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Abstract. At the heart of causal structure learning from observational
data lies a deceivingly simple question: given two statistically depen-
dent random variables, which one has a causal effect on the other? This
is impossible to answer using statistical dependence testing alone and
requires that we make additional assumptions. We propose several fast
and simple criteria for distinguishing cause and effect in pairs of discrete
or continuous random variables. The intuition behind them is that pre-
dicting the effect variable using the cause variable should be ‘simpler’
than the reverse – different notions of ‘simplicity’ giving rise to different
criteria. We demonstrate the accuracy of the criteria on synthetic data
generated under a broad family of causal mechanisms and types of noise.
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1 Introduction

Recent advancements in machine learning have enabled the efficient training of
powerful statistical models from large amounts of high-dimensional data. Yet,
despite their many successes, learning systems are still almost exclusively oper-
ating on the level of statistical associations among the observed variables [13].

The next big step in the field will involve causal inference; moving be-
yond simply capturing statistical associations to modelling cause and effect re-
lationships among the underlying variables. Fields like healthcare & epidemi-
ology [5,19], bioinformatics & pharmaceutical research [10,12,23,18,1], policy-
making in social sciences [11,16], energy & climate [3,7], economics & finance [8,20]
and the physical sciences [22,4] will be among the first to benefit from the coming
advancements in causal modelling.

The first challenge to reasoning about cause and effect lies in the construction
of a causal model of the variables involved in a given problem. Learning the
underlying causal structure from observational data –i.e. without performing a
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randomized experiment– is a challenging problem as it practically entails leaping
from correlation to causation.

This work demonstrates that such a leap can be justified – under some
assumptions– by using a simple intuition: predicting the effect variable using
the cause variable (i.e. respecting the true causal direction) should be ‘simpler ’
than the inverse. Different definitions of ‘simplicity’ yield different criteria for
distinguishing cause from effect. We present a number of such criteria all of
which are easy to implement, fast and applicable to both discrete & continu-
ous random variables (r.v.’s). We demonstrate their accuracy on synthetic data
generated under a broad family of causal mechanisms and types of noise.

2 Background

2.1 Causal Structure Learning & the 2-variable Problem

Let Xi, i = 1, . . . , n be r.v.’s, the causal relationships among which are captured
by a Structural Causal Model (SCM) [17,13] with an underlying causal graph
G, a Directed Acyclic Graph, the vertices of which correspond to the random
variables Xi and an edge Xi → Xj denotes that Xi has a direct causal effect on
Xj .

The SCM models each Xi as the result of an assignment,

Xi := fi(PAi, Ui), i = 1, . . . , n, (1)

where fi is a deterministic function of Xi’s parents in G (denoted by PAi) and
Ui a stochastic unexplained variable (i.e. a noise variable). The set of noises Ui,
i = 1, . . . , n are assumed to be jointly independent3.

Causal structure learning, –i.e. inferring the underlying graph G– from ob-
servational data is a non-trivial problem. Observational data can inform us of
statistical (in)dependences among variables but, this alone is not sufficient for
uncovering the underlying causal graph. The reason is that a single independence
relationship involving a set of variables can correspond to several underlying sub-
graph structures involving them.

The most characteristic example is determining the causal direction in the
case of two random variables X, Y that are statistically dependent. The Common
Cause Principle [14] captures the connection between causality and statistical
dependence. It states that if two observables X and Y are statistically dependent,
then there exists a variable Z that causally influences both and explains all the
dependence in the sense of making them independent when conditioned on Z.
As a special case, this variable can coincide with X or Y . In other words, the
causal structures X → Y , Y → X and X ← Z → Y are all consistent with
observing the statistical dependence X 6⊥⊥ Y .

3 If ∃ Ui 6⊥⊥ Uj , i 6= j, then by the Common Cause Principle (see below), there exists
another variable that explains their dependence and G is thus not causally sufficient.
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2.2 Causal Direction, Complexity & Minimum Description Length

Does this mean that inferring causal direction from observational data is impos-
sible? Not if we make additional assumptions. More concretely, let us assume
we observe a statistical dependence X 6⊥⊥ Y and want to determine whether the
causal direction is X → Y or Y → X4. It would be reasonable5 to assume that
the true causal direction is the one that is the least complex to model.

Complexity can be interpreted in several ways, but ultimately the central
argument is a general application of the Minimum Description Length (MDL)
Principle[6] which views learning as data compression: Learning to predict effect
from cause should be simpler than the other way round amounts to the dataset
being easier to compress when modelled in the causal direction [9,15].

Consider the (lossless) two-stage code that encodes a variable Y with length
L(Y ) by first encoding a hypothesis fX→Y (modelling Y as a function of X) in
the set of considered hypotheses F and then coding Y “with the help of” fX→Y ;
in the simplest context this just means “encoding the deviations of Y in the data
from the predictions made by fX→Y ”. The description length of Y is then:

L(Y ) = min
fX→Y ∈F

{L(fX→Y ) + L(Y |fX→Y )}. (2)

Similarly, encoding X with the aid of Y (i.e. “encoding the deviations of X in
the data from the predictions made by fY→X) we get:

L(X) = min
fY →X∈F

{L(fY→X) + L(X|fY→X)}. (3)

Specifying a “language” for measuring the description length L in practice (this
is where our notion of complexity comes into play), we can reason that the true
causal direction is Y → X, if L(Y ) < L(X) or X → Y , if L(Y ) > L(X). If
L(Y ) = L(X), we do not have enough information to decide [21,2].

3 Simple Criteria for Distinguishing Cause & Effect

Using the framework described above, we will now present simple criteria for
determining causal direction between two r.v.’s X and Y . The goal is to compare
the complexity of a model that uses as input X to predict Y , denoted as fX→Y

against that of model that uses as input Y to predict X, denoted as fY→X .
For such a comparison to be meaningful, both models need to be drawn from

the same model family F , e.g. by being generated by the same learning algorithm
and hyperparameter configuration. For the purposes of this work, we opted for
using Decision Trees of unbounded depth due to their ease of implementation
and plethora of ways of characterizing their complexity. The criteria JRE &

4 We shall exclude from consideration the case of their dependence is a result of pure
chance or that it is due to a third variable Z s. t. X ← Z → Y .

5 Philosophically, the intuition that the true causal mechanism is the simplest among
all possible ones can be justified by the Occam’s Razor Principle.



4 N. Nikolaou & K. Sechidis

JIH are not limited to this specific modelling choice. The rest, are measures of
complexity specific to decision trees and must be appropriately replaced should
fX→Y & fY→X be drawn from an alternative model family6.

Continuous data must be discretized so that both X & Y have the same
cardinality (i.e. if both are continuous, we can use equal width binning.

For any criterion J , the rule for deciding causal directionality is the same:

If J


> 0 , then predict X → Y

< 0 , then predict Y → X

= 0 , then abstain from prediction

(4)

Model Complexity: Tree Depth The most straightforward way to compare
the complexity of trees is comparing their depths. The intuition is that the tree of
smallest depth is the simplest, hence the one capturing the true causal direction.

JTD = Depth(fX→Y )−Depth(fY→X) (5)

Model Complexity: Tree Nodes Following the same intuition, we can instead
opt to use the total number of nodes as a proxy of complexity. Note that the
cardinalities of X & Y will affect the total number of nodes of fX→Y and fY→X .

JTN = Number of Nodes(fX→Y )−Number of Nodes(fY→X) (6)

Model Complexity: Tree Leaves Along the same reasoning, another option
is to use the total number of leaf nodes to measure tree complexity.

JTL = Number of Leaves(fX→Y )−Number of Leaves(fY→X) (7)

Model Complexity: Path Length The final tree-specific measure of com-
plexity we examined is the mean path length. This is the average number of
nodes a datapoint in the sample traverses before it reaches a leaf node7.

JPL = Mean Path Length(fX→Y )−Mean Path Length(fY→X) (8)

Residual Entropy The intuition for this criterion is that if X → Y then the
decrease in Shannon entropy H afforded by modelling Y as a function of X,
fX→Y (X) must be higher than the decrease in Shannon entropy afforded by
modelling X as a function of Y , fY→X(Y ).

JRE = [H(Y )−H(Y − fX→Y (X)]− [H(X)−H(X − fY→X(Y ))] (9)

6 E.g. if the models are obtained via polynomial regression, the degree of the resulting
polynomial or the number of its coefficients are naive measures of complexity.

7 For comparison, the depth of the tree corresponds to the maximal path length.
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Interpolation Hardness Another approach is to directly compare the ability
of fX→Y and fY→X to fit the training data, i.e. to be used to predict the target.

JIH = Loss(Y, fX→Y (X))− Loss(X, fY→X(Y )), (10)

where Loss denotes some appropriate loss function, e.g. for discrete r.v.’s, the
misclassification error or for continuous r.v.’s the Mean Squared Error (MSE).

4 Empirical Evaluation

We generate 1000 datasets, each consisting of 1000 (X,Y ) pairs under the SCM:

X = UX

Y = fY (X,UY ),

where UX and UY are independent noise variables that can be either:

1. Discrete (resulting in discrete X & Y ), in which case either can be:
• a. Uniform, drawn from U(−R/2, R/2+1), R being the r.v.’s cardinality.
• b. Discretized Gaussian, drawn from N (0, 1), then discretized to R bins.

2. Continuous (resulting in continuous X & Y ), in which case either can be:
• a. Uniform, drawn from U(−1, 1).
• b. Gaussian, drawn from N (0, 1).

And fY is a deterministic function that can be fY (X,UY ) = fX
Y (X)+fN

Y (UY )
or fY (X,UY ) = fX

Y (X) ∗ fN
Y (UY ) (additive or multiplicative noise), with both

fX
Y and fN

Y being polynomials of degree ∈ [1, 5] whose coefficients are integers
∈ [−10, 10]. Both the degree and the coefficients are drawn uniformly from their
respective sets. The causal direction is flipped with probability 0.5.

For each dataset, we calculate the value of each of the proposed criteria and
predict the causal direction based on it8. Continuous r.v.’s are discretized to
100 equal width bins. Tables 1 & 2 show the mean accuracy of each criterion
across datasets, its accuracy ignoring cases in which it abstains, the mean value
of the criterion for the causal and for the anti-causal direction. Figures 1 & 2
show the distribution of the values of each criterion for the causal and anti-causal
direction. The dashed black line demarcates the decision threshold. Due to space
limitations, we only present some of the results.

On discrete pairs of X & Y , all criteria are very accurate, regardless of the
distributions of the noise variables. Increasing the entropy of the cause r.v. (e.g.
by increasing its cardinality R), only slightly decreases accuracy, but not consid-
erably. Increasing the entropy of the effect r.v. (e.g. by increasing the cardinality
R of its underlying noise variable) increases accuracy to 1. For, continuous X,
Y , criteria based on tree depth (JTD, JPL) behave poorly (still above chance at
predicting causal direction). Criteria based on tree width (JTN , JTL) must be
flipped - i.e. modelling effect using cause is associated with larger tree width;

8 All code can be found at: https://github.com/nnikolaou/CausalDirectionality.

https://github.com/nnikolaou/CausalDirectionality
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Once this is done, they perform as accurately as in the discrete case. Criteria
based on residuals (JRE , JIH) are very accurate. The above hold regardless of
the noise distribution. Interestingly, when the noise is multiplicative the accuracy
is higher – almost perfect for all criteria.

Criterion
JTD JTN JTL JPL JRE JIH

Accuracy 0.988 0.986 0.986 0.989 0.974 0.986

Accuracy
when not

Abstaining
0.995 0.998 0.998 0.996 0.986 0.998

Average value
Causal

9.252 39.000 20.000 6.883 0.214 0.865

Average value
Anti-causal

37.417 437.215 219.107 16.864 0.819 0.118

Table 1: Results of criteria on discrete X & Y , under additive noise. Noise r.v.’s
are both uniform with R = 20. JRE is normalized by target r.v.’s entropy.

Criterion
JTD JTN JTL JPL JRE JIH

Accuracy 0.583 0.909 0.909 0.628 0.976 0.990

Accuracy
when not

Abstaining
0.665 0.998 0.997 0.631 0.978 0.997

Average value
Causal

12.871 198.766 99.883 8.905 0.024 920.909

Average value
Anti-causal

14.314 188.454 94.727 9.251 0.113 427.146

Table 2: Results of criteria on continuous X & Y , under additive noise. Noise
r.v.’s are both uniform. JRE is normalized by target r.v.’s entropy.

5 Conclusion & Future Work

We demonstrated that inferring causal direction from observational data is pos-
sible, if we make the –justified by Occam’s Razor– assumption that predicting
the effect using the cause should be simpler than the other way round.

We used decision trees to compare the difficulty of modelling X using Y
vs. Y using X. The resulting criteria we proposed address simplicity via the
trees’ structure, the entropy of their outputs or the quality of their fit. They are
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(a) Tree Depth (JTD) (b) Path Length (JPL) (c) Tree Nodes (JTN )

(d) Tree Leaves (JTL) (e) Residual Entropy (JRE) (f) Interpolation Hardness (JIH)

Fig. 1: Scores of each criterion on discrete r.v.’s, under additive noise. Noise
variables follow uniform distributions with R = 20. Histogram is color coded by
true causal direction. Shaded regions show predicted causal direction under the
criterion, dashed line its threshold. JRE is normalized by target r.v.’s entropy.
Scores binned to 50 equal width bins.

simple to implement, fast to compute and capable of handling both discrete and
continuous variables. They were found to be highly accurate on a broad class of
underlying causal mechanisms and noise types.

The results suggest that there are important differences between discrete
and continuous features. For instance the modelling direction producing the tree
of larger width tends to coincide with the true causal direction in the case of
continuous variables and the anti-causal one for discrete r.v.’s. This suggests
that width –in the case of continuous r.v.’s– captures aspects of fitting, not of
redundant complexity and will be explored further.

A more detailed theoretical analysis and unified treatment of the criteria
presented in this paper is left for an extended version of this work. So is its
application to scenarios involving more than two variables, mixed (discrete &
continuous) r.v.’s, a richer set of underlying causal mechanisms and applications
to real world data.
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(a) Tree Depth (JTD) (b) Path Length (JPL) (c) Tree Nodes (JTN )

(d) Tree Leaves (JTL) (e) Residual Entropy (JRE) (f) Interpolation Hardness (JIH)

Fig. 2: Scores of each criterion on continuous r.v.’s under additive noise; noise
variables follow uniform distributions – see Fig. (1) for more details.

.
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