trigger a caspase-mediated apoptotic process.44 Addition-
ally, in agreement with our study, a recent pan-cancer 
study observed that patients with tumors with higher TC 
infiltration tended to have better survival than patients 
with less TC-infiltrated tumors.14

While most immune checkpoints correlate with the 
defined immune groups, CD276 (B7-H3) shows an oppo-
site pattern of expression, with decreasing expression 
from IG1 to IG3. CD276 is a member of the B7 family 
of immunoregulatory proteins and is overexpressed in 
distinct tumor types. It has been shown that CD276 can 
promote tumor proliferation, angiogenesis and metas-
tasis and is associated with shorter survival time.45 This 
result ties in with the survival pattern among the groups 
as well as with results from functional analysis in which 
cell cycle shows a decreasing pattern from IG1 to IG3. 
Similarly, CD44 is the only T-cell exhaustion marker that 
shows negative correlation with the immune groups. 
This marker has been associated with metastasis and 
low survival rate in multiple cancer types, and chemo-
resistance in prostate and head and neck squamous cell 
cancer types.46 In MPM, CD44 has been shown to promote 
invasiveness when interacting with hyaluronan.47

Regarding molecular characteristics, immune groups 
were not significantly correlated with specific genomic 
alterations in terms of gene mutations or copy number 
alterations, and although there seems to be a pattern of 
decreasing genomic instability among the groups, there 
is no statistically significant evidence to support this 
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observation. In terms of copy number, no global differ-
ences were found among MPM groups, possibly due to 
the smaller sample size (only one dataset with available 
data). However, genomic regions like 9p21, harboring 
landmark genes in MPM as CDKN2A or type I interferon 
gene cluster, were likely to be lost in the IG1 compared 
with the other two groups. We would require larger copy 
number data in order to further validate this apparent 
lack of differences in genomic alterations among the 
three immune groups given that previous studies have 
reported that tumors with more aneuploidy overexpress 
cell proliferation markers and underexpress immune 
infiltration markers48 which are the main characteristics 
of IG1 tumors.

Transcriptomic characterization of these groups by 
gene enrichment analysis revealed a trade-off between 
immune response activity and cell proliferation mech-
anisms, showing higher activation of cell cycle in IG1 
tumors, in agreement with genomic characteristics. This 
trade-off has already been described in other studies, 
reinforcing the hypothesis that cell cycle regulators and 
genomic instability could also have an impact on immune 
checkpoints.14 49 Besides, IFN activation has also been 
associated with better clinical outcomes in other studies.30

Finally, the lack of effective therapeutic strategies 
beyond chemotherapy in MPM calls for assessment of 
potential options and tailoring for each subset of patients. 
Currently, several phase III clinical trials are assessing the 
role of ICI in combination with chemotherapy in the first-
line setting of patients with advanced MPM. The results of 
the CheckMate-743 trial evaluating nivolumab plus ipili-
mumab versus platinum-based chemotherapy in previ-
ously untreated MPM50 showed the survival benefit from 
ICI treatment. This trial also reports that ICI treatment 
performs better than chemotherapy in non-epithelioid 
samples, and this might seem contradictory with our 
results. In fact, the survival benefit of ICI treatment was 
observed, regardless of histology (in non-epithelioid 
samples chemotherapy performs worse, thus giving an 
impression of higher performance for ICI treatment), 
and PD-L1 ≥1% was also predictive of benefit, which is 
higher expressed in IG3 tumors from our classification. 
In this sense, the treatment landscape of advanced MPM 
is likely to evolve and predictive markers of ICI benefit 
are needed. In our work, we observed that patients 
belonging to IG3 may benefit from pemetrexed and 
immunotherapy. IG3 molecular characteristics have been 
associated with non-progressive disease after treatment 
with ICI in another study.30 Also, no group showed any 
strong predisposition to benefit from chemotherapy with 
cisplatin treatment, although we were unable to assess 
this predisposition using a signature that included both 
therapies used in standard of care.

Moreover, our data might suggest that tumors in IG1 
could be more sensitive to PARP inhibitors. However, the 
reasons for this increased sensitivity remain unclear, since 
we do not observe differences at the genomic level among 
the three immune groups.

It is important to stress that the presented classifica-
tion in three groups is based on clinical outcome and 
this can generate some heterogeneity at the molecular 
level, as shown in IG2 group immune cell abundances. 
These results need further validation in a prospective 
cohort in order to confirm these findings. Moreover, 
further research in prospective cohorts could contribute 
to the identification of the most suitable therapeutic 
strategy for patients in each immune group. It is also 
important to point out that this study focused on gene 
expression signatures as proxies since there is no infor-
mation regarding immunotherapy in large pharmacog-
enomic assays and also that even though pemetrexed and 
cisplatin are commonly administered in combination; we 
assessed their effect as single therapies due to the lack of 
signatures for the combined treatment.

To sum up, this study identifies a novel signature with 
potential clinical relevance based on TH2 and TC levels 
and unveils a small fraction of patients with MPM that 
show better prognosis. These groups have different 
molecular characteristics, mainly at the transcriptomic 
level. These differences might be useful to tailor potential 
therapies for each group in the future. Further research 
is needed towards the identification of a signature valid 
for formalin-fixed, paraffin-embedded (FFPE) samples, 
and validation of these results is warranted in an indepen-
dent and prospective cohort of patients with MPM prefer-
entially treated with ICI.
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