Resource-robust valid inequalities for set covering

and set partitioning models

Ymro N. Hoogendoorn** and Kevin Dalmeijer"

@ Fconometric Institute, Erasmus University Rotterdam
bH. Milton Stewart School of Industrial and Systems Engineering,

Georgia Institute of Technology

January 12, 2021

EI 2020-08

*E-mail: y.n.hoogendoorn@ese.eur.nl; Phone: +31 10 408 1264; Address: PO Box 1738,
3000DR Rotterdam, The Netherlands; Corresponding author



Abstract

For a variety of routing and scheduling problems in aviation, shipping, rail, and
road transportation, the state-of-the-art solution approach is to model the prob-
lem as a set covering type problem and to use a branch-price-and-cut algorithm to
solve it. The pricing problem typically takes the form of a Shortest Path Problem
with Resource Constraints (SPPRC). In this context, valid inequalities are known
to be ‘robust’ if adding them does not complicate the pricing problem, and ‘non-
robust’ otherwise. In this paper, we introduce ‘resource-robust’ as a new category
of valid inequalities between robust and non-robust that can still be incorporated
without changing the structure of the pricing problem, but only if the SPPRC
includes specific resources. Elementarity-robust and ng-robust are introduced as
widely applicable special cases that rely on the resources that ensure elementary
routes and ng-routes, respectively, and practical considerations are discussed. The
use of resource-robust valid inequalities is demonstrated with an application to the
Capacitated Vehicle Routing Problem. Computational experiments show that re-
placing robust valid inequalities by ng-robust valid inequalities may result in better
lower bounds, a reduction in the number of nodes in the search tree, and a decrease

in solution time.

Keywords: Resource-Robust, Valid Inequalities, Branch-Price-and-Cut.



Note from the authors

This document is a preliminary version of the paper that includes computational results
for the Capacitated Vehicle Routing Problem. We are currently applying the ideas in
this paper to other valid inequalities and other problems, and we are performing addi-
tional numerical experiments to better showcase the potential of resource-robust valid

inequalities.

1 Introduction

Set covering and set partitioning models play an important role in operations research and
have been used to solve a broad range of vehicle routing and crew scheduling problems
(Desaulniers et al., 2005). These problems are typically solved with a branch-price-and-
cut (BPC) algorithm, in which the column generation subproblem (pricing problem) is a
Shortest Path Problem with Resource Constraints (SPPRC).

In this paper, we are interested in set covering and set partitioning type problems that
are solved with column generation and for which the pricing problem is an Elementary
SPPRC (ESPPRC), i.e., only elementary paths are allowed (Irnich and Desaulniers, 2005).
Even though the ESPPRC is the main focus, results are stated more generally for the
SPPRC where possible.

This ESPPRC is common for vehicle routing problems, where the elementarity stems
from the requirement that clients are visited only once. We refer to Toth and Vigo (2014)
for an overview of common vehicle routing variants and to Costa et al. (2019) for a recent
survey on BPC algorithms for vehicle routing.

The same methodology is used to solve a variety of problems in different areas. In
aviation, applications include aircraft routing (Barnhart et al., 1998a), aircraft sequenc-
ing (Ghoniem et al., 2015), and airline schedule recovery (Eggenberg et al., 2010). In
shipping, the ESPPRC appears as a pricing problem in, e.g., liner shipping service design
(Plum et al., 2014) and berth allocation and quay crane assignment (Vacca et al., 2013).

Railway applications include timetable design and engine scheduling (Bach et al., 2015)



and integrated timetabling and crew scheduling (Bach et al., 2016).

In BPC algorithms, valid inequalities are used to strengthen the Linear Program-
ming (LP) relaxations and thereby reduce the number of nodes in the search tree. On
the other hand, valid inequalities may complicate the pricing problem. For example,
the well-known clique and odd-hole inequalities for the set partitioning polytope can-
not straightforwardly be used in a BPC algorithm without changing the structure of the
pricing problem dramatically (Jepsen et al., 2008).

Fukasawa et al. (2006) distinguish robust and non-robust valid inequalities based on
how the inequalities impact the pricing problem. Valid inequalities are called robust if
adding them does not change the structure of the pricing problem. This is the case when
the associated reduced costs can be projected onto the arcs of the SPPRC pricing problem.
Many valid inequalities fall into this category, including strengthened comb cuts, k-path
cuts, subtour elimination constraints, and rounded capacity cuts (Costa et al., 2019).

Adding non-robust valid inequalities complicates the pricing problem. However, the
overall performance of the BPC algorithm may improve if non-robust valid inequalities
are used with care. This is demonstrated by Jepsen et al. (2008), who introduce the
subset-row inequalities and apply them to the Vehicle Routing Problem with Time Win-
dows. Other non-robust valid inequalities are surveyed by Costa et al. (2019), including
elementary cuts, strengthened capacity cuts, clique cuts, k-cycle elimination cuts, and

strong degree cuts.

In this paper, we introduce a new category of valid inequalities that lie somewhere be-
tween robust and non-robust: resource-robust valid inequalities. Resource-robust valid
inequalities can be incorporated in the BPC algorithm without changing the structure of
the pricing problem, but only if the SPPRC includes specific resources. By formalizing
the concept of “changing the structure of the pricing problem”, we formulate conditions
under which a valid inequality is resource-robust.

Of particular interest are resource-robust valid inequalities that depend on resources

associated with a state-space relaxation. State-space relaxation is an important tool for



speeding up the pricing problem at the cost of slightly weaker LP bounds. An example is
the ng-route relaxation introduced by Baldacci et al. (2011), which is commonly used in
state-of-the-art algorithms to relax the elementarity condition in vehicle routing problems.
State-space relaxations are typically implemented through resources in the ESPPRC.
As such, resource-robust valid inequalities that depend on these resources are widely
applicable.

To demonstrate the benefit of adding resource-robust valid inequalities, we present
an application to the Capacitated Vehicle Routing Problem (CVRP). We introduce the
ng-Capacity Cuts (ngCC) as a stronger alternative to the well-known rounded capacity
cuts. If the ng-route relaxation is used, the ngCCs can be added without changing the
structure of the pricing problem. In Section 5 we detail why this is not a completely free
lunch. However, exploiting the state-space relaxation allows for significantly reducing the
impact that these stronger valid inequalities have on the pricing problem.

In our computational experiments, we compare a simple BPC algorithm with and
without ngCCs. Our experiments show that using ngCCs improves the average per-
formance of the BPC algorithm on clustered instances in which the customers have a
relatively high demand. This proof of concept demonstrates that using resource-robust
valid inequalities can be advantageous for solving set covering and set partitioning models.

In the literature, reducing the impact of non-robust valid inequalities is studied by
Pecin et al. (2017b). The authors introduce the limited-memory Subset-Row Cuts (lm-
SRCs), based on the subset-row cuts presented by Jepsen et al. (2008). Each ImSRC
is associated with a memory, which is a subset of the nodes in the graph used for the
SPPRC. Varying the size of the cut memory allows for balancing the strength of the cut
and the impact on the pricing problem. In Pecin et al. (2017a), the cut memory of the
ImSRCs is defined for arcs instead of nodes.

In relation to the work by Pecin et al., the main idea of this paper is to define cut
memory based on the existing resources in the SPPRC. Valid inequalities for which this
is possible do not require additional resources to keep track of the cut memory. As such,

the structure of the pricing problem is not affected.



This paper is structured as follows. In Section 2, we present the preliminaries that
we need for the remainder of the paper. In Section 3, we formally introduce resource-
robust valid inequalities and we discuss their theoretical properties. Our application to
the CVRP is detailed in Section 4, and computational results are presented in Section 5.

Finally, we present our conclusions and some directions for further research.

2 Preliminaries

In this section, we briefly summarize the models, methods, and enhancements that are
needed for the remainder of this paper. First, we formally introduce set covering and set
partitioning models. Next, we describe a basic BPC algorithm, and we explain column
generation and labeling. Finally, we discuss state-space relaxations, and in particular,

the ng-route relaxation.

2.1 Set covering and set partitioning models

Let G = (V,A) be a directed graph with vertices V' = {0,1,...,n 4+ 1} and arc set
A CV x V. Each vertex i in the set V' = {1,2,...,n} corresponds to a task that has to
be performed.

Tasks are performed by routes. A route is a path in G from 0 to n + 1, possibly
adhering to many restrictions. We say that a task is covered by a route if the route visits
the corresponding vertex. In vehicle routing, the task can be to deliver a package, and
the route can be the route of a vehicle. In aviation, a task may correspond to an incoming
aircraft and a route may correspond to a runway schedule.

Let R be the set of all feasible routes. The cost of traversing an arc (7, j) € A is given
by ¢;j € R. Let ¢, be the cost of using route r € R, which is the sum of the arc costs.

We consider the problem of selecting a set of feasible routes that cover all tasks at
minimum cost. This problem is known as the Set Covering Problem (SCP) if tasks may
be repeated, and as the Set Partitioning Problem (SPP) is every task must be performed

exactly once (Garfinkel and Nemhauser, 1969). In the remainder, we restrict ourselves



to the SPP, as extending our results to the SCP is trivial.
For every route r € R, let the binary variable x, € {0, 1} indicate whether route r is
contained in the solution. Let the parameter a] be equal to one if task i € V' is covered

by route r € R, and zero otherwise. The SPP can now be expressed as follows.

min Z Cr Ty, (1a)

reR

st Y alz, =1 VieV, (1b)

reER

. €{0,1} VremR. (1c)

The Objective (1a) is to minimize the cost of the selected routes. The Constraints (1b)
ensure that all tasks are performed exactly once. Note that for the SCP, these constraints
are inequalities. Equations (1c) enforce that route selections are binary.

In this paper, we are interested in route sets R that satisfy the following two con-
ditions. First, all routes r € R are elementary, i.e., no vertices are repeated. Second,
the feasibility of the routes can be modeled through resource constraints (Irnich and
Desaulniers, 2005).

Following Irnich and Desaulniers (2005), a resource vector is a vector T € R® that
is defined for all vertices on a route. Each of the components of a resource vectors is
called a resource. When following the route, this vector changes according to resource
extension functions (REFs) associated with the arcs, denoted with f;; : Rf — RE.
Feasibility of routes with respect to resources is defined with resource windows |e;, ;]
associated with the vertices, with e;, l; € R. A resource vector, and thus per extension a
route, is feasible if its associated resource vector lies within the resource window (defined
component-wise) for each of the visited vertices. Note that the definition of REFs allows
the individual resources to influence each other, which makes resource constraints a very
flexible modeling tool.

In many applications, resources do not influence each other. In that case, we refer



to the REFs of a specific resource f;; : R — R, by abuse of notation. For example, a
resource may correspond to time, and the REF's ensure that time progresses. Its resource
window can correspond to the hard time window in which the specific task needs to be

executed.

2.2 Branch-price-and-cut algorithm

Barnhart et al. (1998b) introduce the term brance-and-price for branch-and-bound al-
gorithms that rely on column generation to solve the LP relaxations. BPC algorithms
additionally add valid inequalities to strengthen the LP relaxation.

In this section, we discuss column generation and labeling algorithms. Adding valid
inequalities is discussed extensively in Section 3. For details on the other components,

we refer to the survey by Costa et al. (2019).

2.2.1 Column generation

We refer to (1a)-(1c) as the integer master problem, and to its LP relaxation as the master
problem. To effectively deal with the potentially large amount of route variables, column
generation is used to solve the master problem.

In each iteration, column generation algorithms solve a restricted master problem
(RMP), which is obtained by restricting the master problem to a subset of the variables.
After solving the RMP, a pricing problem is solved to find variables that have a negative
reduced cost and can potentially improve the current solution. A selection of these
variables is added to the RMP, and the process is repeated. Once all variables have
non-negative reduced costs, the RMP solution is optimal for the master problem.

The reduced cost of x,, denoted by ¢,, can be expressed as follows. For all 1 € V’,
let \; € R be the optimal dual values corresponding to Constraints (1b). For notational
convenience, we define Ay = A,11 = 0. Let the parameter bj; be equal to one if arc

(1,7) € Ais on route r € R, and zero otherwise. Define the modified arc cost of arc



(i,7) € A as ¢;; = ¢;; — A;. It follows from LP duality that

Go=c— > alN = ol =) aN = > eby (2)

eV’ (i,j)€A eV’ (i.7)eA

The pricing problem is to find a feasible route » € R for which the sum of the
modified arc costs is negative. Alternatively, one can find the route that minimizes ¢,. If
the minimum is non-negative, no additional variables need to be added to the RMP.

The pricing problem can be solved as an Elementary Shortest Path Problem with
Resource Constraints (ESPPRC), using the modified arc costs (Irnich and Desaulniers,
2005). This follows immediately from our assumptions on the route set R: All routes are
elementary, and feasibility of the routes can be modeled through resources constraints

(Section 2.1).

2.2.2 Labeling algorithm for the ESPPRC

The ESPPRC is typically solved with a labeling algorithm. A labeling algorithm maintains
a set of labels that correspond to paths that start at vertex 0. Labels are extended over
all arcs to generate new labels, as defined by the REFs. Infeasible labels are immediately
removed, and dominance rules are used to eliminate labels that are not Pareto-optimal.
When no more labels can be generated, we have obtained a set of feasible paths from
vertex 0 to vertex n + 1. By construction, the elementary shortest path is among these
paths.

A label is defined by the tuple L = (i,¢,T, E,p). For label L, we refer to these
components as i(L), ¢(L), T(L), E(L), and p(L), respectively. The vertex i(L) € V is
the current endpoint of the path that belongs to L, ¢(L) is the reduced cost of this path
up to i(L), T(L) € R® is the vector of current resource values, F(L) C V' is the set
of visited vertices, and p(L) is the predecessor label of label L. The visited vertices are
used to enforce elementarity of the routes, which is why we also refer to F(L) as the
elementarity resources.

We point out that in the literature, the set of visited vertices E(L) is often replaced



by the set of unreachable vertices (Feillet et al., 2004). That is, vertices that cannot be
visited due to resource constraints are added to F(L). As this modification affects the
resource-robust valid inequalities presented in this paper, we discuss unreachable vertices
in more detail in Section 3.4.1.

Let L' = L & j be the label that is generated by extending label L over the arc
(i(L),j) € A. To enforce elementarity, we require that j ¢ E(L). The label L’ is given by
i(L) = j, e(L') = e(L) + Ciry;, E(L) = E(L)U{j}, p(L') = L and T(L') = f;;(T(L)). If
r(L') is not within the resource bounds [e;, [;] defined at j, then the extension is infeasible,
and L' is discarded.

For label dominance, we consider the common case that the REFs are non-decreasing
and only upper resource windows are present (Irnich and Desaulniers, 2005). Informally,
the REFs are non-decreasing if inequalities among cost and resources are preserved by
arc extensions. When these assumptions are satisfied, we call the pricing problem of

non-decreasing type.

Definition 1 (Pricing problem of non-decreasing type). The ESPPRC is of non-decreasing
type if only upper resource windows are present and inequalities are preserved along label
extensions. That is, for given labels L and L' with the same current vertex i(L) = i(L’),
and for a given extension over any arc (i(L),j) € A, we have that ¢(L) < ¢&(L'),
E(L)CE(L) and T(L) <T(L) imply c(L®j) < ('@ j) and T(L® j) <T(L' @ j).

For the SPPRC, the elementarity resources are not considered.

When the pricing problem is of non-decreasing type, Irnich and Desaulniers (2005)

show that the non-decreasing dominance rule can be used.

Definition 2 (Non-decreasing dominance rule). If the pricing problem is of non-decreasing

type, label L dominates label L' if all of the following are true:
e i(L)=1i(L),
e ¢(L) <e&(l)),

e T(L) <T(L),



e E(L) C E(L).

and at least one of the inequalities is strictly satisfied. This dominance rule is referred to

as the non-decreasing dominance rule.

If label L’ is dominated by some label L, then label L’ cannot be part of a cost-optimal
path, and may be eliminated. Dominance checks can be performed every time a new label

is created, but this is not required. More details are given in Section 5.1.

2.3 State-space relaxations

A common method to speed up the labeling algorithm is by using a state-space relaxation.
State-space relaxations substitute the elementarity requirement of the routes by a weaker
condition. As there may be 2" different sets of visited vertices E'(L), relaxing elementarity
may significantly reduce the number of non-dominated labels.

When a state-space relaxation is used, the set of feasible routes R is expanded. To
deal with non-elementary routes, we redefine a; to be the number of times that vertex
i € V' is visited, and bj; to be the number of times that arc (i,j) € A is used. Note
that the solution to the integer master problem (1) does not change, as selecting non-
elementary routes would violate Constraints (1b). The additional variables do affect the
LP relaxation, which becomes weaker. State-space relaxations thus allow for balancing
the strength of the bound and the speed of the labeling algorithm.

Different state-space relaxations have been proposed in the literature. Houck et al.
(1980) introduce 2-cycle elimination, which relaxes elementarity by allowing cycles of
length three or more. Irnich and Villeneuve (2006) discuss the more general k-cycle
elimination, which allows cycles of length k+ 1 or more. Desaulniers et al. (2008) propose
partial elementarity, which requires elementarity for only a subset of the vertices. Baldacci
et al. (2011) introduce the ng-route relaxation, which only allows cycles that leave a
certain neighborhood. A generalization is presented by Bulhdes et al. (2018), which is
discussed in Section 3.4.4.

For the ng-route relaxation, every vertex i € V' is assigned a neighborhood N; C V'

such that ¢ € N;. The set of visited vertices E(L) is replaced by the set II(L), which is

9



updated according to the rule
(L & j) = (I(L) N N;) U{j} (3)

The feasibility and dominance rules (see Definition 2) j ¢ FE(L) and E(L) C E(L’) are
replaced by j ¢ TI(L) and II(L) C II(L'), respectively.

It will be instructive to interpret the sets E(L) and II(L) as different ways to retain
information about the visited vertices. The set E(L) contains all visited vertices, and
with a slight abuse of language, we may say that the label L has a perfect memory if it
remembers all previous visits through E(L).

With the set II(L) we associate the ng-memory, which is typically imperfect. This
follows from the update rule (3): When label L is extended to L & j, the intersection
II(L) N N; tells us that L forgets all previous visits, except those in the neighborhood of
7. Next, the visit to j is added to the memory.

When using the ng-route relaxation, a label can be extended to a previously visited
vertex j, and thus create a cycle, if the previous visit to j is forgotten first. This requires
visiting a vertex k for which j ¢ Ny, i.e., visiting a neighborhood that does not contain
j. The advantage of using ng-memory II(L) instead of perfect memory E(L) is that
the labels can be compared on their memory of the visits within the neighborhood only,
which allows more labels to be dominated. In the case that N; = V' for all ¢ € V', then

the label never forgets a visit, and I1(L) = E(L).

3 Resource-robust valid inequalities

In practice, valid inequalities are added to the SPP (Problem (1)) to strengthen the LP
relaxation. The main difficulty in using valid inequalities is incorporating their duals into
the pricing problem, which is modeled as an SPPRC. In the literature, the distinction
is made between robust and non-robust valid inequalities (Fukasawa et al., 2006). The
duals of robust valid inequalities can be incorporated without changing the structure of

the SPPRC. Including non-robust valid inequalities, on the other hand, complicates the

10



pricing problem.

In this section, we first make the notion of “complicating the pricing problem” more
concrete. With this notion, we formally introduce a new category of valid inequalities
that lie somewhere between robust and non-robust: resource-robust valid inequalities.
Informally, resource-robust valid inequalities are robust when the SPPRC includes specific

resources.

3.1 Impact of robustness on the pricing problem

In the literature, robust and non-robust valid inequalities are distinguished by their im-
pact on the pricing problem. As mentioned in the introduction, robust cuts do not change
the structure of the pricing problem, i.e. their duals can be projected onto the arcs (Fuka-
sawa et al., 2006). This property is in contrast with non-robust cuts, where one needs
additional resources or adjusted dominance rules in order to incorporate them into the
pricing problem.

To formalize the above contrast, we use Definition 3. Our definition focuses on main-
taining the non-decreasing type (see Definition 1) of the pricing problem, so that the

non-decreasing dominance rule can still be employed without modification.

Definition 3 (Robust impact on the pricing problem). Given a pricing problem of non-
decreasing type, a valid inequality has a robust impact if the duals can be included such
that the pricing problem is still of non-decreasing type, without adding any additional

resources.

It is immediately clear that the non-decreasing dominance rule is still valid when
adding a valid inequality with a robust impact. In that sense, the “structure” of the
pricing problem is preserved. It is also clear that non-robust cuts do not fall into this def-
inition; their inclusion requires modification of the dominance rule or additional resources.
In the remainder of this paper, whenever we refer to (not) “changing the structure of the

pricing problem”, we mean it in the sense of Definition 3.

11



3.2 Definition of resource-robustness

Whenever a valid inequality gets added to the RMP, its duals need to be included into the
SPPRC to preserve the validity the labeling algorithm. More specifically, this amounts
to altering the cost update ¢(L) and potentially adding additional resources. For a single
valid inequality with dual o, the cost update when extending label L over arc (i, )

becomes

(L@ j)=ce(L)+c; —aTy(C(L)), (4)

where C'(L) are cut-specific resources and Y;; gives the factor with which o is subtracted
from the reduced cost of the label. We call C'(L) the cut memory of the valid inequality
and T;; the dual application function. Note that the definition of the cut memory, its
REFs and the dual application function uniquely define a cut in the RMP.

Our terminology concerning cut memory is inspired by the presentation of the limited-
memory Subset-Row Cuts (ImSRC) by Pecin et al. (2017b). To incorporate the duals
of the ImSRCs in the SPPRC, the authors introduce an additional resource for every
cut, which can be seen as its memory. By limiting the information that is stored in
the memory, the impact of these non-robust valid inequalities on the pricing problem is
reduced.

Robust valid inequalities do not need additional resources in the SPPRC. As such,
we say that the cut memory is empty, or that no cut memory is necessary. This implies
that the dual application function is a constant for every arc (i, 7). In other words, one
can redefine the reduced arc costs ¢;; as ¢;; — o¥;;. The duals are thus projected onto
the arcs, and the structure of the pricing problem is not affected.

It follows immediately from linear programming duality that dual application func-
tions define the coefficients of the associated valid inequalities. This is formalized as

Proposition 4.

Proposition 4. Consider a valid inequality for which the dual application function Y;; is
known for every arc (i,j) € A. Let route r € R consist of the arcs (i1, j1),- -, (ik,, ji,.) €

A, and let C4,...,Ck, be the associated cut memories. Then the coefficient d,. of route

12



variable x, in the valid inequality is given by

d, = Zr: Tikjk (Ok) (5)

We are now ready to define resource-robust valid inequalities. The main idea is that
resource-robust valid inequalities have a cut memory that can be derived from existing
resources, so no additional resources are necessary. Definition 5 also includes conditions
on non-decreasingness. It is proven in Theorem 7 that these conditions ensure that

resource-robust valid inequalities do not complicate the pricing problem.

Definition 5 (Resource-robust valid inequality). A walid inequality with cut memory C
and dual application function Y;;(C) is resource-robust for a vector of resources X if and

only if
1. —oY,;;(C) is non-decreasing in C for all (i,5) € A and for all feasible values of o,
2. C = F(X) for some non-decreasing function F'.
By Proposition 4, the first condition can equivalently be stated in primal form.

Corollary 6. Condition 1 of Definition 5 holds if and only if any of the following are

true for d, as defined in Proposition 4 and for some constant d € R:

o T1,:(C) is non-decreasing in C for all (i,j) € A and the valid inequality is of the
form Y o drx, < d,

o T1,;(C) is non-increasing in C for all (i,j) € A and the valid inequality is of the
form Y o drx, > d,

o Y,;(C) is constant in C for all (i,j) € A and the valid inequality is of the form

Yorer drry = d.

Proof. Follows immediately from Proposition 4, Definition 5, and the fact that the three

cases have dual ¢ < 0, 0 > 0, and o € R, respectively. O

13



Note that Corollary 6 implies that a resource-robust equality is always robust. After

all, T;;(C) is constant for cut memory C. This implies Y;;(C) = Y;;, which allows the

IRl
dual to be projected on the arcs.
The main benefit of the newly defined resource-robust valid inequalities is stated in

the following theorem.

Theorem 7. If the pricing problem is of non-decreasing type, and if resources X are
included in the SPPRC, then valid inequalities that are resource-robust for X have a robust
impact on the pricing problem, i.e., non-decreasingness is preserved and no additional

resources are required.

Proof. For ease of exposition, we give the proof for a single valid inequality. The argument
can be repeated when multiple valid inequalities are involved.

Let C' be the cut memory of label L. By definition, C' = F(X), so no additional
resources are necessary to determine C. By combining the two conditions of Definition 5,
we have that —oY;;(C') = —oY;;(F(X)) is non-decreasing in X, which is a non-decreasing
resource by assumption. The original REF for the reduced cost ¢(L) is also non-decreasing
by assumption, and adding the non-decreasing term —oY;;(C) preserves this property.

We conclude that no additional resources are necessary, and the REFs remain non-
decreasing. Thus, by Defintion 3, the cuts have a robust impact on the pricing problem.
This also implies that the non-decreasing dominance rules of Definition 2 remain valid

after updating ¢(L). O

Theorem 7 shows that the dual application function of a resource-robust valid in-
equality can be written in terms of the existing resources X, while maintaining non-
decreasingness. This is similar to how the dual application function of a robust valid
inequality can be projected onto the existing arc costs. In both cases, existing label
information is used, and no additional resources are necessary.

Due to our particular interest in resource-robust valid inequalities that relate to el-
ementarity and to state-space relaxations, we define the following two terms. If the
resources X equal the elementarity resources F, we call the valid inequality elementarity-

robust. If X equals the ng-resources II, then the valid inequality is ng-robust.

14



3.3 Example: SDCs and their ng-equivalent

The Strong Degree Cuts (SDCs), introduced by Contardo et al. (2014), are given by

Zmin{l, alta, >1 Vie V', (6)
reR
where min{1, a] } is a binary parameter that indicates whether route r has visited task ¢
at least once. Contardo et al. (2014) introduced these cuts as an alternative to enforcing
elementarity in the pricing problem. That is, not including the elementarity resources
and using these cuts instead gives the same master problem lower bound and better
algorithmic performance (Contardo et al., 2014).

We will now show, as an example, that the SDCs are elementarity-robust. One way
to correctly apply the dual o; > 0 is to subtract o the first time that task ¢ is visited (and
only the first time). To model this behavior, we introduce the cut memory C;, which
consists of a single resource that is one if 7 is visited at least once, and zero otherwise.

The dual application function can then be stated as

1 ifC=0k=i
Tjr(Ci) = (7)

0 else.

This function is non-increasing in Cj, as increasing C; from zero to one cannot in-
crease the value of the dual application function. Hence, by Corollary 6, Condition 1
of Definition 5 is satisfied. We mention that Contardo et al. (2014) define the same cut
memory and dual application function, just not explicitly.

To show that Condition 2 of Definition 5 is satisfied for the elementarity resources, we
construct a non-decreasing function F; such that C; = F;(F). By definition, C; is one if
and only if 7 has been visited, which results in C; = |[EN{i}| = F;(F). It is immediately
clear that £ C E’ implies F;(E) < F;(E’), and thus F; is non-decreasing,.

As both conditions in Definition 5 are satisfied, we conclude that the SDCs are
elementarity-robust. It follows by Theorem 7 that SDCs can be added without changing

the structure of the pricing problem, given that the elementarity resources are available

15



(i.e., no state-space relaxation is applied). The new dominance rules are the same as
those in Definition 2, except that the new dual application functions need to be added
to the reduced cost function ¢(L).

The example shows how resource-robustness can be used to obtain simple dominance
rules. Beside this illustration, the fact that SDCs are elementarity-robust has little prac-
tical value. It can be seen that min{1,a]} = a] for all elementary routes r and vertices
i € V'. Therefore, when elementarity is enforced in the subproblem, the Constraints (6)
are redundant and may simply be removed.

This derivation does lead to another interesting observation: by replacing the elemen-
tarity resources E in the cut memory C; = |E N {i}| by ng-resources I, we obtain new
cuts. These cuts, which we call the ngSDCs, trade the elementarity-robustness of the
SDCs for ng-robustness, at the expense of being weaker than the SDCs.

The ngSDCs state that tasks that are in ng-memory cannot be revisited. Therefore,
when the ng-route relaxation is used, the ngSDCs are redundant. However, as mentioned
at the start of this section, the SDCs are used to enforce elementarity in the subproblem
with the same master problem lower bounds. Following the exact same argument as by
Contardo et al. (2014), it can be shown that the ngSDCs can serve as an alternative to
enforcing ng-routes in the subproblem. Similarly, this leads to the same lower bound
as if the ng-route relaxation were used. Given the computational succes of the SDCs,
studying the performance of using ngSDCs is an interesting topic for future research.

Finally, we point out the importance of the sign of the inequality in Equation (6). If
the sign would be the other way around, then the dual o; < 0 would be non-positive. As a
result, the dual application function should be non-decreasing (instead of non-increasing)

by Corollary 6, and the valid inequality would not be elementarity-robust.

3.4 Practical aspects of ng-robust valid inequalities

In this section, we consider some practical aspects of using ng-robust or elementarity-
robust valid inequalities that are important when implementing a BPC algorithm. As

elementarity-robust is a special case of ng-robust (see Section 2.3), this section focuses

16



on the latter. Recall that ng-robust valid inequalities depend on the ng-memory, denoted

by II(L).

3.4.1 Unreachable vertices

A common acceleration technique for BPC algorithms, introduced by Feillet et al. (2004),
is to consider unreachable vertices instead of visited vertices. We now show that ng-robust
valid inequalities may be incompatible with this acceleration technique, and we propose
a way of mitigating this disadvantage.

Applied to the ng-route state-space relaxation, using unreachable vertices amounts
to the following. Let II(L) be the ng-memory of label L. Next, determine a set of
unreachable vertices U(L) C V/\II(L) that cannot be reached by any extension of L due
to the resource constraints. In vehicle routing, for example, the set U(L) may correspond
to the set of orders that cannot be added to the current vehicle without violating the
capacity constraint. The resources II(L) are then replaced by I1*(L) = II(L) UU(L).

The fact that II(L) is no longer a resource in the SPPRC affects the ng-robust valid
inequalities. By Definition 5, the cut memory of an ng-robust valid inequality is defined
as C' = F(II(L)) for some non-decreasing function F. As II(L) is no longer available,
one may try to define C' = F*(II*(L)) for some non-decreasing function F™*, but there is
no guarantee that this is possible. The main complicating factor is that I1*(L) C IT*(L’)
does not imply TI(L) C TI(L'), which ruins non-decreasingness.

To mitigate the disadvantage of not being able to use unreachable vertices, we propose
a heuristic: use II(L) to determine the cut memory and to evaluate the dual application
functions, and use IT*(L) in the dominance rules. This allows too many labels to be
dominated, but if a route with negative reduced cost is found, this route is valid and
can be added to the RMP. Only when the heuristic fails to find such a route, we need to
weaken the dominance rules by using II(L) instead of IT*(L). Such heuristic pricing is

discussed in more detail in Section 5.1.1.

17



3.4.2 Dynamic ng-route relaxation

Roberti and Mingozzi (2014) introduce the dynamic ng-route relaxation. In this case,
the initial neighborhoods N; C V' for all i € V’ are dynamically expanded to make non-
elementary routes infeasible after they are generated. By excluding more non-elementary
routes, the lower bound is improved. For more details, we refer to Roberti and Mingozzi
(2014).

Expanding the neighborhoods in the dynamic ng-route relaxation results in some
computational overhead when ng-robust valid inequalities are used. First, the reduced
costs of columns in the column pool (columns that are currently not part of the RMP,
but may be added later) will have to be recalculated. This follows from the fact that
expanding the neighborhoods changes the ng-memory, which changes the cut memory,
and therefore the evaluations of the dual application functions. Second, if the coefficients
of the ng-robust valid inequalities depend on the cut memory, which is case in Sections 4.1,
these coefficients have to be updated as well.

On the other hand, ng-robust valid inequalities have the benefit that they increase
in strength when the neighborhoods are expanded, thereby improving the lower bound
of the relaxation. This result is stated formally as Proposition 8. Note that “increase in
strength” is formally an abuse of language, as technically the SPP formulation becomes
stronger instead of the cuts. However, as we only consider one formulation (the SPP),

this should be clear from context.

Proposition 8. Valid inequalities that are ng-robust weakly increase in strength when

the ng-route relazation neighborhoods are expanded from N; to N;” 2 N; for alli € V.

Proof. For a given label L, let TI(L) and TI(L)™ respectively denote the ng-memory before
and after expanding the neighborhoods. It follows immediately from the definition of ng-
memory that TI(L) C IIT(L).

Corollary 6 gives three possible descriptions for the valid inequality. In the first case,
T;;(C) is non-decreasing in C, and the valid inequality is of the form ) . d,z, < d,

with d, = 307, 4.5 (Cr) as in Proposition 4. By non-decreasingness, Y;;(II(L)) <

18



T,;;(II"(L)). Hence, the left-hand side coefficients weakly increase when the neighbor-
hoods are expanded, which makes the valid inequality weakly stronger.

The argument for the second case is analogous. The third case is trivial, as the dual
application function is constant, and the coefficients do not change when the neighbor-

hoods are expanded. This completes the proof. O]

3.4.3 Bidirectional labeling

Righini and Salani (2006) propose bidirectional labeling to speed up labeling algorithms
such as the one presented in Section 2.2.2. Bidirectional labeling algorithms generate
both forward paths starting in vertex 0 and backward paths starting in vertex n 4+ 1. By
combining forward and backward paths, feasible routes are generated.

Bidirectional labeling requires that the REFs can be inverted (redefined for the back-
ward path) in such a way that the inverted functions are also non-decreasing. Irnich
(2008) defines inverse REF's that are applicable to a wide range of problems. Baldacci
et al. (2011) define inverse ng-paths and the associated inverse ng-memory IT7'(L).

In the presence of ng-robust valid inequalities, inverting the REF of the reduced cost
function ¢(L) is impossible in general. The reduced cost function depends on the dual
application functions, which depend on the ng-memory. For the backward path, only
the inverse ng-memory is available, which does not contain any information about the
forward path. It follows that the duals cannot be applied correctly.

To achieve compatibility with bidirectional labeling, we propose to relax the ng-robust
valid inequalities as follows. For the forward path, apply the duals in the same way as
in the monodirectional labeling algorithm. For the backward path, evaluate the dual
application functions as if N; = {i} for all i € V', i.e., no visits are remembered, and
therefore TI"'(L) = {i(L)}. The relaxed valid inequality is robust on the backward path,
which means that the reduced cost function can be inverted. It follows from Proposition 8
that the relaxed valid inequality is indeed not stronger than the original, and is therefore
valid.

Another relaxation can be obtained when the ng-robust valid inequality is symmetric

19



in the sense that the cut remains valid if TI(L) is replaced by II7'(L) everywhere. The
ngSDCs and the valid inequalities presented in Section 4.1 have this property, for example.
In this case, the opposite relaxation is possible: the valid inequality is made robust on the
forward path by assuming that II(L) = {i(L)} when duals are applied, while the reduced
cost on the backward path is calculated using IT7*(L).

In a bidirectional labeling algorithm, either or both relaxed valid inequalities can be
used instead of the original ng-robust valid inequality. Additionally, we note that any
positive linear combination of the two relaxations results in an ng-robust valid inequality

that is compatible with bidirectional labeling.

3.4.4 Arc-based ng-memory

Bulhoes et al. (2018) present a generalization of the ng-route relaxation in which the
ng-memory is updated according to neighborhoods associated with the arcs. That is, the
vertex neighborhoods N; for j € V' are replaced by arc neighborhoods N;; for (i, j) € A.

The update rule (3) is replaced by
(L @ j) = (II(L) N Ny) U {7} (8)

Note that the ng-memory II(L) is still a set of vertices and remains non-decreasing
in L. It is straightforward to verify that changing the update rule does not affect any
of our results. That is, ng-robust valid inequalities are compatible with the generalized

ng-route relaxation.

4 Application to the CVRP

In this section, we apply the notion of resource-robustness to the Capacitated Vehicle
Routing Problem (CVRP). In the CVRP, every route corresponds to a delivery route,
and every task corresponds to a delivery to a client. A positive demand ¢; > 0 is associated
with every task i € V', and the total demand of a route cannot exceed the vehicle capacity

@ > 0. To ensure feasibility, we assume that ¢; < @ for all ¢« € V’. For more information

20



on the CVRP and other vehicle routing problems, we refer to Toth and Vigo (2014).

We introduce the ng-Capacity Cuts (ngCCs) as a stronger alternative to the well-
known rounded capacity cuts for the CVRP. The ngCCs are analyzed theoretically, and
we present a separation algorithm to find violated inequalities. We also discuss other ng-
robust valid inequalities that can be derived in the same way. In Section 5, the ngCCs
are tested empirically with computational experiments.

In terms of constraints, the CVRP is one of the simplest problems that fit in our
framework. It can be stated as a set partitioning problem in which all routes are ele-
mentary, with the single additional constraint that routes respect the vehicle capacity.
Many vehicle routing problems include the CVRP as a special case, and our results for

the CVRP are immediately applicable to these problems.

4.1 ng-capacity cuts

Capacity cuts for the CVRP are based on the following observation. Let S C V' be
a subset of the tasks, with total demand ) ,_¢¢;. As each route respects the vehicle
capacity @, at least [% Y ics qiw routes are needed to execute the tasks in S. Rounding
up the fraction is allowed, as the number of routes is integral, which follows from the

integrality of the route variables.

4.1.1 Capacity cuts and strengthened capacity cuts

Two known classes of capacity cuts are the rounded Capacity Cuts (CCs, Augerat et al.
(1998)) and the Strengthened Capacity Cuts (SCCs, Baldacci et al. (2004)). Before
stating the ngCC, we discuss these valid inequalities in reverse order.

The SCCs are given by

> 53l 0

reR €S

with ¢%9¢(S) a binary parameter equal to one if route r contains any task in S, and

zero otherwise. Note that the left-hand side is the number of routes that visit .S, and the

21



right-hand side is the lower bound discussed before.

The SCCs are known not to be robust, but can be shown to be elementarity-robust
in the same way as in the example in Section 3.3. Let the cut memory Cg consist of a
single resource that is one if the set S is entered at least once, and zero otherwise. The
dual application function is given by

1 ifi¢gS jes Cs=0
T5OC(C5) = (10)

0 else.
It is straightforward to prove elementarity-robustness by verifying the conditions in Def-
inition 5.

The CCs are a robust but weaker alternative to the SCCs, given by

> (S, > {é Zqzw : (11)

reR €S

with (¢¢(S) the number of times that route r enters the set S. The associated dual
application function is given by
Tfjc: 1 ifigS j€8 12
0 else.
Note that the CCs are robust, and therefore the cut memory Cs = & is empty. As
mentioned in Section 3.2, the dual can be projected onto the arcs.

It is important to note that the CCs over-estimate the left-hand side of (9) by double-
counting the entries into the set S. For the SCCs, only the first entry into the set S
increases the value of (5¢. For the CCs, every time an arc (i,j) € A is used with i ¢ S
and j € S, the value of (“C is increased. As a result, routes that enter and leave S more
than once are counted double. This double-counting results in a valid inequality that is
weaker, but does not require any cut memory, because it is not necessary to remember
whether S has been visited before.

Naturally, as the CCs and SCCs are different kinds of cuts, separation also differs

22



between them. We discuss this in more detail in Section 4.3.

4.1.2 ng-capacity cuts

We are now ready to introduce the ngCCs. The ngCCs have a similar structure to the

CCs and the SCCs, and fall in between the two in strength and in robustness. Where

the CCs are robust and the SCCs are elementarity-robust, the ngCCs are ng-robust.
The ngCCs are defined as

> ¢e(S)z, > {% > qzw , (13)

reER €S

where (9(S) equals the number of times route r travels into set S for the first time,
according to the ng-memory. That is, whenever route r travels into S, it is counted if
and only if all nodes in set S are not contained in the current ng-memory II(L).

Figure 1 shows an example for a route r = (0,1,2,3,4,5,n + 1) and a subset S =
{1,3,5}. Assume that the neighborhoods are given by Ny = N3 = Ny = N5 = {1,3,4,5}
and Ny = {2,3}. In this example, route r travels into S three times in total, which
implies (¢¢(S) = 3. As r travels into S at least once, we have (?°“(S) = 1. According
to ng-memory, the route enters S two times: first when traveling from 0 to 1 (as the
ng-memory for this extension is empty), and second when traveling from 2 to 3 (the visit
to 1 is not remembered because 1 ¢ N;). Traveling from 4 to 5, the ng-memory equals

{3,4}, so this entry is not counted. It follows that (" (S) = 2.

Figure 1: Example instance for the ngCCs.

For the ngCCs, whether the entries into the set S are double-counted depends on

the current state of the ng-memory. It follows that (5¢¢(S) < ¢"9(S) < ¢¢(S), which

23



implies that the ng-capacity cuts are valid for the CVRP. Note that if the ng-memory is
perfect (N; = V' for all ¢ € V’), then double-counting is eliminated and the ngCCs are
equivalent to the SCCs. On the other hand, if NV; = {i} for all ¢ € V', then every entry
is double-counted, which makes the ngCCs equivalent to the CCs.

To incorporate the ngCCs into the pricing problem, we use the cut memory Cg?,
which equals one if S has been visited according to ng-memory and zero otherwise. That

is, C¢? = min{1,|S NII(L)|}. The dual application function is given by

o : ng
Yon(cn) = 1 ifig¢gS jes C&F=0 14
0 else.

We verify ng-robustness by checking the two conditions in Definition 5. First, we
note that T;7(Cg’) is non-increasing in the cut memory Cg?. Second, the cut memory
C%? = min{1,|S NII(L)|} is non-decreasing in the ng-memory II(L). It follows that the
ngCCs are ng-robust.

By Theorem 7 we have that the duals of the ngCCs can be incorporated without
changing the structure of the pricing problem. After adding the dual application functions

to ¢(L), the non-decreasing dominance rules can be used.

4.2 Effect on the lower bound

Next, we present an example to demonstrate the size of the effect that ngCCs can have
on the lower bound. In this example, using only CCs results in an optimality gap of 50%.
By including ngCCs, the optimality gap is reduced to 0% and the optimal solution is
found at the root node.

Our five-task CVRP instance on a complete graph is presented in Figure 2a, with
vertices 0 and n + 1 at the same location. The cost for traversing arcs (0, 2), (0, 3), and
(0,4) is equal to one, and all other arcs have cost zero. The demand for each task is
displayed next to the task vertex, and vehicle capacity @) is set to 29. The neighborhoods
are defined as Ny = Ny = N3 = Ny, = {1,2,3,4} and N5 = {5}. Finally, the colored

arrows show an optimal solution to the master problem when all CCs are included. Each

24



colored tour corresponds to a route variable with value z, = 0.5. It can be seen that the
corresponding objective value is equal to 0.5.

10 10

20 10 20 10

1 10 1 10
(a) RMP solution that satisfies all CCs. (b) RMP solution that satisfies all ngCCs.

Figure 2: Example instance where ngCCs increase the lower bound.

In this fractional solution, the ngCC corresponding to S = {1,2,3} is violated: The
number of vehicles needed is {%W = 2, whereas only 1.5 vehicles currently serve these
tasks. The CC corresponding to the same set counts both entries of the blue route
(0—-1—4—3—=n+1)into S. For the ngCC, the second entry is not counted, as
1 € Ny. Adding the violated ngCC to the master problem results in an integer optimal
solution with objective value 1, shown in Figure 2b.

We hypothesize that ngCCs are most effective for instances with high demand clusters
of tasks, as is the case for {1, 2, 3,4} in the example. If capacity is restrictive, this may lead
to fractional routes that enter subsets of the cluster multiple times. As tasks in clusters

are typically in each others neighborhoods, the ngCCs can prevent double counting in

this case, which leads to stronger cuts and better bounds.

4.3 Separation algorithm

We present a separation algorithm to find violated ngCCs for the current solution to the
master problem. That is, for current (fractional) values of the x, variables, the separation
algorithm returns a set of tasks S C V' for which Equation (13) does not hold.

Instead of designing a specialized separation scheme, we propose to construct a sepa-

ration network such that violated ngCCs in the original network correspond to violated

25



CCs in the separation network. Existing separation algorithms for CCs, such as those

presented by Lysgaard et al. (2004), can then be leveraged to separate ngCCs.

Definition 9 (k-scaled separation network). For a given k € N, the r-scaled separation

network is constructed from the original network as follows.

1. Scale down all non-zero route variables x, > 0 to obtain

with #(r) the number of tasks that route r visits (double counting multiple visits).
2. Project the &, variables onto the arcs to obtain arc flows.

3. Introduce zero-demand dummy tasks following Algorithm 1 in Appendix A to restore

the in- and outflow of each task to one.

Proposition 10. For a given k € N, if a violated ngCC' in the original network corre-
sponds to a subset S C V' that is entered at most k times by every non-zero route r, then

the C'C' corresponding to S in the separation network is violated as well.

Proof. See Appendix B. O

#(r)

5 W, all violated ngCCs in the original network

Corollary 11. For k = max,cr|s,>0 {

correspond to violated CCs in the separation network.

Proof. Follows immediately from Proposition 10 and the fact that every route can enter

subset S at most [@1 times. ]

By Corollary 11, all violated ngCCs can be found by separating CCs on a separation
network with sufficiently high . In the reverse direction, violated CCs on the separation
network do not necessarily correspond to violated ngCCs. For performance reasons, we
therefore propose to start with a separation network for x = 1, and only increment the

parameter when no more violated ngCCs can be found.

26



4.4 Application to other valid inequalities

The derivation in Section 4.1 and the separation algorithm in Section 4.3 are not specific
to the ngCCs, and can be used to derive ng-robust variants of other cuts in the literature
as well.

For example, consider the k-path cuts, which are given by

SN b > k(S (15)

reR (i,j)€A

with S C V"’ a subset of tasks and with £(S) > 1 a lower bound on the number of routes
that enter S in any feasible solution. Recall that b; is the number of times that arc (3, j)
is used in route 7. Note that CCs are specific k-path cuts with k(S) = {% Y ics qi-‘.

In the same way that we derive ngCCs from the CCs in Section 4.1, one can immedi-
ately derive ng-robust k-path cuts from the k-path cuts. As special cases, this includes
ng-robust subtour elimination constraints (Dantzig et al., 1954) and ng-robust 2-path cuts
(Kohl et al., 1999). It is straightforward to see that the same is true for the generalized
k-path cuts presented by Desaulniers et al. (2008). For all these ng-robust valid inequal-
ities, k-scaled separation networks as introduced in Section 4.3 allow existing separation
algorithms to be used.

The ngSDCs presented in Section 3.3 provide another example. These cuts can serve

as an alternative to enforcing ng-routes in the subproblem, similarly to how the SDCs

can enforce elementarity in the subproblem.

5 Computational experiments

In this section, we empirically compare the effects of adding CCs or ngCCs in a BPC al-
gorithm for the CVRP. The goal of these experiments is to study the performance of using
ng-robust cuts —and, more generally, resource-robust cuts— in a relatively simple setting.
A straightforward BPC algorithm is implemented in C++, following the descriptions in

Sections 2.2 and 2.3, details of which are discussed in Section 5.1.

27



All experiments are run on an Intel Xeon W-2123 3.6GHz processor and 16GB of
RAM. The algorithm is run on a single thread, and a time limit of three hours per

instance is imposed. CPLEX version 12.7.1 is used to solve the RMP.

5.1 Implementation BPC algorithm

The basic steps of the BPC algorithm are implemented as described in Sections 2.2 and
2.3. To model the CVRP, we use current load ¢(L) as an additional resource. Its REF is
defined as q(L @ j) = q(L) + ¢; with upper resource window ). That is, if ¢(L & j) > @Q,
the extension of L to j is infeasible. For notational convenience, we denote gy = ¢,+1 = 0.
Following Pecin (2014), dominance checks are only performed between labels with the
same current load.

The ng-route relaxation is implemented as described in Section 2.3. Neighborhoods of
size 10 are constructed by selecting the nearest clients. For valid inequalities, either CCs
or ngCCs are added, with dual application functions defined in (12) and (14), respectively.
The duals of the CCs are projected onto the arcs, as discussed in Section 3.2. The ngCCs
are included by adding the dual application functions to the reduced cost of the label, as

discussed in Section 4.1.2.

5.1.1 Heuristic pricing

To quickly discover negative reduced cost columns, we use heuristic pricing as described
by Desaulniers et al. (2008), among others. See Costa et al. (2019) for a survey on this
topic. The original pricing problem is simplified through aggressive dominance and arc
elimination. The former ignores some of the resources in the dominance check, and the
latter ignores unpromising arcs based on their reduced costs.

If a route with negative reduced costs is identified, it can be added to the RMP. When
no more routes can be found, the labeling algorithm is applied again with more resources
and more arcs are taken into account. Eventually, the full problem —with all arcs and
resources— is solved, which guarantees that all negative reduced cost columns are found.

As discussed in Section 3.4.1, the unreachable vertices acceleration technique is in-

28



compatible with ng-robust valid inequalities when the pricing problem is solved exactly,
but may be included heuristically. Therefore, we employ this technique when either no
ngCCs are present in the model, or heuristic pricing is used as discussed above. The set
of unreachable vertices is taken to be the set of tasks that cannot be added to the current

route without violating the capacity constraint.

5.1.2 Separation of valid inequalities

As discussed in Section 4.3, we separate ngCCs by separating CCs on k-scaled separation
networks. The CCs are separated with the CVRPSEP package by Lysgaard (2003), which
is described by Lysgaard et al. (2004). We modify the code to prevent CVRPSEP from
terminating early if one of the four heuristics is successful. This is done because not
all violated CCs in the separation network correspond to violated ngCCs in the original
network. In preliminary experiments, no cuts have been found for k > 4, so kK = 4 is set
as the maximum value.

For each potential cut defined by subset S C V’, it is determined whether the cut is
added as an ngCC or as a weaker CC. Even though ngCCs do not change the structure
of the pricing problem, we find that it is not worth the effort to evaluate the more
complicated dual application function if the strength of the ngCC and the CC is similar.

Let v™(S) and v““(S) be the violation of the ngCC and the CC corresponding to
subset S C V', respectively. If v™9(S) > max{0.2, v““(S) + 0.1}, then the cut is added
as an ngCC. Else if v9¢(S) > 0.1, then the cut is added as a CC. Otherwise, the violated
valid inequality is ignored.

Next to the above heuristic separation procedure, we also experiment with exact sep-
aration of CCs and ngCC. To this end, the separation problems are formulated as MIPs
and solved by CPLEX. These MIPs (see Appendix C for details) are able to find the
single most violated CC or ngCC in the current solution. Therefore, it is impractical to
separate all cuts using this exact separation. Instead, we only execute the exact separa-
tion whenever the heuristic one fails, in order to find any additional cuts the heuristic

separation might have missed.

29



5.1.3 Branching rule

As is common in the literature (e.g., see Desrochers et al. (1992)), we branch on the arc
flows z;; € {0, 1}, which are defined as z;; = » . bf;x, for all (i, j) € A. Recall that bj;
is the number of times that arc (4, 7) is used in route r.

We use approximate strong branching, similarly to Ropke (2012) and Pecin et al.
(2017b). For a given arc (i,7) € A, the score of a potential branch is given by A =
0.75 min{ A", A~} 4+ 0.25 max{A*, A~ }, where A" and A~ are the objective values after

forcing the arc flow z;; to one or zero, respectively. The arc to branch on is chosen as

follows:
1. Select the 30 arcs for which |z; — 1| is the smallest.

2. For these arcs, calculate the A-score without generating any additional routes.

Select the five arcs with the highest score.

3. For these arcs, calculate the A-score while generating additional routes with heuris-

tic pricing only. Select the arc with the highest score to branch on.

5.2 Test instances

We test the BPC algorithm on the A, B and P benchmark instance classes by Augerat
(1995). The instance classes mainly differ in where tasks are located in the Euclidean
plane: for the A instances the placement is uniform, for the B instances it is clustered
and for the P instances the placements are derived from real-life instances.

As hypothesized in Section 4.2, we suspect the ngCCs to work best in clustered
instances where capacity is restrictive. Therefore, we find it interesting to also test the
performance of the algorithm on the Augerat B instances (for which the task locations
are clustered) with the demand doubled (or set to the vehicle capacity, if exceeding). We
call these the B2 instances. The restriction on the number of vehicles is ignored for all

instances.

30



5.3 Separation strategies

To compare the performance of using CCs to using ngCCs, the BPC algorithm is tested
for six different separation strategies. Three strategies only use CCs, while the others

allow for ngCCs. An overview is presented in Table 1.

Cut type Max xk Separation type

ccl CcC 1 Heuristic
ccd cC 4 Heuristic
ccX cC 4 Exact
ngl ngCC 1 Heuristic
ngd ngCC 4 Heuristic
ngX ngCC 4 Exact

Table 1: Overview of separation strategies.

The cut type in Table 1 indicates whether CCs or ngCCs are used. The next column
states the maximum value of x that is used for the x-scaled separation networks, as
discussed in Section 4.3. If maxk = 1, then only CCs are separated. Note that for the
ngCC separation methods, these CCs may be added as ngCCs. If maxx = 4, then the
value of k may be increased up to four to allow more ngCCs to be found. The final
column indicates whether valid inequalities are separated with the heuristic or with the
exact implementation, as discussed in Section 5.1.2. Note that the exact separation is
executed only when the heuristic separation (with Max x = 4) fails to find sufficiently

violated cuts.

5.4 Computational results

In this section, we analyze the performance of the BPC algorithm on the instances dis-
cussed in Section 5.2 for the six strategies introduced in Section 5.3. We first compare
CCs and ngCCs on how well they contribute to closing the integrality gap for the consid-

ered instances. Next, we analyze the time spent in different parts of the algorithm. For

31



detailed tables with numerical results, we refer to Appendix D.

5.4.1 Relevant gap closing

To evaluate how the different strategies contribute to closing the optimality gap, we
introduce the relevant gap metric. For a given instance, the relevant gap of a given

separation strategy s at time t is given by

l . 2* — LBs,t 1
retgapsy = mimn ——————, N
g p ! z* — LBroot

where LB, is the lower bound of strategy s at time ¢, LB, is the lowest lower bound
obtained by any of the strategies at the root node (immediately before branching), and
z* is the optimal objective value of the instance (or the best-known lower bound rounded
up to the nearest integer, if no strategy reached optimality).

When a branch-and-bound process starts, the lower bound LB, is set to 0 and stays
that way until the root node is solved. During that period, LB, is smaller than LB,
which means the relevant gap is fixed at one. Only when the root node with cuts is
solved does LBs; > LB, hold, which means the relevant gap can become lower than
one. Given enough time, the gap will decrease to zero, at which point the relevant gap
is closed and the problem is solved to optimality. As the relevant gap ranges between
zero and one, we can average over all instances and compare their performance with each
other. By defining LB, as-is, we focus only on closing the gap after solving the root
node.

Figure 3 presents the average relative gaps over time for all tested instances classes,
and for all six separation strategies, based on the data in Appendix D. Note that the
graph stops at 10800 seconds, which corresponds to the time limit of 3 hours.

Our first observation is that for the A, B, and P instances, the average relevant gap
over time progresses very similarly for the six strategies. This indicates that the additional
strength of the ngCCs compensates for the overhead of evaluating more complicated dual
application functions, and for the fact that the unreachable vertices acceleration technique

cannot always be used (see Section 3.4.1). Although the ngCCs do not seem to improve

32



1
0.8 0.8
=¥ =¥
< <
o0 o0
E06f E 06}
g g
2 2
4 &
[ @
Po4r Po4r
02} 02}
0 L L L LY 0 L L L
10° 10 10% 10° 10* 10° 10 10% 10° 10*
Time (seconds) Time (seconds)
(a) Augerat B instances. (b) Augerat B2 instances.
1 1r
0.8 0.8
=¥ =¥
0 0
2 0.6 206
g g
o o
g g
[ [
£ 04 £ 04
Z Z
0.2 0.2
0 . . . ' 0 . . . .
10° 10 10% 10° 10* 10° 10 10% 10% 10*
Time (seconds) Time (seconds)
(c) Augerat A instances. (d) Augerat P instances.

Figure 3: Average relevant gap over time (logarithmic scale).

performance, they also do not hinder the algorithm for these instances.

For the B2 instances, on the other hand, the strategies that use ngCCs clearly demon-
strate better performance. On average, ngl outperforms the strategies cc1, cc4, and ccX
for most of the runtime. Recall that for ngl only CCs are separated, which are potentially
added as ngCCs. The strategies ngd and ngX allow for more ngCCs to be found, which
improves performance further. The average relevant gap is closed up to 19 percentage
points further at the same time, or looking at it differently, the same average relevant
gap is obtained up to 9309 seconds earlier.

The difference in average relative gap for the strategies in Figure 3b decreases over
time. This is a consequence of the typical behavior where the last part of the gap is the

most difficult to close. For the relevant gaps close to zero, the ng strategies still obtain

33



the same value significantly faster than the cc strategies. If route enumeration is used to
close the remainder of the gap (e.g., see Pessoa et al. (2009) and Baldacci et al. (2011)),
this process can be started significantly earlier.

It is also of interest to see how the relevant gap decreases per node of the branching
tree, rather than per time unit. This more clearly demonstrates the effect of the valid
inequalities, rather than how time-efficient the current implementation is. Figure 4 shows

the average relevant gap per solved node for each of the four instance classes.

---------- ccl
- = == CC4
ccX
08 ng1
O i, = = =ngi o
) ngX )
S —— =
g g
g g
- &
D D
% 04 2
0.2
0 T 0 L L
10° 10t 10% 10° 10t 10% 103
Number of nodes Number of nodes
(a) Augerat B instances. (b) Augerat B2 instances.
1 1-
0.8 0.8
=0} =%}
& I
o0 a0
206 206
g g
g g
£ £
[} [}
£ 04 £ 04
Z Z
0.2 0.2
0 L L 0 L L
10° 10" 10° 10° 10! 10?
Number of nodes Number of nodes
(c) Augerat A instances. (d) Augerat P instances.

Figure 4: Average relevant gap per node

We observe from Figure 4 that using ngCCs results in smaller relevant gaps for a
given number of nodes in the search tree. This effect is especially pronounced at the root
node, where ng4 and ngX close the relevant gap up to 23 percentage points further than

the other strategies. Again, the clearest advantage is observed for the B2 instances.

34



It is noteworthy that ngl performs similarly to the cc separation strategies, showing
that naive separation of ngCCs simply does not yield enough cuts. On the other hand,
there is barely any difference between ngX and ng4, showing that the x-scaled separation
networks are able to capture the most relevant valid inequalities, and that exact separation
is unnecessary.

Comparing Figures 3 and 4, we see that the performance of the ng strategies is better
when measured per node of the search tree than per unit of time. The main reason is that
solving a single node with the ng strategies is more expensive than with the cc strategies,
even though the structure of the pricing problem is the same. This is an important
observation that is explored further in Section 5.4.2.

In all four instance classes —especially the A and P instances—, the differences between
the CCs and ngCCs become less prevalent as the number of nodes increases. In part, this
is again due to the last part of the gap being the most difficult to close. Furthermore,
the ng strategies typically solve less nodes within the three hour time limit, and therefore
the bound stops improving after a certain number of nodes, earlier than is the case for

the cc strategies.

5.4.2 Time spent per node

Table 2 reports the amount of time spent on the different components of the BPC algo-
rithm, on average per node. These numbers are shown for each separation strategy and
for each instance class. The columns LP, PP, and SEP represent the average time per
node spent on solving LPs, solving pricing problems (heuristically and/or exactly), and
executing the cut separation, respectively. The BRANCH column presents the average
time needed for approximate strong branching (see Section 5.1.3), and TOTAL gives the
average total time spent per node.

The PP column is further detailed by columns PP: for i € {0,1,2,3,4}. PPO up to
PP3 represent the time spent solving different levels of heuristic pricing, each level taking
more resources or arcs back into account (see Section 5.1.1). PP4 corresponds to time

spent solving the exact pricing problem.

35



As both LPs and pricing problems are solved during branching, the columns LP,
PP, SEP and BRANCH do not add up to TOTAL. In fact, minus some computational
overhead, LP, PP and SEP add up to TOTAL approximately.

We see from Table 2 that the total time per node for the ngl strategy is similar to
that of the cc strategies, while the ng4 and ngX strategies require more time. This agrees
with the earlier observation in Section 5.4.1 that only separating CCs and adding them
as ngCCs does not yield much benefit.

The additional time spent on pricing for ng4 and ngX can in part be explained by
the fact that more cuts are found, and therefore the pricing problems are called more
often. To isolate this effect, Table 3 presents the average time spent per pricing problem,
instead of per node.

It can be seen from Table 3 that the time taken by heuristic pricing is not significantly
different between separation strategies, while exact pricing is more expensive for the ng
strategies. This may be because the unreachable vertices acceleration technique cannot
be used when solving the exact pricing problem for the ng strategies, as discussed in
Section 3.4.1.

Moving back to Table 2, we see that for the A and B instances, separation strategies
ng4 and ngX require more time to determine which arc to branch on. Recall that our
approximate strong branching rule only solves heuristic pricing problems, which have
a similar solution time over all strategies. As such, we attribute this difference to the
increase in LP solution time due to the larger number of valid inequalities that are added
by ng4 and ngX.

The SEP column demonstrates that the total time spent on separating valid inequal-
ities is small compared to the total time per node. It is clear that increasing x up to
four (cc4 and ng4) but the overall time increase is very small. This supports the claim
that k-scaled separation networks provide a practically efficient way of separating valid
inequalities. It is also clear that exact separation (ccX and ngX) is much more expensive
than heuristic separation, especially for the B2 instances.

We would like to point out that while the ng strategies require more time per node,

36



‘(opou 1od spuodes ur) wLosfe HJg oy Jjo spred uo quods ouiry oFRIoAY 7 O[qR],

P8V'1E€  Cc6°0¢ 8CC'T FELV  68L°0T T09'€ €60'T 8LZ0 96707 L9¢'¢ XU d
LG86C 19¥°0¢ €6T°0 668% 00601 LgE€'€ 8EO'T TLZO LLL6T ¥S6'¢  ¥du d
861'8C  C89°6I L000 <¢veEVy  €89°0T 6€c€ L1960 Goc0 99761 €C8C [su d
L0V Le 009761 9190 TII¥'e 9’0l S0c'€ ¢L60 8YC0 <CLOST 9L0°€  X99 d
G86'9¢ G661 I8T°0 8c¥'e 6VI0OT 89T°€ <¢96°0 G9¢°0 096°LT 6€T1°€ 29 d
607°'Gc  9¢9°81 900°0 0L1°€ 90T°0T T90°€ 060 OIc0 69¥ LT LC9C 1929 d
8GC6 10¢°G 790'€ TGE0  6FV0T  LLFO CET'0 0I00 610C geee  Xdu cd
8¥4°9 8¥€¢ 702’0 0S€°0 60T  TILF'0 0ST'0 6000 666T 89F'¢  ¥du ¢d
7209 v0¢' ¢ G000 ¢Lc’0  LI0T  OPF'0 <IT'0 L0000 8¥P8T I¥vCE [su ¢cd
9186 0LV arev 6vro  ¥880  L6€0 OIT0 OI00 T99T TI6C X929 cd
1609 LLTS 9¢T1°0 LETO  LZI®O  €9€0 <010 6000 Lev'T  €09°€ 29 cd
vLeG 60LV 700°0 O0€T°0 080  09€°0 L8800 9000 €61 600°€ 199 ¢d
¢87°60T  LST'8L LG9°0 TG6°9T 0ST'9Z GIL'8 986'T FEC0 GEOTS 9ICEy XSU d
[L9°TIT  VIC6L 9220 8€9LT 8€YLT 09G'8 LS6'T 9FC0 T€0°9¢ 9%€°chy ¥9u d
€6C°€S  6987E 0100 ¥.8°0T TOT'LT OLFS 6611 CET0 LLLVE 6EL0T 19U d
L10°CS 160°6€ 0940 ¥L09  99L°LT GI9'G ¢9¢'T 8GT°0 GLLOE STOET X929 d
gcove  ¢o6°0v L0¢0 TLE9  LSC6T <CLG'G 99¢'T GLT'0 OPSce TI9¢Cl P22 d
Gec Iy 0€8F€ 800°0 80LG  TOOBT <¢4¥'¢ 661°'T 610 8870 8II'8 129 d
yeecs  LAL8E 8TO'T 69L°9  €LGTT 6ELF 6£S°T 0IC0 628¥¢ ¥86°0¢ X9U v
918'0¢  709'LE 8EC'0 990°L TSOTT F9¢F T8V'T 8IC0 ¢86'7¢ 99L°61 F9U v
6€6°LE  9€9°LC 600°0 8T09  88STL 96¥F G8E'T 1910 8V6'€C 6VES u v
L8CGE  8Y®'IC 08L°0 4¢8€ 090l 0c¢6'¢ 8LET ¢8I0 GPL6T T8OOT X929 v
9¢gve  0199¢ ¢€C’0 8Y8E 90901 ¢48€ ¢Sc'T ¥6I'0 T9961T 0686 729 v
19€ve  L8LOC 800°0 €€L€  LSETT 69¢F G8¢'T €FVI'0 98L°0C ¢LS'S T[99 v
TVLOL HONVHd ddS ¥vdd edd ¢dd TIdd 0dd dd d'1 'deg  sse[D

S[te3op dd

37



Q
=
Q0
9]
4]
)]
[¢]
i}

PPO

PP1

PP2

PP3

PP4

ccl
cc4
ccX
ngl
ng4d

0.006
0.008
0.007
0.006
0.007
0.007

0.055
0.055
0.055
0.056
0.056
0.055

0.256
0.234
0.236
0.257
0.239
0.234

1.009
0.936
0.938
1.017
0.948
0.887

2.768
2.910
2.860
4.189
4.492
4.155

ccl
cc4
ccX
ngl
ng4d

soliociiveiive o liuvll Je-giis-git* e O '
=)
0]
>~

0.004
0.005
0.005
0.004
0.005
0.005

0.044
0.041
0.042
0.040
0.043
0.044

0.279
0.249
0.252
0.247
0.261
0.262

1.416
1.354
1.274
1.194
1.422
1.328

4.065
4.346
4.185
6.299
7.292
6.994

B2 ccl
B2 ccd
B2 ccX
B2 ngl
B2 ng4
B2 ngX

0.001
0.001
0.001
0.001
0.001
0.001

0.008
0.009
0.009
0.009
0.011
0.011

0.034
0.035
0.035
0.039
0.045
0.045

0.088
0.089
0.087
0.102
0.115
0.116

0.109
0.113
0.120
0.214
0.254
0.249

P ccl
P ccd
P ccX
P ngl
P ng4
P ngX

0.011
0.013
0.013
0.011
0.013
0.014

0.057
0.059
0.060
0.059
0.061
0.065

0.247
0.258
0.261
0.261
0.259
0.283

0.878
0.890
0.902
0.935
0.883
0.938

2.518
2.699
2.656
3.325
3.623
3.479

Table 3: Average time per pricing problem (in seconds).

Figure 3 shows that the additional work is worth the effort. Due to the stronger bounds,
the total time for the BPC algorithm does not increase for the A, B, and P instances,
and even decreases for the B2 instances. We also note that the CVRP pricing problem
is relatively simple, and for problems with a more complicated pricing problem, the
advantage of having stronger bounds may be more pronounced.

The findings in this section also provide opportunities to improve performance fur-
ther. To reduce the amount of time spent on exact pricing, more sophisticated heuristics
pricing techniques may be used. For example, tabu search (Desaulniers et al., 2008)
may be adapted to take the new dual application functions into account. By having

better heuristics, the exact pricing problem, which is relatively slow for the ng4 and ngX

38



strategies, can be avoided more often.

6 Conclusion

In this paper, we consider valid inequalities for set covering type problems that are solved
by branch-price-and-cut, and for which the pricing problem is a SPPRC. This is a broad
class of problems with routing and scheduling applications in aviation, shipping, rail, and
road transportation.

We introduce resource-robust as a new category of valid inequalities between robust
and non-robust. Theoretical properties are considered, and it is proven that resource-
robust valid inequalities can be incorporated in the BPC algorithm without changing the
structure of the pricing problem, under the condition that the resources that the cut is
robust for are already included in the SPPRC.

Elementarity-robust and ng-robust are identified as two widely applicable special cases
of resource-robust valid inequalities. These valid inequlaities are based on the resources
that enforce routes to be elementary or ng-routes, respectively, which are common in
practice.

We discuss important practical aspects of using elementarity-robust and ng-robust
valid inequalities in combination with common acceleration techniques such as unreach-
able vertices, dynamic ng-route relaxation, bidirectional labeling, and arc-based ng-
memory. The latter three are discussed theoretically, while the first is included in our
computational experiments. This choice was made to isolate the effect of the ngCCs
without any additional improvements.

An application to the CVRP is provided, for which we derive an ng-robust variant
of the well-known rounded capacity cuts. We show with an example that adding these
ngCCs instead of the CCs can reduce the optimality gap from 50% to 0%. A separation
algorithm for the ngCCs is presented based on the newly introduced x-scaled separation
networks, which allows leveraging separation algorithms for the CCs to separate the

ngCCs.

39



We point out that ng-robust variants of other cuts may be derived in the same way as
well. This results in ng-robust (generalized) k-path cuts, subtour elimination constraints,
and 2-path cuts. We also mention how to obtain ng-robust strong degree cuts, and how
these can be used to enforce ng-routes in the master problem.

To explore the potential benefit of using resource-robust valid inequalities, we per-
form computational experiments for a relatively simple set partitioning problem with a
relatively straightforward BPC algorithm. In particular, we compare CCs and ngCCs on
how they affect the performance of the BPC algorithm for solving the CVRP.

In the computational experiments, we observe that ngCCs increase the solution time
per node of the search tree, but this is compensated by the stronger bounds that are
obtained. For the A, B, and P, instances, the performance for CCs and ngCCs is similar.
For the clustered high-demand B2 instances, there is a clear advantage in using ng-robust
valid inequalities. We find that especially exact pricing is expensive for ngCCs. Therefore,
we note that performance may be improved further by using more sophisticated heuristic
pricing techniques that incorporate the new dual application functions, which could be a
direction for further research.

We conclude that resource-robust valid inequalities are widely applicable and compu-
tationally promising, and there are several interesting avenues for further research. To
isolate the effect of the valid inequalities, the computational experiments in this paper
consider a relatively simple problem and a straightforward implementation. However, it
will be very interesting to see the interaction of resource-robust valid inequalities with
other valid inequalities and acceleration techniques in state-of-the-art implementations
for different set covering type problems. Another direction would be to derive resource-

robust analogues of known valid inequalities, or even find completely new ones.

References

Philippe Augerat. Approche polyédrale du probléme de tournées de véhicules. PhD thesis,

Institut National Polytechnique de Grenoble-INPG, 1995.

40



Philippe Augerat, José M. Belenguer, Enrique Benavent, Angel Corberan, and Denis
Naddef. Separating capacity constraints in the CVRP using tabu search. FEuropean
Journal of Operational Research, 106(2-3):546-557, 1998.

Lukas Bach, Michel Gendreau, and Sanne Wghlk. Freight railway operator timetabling
and engine scheduling. Furopean Journal of Operational Research, 241(2):309-319,
2015.

Lukas Bach, Twan Dollevoet, and Dennis Huisman. Integrating Timetabling and Crew
Scheduling at a Freight Railway Operator. Transportation Science, 50(3):878-891,
2016.

Roberto Baldacci, Eleni Hadjiconstantinou, and Aristide Mingozzi. An Exact Algorithm
for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network
Flow Formulation. Operations Research, 52(5):723-738, 2004.

Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. New Route Relaxation and
Pricing Strategies for the Vehicle Routing Problem. Operations Research, 59(5):1269—
1283, 2011.

Cynthia Barnhart, Natashia L. Boland, Lloyd W. Clarke, Ellis L. Johnson, George L.
Nemhauser, and Rajesh G. Shenoi. Flight String Models for Aircraft Fleeting and

Routing. Transportation Science, 32(3):208-220, 1998a.

Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savelsbergh,
and Pamela H. Vance. Branch-and-Price: Column Generation for Solving Huge Integer

Programs. Operations Research, 46(3):316-329, 1998b.

Teobaldo Bulhoes, Ruslan Sadykov, and Eduardo Uchoa. A branch-and-price algorithm

for the Minimum Latency Problem. Computers € Operations Research, 93:66—-78, 2018.

Claudio Contardo, Jean-Francois Cordeau, and Bernard Gendron. An Exact Algorithm
Based on Cut-and-Column Generation for the Capacitated Location-Routing Problem.

INFORMS Journal on Computing, 26(1):88-102, 2014.

41



Luciano Costa, Claudio Contardo, and Guy Desaulniers. Exact Branch-Price-and-Cut

Algorithms for Vehicle Routing. Transportation Science, page forthcoming, 2019.

George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson. Solution of a Large-
Scale Traveling-Salesman Problem. Journal of the Operations Research Society of

America, 2(4):393-410, 1954.

Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon, editors. Column Genera-

tion. Springer, 2005.

Guy Desaulniers, Francois Lessard, and Ahmed Hadjar. Tabu Search, Partial Elemen-
tarity, and Generalized k-path Inequalities for the Vehicle Routing Problem with Time
Windows. Transportation Science, 42(3):387-404, 2008.

Martin Desrochers, Jacques Desrosiers, and Marius M. Solomon. A New Optimization
Algorithm for the Vehicle Routing Problem with Time Windows. Operations Research,
40(2):342-354, 1992.

Niklaus Eggenberg, Matteo Salani, and Michel Bierlaire. Constraint-specific recovery
network for solving airline recovery problems. Computers & Operations Research, 37

(6):1014-1026, 2010.

Dominique Feillet, Pierre Dejax, Michel Gendreau, and Cyrille Gueguen. An exact algo-
rithm for the elementary shortest path problem with resource constraints: Application

to some vehicle routing problems. Networks, 44(3):216-229, 2004.

Ricardo Fukasawa, Humberto Longo, Jens Lysgaard, Marcus Poggi de Aragao, Marcelo
Reis, Eduardo Uchoa, and Renato F. Werneck. Robust Branch-and-Cut-and-Price for
the Capacitated VehicleRouting Problem. Mathematical Programming, 106(3):491-511,
2006.

R. S. Garfinkel and George L. Nemhauser. The Set-Partitioning Problem: Set Covering

with Equality Constraints. Operations Research, 17(5):848-856, 1969.

42



Ahmed Ghoniem, Farbod Farhadi, and Mohammad Reihaneh. An accelerated branch-
and-price algorithm for multiple-runway aircraft sequencing problems. Furopean Jour-

nal of Operational Research, 246(1):34-43, 2015.

D. J. Houck, J. C. Picard, M. Queyranne, and R. R. Vemuganti. The travelling salesman
problem as a constrained shortest pathproblem: Theory and computational experience.

Opsearch, 17:93-109, 1980.

Stefan Irnich. Resource extension functions: Properties, inversion, and generalization to

segments. OR Spectrum, 30(1):113-148, 2008.

Stefan Irnich and Guy Desaulniers. Shortest Path Problems with Resource Constraints.
In Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon, editors, Column

Generation, chapter 2, pages 33—65. Springer, 2005.

Stefan Irnich and Daniel Villeneuve. The Shortest-Path Problem with Resource Con-
straints andk-Cycle Elimination for k > 3. INFORMS Journal on Computing, 18(3):
391406, 2006.

Mads Jepsen, Bjgrn Petersen, Simon Spoorendonk, and David Pisinger. Subset-Row
Inequalities Applied to the Vehicle-Routing Problem with Time Windows. Operations
Research, 56(2):497-511, 2008.

Niklas Kohl, Jacques Desrosiers, Oli B. G. Madsen, Marius M. Solomon, and Francois
Soumis. 2-Path Cuts for the Vehicle Routing Problem with Time Windows. Trans-

portation Science, 33(1):101-116, feb 1999.

Jens Lysgaard. CVRPSEP: A package of separation routines for the Capacitated Vehicle

Routing Problem. Working paper, Aarhus School of Business, 2003.

Jens Lysgaard, Adam N. Letchford, and Richard W. Eglese. A new branch-and-cut
algorithm for the capacitated vehicle routing problem. Mathematical Programming,

100(2):423-445, 2004,

43



Diego Pecin. FEzxact Algorithms for the Capacitated VehicleRouting Problem. PhD thesis,

Pontificia Universidade Catélica do Rio de Janiero, 2014.

Diego Pecin, Claudio Contardo, Guy Desaulniers, and Eduardo Uchoa. New Enhance-
ments for the Exact Solution of the Vehicle Routing Problem with Time Windows.
INFORMS Journal on Computing, 29(3):489-502, 2017a.

Diego Pecin, Artur Pessoa, Marcus Poggi de Aragao, and Eduardo Uchoa. Improved
branch-cut-and-price for capacitated vehicle routing. Mathematical Programming Com-

putation, 9(1):61-100, 2017b.

Artur Pessoa, Eduardo Uchoa, and Marcus Poggi de Aragao. A robust branch-cut-and-
price algorithm for the heterogeneous fleet vehicle routing problem. Networks: An

International Journal, 54(4):167-177, 2009.

Christian E.M. Plum, David Pisinger, Juan-José Salazar-Gonzalez, and Mikkel M. Sigurd.

Single liner shipping service design. Computers € Operations Research, 45:1-6, 2014.

Giovanni Righini and Matteo Salani. Symmetry helps: Bounded bi-directional dynamic
programming for the elementary shortest path problem with resource constraints. Dis-

crete Optimization, 3(3):255-273, 2006.

Roberto Roberti and Aristide Mingozzi. Dynamic ng-Path Relaxation for the Delivery

Man Problem. Transportation Science, 48(3):413-424, 2014.

Stefan Ropke. Branching decisions in branch-and-cut-and-price algorithms for vehicle

routing problems. Presentation in Column Generation, 2012.

Paolo Toth and Daniele Vigo, editors. Vehicle Routing: Problems, Methods, and Appli-

cations. SIAM, 2" edition, 2014.

[laria Vacca, Matteo Salani, and Michel Bierlaire. An Exact Algorithm for the Integrated

Planning of Berth Allocation and Quay Crane Assignment. Transportation Science, 47

(2):148-161, 2013.

44



A Restoring in- and outflow of a task

: 20

11—« l—« /'I
0O — (1) e | B

\8

Figure 5: A method to restore the in- and outflow of a task to one, for given a € (0, 1).

Algorithm 1 Algorithm to restore the in- and outflow all tasks to one

1: for all tasks i € V' do

2: Calculate reduced missing in- and outflow a =1 — 3" _» aj7,
3: if a > 0 then
4: Introduce dummy nodes ¢’ and " with ¢; = ¢ = 0, with flow on arcs (i,17'),

(4,2"), (¢',4) and (i",7) equal to § and flow on arcs (i,4”) and (i”,') equal to 1 — §
(see Figure 5).

5: end if

6: end for

B Proof Proposition 10

Proposition 10. For a given k € N, if a violated ngCC' in the original network corre-
sponds to a subset S C V' that is entered at most k times by every non-zero route r, then

the CC corresponding to S in the separation network is violated as well.

Proof. Let S be a subset of tasks corresponding to a violated ngCC in the original net-

work. Furthermore, it is entered at most x times by every non-zero route r. This gives us

that (¢9(S) < & for all r with 2, > 0. As every route can enter a subset at most [&—‘

£ < infn [40] ) =,

for all r such that x, > 0. Multiplying ¢?(S) > ¢79C(S) = min{¢““(S), 1} with &,, we

times, we have




get the following string of inequalities:
kr(P9(S) > min{k, ¢7(S), e} > (7O(S),

where the last inequality follows from the fact that x, > 1 and (¢“(S) > 0 (so ¢¢¢(9) <
kG C(S5))-

As the ngCC in the original network for subset S is violated, we have

Z ¢ (S)x, < {%qui‘ .

rxy>0 i€S

Combining this with the previously proven inequality, we get

{%Zq;‘ > Z ¢(S)z,

€S rxy>0

= Z ’frg?g(s)jr

rxy>0

> Y )

rixy>0

Note that the right-hand-side corresponds to a CC in the k-scaled network (when aug-
menting S with its dummy nodes). So, this CC corresponding to S is violated in the

k-scaled network as well. O

C Exact separation of ngCCs and CCs

For the exact separation of CCs and ngCCs, we use the integer programs (16) and (17)
respectively. The programs find the most violated CC or ngCC by minimizing the left-
hand-side of the valid inequality (13) and (11), while keeping the right-hand-side constant.

To separate a CC or ngCC exactly, we execute the program a number of times, each
for a different value of #, which represents [% Y oier qi-‘, the right-hand-side of the cut.
As 0 is integer, we execute the program for 6 € {1, 2,..., [é Yiev qi-‘ } If in any of

the stages a violated cut is found, we return that cut and terminate the separation.

II



Otherwise, no violated cuts are present in the current solution.

min Z TijZij, (16a)

(1,5)€A
(0 -1)Q+1< quz’ ; (16¢)
eV
0Q > Z%’yz‘ ) (16d)
eV
Yo = Ynt1 =0 : (16e)

In (16), z;j, (i,5) € A represents the arc flows of the current (not necessarily integer)
solution to the RMP (z,),er, With x;; = > o bi;z,. The binary decision variables y;
equals 1 if task 7 is in the subset S of the CC and equals 0 otherwise. The binary decision
variable z;; equals 1 if arc (¢, j) enters this set S and 0 otherwise.

Equation (16a) is the objective: it counts the number of vehicles entering set S.
Equation (16b) makes sure that z;; equals 1 if y; = 1 and y; = 0. The constraint is inactive
otherwise. Next, constraints (16¢) and (16d) make sure that  equals {% Y ics qi-‘, where
we add 1 to the left-hand-side of (16¢) as we assume all ¢; to be integer. Constraint (16e)
ensures that the depots 0 and n+ 1 cannot be in set S. Finally, constraint (16f) restricts

the variables to be binary.

I1I



#(r)
min Z Z Ty Zrks (17a)

reR k=1
Stz Y Ui U, Vre R ke{l,... #(r)} (17b)
i€l (k—1)

(0 -1)Q+1< Z%% ; (17¢)

eV
0Q>> aqyi (17d)

%
Yo = Yn+1 =0 ; (17¢)

Zrks Yi S {07 1} VZ € ‘/771 S R, k € {17 teey #(T>} (17f)

In (17), z, represents the current (not necessarily integer) solution to the RMP. Again,
the binary decision variable y; equals 1 if task ¢ is in the subset S of the ngCC and 0
otherwise. The binary variable z,; equals 1 if route r travels into S as the kth task on
the route for the first time, according to its ng-memory. Here, k € {1,...,#(r)}, where
#(r) is the number of tasks on the route. Furthermore, let r; be the kth task on the
route, where we set ry = 0 and ry(y4; = n+1 the starting and ending depot respectively.
We also define II,.(k) is the ng-memory of route r at its kth task.

Equation (17a) is the objective: it counts the number of vehicles entering subset S for
the first time, according to ng-memory. Constraint (17b) makes sure that z. is forced
to 1 if its kth task is in S and all tasks in its current ng-memory are not in S. Next,

constraints (17¢)-(17f) are identical to their counterparts (16¢)-(16f).

D List of computational results

IV



L8 oI g199¢ 1w G6°¢997 0000 OPIT 00°0VIT x8u 0€2 98  TIIg 1 6012 0000 606 00°606
88 TIT  To69z 67 647€82¢ 0000 OFPIT 00°0PLT ¥8u 06T 98 IS T 68°0T 0000 606 00°606
8€ 99 TE8IE  LST TLLTER 0000 OFIT 00°0FTT 18u 8¢ 6P €LY T oree 0000 606 00°606
0 9  €IevL 1€ 9¢°€TeT 0000 OFIT 00°0FIT X922 0 8T €67 T GEeT 0000 606 00°606
0 96 €IeFL 1€ Ge'9zel 0000 OFIT 00°0FTT ¥ 0 8ET €67 T €eT 0000 606 00°606
0 €8 LLLIT  LST 200929 0000 OFIT 00°0FLT T2 Ly-LGu-g 0 18 80FF 4 T6'8% 0000 606 00°606
€67 g9z 6Lr0C TV 0¢7Te60T  JuI Jur - ¥6°61CT x8u vet 8y TIEL 6 87689 0000 204 00°L0L x8u 81T GIT  8690T ST S0°6I¥ 0000 2rL 00TrL
167 0Lz 0LZ6T 8¢ 09°8T80T  JuI Jur - retoeet ¥3u vet 8y TOEL 6 78°6L9 0000 204 00°L0L yu 81T GIT  8690T  ¢T 8C'ETV 0000 ¢rL 00TrL
9€ T8T  TOZST LV TL'6.87 0000 Teel 00°Teet 18u L1 v 0LPT €T 09299 0000 204 00°L0L 18u 9T 0€T 6608 e TOI8E 0000 TFL 00°TPL
0 €€ 6650C 66 08'€650T 0000 Teel 00°1eeT X922 0 18 Th0eT LT TS€L6 0000 204 00°L0L X922 0 8T 0€70T T2 8E°6L& 0000 €FL 00TFL
0 ore  8pe0e  TL 07'€980T 6IT°0 Teel S96TIeT 22 0 18 Th0eT LT 96896 0000 204 00°L0L 22 0 8T 6YSTT TP TLF8S 0000 TFL 00°ChL
0 9ce 699t L8 0z'9680T  JuI Jjur - 8g'oeel 190 O1-8LU-g 0 TS T6sFL ST Frees 0000 0L 00°L0L 120 L-9gu-g 0 €T €786 i €€°€EC 0000 ¢FL 00ThL 120 o-gpu-g
sy GLT 1969 9¢ 02°1960T  JuI Jur - v6'99¢t x3u 0g GIT  ¢reve 9 €9°€g6c 0000 LPL  00°LPL x3u 9 L8 €L69 €2 €L°61C 0000 628 00°6¢8
asig 99T €8¢9C 1€ 09796801 JuI Jur - g6'99et y3u Ly GIT €657 1€ SPI6EC 0000 LPL - 00°LPL y3u 9C 28 290L 12 09'86T 0000 628 00628
c0t1 0Tz 6829¢ 69 0T°6680T  JuI Jur - 69°L9¢1 18u 8 €9 L68Tc  8F LL796VC 0000 LPL  00°LPL 18u 4s @ L8E6 6T L8766 0000 628 00°6C8
0 €9¢  6198¢ €01 06°€€80T  JuI Jur - $6'99¢1 X902 0 10T 969%T €& OGP0 0000 LFL  00°LPL X922 0 TL 0188 €1 ILFET 0000 628 00°628
0 T9c  061.C 06 0F'€I80T  JuI Jur 189921 22 0 10T 9696 €& L6670 0000 LFL  00°LPL 22 0 TL 0188 €1 F0Tel 0000 628 00°628
0 98¢ 6650¢ 96 0L'8V60T 3T Jur - 18'99¢1 192 6Y-89U-g 0 19 coree L€ 6T°68€T 0000 LFPL  00°L¥L 120 Lygsu-g 0 L6 879L €1 8E'GTT 0000 628 00628
66 G0T  gceer  9€ cLve8c 0000 2€0T  00°CE0T x8u Rid ¢ 6689 13 6E8¢ 0000 910T  00'910T x8u 29t @8 TELL 3 0000 6¥¢  00°6VS
96 86 T0€ET O 0000 T€0T  00°CE0T ¥3u 8V ¢ 6689 T 878 0000 9T0T  00°910T y3u 29t 8 TeLL T 000°0
¢ 96T 998€T  6¢ 0000 T€0T  00°CE0T 18u v €C 6I8¢ 1 7987 0000 9T0T  00°9T0T 18u 4 6 €999 1 TTIL 00070
0 coe 99LVT  TL 0000 T€0T  00°CE0T X902 0 99 TILG T TO'LT 0000 9T0T  00°9T0T X902 0 66 9019 T G9°9¢ 00070
0 Toe L6871 TL 0000 T€0T 00°CE0T 22 0 99 TILS T 69T 0000 9T0T  00°9T0T 22 0 66 9019 T 0L9¢ 000°0
0 80¢ 80961  TL 0000 T€0T 00°TE0T 190 OT-L9U-g 0 G LC6S T 6T°LE 0000 9T0T  00°9T0T LEERIPA QL] 0 W L99¢ T £gery 0000 6F¢ 00°6¥S 190 Y-6EU-g
€19 1€ 8L6EC 68 Ju Jjur - 6eeIet x8u Sy 8¢ L¥80€  8T1 08°¢8801  JuI jur - LLTIET X8u &3 8¢ I¥F9 11 8F°GIT 0000 S08 00608 ¥8u
[qe L1€ Tr9gT 98 Jug Jut €rel ¥8u 09v 29z 9610¢  <TT 06°¢780T  JuT Jur - 6LTIET #8u g€ 8¢ 119 a8 L6CIT 0000 S08 00°908 ¥8u
16 1€ V6692 €CC 0000 9T€T  00°9TET 18u 8¢t @8 T6ELE  C0T 0289701 0000 ZIET 00°CIET 18u 9 W €18¢ I L8708 0000 €08 00°408 18u
0 €97 €082E  L8T 0T'€P80T  JuI Jur - 89VIET X902 0 96V 69CIE  0T¢ 6€°0€08 0000 TIET 00°CIET X902 0 €9 €909 €1 GE86 0000 €08 00°408 X902
0 Ty T€80€  G6RIT 09°LP80T  9LT°0 LTIET 89TIET 22 0 Ly €910€ 002 L6°66€L 0000 TIET 00°CIET 92 0 €9 €909 €1 £1°96 0000 €08  00°G0: 22
0 €07 8896C  64C 6L°66L6 0000 9TET 009TET 192 6-99U- 0 0TF  Tre0e 961 92°6L79 0000 TIET 00°TIET 190 RY0GU-g 0 87 €999 123 LP’66T 0000 S08 00°G08 192 OREU-g
6S €cc 10881 1T 19°€10T 0000 198 00198 X8u oL [ () 1 91’29 0000 TFL  00°TFL X8u 991 €L VELS L67c8 0000 €96 00°¢S6 ¥8u
8¢ 9ce - ¥reor 6 66°298 0000 198 00198 y8u oL (A (] 1 L9 0000 1L 00°TPL ¥8u 991 €L VELS 612e 0000 €96 00°956 ¥8u
€1 ¢IL ¥6Ser 6 L67¢9v 0000 198 00198 180 a8 0¢  TIIL 4 Ge69 0000 1L 00°TPL 180 53 16 LLEY 19°€1 0000 €96 00°956 18w
0 gee  Leevr €1 06°0TL 0000 198  00°T98 X902 0 06T 0€99 T 16°9¢ 0000 T¥L  00°TPL Xo2 0 I €vIv eliyas 0000 €96 00°956 X902
0 gee  Leerr €1 T€°TIL 0000 T98  00°T98 o2 0 06T 0€99 1 16°9¢ 0000 TFL  00°TPL o2 0 I €7IV Loer 0000 €96 00°94%6 92
0 66 T6LLT 9T £T8L6 0000 T98  00°T98 190 69U 0 9 789 4 60°0¢ 0000 TPL  00°TPL 190 04U 0 €L 8¢ €0°CT 0000 €96 00°956 190 y-Geu-g
L1 €L1 S 60°88¢ 0000 96¥T  00°96FT X8u ¥e Tc 86801 ¢ 07°96 0000 819  00°8L9 X8u FOT  8ST6T FRLERT 0000 88L 00°88L ¥8u
981 Le 98°0¢61 0000 96VT  00'96FT 78u e ¢ 86801 ¢ L976 0000 849  00°8L9 y8u GOT  8T96T 69°0T8T 0000 88L 00'88L y8u
GLT 34 Lp'€e6T 0000 96VT  00°96FT 18u a8 ve o LL9L S 6e7¢L 0000 849  00°8L9 18u 1L 10L81 LLVP9 0000 88L  00°88L 180
6ET 61 L8651 0000 96VT  00°96FT Xo2 0 e 67901 ¢ TeCL 0000 849  00°8L9 Xo2 €PT 98CTLT 6T'€VL 0000 88L 00'88L Xo2
€T ¢r 89°€8¢ 0000 96VT  00°967T o2 0 6790T ¢ €9TL 0000 849  00°8L9 o2 €PT 98CTLT 0¢°6€L 0000 88L 00'88L ¥
8¥C  990TT LT €0TPL 0000 96VT  00°967T 190 OTH-€9U-g 0 78601 ¢ 6706 0000 849  00°8.9 190 O-Gpu-g 78 GLSOT €8°€56 0000 88L 00'88L 100 ape-g
eet G6C  9L8TT T2 8T'89L 0000 86T 00°86ST x8u e 6P €079 1 0T°9¢ 0000 TSL  00°TGL X8u 8¢ 9997 T 96°0T 0000 2,9 00°2L9 X8u
a G6C  9L8TT T2 95799 0000 86ST  00°86ST ¥8u e 6P €0F9 1 €C9% 0000 TSL  00°TGL y8u 8¢ 9997 1 06°0T 0000 TL9 00°CL9 y8u
ve vee 1ovel €2 6V°Er9 0000 86ST  00°86ST 18u 4 oy 9881l 6 9LVLE 0000 T€L  00°TGL 18u 0z 109¢ 1 8G 0000 29 00°CL9 18u
0 g€ 9evel LT G1'89¢ 0000 86ST  00°86ST Xo2 0 L6 L10et <T Tr'8ey 0000 T€L  00°TGL X292 6e  €8¢E 3 87'¢ 0000 29 00°CL9 X002
0 Le€ L1 Pe0Ls 0000 86ST  00°86ST o2 0 PR (174 R 8E€TH 0000 T¢L  00°TGL o2 6e  €8¢E T Y 0000 29 00°CL9 ¥
0 992 L2 LE7919 0000 86ST 00°864T 190 6LGTg 0 9¢  LT6L L €TIET 0000 T¢L  00°TGL 100 eayu-g 0¢  887¢ 1 [45 0000 2.9 00°CL9 100 y-reu-g
sOObu  sDD  $9MOY  SOPON  dwL], deny gn g1 POyl eoueysuy sOObu  sDD  $9MOY  SOPON  dwL], deny gn g1 POy3epy  eouwysuy sOObU  sDD  $9MOY  SOPON  dwL], deny gn 91 PO Pouessuy




6L LLT L989 44 6LTLE 0000 €902  00°990% X8u o1 0ST  20.2 LT 61°L9 0000 65T 00°C6ST ¥8u

L8 TeT 0668 101 66°629 0000 9902 00°9902 ¥8u Vo1 09T 0vEe s Tr'e6 0000 T6ST  00°C6ST y3u
L€ LET  T88L ¥eT 967202 0000 §902  00°9902 18u €€ LT 0TPE 19 €T°8L 0000 T6ST  00°C6ST 18u
0 6c  vTe0T  S0T LTLLET 00000 990E 0079908 X2 0 96T 1L 00°66 0000 T6ST  00°C6ST X292
0 G0E  L9GTT  8LT TLT9TT - 0000 S90C  00°690C ¥22 0 96T 1L TL°9L 0000 T6ST  00°G6ST 20
0 TLT 18001  ¥8C 99°9LFT 0000 §90Z  00°990T LEERPA PALAT| 0 981  1¢6C 19 £9°99 0000 T6ST  00°T6ST 102 LMpyi-ced
6e¢  91€CT  LSL 0991801 090°0 V11T €LTLIT X8u 9L €0 €09 s 18'862 0000 ¢0gT  00°C0CT X8u L6 LT 89LT 6€ L4976 0000 €2T1  00°6TTT ¥8u
G9S  I89TT 168 0&7080T 0800 ¥IIEZ 0€TIIT 8 98 292 2009 3 66'8€T 0000 20TT  00°C0TT ¥8u 76 88T  €E8Y 14 LT'96T 0000 €82l 00°€caT y8u
s 6IPET 816 05790801  JuI jur o €¥0tIe 18u 1€ v G618 €5 148444 0000 0TI 00°C0eT 18u g 09T 8¢LE 1 SPITT 0000 €TeT  00°€TeT 18u
009  ¢9Gel 98¢ 0T°€T80T  JuI Jur o G9'801¢ X220 0 e 6669 16 GL'8TY 0000 0TI  00°¢0ET X2 0 9T €19€ 6¢ PIGL 0000 €gel  00°€TT X292
0 €6L  T6IST 098 0L°T080T  JuI Jup o 1€601C ¥ 0 6c¢ 6€ 69°08¢ 0000 0T  00°20TT ¥ 0 8.1  91LE 6T 0000 €cel  00°¢eel ¥
0 GIL  6Trel  G08 0070801 JuI Jur - 26'801¢ 195 01-8Lu-cd 0 16¢ 84 6¢°62E 0000 ¢0gt  00°cocT o0 L-9gu-gd 0 81¢  VLLT L2 0000 €cel  00°6Tt 129
691 Iy 0961 ThL 08°¢T80T  JuI Jur o 10°863¢ X8u G0T1 i 61 GO'TL 0000 ¢ver  00°crel X8u £r T SELT 1c 00000 LLVT  00°LLVT ¥8u
91 697 €992T  TLL 07'T080T  JuI Jur o v6'L65C p8u €01 [4as 1c 8676 0000 ¢¥er  00°cvel p8u g vl OTLT L1 00000 LLVPT  00°LLVT y8u
06 8Ly €E6eT  L98 09'T080T  JuI Jjur - €¥'L6cC 18U €1 181 g PICrT 0000 &vel 00°cvel 18u o1 FOT 80T 7e 00000 LLVT 00°LLVT 18u
0 99¢  GGLIT  ¥e8 04'8080T  JuI Jup - 80'96¢e X292 0 06T [t EVVIT 0000 &bel 00°cvel X220 0 €81 F¥ic L8 0000 LLVT 00°LLPT X290
0 66  69cl 196 06°¢T80T  JuI Jur o ge'96ce 722 0 06T o 12796 0000 ¢vel  oo'erel 722 0 €81 ¥ric L8 0000 LLVT  00°LLVT 22
0 8ve  084Cl 986 0990801 JuI Jur - v9°962¢ o0 689u-Cd 0 9LT i 90'88 0000 ¢vel  00°crel 190 Lygeu-gd 0 84T 18T or 0000 LLVT  00°LLVT LS WA et
96T 90E TEES 221 067992 0000 9LLT  00°9LLT X8u 961 S0€ €VIT  T9€E8¢ 0000 98LT 00°98LT X8u 0€ €9 €10C 1 0000 T46  00°CL6 ¥8u
161 6cF  090L 181 L8LYST 00000 9LLT  00°9LLT p8u GLT coe G90T  PFIE6T 0000 98LT  00°98LT ¥3u 0€ €5 €10C 1 0000 T46  00°CS6 y8u
78 FLE  GSTL 162 81891 0000 9LLT 00°9LLT 18u 1c 162 678 8T°EPCT 0000 98LT  00°98LT 18u € 0v  920g 1 19°C 0000 T%6  00CS6 18u
0 098 6666 119 69°€96L 0000 9LLT  00°9LLT X922 0 689 6Le  08°CO80T 910 68LT  GT'G8LL X292 0 €9 TL6T 1 86'1 0000 00'2<6 X290
0 706 ¥880T 169 P9'e89F 0000 9LLT  00°9LLT 22 0 L18 GISE  06°€600T  000°0  98LT  00°98LT 722 0 €9 TLOT I 06°1 0000 00°¢%6 22
0 65 VOPIT  GEL L0°9€LE 00000 9LLT  00°9LLT o2 01 -L9u-cd 0 6EL TIZy 0620801  G9S°0  €6LT OT'ERLT o0 LTu-gd 0 0v 2061 1 €1°C 0000 00°2S6 LR WOt
8¢L  GLT6 8L GL9¥8 0000 91€T  00°91€T X8 1.1 <97 €aT €699 0000 T8T¢ 00°18TC X8 87 02T 68T G& L9°0¥ 0000 00°8€€T ¥8u
G9L  9€8L 6oL €4°6e67 0000 91€T  00°91€T ¥3u 91 167 GLT 89°L09 0000 T8T¢ 00°18TC ¥3u 87 0T 68T Ge 947e 0000 00°8€€T y3u
699 18891  GSgl  0TOISOT 6160 0C€T €9°TIeT 180 8¢ 099 €8¢ 9L°629T 0000 18T¢ 00°18I¢ 18u 61 08T @891 i1 v9ce 00070 00°8€ET 18u
al6  L668 269 0672801  68¢°0 8IET CETIET X232 0 1€L 1.g ¢9°LLTT 0000 1812 00°'181¢ X292 0 Ic1 9881 g 61y 0000 00°8€ET X020
100T 92Tel €811 0€°GE80T 9ST'0 8IET 6EVIET 22 0 Tes Ly 96'8¢0c 0000 1812 00'181¢ 722 0 121 9881 (g 12°6¢ 0000 00°8€€T 22
G666 68PIT  TT0T  0€°CISOT JuI Ju 19°C16e 192 699u-cd 0 €19 46€ 86°960T 0000 18T1% 00'T8TT o0 R-09U-2d 0 GIT  S08T L8 LE°0€ 000°0 00°8€€T o0 O-8eU-gd
€et CIS  8E6S GET 8G'GLFT 0000 6£ST  00°6EST X3u 6€ Tl 660 T ng 0000 70T  0070CT X8u 18 0T 9¥ST €0C ¥9°00¢ 0000 008291 ¥8u
(8 clLS 9219 66T 8¢’ T0ET 0000 6EST  00°6EST ¥3u 6€ Tl 660C T 0y 0000 70T  0070CT y3u [@2 9PT - 08LF 652 96°cce 0000 008291 y3u
49 609 1128 16¢ c0°08¥C 0000 6EST  00°66ST 180 Bidg 86 99L1 1 w9¢ 0000 vOZT  0070CT 18u 94 116 1698 419 66011 000°0 008291 18u
0 V6L 1088 aL9 0679601 ¥PI°0  OFPST  6L°LEST X2 0 96 0981 1 8T 0000 vOZT  00°70CT X22 0 61¥ 0756 €64 98'8ETT 00070 008291 X2
0 1.8 1176 €48 LETI9S 0000 6EST  00°6EST ¥22 0 96 0981 1 €L°C 0000 ¥0TT  0070CT 722 0 617 9968 €L 20096 000°0 00°8291 22
0 60¢  6LGL 6LE T6'98€T 0000 6EST  00°6EST LRI MAtiact 0 8T OTLT T w0€e 0000 ¥0TT  0070CT 190 L-05U-gd 0 Gge 9808 299 FO'8¥6 0000 00°8291 LEEE peterat|
€5C 600T  €7FF GLG 07°0280T €S0°0 8ELT 0S'9€LT X8u 18T ¥6& 0107 66T 09°T18 0000 S9TT  00°G9TT X8u 08 GG @891 1 €LT 0000 00981 ¥8u
Vit 601 VI8Y 6201 €9°998¢ 0000 8ELZ  00°8ELT ¥8u 9€1 oy ELIV 661 187268 0000 91T 00°99TT ¥3u 08 69 2891 1 09°1 0000 00°¢9TT y3u
00T 911 LT98 €2ee 06716001 0000 8ELT  00°8ELT 18u 99 8LE €96V €81 6¢°L99 0000 91T 0079911 18u 4 I V8l T 780 0000 00°¢9TT 18u
0 00T 667S 1Ly 09722801 JuI Jur o 067cELT X2 0 €69 CLeS 166 06°L6CT 0000 S9TT  00°G9TT X22 0 69 9671 1 290 0000 00°¢9TT X2
0 L6VT  09TL 86T OLFISOT C€T'0 TFLT 8GGELT 722 0 €€9  <Les 19€ L0CIIT 0000 S9TT  00°99TT 722 0 6§ 9671 1 840 0000 00°¢9TT 22
0 €821 60TL GL0T  07'G080T 660°0 6ELC 6T9ELT 192 OT-€9U-cd 0 8€¥ 084S 692 LG°€T6 0000 S9TT  00°G9TT 190 O-Gpu-gq 0 oy eeel 1 <90 0000 00°9TT 190 GY-pEU-gq
1L e v19e o 08°0ST 0000 ¥68¢  00768¢C X8u 0L 101 81€C jat Lv'ee 0000 SPIT 00°GPIL X8u Vi €9 T66 1 88°0 00070 00°00TT ¥8u
09 L9z ¥9Lc 84 947691 0000 ¥68¢ 007682 ¥8u 0L 10T 8162 I 0'1e 0000 SPIT  00°GPIT ¥3u L1 0L 1801 € (4 0000 00°00TT y3u
€9 9Ly 6T8€E Phed 10°8L9 0000 ¥68¢ 007682 18u i 09T 9162 1 G9°cs 0000 SPIT 00°GPIT 18u P ¥e 0.9 1 70 0000 00°00TT 18u
0 €7y 8L4E 6€T £49°CLY 0000 ¥68¢ 00768 X022 0 6ET  295C 61 86°8¢ 0000 SPIT 00°GPIT X022 0 16 0¢L 1 L9°0 0000 00°00TT X2
0 697 96L& GeT 6E°699 0000 ¥68¢ 00768C ¥22 0 6ET  295C 6T 84°9¢ 0000 SPIT  00°GPIT ¥22 0 16 0¢L 1 Ts0 0000 00°00TT 22
0 ory - 6¥8E €91 06°T€Y 0000 ¥68¢  00768¢ LEERNGE WALy 4e 0 08T €8¢ jete 0267 0000 SPIT 00°GPIT 190 GY-Gpu-gg 0 6& 199 1 0€°0 0000 00°00TT 192 CY-TEU-gg
sOOOU  $HD  SAINOY  SAPON  eulL], deny gn 41 POUIRIN douejsup sOObU S SAMNMOY  SOPON  AUIL], deny gn 41 POURIY  @duejsuf sOOOU S SAMOY  SOPON  AwIL], des) a1 POYIPlN  @ouegsu]




86 LI€ €660 €€ 0€6S0I JUI  Jul  ZI'6eLl ¥3u 166 681 FESL 1€ GPI96 0000 €01 00°€L01 x3u €7 OFC  68EPL €6 €I'EETl 0000 @28 00728 X3u
10¢ 63 9T98T g€ 0GCIOTT Jul  Jul  9g6eLl ¥8u 0%6 981 GFG6 L& TRFOPL 00000 €01 00°ELOT ¥3u €/ 61 88¢0T  9¢  9L6SL 0000 @8 00Tes  v3u
61 A€ FOVGL 09 000ISOT Jul  Jul  9T'09AT 18% 62 TR TP 9LEL9 00000 €01 00°ELOT 18u &r OPL  €1981 L& TTL6S 0000 ZT8 00°CES 18u
0 L& €LS6T 09 0£TZ80T JUI  JUI  69°09LT ek 0 L6T GRS TG ELOT9 0000 €01 00601 X9 0 8¢z 88TIT L& S608F 0000 GZ8 00E8  ¥0O
0 0L 8SP6T €5 00GF60T JUuI  JuI  89°09LT 02 0 L6T GE8S TG 0T6T9 0000 €01 00601 92 0 86z S8CTT L& G6TOLF 00000 @8 0078  ¥93
0 Ve 23005 P9 OPTHE0L JUI  Jul €201 199 OUE08TY 0 €61 T9L9 LT FST6P 0000 €201 00°€L01 199 GreEy 0 9zl 1PEEl €€ 98'68F 0000 GG8 00°Ge8 199 GGy
PO Lge STEOT €01 0S0.801 JUI  Jul  09'ECTT ¥8u gg TLe GPE9T 12T 9TLG98 0000 LOTT 00°'L9TT x3u 1z 98 9966 P& SEOLF 0000 06l 000gL  ¥3u
0,9 6T Teeel 20T 09'Ce80T JUI  Jul  ELESTT ¥8u zg 676 00PFC  S1C 08918 0000 9T 00'L9TI v8u @ 68 9718 €F  E6I6Z 0000 0gL 000¢L  ¥3u
vL T2 86291 8T 08I0 JUI  Jul  OR°FSTI 180 T €L TCVT ST 6T'L00S 00000 LOTT 00°9TT 18u 6 @ eHGL L& FR'EIC 0000 08L 00706 18u
0 GLE  FEPST  PST  0GTESOL JUI  JuI TEFEIl  ¥99 0 782 661 OUFSLE 00000 L9TT 0001 X2 0 86 FG® €9 ERLOE 0000 0EL 000EL  X0O
0 GPE TLOST 09T 06080 Jul  Jul  grRell 99 0 262 19T TUZ09F 0000 01T 002911 99 0 8  FC® €9 GITOE 0000 0EL 000EL  ¥9O
0 116 LG8T €8T OLFOROT JUul  Jul  PG'Gqrl 19 G0NV 0 662 61 99T%99 00000 L9TL 0072911 199 LFEy 0 18 €P8 € LTSRC 0000 0EL 00°0EL 199 GYREN-y
9% LTl 9996 9@ 190201 00000 FATT O00FLIT ¥8u 1 €Tt 1§ 0GGSIT 00000 0101 000101 X1 09 621 99601 19T  8T'986 0000 6¥6 0066 ¥3u
134 16T PE68 62 GE'6LCT 0000 AT O00TLTT v3u T 96 vE  6VTI6 0000 0T0T 000101  ¥3u 0¢ SIT 2906 PFT  F6'®EL 0000 6¥6G 006F6  ¥3u
a8 6V 2396 L& COTOEL 00000 FAIL O0FLIL 180 61 912 61 89863 00000 OO 00°0TOL 18u 1 Z¢l L9TIL 128 E6RI0T 0000 6VG 00°6YG 18u
0 9¢T FOI8 TP GE'R6 00000 PLIL O0FLIL  X09 0 egl r 88'96L 0000 OI0L 000L0L X2 0 ¢l 98G0T €03 ELGLS 0000 6FG 00GKG  X0O
0 9¢T FOI8  TF  0Z886 00000 PLIL O00FLIL %99 0 0g1 19008 00000 OI0L 000L0L %93 0 el €ZO0L  €2C  GU'EO0L 0000 6F6 00°6VG 999
0 082 09901 IF  L6'68GT 00000 FAIL O0'PLIL 19 GEuY 0 €L €L 99'SPEL 0000 OI0L 00°010T 199 LpEGY 0 991 26KOL  6I1C  FEPIOL 0000 6VG 00°GYG 199 YLEu-y
197 €L L6616 LIT 09GOS0 Jul  Jul  g9'96gT  ¥Su 881 9L 1L LEF2e 0000 €01 0060l ¥3u 0 €T 1929 AT GU'SLT 0000 ¥8u
197 182 L9861 GIT  09°'GGSOL Jul  Jul  2g96El v3u 681 8L 1L 9U20F 0000 €01 000l  ¥3u 60z €T ¥Es9 LT TL69T 0000 v3u
9¢ 106 928€Z  G6T  00'6VPROT JUI  JUI  GE'LGET 180 0g L 6 10612 0000 €201 00°€L0T 18u L 99 9l6L € 6LSSC 0000 18u
0 08¢ FLVSC CIG  OP'SES0L JUI  Jul  €GUGEL  XO9 0 vez Il 1ZTE 0000 EL0L 00601  X9? 0 L1696 6 8LEEL 0000 ¥00
0 L& 0L68C PG 0R7TOSOL JUI  Jul  GEUGEL  ¥9D 0 vez 1L 9%0KC 0000 €201 00°€L01 92 0 €L 169¢ 6 GLUTEL 0000 99
0 €82 1999C CEG  OPLESOL JUI  Jul  GTLGEL 19 GOy 0 [ g1 9I9IE 0000 €01 00°EL0L 199 LESPY 0 9¢  @lge 11 G8'TFL 0000 699 00°699 199 QLEuY
e 61¢ FIele  vee  OFEE’0T Jul  Ju goTier 8w 1¢ 19 z 9eTZ 0000 P16 00F16 x3u e 9L 19 1 99°9¢ 0000 6GL 0066.  X3u
gIe PEC 15e0d 19 OEFOS0L 8GO FIEL €6'TIEL v3u L¢ 19 Z 1662 0000 FI6  00'FL6 v3u e 9L 19 1 198 0000 66L 0066.  v3u
1€ 80z 0LG6T €€ 0821801 EETIED 180 e a1t ¢ 00€Z 0000 FI6  00F16 18u 9% 87 619 ¢ SIF6 0000 66L 00°66L 180
0 1€ 86K €66 0€'GGR01 loTier x99 0 .8 ¢ 981 0000 V16 0016 x93 0 eS¢ 989 0000 66L 0066L  X°0
0 8% 98¢ET 998 OI'GESOl ltier ye0 0 18 ¢ €981 0000 VI6 0016 792 0 L eS¢ 2979 0000 66L 00°66L  ¥9O
0 G3E 29603 Lg¢  09°TISOL 46711 199 ODIEIUY 0 611 ¢ P9z 0000 P16 00716 199 LRy 0 €8 1609 ¢ 60'8L 0000 66L 006G 199 Q9Eu-y
9¢r 08¢ ¥860Z  IFL  OF'E6S01 0z¢I9r  X8u o 9% 66 GUGIEL 0000 OFIT 009FIL  ¥3u 153 I8 Gge¢ €% 66'7ST 0000 |LL 008 X8u
9¢r  0€C  ¥860Z  IPT 0972801 0ze9r  v8u we st G €EEEL 0000 OFIT 00OPIL  ¥8u Y6z 0L PPEG 1 8€'T9T 0000 8LL 008 U
69 80z VILGL  8PT  SGESYY 00°919T 180 g1 0¢z P 6STLS 0000 9PIT 00'9FLL 18u g %8 L8V GL SP00L 0000 8LL 00'8LL 180
0 VPE 63650 C0T  9T'RLT6 009191 X93 0 882 € GL80¢ 0000 OFTL 00°9VIL x93 0 81 VOZh €1 gE98 0000 8LL 00BLL  X0D
0 €96 TT95C 90T SEIGYS 00°9191 792 0 v62 96 0906 0000 VLT 00°9FIL 792 0 81 VOgh €1 APP8 0000 8LL 00BLL  ¥9D
0 cle 06861 IPT  GOLISY 00°9191 199 GV 0 ¥92 €7 00999 00000 9L 00°9PIL 199 DGRy 0 63 1869 L& 9L6OT 0000 8LL 00'8LL 199 QEPEUY
Tre 08¢ 8E96L €L CTGLRY 00881 X8u 4 zel €6 69IIS 0000 FF6  00FYG x3u 81T 0L Q08¢ 1% g 0L 0000 gL 00Tk X8u
Ve 80¢ G8E0C 96 09°9006 00881 ¥8u 4 zel €6 €0E0S 0000 FF6  00FYG v3u 81T 0L Q08¢ 13 VGEY 00000 Tkl 00T U
vg 10 Cel61 19 ELLOVY 00'882T 180 14 16 9 96’86 00000 VW6 00FYG 18u v 9 VPEC Ll PLEF 0000 TP 00GYL 180
0 gee  6I0LT 68 91620V 00'8821 ¥09 0 921 1T 1L6SE 0000 FE6  00FYG X902 0 06 862z 9 SYLL 0000 TPL 00TRL  X0D
0 VrE  geall 16 GLRWIY 00'8821 99 0 g1 1T L8EE 0000 FE6  00FYG 792 0 06 8€2¢ 9 ATVL 0000 TPL 00TRL  ¥99
0 63 TLOST  GET  00°60Z01 00'882T 199 RITINY 0 101 9 80°E0E 0000 FF6  00FYG 199 gLGRy 0 Tr 1961 €1 ZEVE 0000 TP 00TYL 199 QYEEUY
89 1€ 1211 162 08°6ES01 0601 X8u i as1 Il ZT€9L 0000 LE6  00LEG x3u 2e 98 L6311 L&Y 0000 199 00799  ¥3u
) 9Lz ¥GO6L  90E 0690801 @0e0l  v8u i 981 L 90T0T 0000 LE6  00°LEG v3u ez 98 L6311 Zy 0000 199 00199 ¥3u
1 9z 9¢1IE  01E 0991801 8P°0€01 180 € 08 6 9EL0T 0000 LE6  00'LE6 18u 61 ¥e o €6l 1 96 0000 199 00199 180
0 88C 61GC  FE 016180 £€°0601 ¥09 0 9g1 11 2666 0000 €6 00LE6 X902 0 9¢ 6061 1 8'E 0000 199 0099 X09
0 166 L6VET  G6E 0198801 PEOE0T %99 0 og1 1T ¢re6 0000 LE6  00°LE6 792 0 9¢ 6061 1 €6€ 0000 199 0099 99
0 296 9001C 6§ 0£'GESOT OF'TE0T 10 Gy 0 26 6 FE60T 0000 166  00°LEG 12 9TV 0 € FO06T 1 0gF 0000 199 00199 190 QLY
VeE e 0£95C  OST  OI'80801 69°€ger  X8u e Ll 1z 2g9% 0000 1€8  00'IE8 x3u 1z 9 o16c 1 194 0000 V8L 0078L  X3u
e PET  PPILL APL 00°PgET 73u et 1P 69°8€S 0000 1€8  O00'IES v3u 1z 9 016z 1 OLL 0000 ¥8L 00FRL  ¥3u
8L Gee 6108 99T 00°PgET 18u 62 441 6 GI'ESr 0000 168 00'TER 18u ¢ I 106 0000 P8L 00°F8L 180
0 29e  961FC 198 00°PGET ¥09 0 zat 62 TIT6c 0000 1E8  00'TER X902 0 oL gL 1 9T¢ 0000 F8L 00FRL  X09
0 29¢  CI86C  LCE 00°PSET 929 0 gq1 6 €T6C 0000 1E8  00'TER 792 0 oL gL 1 S 0000 F8L 00FRL 999
0 180 FOLLG 105 OF9E801 €CL0 €91 TTESET 10 EI09NY 0 zg1 66 00T 0000 168 00'TER 199 QIGETY 0 8¢ 606 € 8V'LC 0000 F8L 00'FSL 190 QTEu-Y
IOOQQ S S9IMOY SOpON  oul], &ﬁo qan a1 PO Qoue)suy moom: S S9IMOY SOpON ouIl], Qﬂ@ qan qT1 PoYIRIN Qoue)suy mUU\wﬁ. SD) S9INOY SOpON  QuIL], Qﬁo an  d1 PO Qouejsuy

VII



86 G9¢  98FET  T9L 02°G180T  Jur Jup - €€ 169 ¥8u 8¢ 60TV L 047602 0000 84F 00'84F ¥8u
18 1.6 9ChpL L€ 0200801  Jur Jur - €9'169 73u 8¢ 60TV L 8760z 0000 8%F 00'8GF y8u
62 8GE  LGSET €18 0070801 JuI jup 17069 18u 19  8IGE g 62901 0000 8SF 00°8SF 18u
0 vy 889€T  LO6 0L°€T80T  Jur Jur - 02069 X202 8 996¥ g ¥6'68 0000 84y 0084Y X292
0 617  8TLET  ¥¥6 0L'8080T  Jur Jur gz'069 o2 78 99€V g 7888 0000 8SF 00°8SF 22
0 ¥LE  TOIFL  8¥6 01°G080T  Jur Jur - 66069 192 99 109¢ S 16'L8 0000 8S¥ 00°8SH 190 Q-0pu-d
4 ST ) 0 7¥801 jur - 9L°619 ¥8u G6¥ LT TIGPL g€ 19°9gLT 0000 9.5 00°9L¢ ¥8u Lz LeT I G1r'o 0000 68¢ 00685 X3u
4 L1 8 0609921 Jjur - 9La19 y8u G6¥ VLT TGVL &8 O0V'GTLT 0000 928 0098 78 LT LeT 1 600 0000 6T¢ 00684 ¥3u
4 L1 9 0C'€L61T Jur - €9°619 18u €L VLT TGT9 L1 LG6TL 0000 9.8 009 18u w8t 1 200 0000 68¢ 00°68% 18u
0 ST ) 0€°9¥801 Jur - yL619 X22 0 18¢  ¥2€6 L8 8€'8FCc 0000 9L& 00°9L¢ X292 0 €6 8T 1 200 0000 62¢ 00685 X020
0 g1 L 00°6080T Jjur - yLat9 722 0 €L 0816 g 6S088T 0000 9.8 0098 722 0 €6 8T 1 00 0000 68¢ 00684 22
0 L1 9 02" €6611 Jur - €9°619 192 ¢-9Lu-d 0 ¥e€T 6706 1€ 66'T92T 0000 9.& 009 192 0 €€ €7 1 900 0000 65¢ 0068% 192 -eeu-d
1 g € 0L°L99VT Jur - Ger98¢ ¥8u 99 0LT  9€LTc €61 07°LS80T  Jur Jup 09694 X8u € 9 66T 1 8T°0 0000 06¢ 0006 X8u
I g 4 05°0€60T Jur  ge'98¢ »3u 43 6LT  9FITC 06T 02°9¥80T  Jur Jup - 99°69¢ »3u € 9 6T 1 200 0000 06¢ 00065 y3u
0 i 4 04" L¥8TT Jur - gEe98¢ 18u s 99T GrLEe  LIC 0€°9.80T  Jur Jur - 0099 18u 0 4 6€¢ 1 90°0 0000 06¢ 00064 18u
0 g € 08°L00ST Jur - Ger98¢ X292 0 9¢c  €o0ee  VeL 0€°TI80T  Jur Jup - €2°99¢ X292 0 9 68T 1 600 0000 06¢ 0006 X292
0 S € 0€°802¢T Jur  Ger98¢ 20 0 61z G90cc  11¢ 0112801  Jur Jjur - y1ra9s o0 0 97 6T 1 G600 0000 06¢ 0006 $29
0 v 4 0266911 Jur - ger98s 190 p-9Lu-d 0 L0z T199¢T  8CT 0L9€80T  Jur Jur - 62994 102 0 4 6€¢ 1 600 0000 06¢ 0006 199 $Ycet-d
62 €92 66T 00°G080T Jur - 69618 ¥3u e 8T 8¥cE 17 [ap3ed 0000 T¥L 00'TFL ¥3u 1 ¥ T9L g 64°T€ 0000 91¢ 00'91¢ X8u
762 L61 02"G080T jur - gooes y3u re 6¢1  ogee 1€ v0'0Te 0000 TFL 00°'TFL y3u 1 ¥ 19 g 9€'1€ 0000 91z 0091¢ y3u
6 vic 90¢ 0F°65801 jur 18618 18u 8 S0T  6¥6C L& Pligad 0000 T¥FL 00°TFL 18u 0 i ILe S LT'6c 0000 912 0091¢ 18u
1.2 602 04°8280T Jjur 29618 X292 0 8¢l €81¢ L€ 0C'S61 0000 T¥L per) 0 ¥ cLes g ¢I'6 0000 91 00°91¢ X22
062 0cg 0¥°L180T jur 19°618 o2 0 8GT  8eee 5y 9¢'28¢ 0000 T¥L o2 0 ¥ oLe g 91°'6c 0000 91z 0091¢ 22
86T 9¢e 00762801 Jjur 08618 190 OT-0Lu-d 0 60T €91¢€ L& G9181 0000 T¥L 192 0 ¥ 1LeS g G6'8C 0000 91T 0091 192 -teu-d
81T L8 £€6'C12T ¢6L  007C6L ¥3u e eIr  9eey 1€1 09°€56 0000 969 ¥8u 0 0 LLLT 1 81 0000 TTZ 00°1TC ¥8u
28T €11 00°L0LY T6L  00T6L 73u 0¢2 6T 671V 84T Gr'680T 0000 969 ¥8u 0 0 LLLT 1 8T 0000 TIZ 00°T1g y8u
201 87 16°06ST T6L  00T6L 18u 8 16 c60€ €L 87°88¢C 0000 969 18u 0 0 LLLT 1 08T 0000 TIg 00°11g 18u
ST €4 G8°GYIT 76L  00T6L X292 0 ver  L99% L6T 67908 0000 969 X292 0 0 LLLT 1 88T 0000 TTe 0011¢ pesl
jans 84 16°68TT T6L  00T6L o2 0 VeT  L99¥ L6T 0LGLL 0000 969 722 0 0 LLLT 1 6L°T 0000 TTZ 00°T1E 22
SPl 99 L6°L161 T6L  00T6L 192 OI-G9u-d 0 66  Olch €et 19°LLS 0000 969 192 0 0 LLLT 08T 0000 TIZ 00°11g 199 gyleu-d
it 19 v.'86¢ 896 00'896 ¥8u cel ¥ee  90¥8T €18 0C'€180T  €97°0 689 ¥8u L 6 Gze6 00°00T 0000 9Tz 0091¢ ¥8u
€61 84 0L°LET 896 00'896 73u 911 66¢  v0C6T I8 0€°€180T  Jur Jur 73u € 6 8¢L6 GT'L0T 0000 91z 00912 ¥3u
81T 67 £€4°L6T 896 00'896 18u 3% TIv 06661 9.8 0T°0080T  Jur Jug 18u 0 6 0¢e 788G 0000 91c 0091¢ 18u
Le1 61 896 00'896 X292 0 GES 01981 <98 06°T080T  Jur JuI X22 0 6 7628 G909 0000 91z 0091¢ X22
6ET 64 896  00'896 o2 0 TIG¢  €T98T  ¢88 0€°TI80T 0990  0€9 22 0 6 Y628 0€°09 0000 912 0091T 22
L11 54 896 00'896 192 GT-09U-d 0 9€v  1L10c 996 0'€180T Jur Jug 192 0 6 0ge8 9¢'8¢ 0000 9Tz 00'91¢ 199 g-0eu-d
80T 16 9 1TLT vl 007vL ¥8u Gve 68  GL6V 1c €TI1S 0000 79S¢ 004G x8u g 8 L6c€ P8¢ 0000 TIZ 00°Cle X8u
GeL 6L G9F8IT YL 00¥FL y3u e €6 99LS 1z 69°17¢ 0000 7S¢ 005G 73u g 8 L6c¢ LT8¢ 0000 ¢Ig 00°Cle y3u
L6 14 vl 007vL 18u 62 18 ¥vL9 jire LL7L6S 0000 79S¢ 004G 18u 0 L L86y cree 0000 ¢lz 00¢le 18u
498 6e1 vl 00¥PL pet 0 OovT - 9¥GL 6¢ 87929 0000 ¥4¢ 004G X2 0 9 Lgee 0€'8T 0000 ¢Iz 00¢lc X22
ver a8 L o2 0 96T GL69 jere ¥9°60¢ 0000 ¥5¢ 005G o2 0 9 Leee €€'8T 0000 ¢Iz 00¢le 22
498 ST 2 190 OT-09u-d 0 0T G629 [amiss 0000 ¥4¢ 0074S 192 0 L 186y 9¢°9¢ 0000 €Iz 00TIT 190 61u-d
a8 61 176 ¥3u LLy 81T  T€0TT 1€ €LT08T 0000 0TS 000TS ¥8u 1 e 16 00 0000 057 00°04¥ ¥8u
a8 o1 176 $3u LLy 8IT  T€0TT 1€ LV€6LT 0000 0TS 00°0TS ¥8u 1 e 16 00 0000 0S¥ 00°0S¥ y8u
0L 6c 76 18u 6T 6 L8CGTl  LE 8C'G8YL 0000 OIS 0001¢ 18u 0 91 €Il €10 0000 0S¥ 00°0S¥ 18u
GLT 1 176 00176 X292 0 0T L¥PPT  OF Ge'6vcT - 0000 019 00°0T¢ X292 0 Le 8IT LL0 0000 047 00°04¥ X00
GLT 1z 176 00°1¥6 o2 0 0ST  00EVT  OF ¥0°06gT 0000 0TS 00°0TS o2 0 L& 8II 0z°0 0000 057 00°0S¥ 22
78 L€ 176 00°1¥6 192 GIY-GGu-d 0 GIT  QIIET 8¢ ¢eeIeT 0000 019 00701 192 0 91 €Il €10 0000 0S¥ 00°0S¥ 190 §Y91u-d
sOD SOPON  QuIL, qan a1 POUIdIY  edue)sUL sOObU  SDD  $9MOY  SOPON AW, deny gn a1 POUIdIN DD somoy  sepoy owry, den gn g1 POy edoue)su|

VIII



	Introduction
	Preliminaries
	Set covering and set partitioning models
	Branch-price-and-cut algorithm
	Column generation
	Labeling algorithm for the ESPPRC

	State-space relaxations

	Resource-robust valid inequalities
	Impact of robustness on the pricing problem
	Definition of resource-robustness
	Example: SDCs and their ng-equivalent
	Practical aspects of ng-robust valid inequalities
	Unreachable vertices
	Dynamic ng-route relaxation
	Bidirectional labeling
	Arc-based ng-memory


	Application to the CVRP
	ng-capacity cuts
	Capacity cuts and strengthened capacity cuts
	ng-capacity cuts

	Effect on the lower bound
	Separation algorithm
	Application to other valid inequalities

	Computational experiments
	Implementation BPC algorithm
	Heuristic pricing
	Separation of valid inequalities
	Branching rule

	Test instances
	Separation strategies
	Computational results
	Relevant gap closing
	Time spent per node


	Conclusion
	Restoring in- and outflow of a task
	Proof Proposition 10
	Exact separation of ngCCs and CCs
	List of computational results

