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ABSTRACT
The angular momentum of dark matter haloes controls their spin magnitude and orientation, which in turn influences the galaxies
therein. However, the process by which dark matter haloes acquire angular momentum is not fully understood; in particular, it is
unclear whether angular momentum growth is stochastic. To address this question, we extend the genetic modification technique
to allow control over the angular momentum of any region in the initial conditions. Using this technique to produce a sequence
of modified simulations, we can then investigate whether changes to the angular momentum of a specified region in the evolved
universe can be accurately predicted from changes in the initial conditions alone. We find that the angular momentum in regions
with modified initial conditions can be predicted between 2 and 4 times more accurately than expected from applying tidal torque
theory. This result is masked when analysing the angular momentum of haloes, because particles in the outskirts of haloes domi-
nate the angular momentum budget. We conclude that the angular momentum of Lagrangian patches is highly predictable from the
initial conditions, with apparent chaotic behaviour being driven by stochastic changes to the arbitrary boundary defining the halo.
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1 IN T RO D U C T I O N

A pressing question in galaxy formation theory is the origin of the
angular momentum of dark matter haloes and of their host galaxies.
Angular momentum controls the spin magnitude and orientation of
dark matter haloes, which in turn influences the galaxies they host
(Fall & Efstathiou 1980; Mo, Mao & White 1998; Bullock et al. 2001;
Burkert et al. 2016). Beyond its relevance to galaxy formation, the
origin of angular momentum also has consequences for cosmology.
Due to its common cosmological origin, the angular momentum
accreted by neighbouring galaxies tends to be aligned, which in turn
contributes to the alignment of galaxy spins. This effect is degenerate
with the lensing signal, and therefore needs to be mitigated to extract
cosmological information from weak lensing surveys (e.g. Euclid,
Laureijs et al. 2011; LSST, Ivezić et al. 2019).

The current understanding of the origin of the angular momentum
of galaxies and dark matter haloes is built on the work of Doroshke-
vich (1970), who derived the first models to predict the evolution
of angular momentum within non-spherical regions. The authors
showed that angular momentum grows linearly under the Zel’dovich
approximation (Zel’Dovich 1970), while its magnitude in spherical
regions grows only at second order (Peebles 1969). The model was
later improved by White (1984) to formulate ‘tidal torque theory’.
The theory states that in the linear regime of structure formation,
angular momentum is generated from slight misalignments of the
inertia tensor of the Lagrangian patch with the tidal shear tensor.
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As the proto-halo decouples from the expansion of the Universe
and collapses, the coupling weakens and eventually vanishes. After
decoupling, tidal torque theory assumes little evolution of the angular
momentum. Later studies confirmed that tidal torque theory predic-
tions are accurate within a factor of two if the angular momentum
growth is stopped around turn-around (Sugerman, Summers &
Kamionkowski 2000; Porciani, Dekel & Hoffman 2002a). Tidal
torque theory provides a global explanation to the origin of angular
momentum and successfully explains a variety of cosmological
effects. It was, for example, recently extended by Codis, Pichon
& Pogosyan (2015) to relate the structure of the tides imposed by
the large-scale environment to the angular momentum acquisition
of forming haloes, which provided a convincing explanation for
the observed spin alignment signal (Tempel, Stoica & Saar 2013).
Its predictions are, however, only accurate statistically and display
significant deviations when looking at individual haloes (Porciani,
Dekel & Hoffman 2002b).

A different picture emerges in studies which focus on dark matter
haloes instead of Lagrangian patches. On average, the angular
momentum of haloes grows with each merger (Vitvitska et al.
2002; Peirani, Mohayaee & de Freitas Pacheco 2004; Hetznecker
& Burkert 2006). This motivated the development of semi-analytical
models, where the angular momentum evolution is controlled by
the haloes’ merger tree. In these models, each dark matter halo
is initially seeded with a random angular momentum. After each
merger, the angular momentum of the new halo is set by the angular
momentum of its progenitors and their (randomly drawn) orbital
parameters (Vitvitska et al. 2002). Semi-analytical models were later
refined using more accurate merger trees, halo concentrations, and
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distributions of orbital parameters (Benson & Bower 2010). This
allows accurate reproduction of the distribution of spin parameters
measured in N-body simulations (Benson, Behrens & Lu 2020).

The two competing approaches seem to be in tension: according
to tidal torque theory, the angular momentum of a given proto-halo
can be derived from a linear analysis of its initial conditions. On
the other hand, the angular momentum yielded by semi-analytical
models is intrinsically stochastic, and depend on the initial conditions
indirectly, through the merger history.

In this paper, we address the question of whether the actual
angular momentum of given regions in the Universe results from
chaotic processes, or whether it can be predicted accurately from an
analysis of the initial conditions. To do so, we develop an extension
to the genetic modification technique (Roth, Pontzen & Peiris 2016;
Stopyra et al. 2020) to control the angular momentum of arbitrary
regions in the initial conditions. The technique allows us to change
the initial angular momentum through small modifications of the
initial density field that minimally affect the large-scale environment.
Using a suite of simulations, we then investigate how the angular
momentum in the evolved Universe changes with modifications of the
initial conditions. We can thus test cause and effect relations between
changes in the initial angular momentum and its late time evolution.
This allows us to disentangle the effect of chaotic evolution from the
effect of particle membership on angular momentum evolution. In
Section 2, we describe our simulation setup. Our results are presented
in Section 3, and we conclude in Section 4.

2 ME T H O D S

All our simulations employ the code RAMSES (Teyssier 2002). We
first perform a reference dark-matter-only cosmological N-body
simulation. The adopted cosmology has a total matter density �m =
0.31, a dark energy density of �� = 0.69, a Hubble constant of
H0 = 67.3 km s−1 Mpc−1, a variance at 8 Mpc h−1 σ 8 = 0.8159, and
a non-linear power spectrum index of ns = 0.9667, compatible with
the parameters of Planck Collaboration XIII (2015). We start with a
coarse grid of 2563 (level 8) in a box of comoving size 50 Mpc h−1

for a dark matter particle mass of 9 × 108 M�. We use a quasi-
Lagrangian refinement strategy: a cell is refined if it contains 8 or
more dark matter particles. The gravitational potential is computed
on the adaptive grid with a multigrid particle-mesh solver up to level
11 (Guillet & Teyssier 2011) and with the default conjugate gradient
method for finer levels. We have an effective minimum softening
length of physical size 0.8 kpc imposed by the grid resolution. We
dump a snapshot every 250 Myr for a total of 55 outputs.

We extract a halo catalogue using ADAPTAHOP (Aubert, Pichon &
Colombi 2004), with the ‘Most massive Sub-node Method’ and the
parameters proposed by Tweed et al. (2009). Only haloes with 200 or
more particles are kept. We verified that performing the same analysis
with haloes containing more than 2000 particles yield similar results,
although with smaller statistics.

We then select the first seven haloes from the halo catalogue that
are more massive than 5 × 1012 M� (3.5 × 1012 M� h−1, more than
5000 particles) at z = 0, and whose Lagrangian patch does not
contain any particle within 0.1 Lbox of the box sides.1 The main
properties of the selected haloes are presented in Table 1. Here,
we used the following definition to compute the spin parameter:
λ ≡ l

√
K + U/GM3/2, where G is the gravitational constant and l,

1This simplifies the analysis, as we can ignore periodicity when computing
distances within each Lagrangian patch.

Figure 1. (Top) Projected mean overdensity field in the reference simulation
and (bottom) amplitude of the overdensity modification of halo 386, for
a change of its angular momentum by ×0.8. Both panels show values in
the initial conditions, in units of the overdensity standard deviation. The
Lagrangian region is shown in the centre (black dashed contours).

Table 1. Properties of the reference haloes at z = 0. From left to right: the
halo id, the virial mass and radius, the specific angular momentum, and the
spin parameter.

Halo Mvir/1012 M� Rvir/kpc l/100 km s−1 kpc Spin λ

123 5.3 450 50 0.024
189 16.8 660 32 0.006
207 15.4 640 75 0.013
246 24.2 750 209 0.033
374 2.8 370 593 0.120
386 6.3 480 178 0.053
390 7.5 510 109 0.014

K, U, and M are, respectively, the specific angular momentum, the
kinetic energy, the potential energy, and the halo mass as computed
by the halo finder.

For each halo, we trace back the region that contains all particles
within the halo at z = 0 (their Lagrangian patch) to the initial
conditions at z = 99 . We then generate, for each region, a set of
eight genetically modified initial conditions with a modified angular
momentum: ×1/4, ×1/2, ×0.8, ×0.9, ×1.1, ×1.2, ×2, and × 4. We
generate the initial conditions using the code GENETIC v1.2 (Roth
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Figure 2. Deviations of the predicted specific angular momentum to the measured specific angular momentum, lpred/lmeas − 1, in the Lagrangian patch of all
seven haloes. The deviations are shown for different initial specific angular momentum modifications, l0/lref,0. We also show for comparison the amplitude of the
68 per cent confidence interval of the deviations from tidal torque theory’s predictions, lpred,TTT/lmeas − 1 (grey region). Most resimulations have their ratio well
within this confidence interval. This shows that the specific angular momentum in resimulations can be predicted from the reference simulation more accurately
than using tidal torque theory.

et al. 2016; Rey & Pontzen 2018; Stopyra et al. 2020; Pontzen et al.
2021), that includes angular momentum genetic modifications; see
Appendix A for the details of the implementation. This technique
allows us to arbitrarily modify the total angular momentum within
the patch by altering the initial density field. The genetic modification
method ensures that these modifications are minimal and keep the
large-scale environment as near unchanged as possible. This provides
us with a numerical setup to quantify how changes in the initial
angular momentum affect its growth rate and test whether the late-
time evolution is chaotic or not. For each patch, we modify the three
components of the initial angular momentum by the same relative
amount, while keeping the mean density fixed. In the remainder of
the paper, we will study the evolution of the angular momentum
within these regions.

The result of the ×0.8 modification for the initial conditions of halo
386 can be seen in Fig. 1. We show in the top panel the mean density
field and in the bottom panel the density modification required to
alter the angular momentum. The figure shows that the modification
extends significantly outside the Lagrangian region, and displays a
distinct quadrupolar structure. This can be understood qualitatively
by recalling that, under the Zel’dovich approximation, the angular
momentum of a region originates from peculiar velocity gradients
(as detailed in Appendix A and underlined by Neyrinck et al.
2020). Pontzen et al. (2020) showed that the density modifications
corresponding to velocity modifications extend to scales of the order
of 60 Mpc h−1 in a �CDM universe.2 Since our simulations have
a comoving size of 50 Mpc h−1, we therefore expect the density
modification to extend to the entire simulation domain.

2We expect angular momentum modifications to translate into quadrupolar
density modifications. Pontzen et al. (2020) showed that velocity modifi-
cations translate into dipolar modifications of the density field, so that the
modification of the gradient of the peculiar velocity required to modify the
angular momentum translates into a quadrupolar density modification.

We perform resimulations starting from each of the modified
initial conditions (7 × 8 in total) with the same parameters as in the
reference simulation. For all resimulations, we compute the angular
momentum of the region that was modified, and obtain its specific
angular momentum by dividing by the mass it contains (see Table 1).

3 R ESULTS

Tidal torque theory provides a prediction for the time evolution of
the specific angular momentum in a region,

lpred,TTT(z) = l0 × a2(z)Ḋ(z)

a2
0Ḋ0

, (1)

where l0 is the initial specific angular momentum within the region,
a is the expansion factor, D is the linear matter growth function,
and a0 and D0 are their respective initial value. Here, dots indicate
time derivatives. However, when performing modified simulations,
we do not need to rely directly on tidal torque theory. Instead, we
can use the measured value of the specific angular momentum in the
reference simulation to estimate the growth rate,

lpred(z) = l0 × lref (z)

lref,0
, (2)

where lref(z) is the measured magnitude of the specific angular
momentum in the reference simulation and lref,0 is its value in the
initial conditions.

In our suite of resimulations, the ratio of the initial specific angular
momentum s, l0/lref,0, is equal to the amplitude of the specific angular
momentum modification. Using measurements of lref(z) and the 7 × 8
modified resimulations with known l0/lref,0, we can compare the
accuracy of the ansatz (2) to the accuracy of tidal torque theory.
To do so, we show in Fig. 2 the deviation from unity of the ratio
of our prediction to the measured value, lpred/lmeas − 1 (as coloured
lines, for different amplitudes of the modifications) for the eight
resimulations of the seven haloes. If the specific angular momentum
in the resimulations is proportional to its value in the reference
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Figure 3. Evolution of the deviation of the predicted angular momentum
from the measured value. Predictions rely either on tidal torque theory (grey
line) or on the reference simulation (from green to blue to orange in increasing
order of the amplitude of modifications, as labelled). The shaded regions
indicate 68 per cent confidence intervals. Tidal torque theory systematically
overpredicts the measured specific angular momentum, and its predictions are
significantly more scattered than predictions based on a reference simulation.
The latter are consistent with unity: they are less biased and more accurate,
especially at low redshift.

simulation, the ratio will be equal to one. In order to qualitatively
compare any deviations from one to the accuracy of tidal torque
theory, we measure the relative 68 per cent confidence interval of
tidal torque theory’s predictions compared to the measured values,3

using all 700 haloes more massive than e12 M� in the reference
simulation (grey bands).

Both tidal torque theory and our ansatz (2) are accurate in the
early, linear Universe. With increasing cosmic time, we observe
that the accuracy of tidal torque theory worsens, as shown by the
widening of the 68 per cent interval which, at z = 0, has a width
of ±0.6. The deviations of our ansatz from the measured value are
statistically within the contours set by tidal torque theory down to
z = 0, indicating that the ansatz (2) is more accurate than tidal torque
theory. We also note that large deviations are only ever obtained from
large modifications of the initial specific angular momentum (such
as halo 123 × 1/4 and halo 189 × 4).

Let us now study in more detail the evolution of the deviation of our
predictions from the actual value with cosmic time. We show in Fig. 3
the evolution of the median (solid lines) and 68 per cent confidence
interval (shaded regions) of lpred/lmeas − 1 . We compute the median
and confidence interval of the ratio from three different subsets of res-
imulations: all of them (0.25 ≤ l0/lref,0 ≤ 4; orange line), all but most
extreme modifications (0.5 ≤ l0/lref,0 ≤ 2; blue line and blue shaded
area), and only those with small specific angular momentum modi-
fications (0.8 ≤ l0/lref,0 ≤ 1.2; bluish green line). We show the confi-
dence interval for one subset of resimulations for the sake of clarity,
the two others being presented in Fig. 4. We also show the median
and 68 per cent interval we obtain with tidal torque theory (in grey).

The predictions made with ansatz (2) slightly underestimate the
actual angular momentum, as shown in Fig. 3 by a weak deviation
of the median from unity (of the order of 0.9–0.95) at z � 1. The

3We define the relative confidence interval as the measure of the deviations
around the median value, and is given by the ratio of the 68 per cent confidence
interval to the median of lpred,TTT/lmeas − 1. This allows us to correct for the
fact that, by z = 0, the predictions are systematically ∼3 larger than the actual
value.

Figure 4. Time evolution of the 68 per cent confidence interval of the ratio
lpred/lmeas − 1, with the same colours as Fig. 3. At all times, predictions
based on the reference simulation are less scattered around the true value
than predictions from tidal torque theory. Smaller modifications of the initial
specific angular momentum are progressively more accurate.

68 per cent confidence interval however remains consistent with unity
at all times. Predictions from tidal torque theory are also consistent
with the measured angular momentum at early times z � 1–2, while
at later times, we recover the well-established result that angular
momentum growth stalls, and as a result tidal torque theory starts
overpredicting the actual angular momentum. By z = 0, tidal torque
theory overpredicts the angular momentum by a factor as large
as 3, in agreement with previous findings (Porciani et al. 2002a).
We conclude that the predictions from ansatz (2) are less biased
than those from tidal torque theory, and remain consistent with the
measured angular momentum down to z = 0. We have also checked
that similar conclusions can be made about the orientation of the
angular momentum vector: ansatz (2) provides a more accurate
prediction of the angular momentum orientation than tidal torque
theory.

In order to compare the relative accuracy of tidal torque theory
predictions to those of ansatz (2), we show the evolution of the relative
68 per cent confidence intervals of lpred/lmeas − 1 in Fig. 4. We recover
here the result that, at z = 0, predictions from tidal torque theory are
only accurate within a factor of ∼2 (fluctuations of the order of
120 per cent). By contrast, we observe that the predictions of ansatz
(2) are accurate within ∼0.5 of the measured angular momentum (for
the largest modifications, l0/lref,0 ∈ [0.25, 4]) and within ∼0.3 (for the
smallest modifications, l0/lref,0 ∈ [0.8, 1.2]) at z = 0. We also observe
that predictions based on our ansatz remain accurate down to a later
time compared to predictions from tidal torque theory. For example,
the relative confidence interval reaches half its final value as early as
z ≈ 2 for tidal torque theory, compared to z ≈ 1 with our ansatz.

4 D ISCUSSION

Our results demonstrate that the angular momentum of Lagrangian
patches can be accurately predicted from the initial conditions, and
allow us to rule out scenarios where it would be driven by chaotic
or stochastic processes. Using the ansatz (2) we have shown that,
for individual Lagrangian patches, the angular momentum can be
predicted from the product of its initial value and a growth rate. We
found the accuracy of our predictions at z = 0 to be between 2 and
4 times better than the accuracy of tidal torque theory, with smaller
modifications leading to more accurate predictions.

Given our findings, we argue that the problem of the origin of the
angular momentum of dark matter haloes can be decomposed into
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two parts. The first issue is that of the origin of angular momentum
growth, which we addressed in this work. Our results show that the
growth rate of individual regions in resimulations can be estimated
accurately from its measured value in a reference simulation. We
interpret this as evidence that the growth rate is an intrinsic property
of a given region and its environment, and that angular momentum
does not result from chaotic processes. One implication for tidal
torque theory is that its accuracy could be improved by predicting
(rather than measuring) this growth rate from an analysis of the
Lagrangian patch in the linear Universe.

The second aspect is the problem of the initial value of the angular
momentum in the linear Universe, i.e. the term l0 in equations (1)
and (2). As was already pointed out by White (1984), Porciani et al.
(2002b), we would need a robust method to draw the boundaries
of the Lagrangian patch to solve this problem. For dark matter
haloes, these two aspects are not independent because the tidal field,
which controls the torquing, and the inertia tensor, which controls
the shape of the Lagrangian patch, are correlated. This remains a
topic for future research, and currently limits the possibility of using
genetic modifications to control the angular momentum of haloes
rather than fixed regions as modifications by construction deform
the Lagrangian patch.

However, we argue that it should be possible to control the angular
momentum of simulated galaxies. The distribution of the angular
momentum of the gas is much more concentrated, and more coherent
radially than the dark matter angular momentum (Danovich et al.
2015). We therefore expect the gas angular momentum to be less
sensitive to deformation of its Lagrangian patch. In particular, galax-
ies that are fed through cold flows are good candidates for testing this
hypothesis. The flows are aligned with the cosmic web which sets
their angular momentum and direction (Danovich et al. 2012; Pichon
et al. 2014), and they feed most of the baryonic angular momentum
to the galaxies (Birnboim & Dekel 2003; Stewart et al. 2017). We
expect the structure of the cosmic web to be only marginally impacted
by genetic modifications (Stopyra et al. 2020), giving us a potential
lever for controlling the angular momentum in the flows, and hence in
the infalling gas. In the future, we will apply genetic modifications
to study of the origin of angular momentum in galaxies, and how
different angular momentum acquisition histories lead to different
galactic properties, such as their morphology or disc structure.
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et al. (2016), Rey & Pontzen (2018), Stopyra et al. (2020) for a more
formal derivation of the genetic modification method.

Let us suppose we have initial conditions with values on a regular
grid f(i), where i is the index of each cell, drawn from a Gaussian
random field with covariance matrix C.

We can represent any linear function of the field as u · f = d .
Modifications of the initial conditions can be found by updating
f → f ′ to satisfy the requirement

u · f ′ = d ′, (A1)

where f ′ has the same power spectrum as f and d
′

is an arbitrary
value. In general, equation (A1) does not admit a unique solution. The
genetic modification technique ensures unicity by further requiring
f ′ to minimize the χ2 distance to the original field, i.e. to minimize
( f ′ − f )TC−1( f ′ − f ). Note that f may be the density field δ or
the potential field φ.

In order to generate the initial conditions of the resimulations
presented in Section 2, we implemented angular momentum modi-
fications in GENETIC . Given equation (A1), this requires computing
the three vectors ui (where i = 1, 2, 3 for x, y, and z directions,
respectively), such that ui · f = li,0, where li,0 is the i-th component
of the specific angular momentum in the initial conditions. For a given
Lagrangian patch �, we can compute the specific angular momentum
in the initial conditions using linear theory, as detailed in Section A.
Equation (B10) shows in particular that the initial specific angular
momentum can be computed from the reduced potential field φ.

To do so, our algorithm first computes the reduced potential φ on
a regular grid, from the overdensity δ. We achieve this by solving
the Poisson equation in Fourier space. Without loss of generality, let
us focus on the particular case of the angular momentum in the z

direction. Its value on a regular grid can be derived from equation
(B10) as

lz,0 ∝
∑

i

[(
q (i)

x − q̄x

)∇yφ
(i) − (

q (i)
y − q̄y

)∇xφ
(i)
]
, (A2)

where i runs over all the cells in �, q̄ is the centre of mass, and
we obtain the value of ∇xφ

(i) using a fourth-order finite difference
method. We then find the linear operator uz such that uz · φ = lz,0,

Figure A1. Sketch of the angular momentum operator in the z direction. The
operator acts on the reduced potential φ. For each cell in the grid (the current
one is highlighted in light blue, at position q ′

x = qx − q̄x and q ′
y = qy − q̄y ),

we add the value shown on the sketch to the weight of the operator in the
neighbouring cells. Here a ≡ 1/12 and b ≡ −2/3 are the coefficient of the
fourth-order finite-difference scheme, and d is the grid spacing. The action of
the operator on the potential φ yields for each cell (q ′

x∇yφ − q ′
y∇xφ) which,

once summed over all cells in �, yields equation (A2). This can be easily
generalized to the two other directions.

where φ is a vector containing the values of the potential in all cells
of �. To do so, we loop over all cells in � and update the value of uz

as illustrated on Fig. A1. Once computed, the value of uz can readily
be used to modify the angular momentum using the code GENETIC.

We have used this algorithm to generate the initial conditions in
our suite of resimulations presented in Section 2.

APPENDI X B: D ETAI LS OF TI DA L TORQU E
T H E O RY

In Section 3, we compared the prediction from tidal torque theory,
equation (1), to those relying on resimulations with modified initial
conditions, equation (2). For the sake of completeness, we provide
here a short rederivation of tidal torque theory , following broadly
the lines of White (1984). To do so, let us first consider a Eulerian
patch γ . Its angular momentum about the centre of mass, located at
comoving position x̄ reads

L = a5
∫

γ

d3 xρ(x − x̄) × v, (B1)

where x is the comoving position, v is the peculiar velocity, a is
the expansion factor, and ρ is the density. Using the fact that a3ρ =
a3

0 ρ̄0(1 + δ), with δ the overdensity, a0 the initial expansion factor,
and ρ0 the initial expansion density, we can express the angular
momentum as

L = a2ρ̄0a
3
0

∫
γ

d3 x(1 + δ)(x − x̄) × v. (B2)

We can relate the comoving Eulerian position and velocity of a
particle to its initial Lagrangian position plus a displacement,

x(q, t) = q + S(q, t), v(q, t) = ∂S(q, t)

∂t
. (B3)

When the displacement is small, the mapping is reversible and the
flow is laminar. Under this assumption, we can write the mass
conservation equation as

d3 x(1 + δ) = d3 q, (B4)

so that equation (B2) becomes

L = a2ρ̄0a
3
0

∫
�

d3 q(x − x̄) × v, (B5)

where � is the Lagrangian region corresponding to the Eulerian
region γ . Note that this equation is exact in the laminar regime.

We can further simplify equation (B5) using the Zel’dovich
approximation (Zel’Dovich 1970). In particular, we will assume
that the proportionality factor between the velocity potential and the
gravitational potential φ(q, t), which holds in the linear regime for
the growing mode of density fluctuations δ ∝ D(t), can be extended
into the mildly non-linear regime. This allow us to write in the mildly
non-linear regime

S(q, t) = −D(t)∇φ(q), (B6)

where φ is the solution to the (reduced) Poisson equation ∇2φ =
δ. Plugging equation (B6) into equation (B5), we finally obtain an
expression for the angular momentum

L = −a2Ḋρ̄0a
3
0

∫
�

d3 q(q − q̄) × ∇φ, (B7)

where Ḋ ≡ ∂D/∂t . We can obtain the specific angular momentum l
by diving equation (B7) by the mass ρ0a

3
0V� enclosed in the region
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with Lagrangian volume V� = ∫
�

d3 q, to obtain

l(t) = −a2Ḋ

V�

∫
�

d3 q(q − q̄) × ∇φ. (B8)

We can split this into a time-dependent part and a space-dependent
part as

l(t) = l0fTTT(t). (B9)

The initial value of the specific angular momentum l0 is given by

l0 ≡ −a2
0Ḋ0

V�

∫
�

d3 q(q − q̄) × ∇φ, (B10)

and the angular momentum growth rate is given by

fTTT(t) ≡ a(t)2Ḋ(t)

a2
0Ḋ0

. (B11)

Note that White (1984) suggested to further simplify equation (B10)
using a Taylor development of the potential about the centre of the

patch. This allows us to express the initial specific angular momentum
in terms of the density and potential fields only, independently

of �, but at the cost of a decreased accuracy. In this paper, we
compared predictions of the angular momentum with known initial
values, and therefore did not follow this route. The expression of
equation (B10) resembles the ‘spin from primordial inner motions’
concept (Neyrinck et al. 2020). In this formulation, the initial angular
momentum is expressed as a function of the potential gradient,
or equivalently of the peculiar velocity field in the Zeldovich
approximation.

In Section 2, tidal torque theory’s prediction (equation 1) was
derived by taking the norm of both sides of equation (B9). The form
of the latter equation also suggests ansatz (2), where we replaced
fTTT with the measured growth rate in simulations, lref(z)/lref,0.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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