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Abstract
In meta-analysis, heterogeneity often exists between studies. Knowledge about study features (i.e., moderators) that can
explain the heterogeneity in effect sizes can be useful for researchers to assess the effectiveness of existing interventions
and design new potentially effective interventions. When there are multiple moderators, they may amplify or attenuate each
other’s effect on treatment effectiveness. However, in most meta-analysis studies, interaction effects are neglected due to
the lack of appropriate methods. The method meta-CART was recently proposed to identify interactions between multiple
moderators. The analysis result is a tree model in which the studies are partitioned into more homogeneous subgroups
by combinations of moderators. This paper describes the R-package metacart, which provides user-friendly functions
to conduct meta-CART analyses in R. This package can fit both fixed- and random-effects meta-CART, and can handle
dichotomous, categorical, ordinal and continuous moderators. In addition, a new look ahead procedure is presented. The
application of the package is illustrated step-by-step using diverse examples.

Keywords Meta-analysis · Heterogeneity · Interaction between moderators · CART · Fixed effect · Random effects ·
Computer software

Introduction

Methodology for synthesizing findings from multiple
studies addressing the same research question has a long
history (Hedges, 1981; Hedges & Olkin, 1985). The typical
goals of meta-analysis are to estimate the overall effect
size (i.e., a weighted average of study effect sizes), to
quantity the heterogeneity in the study effect sizes, and
to investigate the study characteristics that explain the
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heterogeneity (i.e., moderators). The relationship between
moderators and the study effect sizes can be of high interest
for behavioral scientists to evaluate existing interventions
and to design new potentially effective interventions. In
the meta-analysis framework, moderator analysis can be
conducted with several stand-alone software programs
such as Comprehensive Meta-Analysis (Borenstein et al.,
2009), Meta-Analyst (Wallace et al., 2009), and the
Cochrane Collaboration’s RevMan (Collaboration, 2014).
Also, there are add-ins/macros/packages that can be used
to conduct moderator analysis in many software languages
such as Stata (StataCorp 2017, for details, see Sterne et al.
2008), SAS (Inc, 2002, for details, see Wang & Bushman,
1999; Arthur et al., 2001, and Sheu & Suzuki, 2001),
SPSS (IBM Corp, 2013, for details, see Lipsey & Wilson,
2001), andR (Team, 2017), e.g., package rmeta by Lumley,
2012, mvmeta Gasparrini et al. (2012), and metafor by
Viechtbauer (2010)). Most of these programs/add-ins are
based onmeta-regression, which is the most commonly used
method for moderator analysis in meta-analysis.

In practice, behavioral scientific meta-analyses often
have multiple moderators to be examined. For example,
interventions to change health-related behavior generally
include various behavior change techniques (BCTs), and
researchers are interested in investigating the influence of
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BCTs on the effectiveness of interventions (see Michie et al.
2009). However, meta-regression has several limitations in
such cases. First, when the number of included studies is
small, meta-regression suffers from low statistical power
to examine all moderators simultaneously (Tanner-Smith
& Grant, 2018). Second, meta-regression has difficulties
in exploring interaction effects among moderators since it
requires moderators and their interactions to be specified
beforehand.When there are no a priori hypotheses available,
the number of all possible interaction terms are usually too
large to be included in one model. The interaction effects,
however, can provide valuable information to answer
questions such like “do these intervention components
amplify or attenuate each other’s effectiveness?” and
“which combination of study characteristics results in the
highest effectiveness?”.

To overcome the aforementioned limitations, tree-based
models can be integrated into the framework of meta-
analysis. Tree-based methods were introduced for the
first time by Morgan and Sonquist (1963) in a method
called automatic interaction detection (AID), and were fully
developed in classification and regression trees (CART)
by Breiman et al. (1985). Trees are good at dealing with
many predictor variables that may interact, and produce
results that can be easily interpreted. Tree-based methods
have been used in the field of behavioral and medical
sciences (for details, see Finch et al., 2011; Leach et al.,
2016; Trujillano, Badia, Serviá, March, & Rodriguez-
Pozo, 2009), but the idea of using trees in the meta-
analysis framework is relatively new. For individual patient
data (IPD) meta-analyses, Mistry et al. (2018) proposed
a recursive partitioning method called IPD-SIDES that
identifies patient subgroups by individual characteristics
that may be related to the response to intervention. For
aggregated data meta-analyses, a method called meta-CART
was proposed to identify interaction effects among study-
level characteristics (Dusseldorp et al., 2014; Li et al.,
2017; 2019). This paper focuses on moderator analyses
on aggregated meta-analysis by meta-CART. Compared
to meta-regression, meta-CART has several advantages:
first, it excels at dealing with interaction effects, and
the interactions can be easily interpreted; second, it has
automatic variable selection and does not require model
selection; third, it is able to handle non-linear associations
between moderators and effect size. Furthermore, since
tree models are invariant to monotone transformation of
predictors, meta-CART can keep the ordering information
of ordinal moderators, whereas meta-regression usually
codes ordinal variables the same as categorical variables.
Li et al. (2019) showed via a simulation study that with
a sufficiently large sample size (i.e., n ≥ 40 for simple
interactions and n ≥ 80 for complex interactions), meta-
CART has a good control of type I error rate (≤ 0.05), and

can achieve satisfactory power and recovery rates (i.e., ≥
0.80). The meta-CART method has been acknowledged as
a potential alternative statistical method for meta-regression
to understand the combined effects of moderators (O’Brien
et al., 2015; Michie et al., 2015; Tipton et al., 2018), and it
has been applied in several meta-analytic studies (e.g., Bull
et al., 2018; van Genugten et al. 2018).

In the present paper, we introduce the R package
metacart, which implements the meta-CART method.
This package provides user-friendly functions to perform
meta-CART analysis for various types of moderators (i.e.,
continuous, ordinal, and categorical variables), and includes
various additional options such as tuning the pruning of
the tree model, restricting the minimum number of studies
in a subgroup, and so on. In addition, we developed a
new option to apply a “look-ahead” strategy specifically
focusing on interaction detection. This paper aims to
provide a general overview of the capabilities of the
metacart package for conducting multivariate moderator
meta-analysis with R. “Meta-CART method” introduces the
meta-CART method. “The metacart package” describes the
main functions in the metacart package, and “Examples”
illustrates their practical usage with examples of real meta-
analyses. “Conclusions” contains concluding remarks.

Meta-CARTmethod

The goal of meta-CART analysis

The underlying goal of meta-CART analysis is to identify
subgroups defined by the moderators that can explain the
heterogeneity in the study effect sizes. Appropriate data
for meta-CART include an outcome variable of interest
(i.e., study effect size), the within-study sample variance of
the effect size, and the potential moderator variables that
may influence the effect size. Depending on the type of
study, there is a variety of different effect-size measures,
including the odds ratio, the relative risk, the correlation
coefficient, and (the standardized) mean difference. Meta-
CART can deal with all these effect-size measures as
long as all the studies use the same measure1. To identify
influential moderators, meta-CART partitions the studies
into subgroups that are more homogeneous with respect to
their study effect sizes. The result is a tree model with the
terminal nodes as the identified subgroups and the splitting
variables as the influential moderators. Figure 1 shows an
example of a tree model fitted by the package metacart.
The root node (i.e., the node at the top) represents all the
studies that are included in the analysis. From the root node,

1Most effect-size measures can be converted to one another (see
Hedges & Olkin 1985).
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Fig. 1 The meta-CART analysis results of 54 samples examining the
influence of moderators on the association between handedness and
eye-dominance. The figure shows the main effect of the method to
assess eye-dominance, which partitions the samples in two subgroups.
The two solid lines show the range of the effect sizes of all the studies.
The diamonds between the solid lines present the 95% confidence
intervals of the summary effect sizes

the studies are partitioned into two subgroups by applying a
threshold on the values of a moderator. For example, the root
node in Fig. 1 is partitioned into two child nodes based on
the moderator “eye assess”. This moderator is categorical,
and the studies of which “eye assess” equals to “E.1.a.ii”,
“E.1.b”, or “E.1.c” fall into the left child node and the other
studies fall into the right child node. If the moderator is an
ordinal or a continuous variable, a binary question such as
“is the value of the moderator smaller than the split point?”
will be asked to introduce a split. Note that the moderators
and the corresponding split points are automatically selected
by the algorithm. How the moderators and split points are
selected will be explained in “Meta-CART algorithm”.

The resulting subgroup memberships are defined by a
hierarchically nested set of decision rules such as “does
the intervention include certain treatment components?” or
“is the average age of the patients smaller than 25?”. In
the identified subgroups, the summary effect sizes and their
confidence intervals are estimated. 2 The analysis results
can be used by researchers to predict the effect size given
the study characteristics, or to identify the combination of
study characteristics that results in the highest/lowest effect
size. Note that meta-CART has an exploratory nature, since
the subgroups are not predefined but identified from the
data. Thus, meta-CART should be used as a hypothesis-
generating tool, and we recommend testing the identified
moderators by confirmatory methodology in further studies.

2the estimated confidence intervals are normal-theory 95% CIs. The
metacart package always provides 95% CIs for the estimated effect
sizes. If user is interested in CIs of other confidence levels, they can be
easily computed based on the standard error of the estimates.

Meta-CART algorithm

There are two types of meta-CART algorithm: fixed-effect
(FE) meta-CART, a partitioning algorithm that ignores the
residual heterogeneity unexplained by the moderators, and
random-effects (RE) meta-CART, a partitioning algorithm
that takes into account the residual heterogeneity. As in
standard meta-analysis, the choice between FE and RE
assumptions should be based on a researcher’s prior belief;
in other words, a researcher should decide on which
assumption to use before analyzing the data. In general,
if a researcher believes that given the study characteristics
the variance of the study effect sizes is merely due to
the sampling variance3, FE meta-CART can be chosen.
If there is no a priori information about the residual
heterogeneity, RE meta-CART is recommended. A more
general discussion about FE model and RE model in meta-
analysis can be found in Borenstein et al. (2010) and
Schmidt et al. (2009).

In this section, we describe the FE and RE meta-CART
algorithms, which underly the metacart package.

Fixed effect meta-CART

FE meta-CART splits the studies into more homogeneous
subgroups under the FE assumption; that is, moderator
effects and the within-study sampling variance are the only
two sources of the variation in study effect sizes. Denote
the true effect size in the kth study by δk , and denote the
observed effect size in the kth study by dk .4 Under the FE
assumption, the observed effect size is given by

dk = δk + εk = β0 +β1x1k +β2x2k + ...+βMxMk + εk, (1)

where xmk (m = 1, ..., M) specify the values on the M

moderators of the kth study, and the βs are the corresponding
coefficients. The sampling error εk is assumed to be
distributed asN (0, σ 2

εk
), where σ 2

εk
is the sampling variance.

The sampling variance σ 2
εk

depends on the within-study
sample sizes and the type of effect size. Using Hedges’ g as
the measure of effect size, the sampling variance of the kth

study is estimated by

σ̂ 2
εk

= nT
k + nC

k

nT
k nC

k

+ d2
k

2(nT
k + nC

k )
, (2)

3This implies that differences between the studies are all accounted for
by moderators, and sampling variance accounts for the variance of the
study effect sizes adjusted for moderator effects.
4Note that we focus in the description on the d-family of effect sizes,
that is, measures of the standardized mean outcome difference between
treatment and control groups (e.g., Cohen’s d or Hedges’ g). However,
the package metacart can also be used for other effect size measures
such as log odds ratio (see the example in “New approach meta-CART
compared to meta-regression”), log relative risk, and Fisher’s z.
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where nT
k , n

C
k are the treatment and control group sample

sizes of the kth study, respectively (Hedges & Olkin,
1985, p. 86).

The summary effect size is computed as the weighted
mean, with weights wk = 1/σ 2

εk
:

d+ =
∑

dk/σ
2
εk∑

1/σ 2
εk

. (3)

The measure of heterogeneity, the Q-statistic, is given by

Q =
K∑

k=1

(dk − d+)2

σ 2
εk

. (4)

Starting from one group including all the studies (i.e.,
the root node), FE meta-CART partitions the root node
into two subgroups (i.e., offspring nodes), by searching
through all possible splits and finds the moderator with
corresponding split point that maximizes the between-
subgroups heterogeneity. Denote the summary effect size
of the t th subgroup (i.e., t th node in the tree) by dt+, the
between-subgroups heterogeneity measure is computed as

QB =
|T |∑

t

∑

k∈t

(dt+ − d++)2

σ 2
εk

, (5)

where |T | is the total number of subgroups5, and d++ is
the weighted grand mean of the parent node.

To grow a tree, FE meta-CART recursively searches the
split that maximizes the heterogeneity QB between the
left and right child nodes. After each split, the algorithm
partitions a parent node into two child nodes. The tree-
growing process is a recursive partitioning procedure since
the same operation can be applied to any child node
itself without taking the other nodes in the current tree
into account. A flowchart of the tree growing process of
FE meta-CART is shown in Fig. 2. The splitting process
continues until all terminal nodes contain fewer than K0

studies, where K0 is a user-specified threshold (see “The
metacart package”). To prevent overfitting, the initial tree
will be iteratively pruned to a nested sequence of subtrees,

5|T | = 2 when only considering the heterogeneity between left and
right child nodes after a split of the parent node.

from which a best-sized tree is chosen via cross-validation.
Different rules can be applied to determine the best-sized
tree. To generalize the rules, a parameter c is introduced to
select the “optimal” tree by using the c·SE rule (Dusseldorp
et al., 2010). The c · SE rule selects the smallest tree with
cross-validation error within the minimum cross-validation
error plus its standard error multiplied by c.

The final analysis results consist of the selected tree
model that represents the interactions between moderators,
the estimates of the summary effect sizes dt+ within each
subgroup, and the between-subgroups QB with df = |T | −
1. It should be noted that the significance test based on
the between- subgroups Q-statistic is an overoptimistic
pseudo Q-test. Given pre-defined subgroup membership,
the between-subgroups Q-statistic follows a Chi-square
distribution with df = |T |−1 under the null hypothesis that
there is no significant heterogeneity between the subgroups.
However, in meta-CART the subgroup membership is not
pre-defined, but identified by the tree-growing and cross-
validation procedures. Therefore, over-optimism exists in
the Q-test, and the p value should not be interpreted
as the face value. It only gives information when the
moderator effects are not significant. In other words, a
non-significant p value indicates that the influence of
the identified moderator(s) on study effect sizes is not
significant, but a significant p value does not confirm the
significance of the moderator effects. It is also worth to
note that despite the over-optimism in the Q-test, the type I
error rate of meta-CART (i.e., defined as the rate of finding
a nontrivial tree with a significant between-subgroups Q-
statistic while there is no moderator effect in the true
structure underlying the data) is not inflated, because the
type I error of moderator effects is mainly controlled by the
pruning procedure (for details, see Li et al., 2019).

REmeta-CART

RE meta-CART takes the residual heterogeneity unex-
plained by moderators into account. The RE model is
expressed as below:

dk = β0 + β1x1k + β2x2k + ... + βMxMk + τk + εk, (6)

where τk is the variation introduced by the residual
heterogeneity. Denote the residual heterogeneity by σ 2

τ ,
with τk distributed as N (0, σ 2

τ ). Note that there are two
random components in the RE model: τk and εk , where
τk is the difference between the true effect size of the kth
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Fig. 2 Flowchart of tree growing process of meta-CART algorithms for fixed-effect (FE) model and random-effects (RE) model. a Note that this
substep is not needed for recursive partitioning method like ordinary CART and FE meta-CART, but necessary for RE meta-CART due to
the re-estimation of σ 2

τ

study and the mean of the population from which all study
effect sizes are sampled, and εk is the sampling error of
the observed effect size dk as an estimate of the true effect
size of the kth study (Hedges & Vevea, 1998). These two
sources of variance are estimated in a hierarchical manner
(Erez et al., 1996). The first level accounts for the within-
study variation (or the sampling variance) σ 2

εk
, which can be

estimated as [2]. The second level accounts for the between-
study variance (or the residual heterogeneity) σ 2

τ . There are
various estimators for σ 2

τ , including the Hunter–Schmidt
estimator (Schmidt & Hunter, 2014), the Hedges estimator
(Hedges & Olkin, 1985), the DerSimonian–Laird estimator
(DerSimonian & Laird, 1986), the Sidik–Jonkman estimator

(Sidik & Jonkman, 2005), and the maximum-likelihood
or restricted maximum-likelihood estimator (Viechtbauer,
2005). In the metacart package, we use the DerSimonian–
Laird estimator for its lower computational cost.6

With the estimated residual heterogeneity, the summary
effect size can be computed with the RE weights w∗

k =
1/(σ 2

εk
+ σ 2

τ ):

d∗+ =
∑

dk/(σ
2
εk

+ σ 2
τ )

∑
1/(σ 2

εk
+ σ 2

τ )
. (7)

6In our pilot simulation study, it was found that the different choices
of the estimator led to similar trees.
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The RE heterogeneity is given by

Q∗ =
K∑

k=1

(dk − d∗+)2

σ 2
εk

+ σ 2
τ

. (8)

Similar to FE meta-CART, RE meta-CART starts from
the root node, and searches for the split that maximizes
the between-subgroups heterogeneity. The difference is that
before searching for the split, RE meta-CART needs to
estimate the residual heterogeneity (σ 2

τ ) first, since the RE
between-subgroups heterogeneity is given by

Q∗
B =

|T |∑

t

∑

k∈t

(d∗
t+ − d∗++)2

σ 2
εk

+ σ 2
τ

. (9)

To continue the splitting process, RE meta-CART
updates the estimate for σ 2

τ and searches for the new split
maximizing the partitioning criterion. A flowchart of the
tree-growing process of RE meta-CART is also given in
Fig. 2. Note that a split of a node will globally affect the
estimation of σ 2

τ and the value of Q∗
B . Thus, in contrast

to FE meta-CART, RE meta-CART considers heterogeneity
between all the terminal nodes rather than only between
the resulting left and right child nodes after a split. As
a result, the tree-growing process of RE meta-CART is
not fully recursive, since the algorithm needs to take all
terminal nodes of the current tree into account to introduce
a new split. In other words, the estimate of σ 2

τ and the
optimal choice for a new split depend on the sequence of
previous splits. Instead, REmeta-CART applies a sequential
partitioning algorithm. 7

As in FE meta-CART, the splitting process of RE meta-
CART continues until a large tree is grown. Then, an
optimally sized subtree is selected using cross-validation
with the c ·SE rule. The associated between-subgroups Q∗

B ,
the estimates for residual heterogeneity σ 2

τ , and the within-
subgroup summary effect sizes d∗

j+ are obtained as the final
tree is selected.

7A sequential tree-growing algorithm is defined as an algorithm that
only splits a node in the tree if the reduction in the partitioning
criterion at the proposed node exceeds some value, regardless of what
might happen lower in the tree (Hand, 1997, Chapter 4). Recursive
partitioning can be seen as a restricted form of sequential partitioning
where at each node, exactly the same splitting procedure is repeated.

Look-ahead strategy for RE meta-CART

The growing algorithms of both FE and RE meta-CART
are fully greedy. Although the approach guarantees a
locally optimal solution at each split, it does not guarantee
a globally optimal solution for the whole tree. That is,
the tree-growing procedure chooses each optimal split
with no regard of future splits. Because the estimated
residual heterogeneity is influenced by the sequence of
partitioning, the RE meta-CART is more sensitive to this
local optimization problem. To alleviate this problem, we
propose a look-ahead strategy for RE meta-CART, which
examines two steps ahead instead of one at the split of the
root node. This look-ahead strategy is applied only to the
top level of a tree.

Starting the algorithm at the root node, a standard RE
meta-tree chooses the single split (i.e., one split point
on one moderator) that maximizes the between-subgroups
heterogeneity. In contrast, a look-ahead strategy searches
for the combination of two splits (i.e., single split points
on two moderators or two split points on one moderator)
that maximizes the partitioning criterion. As a result, the
entire growing procedure that applies a look-ahead strategy
consists of two sub-procedures. The first sub-procedure
grows a tree with two splits, which searches for the optimal
combination of a split of the root node and a split of one
of its child nodes. The combination that maximizes Q∗

B is
chosen. In the second sub-procedure, the resulting offspring
nodes of the first two splits are split following a fully greedy
procedure for maximizing Q∗

B at each split. This complete
splitting procedure grows a large tree, which will be pruned
using the pruning procedure mentioned above.

It should be noted that such a strategy does not guarantee
a globally optimal solution, and only partially addresses
the local optimization issue. Although more steps to look
ahead can be beneficial, we chose the number of steps
as two because the computational burden of a look-ahead
procedure grows exponentially as the number of steps
increases (Esmeir & Markovitch, 2007).

Themetacart package

The metacart package provides functions to perform
both FE and RE meta-CART analysis. The package is
available via the Comprehensive R Archive Network
(CRAN) at https://cran.r-project.org/package=metacart,
and can be directly installed within R by typing
install.packages("metacart"). The current
version is 2.0-0.

https://cran.r-project.org/package=metacart
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Functions for FEmeta-CART

The function FEmrt is the main function to perform a
fixed effect meta-CART analysis. Both the tree growing
and pruning processes in the function FEmrt() are
based on the function rpart() in the rpart package
(Therneau et al., 2017), with adaptations to fit a tree model
applying appropriate weights on meta-analytic data (see
“Examples”) and automatically compute subgroup meta-
analysis results within the function. We now describe the
different arguments of the function.

The argument formula defines the outcome variable
(i.e., effect size) and the predictor variables (i.e.,
moderators).
The argument data specifies the name of the data set
to be analyzed. The argument vi requires the column
name of the sampling variance of the effect size.
The argument subset is an optional expression to
select a subset of the data to fit the model. The subset
argument can either be a logical or a numeric vector
indicating the indices of rows (i.e., studies) to be
included.
The argument c refers to the pruning parameter
(described in “Fixed effect meta-CART”) to be used for
the analysis. The default value c = 1 corresponds to the
one-standard-error rule recommended by Breiman et al.
(1985). For meta-CART analysis, the recommended
value of c depends on the type of research at hand and
the number of studies. In general, if a strict control of
the type I error (less than or equal to 0.05) is required,
a pruning rule using c = 1 can be applied when the
number of studies K < 80, and c = 0.5 when K ≥ 80
(for more guidelines about the value of the pruning
parameter c, (see Li et al., 2019).
The argument control specifies the options to con-
trol the growing and pruning processes. As mentioned
above, both the tree growing and pruning processes
are based on the function rpart, and therefore the
control argument should be an rpart.control
object (see details in Thernau et al., 2017). Within the
rpart.control object, minsplit specifies the
minimum number of studies that must exist in a parent
node for a split to be attempted; minbucket specifies
the minimum number of studies in any terminal node;

cp specifies the minimal improve of complexity param-
eter (i.e., QB divided by Q) to make a split in the
growing process; xval specifies the number of cross-
validations in the pruning process. The default value
of minbucket is chosen as 3, because a sample size
of one or two is too small to produce reliable sub-
group meta-analysis results. Consequently, the default
value of minsplit is chosen as 6. The default value
xval = 10 corresponds to the ten-fold cross-validation
recommended by Breiman et al. (1985).

The output of the FEmrt function is an S3 object of class
"FEmrt". The corresponding print and summary methods
can be used to display and inspect the elements of the object.
The plot method can be used to present the main effects of
identified moderators and interaction effects between them
in a tree model. The predict method of the S3 object allows
the user to predict effect size given the value of moderators.
Examples to apply these methods will be described in
“Examples”.

Functions for REmeta-CART

The function REmrt is the main function to perform ran-
dom effects meta-CART analysis. Both the tree growing and
pruning processes in the function REmrt are entirely new
R-code combined with C++ that implements the sequential
partitioning algorithm described in “RE meta-CART”. The
different arguments of the function REmrt are described
below.

The arguments formula, data, vi, and c are similar
to the corresponding arguments in the function FEmrt.
The argument maxL is an option to define the
maximum number of splits in the tree growing process.
The arguments minsplit, minbucket, cp, and
xval are other options to control the growing and
pruning processes. These options are not given in an
rpart.control object, because the REmrt is an
entirely new function and does not depend on the
rpart function. The specifications of these options are
the same as those from the function FEmrt.
The argument lookahead is a logical indicator
to specify whether to apply the look-ahead strategy
described in “Examples”.
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The output of the REmrt function is an S3 object of
class "REmrt". Similar to FEmrt, there are corresponding
print, summary, plot, and predict methods for "REmrt"
objects. Examples will be described in “Examples”.

Examples

New approachmeta-CART compared to
meta-regression

In this example, we re-analyze the data
"dat.bourassa1996" included in the metafor
package (Viechtbauer, 2010). The data set contains the
meta-analytic data from Bourassa et al. (1996), including
results from 47 studies on the association between handed-

ness and eye-dominance. Some studies included multiple
(independent) samples, resulting in 54 samples in total. Fur-
thermore, for some studies, the combined data of the males
and females were further broken down into the two sub-
groups. As a result, the data set contains 96 (sub)samples
in total. We only selected the independent samples with
the combined data of both males and females (K = 54).
The results of each of these samples were given in terms
of the number of left-handed left-eyed, left-handed right-
eyed, right-handed left-eyed, and right-handed right-eyed
individuals. We use the log odds-ratio as the measure of
effect size, which is the same as in Bourassa et al. (1996).
A higher log odds-ratio indicates a higher association
between handedness and eye dominance. First, we compute
the effect size and sampling variance by using the escalc
function in themetafor package.

The computed effect size ("yi") and variance ("vi")
are added to the data set. The data set provides information
about the following moderators: the publication year
("year"), whether the selection of subjects was based on
eye-dominance or handedness ("selection", with two
categories), the type of investigator ("investigator",
with three categories8), the method to assess handedness
("hand assess", with two categories), the methods
to assess eye-dominance ("eye assess", with six
categories), the average age ("mage").

8The three categories are “psychologist”, “educationalist”, and “other”

Both meta-regression and meta-CART are applied to
re-analyze this data set. The analyses results are com-
pared to illustrate the different research questions that
can be answered by these approaches. For both analyses,
the moderators “selection”, “investigator”, “hand assess”,
and “eye assess” are selected. The random effects
model is chosen and the DerSimonian–Laird estimator
is used to estimate the residual heterogeneity. We use
“set.seed(2018)” so that the analysis results described
in this paper can be replicated.

First, to answer the question “which moderators affect
hand-eye association?”, we fit a meta-regression model with
the main effects of the selected moderators.
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The output shows that three contrasts derived from the
method to assess eye-dominance are significant: contrasted
with the eye-dominance assessment method “E.1.a.i” (i.e.,
the reference method), “E.1.a.ii”, “E.1.b”, and “E.1.c” result
in significantly lower hand-eye association. The remaining
two methods, “E.2.a” and “E.1.d” do not differ significantly
from the reference method. Note that the interpretation of
these contrasts depends highly on the choice of reference
method.

Further analyses are needed if we are interested in
whether some categories of a moderator can be combined
and whether interaction effects between the moderators
are present. Alternatively, meta-CART can be performed
to answer the question “which combinations of (categories
of) moderators are influential?”. The combinations can be
either combinations of multiple moderators, or combina-
tions of multiple categories of one moderator. We fit a RE
meta-CART model by

The plot function can be used to inspect the influence
of eye-dominance assessment methods on the association
between handedness and eye-dominance.

The plot can be found in Fig. 1, which shows a tree
with one split and two terminal nodes. Note that this
tree results from pruning an initially large tree based
on cross-validation (see 4). According to the summary
results and the plot, the moderator “eye assess” has a
strong influence on the association between handedness
and eye-dominance (Q∗

B = 46.29, df = 1, p value
< 0.0001). When the eye-dominance is assessed using

the methods “E.1.a.ii”, “E.1.b”, or “E.1.c”, the observed
association between handedness and eye-dominance is
lower (log odds-ratio = 0.988, 95% CI: 0.821 to 1.156).
When the eye-dominance is assessed using the methods
“E.1.a.i”, “E.1.d”, or “E.2.a”, the observed association is
generally higher (log odds-ratio = 2.071, 95% CI: 1.808 to
2.334). This is in accordance with the claims in Bourassa
et al. (1996) that the methods to assess eye-dominance
can be partitioned into two subgroups: (1) unbiased
methods including “E.1.a.ii: monocular procedure with
object/instrument held in both hands”, “E.1.b: binocular
procedure”, and “E.1.c: a combination of the previous
methods”, (2) biased methods including “E.1.a.i: monocular
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procedure with object/instrument held in one hand”, “E.2.a:
assessment based on a questionnaire”, and “E.1.d: some
other method”. The methods “E.1.a.ii”, “E.1.b”, or “E.1.c”
were symmetric in the sense that both hands are used
equivalently during the process of measurement, and
therefore are less likely to have measurement bias.

Comparing to meta-regression, which estimates the
coefficients and tests the significance for the contrasts
derived from “eye assess”, meta-CART partitions the multi-
categorical moderator “eye assess” into subgroups, and
tests the heterogeneity between the resulting subgroups.
The subgrouping membership can be used to verify prior
hypotheses9, or to generate hypotheses if no a priori
hypotheses exist.

9If the subgroup membership is tested as a categorical moderator,
meta-regression yields the same results as meta-CART.

Identify interaction effects using FE/RE assumptions

In this example, we perform a meta-analysis to identify
the most effective combination of treatment components
by exploring the interactions between them. The metacart
package provides the data object dat.BCT2009 as a
subset of the meta-analytic data from Michie et al. (2009).
The meta-analysis by Michie et al. (2009) aimed to assess
the effectiveness of interventions designed to promote
physical activity and health eating, and investigated whether
theoretically specified behavior change techniques (BCTs)
improve the effectiveness. The subset used in this example
consists of 106 interventions that included at least one of the
motivation-enhancing BCTs.

As displayed above, the data set contains information about
the name and the publication year, the estimated effect size
(g = Hedges’ g, which denotes the standardized mean
difference in treatment outcome), the sampling variance of
the effect size, and whether specific BCTs were applied
or not in a study (“0” for absent and “1” for present).
In this example, we will re-analyze this data set focusing
on the motivation-enhancing BCTs that may explain the

heterogeneity in the effect sizes of the interventions. We use
the pruning parameter c = 0.5 for both FE and RE meta-
CART analyses. Four moderators “T1: Provide information
about behavior-health link”, “T2: Provide information on
consequences”, “T4: Prompt intention formation”, and
“T25: Motivational interviewing” are included in the meta-
CART analysis. The moderator “T3: Provide information
about other’s approval” is excluded since none of the studies
applied this BCT.

If we have prior knowledge that the FE assumption is
reasonable here, a FE meta-CART model can be fitted using
the following code
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To obtain the summary output, we use

This output shows that a tree with three terminal nodes was
detected. The studies are partitioned into three subgroups
based on two influential moderators “T1” and “T4”. The
between-subgroups heterogeneity is significant (QB =
40.589, df = 2, p value < 0.0001). The subgroup analysis
results show the number of studies (K), the within-subgroup
Q-statistic, the summary effect sizes (g) in each subgroup,
the standard errors of the summary effect sizes (se), Z-test
statistics of the summary effect sizes, and the confidence
intervals of the summary effect sizes. The plot function
can be used to inspect the final tree, in this case, the
interaction between the two moderators “T1” and “T4”.

The plot is shown in Fig. 3. If an intervention does not
include “T1” (i.e., T1 = 0 is true), then the intervention ends
up in the left terminal node (with K = 69). For those that
include “T1” but not include “T4”, they end up in the middle
terminal node (with K = 15). Interventions including both
“T1” and “T4” end up in the right terminal node (with
K = 22). Combined with the other results, we can see that
the summary effect size is the highest when ”T1” and ”T4”
are both present in the intervention (g = 0.438, 95% CI:
0.369 to 0.506).

If a new intervention is designed with three BCTs “T1”,
“T2” and “T25” (thus without “T4”), the prediction of its
effect size based on this tree (modBCT.fe) can be obtained
by the predict function.



Behav Res

When interpreting the FE meta-CART analysis results, it
is important to realize that the FE assumption ignores the
uncertainty introduced by the residual heterogeneity. As a
result, the confidence intervals of the summary effect sizes

are more narrow than those estimated by using the RE
model.

If we would like to take into account the residual
heterogeneity, a RE meta-CART model can be fitted using
the following commands

The message “no moderator effect was detected” indicates
that the cross-validation procedure selected the best-sized
subtree with no splits, which means that no influential
moderators were identified. In this case, the summary
method shows the standard RE meta-analysis results instead
of the subgroup analysis results. The heterogeneity among
the studies is significant (Q∗

B = 253.036, df = 105, p value
< 0.0001). The estimated summary effect size for all studies
(K = 106) is 0.270 (95% CI: 0.227 to 0.313).

Look-ahead strategy

The metacart package provides a simulated data set
dat.balanced to illustrate the look-ahead strategy for
RE meta-CART analysis. The simulated data set contains
K = 60 studies with four moderators: x1, x2, x3, x4, among
which x1, x2, and x4 are randomly sampled dichotomous
variables and x3 is sampled from a uniform distribution
U(0, 1). The sample size n was generated from a normal
distributionN (160, ( 1603 )2). The residual heterogeneity was
set as σ 2

τ = 0.01. The true model used to generate data was

dk =0.5 · I (x1=0, x2=1)+0.5 · I (x2=0, x1=1)+τk + εk . (10)

This model is similar to the simulated example used
by Tibshirani and Knight (1999). This model is shown

Fig. 3 The meta-CART analysis result of 106 studies that examine
the influence of motivation-enhancing BCTs on healthy eating and
physical activities. The figure shows the FE meta-CART structure with
splitting information at each internal node and the number of studies
in each subgroup implied by a terminal node. The two solid lines show
the range of the effect sizes of all the studies. The diamonds between
the solid lines present the 95% confidence intervals of the summary
effect sizes.
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by Tibshirani and Knight (1999) to be difficult for
greedy search procedures like CART because there is no
information on where to split at the top level. Due to the
same reason, standard meta-CART is likely to end up with
a local optimum solution in such case. In this example, we

would like to show that the look-ahead strategy described in
“Examples” can alleviate this problem.

First, we inspect the data and fit a RE meta-CART model
without using the look-ahead strategy.

The output shows that meta-CART failed to detect any
moderator. The reason is that the algorithm got stuck at a local

optimum in the splitting procedure. This can be verified by
inspecting the initial tree, unpruned by cross-validation.

This output shows the between-subgroups Q-statistic, the
residual heterogeneity, the chosen split points (by default
the values are shown in two decimal places), the chosen
moderator, and the parent node to be partitioned at each
split, with the first row presenting the root node when no

split occurs. From the output we can see that the algorithm
falsely chose the first splits at x3 and ended up with QB =
24.97 after five splits.

Then we fit a RE meta-CART model using the look-
ahead strategy.
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The results show that the RE meta-CART model with
look-ahead strategy successfully recovered the true model
as in (10). A tree with four terminal nodes was detected. As
shown in Fig. 4, the terminal node with x1 = 0 and x2 = 1
(K = 17) and the terminal node with x1 = 1 and x2 = 0
(K = 15) have higher effect sizes with CIs (presented by

the diamonds) covering 0.5, whereas the terminal node with
x1 and x2 both equal to 0 (K = 16) and the terminal node
with x1 and x2 both equal to 1 (K = 12) have lower effect
sizes with CIs covering 0.

The initial tree obtained with look-ahead strategy can be
inspected by

Comparing this tree to the initial tree obtained from
the previous model without the look-ahead strat-
egy, the look-ahead strategy correctly finds the first

two splits, and obtains a solution with much larger
between-subgroups Q-statistic (QB = 213.70 after five
splits).
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Fig. 4 The analysis results of simulated data generated by fitting a RE
meta-CARTmodel with look-ahead strategy. The analysis successfully
recovered the true model that was used to generate the simulated data

Conclusions

This paper presents the metacart package written in R
to perform meta-CART analysis both for fixed effect
and random effects models. The algorithms and the
main functions of the package metacart are described
in “Meta-CART method” and “The metacart package”,
respectively. Applications of the R-package metacart were
illustrated through example analyses on two real-world data
sets and one simulated data set in “Examples”.

One strength of the packagemetacart is that it can easily
explore the interaction effects among multiple moderators
using an interpretable tree model. Furthermore, for multi-
categorical variables, it creates automatically the contrasts
between (combinations of) categories that account for the
highest amount of heterogeneity. Another strength is that
metacart provides researchers various options for the tree
growing and pruning processes. For example, researchers
can choose the minimum number of studies in parent nodes
and the minimum number of studies in terminal nodes based
on the total sample size. In general, it is recommended
to have at least three studies in each terminal nodes. The
pruning parameter can be chosen based on the balance
between power and type I error. A detailed guideline
for choosing the pruning parameter can be found in Li
et al. (2019). The look-ahead strategy is recommended to
partially relieve the local optimization problem when fitting
a RE meta-CART model.

In conclusion, this paper and the developed metacart
package introduce researchers to the implementation of
meta-CART analysis, to facilitate exploring interaction
effects between multiple moderators in the framework of
meta-analysis.
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