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Abstract

Background: Studies have previously shown evidence for presymptomatic cortical atrophy in genetic
FTD. Whilst initial investigations have also identified early deep grey matter volume loss, little is
known about the extent of subcortical involvement, particularly within subregions, and how this
differs between genetic groups.

Methods: 480 mutation carriers from the Genetic FTD Initiative (GENFI) were included (198 GRN, 202
CYorf72, 80 MAPT), together with 298 non-carrier cognitively normal controls. Cortical and subcortical
volumes of interest were generated using automated parcellation methods on volumetric 3T T1-
weighted MRI scans. Mutation carriers were divided into three disease stages based on their global
CDR® plus NACC FTLD score: asymptomatic (0), possibly or mildly symptomatic (0.5) and fully
symptomatic (1 or more).

Results: In all three groups, subcortical involvement was seen at the CDR 0.5 stage prior to
phenoconversion, whereas in the C9orf/2 and MAPT mutation carriers there was also involvement at
the CDR 0 stage. In the C9orf72 expansion carriers the earliest volume changes were in thalamic
subnuclei (particularly pulvinar and lateral geniculate, 9-10%) cerebellum (lobules VIIa-Crus II and
VIIIb, 2-3%), hippocampus (particularly presubiculum and CA1, 2-3%), amygdala (all subregions, 2-
6%) and hypothalamus (superior tuberal region, 1%). In MAPT mutation carriers changes were seen
at CDR 0 in the hippocampus (subiculum, presubiculum and tail, 3-4%) and amygdala (accessory
basal and superficial nuclei, 2-4%). GRN mutation carriers showed subcortical differences at CDR 0.5
in the presubiculum of the hippocampus (8%).

Conclusions: C90rf72 expansion carriers show the earliest and most widespread changes including
the thalamus, basal ganglia and medial temporal lobe. By investigating individual subregions,
changes can also be seen at CDR 0 in MAPT mutation carriers within the limbic system. Our results
suggest that subcortical brain volumes may be used as markers of neurodegeneration even prior to

the onset of prodromal symptom:s.



Introduction

Frontotemporal dementia (FTD) is a common cause of early onset dementia. In about a third of the
cases it is associated with an autosomal dominant inherited mutation in one of three genes:
microtubule-associated protein tau (MAPT), progranulin (GRN), and chromosome 9 open reading
frame 72 (C9orf72).! For each of these genetic groups, there is evidence of a differential pattern of
cortical atrophy?, with changes occurring presymptomatically, up to twenty years before estimated
phenoconversion34. Whilst these studies have been highly informative in describing the presence of
brain changes in presymptomatic stages of the disease, they have focused less on subcortical
structures, and in particular, they have not investigated specific subregions within the deep grey
matter. However, due to advanced imaging methods, it is now possible to measure these individual
nuclei and subregions in vivo on structural magnetic resonance scans, with prior studies in small
cohorts showing changes at the symptomatic stage of genetic FTD>®, but without any previous
investigation of the presymptomatic period. Using data from the Genetic FTD Initiative (GENFI)
cohort, we therefore aimed to examine the specific pattern of subcortical changes (including specific
subregions), to determine which areas were impaired across the different disease stages of genetic

FTD.

Methods

At the time of the fifth data freeze in the GENFI 2 study (03/03/2015-31/05/2019), 850 participants had
been recruited across 24 centres in the United Kingdom, Canada, Italy, the Netherlands, Sweden,
Portugal, Germany, France, Spain, and Belgium, of whom 804 had a volumetric T1-weighted magnetic
resonance image acquired on a 3T scanner. Another 26 participants were excluded as the scans were

of unsuitable quality due to motion or other imaging artefacts, pathology unlikely to be attributed to



FTD, or as they were carriers of mutations in one of the rarer genetic causes of FTD. All the remaining
778 participants were known to be either a carrier of a pathogenic expansion in C9orf72 or of a
pathogenic mutation in GRN or MAPT (n=480), or were non-carrier first-degree relatives (n=298), who
therefore acted as controls within the study. All aspects of the study were approved by the local ethics
committee for each of the GENFI sites, and written informed consent was obtained from all

participants.

All participants underwent a standardized clinical assessment as described previously®. This included
the CDR® plus NACC FTLD® which was used to group the mutation carriers into stages: those with
a global score of 0 were considered as asymptomatic, those with a score of 0.5 considered as possibly
or mildly symptomatic (i.e. prodromal), and those with a score >1 were considered as fully

symptomatic or phenoconverted (Table 1).

Participants underwent a 1.1-mm isotropic resolution volumetric T1-weighted magnetic resonance
imaging (MRI) on a 3T scanner (Siemens Trio, Siemens Skyra, Siemens Prisma, Philips Achieva, GE
Discovery MR750). Volumetric MRI scans were first bias field corrected and whole brain parcellated
using the geodesic information flow (GIF) algorithm!?, which is based on atlas propagation and label
fusion. We combined regions of interest to calculate grey matter volumes of the cortex for 15 regions:
orbitofrontal, dorsolateral (DLPFC) and ventromedial prefrontal, motor, anterior and posterior insula,
temporal pole, dorsolateral and medial temporal, anterior and posterior cingulate, sensory, medial
and lateral parietal, and occipital cortex. Using GIF and customised versions of specific Freesurfer
modules!* that accept the GIF parcellation as inputs®®!> we also calculated individual volumes for

the following subcortical regions (Figure 1): i) basal ganglia (nucleus accumbens, caudate, putamen,



and globus pallidus, ii) basal forebrain, iii) amygdala (5 regions: lateral nucleus, basal and paralaminar
nucleus, accessory basal nucleus, cortico-amygdaloid transition area and the superficial nuclei), iv)
hippocampus (7 regions: cornu ammonis CAl, CA2/CA3, CA4, dentate gyrus, subiculum,
presubiculum, tail), v) thalamus (14 regions: anteroventral, laterodorsal (LD), lateral posterior, ventral
anterior, ventral lateral anterior, ventral lateral posterior, ventral posterolateral, ventromedial,
intralaminar, midline, mediodorsal (MD), lateral geniculate (LGN), medial geniculate (MGN) and
pulvinar). Volumes for the hypothalamus (5 regions: anterior superior, anterior inferior, superior
tuberal (s-tub), inferior tuberal (i-tub), posterior) were computed using the deep convolutional neural
network method described in '°. We also parcellated the cerebellum (separated into 14 regions: lobules
-1V, V, VI, Vlla-Crus I, VIIa-Crus II, VIIb, VIIla, VIIIb, IX, X, vermis, dentate nucleus, interposed
nucleus and fastigial nucleus'”-'¥), and brainstem (superior cerebellar peduncle, medulla, pons, and

midbrain).

Left and right volumes were summed, and total intracranial volume was computed with SPM12 v6470
(Statistical Parametric Mapping, Wellcome Trust Centre for Neuroimaging, London, UK) running
under Matlab R2014b (Math Works, Natick, MA, USA)". All segmentations were visually checked for
quality with only one subject excluded from the cerebellar analyses due to the presence of an
arachnoid cyst. Statistical analyses were performed in SPSS software (SPSS Inc., Chicago, IL, USA)
version 26, with a linear regression analysis within each genetic group adjusting for age, sex, and
scanner type (as there were significant differences between groups for each of these, Table 1), as well
as total intracranial volume, with correction for multiple comparisons using the Benjamini &
Hochberg method? using p=0.05 for false discovery rate. The correction was performed separately for

the genetic groups (MAPT, GRN, C90rf72), while considering the number of comparisons within each



of the main regions (cortical, cerebellum, brainstem, thalamus, hypothalamus, amygdala,

hippocampus, and other subcortical structures).

Results

Total brain and cortical volumes

The total brain volume was significantly smaller in all genetic groups with CDR >1 when compared
to controls (8-10% volumetric difference, p<0.0005). However, it was also significantly smaller in
CYorf72 expansion carriers at CDR 0 and 0.5 (1-3%, p<0.004) (Supplementary Table 1, Supplementary

Figure 1).

C90rf72 expansion carriers with a CDR >1 showed significantly smaller volumes than controls in all
cortical regions, with the largest differences in the anterior and posterior insula (24%) (Supplementary
Table 1, Supplementary Figure 2). These two regions, together with the DLPFC, motor, dorsolateral
temporal, lateral parietal and occipital cortex, were also significantly smaller in the C9orf/2 expansion
carriers with CDR 0 and 0.5 (2-7%, p<0.006). The temporal pole was significantly smaller than controls
in those scoring 0.5 (6%, p=0.004), while the orbitofrontal, posterior cingulate, sensory and medial
parietal cortex were significantly smaller in those scoring 0 (1-4%, p<0.028), but these differences did
not reach statistical significance in those scoring 0.5 (Supplementary Table 1, Supplementary Figure

2).

MAPT mutation carriers with CDR >1 showed smaller volumes than controls in the temporal regions

(32% in the temporal pole), insula (29-30%) and anterior cingulate (12%) (p<0.0005) (Supplementary



Table 1, Supplementary Figure 2). The dorsolateral temporal cortex was smaller in the CDR 0.5 group

(17%, p=0.003). No difference was found in the CDR 0 group.

GRN mutation carriers with CDR >1 showed smaller volumes in all regions (6-26%, p<0.012) except
the sensory cortex, with the anterior insula being the region with smallest volume (26%, p<0.0005).
GRN mutation carriers with CDR 0.5 also showed smaller DLPFC and anterior insula volumes than
controls (5-6%, p<0.013) (Supplementary Table 1, Supplementary Figure 2). No difference was found

in the CDR 0 group.

Basal ganglia

Among the basal ganglia, the putamen was significantly smaller across all C9orf72 stages (1-17%,
p<0.0006) (Supplementary Table 1, Figure 2A), and in the MAPT and GRN mutation carriers with
CDR 21 (17%, p<0.0005). C9orf72 expansion carriers with CDR 0.5 and >1 showed smaller globus
pallidus (6-16%, p<0.003). MAPT mutation carriers with CDR 21 showed smaller volumes than
controls in the nucleus accumbens (11%), and globus pallidus (14%), whilst GRN mutation carriers
scoring >1 showed smaller caudate (5%, p=0.011) and globus pallidus (12%, p<0.0005). No differences

were found for the MAPT and GRN mutation carriers in the CDR 0 or 0.5 groups.

Basal forebrain

Changes in the basal forebrain were only seen in MAPT mutation carriers (Supplementary Table 1,

Figure 2A), and only at the CDR >1 stage (15% smaller than controls, p<0.0005).

Amygdala



All amygdalar regions were significantly smaller than controls for all mutation carriers with CDR 21
(p<0.0005), with the MAPT group showing the largest differences, particularly in the superficial and
accessory basal regions (44%) as well as the lateral regions (36%) (Supplementary Table 1, Figure 2B).
All regions were significantly smaller in C90rf72 expansion carriers at CDR 0, and in MAPT mutation
carriers with CDR 0.5, with smaller volumes at CDR 0 in the superficial and accessory basal nuclei (2-
4%, p<0.034) (Supplementary Table 1, Figure 2B). GRN mutation carriers with CDR 0 or 0.5 did not

show any significant differences from controls.

Hippocampus

All hippocampal regions were significantly smaller than controls for all mutation carriers with CDR
>1 (p<0.0005), with MAPT mutation carriers being the genetic group with the largest differences (all
above 30%) (Supplementary Table 1, Figure 2C). Differences were also seen in all regions in MAPT
mutation carriers with CDR 0.5 (6-11%, p<0.019), and in the subiculum, presubiculum and tail (3-4%,
p<0.020) in MAPT mutation carriers with CDR 0. In C90rf72 expansion carriers with CDR 0 there were
significantly smaller volumes than controls in all regions except the tail and the subiculum (2-3%,
p<0.015). The presubiculum was the only region significantly smaller in GRN mutation carriers with

CDR 0.5 (8%, p=0.016) with no significant differences at CDR 0.

Thalamus

CYorf72 expansion carriers showed significantly smaller thalamic regions in all stages, with the only
exception being the ventromedial nucleus (which only became significant at CDR stage >1) and the
ventral posterolateral nucleus, which did not quite reach statistical significance at CDR 0.5. The most

affected regions at CDR 0 were the LD (13%), LGN (10%) and pulvinar (9%) (p<0.0005)



(Supplementary Table 1, Figure 2D). MAPT mutation carriers with CDR 21 showed significantly
smaller volumes in all regions except LGN, with the main differences located in the MD, midline and
LD regions (22-26%, p<0.0005) but no differences at earlier stages. GRN mutation carriers also only
showed significantly smaller regions at CDR >1, with the main differences located in the MD and
midline regions (31%, p<0.0005), followed by the anteroventral and LD (21- 25%, p<0.0005). No

differences were found in the LGN and MGN.

Hypothalamus

All regions were significantly smaller than controls for all mutation carriers with CDR >1 (p<0.0005),
except for the i-tub regions for C9orf72 and GRN mutation carriers. In the CDR >1 group MAPT
mutation carriers had the smallest volumes, with differences above 29% in the posterior and anterior
regions (Supplementary Table 1, Figure 2E). C90rf72 expansion carriers were the only ones showing
early differences, with the CDR 0.5 group showing smaller volumes than controls in the anterior
superior and s-tub regions (5-7%, p<0.017), and the CDR 0 group showing smaller volumes than

controls in the s-tub region (1%, p=0.008).

Cerebellum

CYorf72 and GRN mutation carriers with CDR =1 had smaller volumes than controls in the lobules
VIIa-Crus II (13%), VIIb (11-12%) and VIIla (8-10%) (p<0.001), with C9orf72 expansion carriers also
showing significant differences in lobules VI (12%), VIIIb (14%), vermis (7%) and the dentate nucleus
(7%) (p<0.007). In addition, the C9orf72 expansion carriers were the only group with significantly
smaller volumes at CDR 0 (lobules VIIa-Crus II and VIIb, 2-3% p<0.011) (Supplementary Table 1,

Figure 2F). No significant difference was found in the MAPT group.



Brainstem

GRN mutation carriers with CDR >1 showed smaller volumes in the superior cerebellar peduncle (5%,
p=0.011), midbrain and pons (7-8%, p<0.0005), while MAPT mutation carriers scoring >1 showed
smaller volumes in the midbrain (9%, p<0.0005) (Supplementary Table 1, Figure 2G). No difference

was detected in those with CDR 0 or 0.5, or in C90rf72 expansion carriers at any stage.

Figure 3 summarizes the sequential pattern of neuroanatomical involvement for each of the genetic

groups, by indicating at which stage each region resulted significantly smaller than controls.

Discussion

In this study we have defined the pattern of involvement in subcortical brain regions and specific
nuclei in genetic frontotemporal dementia. We have identified gene-specific changes in asymptomatic
and prodromal stages through to fully symptomatic stages in C9orf72, MAPT and GRN mutation
carriers. By looking at specific regions, in a large cohort of mutation carriers, we were able to identify
small changes that occurs very early on in all genetic groups, which might go undetected when

looking at the whole brain or at large regions.

The first brain regions showing differences from controls in C90rf/2 expansion carriers without any
detectable clinical symptoms were the thalamic regions (the pulvinar, LD and LGN in particular), the
putamen, the CA regions with the dentate gyrus and the presubiculum, all the amygdalar regions, the
s-tub region in the hypothalamus, the lobule VIIa-Crus II and VIIb of the cerebellum as well as several

cortical regions. By the time C90rf/2 expansion carriers reach the symptomatic phase, nearly all the



regions in the brain become affected, with the exception of the caudate, nucleus accumbens, basal
forebrain, brainstem, and the anterior and inferior cerebellum and the i-tub region of the
hypothalamus. These results are in line with previous studies showing widespread involvement of

the brain in C9orf72-associated FTD, well beyond the classical frontal and temporal regions of FTD.*

4,21-22

Among the thalamic regions, the pulvinar and LGN were particularly affected in C90rf72 expansion
carriers, which is in line with previous research in both symptomatic and presymptomatic carriers®
and with the pathological accumulation of TDP-43 and dipeptide repeat proteins in those regions.?**
Atrophy in these regions is linked to hallucinations and other psychotic symptoms as well as the
altered processing of pain, features seen more commonly in C9orf72 expansion carriers than in other

forms of FTD. 2528

Interestingly, the regions affected early in the cerebellum (lobule VIIa-Crus II and VIIb) are connected
via the dentate nuclei to the ventral anterior and VL nuclei of the thalamus and from here to the
DLPFC to regulate cognitive functions, and in particular goal-directed complex behaviours.?>! The
cerebellum is also connected via the anterior and ventral lateral posterior thalamic regions to the basal
ganglia and the parietal and motor cortex,?*! all regions affected early in C9orf72-associated FTD.

Dipeptide repeat proteins are also typical and abundant in the cerebellar cortex.32

The most affected regions within the hippocampus and amygdala are among the ones previously

shown to be atrophic in symptomatic C90rf72 expansion carriers®” and connected to the temporal and



posterior cortex.3® The CA regions are abundant of dipeptide repeat proteins, with or without TDP-43

deposition.3*

CYorf72 expansion carriers at CDR 0 showed reduced volumes in the s-tub region of the hypothalamus
and later on in the anterior and posterior hypothalamus, leaving the i-tub as the only spared region
as previously reported.® The s-tub region includes the dorso-medial nucleus and lateral hypothalamic
area, which regulate appetite and contain neuropeptide-expressing neurons and neuropeptide
receptors.® Similarly, volume loss in the posterior hypothalamus and the presence of TDP-43
pathology have been linked to the development of abnormal eating behaviours, typical symptoms of

bvFTD. %37

In MAPT mutation carriers, the only regions affected at CDR 0 were the superficial and accessory
basal regions of the amygdala, and the subiculum, presubiculum and hippocampal tail. Such early
differences in the amygdala could not be detected when looking at its volume as a whole, which only
became significantly affected at a later stage. MAPT mutation carriers at CDR 0.5 additionally showed
smaller volumes in the dorsolateral temporal cortex and in all the other hippocampal and amygdalar
regions. Overall, the more medial regions of the amygdala (particularly the superficial, accessory basal
and basal and paralaminar) tend to be affected more than the lateral regions. They are connected to
key limbic regions and likely related to the development of symptoms associated with abnormal
reward and emotional processing. These results are in line with previous in vivo studies on
symptomatic mutation carriers®” and with pathological studies: tau deposition is extensively found

in the hippocampus and other limbic structures in MAPT mutation carriers.3



By the time MAPT mutation carriers are fully symptomatic, we find lower volumes in the other key
regions of the limbic system, such as the insula, anterior cingulate, mediotemporal cortex, nucleus
accumbens and basal forebrain. This latter structure, the basal forebrain, was only affected in the
MAPT genetic group, as previously reported.* Other regions affected in this group include the
midbrain, which forms part of a network that regulates emotion perception with the thalamus and
amygdala.?’ All regions in the hypothalamus were also affected, although mainly in the superior and
posterior regions as previously reported in a smaller cohort.®* Interestingly, the posterior region
includes the mammillary bodies, connected via the fornix to the amygdala and hippocampus. Among
the thalamic regions, the MD was the most affected, as previously reported®: this region is connected
to brain regions within the limbic network and plays a role in emotional and behavioural regulation,
as well as executive function. This sequence of regional involvement and the localisation in the
temporal lobe is in line with what has been reported in other studies in MAPT mutation carriers.3-*41-
42 The vermis of the cerebellum, another important part of the limbic system, was not affected, in
contrast with what was found by another study.> This could be due to the different way of classifying
the symptomatic mutation carriers, and the presence of different scanner types and sample
characteristics. However, the fact that the cerebellum was overall not affected in MAPT-associated

FTD is in line with other studies.?

GRN mutation carriers only showed significant atrophy at the CDR 0.5 stage — this was mainly cortical,
affecting the DLPFC, and anterior insula, but there was also subcortical involvement of the
presubiculum, a hippocampal region connected to the basal ganglia, frontal and parietal cortex, areas
which are typically atrophic in GRN, as found here at the symptomatic stages and in other studies,*

#42 and which typically show TDP-43 accumulation.?



Previously described as spared in GRN mutation carriers,® we found here that lobule VIIa-Crus II,
VIIb and VIIIa are affected later in the disease. These regions are connected, via the thalamus, to the
DLPFC and primary sensorimotor cortex.?’ Within the brainstem, the midbrain, pons, and superior
cerebellar peduncle were atrophic, as previously found.** The role of the brainstem in FTD is not yet
fully understood, but TDP-43 pathology has been found previously in several nuclei of the midbrain
and pons.** When symptoms were clearly present in GRN mutation carriers, all the hypothalamic
regions were also smaller than in controls, with the exception of the i-tub (similarly to the C9orf72
group). This region includes the arcuate nucleus, an important target for metabolic and hormonal
signals.® Interestingly, in a previous histological study (and consistent with our findings), TDP-43
inclusions were not found in this region, but were abundant in the anterior, superior and posterior

region of the hypothalamus.®

C90rf72 expansion carriers showed by far the earliest and most widespread changes in the brain,
compared to MAPT and GRN mutation carriers. Even the total brain volume was lower in C9orf72
expansion carriers at CDR 0 whilst only being affected at the fully symptomatic stage in MAPT and
GRN mutation carriers. This result was found previously® and could suggest that C9orf/2-associated
FTD might be associated with a long and slow process of neurodegeneration which could start many
decades before the onset of clinical symptoms, as also suggested by Staffaroni et al*. GRN mutation
carriers instead might have a more rapid process which occurs later and closer to symptom onset.*”
Longitudinal studies, such as in Staffaroni et al*® and Whitwell et al*%, looking at the atrophy rates in

the different disease stages could potentially provide a definite answer to whether this is the case.



This study has some limitations. Some of the nuclei are very small and we grouped them into
combined regions, or clusters of nuclei. In the future, this could be addressed by imaging at higher
field strengths (e.g. 7T), enabling higher spatial resolution. There were differences in age, sex and
scanner type for some of the groups, which we have taken into account by including these variables
as covariates, although this cannot completely exclude their impact. The CDR 0.5 is smaller than the
other groups, and is likely to be heterogeneous including both people who are truly in a mild
prodromal stage, and others that score 0.5 due to ‘questionable’” symptoms that might instead be

related to affective symptoms during the at-risk period.

By looking at in vivo regional volumetry, we have shown here a differential pattern of subcortical
changes across severity stages in GRN, MAPT and C9orf72 mutation carriers. By looking at a wide
range of specific brain regions, for the first time we were able to measure small changes that occur in
localized regions in the early stages of genetic FTD. These results suggest that these changes may be
used as markers of neurodegeneration in future trials even during preclinical and prodromal periods.
Further longitudinal studies, including multimodal imaging looking at brain connectivity networks
and including correlations with cognitive and other biomarkers, will be vital to investigate these

results further.
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Table 1: Demographic and clinical characteristic of the cohort divided by genetic group and CDR®+NACC FTLD global scores. Abbreviations: N/A not
applicable, FTD frontotemporal dementia, bvFTD behavioural variant FTD, PPA primary progressive aphasia, NOS not otherwise specified, CBS corticobasal

syndrome, PSP progressive supranuclear palsy, AD Alzheimer’s disease, ALS amyotrophic lateral sclerosis.



Non-carriers

C901f72 mutation carriers

MAPT mutation carriers

GRN mutation carriers

CDR®+NACC FTLD
0 0.5 >1 0 0.5 >1 0 0.5 >1
global score
N 298 107 32 63 47 13 20 125 30 43
47.0 52.0
Age, year 45.8 (12.5) 43.9 (11.7) 49.4 (11.7) 62.9 (9.2) 39.3(10.6) 58.2 (10.1) 45.5 (12.0) 63.6 (8.2)
(12.0) (13.3)
4
Sex, male (%) 125 (41.9%) 44 (41.1%) 12 (37.5%) 41 (65.1%) 20 (42.6%) 13 (65.0%) 43 (34.4%) 15 (50%) 21 (48.8%)
(30.8%)
Scanners [Siemens
Trio/Siemens
Skyra/Siemens
59/64/79/94/2 | 32/14/19/42/0 | 4/4/10/14/0 8/11/27/16/1 11/11/8/16/1 | 1/1/8/3/0 6/2/10/2/0 39/20/16/45/5 | 5/7/9/8/1 | 11/11/14/7/0
Prisma/Philips
Achieva/GE Discovery
MR?750]
49 bvFID, 6 FTD-
16 bvFTD, 1
ALS, 2 ALS, 2 24 bvFID, 17
PPA, 2
Clinical phenotype N/A N/A N/A PPA, 1 PSP, 2 N/A N/A N/A N/A PPA, 1CBS, 1
Dementia-
Dementia-NOS, 1 AD
NOS, 1 PSP

Other




Figure 1. Regions of interest used in the analysis. Abbreviations. Cortical: VMPFC ventromedial

prefrontal, TP temporal pole, MT medial temporal, AC anterior cingulate, PC posterior cingulate,
MOT motor, S sensory, MP medial parietal, OCC occipital, DLPFC dorsolateral prefrontal, OF
orbitofrontal, Al anterior insular, PI posterior insular, DLT dorsolateral temporal, LP lateral parietal;
Basal ganglia and Basal forebrain: GP pallidum, CAU caudate, PUT putamen, BF basal forebrain, NA
nucleus accumbens; Brainstem: SCP superior cerebellar peduncle, MB midbrain, ME medulla;
Cerebellum: VIIA — CI lobule VIIA - Crus I, VIIA — CII lobule VIIA — Crus II, FN fastigial nucleus, IN
interposed nucleus, DN dentate nucleus; Amygdala: CAT cortico-amygdaloid transition area, Sup
superficial nuclei, AB accessory basal nucleus; Hippocampus: DG dentate gyrus, CA cornu ammonis;
Thalamus: AV anteroventral, VA ventral anterior, LD laterodorsal, VLa ventral lateral anterior, MD
mediodorsal, LP lateral posterior, VLp ventral lateral posterior, VPL ventral posterolateral, VM
ventromedial, LGN lateral geniculate nucleus, MGN medial geniculate nucleus; Hypothalamus: as

anterior superior, ai anterior inferior, s-tub superior tuberal, i-tub inferior tuberal, pos posterior.
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Figure 2A-G. Plots representing the means and standard error bars for regional brain volumes for
each of the stages in C90rf72, MAPT and GRN mutation carriers. Volumes as expressed as % the
mean volumes in controls (y axis). * indicates a significant difference from controls after correcting for
multiple comparisons. Abbreviations:_CAT cortico-amygdaloid transition area; Thalamus: LD
laterodorsal, VLa ventral lateral anterior, VLp ventral lateral posterior, VPL ventral posterolateral,
LGN lateral geniculate nucleus, MGN medial geniculate nucleus; Hypothalamus: Al anterior inferior,
AS anterior superior, I-TUB inferior tuberal, S-TUB superior tuberal; Brainstem: SCP superior

cerebellar peduncle.
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Figure 3. Sequential pattern of neuroanatomical involvement in C90rf72, MAPT and GRN. The colour map indicates the stage defined by CDR®+NACC

FTLD global scores when the specific region of interest becomes involved, as significantly smaller than controls.
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Supplementary material

Supplementary Table 1: Volumetric comparisons for the brain regions between the different subgroups and the controls. Volumetric comparisons,
expressed as % of total intracranial volume, are adjusted for age, sex, total intracranial volume, and scanner type. Bold and italics represents a significant
difference between groups after correcting for multiple comparisons. The % difference represents the volumetric difference between each group and controls.
Abbreviations: Cortical: OF orbitofrontal, DLPFC dorsolateral prefrontal, VMPFC ventromedial prefrontal, Mot motor, Al anterior insular, PI posterior
insular, TP temporal pole, DLT dorsolateral temporal, MT medial temporal, AC anterior cingulate, PC posterior cingulate, S sensory, MP medial parietal, LP
lateral parietal, Occ occipital; Cerebellum: DN dentate nucleus, IN interposed nucleus, EN fastigial nucleus; Basal ganglia and Basal forebrain: NA nucleus
accumbens, Cau caudate, Put putamen, GP pallidum, BF basal forebrain; Thalamus: AV anteroventral, LD laterodorsal, LP lateral posterior, VA ventral
anterior, VLa ventral lateral anterior, VLp ventral lateral posterior, VPL ventral posterolateral, VM ventromedial, Int intralaminar, Mid midline, MD
mediodorsal, LGN lateral geniculate nucleus, MGN medial geniculate nucleus, Pul Pulvinar; Amygdala: Sup superficial nuclei, CAT cortico-amygdaloid
transition area, AB accessory basal nucleus; BL basal and paralaminar nuclei, LN lateral nucleus; Hippocampus: CA cornu ammonis, DG dentate gyrus, Sub
Subiculum, Pre presubiculum; Brainstem: SCP superior cerebellar peduncle, MB midbrain, ME medulla; Hypothalamus: as anterior superior, ai anterior

inferior, s-tub superior tuberal, i-tub inferior tuberal, pos posterior.
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Brain

Supplementary Figure 1. Plots representing the means and standard error bars for the whole brain volumes for each of the stages in C90rf72,
MAPT and GRN mutation carriers. Volumes as expressed as % the mean volumes in controls. * indicates a significant difference from controls after

correcting for multiple comparisons.
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Supplementary Figure 2. Plots representing the means and standard error bars for the cortical regions for each of the stages in C90rf72, MAPT
and GRN mutation carriers. Volumes as expressed as % the mean volumes in controls. * indicates a significant difference from controls after
correcting for multiple comparisons.
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Highlights

Progressive and differential atrophy pattern at presymptomatic stages across genes
Early presymptomatic brain changes detectable only by looking at small regions

C90rf72 shows the earliest and most widespread changes (cortex, pulvinar, cerebellum)
MAPT shows early differences in the dorsolateral temporal, amygdala and hippocampus

Late presymptomatic changes in GRN in dorsolateral prefrontal, insula, presubiculum
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