
A&A 647, L5 (2021)
https://doi.org/10.1051/0004-6361/202039560
c© ESO 2021

Astronomy
&Astrophysics

LETTER TO THE EDITOR

When tension is just a fluctuation

How noisy data affect model comparison

B. Joachimi1, F. Köhlinger2, W. Handley3,4, and P. Lemos1

1 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
e-mail: b.joachimi@ucl.ac.uk

2 Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
3 Astrophysics Group, Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
4 Kavli Institute for Cosmology, Madingley Road, Cambridge CB3 0HA, UK

Received 30 September 2020 / Accepted 10 February 2021

ABSTRACT

Summary statistics of likelihood, such as Bayesian evidence, offer a principled way of comparing models and assessing tension
between, or within, the results of physical experiments. Noisy realisations of the data induce scatter in these model comparison
statistics. For a realistic case of cosmological inference from large-scale structure, we show that the logarithm of the Bayes factor
attains scatter of order unity, increasing significantly with stronger tension between the models under comparison. We develop an
approximate procedure that quantifies the sampling distribution of the evidence at a small additional computational cost and apply it to
real data to demonstrate the impact of the scatter, which acts to reduce the significance of any model discrepancies. Data compression
is highlighted as a potential avenue to suppressing noise in the evidence to negligible levels, with a proof of concept demonstrated
using Planck cosmic microwave background data.

Key words. methods: data analysis – methods: statistical – cosmology: observations – cosmic background radiation –
gravitational lensing: weak

1. Introduction

Binary decisions inevitably have to be made at the conclu-
sion of a physical experiment. These include whether or not a
feature has been detected significantly, which model describes
the data better, and whether datasets (or subsets thereof) are
consistent with each other or are in ‘tension’, which could be
a potential indicator for new physics not incorporated in the
model.

Traditionally, hypothesis tests were the statistical tools
of choice to answer these questions. With the advent of
high-performance computing, Bayesian techniques building on
Bayesian evidence have risen in popularity (e.g. Jaffe 1996;
Kunz et al. 2006; Marshall et al. 2006; see Trotta 2008 for
a review). In cosmology, discrepancies in the ∼3−5σ range
between high-redshift observations – primarily the cosmic
microwave background (CMB), as constrained most accurately
by the Planck mission; Planck Collaboration VI 2020 – as well
as various probes of the low-redshift universe in the mea-
surement of the Hubble constant (e.g. Riess et al. 2016, 2018,
2019; Wong et al. 2020) and the amplitude of matter den-
sity fluctuations (e.g. Joudaki et al. 2017, 2020; Abbott et al.
2018; Asgari et al. 2020; Heymans et al. 2021) have recently
emerged (cf. Verde et al. 2019 for an overview). This has
spurred a flurry of work on approaches to quantifying ten-
sion and performing model comparison (e.g. Verde et al. 2013;
Seehars et al. 2014; Lin & Ishak 2017; Charnock et al. 2017;
Köhlinger et al. 2019; Handley & Lemos 2019a; Nicola et al.
2019; Adhikari & Huterer 2019; Raveri & Hu 2019).

What these methods have in common is that they infer a sin-
gle scalar that is then compared against a predefined scale to
judge significance. In Bayesian statistics, the tension measure is
conditioned on the observed data. The posterior probability of
the parameters, p, of a model, Mi, for measured data, d, is

Pr(p|d,Mi) =
1
Zi

Pr(d|p,Mi) Pr(p|Mi) , (1)

where Pr(d|p,Mi) is the likelihood and Pr(p|Mi) the prior on the
model parameters. The Bayesian evidence, or marginal likeli-
hood, is the normalisation given by

Zi ≡ Pr(d|Mi) =

∫
dm p Pr(d|p,Mi) Pr(p|Mi) , (2)

where m denotes the number of parameters. For a given dataset,
Zi reduces to a non-stochastic scalar that attains larger values
the more likely the realisation of the data is under model Mi, and
the more predictive the model is (as a more flexible model could
accommodate many possible forms of the data).

However, a physical experiment generally does not take
acquired data as a given, but rather interprets them as a stochas-
tic realisation of an underlying truth that we wish to approxi-
mate by our model. A different realisation of the data leads to
a different value for Zi, which could alter our decision on ten-
sion or consistency. In this view, statistical uncertainty in the data
turns the evidence (or any related tension and model comparison
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Fig. 1. Illustration of model comparison via evidence and of its associated scatter for a one-dimensional data vector d and two models, Mi with
i = 1, 2, each with a single parameter p. The joint distributions Pr (d, p|Mi) are shown in blue and red shades. The projections of these distributions
onto the parameter and data axes yield the prior Pr (p|Mi) and the evidence or marginal likelihood, respectively (shown in purple and orange for
M1 and M2). An experiment produces the observation d, shown as the solid black line. Conditioning on d yields the posterior Pr (p|d,Mi), shown
in green and brown for M1 and M2. Evaluating the marginal likelihood at d yields Pr (d|Mi), which is used in the model comparison. The dotted
horizontal lines mark the 1σ interval of possible alternative realisations of the data given the best-fit parameter pbest (dashed vertical lines) of either
model. The blue and red boxes show the resulting 1σ range in possible evidence values under M1, which has higher evidence in this case (the
corresponding ranges for M2 are shown as hatched areas).

measure) into a noisy statistic1. Jenkins & Peacock (2011)
argued, based on toy experiments and analytical arguments,
that the thus-inherited statistical uncertainty in Zi is substan-
tial. Ignoring this scatter will therefore lead to over-confident or
incorrect decisions in model comparison.

In this work we quantify the scatter in the Bayesian evidence
and some of its derived tension or model comparison statistics,
affirming the findings of Jenkins & Peacock (2011) in a realistic
cosmological experiment. We devise a computationally efficient
procedure to calculate statistical errors on the evidence, apply
it to an analysis of internal consistency in Kilo Degree Sur-
vey (KiDS) weak lensing data, and explore the impact of data
compression on evidence scatter using Planck CMB data as an
example.

2. Noisy model comparison

Figure 1 illustrates the notion of evidence and its associated
scatter using a Gaussian toy model that is one-dimensional in
both data and parameter space. It builds on Fig. 28.6 of MacKay
(2003). While at the observed data Model 1 has higher evidence
in this example, it is not unambiguously superior because alter-
native realisations of the data under the more probable Model
1 could result in equal or reversed evidence values of Models
1 and 2 instead (see the boxes in blue and red shading)2. We
seek to quantify this statistical uncertainty of the evidence (see

1 This viewpoint will require us to go beyond a purely Bayesian
approach. However, hybrid Bayesian-frequentist methods are common-
place in statistics; see Good (1992) for an overview, as well as Jenkins
(2014).
2 For ease of illustration, the toy model considers the likelihood of
the data conditioned on the best-fit parameter pbest; in our implemen-
tation we take the full posterior into account when drawing new data
realisations.

also Appendix A for a closed-form analytic calculation in the
Gaussian case analogous to Fig. 1).

2.1. Scatter in the evidence and the Bayes factor

The standard statistic to compare two models, i and j, is the
Bayes factor (see Kass & Raftery 1995 for a review),

Ri j ≡
Pr(Mi|d)
Pr(M j|d)

=
Zi Pr(Mi)
Z j Pr(M j)

=
Zi

Z j
, (3)

which, for equal prior probabilities of the models themselves, is
given by the ratio of the model evidence values. Here, Ri j has the
intuitive interpretation of betting odds in favour of model i over
j. We shall assume initially that we know the true underlying
model, Mtrue, including its parameters, ptrue, that generates the
data we observe, which need not coincide with those from either
Mi or M j. Then the probability density of the Bayes factor is
given by

Pr(Ri j|Mtrue) =

∫
dnd′ Pr(Ri j|d′) Pr(d′|Mtrue) , (4)

where n is the dimension of the data vector, Pr(d|Mtrue) is the
true likelihood of the data, and Pr(Ri j|d) is the distribution of Ri j
for a given dataset, which we shall assume to be deterministic.
Hence, if the true likelihood is known, we can proceed as follows
to create a distribution of Ri j: (i) generate samples of the data
from the true likelihood, and (ii) calculate the Bayes factor for
each sample according to Eqs. (2) and (3).

As a realistic example, we chose a recent cosmological anal-
ysis of tomographic weak lensing measurements by the KiDS
survey (KiDS-450; Kuijken et al. 2015; Hildebrandt et al. 2017).
We worked with a simulated data vector that, like the real data,
has size n = 130 and depends in a highly non-linear way on
seven model parameters (five cosmological parameters of a flat
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Fig. 2. Joint distribution of the evidence calculated under two models
(the mock KiDS cosmology analysis for a joint [Model 0] and a split
[Model 1] data vector). The arrow indicates the direction of the increas-
ing Bayes factor, ln R01, with the red line marking the true value of R01.
Black points correspond to the inferences from 100 noise realisations
of the mock data vector, evaluated on the full nested sampling analysis,
and the blue points correspond to the χ2

min approximation from Sect. 3.
Contours show the Gaussian kernel density approximation of the distri-
bution based on the black points.

ΛCDM model, plus two parameters describing the astrophysical
effects on the observables). It was assumed that the data have a
Gaussian likelihood with a known and fixed covariance. To per-
form an internal consistency test, we created two copies of the
parameter set and assigned one copy to the elements of the data
vector that is dependent on tomographic bin no. 3 and the other
copy to the remaining elements. The model comparison is then
between the analysis with the original set of model parameters
(Model 0) and that with the doubled parameter set (Model 1).
Details regarding the methodology and analysis are available in
Köhlinger et al. (2019) and Appendix B of this Letter.

We generated 100 realisations of the data vector from the
true likelihood, evaluated at a fiducial choice of the parameters.
For each simulated data vector, we repeated a full nested sam-
pling analysis of both models (0 and 1) and inferred the evidence
(see Appendix B for an assessment of the robustness of the sam-
pling algorithms). By default, we did not introduce any system-
atic shift into our simulated data; as such, strong concordance is
expected as the outcome of the tension analysis.

The resulting distribution of evidence values is shown in
Fig. 2. We computed the true value of the Bayes factor by re-
running the analyses for a noise-free data vector generated for
the fiducial parameter values. The two evidence distributions
are each consistent with being lognormal3, each with a standard
deviation in the log of 7.9. The evidence is strongly correlated
(Pearson correlation coefficient 0.99), which is plausible as the
scatter derives from the same noisy data realisation, with both
models yielding good fits.

Due to the strong correlation, the distribution of the Bayes
factor is narrower, with σ(ln R01) ≈ 1.25 (see Fig. 3 for its dis-
tribution). We also observe skewness in ln R01 (already visible in
Fig. 2), which causes the mean to be lower relative to the true
value by ∼1σ. We do not find evidence that the skewness is due
to numerical issues and so ascribe it to the non-linearity of the
models; this means that this feature will be strongly dependent

3 For a Gaussian likelihood, lnZ is expected to be χ2-distributed.

Fig. 3. Probability density of the Bayes factor, ln R01, shifted to have its
true value at 0. The black curve is the distribution of ∆ ln R01 extracted
from the full nested sampling analysis, and the blue curve is the distri-
bution extracted from the χ2

min approximation from Sect. 3. The green
curve corresponds to the highly discrepant case of one of four tomo-
graphic redshift bins being shifted by dz = 0.3. Dotted lines mark the
mean of each distribution.

on the details of the analysis. A value of σ(ln R01) ∼ 1 is in
excellent agreement with the conclusions of Jenkins & Peacock
(2011), although they predicted a normal distribution for ln R01
(see also Appendix A).

2.2. Impact on suspiciousness

By design, the Bayes factor depends on the parameter prior,
which can be a hindrance for tension assessment, as demon-
strated by Handley & Lemos (2019a). They proposed a modi-
fied statistic called ‘suspiciousness’, defined as ln S i j ≡ ln Ri j +
DKL,i − DKL, j, where

DKL,i =

∫
dm p Pr(p|d,Mi) ln

Pr(p|d,Mi)
Pr(p,Mi)

(5)

is the Kullback-Leibler (KL) divergence (Kullback & Leibler
1951; see Lemos et al. 2020 for a generalisation to correlated
datasets, which we consider here). This combination of evidence
and KL divergence is independent of the prior widths, providing
they do not impinge upon the posterior bulk, and may be cali-
brated into a traditional ‘σ tension’ value.

Again assuming a Gaussian likelihood, ln S i j is χ2-
distributed with the degrees of freedom given by the difference in
the effective dimension of the parameter space in the two mod-
els. Handley & Lemos (2019b) propose calculating this effective
dimension as

meff,i = 2
{〈[

ln Pr(p|d,Mi)
]2
〉

p
−

〈
ln Pr(p|d,Mi)

〉2

p

}
, (6)

that is, twice the variance of the log-likelihood evaluated over
the posterior distribution (indicated by the subscript ‘p’).

We extracted ln S i j from the output of our nested sampling
analysis and determined the scatter of meff from the sub-sample
variance computed on a posterior sample. The standard devia-
tions of ln R01 and ln S 01 agree to better than 10%; the following
section outlines an argument for why the distributions of R and
S are expected to be very similar. The standard deviation of meff
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is of the order of 10% and can be treated as being uncorrelated
with S (correlation coefficient −0.17).

There are two obstacles to using the above approach on real
data: (i) repeating full likelihood analyses that include evidence
calculations many times to build a sample is prohibitively expen-
sive, and (ii) we do not know the true likelihood to generate sam-
ples of the real data. We will address both these points in Sects. 3
and 4.

2.3. Strong tension case

To investigate a case of strong tension, we inserted a large shift,
dz = 0.3, into the mean redshift of tomographic bin no. 3 of the
simulated data vectors and repeated the analysis4. In this case
the alternative model 1 is clearly preferred (ln R01 ≈ −23). The
impact on the distribution of ln R01 is dramatic, as can be seen
from Fig. 3. While the skewness and corresponding discrepancy
between the mean and true values persist, the standard deviation
increases to 7.3, spanning more than three orders of magnitude
in odds.

This result is driven by an increase in the scatter of the evi-
dence (to 10.8 and 8.5 for models 0 and 1, respectively) and
in particular by their partial de-correlation (correlation coeffi-
cient 0.74). As shown by Jenkins & Peacock (2011), the scatter
in ln Ri j is, to a good approximation, proportional to the typical
difference between the model predictions at the respective best-
fit parameters of the models under comparison (as also shown
in Appendix A). This difference is small in our concordant case
with nested models, deviating from zero only through scatter in
the data. In the dz = 0.3 case, the best fits of the models now lie
far apart; this enlarges the scatter and propagates the noise dif-
ferently into the evidence for models 0 and 1, thereby reducing
their correlation.

3. A fast approximate algorithm

We now consider the Laplace approximation of the log-
likelihood (we dropped the explicit dependence on the model
for simplicity)5,

ln Pr(d|p) ≈ ln Pr(d|p0) −
1
2

(p− p0)τ F(p0) (p− p0) , (7)

where we expanded around the maximum of the log-likelihood
at p0 and introduced the Fisher matrix,

Fαβ = −

〈
∂2 ln Pr(d|p)
∂pα ∂pβ

∣∣∣∣∣∣
p0

〉
, (8)

as the negative expectation of the Hessian of the log-likelihood
at p0. With this approximation the evidence reads

Z ≈
(2π)m/2 Pr(d|p0)√

det F(p0) Vprior
, (9)

where we additionally assumed that the prior is uninforma-
tive (i.e. the bulk of the likelihood lies well within the vol-
ume covered by the prior, denoted as Vprior). Considering a

4 We employ the fast approximate algorithm detailed in Sect. 3.
5 We thank our referee for pointing out that this assumption has a more
principled grounding, in that it maximises the entropy in the absence of
further information on the form of the likelihood.

Gaussian likelihood, such that Pr(d|p0) ∝ e−
1
2 χ

2(p0), one finds
(cf. Handley & Lemos 2019a)

lnZ ≈ const. − ln Vprior −
1
2

ln det F(p0) −
1
2
χ2(p0) and (10)

DKL ≈ ln Vprior −
m
2

(1 + ln 2π) +
1
2

ln det F(p0) . (11)

We see that the only source of scatter is due to the best-fit param-
eter set p0, which varies with the noise realisation of the data.
If we further assume that the curvature of the likelihood does
not vary strongly as the best-fit position moves, only the last
term in Eq. (10) is relevant for the statistical uncertainty in lnZ,
while DKL is robust to the scatter. Since lnZ + DKL ≈ const. −
χ2(p0)/2, ln S has identical noise properties to lnZ under these
assumptions.

Equipped with these considerations, we propose the follow-
ing algorithm: (i) perform a single full likelihood analysis and
determine fiducial evidence values, Zfid; (ii) generate samples
of the data from the likelihood; (iii) determine the maximum of
the likelihood, or equivalently χ2

min, for each sample6; and (iv)
derive samples of the evidence via

lnZapprox,i := lnZfid −
1
2

(
χ2

min,i − χ
2
min,fid

)
. (12)

Following this procedure with 100 samples results in the blue
points shown in Fig. 2 and the blue distribution in Fig. 3. Apart
from sampling noise in the tail, we recover the true distribution
well, with the mean and variance in agreement within ∼10%.
The change from a full exploration of the posterior, which typi-
cally runs in hours to days, to a maximisation of the likelihood,
which usually takes minutes to hours, makes exploring the noise
properties of the Bayesian evidence and its derived quantities
feasible.

4. Evidence samples from real data

When analysing real data, the true likelihood Pr(d′|Mtrue) found
in Eq. (4) needed to generate new copies of the data vector is
unavailable. Our best guess for this truth is the best-fitting model,
which itself carries uncertainty as it is inferred from the data. In
this case we can make use of the posterior predictive distribu-
tion (PPD; Gelman et al. 1996), Pr(d′|d,Mk), which yields new
samples of the data d′ for a given observation d assuming model
Mk (see Trotta 2007 for a very similar application of the PPD).
Averaging over all models using the posterior model probabili-
ties Pr(Mk |d) from Eq. (3) then yields

Pr(d′|Mtrue) ≈ Pr(d′|d) =
∑

k

Pr(d′|d,Mk)Pr(Mk |d) . (13)

The algorithm presented in Sect. 3 therefore only needs to be
adjusted in Step (ii), where instead of generating data realisa-
tions from the true likelihood in the mock scenario, they are now
produced from the PPD via random selection of a subset of pos-
terior samples and evaluation of the likelihood at the parameter
values corresponding to these samples.

In practice, we simplified the approach by choosing the
model that yields the higher evidence to produce the PPD sam-
ples rather than full model averaging. If both models have similar
evidence, this choice should have little impact; if the evidence
ratio is large, the model with higher evidence is more accu-
rate and/or more predictive (cf. the solid and hatched regions
in Fig. 1).
6 In practice, we obtain the minimum χ2 within the wide prior ranges
of the parameters.
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Fig. 4. Tension statistics for the case of KiDS-450 internal consistency
with respect to tomographic bin no. 3. Shown are the Bayes factor
ln R01, with odds ratios, as well as the suspiciousness ln S 01, with ten-
sion significance, in multiples of the width of an equivalent Gaussian,
σ. The smaller red and black error bars are the errors associated with
the nested sampling, while the larger orange and grey error bars are the
statistical errors derived in this work. Red bands show the statistical
uncertainty in determining the σ-levels for ln S 01.

5. Application to KiDS-450 internal consistency

We then inserted the real KiDS-450 data vector into our anal-
ysis and generated ten PPD samples from the joint Model 0 as
this yields significantly higher evidence than the split model. The
derived standard deviations of ln R and ln S are shown in Fig. 4.
These statistical errors far exceed the typically quoted ‘method’
errors, which derive from the finite sampling of the posterior.
The interpretation of the suspiciousness acquires an additional,
albeit smaller, source of error through the effective model dimen-
sion, meff , that determines the σ-levels.

The noise in the tension statistics leads to a more conserva-
tive evaluation of discrepancies in the data. While the point esti-
mate suggests tension at 1.6σ, this reduces to 1.1σ if we require
that all but 16% (i.e. the one-sided tail beyond 1σ of a normal
distribution) of possible realisations of the data are discrepant
by at least that level. Visually, this corresponds to the upper 1σ
error of ln S almost touching the lower limit of the 1σ band in
Fig. 4.

6. Benefits of data compression

Planck CMB data are at the centre of both current major
tension controversies in cosmology. A practical obstacle to
applying our formalism is the complexity of the Planck tem-
perature likelihood, which is assumed to be Gaussian only for
` > 30 and builds on pixelised sky maps on larger scales
(Planck Collaboration V 2020). This makes drawing PPD sam-
ples challenging. However, Prince & Dunkley (2019) recently
showed that the low-` likelihood can be efficiently compressed
into two Gaussian-distributed band powers. They proceeded to
apply maximal, linear compression (using the Multiple Opti-
mised Parameter Estimation and Data or MOPED scheme,
Tegmark et al. 1997; Heavens et al. 2000) to the full temperature
likelihood and demonstrated it to be nearly lossless. This is not
unexpected since the cosmological sampling parameters in CMB
analyses are chosen to be close to linear and to be Gaussian-
distributed (Kosowsky et al. 2002).

There is an additional motivation to apply data compres-
sion: It can suppress scatter in the Bayesian evidence. Under the
assumptions outlined in Sect. 3, the statistical properties of lnZ
are driven by the distribution of χ2(p0) (i.e. the minimum χ2; cf.
Eq. (10)). If the data are approximately Gaussian and well fitted
by a model whose parameters are close to linear, χ2(p0) follows
a χ2-distribution with Nd.o.f. = n −m degrees of freedom, so that
Var(lnZ) = 2Nd.o.f.. Data compression decreases n and can yield
Nd.o.f. ≈ 0 in the maximal case, that is, evidence becomes essen-
tially noise-free because a good model with n linear parameters
perfectly fits n compressed data. Appendix A demonstrates this
explicitly for the Gaussian case.

This may seem paradoxical because compression can at best
preserve information, raising the question of how it can facil-
itate a more precise determination of evidence. In the context
of Fig. 1, compression reduces the scatter between the model
parameter and the data, so that for a given parameter the data
vary little and thus the evidence is known precisely. Conversely,
a broad likelihood and/or a high-dimensional data vector lead(s)
to large variations in possible realisations of data. While this
has no bearing on the posterior, and therefore on the informa-
tion content, it increases the probability that a certain level of
tension or model preference is owed to a particularly (un)lucky
noise realisation of the data vector and does not reflect a physical
trend.

As a proof of concept, we adopted the Prince & Dunkley
(2019) approach, using the provided software7, and compressed
the Planck temperature anisotropy power spectra into the six
cosmological parameters of a spatially flat ΛCDM model (nui-
sance parameters are marginalised over pre-compression). We
then determined the χ2

min for the compressed real data, as well as
for new data realisations generated from the compressed likeli-
hood. We find an extremely small χ2

min (≈ 1.4×10−8) for the real
data and similar values for the noise realisations, with a standard
deviation of 4.4 × 10−9. Hence, practically noise-free evidence
measurements from Planck are indeed possible.

7. Conclusions

We studied the impact on model comparison statistics if these
are to be interpreted based on the ensemble of possible observa-
tions rather than a single observed realisation of the data. In this
setting they become noisy quantities, which affects binary deci-
sions on signal detection, model selection, and tension between
experiments. Confirming earlier analytic arguments, we found
standard deviations of order unity for the logarithm of the Bayes
factor and the suspiciousness statistic, with substantially broader
distributions in the case of strong discrepancies between the
models under comparison. We expect these conclusions to apply
to most, possibly all, informative tension metrics available in the
literature as they typically depend on the maximum likelihood or
χ2-like expressions.

We proposed a method to approximate the probability distri-
bution of the evidence via repeated draws of mock data from the
likelihood, with the maximum likelihood for each mock dataset
then obtained, that will add negligible computation time to a
full exploration of the posterior distribution. Conclusions drawn
from noisy model comparison measures inevitably become more
conservative, for example, the tension significance according to
the suspiciousness for an internal consistency analysis of KiDS
weak lensing data reduces from 1.6σ in the traditional approach
to 1.1σ when scatter is accounted for. While in this application

7 https://github.com/heatherprince/planck-lite-py
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the two models under comparison were nested, our formalism
and conclusions also hold for the more general case in which
parameter spaces differ.

Finally, we demonstrated that data compression suppresses
the impact of noisy data on the evidence, in the case of Planck
CMB constraints to negligible levels. In light of this, the follow-
ing pre-processing steps are beneficial before any form of model
comparison: (i) compress the data vector as much as possible as
long as the compression is essentially lossless; and (ii) choose
a parametrisation such that the model is close to linear in the
parameters (see e.g. Schuhmann et al. 2016), which increases the
chances of achieving a near-perfect fit for any noise realisation
of the data.
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Appendix A: The complete Gaussian case

If we assume that an experiment produces a single observation
of n data points8 drawn from a Gaussian distribution about some
true mean d̄ with covariance C,

ln Pr(d) = −
1
2

ln |2π C| −
1
2

(d − d̄)τC−1(d − d̄) . (A.1)

In general we do not know d̄ but design a model, M, that param-
eterises the data by some function f (p), with m � n parame-
ters, in the hope that the true data are well approximated by our
model. Assuming a given model, the likelihood becomes

ln Pr(d|p,M) = −
1
2

ln |2π C| −
1
2

[
d − f (p)

]τ
C−1 [

d − f (p)
]
.

(A.2)

A likelihood can often be approximated as a Gaussian in the
parameter space,

ln Pr(d|p,M) = ln Lmax −
1
2

(p− µ)τ Σ−1(p− µ), (A.3)

with mean µ and covariance Σ, and the corresponding log-
evidence reads

lnZ ≡ ln Pr(d|M) = ln Lmax + ln
√
|2πΣ|

Vprior
, (A.4)

where Vprior is the volume of a uniform prior fully encompass-
ing the posterior. One can make the link between Eqs. (A.2)
and (A.3) explicit by assuming that we can model our function
f as linear in the region of parameter space around p∗ where the
likelihood is significantly non-zero,

f (p) ≈ f (p∗) + ∇ f (p∗) (p− p∗) =: d̂ + J (p− p∗) , (A.5)

from which one can identify

ln Lmax = −
1
2

ln |2π C| −
1
2

(d − d̂)τC̃−1(d − d̂) and (A.6)

Σ−1 = JτC−1J; µ = p∗ + ΣJτC−1(d − d̂) , (A.7)

where we defined

C̃−1 := C−1 − C−1JΣJτC−1. (A.8)

As an aside, Eq. (A.7) shows that noisy data realisations affect
the posterior mean but not its covariance. In other words, while
the posterior shape is unaffected, the distribution moves as a
whole in parameter space with different realisations of the data.

From the above expressions we can immediately see that
the evidence is quite a noisy statistic, driven by the second
term in Eq. (A.6). Taking the variance of Eq. (A.4) after insert-
ing Eq. (A.6) and assuming that d follows the distribution of
Eq. (A.1) yields

Var(lnZ) =
1
2

Tr
[
(C̃−1C)2

]
+ (d̄ − d̂)τC̃−1CC̃−1(d̄ − d̂) . (A.9)

The first term here is equal to 1
2 (n − m), and hence the variance

in the raw evidence is large for n � m, even in the event of a
good fit to the data (i.e. d̂ ≈ d̄). We also see that in the case of

8 Equivalently, one could consider a data vector that has been averaged
over multiple observations.

heavily compressed data, n ∼ m, the evidence scatter reduces
considerably.

To derive the expression (A.9), as well as some of the fol-
lowing equations, it is helpful to note that for a Gaussian-
distributed variable x with covariance C centred on zero
(Petersen & Pedersen 2012),

〈(x − a)τA(x − a)〉 = Tr [AC] + aτA and

Cov [(x − a)τA(x − a), (x − b)τB(x − b)] = 2 Tr [ACBC] + 4bτBCAa ,
(A.10)

where A and B are symmetric matrices, and a and b are arbitrary,
non-stochastic vectors.

We are of course really interested in how model compari-
son (i.e. a difference in evidence) scatters with noisy data, so we
introduced two models, one with with d̂1 and J1 and one with
d̂2 and J2

9, and asked what the variance in their evidence dif-
ference is. Under the true distribution of Eq. (A.1), we find that
the log Bayes factor (under the same assumptions as in Eq. (3)),
ln R12 = lnZ1 − lnZ2, has a mean

〈ln R12〉 =
1
2

(d̄ − d̂2)τC̃−1
2 (d̄ − d̂2) −

1
2

(d̄ − d̂1)τC̃−1
1 (d̄ − d̂1)

+
1
2

Tr [∆] + ln

√
|2πΣ1|Vprior,2
√
|2πΣ2|Vprior,1

, (A.11)

(see also Lazarides et al. 2004; Heavens et al. 2007 for similar,
less general expressions) and a variance

Var(ln R12) =
1
2

Tr
[
∆2

]
+ (∆ d̄ − δ)τC−1(∆ d̄ − δ) , (A.12)

where we defined

∆ := C(C̃−1
2 − C̃

−1
1 ) ; δ := C(C̃−1

2 d̂2 − C̃
−1
1 d̂1) . (A.13)

The mean in Eq. (A.11) has three portions: a set of misfit terms
on the first line, a constant trace term equal to 1

2 (m1 − m2), and
an Occam factor. The trace contribution can be understood as a
typically small modification of the Occam factor.

In the variance (Eq. (A.12)), there is a trace term that is
roughly the dimensionality of the parameter space(s) ≤ 1

2 (m1 +
m2), as well as a data misfit term. The trace term is always
present, representing the ‘order unity’ term for the general Gaus-
sian case, but can reduce towards zero (via a cross-term that
is dependent on both models), getting closer to zero the more
similar the two model parametrisations (as quantified by J) are
to each other. As opposed to the variance of the evidence (cf.
Eq. (A.9)), the trace term in the variance of the Bayes factor
does not depend on n, so if n � m, the scatter in R12 is signif-
icantly smaller than the scatter in either Z1 or Z2 if the data is
well fitted. This is the situation we encountered in Fig. 2.

The second term can be small if the models are good, but
can also become arbitrarily large, which corresponds to the scat-
ter seen in Fig. 3. It should be noted that in the event of large
misfits, the mean and variance are both of the same order, which
gives a Poisson-type evidence error associated with measure-
ment noise. This is reassuring as it means the evidence in the-
ory becomes relatively less noisy the larger it becomes. We note
that if Eq. (A.5) is a reasonable approximation, provided one can
compute (by numerical derivatives or otherwise) the Jacobian
J, one may use Eq. (A.12) to evaluate the expected scatter, for

9 In general, the models under comparison do not need to share any
part of their parameter space, in which case the pivot p∗ in Eq. (A.5)
could also differ.
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example by employing the observed data vector as an estimate
of the true d̄.

Finally, we offer some illustration for the use of informa-
tion regarding the sampling distribution of the Bayes factor (such
as the variance of Eq. (A.12)) by invoking the popular analogy
with betting odds. Rather than placing one’s bets based on a sin-
gle measure of the odds conditioned on some observation, it is
beneficial to take the scatter of these odds into account, even if
the scatter is built upon an imperfect model and noisy data. The
scatter might indicate that a different outcome has a substantial
probability, and hence it would be wise to invest one’s money
more cautiously.

Appendix B: Details of the likelihood analysis

For most of our analyses we employed simulated and real data
from the KiDS-450 analysis (Hildebrandt et al. 2017)10. We also
adopted their five-parameter ΛCDM cosmological model with
spatially flat geometry and used the same set of priors. The
sample parameters are the amplitude of the primordial power
spectrum ln(1010As), the current value h of the Hubble param-
eter divided by 100 km s−1 Mpc−1, the cold dark matter density
Ωcdmh2, the baryonic matter density Ωbh2, and the power-law
exponent of the primordial power spectrum ns. In addition to
these key cosmological parameters, we varied the free ampli-
tude parameters of the intrinsic alignment and baryon feedback
models, AIA and Abary. The implementation of the inference
pipeline is that presented in Köhlinger et al. (2019)11, which is
independent of, but in excellent agreement with, the analysis of
Hildebrandt et al. (2017).

We opted for nested sampling (Skilling 2006) to explore
the posterior distribution as the most efficient way to simul-
taneously evaluate high-dimensional likelihoods and calcu-
late Bayesian evidence. To avoid significant algorithm-induced
scatter in the evidence values, we checked three variants of
nested sampling algorithms for their consistency. We use MULTI-

NEST12 (Feroz & Hobson 2008; Feroz et al. 2009, 2019) and POLY-

CHORD13 (Handley et al. 2015a,b), which primarily differ in the
key step of how new ‘live’ sampling points are drawn at each
likelihood contour. Moreover, we considered an importance-
sampled determination of the evidence in MULTINEST that utilises
the full set of generated sample points and can achieve higher
accuracy (Feroz et al. 2019). For MULTINEST, 1000 live points
were used with a sampling efficiency of 0.3 and a final error
tolerance on the log-evidence of 0.1. Live points for POLYCHORD

runs were 25 times the number of parameters (seven for Model 0;

10 The data are publicly available at http://kids.strw.leide
nuniv.nl/sciencedata.php.
11 Likelihood pipelines available in MONTE PYTHON, https:
//github.com/brinckmann/montepython_public (Audren et al.
2013; Brinckmann & Lesgourgues 2019), and from https://
github.com/fkoehlin/montepython_2cosmos_public.
12 Version 3.8 from http://ccpforge.cse.rl.ac.uk/gf/pro
ject/multinest/
13 Version 1.16 from https://github.com/polychord/polycho
rdlite

Fig. B.1. Comparison of sampler outputs. Black points correspond to
the evidence of the joint analysis (Model 0), while grey points corre-
spond to split analysis (Model 1) for ten noise realisations measured
from the traditional or importance-sampled approaches of MULTINEST,
as well as from POLYCHORD. Red points display the mean and standard
deviation over these realisations. Blue points show results for a noise-
free data vector.

14 for Model 1) with a final error tolerance on the log-evidence
of 0.001.

Figure B.1 shows evidence values for a KiDS-like noise-free
simulated data vector, as well as for ten realisations with noise
included. It is evident that in all cases, and for both the joint
and split cosmological models, the three nested sampling vari-
ants agree very well with one another, with the residual scatter
at a small fraction of the statistical errors. Our MULTINEST and
POLYCHORD settings were optimised to yield accurate evidence.
However, we note that evidence values are faithfully recovered
as soon as the bulk of the posterior is explored, while credible
regions of the parameters as well as the effective dimension (see
Eq. (2)) are sensitive to the tails of the distribution. Therefore,
when these tail-sensitive quantities are required in high-stakes
real-data applications, we recommend increasing the accuracy
settings of the nested sampling runs.

The χ2 minimisation for the approximate method was per-
formed with the built-in MONTE PYTHON maximum likelihood
determination, with a precision tolerance of 10−9 on the log-
likelihood. With this setup, a minimisation run consumes about
500 times less wall-clock time than full, parallelised sampling
on high-performance computing infrastructure.
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