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h i g h l i g h t s

• A new expression for the entropy of adsorbed dipoles improves current predictions.
• The entropy of long molecules shows a non-monotonic dependence on the coverage.
• The calculation of the entropy of diatomic molecules for any coverage is improved.
• New formula to calculate the entropy of adsorbed dipoles as a function of coverage.
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a b s t r a c t

In the present work we calculate the configurational entropy of an arbitrary number of
dipoles placed on a square lattice. We use a quasi-two-dimensional (Q2D) space to capture
the main features determining the occupation statistics of this system. We show that our
result is in agreement with both, lattice-gas predictions at low coverages and the exact
value derived in the close-packed limit as well.

Therefore our equation provides a substantial improvement to the most recent
calculations based on semiempirical models and Monte Carlo simulations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Accurate analytical or computational calculations of the configurational entropy and free energy are a major issue to
understand the thermodynamics of adsorbates.

Although the adsorption of polyatomic species was addressed long ago, the correct density dependence of the config-
urational entropy of a simple system such as noninteracting dimers on a two-dimensional regular lattice is still unknown.
The only exact results known at present are those published by Kasteleyn [1] and Temperley et al. [2], which are valid in the
close packed limit.

They found that the configurational degeneracy per lattice site was 1.791622812. . . for dimers. This value should be
multiplied by

√
2 in the case of dipoles (2.533737279. . . ).

Approximate methods based on the lattice-gas model that are valid at very low coverages (GD approximation) were
developed [3–5]. More recently, a new EA theory to describe the adsorption of rigid rods was introduced. A semiempirical
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Fig. 1. (a) A 3 × N diagonal array; (b) Three out of the 268 possible arrangements of three dipoles in a 3 × 4 Q2D space.

Table 1
Configurational degeneracyW (k,N) when indistinguishable dipoles are placed in a 3 × N Q2D space for N and k in the range 0–9.

k N
0 1 2 3 4 5 6 7 8 9

0 1
2 1 1 1 1 1 1 1 1 1

1 4 12 20 28 36 44 52 60 68
2 28 116 268 484 764 1,108 1,516 1,988
3 192 1024 3008 6,656 12,480 20,992 32,704
4 1312 8576 30,496 79,872 173,600 332,672
5 8960 69,376 289,280 875,008 2,163,968
6 61,184 547,584 2,617,856 8,978,944
7 417,792 4,243,456 22,872,064
8 2,852,864 32,419,840
9 19,480,576

(SE) model which is a combination of exact calculations in one dimension and the GD approximation at two dimensions was
developed [6–9,5].

In the present work, we calculate the configurational entropy of an arbitrary number of dipoles placed on a square lattice.
We show that our result is in accord with lattice-gas models and Monte Carlo simulations at very low coverages. But, even
more important, it has an uncertainty of 3% with respect to the exact result in the close-packed limit. This fact represents a
substantial improvement with respect to the above-mentioned developments [6,5,7–9,3].

2. Results

The purpose of the present paper is to provide a solution to the configurational entropy when a two-dimensional lattice
space is covered by dipoles.

We use a quasi-two-dimensional (Q2D) space made up of three contiguous diagonals 3 × N , as is shown in Fig. 1(a),
which gives the central sites of the lattice their full coordination number of nearest neighbor compartments. Fig. 1(b) shows
three out of the 268 possible arrangements of two dipoles in a 3 × 4 Q2D space.

In a previous article [10] we used this space to exactly evaluate the configurational degeneracy W (k,N) of an arbitrary
number (k) of dipoles placed on it. We found thatW (k,N) was exactly described by

W (k,N) = 8W (k − 1,N − 1) − 8W (k − 2,N − 2) + W (k,N − 1) . (1)

Table 1 lists the W (k,N) values as a function of k and N in the range 0–9. We note that in Ref. [10] the following initial
conditions were stated: W (0, 1) = 1,W (1, 1) = 4,W (0, 2) = 1,W (1, 2) = 12 and W (2, 2) = 28. From these initial
conditions we can deriveW (0, 0) =

1
2 . It should also be noticed thatW (k,N) = 0 if k < 0 or k > N .

To find the generating function of the diagonal elements of Table 1, we set N = k in Eq. (1) and noting thatW (k,N) = 0
if k < 0 or k > N , we write

W (k, k) = 8W (k − 1, k − 1) − 8W (k − 2, k − 2) . (2)



P.L. Dammig Quiña et al. / Physica A 466 (2017) 435–439 437

Using Zeitlin’s results, Ref. [11], we can find the generating function of Eq. (2) in the following way:

1
2 − 16x + 16x2

=

∞
k=0

W (k, k) xk. (3)

The generating function can also be written in the following way:

1
2 − 16x + 16x2

=
t1

1 − xT1
+

t2
1 − xT2

(4)

where t1 and t2 are constants, and T1 and T2 are the roots of the equation

2x2 − 16x + 16 = 0 (5)

i.e., T1 = 4 + 2
√
2 and T2 = 4 − 2

√
2. The denominator on the left-hand side of Eq. (4) has roots T−1

1 and T−1
2 .

In the limit x → T−1
1 the first term on the right-hand side of Eq. (4) is the only dominant term, whereas in the limit

x → T−1
2 the second term is the dominant one.

Therefore, the constants ti (i = 1 or 2) of Eq. (4) can be determined by taking the limit

lim
x→T−1

i


1

2 − 16x + 16x2
−

ti
1 − xTi


. (6)

Using L’Hospital’s rule we determine ti

ti =
T 2
i

16 (Ti − 2)
.

The generating function, Eq. (4), can be rewritten as:

t1
1 − xT1

+
t2

1 − xT2
=

∞
k=0


t1T k

1 + t2T k
2


xk. (7)

From Eqs. (3) and (7) we see that the diagonal elements are exactly determined by Eq. (8) for any value of k ≥ 0.

W (k, k) = t1T k
1 + t2T k

2 (8)
where ti and Ti values have been defined above, Eqs. (5) and (6). For large values of k the first term on the right-hand side of
Eq. (8) will be the dominant one because T1 > T2 > 1.

Therefore,

lim
k→∞

W (k, k) = lim
k→∞

t1T k
1 (9)

and

lim
k→∞

W (k + 1, k + 1)
W (k, k)

= T1 = 2

2 +

√
2


. (10)

For large values of k, the ratio between consecutive terms tends to T1. From Table 1 we learn that this limit is approached
very fast.

In the close-packed limit the number of occupied sites is 2k. Therefore, the root of order 2k of Eq. (9) is the number of
ways, L (k, k)dipoles, in which a dipole can be placed on the central diagonal of the Q2D lattice space when k = N .

Therefore,

L (k, k)dipoles =

t1T k

1

 1
2k . (11)

And the limit for large values of k is

lim
k→∞

L (k, k)dipoles = T
1
2
1 =


4 + 2

√
2
 1

2
= 2.613125 . . . (12)

because |t1| < 1.
In order to obtain the configurational degeneracy of dimers in the close-packed limit we should divide Eq. (9) by 2k.

Therefore, Eq. (11) for dimers is now written as follows:

L (k, k)dimers =


t1T k

1

2k

 1
2k

. (13)

And the limit for large values of k is

lim
k→∞

L (k, k)dimers =


T1
2

 1
2

=


2 +

√
2
 1

2
= 1.847759 . . . . (14)
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Fig. 2. Configurational entropy per lattice site as a function of coverage θ =
k
N . The circle shows the exact value derived by Kasteleyn [1] and Temperley

et al. [2]. The square shows the exact value for dipoles. The triangles show Monte Carlo simulations for dimers extracted from Ref. [5].

This value is only 3.1% greater than the exact value determined in Refs. [1,2].
Following Eq. (13) we write the configurational degeneracy per lattice site, L (k,N), as follows:

L (k,N) =
2N

W (k,N). (15)

The root index (2N) is equal to the maximum number of lattice sites that can be occupied.
The configurational entropy per lattice site S is

S (dipoles)
kB

=
1
2N

lnW (k,N) (16)

where kB is the Boltzmann constant.
The curve for dimers is obtained from (16) by dividing by 2k.
Fig. 2 shows the S

kB
dependence on the coverage θ =

k
N . The equation for single particles can easily be derived, and is as

follows
S (singles)

kB
= ln


(1 − θ)(θ−1) θ−θ


. (17)

To compute Eq. (16) we used a value of N = 340 because it was the highest value our computers can manage. The differ-
ence between the value obtained by Eq. (12) at full coverage (θ = 1) and the computed one for N = 340 is less than 0.08%.

In Fig. 2 the triangles show Monte Carlo simulations for dimers, based on EA theory and the SE model [5,7–9,6]. This
solution agrees very well with that derived from the GD lattice-gas model for small values of coverage, as is shown and
discussed in Ref. [5]. As the concentration increases, lattice-gas theories underestimate the values of S

kB
. Monte Carlo

simulations provide a more accurate description but the disagreement is still significant for large θ ’s, as can be seen in
Fig. 2 by comparing with the exact result at θ = 1 (circle), derived by Kasteleyn [1] and Temperley et al. [2].

3. Conclusions

The configurational entropy of an arbitrary number of dipoles placed on a square lattice was calculated and compared
with Monte Carlo results for dimmers, and with exact calculations for both dimmers (at θ = 1) and single particles in Fig. 2.

The curve for single particles starts at zero and it is symmetrical with a maximum at θ = 0.5 because of the
indistinguishability between occupied and free sites. This symmetry is broken for long rigid molecules, and the maximum
of the curve shifts to higher values of coverage because the number of possible configurations increases with the number of
molecules in the lattice. In fact, this increase will contribute to the configurational entropy provided there is enough space
on the lattice so that these settings can be made. Eventually, the configurational entropy decreases until θ = 1 because
not all configurations are accessible to high coverages. It is possible to anticipate that as the molecule length increases, the
configurational entropy decreases (for all θ > 0) and the maximum of the curve shifts to higher values of coverage. This
general behavior is verified in simulationsMonte Carlo in Refs. [5,7–9,6], though the simulations underestimate the number
of possible configurations for large θ ’s, leading to the mentioned disagreement in the close-packed limit and whose cause
deserves to be explored.

Our equation gives a very good estimation of S
kB

in the whole range of θ and therefore, it may lead to a better
understanding of the adsorption properties of polyatomic species.
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