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Abstract This paper concerns the flow of fluid exiting a two-dimensional pipe and impacting an infinite wedge.
Where the flow leaves the pipe there is a free surface between the fluid and a passive gas. The model is a generalisation
of both plane bubbles and flow impacting a flat plate. In the absence of gravity and surface tension, an exact free
streamline solution is derived. We also construct two numerical schemes to compute solutions with the inclusion of
surface tension and gravity. The first method involves mapping the flow to the lower half-plane, where an integral
equation concerning only boundary values is derived. This integral equation is solved numerically. The second
method involves conformally mapping the flow domain onto a unit disc in the s-plane. The unknowns are then
expressed as a power series in s. The series is truncated, and the coefficients are solved numerically. The boundary
integral method has the additional advantage that it allows for solutions with waves in the far-field, as discussed
later. Good agreement between the two numerical methods and the exact free streamline solution provides a check
on the numerical schemes.

Keywords Free surface flows · Gravity–capillary flows · Numerical methods

1 Introduction

In this paper, we consider a classical two-dimensional potential free surface flow. Fluid comes in via a pipe, which
is placed above a wedge with internal angle β. The incoming flow travels in the direction of gravity. The flow is
forcibly separated from the pipe, and a free surface is formed. The flow configuration is shown in Fig. 1. This model
is a generalisation of plane bubbles (when β = π ), the subject of a variety of previous studies [1–8]. While some
of these works are more analytic in their approach (for example, see [2,3]), the majority of previous investigations
make use of a numerical method referred to in literature as series truncation methods. The flow domain is mapped
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to a unit disc, and the complex velocity ξ is expressed in terms of a power series in the mapped space. To ensure
that the series is convergent, all leading order singularities must be accounted for in the series representation of ξ .
The infinite series is truncated, and the coefficients are found by satisfying the relevant boundary conditions at a
discrete set of points on the boundaries. The method is an example of an inverse problem, where the boundary is
found after having solved the system of equations. In a series of papers, Vanden-Broeck [6–8] used this method
(originally considered with less meshpoints by Birkhoff and Carter [1]) to find plane bubbles both excluding and
including surface tension. Previous authors have also investigated this model using a boundary integral method
using a Green’s function approach both with [9] and without [10] surface tension. The nature of the solution spaces
in both cases is discussed in Sect. 6.

The model in this paper is also a generalisation (when β = π/2) of flow exiting a pipe and impacting a plate.
This model was considered with the effects of gravity included by Christodoulides and Dias [11], who also made
use of a series truncation method. In this paper, we improve the convergence of their series by including the Stokes
far-field singularity associated with free surfaces experiencing gravity that approach a uniform stream. We also
compute solutions including the effects of surface tension, where waves are seen in the far-field. To allow for the
inclusion of waves, we use a boundary integral method, based upon using Cauchy’s integral formula to express
unknowns in terms of boundary values, as opposed to the series truncation method described above. This method
has been used by a variety of authors for a range of models: flows past obstructions [12,13], flows under sluice
gates [14–16], and free surface gravity–capillary waves [17–19] to name just a few. We note that boundary integral
equation methods based on Green’s functions can also be used. It is shown in [20] that both types of methods yield
comparable results. Here we chose to use boundary integral equation methods based on Cauchy’s integral formula
so that all the schemes in the paper use φ and ψ as independent variables.

As well as the two particular cases described above, we also solve for the more general case when β ∈ (π/2,π).
This models the flow exiting a pipe and impacting a wedge. We find that the solution space is similar to that of
plane bubbles. This is expected, due to the similar singularity structure of ξ in the flow domain, as shown in Sect. 5.
In particular, when gravity is included, both plane bubbles and flows impacting a wedge approach an infinitesimal
jet downstream. On the other hand, flows that impact a flat plate (which is perpendicular to gravity) approach
either a uniform stream or a periodic wave train. When approaching a uniform stream, both the boundary integral
method and the series truncation method are viable. If the flow approaches a periodic wave train, we must use
the boundary integral method, since ξ is no longer defined at infinity downstream. We also derive an exact free
streamline solution (where both gravity and surface tension are negligible) using the methodology found in [21,22].
Good agreement between the analytic free streamline solution and both numerical methods provides a check on
our numerical schemes. We note that this model with just capillary effects was explored recently in [23].

A key feature of the model is the angle at which the free surface separates from the pipe, denoted µ. For free
streamline flow, this value must be µ = π , known as smooth separation. Curiously, this local behaviour is known
to have a singularity in the curvature at the separation point [24]. For pure gravity flows, there are only three
permissible angles [25]: π/2, 2π/3, and π . For pure capillary flows, the situation is more complicated. The first
in-depth analytic investigations were made by [26] and [27], who found local behaviours near the separation point
with weak capillarity. Their analysis assumes that the separation remains smooth as in the free streamline case (that
is, µ = π ). The motivation for this appears physical: the free streamline solution has a singularity in the curvature
at the separation point, so including the curvature explicitly in the boundary condition could regulate this. They
find an inner solution by linearising the system near the separation point. The linearised system does not have a
unique solution. In [26], a solution which is not singular at the separation point is chosen. It is found the solution
has spurious waves on the interface. In [27], they choose a solution with no waves, but is singular. They try to rectify
this singularity (which invalidated the asymptotic analysis) by finding an inner–inner solution, but where unable
to satisfy matching conditions. The problem was considered again by [28], who this time allows the separation
angle to not be µ = π . Surprisingly, this makes the solution more singular than the free streamline solution, for
which the singularity only occurs in the curvature. They successfully match this inner solution with the outer free
streamline. This behaviour was then found for a variety of capillary flows with separations: both asymptotically for
weak capillarity (for example [29]) and the exploration numerically of these solution branches into regimes where
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surface tension is of the same order as inertia (for a review, see [30]). For gravity–capillary solutions, it is found
that any value of µ is permissible (see Chap. 3 of [30]). This is incorporated into the numerical method by taking
µ as an unknown which must be found as part of the solution.

To summarise, in this paper, we compute solutions to the flow geometry shown in Fig. 1 with β ∈ [π/2,π ] for
three cases: when there is no gravity or surface tension, when there is gravity but no surface tension, and with the
inclusion of both gravity and surface tension. An exact free streamline solution is found. Solutions with gravity and
surface tension are found using either a series truncation method or a boundary integral method.

The paper is organised as follows. Section 2 is the formulation. Section 3 is the derivation of the exact free
streamline solution. Section 4 is a description of the boundary integral method. Section 5 is a description of the
series truncation method. Section 6 contains the results of the paper. Section 7 is a conclusion.

2 Formulation

Consider the problem of flow exiting a pipe and impacting a wedge. We choose Cartesian coordinates, with x pointing
in the direction of gravity, and the origin placed at the tip of the wedge. Flow comes in via a two-dimensional pipe
of width 2H at x → −∞, where the fluid travels with constant velocity U in the positive x direction. We take H as
the reference length and U as the reference velocity. The flow separates where the pipe ends with separation angle
µ. Below the pipe is a wedge, placed such that the tip lies beneath the middle of the pipe. There exists a central
streamline which meets the wedge at a stagnation point. The angle between the central streamline and the wedge
is given by β, and the wedge is at a nondimensional distance W in the x direction below the end of the pipe. We
assume the flow is steady, and the flow configuration is shown in Fig. 1.

We denote the velocity vector as u = (u, v), where u and v are the components of the velocity in the x and y
directions. We will assume that the fluid is incompressible and the flow is irrotational, and hence we can write the
velocity field in terms of two harmonic functions, the velocity potential φ and the streamfunction ψ , defined such
that

u = φx = ψy, v = φy = −ψx . (1)

Without loss of generality, we choose φ = 0 at the separation point, and ψ = 0 on the central streamline. We
denote the value of φ at the tip of the wedge as φB . In this scaling, the streamline along the wall at y = 1 and free
surface are given by ψ = 1. We also define the complex potential f = φ + iψ . When solving this problem, we
will conformally map the flow domain to some auxiliary space with preferable geometry. Via the theory of analytic
functions, the governing equation can be handled by demanding the function ξ = u − iv is an analytic function of

Fig. 1 Flow configuration
in the z-plane. The distance
in the x direction from the
pipe to the origin is defined
as WH so that the
corresponding
dimensionless quantity is W
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z = x + iy. The problem then reduces to finding an analytic function such that the relevant boundary conditions
are satisfied.

Since the free surface is unknown a priori, as well as the kinematic boundary condition, we require a dynamic
boundary condition. The nondimensionalised Bernoulli equation on the free surface (denoted x = η(y)) is given
by

q2 − 2
F2 x + 2

α
κ = B for x = η(y). (2)

Here q = |u|, κ is the mean curvature (counted positive when the centre of curvature lies inside the fluid), and F
and α are the Froude number and Weber number, respectively, given by

F = U√
gH

, α = ρU 2H
T

. (3)

Due to the symmetry of the problem about the line y = 0, we can restrict our attention to the problem in
0 ≤ ψ ≤ 1 (y ≥ 0). Recalling that x points in the direction of gravity, the boundary conditions in the z-plane are

v = 0 for x < 0, y = 0, (4)

v = 0 for x ∈ (−∞,−W ], y = 1, (5)

v = u tan β for x > 0, y = −x tan β, (6)

q2 − 2
F2 η(y)+ 2

α
κ = B for x = η(y). (7)

For the case of β = π , this problem becomes that of flow exiting a pipe. An example of a solution is shown in Fig.
2a. The central streamline ψ = 0 no longer hits a wedge, but becomes a line of symmetry. Since we are dealing
with inviscid potential flow, we can take this line of symmetry to be a wall. Furthermore, we can use the symmetry
about the streamline ψ = −1. Viewed this way, we see that this problem is then equivalent to that of a plane bubble.
The separation angle µ is now the angle between the central streamline and the bubble surface. This problem was
solved numerically for finite F both when α−1 = 0 (i.e. no surface tension) and with finite α in a sequence of
papers [6–8]. The free streamline solution (F → ∞ and α → ∞) solution is simply a uniform stream.

When β = π/2, this problem becomes that of flow exiting a pipe onto a flat plate. This was solved numerically
when α−1 = 0 by Christodoulides and Dias [11]. We will provide a modification to their numerical scheme to solve
the more general problem with arbitrary β. Figure 2(b) shows a typical solution. We also present a new numerical
scheme based upon representing the unknowns via an integral equation concerning solely values on the boundary.
The necessity for this new method is that it allows for waves in the far-field, a feature solutions with finite surface

(a) (b) (c)

Fig. 2 Three flow configurations: a flow from a pipe with no obstruction (plane bubble), b flow onto wedge c flow onto plate
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tension exhibit for this model. One such solution is shown in Fig. 2c. However, first, we will present an exact solution
to this problem, under the assumption that both gravity and surface tension are negligible (F → ∞,α → ∞).

3 Free streamline solution

We will present an exact solution for the flow configuration shown in Fig. 1 under the assumption that gravity and
surface tension are both negligible, using a method devised by Love [21]. The method was modified by Hopkinson
[22] to allow for internal singularities, and revisited recently by Eggers and Smith [31]. This problem was solved
by [24] under the assumption that the wedge was of finite length (see Chap. 2.7). Bernoulli’s equation (2) now gives
that

q = constant. (8)

We restrict our attention to 0 ≤ ψ ≤ 1, noting that the solution for −1 ≤ ψ < 0 is found by reflecting the flow
across the streamline ABD. Throughout this paper, points A, B, C , and D will refer to the points as shown in
Fig. 3 (A is the flow upstream, B where the two walls meet, C the separation point, and D is downstream). We note
that the configuration shown in Fig. 3 is the same as that shown in Fig. 1, but with µ = π . No other value of µ is
possible, since if µ < π , then the value of q at the separation point C is zero, while if µ > π , then it is infinite.
This can be shown by noting that the local behaviour at the separation point is a flow inside a corner with interior
angle µ, which is given by

f ∼ zπ/µ, ξ ∼ zπ/µ−1, (9)

where f and ξ are the complex potential and complex velocity, respectively. From this, one can see that as z → 0,
|ξ | → ∞ if µ > π , while if µ < π , ξ → 0. In either case, Eq. (8) cannot be satisfied. We note here that the
inclusion of gravity and capillarity allows for different values of µ. Observing that there exist infinite velocities
at the separation point when µ > π , it must be that µ ≤ π when surface tension is ignored, or else (7) cannot
be satisfied. In fact, it is known that when ignoring surface tension, only three values of µ can satisfy Eq. (7):
µ = π/2, 2π/3, and π [25]. The effect of capillarity on the separation angle has been the subject of intense study
([26–29,32–34], and for a review, [30]). It has been found that when surface tension is included, any value of µ
is permissible (that is, local analysis does not restrict the possible values of µ to a discrete set). This is because
the infinite velocity occurring when µ > π can be balanced with infinite values of the curvature. Hence, when
numerically computing gravity–capillary flows, the value µ must be included as an unknown.

We solve the free streamline problem by conformally mapping the problem on to an auxilliary t-plane, which
we take to be the lower half-plane, such that all boundaries map onto the real axis. The t-plane is shown in Fig. 4.
This mapping is found by guessing a complex potential f (t) which will give us the desired properties of the flow.

Fig. 3 Flow configuration
in the z-plane. Dashed
curves are streamlines
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Fig. 4 Flow configuration
in the t-plane

Fig. 5 Flow configuration
in the Ω-plane

Full details can be found in [22], but for this problem, we take f (t) to be a point sink at the origin, given by

f (t) = − 1
π

log t. (10)

The streamline ABD is mapped onto the positive real axis, while the streamline ACD is mapped onto the negative
real axis in the t-plane. The point C maps to t = −1, and B maps to t = d, where

d = e−πφB . (11)

Denoting ξ = eτ−iθ , we define Ω to be the function

Ω = log
dz
df

= log
1
q
+ iθ . (12)

The flow maps to a semi-infinite strip in the Ω-plane,where the wall BD is given by θ = π − β, and the vertical
walls AB and AC are mapped onto the horizontal line θ = 0, as shown in Fig. 5.

One finds that the Schwarz–Christoffel mapping from the Ω-plane to the t-plane is given by

Ω(t) = −2
(

β

π
− 1

) [

tanh−1

(√
(d + 1)t
d(t + 1)

)

− tanh−1

(√
d + 1
d

)]

. (13)

When β = π , we find that Ω = 0, and the flow is simply a uniform stream. One can then obtain streamlines by
integrating the identity

xφ + iyφ = eΩ , (14)

along lines of constant ψ . We perform this integration numerically by fixing ψ = ψ̄ and discretising φ. We note
that we truncate φ sufficiently far upstream, say φ ∈ [−φA,φD], where φA is large enough such that the flow is
approximately a uniform stream there. Hence, one can write z(−φA + iψ̄) = iψ̄ , and then we use the trapezoidal
rule to integrate Eq. (14). Care must be taken when integrating at B (and later in the paper at C when µ )= π ) due
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to the stagnation point singularity. For example, from Eq. (9) we know that at B

xφ ∼ (φB − φ)β/π−1 . (15)

We remove the singularity from the integral by writing

x(φ)|ψ=0=
∫ φ

−φA

[
xφ(α)|ψ=0−C1 (φB − α)β/π−1

]
dα +

∫ φ

−φA

C1 (φB − α)β/π−1 dα. (16)

The last integral can be evaluated analytically, while we evaluate the first one numerically using the trapezoidal
rule. The constant C1 in this case can be found exactly using Eq. (13). Later in the paper, the value is approximated
by matching the solution at the meshpoint closest to the singularity.

In the following section, we discuss a boundary integral method that can be used to solve the model with gravity
and surface tension.

4 Boundary integral method

In this section, we will present the first numerical scheme used to solve the model formulated in Sect. 2. The method
allows us to compute solutions including the effects of gravity and surface tension. We first express ξ in the form

u − iv = eτ−iθ . (17)

We seek τ ( f ) and θ( f ) as real valued functions of the complex variable f = φ + iψ . As done in Sect. 3, we again
map the flow to the lower half t-plane by writing the complex potential in the form of Eq. (10). The method involves
using Cauchy’s integral formula to express the unknowns in terms of boundary values. Writing t = γ + iδ, we
relate values of τ in the f -plane with values in the t-plane by writing

τ ( f ) = τ̂
(

e−π f
)
= τ̂ (t) (18)

with a similar equation for θ̂ . The boundary conditions (4-6) can then be written in the form

θ̂(t) = 0 for γ ∈ (−∞,−1), δ = 0, (19)

θ̂(t) = π − β for γ ∈ (0, d), δ = 0, (20)

θ̂(t) = 0 for γ ∈ (d,∞), δ = 0. (21)

Applying Cauchy’s integral formula to the function τ̂ − iθ̂ in the t-plane, where we take a contour consisting of
the real axis and a semi-circle of arbitrarily large radius in the lower half t-plane, one can show that

τ̂ (γ0) − i θ̂(γ0) = − 1
iπ

∫ ∞

−∞

τ̂ (γ ) − i θ̂(γ )
γ − γ0

dγ , (22)

where γ0 is a point on the real axis in the t-plane, and the integrals are evaluated in the Cauchy principle value
sense. The real component of the above equation gives

τ̂ (γ0) =
1
π

∫ ∞

−∞

θ̂(γ )

γ − γ0
dγ . (23)
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The boundary conditions (19–21) reduce Eq. (23) to

τ̂ (γ0) =
1
π

∫ 0

−1

θ̂(γ )

γ − γ0
dγ +

(
1 − β

π

)
log

|d − γ0|
|γ0|

. (24)

The right-hand side of the above integral equation concerns only values of θ̂ on the free surface (γ ∈ [−1, 0]).
Hence, setting γ0 ∈ [−1, 0], we can find values of τ̂ on the free surface if we know values of θ̂ . We note that the
integral has a removable singularity at γ = γ0. We instead write

1
π

∫ 0

−1

θ̂(γ )

γ − γ0
dγ = 1

π

∫ 0

−1

θ̂(γ ) − θ̂(γ0)

γ − γ0
dγ + θ̂(γ0)

π
log

|γ0|
|1 + γ0|

. (25)

We perform a change of variables on the integral, such that it is expressed in terms of φ. This results in

τ (φ0 + i) = 1
π

∫ ∞

0

θ(φ + i) − θ(φ0 + i)
e−π(φ0−φ) − 1

dφ + θ(φ0 + i)
π

log
|γ0|

|1 + γ0|
+

(
1 − β

π

)
log

|d − γ0|
|γ0|

, (26)

where γ0 = −e−πφ0 . Bernoulli’s equation (2) now reads

e2τ − 2
F2 x − 2

α
eτ ∂θ

∂φ
= B (27)

It suffices to find θ(φ) and τ (φ) that satisfy (26) and (27), which is done numerically, as described below.
We truncate the domain φ ∈ [0,∞] to φ ∈ [0,φD], where φD must be chosen to be sufficiently large such that

the solution becomes invariant to further increase in φD . We discretise φ into N equally spaced points, given by

φI = (I − 1)h, I = 1, 2 . . . , N . (28)

We note h = φD/(N − 1). We have N − 1 midpoints φM
I , where

φM
I = φI + φI+1

2
. (29)

We take as unknown N values of θ(φI + i), which we shall denote θI . One can then find values of θ(φM
I + i),

denoted θM
I , via fourth-order interpolation formulae. We note that the separation angle µ is related to θ :

θ1 = π − µ. (30)

One can find τ at the midpoints φM
I by evaluating Eq. (26) at φM

I . The integral is evaluated numerically using the
trapezoidal rule. We satisfy Bernoulli’s equation at the midpoints φM

I , resulting in N − 1 equations. When β )= π ,
we also fix W , the height of the pipe (we describe shortly how the value of W is recovered). Thus far, satisfying
the boundary integral equation (26) and Bernoulli’s equation ensure τ and θ are analytic, and satisfy the boundary
conditions. The final equations required to close the system depend on the type of solution sought. For example, if
seeking a pure gravity solution with β = π/2, then we have N + 2 unknowns: θ1, . . ., θN , φB , and B. Given we
already have N equations, the two equations which close the system are fixing µ, and setting θN = θN−1 (such that
the far-field is flat). If we seek gravity–capillary solutions with β = π/2 (these solutions have waves in the far-field),
it is found that more quantities have to be fixed to obtain a unique solution. In this case, the N + 1 unknowns are
θI and B. The additional equation is given by fixing µ. A more detailed discussion on what must be fixed and be
allowed to vary for each case is given in Sect. 6.
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In the above, we need values of x and ∂θ/∂φ on the interface to satisfy Bernoulli’s equation. Furthermore, we
need to evaluate W . Values of ∂θ/∂φ are found using four-point finite difference formulae on the discretised solution
θI . Values of x and W are found as described below. The values of xI = x(φI + i) are evaluated by integrating the
identity

xφ + iyφ = e−τ+iθ . (31)

We find that

xI =
∫ φI

0
e−τ cos(θ(φ + i)) dφ. (32)

This integral is evaluated numerically using the midpoint rule, ensuring to remove the singularity at C from the
integral. Recall that locally, the flow behaves like

xφ + iyφ = C2φ
µ/π−1. (33)

This gives

xI+1 = xI + h
(

e−τM
I sin(θM

I ) − C2

(
φM
I

)µ/π−1
)
+ C2

π

µ

(
φ
µ/π
I+1 − φ

µ/π
I

)
(34)

where the constant C2 is approximated by equating the local behaviour (33) to the numerical solution (31) at the
first midpoint φM

1 .
The height of the pipe W is found in the same manner as discussed in Sect. 3. We numerically integrate Eq. (31)

along the streamlines ψ = 0 and ψ = 1. We again truncate φ → −∞ to φ = −φA, ensuring φA is sufficiently
large that further increase in φA results in negligible change in the value of W . We then discretise φ ∈ [−φA,φB]
for ψ = 0 into M + 1 equally spaced points φI via

φI = −φA + k(I − 1), I = 1, . . . ,M + 1, (35)

and φ ∈ [−φA, 0] for ψ = 1 into L + 1 equally spaced points φI via

φI = −φA + l(I − 1), I = 1, . . . , L + 1, (36)

where k = (φA+φB)/M and l = φA/L . We know the values of θ on the boundaries ψ = 0 and ψ = 1. The values
of τ ( f ) can be found on AB (ψ = 0, φ < φB) via the identity

τ (φ0) = − 1
π

∫ ∞

0

θ(φ + i)
e−π(φ0−φ) + 1

dφ +
(

1 − β

π

)
log

|d − γ0|
|γ0|

. (37)

Meanwhile, the values of τ can be found on AC (ψ = 1, φ < 0) via the identity

τ (φ0 + i) = 1
π

∫ ∞

0

θ(φ + i) − θ(i)
e−π(φ0−φ) − 1

dφ + θ(i)
π

log
|γ0|

|1 + γ0|
+

(
1 − β

π

)
log

|d − γ0|
|γ0|

. (38)
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Fig. 6 Flow configuration
in the f -plane. Dashed
curves are streamlines

The above integral is written such that the singularity that occurs as φ0 → 0 is removed. The value W is then given
by

W =
∫ φB

−φA

xφ |ψ=0 dφ −
∫ 0

−φA

xφ |ψ=1 dφ. (39)

The above integrals are computed numerically via the midpoint rule, where the singularities at B and C are again
removed. When computing solutions, we must ensure that the number of unknowns matches the number of equations.
The number of parameters we require to fix to obtain a unique solution depends on the parameter values considered,
as discussed in Sect. 6. This concludes the description of the boundary integral method. In the following section,
we discuss the series truncation method.

5 Series truncation method

In this section, we will present a second numerical scheme based on series truncation to compute fully nonlinear
solutions to the system of equations (4)–(7). As with the method from the previous section, it also allows for the
inclusion of gravity and surface tension. However, one weakness is that it can only compute solutions which far
downstream approach a uniform stream. Hence, this method cannot compute solutions with gravity and surface
tension when β = π/2, since such solutions are found to approach a periodic wavetrain downstream. For a review
of series truncation methods applied to steady potential flow, see §3 of [35]. This section will follow closely the
work of [6,7], who solved this problem for β = π with surface tension and gravity, and [11], who likewise devised
a method to find solutions with gravity for β = π/2.

The method once again involves conformally mapping the flow domain to an auxiliary plane. This time we
choose the s-plane to be a unit semi-circle (in the upper half-plane). Given that the flow domain in the f -plane is
given by an infinite strip 0 ≤ ψ ≤ 1, the mapping from f to s is found to be

f (s) = 1
π

log
(

4s
(1 − s)2

)
. (40)

The f -plane and s-plane are shown in Figs. 6 and 7, respectively. The point A maps to s = 0, C to s = −1, D to
s = 1, and B to s = sB , where

sB = 1 + 2e−πφB − 2
√

e−2πφB + e−πφB . (41)

The reflected portion of the flow, that is −1 ≤ ψ ≤ 0, is mapped to the semi-circle in the lower half-plane obtained
when reflecting the image in Fig. 7 across the real axis. To ensure that the series representation of ξ converges, we
must remove all singularities of ξ in {s : |s| ≤ 1,Im(s) ≥ 0}. The first singularity we will consider comes from the
separation point C. The flow here behaves like the flow in a corner of angle µ. Using Eqs. (9) and (40), one finds
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Fig. 7 Flow configuration
in the s-plane. Dashed
curves are streamlines

the singular behaviour

ξ ∼ (s + 1)2−2µ/π , as s → −1. (42)

Next, we consider the singularity at the tip of the wedge B. Similar to Eq. (42), the leading order singular
behaviour is that of flow in a corner of interior angle β. Again, using Eqs. (9) and (40), one finds

ξ ∼ (s − sB)1−β/π as s → sB . (43)

The final singularity is associated with the flow in the far-field D. The singularity has two possible behaviours.
First, when β ∈ (π/2,π), it was shown by Birkhoff and Carter [1] that

ξ ∼ z1/2 ∼ f 1/3. (44)

Using Eq. (40), we find

ξ ∼ (− log(1 − s))1/3 as s → 1. (45)

If β = π/2, the far-field can approach either a uniform stream or a periodic train of waves. Assume for now that the
flow approaches a uniform stream with velocity U f . The method in this section requires ξ to be defined at s = 1,
and hence can only solve for solutions with flat far-fields. The downstream Froude number Ff and Weber number
α f relate to F and α via the equations

Ff = U 3/2
f F α f = U f α. (46)

It is found that

ξ ∼ iU f + Ae−UFπλφ, as φ → ∞, (47)

where λ is a root of the equation

πλF2
f − tan (πλ)

(
1 − B f π

2λ2)
)
= 0. (48)

Here, B f is the downstream Bond number, given by B f = F2
f /α f . The above behaviour is found by linearising

the flow about a uniform stream with speed U f . It is the dispersion relation for gravity–capillary waves, with a
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wavelength of iλ (and hence a wavenumber k = 2π i/λ). Note that the far-field has oscillations unless λ is real (see
Eq. (47)). Equations (10) and (47) imply that

ξ ∼ exp
(
A(1 − s)2λ

)
as s → 1. (49)

Therefore, we propose two different representations for ξ . In the first instance, when β )= π/2, we write

ξ = (− logC(1 − s))1/3

(− logC)1/3

(
sB − s
sB

)1−β/π

(s + 1)2−2µ/π exp

( ∞∑

n=1

ansn
)

, (50)

where C is a fixed constant satisfying 0 < C < 0.5, such that ξ is purely real on the line s ∈ [−1, sB]. It can be
seen that (50) satisfies the singular behaviour (42), (43), and (45), and that ξ(0) = 1. This series, with β = π , was
used in [7,8,36]. If β = π/2, then we instead take

ξ =
(
sB − s
sB

)1/2

(s + 1)2−2µ/π exp

(

−A + A(1 − s)2λ +
∞∑

n=1

ansn
)

, (51)

where A and λ are unknown, and have to be found as part of the solution. We note here that with β = π/2, no
waveless solutions were found when Ff )= 0 and B f )= 0. Hence, the series (51) can only be used to compute
solutions with no surface tension. When B f = 0, then from Eq. (48) we find that λ is real for Ff > 1 (i.e. solutions
are waveless when the flow in the far-field is super-critical). The constant λ is taken to be the smallest positive root
of (48). We note that [11] used a similar series representation for ξ when considering β = π/2, except they did not
include the term exp(A(1 − s)2λ) in their expansion. They instead used

ξ =
(
sB − s
sB

)1/2

(s + 1)2−2µ/π exp

( ∞∑

n=1

ansn
)

. (52)

We found that, truncating the series after a sufficient number of coefficients, their results agree within graphical
accuracy with those computed using the series (51). However, the coefficients an decay at a much slower rate
without this new exponential term, as discussed in Sect. 6.3.

We truncate both series after N − 1 terms. When β )= π/2, this results in N + 1 unknowns (a1, . . ., aN−1, µ,
B). The free surface in the s-plane is given by s = eiσ with σ ∈ [0,π ]. We discretise σ into N + 1 equally space
points, given by

σI = π
(I − 1/2)π

N + 1
, I = 1, . . . , N + 1. (53)

The series representation of ξ has been constructed such that the kinematic boundary conditions and the governing
equation are satisfied. It is left to satisfy the dynamic boundary condition (7) at each meshpoint σI , which is given
by

(u2 + v2) − 2
F2 x − 2π

α

(
u

∂v

∂σ
− v

∂u
∂σ

)
(u2 + v2)−1/2 tan

σ

2
= B. (54)

This gives us N + 1 equations for N + 1 unknowns, which are solved via Newton’s method. When β = π/2, we
have two additional unknowns, A and λ. Therefore, we satisfy Eq. (7) at N + 2 equally spaced points in σ , given
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by

σI =
(I − 1/2)π

N + 2
, I = 1, . . . , N + 2. (55)

We also satisfy Eq. (48), where Ff is calculated using Eq. (46), and U f can be found by evaluating (51) at s = 1.
Hence, we have obtained N + 3 equations for N + 3 unknowns, a system which can be solved numerically using
Newton’s method.

The profile of the interface is obtained by numerically integrating the identity

xσ + iyσ = − 1
π

cot
(σ

2

) 1
ξ

for s = eiσ , σ ∈ [0,π ]. (56)

We do this using the trapezoidal rule on the discritised domain σI . The height of the pipe W is found in the same
manner as was discussed in Sect. 4. We numerically integrate equation

xφ + iyφ = 1
ξ
, (57)

along the streamlines ψ = 0 and ψ = 1 from φ = −φA to φ = φB and φ = 0, respectively. Values of ξ can be
found for a given φ and ψ by finding the the corresponding value of s from Eq. (40), and then using the relevant
series solution for ξ . The same discretisation and numerical integration as was done in Sect. 4 is used to compute
W .

This concludes the description of the series truncation method. In the following section, we discuss the results
of the paper.

6 Results

We begin by briefly recapping the results when β = π , which are found in [6–8], since the results here help inform
us on what to expect for the solution space for other values of β.

6.1 Results for β = π

First, consider the case when α−1 = 0. The flow configuration is as shown in Fig. 2a. The model corresponds to
flow exiting a pipe with no obstruction, or plane bubbles rising at a constant velocity. For each value of F , there
is a unique solution. It is found that there exists a critical Froude number FC ≈ 0.51, such that when F < FC the
separation angle µ = π/2, while if F > FC , then µ = π , as illustrated in Table 1. The solutions with µ = π/2 are
referred to as smooth bubbles, whileµ = π solutions are cusped bubbles. There is also a unique pointed bubble with
µ = 2π/3 when F = FC . When surface tension is nonzero (that is α−1 )= 0), the angle µ becomes continuously
dependent on F . This is shown in Fig. 8 for α = 5 and α = 20. It can be seen that as F decreases, the value µ

oscillates aboutµ = π/2. Furthermore, as α is increased, the amplitude and wavelength of the oscillations decrease.
Let us denote F1(α) as the largest value of F where the curves intersect for a given α, F2(α) as the second largest
such value, and so on. These branches Fi (α) are branches of smooth bubbles, and are monotonically increasing
with α. As α → ∞, all of these branches converge onto a single value, F = F∗. It is found that F∗ ≈ 0.318.
The mechanism by which a unique solution is chosen from a possible set of solutions, by including surface tension
(or other forces), and taking said forces to zero, is known as solution selection. A similar phenomenon is seen in
Saffman–Taylor fingering [37,38]. The solutions on the primary branch F1(α) smooth profiles with no oscillations.
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Fig. 8 Relationship
between µ and F for α = 5
(solid curve) and α = 20
(dashed curve) for β = π .
The dotted lines are
µ = π/2 and µ = π

Table 1 A table for the value of µ when α−1 = 0

F < FC F = FC F > FC

µ π/2 2π/3 π

Fig. 9 Value of FC for
varying W . The solid curve
is for β = π/2, dashed
curve β = 2π/3, and dotted
curve β = 5π/6

0 0.1 0.2 0.3 0.4 0.5
-2

0

2

4

On the higher order branches of smooth bubbles, the profiles develop oscillations [39]. It is of interest to note that
the solution space of axisymmetric Taylor bubbles exhibit much of the same behaviour [39,40].

6.2 Results for β ∈ (π/2,π)

The flow configuration for β ∈ (π/2,π) is shown in Fig. 2b. The results are qualitatively similar to the results found
for β = π . First, consider the case when α−1 = 0. For a fixed β, we now have two free parameters, F and φB . In
the computations, instead of fixing φB and recovering W a posteriori, we chose to fix W and allow φB to vary. Note
that the parameter φB is related to sB in the series truncation method via Eq. (41), and d in the boundary integral
method via Eq. (11). Unsurprisingly, it is found that φB monotonically increases as W is increased. When surface
tension is ignored, we again see a critical value FC , where the solutions have the properties given in Table 1. It is
now the case that FC has dependence on β and W . We conjecture that as W → ∞, FC has a finite limiting value
equivalent to the FC found by Vanden-Broeck [8] for plane bubbles. This comes from the fact that as W increases,
the pipe is moved further away from the wedge, and the behaviour of the flow near the separation point becomes
closer to that of flow exiting a pipe without an obstruction (β = π ). The dotted and dashed curves in Fig. 9 show
the dependence of Fc on W for β = 2π/3 and β = 5π/6, respectively. We experience difficulties with computing
F = FC solutions for values of W greater than that shown in the figure due to our inability to get enough meshpoints
distributed along the free surface for these more extreme profiles.

Streamlines to typical solutions are shown in Fig. 10 for β = 2π/3 and W = 1. The bold lines in the figure
correspond to solid boundaries, the dashed curves interior streamline, and the solid curve the free surface. Figure
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Fig. 10 Solutions for β = 2π/3, W = 1, α−1 = 0, and a F = 0.3, b F = FC (β,W ) ≈ 0.464, and c F = 20. The crosses in c is
the corresponding F → ∞ solution. d shows the solution in c further downstream. Only half a solution (0 ≤ ψ ≤ 1) is shown. The
bold curves are the boundaries, the solid curve and circles the free surface (computed using the series truncation method and boundary
integral method, respectively), and the dashed curves are streamlines

(a) has F < FC , (b) F = FC , and figure (c) F > FC . The crosses in Fig. 10c is the free streamline solution
derived in Sect. 3. Since the solution in Fig. 10c is for F = 20, one would expect reasonable agreement with
the free streamline solution (F → ∞). It can be seen that the agreement is very good near the separation point.
However, as one moves further along the profile, the solutions start to deviate, due to the different singular behaviour
downstream (the free streamline solution approaches a uniform stream, as opposed to the behaviour (45)). This
is shown in Fig. 10d, where we have plotted the flow further downstream for the F = 20 solution. The solutions
presented are computed using the series truncation method described in Sect. 5. However, we also computed the
solutions using the boundary integral method from Sect. 4, as shown by the circles in figure (a) and (b). As can be
seen, the profiles almost overlap. The agreement between the analytic solution and two numerical schemes provides
a convincing check on the methods used.

When surface tension is included, similar results to the plane bubble are found. One finds that the separation
angle µ has a continuous dependence on F . For a given α, the value of µ oscillates about π/2 for values of F < FC .
Meanwhile, when F → ∞, µ → π . This is the same behaviour as shown in Fig. 8 for β = π . One could again
use the solution selection procedure to find a unique solution to the zero surface tension problem with a separation
angle of µ = π/2. However, there is no clear physical significance to the selected solution. Another similarity with
the β = π solution space is that the solutions on the higher mode branches also develop oscillations on the free
surface, as shown in Fig. 11. Profiles of solutions with β = 2π/3, W = 0.5, and α = 5 are shown. The values of
F are chosen such that µ = π/2.
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Fig. 11 a Shows profiles of solutions with β = 2π/3, W = 0.5, α = 5, and µ = π/2. The values of F are F = 0.276, 0.195, 0.150,
0.121 for the solid curve, dotted curve, dashed curve, and dotted-dashed curve, respectively. The bolder lines are the solid boundaries.
b shows a blow up of the region near the separation point

Table 2 Table comparing coefficients an for the series (51) (denoted S1), and the series (52) (denoted S2) for two values of F . Both
solutions have φB = 1.5

Coefficient F = 0.3 F = 1.5

S1 S2 S1 S2

a200 −1.43 × 10−8 1.58 × 10−5 −2.36 × 10−8 9.03 × 10−6

a1000 −1.15 × 10−10 7.19 × 10−6 −1.95 × 10−10 3.96 × 10−7

a2000 −1.07 × 10−11 1.96 × 10−7 −1.92 × 10−11 1.06 × 10−7

6.3 Results for β = π/2

Finally, we shall discuss the solution space when β = π/2. This problem was already solved numerically using a
series truncation method when surface tension is ignored [11]. However, as mentioned previously in Sect. 5, the
authors failed to remove an additional singularity caused by the far-field decay of the free surface (see Eq. (47)).
The results presented in the paper agree with our calculations within graphical accuracy. However, the decay of the
coefficients of the truncated series an is weaker, as shown in Table 2. The table shows the order of the coefficients
for the solutions with φB = 1.5 for two values of F . It can be seen this additional singularity is important to remove
for convergence of the series representation of ξ .

It was found by [11] that, as with values of β in the range β ∈ (π/2,π ], fixing F and W results in a unique
solution. In this instance, the far-field is not an infinitesimal jet but instead a uniform stream. There again exists a
critical value FC , dependent on W , such that the separation angle µ agrees with the behaviour seen in Table 1. The
relation between FC and W is shown by the solid curve in Fig. 9.

The solution space when surface tension is included is more complicated than when β ∈ (π/2,π ]. We find that
fixing F and α is not sufficient to produce a unique solution. We find we must also fix two additional parameters,
which we choose to be µ and φB . Solutions with waves in the far-field are witnessed. We denote the amplitude of
the waves in the far-field as ω. We compute some solution branches, fixing F , α, φB , and W , and then allowing
µ to vary. Having fixed the parameters as described above, it is found that solutions do not exist for all values of
µ. Instead, solutions exist within a range of values of µ, the range depending on the fixed parameters. Once one
solution has been found, one can find the complete solution branch via continuation inµ. The solution branches start
and end on solutions with larger ω. For all parameters tested, starting from the smallest value of µ for which there
is a solution, ω monotonically decreases to a minimum, and then monotonically increases to the largest possible
value of µ. This can be seen in Fig. 12, where we show some typical solution branches for various values parameter
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Fig. 12 Some solution branches for gravity–capillary free surface flows with β = π/2. All solution branches have α = 2.5. The branch
a–c has parameter values F = 0.75, W = 1.6, and φB = 1.1. The branch d–f has F = 1, W = 1.6, and φB = 1.1. The branch g–i
has F = 1, W = 1, and φB = 0.1175. In the computations, we vary µ and plot the branch against ω. The profiles at the points a–i are
shown in Fig. 13
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Fig. 13 The profiles corresponding to the points a–i in Fig. 12

values. The branches are plotted in (µ, ω) space. Some typical profiles are shown in Fig. 13. It was found for
the parameters tested that the branch never touched the ω axis. Hence, no waveless gravity–capillary profiles were
found.

To check the convergence of the solutions with waves in the far-field, we vary both the mesh spacing h and
domain truncation φD . It can be seen in Fig. 14 that the agreement upon mesh refinement is good. We also notice
that the last wavelength on the figure is spurious: this is expected, due to the truncation of the computational domain.
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Fig. 14 Profile of the solution labelled (d) in Fig. 12 computed for various values of φD and h. The solid curve is for φD = 12 and
h = 0.01, the dashed curve for φD = 24 and h = 0.01, and the crosses for φD = 12 and h = 0.005 (not all the meshpoints are plotted
with crosses). The solutions develop inaccuracies in the far-field caused by truncation of the infinite integrals, which are rectified by
further extending the domain

Further extending φD results in a profile that agrees almost exactly up to the last wavelength of the shorter solution.
This ensures that domain truncation does not cause errors to the flow close to the separation point, and that our
numerical approximation of a finite length far-field is valid, as long as we compute enough wavelengths down from
the pipe.

7 Conclusion

In conclusion, we have provided an extensive numerical study of the model shown in Fig. 1. We have considered
three case. First, when surface tension and gravity are negligible, we derived an exact free streamline solution. Next,
when gravity is included but surface tension is neglected, we recovered previously found results for β = π and
β = π/2, as well as finding results for β ∈ (π/2,π). Finally, when surface tension is also included, we recomputed
the results for β = π , while the results for β ∈ [π/2,π) are novel. The case when β = π/2 has a richer solution
space, since the far-field condition allows for waves to occur on the free surface. Good agreement between the two
numerical methods employed, as well as the exact free streamline solution, provides a check on the accuracy of the
numerical results presented.
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20. Părău E, Vanden-Broeck JM (2002) Nonlinear two-and three-dimensional free surface flows due to moving disturbances. Eur. J.

Mech. Fluids B 21:643–656
21. Love AEH (1891) On the theory of discontinuous fluid motions in two dimensions. Cambridge Philosophical Society, Cambridge
22. Hopkinson B (1897) On discontinuous fluid motions involving sources and vortices. Proc. Lond. Math. S. 1:142–164
23. Doak A, Vanden-Broeck JM (2020) New exotic capillary free-surface flows. J. Fluid Mech. Rapids 899:R4
24. Birkhoff G, Zarantonello E (1957) Jets, wakes, and cavities, vol 2. Elsevier, Amsterdam
25. Dagan G, Tulin MP (1972) Two-dimensional free-surface gravity flow past blunt bodies. J. Fluid Mech. 51:529–543
26. Ackerberg RC (1975) The effects of capillarity on free-streamline separation. J. Fluid Mech. 70:333–352
27. Cumberbatch E, Norbury J (1979) Capillary modification of the singularity at a free-streamline separation point. Q. J. Mech. Appl.

Math. 32:303–312
28. Vanden-Broeck JM (1981) The influence of capillarity on cavitating flow past a flat plate. Q. J. Mech. Appl. Math. 34:465–473
29. Vanden-Broeck JM (1983b) The influence of surface tension on cavitating flow past a curved obstacle. J. Fluid Mech. 133:255–264
30. Vanden-Broeck JM (2004) Nonlinear capillary free-surface flows. J. Eng. Math. 50:415–426
31. Eggers J, Smith AF (2010) Free streamline flows with singularities. J. Fluid Mech. 647:187–200
32. Ackerberg RC, Liu TJ (1987) The effects of capillarity on the contraction coefficient of a jet emanating from a slot. Phys. Fluids

30:289–296
33. Gasmi A, Mekias H (2003) The effect of surface tension on the contraction coefficient of a jet. J. Phys. A: Math. Gen. 36:851–862
34. Vanden-Broeck JM (1984c) The effect of surface tension on the shape of the Kirchhoff jet. Phys. Fluids 27:1933–1936
35. Vanden-Broeck JM (2010) Gravity-capillary free-surface flows. Cambridge University Press, Cambridge
36. Daripa P (2000) The fastest smooth Taylor bubble. Appl. Num. Math. 34:373–379
37. McLean JW, Saffman PG (1981) The effect of surface tension on the shape of fingers in a Hele Shaw cell. J. Fluid Mech. 102:455–469
38. Vanden-Broeck JM (1983c) Fingers in a Hele-Shaw cell with surface tension. Phys. Fluids 26:2033–2034
39. Doak A, Vanden-Broeck JM (2018) Solution selection of axisymmetric Taylor bubbles. J. Fluid Mech. 843:518–535
40. Levine H, Yang Y (1990) A rising bubble in a tube. Phys. Fluids A 2:542–546

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

123


