Resource-robust valid inequalities for set covering and set partitioning models

Ymro N. Hoogendoorn*a ${ }^{* a}$ and Kevin Dalmeijer ${ }^{\text {ba }}$
a Econometric Institute, Erasmus University Rotterdam
${ }^{\mathrm{b}}$ H. Milton Stewart School of Industrial and Systems Engineering,
Georgia Institute of Technology

January 12, 2021
EI 2020-08

[^0]
Abstract

For a variety of routing and scheduling problems in aviation, shipping, rail, and road transportation, the state-of-the-art solution approach is to model the problem as a set covering type problem and to use a branch-price-and-cut algorithm to solve it. The pricing problem typically takes the form of a Shortest Path Problem with Resource Constraints (SPPRC). In this context, valid inequalities are known to be 'robust' if adding them does not complicate the pricing problem, and 'nonrobust' otherwise. In this paper, we introduce 'resource-robust' as a new category of valid inequalities between robust and non-robust that can still be incorporated without changing the structure of the pricing problem, but only if the SPPRC includes specific resources. Elementarity-robust and $n g$-robust are introduced as widely applicable special cases that rely on the resources that ensure elementary routes and $n g$-routes, respectively, and practical considerations are discussed. The use of resource-robust valid inequalities is demonstrated with an application to the Capacitated Vehicle Routing Problem. Computational experiments show that replacing robust valid inequalities by $n g$-robust valid inequalities may result in better lower bounds, a reduction in the number of nodes in the search tree, and a decrease in solution time.

Keywords: Resource-Robust, Valid Inequalities, Branch-Price-and-Cut.

Note from the authors

This document is a preliminary version of the paper that includes computational results for the Capacitated Vehicle Routing Problem. We are currently applying the ideas in this paper to other valid inequalities and other problems, and we are performing additional numerical experiments to better showcase the potential of resource-robust valid inequalities.

1 Introduction

Set covering and set partitioning models play an important role in operations research and have been used to solve a broad range of vehicle routing and crew scheduling problems (Desaulniers et al., 2005). These problems are typically solved with a branch-price-andcut (BPC) algorithm, in which the column generation subproblem (pricing problem) is a Shortest Path Problem with Resource Constraints (SPPRC).

In this paper, we are interested in set covering and set partitioning type problems that are solved with column generation and for which the pricing problem is an Elementary SPPRC (ESPPRC), i.e., only elementary paths are allowed (Irnich and Desaulniers, 2005). Even though the ESPPRC is the main focus, results are stated more generally for the SPPRC where possible.

This ESPPRC is common for vehicle routing problems, where the elementarity stems from the requirement that clients are visited only once. We refer to Toth and Vigo (2014) for an overview of common vehicle routing variants and to Costa et al. (2019) for a recent survey on BPC algorithms for vehicle routing.

The same methodology is used to solve a variety of problems in different areas. In aviation, applications include aircraft routing (Barnhart et al., 1998a), aircraft sequencing (Ghoniem et al., 2015), and airline schedule recovery (Eggenberg et al., 2010). In shipping, the ESPPRC appears as a pricing problem in, e.g., liner shipping service design (Plum et al., 2014) and berth allocation and quay crane assignment (Vacca et al., 2013). Railway applications include timetable design and engine scheduling (Bach et al., 2015)
and integrated timetabling and crew scheduling (Bach et al., 2016).
In BPC algorithms, valid inequalities are used to strengthen the Linear Programming (LP) relaxations and thereby reduce the number of nodes in the search tree. On the other hand, valid inequalities may complicate the pricing problem. For example, the well-known clique and odd-hole inequalities for the set partitioning polytope cannot straightforwardly be used in a BPC algorithm without changing the structure of the pricing problem dramatically (Jepsen et al., 2008).

Fukasawa et al. (2006) distinguish robust and non-robust valid inequalities based on how the inequalities impact the pricing problem. Valid inequalities are called robust if adding them does not change the structure of the pricing problem. This is the case when the associated reduced costs can be projected onto the arcs of the SPPRC pricing problem. Many valid inequalities fall into this category, including strengthened comb cuts, k-path cuts, subtour elimination constraints, and rounded capacity cuts (Costa et al., 2019).

Adding non-robust valid inequalities complicates the pricing problem. However, the overall performance of the BPC algorithm may improve if non-robust valid inequalities are used with care. This is demonstrated by Jepsen et al. (2008), who introduce the subset-row inequalities and apply them to the Vehicle Routing Problem with Time Windows. Other non-robust valid inequalities are surveyed by Costa et al. (2019), including elementary cuts, strengthened capacity cuts, clique cuts, k-cycle elimination cuts, and strong degree cuts.

In this paper, we introduce a new category of valid inequalities that lie somewhere between robust and non-robust: resource-robust valid inequalities. Resource-robust valid inequalities can be incorporated in the BPC algorithm without changing the structure of the pricing problem, but only if the SPPRC includes specific resources. By formalizing the concept of "changing the structure of the pricing problem", we formulate conditions under which a valid inequality is resource-robust.

Of particular interest are resource-robust valid inequalities that depend on resources associated with a state-space relaxation. State-space relaxation is an important tool for
speeding up the pricing problem at the cost of slightly weaker LP bounds. An example is the $n g$-route relaxation introduced by Baldacci et al. (2011), which is commonly used in state-of-the-art algorithms to relax the elementarity condition in vehicle routing problems. State-space relaxations are typically implemented through resources in the ESPPRC. As such, resource-robust valid inequalities that depend on these resources are widely applicable.

To demonstrate the benefit of adding resource-robust valid inequalities, we present an application to the Capacitated Vehicle Routing Problem (CVRP). We introduce the ng-Capacity Cuts ($n g \mathrm{CC}$) as a stronger alternative to the well-known rounded capacity cuts. If the $n g$-route relaxation is used, the $n g$ CCs can be added without changing the structure of the pricing problem. In Section 5 we detail why this is not a completely free lunch. However, exploiting the state-space relaxation allows for significantly reducing the impact that these stronger valid inequalities have on the pricing problem.

In our computational experiments, we compare a simple BPC algorithm with and without $n g$ CCs. Our experiments show that using $n g C C s$ improves the average performance of the BPC algorithm on clustered instances in which the customers have a relatively high demand. This proof of concept demonstrates that using resource-robust valid inequalities can be advantageous for solving set covering and set partitioning models.

In the literature, reducing the impact of non-robust valid inequalities is studied by Pecin et al. (2017b). The authors introduce the limited-memory Subset-Row Cuts (lmSRCs), based on the subset-row cuts presented by Jepsen et al. (2008). Each lmSRC is associated with a memory, which is a subset of the nodes in the graph used for the SPPRC. Varying the size of the cut memory allows for balancing the strength of the cut and the impact on the pricing problem. In Pecin et al. (2017a), the cut memory of the lmSRCs is defined for arcs instead of nodes.

In relation to the work by Pecin et al., the main idea of this paper is to define cut memory based on the existing resources in the SPPRC. Valid inequalities for which this is possible do not require additional resources to keep track of the cut memory. As such, the structure of the pricing problem is not affected.

This paper is structured as follows. In Section 2, we present the preliminaries that we need for the remainder of the paper. In Section 3, we formally introduce resourcerobust valid inequalities and we discuss their theoretical properties. Our application to the CVRP is detailed in Section 4, and computational results are presented in Section 5. Finally, we present our conclusions and some directions for further research.

2 Preliminaries

In this section, we briefly summarize the models, methods, and enhancements that are needed for the remainder of this paper. First, we formally introduce set covering and set partitioning models. Next, we describe a basic BPC algorithm, and we explain column generation and labeling. Finally, we discuss state-space relaxations, and in particular, the $n g$-route relaxation.

2.1 Set covering and set partitioning models

Let $G=(V, A)$ be a directed graph with vertices $V=\{0,1, \ldots, n+1\}$ and arc set $A \subseteq V \times V$. Each vertex i in the set $V^{\prime}=\{1,2, \ldots, n\}$ corresponds to a task that has to be performed.

Tasks are performed by routes. A route is a path in G from 0 to $n+1$, possibly adhering to many restrictions. We say that a task is covered by a route if the route visits the corresponding vertex. In vehicle routing, the task can be to deliver a package, and the route can be the route of a vehicle. In aviation, a task may correspond to an incoming aircraft and a route may correspond to a runway schedule.

Let \mathcal{R} be the set of all feasible routes. The cost of traversing an $\operatorname{arc}(i, j) \in A$ is given by $c_{i j} \in \mathbb{R}$. Let c_{r} be the cost of using route $r \in \mathcal{R}$, which is the sum of the arc costs.

We consider the problem of selecting a set of feasible routes that cover all tasks at minimum cost. This problem is known as the Set Covering Problem (SCP) if tasks may be repeated, and as the Set Partitioning Problem (SPP) is every task must be performed exactly once (Garfinkel and Nemhauser, 1969). In the remainder, we restrict ourselves
to the SPP, as extending our results to the SCP is trivial.
For every route $r \in \mathcal{R}$, let the binary variable $x_{r} \in\{0,1\}$ indicate whether route r is contained in the solution. Let the parameter a_{i}^{r} be equal to one if task $i \in V^{\prime}$ is covered by route $r \in \mathcal{R}$, and zero otherwise. The SPP can now be expressed as follows.

$$
\begin{array}{ll}
\min & \sum_{r \in \mathcal{R}} c_{r} x_{r}, \\
\text { s.t. } & \sum_{r \in \mathcal{R}} a_{i}^{r} x_{r}=1 \quad \forall i \in V^{\prime}, \\
& x_{r} \in\{0,1\} \quad \forall r \in \mathcal{R} . \tag{1c}
\end{array}
$$

The Objective (1a) is to minimize the cost of the selected routes. The Constraints (1b) ensure that all tasks are performed exactly once. Note that for the SCP, these constraints are inequalities. Equations (1c) enforce that route selections are binary.

In this paper, we are interested in route sets \mathcal{R} that satisfy the following two conditions. First, all routes $r \in \mathcal{R}$ are elementary, i.e., no vertices are repeated. Second, the feasibility of the routes can be modeled through resource constraints (Irnich and Desaulniers, 2005).

Following Irnich and Desaulniers (2005), a resource vector is a vector $T \in \mathbb{R}^{R}$ that is defined for all vertices on a route. Each of the components of a resource vectors is called a resource. When following the route, this vector changes according to resource extension functions (REFs) associated with the arcs, denoted with $f_{i j}: \mathbb{R}^{R} \rightarrow \mathbb{R}^{R}$. Feasibility of routes with respect to resources is defined with resource windows $\left[e_{i}, l_{i}\right]$ associated with the vertices, with $e_{i}, l_{i} \in \mathbb{R}^{R}$. A resource vector, and thus per extension a route, is feasible if its associated resource vector lies within the resource window (defined component-wise) for each of the visited vertices. Note that the definition of REFs allows the individual resources to influence each other, which makes resource constraints a very flexible modeling tool.

In many applications, resources do not influence each other. In that case, we refer
to the REFs of a specific resource $f_{i j}: \mathbb{R} \rightarrow \mathbb{R}$, by abuse of notation. For example, a resource may correspond to time, and the REFs ensure that time progresses. Its resource window can correspond to the hard time window in which the specific task needs to be executed.

2.2 Branch-price-and-cut algorithm

Barnhart et al. (1998b) introduce the term brance-and-price for branch-and-bound algorithms that rely on column generation to solve the LP relaxations. BPC algorithms additionally add valid inequalities to strengthen the LP relaxation.

In this section, we discuss column generation and labeling algorithms. Adding valid inequalities is discussed extensively in Section 3. For details on the other components, we refer to the survey by Costa et al. (2019).

2.2.1 Column generation

We refer to (1a)-(1c) as the integer master problem, and to its LP relaxation as the master problem. To effectively deal with the potentially large amount of route variables, column generation is used to solve the master problem.

In each iteration, column generation algorithms solve a restricted master problem (RMP), which is obtained by restricting the master problem to a subset of the variables. After solving the RMP, a pricing problem is solved to find variables that have a negative reduced cost and can potentially improve the current solution. A selection of these variables is added to the RMP, and the process is repeated. Once all variables have non-negative reduced costs, the RMP solution is optimal for the master problem.

The reduced cost of x_{r}, denoted by \bar{c}_{r}, can be expressed as follows. For all $i \in V^{\prime}$, let $\lambda_{i} \in \mathbb{R}$ be the optimal dual values corresponding to Constraints (1b). For notational convenience, we define $\lambda_{0}=\lambda_{n+1}=0$. Let the parameter $b_{i j}^{r}$ be equal to one if arc $(i, j) \in A$ is on route $r \in \mathcal{R}$, and zero otherwise. Define the modified arc cost of arc
$(i, j) \in A$ as $\bar{c}_{i j}=c_{i j}-\lambda_{i}$. It follows from LP duality that

$$
\begin{equation*}
\bar{c}_{r}=c_{r}-\sum_{i \in V^{\prime}} a_{i}^{r} \lambda^{i}=\sum_{(i, j) \in A} c_{i j} b_{i j}^{r}-\sum_{i \in V^{\prime}} a_{i}^{r} \lambda^{i}=\sum_{(i, j) \in A} \bar{c}_{i j} b_{i j}^{r} . \tag{2}
\end{equation*}
$$

The pricing problem is to find a feasible route $r \in \mathcal{R}$ for which the sum of the modified arc costs is negative. Alternatively, one can find the route that minimizes \bar{c}_{r}. If the minimum is non-negative, no additional variables need to be added to the RMP.

The pricing problem can be solved as an Elementary Shortest Path Problem with Resource Constraints (ESPPRC), using the modified arc costs (Irnich and Desaulniers, 2005). This follows immediately from our assumptions on the route set \mathcal{R} : All routes are elementary, and feasibility of the routes can be modeled through resources constraints (Section 2.1).

2.2.2 Labeling algorithm for the ESPPRC

The ESPPRC is typically solved with a labeling algorithm. A labeling algorithm maintains a set of labels that correspond to paths that start at vertex 0 . Labels are extended over all arcs to generate new labels, as defined by the REFs. Infeasible labels are immediately removed, and dominance rules are used to eliminate labels that are not Pareto-optimal. When no more labels can be generated, we have obtained a set of feasible paths from vertex 0 to vertex $n+1$. By construction, the elementary shortest path is among these paths.

A label is defined by the tuple $L=(i, \bar{c}, T, E, p)$. For label L, we refer to these components as $i(L), \bar{c}(L), T(L), E(L)$, and $p(L)$, respectively. The vertex $i(L) \in V$ is the current endpoint of the path that belongs to $L, \bar{c}(L)$ is the reduced cost of this path up to $i(L), T(L) \in \mathbb{R}^{R}$ is the vector of current resource values, $E(L) \subseteq V^{\prime}$ is the set of visited vertices, and $p(L)$ is the predecessor label of label L. The visited vertices are used to enforce elementarity of the routes, which is why we also refer to $E(L)$ as the elementarity resources.

We point out that in the literature, the set of visited vertices $E(L)$ is often replaced
by the set of unreachable vertices (Feillet et al., 2004). That is, vertices that cannot be visited due to resource constraints are added to $E(L)$. As this modification affects the resource-robust valid inequalities presented in this paper, we discuss unreachable vertices in more detail in Section 3.4.1.

Let $L^{\prime}=L \oplus j$ be the label that is generated by extending label L over the arc $(i(L), j) \in A$. To enforce elementarity, we require that $j \notin E(L)$. The label L^{\prime} is given by $i\left(L^{\prime}\right)=j, \bar{c}\left(L^{\prime}\right)=\bar{c}(L)+\bar{c}_{i(L) j}, E\left(L^{\prime}\right)=E(L) \cup\{j\}, p\left(L^{\prime}\right)=L$ and $T\left(L^{\prime}\right)=f_{i j}(T(L))$. If $r\left(L^{\prime}\right)$ is not within the resource bounds $\left[e_{j}, l_{j}\right]$ defined at j, then the extension is infeasible, and L^{\prime} is discarded.

For label dominance, we consider the common case that the REFs are non-decreasing and only upper resource windows are present (Irnich and Desaulniers, 2005). Informally, the REFs are non-decreasing if inequalities among cost and resources are preserved by arc extensions. When these assumptions are satisfied, we call the pricing problem of non-decreasing type.

Definition 1 (Pricing problem of non-decreasing type). The ESPPRC is of non-decreasing type if only upper resource windows are present and inequalities are preserved along label extensions. That is, for given labels L and L^{\prime} with the same current vertex $i(L)=i\left(L^{\prime}\right)$, and for a given extension over any arc $(i(L), j) \in A$, we have that $\bar{c}(L) \leq \bar{c}\left(L^{\prime}\right)$, $E(L) \subseteq E\left(L^{\prime}\right)$ and $T(L) \leq T\left(L^{\prime}\right)$ imply $\bar{c}(L \oplus j) \leq \bar{c}\left(L^{\prime} \oplus j\right)$ and $T(L \oplus j) \leq T\left(L^{\prime} \oplus j\right)$. For the SPPRC, the elementarity resources are not considered.

When the pricing problem is of non-decreasing type, Irnich and Desaulniers (2005) show that the non-decreasing dominance rule can be used.

Definition 2 (Non-decreasing dominance rule). If the pricing problem is of non-decreasing type, label L dominates label L^{\prime} if all of the following are true:

- $i(L)=i\left(L^{\prime}\right)$,
- $\bar{c}(L) \leq \bar{c}\left(L^{\prime}\right)$,
- $T(L) \leq T\left(L^{\prime}\right)$,
- $E(L) \subseteq E\left(L^{\prime}\right)$.
and at least one of the inequalities is strictly satisfied. This dominance rule is referred to as the non-decreasing dominance rule.

If label L^{\prime} is dominated by some label L, then label L^{\prime} cannot be part of a cost-optimal path, and may be eliminated. Dominance checks can be performed every time a new label is created, but this is not required. More details are given in Section 5.1.

2.3 State-space relaxations

A common method to speed up the labeling algorithm is by using a state-space relaxation. State-space relaxations substitute the elementarity requirement of the routes by a weaker condition. As there may be 2^{n} different sets of visited vertices $E(L)$, relaxing elementarity may significantly reduce the number of non-dominated labels.

When a state-space relaxation is used, the set of feasible routes \mathcal{R} is expanded. To deal with non-elementary routes, we redefine a_{i}^{r} to be the number of times that vertex $i \in V^{\prime}$ is visited, and $b_{i j}^{r}$ to be the number of times that $\operatorname{arc}(i, j) \in A$ is used. Note that the solution to the integer master problem (1) does not change, as selecting nonelementary routes would violate Constraints (1b). The additional variables do affect the LP relaxation, which becomes weaker. State-space relaxations thus allow for balancing the strength of the bound and the speed of the labeling algorithm.

Different state-space relaxations have been proposed in the literature. Houck et al. (1980) introduce 2-cycle elimination, which relaxes elementarity by allowing cycles of length three or more. Irnich and Villeneuve (2006) discuss the more general k-cycle elimination, which allows cycles of length $k+1$ or more. Desaulniers et al. (2008) propose partial elementarity, which requires elementarity for only a subset of the vertices. Baldacci et al. (2011) introduce the ng-route relaxation, which only allows cycles that leave a certain neighborhood. A generalization is presented by Bulhões et al. (2018), which is discussed in Section 3.4.4.

For the $n g$-route relaxation, every vertex $i \in V^{\prime}$ is assigned a neighborhood $N_{i} \subseteq V^{\prime}$ such that $i \in N_{i}$. The set of visited vertices $E(L)$ is replaced by the set $\Pi(L)$, which is
updated according to the rule

$$
\begin{equation*}
\Pi(L \oplus j)=\left(\Pi(L) \cap N_{j}\right) \cup\{j\} . \tag{3}
\end{equation*}
$$

The feasibility and dominance rules (see Definition 2) $j \notin E(L)$ and $E(L) \subseteq E\left(L^{\prime}\right)$ are replaced by $j \notin \Pi(L)$ and $\Pi(L) \subseteq \Pi\left(L^{\prime}\right)$, respectively.

It will be instructive to interpret the sets $E(L)$ and $\Pi(L)$ as different ways to retain information about the visited vertices. The set $E(L)$ contains all visited vertices, and with a slight abuse of language, we may say that the label L has a perfect memory if it remembers all previous visits through $E(L)$.

With the set $\Pi(L)$ we associate the $n g$-memory, which is typically imperfect. This follows from the update rule (3): When label L is extended to $L \oplus j$, the intersection $\Pi(L) \cap N_{j}$ tells us that L forgets all previous visits, except those in the neighborhood of j. Next, the visit to j is added to the memory.

When using the $n g$-route relaxation, a label can be extended to a previously visited vertex j, and thus create a cycle, if the previous visit to j is forgotten first. This requires visiting a vertex k for which $j \notin N_{k}$, i.e., visiting a neighborhood that does not contain j. The advantage of using $n g$-memory $\Pi(L)$ instead of perfect memory $E(L)$ is that the labels can be compared on their memory of the visits within the neighborhood only, which allows more labels to be dominated. In the case that $N_{i}=V^{\prime}$ for all $i \in V^{\prime}$, then the label never forgets a visit, and $\Pi(L)=E(L)$.

3 Resource-robust valid inequalities

In practice, valid inequalities are added to the SPP (Problem (1)) to strengthen the LP relaxation. The main difficulty in using valid inequalities is incorporating their duals into the pricing problem, which is modeled as an SPPRC. In the literature, the distinction is made between robust and non-robust valid inequalities (Fukasawa et al., 2006). The duals of robust valid inequalities can be incorporated without changing the structure of the SPPRC. Including non-robust valid inequalities, on the other hand, complicates the
pricing problem.
In this section, we first make the notion of "complicating the pricing problem" more concrete. With this notion, we formally introduce a new category of valid inequalities that lie somewhere between robust and non-robust: resource-robust valid inequalities. Informally, resource-robust valid inequalities are robust when the SPPRC includes specific resources.

3.1 Impact of robustness on the pricing problem

In the literature, robust and non-robust valid inequalities are distinguished by their impact on the pricing problem. As mentioned in the introduction, robust cuts do not change the structure of the pricing problem, i.e. their duals can be projected onto the arcs (Fukasawa et al., 2006). This property is in contrast with non-robust cuts, where one needs additional resources or adjusted dominance rules in order to incorporate them into the pricing problem.

To formalize the above contrast, we use Definition 3. Our definition focuses on maintaining the non-decreasing type (see Definition 1) of the pricing problem, so that the non-decreasing dominance rule can still be employed without modification.

Definition 3 (Robust impact on the pricing problem). Given a pricing problem of nondecreasing type, a valid inequality has a robust impact if the duals can be included such that the pricing problem is still of non-decreasing type, without adding any additional resources.

It is immediately clear that the non-decreasing dominance rule is still valid when adding a valid inequality with a robust impact. In that sense, the "structure" of the pricing problem is preserved. It is also clear that non-robust cuts do not fall into this definition; their inclusion requires modification of the dominance rule or additional resources. In the remainder of this paper, whenever we refer to (not)"changing the structure of the pricing problem", we mean it in the sense of Definition 3.

3.2 Definition of resource-robustness

Whenever a valid inequality gets added to the RMP, its duals need to be included into the SPPRC to preserve the validity the labeling algorithm. More specifically, this amounts to altering the cost update $\bar{c}(L)$ and potentially adding additional resources. For a single valid inequality with dual σ, the cost update when extending label L over arc (i, j) becomes

$$
\begin{equation*}
\bar{c}(L \oplus j)=\bar{c}(L)+\bar{c}_{i j}-\sigma \Upsilon_{i j}(C(L)), \tag{4}
\end{equation*}
$$

where $C(L)$ are cut-specific resources and $\Upsilon_{i j}$ gives the factor with which σ is subtracted from the reduced cost of the label. We call $C(L)$ the cut memory of the valid inequality and $\Upsilon_{i j}$ the dual application function. Note that the definition of the cut memory, its REFs and the dual application function uniquely define a cut in the RMP.

Our terminology concerning cut memory is inspired by the presentation of the limitedmemory Subset-Row Cuts (lmSRC) by Pecin et al. (2017b). To incorporate the duals of the lmSRCs in the SPPRC, the authors introduce an additional resource for every cut, which can be seen as its memory. By limiting the information that is stored in the memory, the impact of these non-robust valid inequalities on the pricing problem is reduced.

Robust valid inequalities do not need additional resources in the SPPRC. As such, we say that the cut memory is empty, or that no cut memory is necessary. This implies that the dual application function is a constant for every arc (i, j). In other words, one can redefine the reduced arc costs $\bar{c}_{i j}$ as $\bar{c}_{i j}-\sigma \Upsilon_{i j}$. The duals are thus projected onto the arcs, and the structure of the pricing problem is not affected.

It follows immediately from linear programming duality that dual application functions define the coefficients of the associated valid inequalities. This is formalized as Proposition 4.

Proposition 4. Consider a valid inequality for which the dual application function $\Upsilon_{i j}$ is known for every arc $(i, j) \in A$. Let route $r \in \mathcal{R}$ consist of the $\operatorname{arcs}\left(i_{1}, j_{1}\right), \ldots,\left(i_{K_{r}}, j_{K_{r}}\right) \in$ A, and let $C_{1}, \ldots, C_{K_{r}}$ be the associated cut memories. Then the coefficient d_{r} of route
variable x_{r} in the valid inequality is given by

$$
\begin{equation*}
d_{r}=\sum_{k=1}^{K_{r}} \Upsilon_{i_{k} j_{k}}\left(C_{k}\right) \tag{5}
\end{equation*}
$$

We are now ready to define resource-robust valid inequalities. The main idea is that resource-robust valid inequalities have a cut memory that can be derived from existing resources, so no additional resources are necessary. Definition 5 also includes conditions on non-decreasingness. It is proven in Theorem 7 that these conditions ensure that resource-robust valid inequalities do not complicate the pricing problem.

Definition 5 (Resource-robust valid inequality). A valid inequality with cut memory C and dual application function $\Upsilon_{i j}(C)$ is resource-robust for a vector of resources X if and only if

1. $-\sigma \Upsilon_{i j}(C)$ is non-decreasing in C for all $(i, j) \in A$ and for all feasible values of σ,
2. $C=F(X)$ for some non-decreasing function F.

By Proposition 4, the first condition can equivalently be stated in primal form.

Corollary 6. Condition 1 of Definition 5 holds if and only if any of the following are true for d_{r} as defined in Proposition 4 and for some constant $d \in \mathbb{R}$:

- $\Upsilon_{i j}(C)$ is non-decreasing in C for all $(i, j) \in A$ and the valid inequality is of the form $\sum_{r \in \mathcal{R}} d_{r} x_{r} \leq d$,
- $\Upsilon_{i j}(C)$ is non-increasing in C for all $(i, j) \in A$ and the valid inequality is of the form $\sum_{r \in \mathcal{R}} d_{r} x_{r} \geq d$,
- $\Upsilon_{i j}(C)$ is constant in C for all $(i, j) \in A$ and the valid inequality is of the form $\sum_{r \in \mathcal{R}} d_{r} x_{r}=d$.

Proof. Follows immediately from Proposition 4, Definition 5, and the fact that the three cases have dual $\sigma \leq 0, \sigma \geq 0$, and $\sigma \in \mathbb{R}$, respectively.

Note that Corollary 6 implies that a resource-robust equality is always robust. After all, $\Upsilon_{i j}(C)$ is constant for cut memory C. This implies $\Upsilon_{i j}(C)=\Upsilon_{i j}$, which allows the dual to be projected on the arcs.

The main benefit of the newly defined resource-robust valid inequalities is stated in the following theorem.

Theorem 7. If the pricing problem is of non-decreasing type, and if resources X are included in the SPPRC, then valid inequalities that are resource-robust for X have a robust impact on the pricing problem, i.e., non-decreasingness is preserved and no additional resources are required.

Proof. For ease of exposition, we give the proof for a single valid inequality. The argument can be repeated when multiple valid inequalities are involved.

Let C be the cut memory of label L. By definition, $C=F(X)$, so no additional resources are necessary to determine C. By combining the two conditions of Definition 5, we have that $-\sigma \Upsilon_{i j}(C)=-\sigma \Upsilon_{i j}(F(X))$ is non-decreasing in X, which is a non-decreasing resource by assumption. The original REF for the reduced cost $\bar{c}(L)$ is also non-decreasing by assumption, and adding the non-decreasing term $-\sigma \Upsilon_{i j}(C)$ preserves this property.

We conclude that no additional resources are necessary, and the REFs remain nondecreasing. Thus, by Defintion 3, the cuts have a robust impact on the pricing problem. This also implies that the non-decreasing dominance rules of Definition 2 remain valid after updating $\bar{c}(L)$.

Theorem 7 shows that the dual application function of a resource-robust valid inequality can be written in terms of the existing resources X, while maintaining nondecreasingness. This is similar to how the dual application function of a robust valid inequality can be projected onto the existing arc costs. In both cases, existing label information is used, and no additional resources are necessary.

Due to our particular interest in resource-robust valid inequalities that relate to elementarity and to state-space relaxations, we define the following two terms. If the resources X equal the elementarity resources E, we call the valid inequality elementarityrobust. If X equals the $n g$-resources Π, then the valid inequality is $n g$-robust.

3.3 Example: SDCs and their $n g$-equivalent

The Strong Degree Cuts (SDCs), introduced by Contardo et al. (2014), are given by

$$
\begin{equation*}
\sum_{r \in \mathcal{R}} \min \left\{1, a_{i}^{r}\right\} x_{r} \geq 1 \quad \forall i \in V^{\prime} \tag{6}
\end{equation*}
$$

where $\min \left\{1, a_{i}^{r}\right\}$ is a binary parameter that indicates whether route r has visited task i at least once. Contardo et al. (2014) introduced these cuts as an alternative to enforcing elementarity in the pricing problem. That is, not including the elementarity resources and using these cuts instead gives the same master problem lower bound and better algorithmic performance (Contardo et al., 2014).

We will now show, as an example, that the SDCs are elementarity-robust. One way to correctly apply the dual $\sigma_{i} \geq 0$ is to subtract σ the first time that task i is visited (and only the first time). To model this behavior, we introduce the cut memory C_{i}, which consists of a single resource that is one if i is visited at least once, and zero otherwise. The dual application function can then be stated as

$$
\Upsilon_{j k}\left(C_{i}\right)= \begin{cases}1 & \text { if } C_{i}=0, k=i \tag{7}\\ 0 & \text { else }\end{cases}
$$

This function is non-increasing in C_{i}, as increasing C_{i} from zero to one cannot increase the value of the dual application function. Hence, by Corollary 6, Condition 1 of Definition 5 is satisfied. We mention that Contardo et al. (2014) define the same cut memory and dual application function, just not explicitly.

To show that Condition 2 of Definition 5 is satisfied for the elementarity resources, we construct a non-decreasing function F_{i} such that $C_{i}=F_{i}(E)$. By definition, C_{i} is one if and only if i has been visited, which results in $C_{i}=|E \cap\{i\}| \equiv F_{i}(E)$. It is immediately clear that $E \subseteq E^{\prime}$ implies $F_{i}(E) \leq F_{i}\left(E^{\prime}\right)$, and thus F_{i} is non-decreasing.

As both conditions in Definition 5 are satisfied, we conclude that the SDCs are elementarity-robust. It follows by Theorem 7 that SDCs can be added without changing the structure of the pricing problem, given that the elementarity resources are available
(i.e., no state-space relaxation is applied). The new dominance rules are the same as those in Definition 2, except that the new dual application functions need to be added to the reduced cost function $\bar{c}(L)$.

The example shows how resource-robustness can be used to obtain simple dominance rules. Beside this illustration, the fact that SDCs are elementarity-robust has little practical value. It can be seen that $\min \left\{1, a_{i}^{r}\right\}=a_{i}^{r}$ for all elementary routes r and vertices $i \in V^{\prime}$. Therefore, when elementarity is enforced in the subproblem, the Constraints (6) are redundant and may simply be removed.

This derivation does lead to another interesting observation: by replacing the elementarity resources E in the cut memory $C_{i} \equiv|E \cap\{i\}|$ by $n g$-resources Π, we obtain new cuts. These cuts, which we call the $n g S D C s$, trade the elementarity-robustness of the SDCs for $n g$-robustness, at the expense of being weaker than the SDCs.

The $n g$ SDCs state that tasks that are in $n g$-memory cannot be revisited. Therefore, when the $n g$-route relaxation is used, the $n g$ SDCs are redundant. However, as mentioned at the start of this section, the SDCs are used to enforce elementarity in the subproblem with the same master problem lower bounds. Following the exact same argument as by Contardo et al. (2014), it can be shown that the $n g$ SDCs can serve as an alternative to enforcing $n g$-routes in the subproblem. Similarly, this leads to the same lower bound as if the $n g$-route relaxation were used. Given the computational succes of the SDCs, studying the performance of using $n g$ SDCs is an interesting topic for future research.

Finally, we point out the importance of the sign of the inequality in Equation (6). If the sign would be the other way around, then the dual $\sigma_{i} \leq 0$ would be non-positive. As a result, the dual application function should be non-decreasing (instead of non-increasing) by Corollary 6, and the valid inequality would not be elementarity-robust.

3.4 Practical aspects of $n g$-robust valid inequalities

In this section, we consider some practical aspects of using $n g$-robust or elementarityrobust valid inequalities that are important when implementing a BPC algorithm. As elementarity-robust is a special case of $n g$-robust (see Section 2.3), this section focuses
on the latter. Recall that $n g$-robust valid inequalities depend on the $n g$-memory, denoted by $\Pi(L)$.

3.4.1 Unreachable vertices

A common acceleration technique for BPC algorithms, introduced by Feillet et al. (2004), is to consider unreachable vertices instead of visited vertices. We now show that $n g$-robust valid inequalities may be incompatible with this acceleration technique, and we propose a way of mitigating this disadvantage.

Applied to the $n g$-route state-space relaxation, using unreachable vertices amounts to the following. Let $\Pi(L)$ be the $n g$-memory of label L. Next, determine a set of unreachable vertices $U(L) \subseteq V^{\prime} \backslash \Pi(L)$ that cannot be reached by any extension of L due to the resource constraints. In vehicle routing, for example, the set $U(L)$ may correspond to the set of orders that cannot be added to the current vehicle without violating the capacity constraint. The resources $\Pi(L)$ are then replaced by $\Pi^{*}(L) \equiv \Pi(L) \cup U(L)$.

The fact that $\Pi(L)$ is no longer a resource in the SPPRC affects the $n g$-robust valid inequalities. By Definition 5, the cut memory of an $n g$-robust valid inequality is defined as $C=F(\Pi(L))$ for some non-decreasing function F. As $\Pi(L)$ is no longer available, one may try to define $C=F^{*}\left(\Pi^{*}(L)\right)$ for some non-decreasing function F^{*}, but there is no guarantee that this is possible. The main complicating factor is that $\Pi^{*}(L) \subseteq \Pi^{*}\left(L^{\prime}\right)$ does not imply $\Pi(L) \subseteq \Pi\left(L^{\prime}\right)$, which ruins non-decreasingness.

To mitigate the disadvantage of not being able to use unreachable vertices, we propose a heuristic: use $\Pi(L)$ to determine the cut memory and to evaluate the dual application functions, and use $\Pi^{*}(L)$ in the dominance rules. This allows too many labels to be dominated, but if a route with negative reduced cost is found, this route is valid and can be added to the RMP. Only when the heuristic fails to find such a route, we need to weaken the dominance rules by using $\Pi(L)$ instead of $\Pi^{*}(L)$. Such heuristic pricing is discussed in more detail in Section 5.1.1.

3.4.2 Dynamic $n g$-route relaxation

Roberti and Mingozzi (2014) introduce the dynamic ng-route relaxation. In this case, the initial neighborhoods $N_{i} \subseteq V^{\prime}$ for all $i \in V^{\prime}$ are dynamically expanded to make nonelementary routes infeasible after they are generated. By excluding more non-elementary routes, the lower bound is improved. For more details, we refer to Roberti and Mingozzi (2014).

Expanding the neighborhoods in the dynamic $n g$-route relaxation results in some computational overhead when $n g$-robust valid inequalities are used. First, the reduced costs of columns in the column pool (columns that are currently not part of the RMP, but may be added later) will have to be recalculated. This follows from the fact that expanding the neighborhoods changes the $n g$-memory, which changes the cut memory, and therefore the evaluations of the dual application functions. Second, if the coefficients of the $n g$-robust valid inequalities depend on the cut memory, which is case in Sections 4.1, these coefficients have to be updated as well.

On the other hand, $n g$-robust valid inequalities have the benefit that they increase in strength when the neighborhoods are expanded, thereby improving the lower bound of the relaxation. This result is stated formally as Proposition 8. Note that "increase in strength" is formally an abuse of language, as technically the SPP formulation becomes stronger instead of the cuts. However, as we only consider one formulation (the SPP), this should be clear from context.

Proposition 8. Valid inequalities that are ng-robust weakly increase in strength when the ng-route relaxation neighborhoods are expanded from N_{i} to $N_{i}^{+} \supseteq N_{i}$ for all $i \in V^{\prime}$.

Proof. For a given label L, let $\Pi(L)$ and $\Pi(L)^{+}$respectively denote the $n g$-memory before and after expanding the neighborhoods. It follows immediately from the definition of $n g$ memory that $\Pi(L) \subseteq \Pi^{+}(L)$.

Corollary 6 gives three possible descriptions for the valid inequality. In the first case, $\Upsilon_{i j}(C)$ is non-decreasing in C, and the valid inequality is of the form $\sum_{r \in \mathcal{R}} d_{r} x_{r} \leq d$, with $d_{r}=\sum_{k=1}^{K_{r}} \Upsilon_{i_{k} j_{k}}\left(C_{k}\right)$ as in Proposition 4. By non-decreasingness, $\Upsilon_{i j}(\Pi(L)) \leq$
$\Upsilon_{i j}\left(\Pi^{+}(L)\right)$. Hence, the left-hand side coefficients weakly increase when the neighborhoods are expanded, which makes the valid inequality weakly stronger.

The argument for the second case is analogous. The third case is trivial, as the dual application function is constant, and the coefficients do not change when the neighborhoods are expanded. This completes the proof.

3.4.3 Bidirectional labeling

Righini and Salani (2006) propose bidirectional labeling to speed up labeling algorithms such as the one presented in Section 2.2.2. Bidirectional labeling algorithms generate both forward paths starting in vertex 0 and backward paths starting in vertex $n+1$. By combining forward and backward paths, feasible routes are generated.

Bidirectional labeling requires that the REFs can be inverted (redefined for the backward path) in such a way that the inverted functions are also non-decreasing. Irnich (2008) defines inverse REFs that are applicable to a wide range of problems. Baldacci et al. (2011) define inverse $n g$-paths and the associated inverse $n g$-memory $\Pi^{-1}(L)$.

In the presence of $n g$-robust valid inequalities, inverting the REF of the reduced cost function $\bar{c}(L)$ is impossible in general. The reduced cost function depends on the dual application functions, which depend on the $n g$-memory. For the backward path, only the inverse $n g$-memory is available, which does not contain any information about the forward path. It follows that the duals cannot be applied correctly.

To achieve compatibility with bidirectional labeling, we propose to relax the $n g$-robust valid inequalities as follows. For the forward path, apply the duals in the same way as in the monodirectional labeling algorithm. For the backward path, evaluate the dual application functions as if $N_{i}=\{i\}$ for all $i \in V^{\prime}$, i.e., no visits are remembered, and therefore $\Pi^{-1}(L)=\{i(L)\}$. The relaxed valid inequality is robust on the backward path, which means that the reduced cost function can be inverted. It follows from Proposition 8 that the relaxed valid inequality is indeed not stronger than the original, and is therefore valid.

Another relaxation can be obtained when the $n g$-robust valid inequality is symmetric
in the sense that the cut remains valid if $\Pi(L)$ is replaced by $\Pi^{-1}(L)$ everywhere. The $n g S D C s$ and the valid inequalities presented in Section 4.1 have this property, for example. In this case, the opposite relaxation is possible: the valid inequality is made robust on the forward path by assuming that $\Pi(L)=\{i(L)\}$ when duals are applied, while the reduced cost on the backward path is calculated using $\Pi^{-1}(L)$.

In a bidirectional labeling algorithm, either or both relaxed valid inequalities can be used instead of the original $n g$-robust valid inequality. Additionally, we note that any positive linear combination of the two relaxations results in an $n g$-robust valid inequality that is compatible with bidirectional labeling.

3.4.4 Arc-based $n g$-memory

Bulhões et al. (2018) present a generalization of the $n g$-route relaxation in which the $n g$-memory is updated according to neighborhoods associated with the arcs. That is, the vertex neighborhoods N_{j} for $j \in V^{\prime}$ are replaced by arc neighborhoods $N_{i j}$ for $(i, j) \in A$. The update rule (3) is replaced by

$$
\begin{equation*}
\Pi(L \oplus j)=\left(\Pi(L) \cap N_{i j}\right) \cup\{j\} . \tag{8}
\end{equation*}
$$

Note that the $n g$-memory $\Pi(L)$ is still a set of vertices and remains non-decreasing in L. It is straightforward to verify that changing the update rule does not affect any of our results. That is, $n g$-robust valid inequalities are compatible with the generalized $n g$-route relaxation.

4 Application to the CVRP

In this section, we apply the notion of resource-robustness to the Capacitated Vehicle Routing Problem (CVRP). In the CVRP, every route corresponds to a delivery route, and every task corresponds to a delivery to a client. A positive demand $q_{i}>0$ is associated with every task $i \in V^{\prime}$, and the total demand of a route cannot exceed the vehicle capacity $Q>0$. To ensure feasibility, we assume that $q_{i} \leq Q$ for all $i \in V^{\prime}$. For more information
on the CVRP and other vehicle routing problems, we refer to Toth and Vigo (2014).
We introduce the $n g$-Capacity Cuts ($n g \mathrm{CCs}$) as a stronger alternative to the wellknown rounded capacity cuts for the CVRP. The $n g$ CCs are analyzed theoretically, and we present a separation algorithm to find violated inequalities. We also discuss other $n g$ robust valid inequalities that can be derived in the same way. In Section 5, the $n g$ CCs are tested empirically with computational experiments.

In terms of constraints, the CVRP is one of the simplest problems that fit in our framework. It can be stated as a set partitioning problem in which all routes are elementary, with the single additional constraint that routes respect the vehicle capacity. Many vehicle routing problems include the CVRP as a special case, and our results for the CVRP are immediately applicable to these problems.

$4.1 \quad n g$-capacity cuts

Capacity cuts for the CVRP are based on the following observation. Let $S \subseteq V^{\prime}$ be a subset of the tasks, with total demand $\sum_{i \in S} q_{i}$. As each route respects the vehicle capacity Q, at least $\left\lceil\frac{1}{Q} \sum_{i \in S} q_{i}\right\rceil$ routes are needed to execute the tasks in S. Rounding up the fraction is allowed, as the number of routes is integral, which follows from the integrality of the route variables.

4.1.1 Capacity cuts and strengthened capacity cuts

Two known classes of capacity cuts are the rounded Capacity Cuts (CCs, Augerat et al. (1998)) and the Strengthened Capacity Cuts (SCCs, Baldacci et al. (2004)). Before stating the $n g \mathrm{CC}$, we discuss these valid inequalities in reverse order.

The SCCs are given by

$$
\begin{equation*}
\sum_{r \in \mathcal{R}} \zeta_{r}^{S C C}(S) x_{r} \geq\left\lceil\frac{1}{Q} \sum_{i \in S} q_{i}\right\rceil \tag{9}
\end{equation*}
$$

with $\zeta_{r}^{S C C}(S)$ a binary parameter equal to one if route r contains any task in S, and zero otherwise. Note that the left-hand side is the number of routes that visit S, and the
right-hand side is the lower bound discussed before.
The SCCs are known not to be robust, but can be shown to be elementarity-robust in the same way as in the example in Section 3.3. Let the cut memory C_{S} consist of a single resource that is one if the set S is entered at least once, and zero otherwise. The dual application function is given by

$$
\Upsilon_{i j}^{S C C}\left(C_{S}\right)= \begin{cases}1 & \text { if } i \notin S, j \in S, C_{S}=0 \tag{10}\\ 0 & \text { else }\end{cases}
$$

It is straightforward to prove elementarity-robustness by verifying the conditions in Definition 5 .

The CCs are a robust but weaker alternative to the SCCs, given by

$$
\begin{equation*}
\sum_{r \in \mathcal{R}} \zeta_{r}^{C C}(S) x_{r} \geq\left\lceil\frac{1}{Q} \sum_{i \in S} q_{i}\right\rceil \tag{11}
\end{equation*}
$$

with $\zeta_{r}^{C C}(S)$ the number of times that route r enters the set S. The associated dual application function is given by

$$
\Upsilon_{i j}^{C C}= \begin{cases}1 & \text { if } i \notin S, j \in S \tag{12}\\ 0 & \text { else }\end{cases}
$$

Note that the CCs are robust, and therefore the cut memory $C_{S}=\varnothing$ is empty. As mentioned in Section 3.2, the dual can be projected onto the arcs.

It is important to note that the CCs over-estimate the left-hand side of (9) by doublecounting the entries into the set S. For the SCCs, only the first entry into the set S increases the value of $\zeta_{r}^{S C C}$. For the CCs, every time an $\operatorname{arc}(i, j) \in A$ is used with $i \notin S$ and $j \in S$, the value of $\zeta_{r}^{C C}$ is increased. As a result, routes that enter and leave S more than once are counted double. This double-counting results in a valid inequality that is weaker, but does not require any cut memory, because it is not necessary to remember whether S has been visited before.

Naturally, as the CCs and SCCs are different kinds of cuts, separation also differs
between them. We discuss this in more detail in Section 4.3.

4.1.2 $n g$-capacity cuts

We are now ready to introduce the $n g$ CCs. The $n g$ CCs have a similar structure to the CCs and the SCCs, and fall in between the two in strength and in robustness. Where the CCs are robust and the SCCs are elementarity-robust, the $n g$ CCs are $n g$-robust.

The $n g$ CCs are defined as

$$
\begin{equation*}
\sum_{r \in \mathcal{R}} \zeta_{r}^{n g}(S) x_{r} \geq\left\lceil\frac{1}{Q} \sum_{i \in S} q_{i}\right\rceil \tag{13}
\end{equation*}
$$

where $\zeta_{r}^{n g}(S)$ equals the number of times route r travels into set S for the first time, according to the ng-memory. That is, whenever route r travels into S, it is counted if and only if all nodes in set S are not contained in the current $n g$-memory $\Pi(L)$.

Figure 1 shows an example for a route $r=(0,1,2,3,4,5, n+1)$ and a subset $S=$ $\{1,3,5\}$. Assume that the neighborhoods are given by $N_{1}=N_{3}=N_{4}=N_{5}=\{1,3,4,5\}$ and $N_{2}=\{2,3\}$. In this example, route r travels into S three times in total, which implies $\zeta_{r}^{C C}(S)=3$. As r travels into S at least once, we have $\zeta_{r}^{S C C}(S)=1$. According to $n g$-memory, the route enters S two times: first when traveling from 0 to 1 (as the $n g$-memory for this extension is empty), and second when traveling from 2 to 3 (the visit to 1 is not remembered because $1 \notin N_{2}$). Traveling from 4 to 5 , the $n g$-memory equals $\{3,4\}$, so this entry is not counted. It follows that $\zeta_{r}^{n g}(S)=2$.

Figure 1: Example instance for the $n g$ CCs.

For the $n g \mathrm{CCs}$, whether the entries into the set S are double-counted depends on the current state of the $n g$-memory. It follows that $\zeta_{r}^{S C C}(S) \leq \zeta_{r}^{n g}(S) \leq \zeta_{r}^{C C}(S)$, which
implies that the $n g$-capacity cuts are valid for the CVRP. Note that if the $n g$-memory is perfect ($N_{i}=V^{\prime}$ for all $i \in V^{\prime}$), then double-counting is eliminated and the $n g \mathrm{CCs}$ are equivalent to the SCCs. On the other hand, if $N_{i}=\{i\}$ for all $i \in V^{\prime}$, then every entry is double-counted, which makes the $n g \mathrm{CCs}$ equivalent to the CCs.

To incorporate the $n g \mathrm{CCs}$ into the pricing problem, we use the cut memory $C_{S}^{n g}$, which equals one if S has been visited according to $n g$-memory and zero otherwise. That is, $C_{S}^{n g} \equiv \min \{1,|S \cap \Pi(L)|\}$. The dual application function is given by

$$
\Upsilon_{i j}^{n g}\left(C_{S}^{n g}\right)= \begin{cases}1 & \text { if } i \notin S, j \in S, C_{S}^{n g}=0 \tag{14}\\ 0 & \text { else }\end{cases}
$$

We verify $n g$-robustness by checking the two conditions in Definition 5. First, we note that $\Upsilon_{i j}^{n g}\left(C_{S}^{n g}\right)$ is non-increasing in the cut memory $C_{S}^{n g}$. Second, the cut memory $C_{S}^{n g}=\min \{1,|S \cap \Pi(L)|\}$ is non-decreasing in the $n g$-memory $\Pi(L)$. It follows that the $n g$ CCs are $n g$-robust.

By Theorem 7 we have that the duals of the $n g$ CCs can be incorporated without changing the structure of the pricing problem. After adding the dual application functions to $\bar{c}(L)$, the non-decreasing dominance rules can be used.

4.2 Effect on the lower bound

Next, we present an example to demonstrate the size of the effect that $n g \mathrm{CCs}$ can have on the lower bound. In this example, using only CCs results in an optimality gap of 50%. By including $n g$ CCs, the optimality gap is reduced to 0% and the optimal solution is found at the root node.

Our five-task CVRP instance on a complete graph is presented in Figure 2a, with vertices 0 and $n+1$ at the same location. The cost for traversing arcs (0,2), (0,3), and $(0,4)$ is equal to one, and all other arcs have cost zero. The demand for each task is displayed next to the task vertex, and vehicle capacity Q is set to 29 . The neighborhoods are defined as $N_{1}=N_{2}=N_{3}=N_{4}=\{1,2,3,4\}$ and $N_{5}=\{5\}$. Finally, the colored arrows show an optimal solution to the master problem when all CCs are included. Each
colored tour corresponds to a route variable with value $x_{r}=0.5$. It can be seen that the corresponding objective value is equal to 0.5 .

Figure 2: Example instance where $n g \mathrm{CCs}$ increase the lower bound.

In this fractional solution, the $n g \mathrm{CC}$ corresponding to $S=\{1,2,3\}$ is violated: The number of vehicles needed is $\left\lceil\frac{30}{29}\right\rceil=2$, whereas only 1.5 vehicles currently serve these tasks. The CC corresponding to the same set counts both entries of the blue route $(0 \rightarrow 1 \rightarrow 4 \rightarrow 3 \rightarrow n+1)$ into S. For the $n g \mathrm{CC}$, the second entry is not counted, as $1 \in N_{4}$. Adding the violated $n g \mathrm{CC}$ to the master problem results in an integer optimal solution with objective value 1, shown in Figure 2b.

We hypothesize that $n g \mathrm{CCs}$ are most effective for instances with high demand clusters of tasks, as is the case for $\{1,2,3,4\}$ in the example. If capacity is restrictive, this may lead to fractional routes that enter subsets of the cluster multiple times. As tasks in clusters are typically in each others neighborhoods, the $n g$ CCs can prevent double counting in this case, which leads to stronger cuts and better bounds.

4.3 Separation algorithm

We present a separation algorithm to find violated $n g \mathrm{CCs}$ for the current solution to the master problem. That is, for current (fractional) values of the x_{r} variables, the separation algorithm returns a set of tasks $S \subseteq V^{\prime}$ for which Equation (13) does not hold.

Instead of designing a specialized separation scheme, we propose to construct a separation network such that violated $n g \mathrm{CCs}$ in the original network correspond to violated

CCs in the separation network. Existing separation algorithms for CCs, such as those presented by Lysgaard et al. (2004), can then be leveraged to separate $n g$ CCs.

Definition 9 (κ-scaled separation network). For a given $\kappa \in \mathbb{N}$, the κ-scaled separation network is constructed from the original network as follows.

1. Scale down all non-zero route variables $x_{r}>0$ to obtain

$$
\bar{x}_{r}=\frac{x_{r}}{\min \left\{\kappa,\left\lceil\frac{\#(r)}{2}\right\rceil\right\}},
$$

with \#(r) the number of tasks that route r visits (double counting multiple visits).
2. Project the \bar{x}_{r} variables onto the arcs to obtain arc flows.
3. Introduce zero-demand dummy tasks following Algorithm 1 in Appendix A to restore the in- and outflow of each task to one.

Proposition 10. For a given $\kappa \in \mathbb{N}$, if a violated $n g C C$ in the original network corresponds to a subset $S \subseteq V^{\prime}$ that is entered at most κ times by every non-zero route r, then the CC corresponding to S in the separation network is violated as well.

Proof. See Appendix B.
Corollary 11. For $\kappa=\max _{r \in \mathcal{R} \mid x_{r}>0}\left\lceil\frac{\#(r)}{2}\right\rceil$, all violated $n g C C$ in the original network correspond to violated CCs in the separation network.

Proof. Follows immediately from Proposition 10 and the fact that every route can enter subset S at most $\left\lceil\frac{\#(r)}{2}\right\rceil$ times.

By Corollary 11, all violated $n g$ CCs can be found by separating CCs on a separation network with sufficiently high κ. In the reverse direction, violated CCs on the separation network do not necessarily correspond to violated $n g$ CCs. For performance reasons, we therefore propose to start with a separation network for $\kappa=1$, and only increment the parameter when no more violated $n g$ CCs can be found.

4.4 Application to other valid inequalities

The derivation in Section 4.1 and the separation algorithm in Section 4.3 are not specific to the $n g \mathrm{CCs}$, and can be used to derive $n g$-robust variants of other cuts in the literature as well.

For example, consider the k-path cuts, which are given by

$$
\begin{equation*}
\sum_{r \in R} \sum_{(i, j) \in A} b_{i j}^{r} x_{r} \geq k(S) \tag{15}
\end{equation*}
$$

with $S \subseteq V^{\prime}$ a subset of tasks and with $k(S) \geq 1$ a lower bound on the number of routes that enter S in any feasible solution. Recall that $b_{i j}^{r}$ is the number of times that arc (i, j) is used in route r. Note that CCs are specific k-path cuts with $k(S)=\left\lceil\frac{1}{Q} \sum_{i \in S} q_{i}\right\rceil$.

In the same way that we derive $n g$ CCs from the CCs in Section 4.1, one can immediately derive $n g$-robust k-path cuts from the k-path cuts. As special cases, this includes $n g$-robust subtour elimination constraints (Dantzig et al., 1954) and $n g$-robust 2-path cuts (Kohl et al., 1999). It is straightforward to see that the same is true for the generalized k-path cuts presented by Desaulniers et al. (2008). For all these $n g$-robust valid inequalities, κ-scaled separation networks as introduced in Section 4.3 allow existing separation algorithms to be used.

The $n g$ SDCs presented in Section 3.3 provide another example. These cuts can serve as an alternative to enforcing $n g$-routes in the subproblem, similarly to how the SDCs can enforce elementarity in the subproblem.

5 Computational experiments

In this section, we empirically compare the effects of adding CCs or $n g$ CCs in a BPC algorithm for the CVRP. The goal of these experiments is to study the performance of using $n g$-robust cuts -and, more generally, resource-robust cuts- in a relatively simple setting. A straightforward BPC algorithm is implemented in $\mathrm{C}++$, following the descriptions in Sections 2.2 and 2.3, details of which are discussed in Section 5.1.

All experiments are run on an Intel Xeon W-2123 3.6GHz processor and 16GB of RAM. The algorithm is run on a single thread, and a time limit of three hours per instance is imposed. CPLEX version 12.7.1 is used to solve the RMP.

5.1 Implementation BPC algorithm

The basic steps of the BPC algorithm are implemented as described in Sections 2.2 and 2.3. To model the CVRP, we use current load $q(L)$ as an additional resource. Its REF is defined as $q(L \oplus j)=q(L)+q_{j}$ with upper resource window Q. That is, if $q(L \oplus j)>Q$, the extension of L to j is infeasible. For notational convenience, we denote $q_{0}=q_{n+1}=0$. Following Pecin (2014), dominance checks are only performed between labels with the same current load.

The $n g$-route relaxation is implemented as described in Section 2.3. Neighborhoods of size 10 are constructed by selecting the nearest clients. For valid inequalities, either CCs or $n g \mathrm{CCs}$ are added, with dual application functions defined in (12) and (14), respectively. The duals of the CCs are projected onto the arcs, as discussed in Section 3.2. The ngCCs are included by adding the dual application functions to the reduced cost of the label, as discussed in Section 4.1.2.

5.1.1 Heuristic pricing

To quickly discover negative reduced cost columns, we use heuristic pricing as described by Desaulniers et al. (2008), among others. See Costa et al. (2019) for a survey on this topic. The original pricing problem is simplified through aggressive dominance and arc elimination. The former ignores some of the resources in the dominance check, and the latter ignores unpromising arcs based on their reduced costs.

If a route with negative reduced costs is identified, it can be added to the RMP. When no more routes can be found, the labeling algorithm is applied again with more resources and more arcs are taken into account. Eventually, the full problem - with all arcs and resources - is solved, which guarantees that all negative reduced cost columns are found.

As discussed in Section 3.4.1, the unreachable vertices acceleration technique is in-
compatible with $n g$-robust valid inequalities when the pricing problem is solved exactly, but may be included heuristically. Therefore, we employ this technique when either no $n g \mathrm{CCs}$ are present in the model, or heuristic pricing is used as discussed above. The set of unreachable vertices is taken to be the set of tasks that cannot be added to the current route without violating the capacity constraint.

5.1.2 Separation of valid inequalities

As discussed in Section 4.3, we separate $n g$ CCs by separating CCs on κ-scaled separation networks. The CCs are separated with the CVRPSEP package by Lysgaard (2003), which is described by Lysgaard et al. (2004). We modify the code to prevent CVRPSEP from terminating early if one of the four heuristics is successful. This is done because not all violated CCs in the separation network correspond to violated $n g \mathrm{CCs}$ in the original network. In preliminary experiments, no cuts have been found for $\kappa>4$, so $\kappa=4$ is set as the maximum value.

For each potential cut defined by subset $S \subseteq V^{\prime}$, it is determined whether the cut is added as an $n g \mathrm{CC}$ or as a weaker CC. Even though $n g \mathrm{CCs}$ do not change the structure of the pricing problem, we find that it is not worth the effort to evaluate the more complicated dual application function if the strength of the $n g \mathrm{CC}$ and the CC is similar.

Let $v^{n g}(S)$ and $v^{C C}(S)$ be the violation of the $n g \mathrm{CC}$ and the CC corresponding to subset $S \subseteq V^{\prime}$, respectively. If $v^{n g}(S) \geq \max \left\{0.2, v^{C C}(S)+0.1\right\}$, then the cut is added as an $n g \mathrm{CC}$. Else if $v^{C C}(S) \geq 0.1$, then the cut is added as a CC. Otherwise, the violated valid inequality is ignored.

Next to the above heuristic separation procedure, we also experiment with exact separation of CCs and $n g \mathrm{CC}$. To this end, the separation problems are formulated as MIPs and solved by CPLEX. These MIPs (see Appendix C for details) are able to find the single most violated CC or $n g \mathrm{CC}$ in the current solution. Therefore, it is impractical to separate all cuts using this exact separation. Instead, we only execute the exact separation whenever the heuristic one fails, in order to find any additional cuts the heuristic separation might have missed.

5.1.3 Branching rule

As is common in the literature (e.g., see Desrochers et al. (1992)), we branch on the arc flows $z_{i j} \in\{0,1\}$, which are defined as $z_{i j}=\sum_{r \in \mathcal{R}} b_{i j}^{r} x_{r}$ for all $(i, j) \in A$. Recall that $b_{i j}^{r}$ is the number of times that arc (i, j) is used in route r.

We use approximate strong branching, similarly to Ropke (2012) and Pecin et al. (2017b). For a given $\operatorname{arc}(i, j) \in A$, the score of a potential branch is given by $\Delta=$ $0.75 \min \left\{\Delta^{+}, \Delta^{-}\right\}+0.25 \max \left\{\Delta^{+}, \Delta^{-}\right\}$, where Δ^{+}and Δ^{-}are the objective values after forcing the arc flow $z_{i j}$ to one or zero, respectively. The arc to branch on is chosen as follows:

1. Select the 30 arcs for which $\left|z_{i j}-\frac{1}{2}\right|$ is the smallest.
2. For these arcs, calculate the Δ-score without generating any additional routes. Select the five arcs with the highest score.
3. For these arcs, calculate the Δ-score while generating additional routes with heuristic pricing only. Select the arc with the highest score to branch on.

5.2 Test instances

We test the BPC algorithm on the A, B and P benchmark instance classes by Augerat (1995). The instance classes mainly differ in where tasks are located in the Euclidean plane: for the A instances the placement is uniform, for the B instances it is clustered and for the P instances the placements are derived from real-life instances.

As hypothesized in Section 4.2, we suspect the $n g$ CCs to work best in clustered instances where capacity is restrictive. Therefore, we find it interesting to also test the performance of the algorithm on the Augerat B instances (for which the task locations are clustered) with the demand doubled (or set to the vehicle capacity, if exceeding). We call these the B 2 instances. The restriction on the number of vehicles is ignored for all instances.

5.3 Separation strategies

To compare the performance of using CCs to using $n g \mathrm{CCs}$, the BPC algorithm is tested for six different separation strategies. Three strategies only use CCs, while the others allow for $n g$ CCs. An overview is presented in Table 1.

	Cut type	Max κ	Separation type
$\mathrm{cc1}$	CC	1	Heuristic
cc 4	CC	4	Heuristic
ccX	CC	4	Exact
ng 1	$n g \mathrm{CC}$	1	Heuristic
ng 4	$n g \mathrm{CC}$	4	Heuristic
ngX	$n g \mathrm{CC}$	4	Exact

Table 1: Overview of separation strategies.

The cut type in Table 1 indicates whether CCs or $n g$ CCs are used. The next column states the maximum value of κ that is used for the κ-scaled separation networks, as discussed in Section 4.3. If max $\kappa=1$, then only CCs are separated. Note that for the $n g C C$ separation methods, these CCs may be added as $n g C C s$. If $\max \kappa=4$, then the value of κ may be increased up to four to allow more $n g \mathrm{CCs}$ to be found. The final column indicates whether valid inequalities are separated with the heuristic or with the exact implementation, as discussed in Section 5.1.2. Note that the exact separation is executed only when the heuristic separation (with Max $\kappa=4$) fails to find sufficiently violated cuts.

5.4 Computational results

In this section, we analyze the performance of the BPC algorithm on the instances discussed in Section 5.2 for the six strategies introduced in Section 5.3. We first compare CCs and $n g$ CCs on how well they contribute to closing the integrality gap for the considered instances. Next, we analyze the time spent in different parts of the algorithm. For
detailed tables with numerical results, we refer to Appendix D.

5.4.1 Relevant gap closing

To evaluate how the different strategies contribute to closing the optimality gap, we introduce the relevant gap metric. For a given instance, the relevant gap of a given separation strategy s at time t is given by

$$
\text { relgap }_{s, t}=\min \left\{\frac{z^{*}-L B_{s, t}}{z^{*}-L B_{\text {root }}}, 1\right\}
$$

where $L B_{s, t}$ is the lower bound of strategy s at time $t, L B_{\text {root }}$ is the lowest lower bound obtained by any of the strategies at the root node (immediately before branching), and z^{*} is the optimal objective value of the instance (or the best-known lower bound rounded up to the nearest integer, if no strategy reached optimality).

When a branch-and-bound process starts, the lower bound $L B_{s, t}$ is set to 0 and stays that way until the root node is solved. During that period, $L B_{s, t}$ is smaller than $L B_{\text {root }}$ which means the relevant gap is fixed at one. Only when the root node with cuts is solved does $L B_{s, t} \geq L B_{\text {root }}$ hold, which means the relevant gap can become lower than one. Given enough time, the gap will decrease to zero, at which point the relevant gap is closed and the problem is solved to optimality. As the relevant gap ranges between zero and one, we can average over all instances and compare their performance with each other. By defining $L B_{\text {root }}$ as-is, we focus only on closing the gap after solving the root node.

Figure 3 presents the average relative gaps over time for all tested instances classes, and for all six separation strategies, based on the data in Appendix D. Note that the graph stops at 10800 seconds, which corresponds to the time limit of 3 hours.

Our first observation is that for the A, B, and P instances, the average relevant gap over time progresses very similarly for the six strategies. This indicates that the additional strength of the $n g$ CCs compensates for the overhead of evaluating more complicated dual application functions, and for the fact that the unreachable vertices acceleration technique cannot always be used (see Section 3.4.1). Although the $n g$ CCs do not seem to improve

Figure 3: Average relevant gap over time (logarithmic scale).
performance, they also do not hinder the algorithm for these instances.
For the B 2 instances, on the other hand, the strategies that use $n g \mathrm{CCs}$ clearly demonstrate better performance. On average, ng1 outperforms the strategies cc1, cc4, and ccX for most of the runtime. Recall that for ng1 only CCs are separated, which are potentially added as $n g$ CCs. The strategies $n g 4$ and $n g X$ allow for more $n g C C s$ to be found, which improves performance further. The average relevant gap is closed up to 19 percentage points further at the same time, or looking at it differently, the same average relevant gap is obtained up to 9309 seconds earlier.

The difference in average relative gap for the strategies in Figure 3b decreases over time. This is a consequence of the typical behavior where the last part of the gap is the most difficult to close. For the relevant gaps close to zero, the ng strategies still obtain
the same value significantly faster than the cc strategies. If route enumeration is used to close the remainder of the gap (e.g., see Pessoa et al. (2009) and Baldacci et al. (2011)), this process can be started significantly earlier.

It is also of interest to see how the relevant gap decreases per node of the branching tree, rather than per time unit. This more clearly demonstrates the effect of the valid inequalities, rather than how time-efficient the current implementation is. Figure 4 shows the average relevant gap per solved node for each of the four instance classes.

Figure 4: Average relevant gap per node

We observe from Figure 4 that using $n g C C s$ results in smaller relevant gaps for a given number of nodes in the search tree. This effect is especially pronounced at the root node, where ng 4 and ngX close the relevant gap up to 23 percentage points further than the other strategies. Again, the clearest advantage is observed for the B2 instances.

It is noteworthy that ng1 performs similarly to the cc separation strategies, showing that naive separation of $n g$ CCs simply does not yield enough cuts. On the other hand, there is barely any difference between ngX and ng 4 , showing that the κ-scaled separation networks are able to capture the most relevant valid inequalities, and that exact separation is unnecessary.

Comparing Figures 3 and 4, we see that the performance of the ng strategies is better when measured per node of the search tree than per unit of time. The main reason is that solving a single node with the ng strategies is more expensive than with the cc strategies, even though the structure of the pricing problem is the same. This is an important observation that is explored further in Section 5.4.2.

In all four instance classes -especially the A and P instances--, the differences between the CCs and $n g$ CCs become less prevalent as the number of nodes increases. In part, this is again due to the last part of the gap being the most difficult to close. Furthermore, the ng strategies typically solve less nodes within the three hour time limit, and therefore the bound stops improving after a certain number of nodes, earlier than is the case for the cc strategies.

5.4.2 Time spent per node

Table 2 reports the amount of time spent on the different components of the BPC algorithm, on average per node. These numbers are shown for each separation strategy and for each instance class. The columns LP, PP, and SEP represent the average time per node spent on solving LPs, solving pricing problems (heuristically and/or exactly), and executing the cut separation, respectively. The BRANCH column presents the average time needed for approximate strong branching (see Section 5.1.3), and TOTAL gives the average total time spent per node.

The PP column is further detailed by columns $\mathrm{PP} i$ for $i \in\{0,1,2,3,4\}$. PP0 up to PP3 represent the time spent solving different levels of heuristic pricing, each level taking more resources or arcs back into account (see Section 5.1.1). PP4 corresponds to time spent solving the exact pricing problem.

As both LPs and pricing problems are solved during branching, the columns LP, PP, SEP and BRANCH do not add up to TOTAL. In fact, minus some computational overhead, LP, PP and SEP add up to TOTAL approximately.

We see from Table 2 that the total time per node for the ng1 strategy is similar to that of the cc strategies, while the ng 4 and ngX strategies require more time. This agrees with the earlier observation in Section 5.4.1 that only separating CCs and adding them as $n g \mathrm{CCs}$ does not yield much benefit.

The additional time spent on pricing for ng4 and ngX can in part be explained by the fact that more cuts are found, and therefore the pricing problems are called more often. To isolate this effect, Table 3 presents the average time spent per pricing problem, instead of per node.

It can be seen from Table 3 that the time taken by heuristic pricing is not significantly different between separation strategies, while exact pricing is more expensive for the ng strategies. This may be because the unreachable vertices acceleration technique cannot be used when solving the exact pricing problem for the ng strategies, as discussed in Section 3.4.1.

Moving back to Table 2, we see that for the A and B instances, separation strategies ng4 and ngX require more time to determine which arc to branch on. Recall that our approximate strong branching rule only solves heuristic pricing problems, which have a similar solution time over all strategies. As such, we attribute this difference to the increase in LP solution time due to the larger number of valid inequalities that are added by ng4 and ngX.

The SEP column demonstrates that the total time spent on separating valid inequalities is small compared to the total time per node. It is clear that increasing κ up to four (cc4 and ng4) but the overall time increase is very small. This supports the claim that κ-scaled separation networks provide a practically efficient way of separating valid inequalities. It is also clear that exact separation (ccX and ngX) is much more expensive than heuristic separation, especially for the B2 instances.

We would like to point out that while the ng strategies require more time per node,

				PP details										
Class	Sep.	LP	PP	PP0	PP1	PP2	PP3	PP4	SEP	BRANCH	TOTAL			
A	cc1	8.572	20.786	0.143	1.285	4.269	11.357	3.733	0.008	26.787	34.351			
A	cc4	9.890	19.651	0.194	1.252	3.852	10.506	3.848	0.232	26.610	34.536			
A	ccX	10.082	19.745	0.182	1.278	3.920	10.540	3.825	0.780	26.858	35.287			
A	ng1	8.349	23.948	0.161	1.385	4.496	11.888	6.018	0.009	27.536	37.939			
A	ng4	19.766	24.982	0.218	1.482	4.564	11.652	7.066	0.238	37.504	50.816			
A	ngX	20.984	24.829	0.210	1.539	4.739	11.573	6.769	1.018	38.757	52.334			
B	cc1	8.168	30.488	0.129	1.199	5.452	18.001	5.708	0.008	34.830	46.235			
B	cc4	12.611	32.540	0.175	1.265	5.572	19.257	6.271	0.207	40.902	54.025			
B	ccX	13.015	30.775	0.158	1.262	5.515	17.766	6.074	0.560	39.051	52.017			
B	ng1	10.739	34.777	0.132	1.199	5.470	17.101	10.874	0.010	34.859	53.293			
B	ng4	42.356	56.031	0.246	1.957	8.550	27.638	17.638	0.226	79.214	111.671			
B	ngX	43.216	54.035	0.234	1.986	8.715	26.150	16.951	0.657	78.157	109.482			
B2	cc1	3.009	1.393	0.006	0.087	0.350	0.820	0.130	0.004	4.709	5.274			
B2	cc4	3.603	1.427	0.009	0.102	0.363	0.817	0.137	0.156	5.277	6.091			
B2	ccX	2.911	1.551	0.010	0.110	0.397	0.884	0.149	4.515	4.705	9.816			
B2	ng1	3.241	1.848	0.007	0.112	0.440	1.017	0.272	0.005	5.204	6.024			
B2	ng4	3.468	1.999	0.009	0.130	0.471	1.039	0.350	0.204	5.348	6.548			
B2	ngX	3.322	2.019	0.010	0.132	0.477	1.049	0.351	3.064	5.201	9.258			
P	cc1	2.627	17.459	0.210	0.920	3.051	10.106	3.170	0.006	18.626	25.409			
P	cc4	3.139	17.960	0.255	0.962	3.168	10.149	3.428	0.181	19.495	26.985			
P	ccX	3.076	18.072	0.248	0.972	3.205	10.236	3.411	0.616	19.500	27.407			
P	ng1	2.823	19.456	0.225	0.967	3.239	10.683	4.342	0.007	19.682	28.198			
P	ng4	3.954	19.777	0.272	1.038	3.327	10.300	4.839	0.193	20.461	29.857			
P	ngX	3.567	20.496	0.278	1.093	3.602	10.789	4.734	1.228	20.922	31.484			

Table 2: Average time spent on parts of the BPC algorithm (in seconds per node).

Class	Sep.	PP0	PP1	PP2	PP3	PP4
A	cc1	0.006	0.055	0.256	1.009	2.768
A	cc4	0.008	0.055	0.234	0.936	2.910
A	ccX	0.007	0.055	0.236	0.938	2.860
A	ng1	0.006	0.056	0.257	1.017	4.189
A	ng4	0.007	0.056	0.239	0.948	4.492
A	ngX	0.007	0.055	0.234	0.887	4.155
B	cc1	0.004	0.044	0.279	1.416	4.065
B	cc4	0.005	0.041	0.249	1.354	4.346
B	ccX	0.005	0.042	0.252	1.274	4.185
B	ng1	0.004	0.040	0.247	1.194	6.299
B	ng4	0.005	0.043	0.261	1.422	7.292
B	ngX	0.005	0.044	0.262	1.328	6.994
B2	cc1	0.001	0.008	0.034	0.088	0.109
B2	cc4	0.001	0.009	0.035	0.089	0.113
B2	ccX	0.001	0.009	0.035	0.087	0.120
B2	ng1	0.001	0.009	0.039	0.102	0.214
B2	ng4	0.001	0.011	0.045	0.115	0.254
B2	ngX	0.001	0.011	0.045	0.116	0.249
P	cc1	0.011	0.057	0.247	0.878	2.518
P	cc4	0.013	0.059	0.258	0.890	2.699
P	ccX	0.013	0.060	0.261	0.902	2.656
P	ng1	0.011	0.059	0.261	0.935	3.325
P	ng4	0.013	0.061	0.259	0.883	3.623
P	ngX	0.014	0.065	0.283	0.938	3.479

Table 3: Average time per pricing problem (in seconds).

Figure 3 shows that the additional work is worth the effort. Due to the stronger bounds, the total time for the BPC algorithm does not increase for the A, B, and P instances, and even decreases for the B2 instances. We also note that the CVRP pricing problem is relatively simple, and for problems with a more complicated pricing problem, the advantage of having stronger bounds may be more pronounced.

The findings in this section also provide opportunities to improve performance further. To reduce the amount of time spent on exact pricing, more sophisticated heuristics pricing techniques may be used. For example, tabu search (Desaulniers et al., 2008) may be adapted to take the new dual application functions into account. By having better heuristics, the exact pricing problem, which is relatively slow for the ng 4 and ngX
strategies, can be avoided more often.

6 Conclusion

In this paper, we consider valid inequalities for set covering type problems that are solved by branch-price-and-cut, and for which the pricing problem is a SPPRC. This is a broad class of problems with routing and scheduling applications in aviation, shipping, rail, and road transportation.

We introduce resource-robust as a new category of valid inequalities between robust and non-robust. Theoretical properties are considered, and it is proven that resourcerobust valid inequalities can be incorporated in the BPC algorithm without changing the structure of the pricing problem, under the condition that the resources that the cut is robust for are already included in the SPPRC.

Elementarity-robust and $n g$-robust are identified as two widely applicable special cases of resource-robust valid inequalities. These valid inequlaities are based on the resources that enforce routes to be elementary or $n g$-routes, respectively, which are common in practice.

We discuss important practical aspects of using elementarity-robust and $n g$-robust valid inequalities in combination with common acceleration techniques such as unreachable vertices, dynamic $n g$-route relaxation, bidirectional labeling, and arc-based $n g$ memory. The latter three are discussed theoretically, while the first is included in our computational experiments. This choice was made to isolate the effect of the $n g \mathrm{CCs}$ without any additional improvements.

An application to the CVRP is provided, for which we derive an $n g$-robust variant of the well-known rounded capacity cuts. We show with an example that adding these $n g \mathrm{CCs}$ instead of the CCs can reduce the optimality gap from 50% to 0%. A separation algorithm for the $n g \mathrm{CCs}$ is presented based on the newly introduced κ-scaled separation networks, which allows leveraging separation algorithms for the CCs to separate the $n g$ CCs.

We point out that $n g$-robust variants of other cuts may be derived in the same way as well. This results in $n g$-robust (generalized) k-path cuts, subtour elimination constraints, and 2-path cuts. We also mention how to obtain $n g$-robust strong degree cuts, and how these can be used to enforce $n g$-routes in the master problem.

To explore the potential benefit of using resource-robust valid inequalities, we perform computational experiments for a relatively simple set partitioning problem with a relatively straightforward BPC algorithm. In particular, we compare CCs and $n g \mathrm{CCs}$ on how they affect the performance of the BPC algorithm for solving the CVRP.

In the computational experiments, we observe that $n g$ CCs increase the solution time per node of the search tree, but this is compensated by the stronger bounds that are obtained. For the A, B, and P, instances, the performance for CCs and $n g C C s$ is similar. For the clustered high-demand B2 instances, there is a clear advantage in using $n g$-robust valid inequalities. We find that especially exact pricing is expensive for $n g C C s$. Therefore, we note that performance may be improved further by using more sophisticated heuristic pricing techniques that incorporate the new dual application functions, which could be a direction for further research.

We conclude that resource-robust valid inequalities are widely applicable and computationally promising, and there are several interesting avenues for further research. To isolate the effect of the valid inequalities, the computational experiments in this paper consider a relatively simple problem and a straightforward implementation. However, it will be very interesting to see the interaction of resource-robust valid inequalities with other valid inequalities and acceleration techniques in state-of-the-art implementations for different set covering type problems. Another direction would be to derive resourcerobust analogues of known valid inequalities, or even find completely new ones.

References

Philippe Augerat. Approche polyèdrale du problème de tournées de véhicules. PhD thesis, Institut National Polytechnique de Grenoble-INPG, 1995.

Philippe Augerat, José M. Belenguer, Enrique Benavent, Angel Corberán, and Denis Naddef. Separating capacity constraints in the CVRP using tabu search. European Journal of Operational Research, 106(2-3):546-557, 1998.

Lukas Bach, Michel Gendreau, and Sanne Wøhlk. Freight railway operator timetabling and engine scheduling. European Journal of Operational Research, 241(2):309-319, 2015.

Lukas Bach, Twan Dollevoet, and Dennis Huisman. Integrating Timetabling and Crew Scheduling at a Freight Railway Operator. Transportation Science, 50(3):878-891, 2016.

Roberto Baldacci, Eleni Hadjiconstantinou, and Aristide Mingozzi. An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation. Operations Research, 52(5):723-738, 2004.

Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem. Operations Research, 59(5):12691283, 2011.

Cynthia Barnhart, Natashia L. Boland, Lloyd W. Clarke, Ellis L. Johnson, George L. Nemhauser, and Rajesh G. Shenoi. Flight String Models for Aircraft Fleeting and Routing. Transportation Science, 32(3):208-220, 1998a.

Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savelsbergh, and Pamela H. Vance. Branch-and-Price: Column Generation for Solving Huge Integer Programs. Operations Research, 46(3):316-329, 1998b.

Teobaldo Bulhões, Ruslan Sadykov, and Eduardo Uchoa. A branch-and-price algorithm for the Minimum Latency Problem. Computers $\xi^{\mathcal{J}}$ Operations Research, 93:66-78, 2018.

Claudio Contardo, Jean-François Cordeau, and Bernard Gendron. An Exact Algorithm Based on Cut-and-Column Generation for the Capacitated Location-Routing Problem. INFORMS Journal on Computing, 26(1):88-102, 2014.

Luciano Costa, Claudio Contardo, and Guy Desaulniers. Exact Branch-Price-and-Cut Algorithms for Vehicle Routing. Transportation Science, page forthcoming, 2019.

George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson. Solution of a LargeScale Traveling-Salesman Problem. Journal of the Operations Research Society of America, 2(4):393-410, 1954.

Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon, editors. Column Generation. Springer, 2005.

Guy Desaulniers, François Lessard, and Ahmed Hadjar. Tabu Search, Partial Elementarity, and Generalized k-path Inequalities for the Vehicle Routing Problem with Time Windows. Transportation Science, 42(3):387-404, 2008.

Martin Desrochers, Jacques Desrosiers, and Marius M. Solomon. A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows. Operations Research, 40(2):342-354, 1992.

Niklaus Eggenberg, Matteo Salani, and Michel Bierlaire. Constraint-specific recovery network for solving airline recovery problems. Computers ${ }^{\mathcal{J}}$ Operations Research, 37 (6):1014-1026, 2010.

Dominique Feillet, Pierre Dejax, Michel Gendreau, and Cyrille Gueguen. An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems. Networks, 44(3):216-229, 2004.

Ricardo Fukasawa, Humberto Longo, Jens Lysgaard, Marcus Poggi de Aragão, Marcelo Reis, Eduardo Uchoa, and Renato F. Werneck. Robust Branch-and-Cut-and-Price for the Capacitated VehicleRouting Problem. Mathematical Programming, 106(3):491-511, 2006.
R. S. Garfinkel and George L. Nemhauser. The Set-Partitioning Problem: Set Covering with Equality Constraints. Operations Research, 17(5):848-856, 1969.

Ahmed Ghoniem, Farbod Farhadi, and Mohammad Reihaneh. An accelerated branch-and-price algorithm for multiple-runway aircraft sequencing problems. European Journal of Operational Research, 246(1):34-43, 2015.
D. J. Houck, J. C. Picard, M. Queyranne, and R. R. Vemuganti. The travelling salesman problem as a constrained shortest pathproblem: Theory and computational experience. Opsearch, 17:93-109, 1980.

Stefan Irnich. Resource extension functions: Properties, inversion, and generalization to segments. OR Spectrum, 30(1):113-148, 2008.

Stefan Irnich and Guy Desaulniers. Shortest Path Problems with Resource Constraints. In Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon, editors, Column Generation, chapter 2, pages 33-65. Springer, 2005.

Stefan Irnich and Daniel Villeneuve. The Shortest-Path Problem with Resource Constraints andk-Cycle Elimination for $\mathrm{k} \geq 3$. INFORMS Journal on Computing, 18(3): 391-406, 2006.

Mads Jepsen, Bjørn Petersen, Simon Spoorendonk, and David Pisinger. Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows. Operations Research, 56(2):497-511, 2008.

Niklas Kohl, Jacques Desrosiers, Oli B. G. Madsen, Marius M. Solomon, and François Soumis. 2-Path Cuts for the Vehicle Routing Problem with Time Windows. Transportation Science, 33(1):101-116, feb 1999.

Jens Lysgaard. CVRPSEP: A package of separation routines for the Capacitated Vehicle Routing Problem. Working paper, Aarhus School of Business, 2003.

Jens Lysgaard, Adam N. Letchford, and Richard W. Eglese. A new branch-and-cut algorithm for the capacitated vehicle routing problem. Mathematical Programming, 100(2):423-445, 2004.

Diego Pecin. Exact Algorithms for the Capacitated VehicleRouting Problem. PhD thesis, Pontifícia Universidade Católica do Rio de Janiero, 2014.

Diego Pecin, Claudio Contardo, Guy Desaulniers, and Eduardo Uchoa. New Enhancements for the Exact Solution of the Vehicle Routing Problem with Time Windows. INFORMS Journal on Computing, 29(3):489-502, 2017a.

Diego Pecin, Artur Pessoa, Marcus Poggi de Aragão, and Eduardo Uchoa. Improved branch-cut-and-price for capacitated vehicle routing. Mathematical Programming Computation, 9(1):61-100, 2017b.

Artur Pessoa, Eduardo Uchoa, and Marcus Poggi de Aragão. A robust branch-cut-andprice algorithm for the heterogeneous fleet vehicle routing problem. Networks: An International Journal, 54(4):167-177, 2009.

Christian E.M. Plum, David Pisinger, Juan-José Salazar-González, and Mikkel M. Sigurd. Single liner shipping service design. Computers \& Operations Research, 45:1-6, 2014.

Giovanni Righini and Matteo Salani. Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest path problem with resource constraints. Discrete Optimization, 3(3):255-273, 2006.

Roberto Roberti and Aristide Mingozzi. Dynamic ng-Path Relaxation for the Delivery Man Problem. Transportation Science, 48(3):413-424, 2014.

Stefan Ropke. Branching decisions in branch-and-cut-and-price algorithms for vehicle routing problems. Presentation in Column Generation, 2012.

Paolo Toth and Daniele Vigo, editors. Vehicle Routing: Problems, Methods, and Applications. SIAM, $2^{\text {nd }}$ edition, 2014.

Ilaria Vacca, Matteo Salani, and Michel Bierlaire. An Exact Algorithm for the Integrated Planning of Berth Allocation and Quay Crane Assignment. Transportation Science, 47 (2):148-161, 2013.

A Restoring in- and outflow of a task

Figure 5: A method to restore the in- and outflow of a task to one, for given $\alpha \in(0,1)$.

```
Algorithm 1 Algorithm to restore the in- and outflow all tasks to one
    for all tasks \(i \in V^{\prime}\) do
        Calculate reduced missing in- and outflow \(\alpha \equiv 1-\sum_{r \in \mathcal{R}} a_{i}^{r} \bar{x}_{r}\)
        if \(\alpha>0\) then
            Introduce dummy nodes \(i^{\prime}\) and \(i^{\prime \prime}\) with \(q_{i^{\prime}}=q_{i^{\prime \prime}}=0\), with flow on \(\operatorname{arcs}\left(i, i^{\prime}\right)\),
    \(\left(i, i^{\prime \prime}\right),\left(i^{\prime}, i\right)\) and \(\left(i^{\prime \prime}, i\right)\) equal to \(\frac{\alpha}{2}\) and flow on arcs \(\left(i^{\prime}, i^{\prime \prime}\right)\) and \(\left(i^{\prime \prime}, i^{\prime}\right)\) equal to \(1-\frac{\alpha}{2}\)
    (see Figure 5).
        end if
    end for
```


B Proof Proposition 10

Proposition 10. For a given $\kappa \in \mathbb{N}$, if a violated $n g C C$ in the original network corresponds to a subset $S \subseteq V^{\prime}$ that is entered at most κ times by every non-zero route r, then the CC corresponding to S in the separation network is violated as well.

Proof. Let S be a subset of tasks corresponding to a violated $n g \mathrm{CC}$ in the original network. Furthermore, it is entered at most κ times by every non-zero route r. This gives us that $\zeta_{r}^{C C}(S) \leq \kappa$ for all r with $x_{r}>0$. As every route can enter a subset at most $\left\lceil\frac{\#(r)}{2}\right\rceil$ times, we have

$$
\zeta_{r}^{C C}(S) \leq \min \left\{\kappa,\left\lceil\frac{\#(r)}{2}\right\rceil\right\} \equiv \kappa_{r}
$$

for all r such that $x_{r}>0$. Multiplying $\zeta_{r}^{n g}(S) \geq \zeta_{r}^{S C C}(S)=\min \left\{\zeta_{r}^{C C}(S), 1\right\}$ with κ_{r}, we
get the following string of inequalities:

$$
\kappa_{r} \zeta_{r}^{n g}(S) \geq \min \left\{\kappa_{r} \zeta_{r}^{C C}(S), \kappa_{r}\right\} \geq \zeta_{r}^{C C}(S)
$$

where the last inequality follows from the fact that $\kappa_{r} \geq 1$ and $\zeta_{r}^{C C}(S) \geq 0\left(\right.$ so $\zeta_{r}^{C C}(S) \leq$ $\left.\kappa_{r} \zeta_{r}^{C C}(S)\right)$.

As the $n g \mathrm{CC}$ in the original network for subset S is violated, we have

$$
\sum_{r: x_{r}>0} \zeta_{r}^{n g}(S) x_{r}<\left\lceil\frac{1}{Q} \sum_{i \in S} q_{i}\right\rceil
$$

Combining this with the previously proven inequality, we get

$$
\begin{aligned}
\left\lceil\frac{1}{Q} \sum_{i \in S} q_{i}\right\rceil & >\sum_{r: x_{r}>0} \zeta_{r}^{n g}(S) x_{r} \\
& =\sum_{r: x_{r}>0} \kappa_{r} \zeta_{r}^{n g}(S) \bar{x}_{r} \\
& \geq \sum_{r: x_{r}>0} \zeta_{r}^{C C}(S) \bar{x}_{r} .
\end{aligned}
$$

Note that the right-hand-side corresponds to a CC in the κ-scaled network (when augmenting S with its dummy nodes). So, this CC corresponding to S is violated in the κ-scaled network as well.

C Exact separation of $n g \mathrm{CCs}$ and CCs

For the exact separation of CCs and $n g \mathrm{CCs}$, we use the integer programs (16) and (17) respectively. The programs find the most violated CC or $n g \mathrm{CC}$ by minimizing the left-hand-side of the valid inequality (13) and (11), while keeping the right-hand-side constant.

To separate a CC or $n g C C$ exactly, we execute the program a number of times, each for a different value of θ, which represents $\left\lceil\frac{1}{Q} \sum_{i \in T} q_{i}\right\rceil$, the right-hand-side of the cut. As θ is integer, we execute the program for $\theta \in\left\{1,2, \ldots,\left\lceil\frac{1}{Q} \sum_{i \in V} q_{i}\right\rceil\right\}$. If in any of the stages a violated cut is found, we return that cut and terminate the separation.

Otherwise, no violated cuts are present in the current solution.

$$
\begin{align*}
& \min \sum_{(i, j) \in A} x_{i j} z_{i j}, \tag{16a}\\
& \text { s.t. } \quad z_{i j} \geq y_{j}-y_{i} \quad \forall(i, j) \in A \text {, } \tag{16b}\\
& (\theta-1) Q+1 \leq \sum_{i \in V} q_{i} y_{i}, \tag{16c}\\
& \theta Q \geq \sum_{i \in V} q_{i} y_{i}, \tag{16d}\\
& y_{0}=y_{n+1}=0 \quad, \tag{16e}\\
& z_{i j}, y_{i} \in\{0,1\} \quad \forall(i, j) \in A . \tag{16f}
\end{align*}
$$

In (16), $x_{i j},(i, j) \in A$ represents the arc flows of the current (not necessarily integer) solution to the RMP $\left(x_{r}\right)_{r \in \mathcal{R}}$, with $x_{i j}=\sum_{r \in \mathcal{R}} b_{i j}^{r} x_{r}$. The binary decision variables y_{i} equals 1 if task i is in the subset S of the CC and equals 0 otherwise. The binary decision variable $z_{i j}$ equals 1 if arc (i, j) enters this set S and 0 otherwise.

Equation (16a) is the objective: it counts the number of vehicles entering set S. Equation (16b) makes sure that $z_{i j}$ equals 1 if $y_{j}=1$ and $y_{i}=0$. The constraint is inactive otherwise. Next, constraints (16c) and (16d) make sure that θ equals $\left\lceil\frac{1}{Q} \sum_{i \in S} q_{i}\right\rceil$, where we add 1 to the left-hand-side of (16c) as we assume all q_{i} to be integer. Constraint (16e) ensures that the depots 0 and $n+1$ cannot be in set S. Finally, constraint (16f) restricts the variables to be binary.

$$
\begin{align*}
& \min \sum_{r \in \mathcal{R}} \sum_{k=1}^{\#(r)} x_{r} z_{r k}, \tag{17a}\\
& \text { s.t. } \quad z_{r k}+\sum_{i \in \Pi_{r}(k-1)} y_{i} \geq y_{r_{k}} \quad \forall r \in \mathcal{R}, k \in\{1, \ldots, \#(r)\} \tag{17b}\\
&(\theta-1) Q+1 \leq \sum_{i \in V} q_{i} y_{i}, \tag{17c}\\
& \theta Q \geq \sum_{i \in V} q_{i} y_{i}, \tag{17d}\\
& y_{0}=y_{n+1}=0 \quad, \tag{17e}\\
& z_{r k}, y_{i} \in\{0,1\} \quad \forall i \in V, r \in \mathcal{R}, k \in\{1, \ldots, \#(r)\} \tag{17f}
\end{align*}
$$

In (17), x_{r} represents the current (not necessarily integer) solution to the RMP. Again, the binary decision variable y_{i} equals 1 if task i is in the subset S of the $n g \mathrm{CC}$ and 0 otherwise. The binary variable $z_{r k}$ equals 1 if route r travels into S as the k th task on the route for the first time, according to its $n g$-memory. Here, $k \in\{1, \ldots, \#(r)\}$, where $\#(r)$ is the number of tasks on the route. Furthermore, let r_{k} be the k th task on the route, where we set $r_{0}=0$ and $r_{\#(r)+1}=n+1$ the starting and ending depot respectively. We also define $\Pi_{r}(k)$ is the $n g$-memory of route r at its k th task.

Equation (17a) is the objective: it counts the number of vehicles entering subset S for the first time, according to $n g$-memory. Constraint (17b) makes sure that $z_{r k}$ is forced to 1 if its k th task is in S and all tasks in its current $n g$-memory are not in S. Next, constraints (17c)-(17f) are identical to their counterparts (16c)-(16f).

D List of computational results

Instance	Method	LB	UB	Gap	Time	Nodes	Routes	CCs	$n g \mathrm{CCs}$	Instance	Method	LB	UB	Gap	Time	Nodes	Routes	CCs	$n g \mathrm{CCs}$	Instance	Method	LB	UB	Gap	Time	Nodes	Routes	CCs	$n g \mathrm{CCs}$
B-n31-k5	cc1	672.00	672	0.000	5.12	1	3488	30	0	B-n45-k5	cc1	751.00	751	0.000	131.23	7	7927	36	0	B-n57-k9	cc1	1598.00	1598	0.000	646.57	27	12986	266	0
	cc4	672.00	672	0.000	5.43	1	3583	39	0		cc4	751.00	751	0.000	423.38	15	12017	57	0		cc4	1598.00	1598	0.000	570.54	17	13436	337	0
	ccx	672.00	672	0.000	5.48	1	3583	39	0		ccx	751.00	751	0.000	428.44	15	12017	57	0		ccx	1598.00	1598	0.000	568.15	17	13436	337	0
	ng1	672.00	672	0.000	5.84	1	3601	20	10		ng1	751.00	751	0.000	374.76	9	11886	42	2		ng1	1598.00	1598	0.000	645.49	23	12401	254	34
	ng4	672.00	672	0.000	10.90	1	4666	28	33		ng4	751.00	751	0.000	56.23	1	6403	49	52		ng4	1598.00	1598	0.000	766.56	21	11876	295	123
	ng ${ }^{\text {a }}$	672.00	672	0.000	10.96	1	4666	28	33		ng X	751.00	751	0.000	56.10	1	6403	49	52		ng ${ }^{\text {a }}$	1598.00	1598	0.000	768.28	21	11876	295	123
B-134-k5	cc1	788.00	788	0.000	353.83	75	10575	84	0	B-n45-k6	cc1	678.00	678	0.000	90.79	5	10984	33	0	B-n63-k10	cc1	1496.00	1496	0.000	741.03	27	11066	248	0
	cc4	788.00	788	0.000	739.50	83	17285	143	0		cc4	678.00	678	0.000	74.63	5	10649	31	0		cc4	1496.00	1496	0.000	383.68	15	8191	232	0
	ccx	788.00	788	0.000	743.29	83	17285	143	0		ccx	678.00	678	0.000	75.31	5	10649	31	0		ccx	1496.00	1496	0.000	459.57	19	8285	239	0
	ng1	788.00	788	0.000	644.77	75	13701	77	15		ng1	678.00	678	0.000	75.39	5	7677	24	11		ng1	1496.00	1496	0.000	1923.47	41	12480	179	44
	ng4	788.00	788	0.000	1810.69	33	19618	109	369		ng4	678.00	678	0.000	94.67	5	10898	22	24		ng 4	1496.00	1496	0.000	1950.86	27	11963	186	175
	ng	788.00	788	0.000	1857.84	33	19258	104	360		ng X	678.00	678	0.000	96.40	5	10898	22	24		ngX	1496.00	1496	0.000	588.09	5	9310	173	177
B-n35-k5	cc1	955.00	955	0.000	12.03	1	4428	73	0	B-n50-k7	cc1	741.00	741	0.000	50.09	2	6844	62	0	B-n64-k9	cc1	861.00	861	0.000	978.23	25	17792	95	0
	cc4	955.00	955	0.000	12.07	1	4143	111	0		cc4	741.00	741	0.000	36.91	1	6630	190	0		cc4	861.00	861	0.000	712.31	13	14337	235	0
	ccx	955.00	955	0.000	12.05	1	4143	111	0		ccx	741.00	741	0.000	36.91	1	6630	190	0		ccx	861.00	861	0.000	710.90	13	14337	235	
	ng1	955.00	955	0.000	13.61	1	4377	51	31		ng1	741.00	741	0.000	59.55	2	7112	50	11		ng1	861.00	861	0.000	462.97	9	12594	112	13
	ng4	955.00	955	0.000	22.19	1	5734	73	166		ng 4	741.00	741	0.000	67.41	1	9247	42	72		ng4	861.00	861	0.000	867.99	9	16944	226	58
	ng x	955.00	955	0.000	22.37	1	5734	73	166		ng X	741.00	741	0.000	67.16	1	9247	42	72		ngX	861.00	861	0.000	1013.61	11	18801	223	59
B-n38-k6	cc1	805.00	805	0.000	199.47	31	6663	48	0	B-n50-k8	cc1	1312.00	1312	0.000	6479.26	196	30242	410	0	B-n66-k9	cc1	1316.00	1316	0.000	9739.79	259	29688	403	0
	cc4	805.00	805	0.000	96.13	13	6053	53	0		cc4	1312.00	1312	0.000	7399.97	200	30163	477	0		cc4	1314.68	1317	0.176	10847.60	189	30831	471	0
	ccx	805.00	805	0.000	98.35	13	6053	53	0		ccx	1312.00	1312	0.000	8030.39	210	31259	496	0		ccx	1314.68	Inf	Inf	10843.10	187	32803	463	0
	ng1	805.00	805	0.000	80.37	11	5813	41	6		ng1	1312.00	1312	0.000	10468.20	205	37394	285	128		ng1	1316.00	1316	0.000	9309.55	223	26994	317	91
	ng4	805.00	805	0.000	112.97	11	6441	38	35		ng4	1311.79	Inf	Inf	10843.90	115	30196	267	460		ng4	1313.31	Inf	Inf	10814.60	86	23642	317	612
	ng x	805.00	805	0.000	115.48	11	6441	38	35		ng X	1311.77	Inf	Inf	10883.80	118	30847	287	475		ngX	1313.39	Inf	Inf	10886.30	89	23978	317	613
B-n39-k5	cc1	549.00	549	0.000	43.53	1	5657	41	0	B-n51-k7	cc1	1016.00	1016	0.000	37.29	1	5927	25	0	B-n67-k10	cc1	1032.00	1032	0.000	4345.03	71	19608	208	0
	cc4	549.00	549	0.000	36.70	1	6105	95	0		cc4	1016.00	1016	0.000	16.92	1	5762	65	0		cc4	1032.00	1032	0.000	3594.02	71	14897	202	0
	ccX	549.00	549	0.000	36.65	1	6105	95	0		ccx	1016.00	1016	0.000	17.04	1	5762	65	0		ccx	1032.00	1032	0.000	3046.15	71	14766	202	
	ng1	549.00	549	0.000	71.22	1	5653	39	2		ng1	1016.00	1016	0.000	48.64	1	5849	23	4		ng1	1032.00	1032	0.000	2688.42	39	13866	136	51
	ng4	549.00	549	0.000	144.52	1	7732	82	262		ng4	1016.00	1016	0.000	38.48	1	6899	55	48		ng 4	1032.00	1032	0.000	3561.24	40	13301	98	96
	ngX	549.00	549	0.000	144.03	1	7732	82	262		ngx	1016.00	1016	0.000	38.39	1	6899	55	48		ngX	1032.00	1032	0.000	2854.72	36	12326	105	99
B-n41-k6	cc1	829.00	829	0.000	115.38	13	7648	57	0	B-n52-k7	cc1	747.00	747	0.000	1389.19	37	23102	61	0	B-n68-k9	cc1	1266.81	Inf	Inf	10948.70	96	30599	286	0
	cc4	829.00	829	0.000	122.04	13	8810	72	0		cc4	747.00	747	0.000	2049.97	52	25595	101	0		cc4	1266.81	Inf	Inf	10813.40	90	27190	262	0
	ccX	829.00	829	0.000	124.71	13	8810	72	0		ccx	747.00	747	0.000	2045.04	52	25595	101	0		ccx	1266.94	Inf	Inf	10833.90	103	28619	263	0
	ng1	829.00	829	0.000	239.57	19	9387	45	12		ng1	747.00	747	0.000	2496.77	48	21897	53	8		ng1	1267.69	Inf	Inf	10839.10	69	26289	210	102
	ng4	829.00	829	0.000	198.60	21	7062	57	26		ng4	747.00	747	0.000	2391.45	34	24593	119	47		ng4	1266.92	Inf	Inf	10896.60	34	26383	166	482
	ngX	829.00	829	0.000	219.73	23	6973	57	26		ng X	747.00	747	0.000	2923.65	46	24342	119	50		ngX	1266.94	Inf	Inf	10961.20	36	26951	179	482
B-n43-k6	cc1	742.00	742	0.000	533.33	44	9843	153	0	B-n56-k7	cc1	707.00	707	0.000	533.14	15	14892	52	0	B-n78-k10	cc1	1220.28	Inf	Inf	10896.20	87	22659	226	0
	cc4	742.00	742	0.000	584.71	41	11849	127	0		cc4	707.00	707	0.000	968.36	27	13042	81	0		cc4	1219.55	1221	0.119	10865.40	74	20548	340	0
	ccx	742.00	742	0.000	379.38	22	10430	128	0		ccx	707.00	707	0.000	973.51	27	13042	81	0		ccx	1221.00	1221	0.000	10593.80	99	20599	343	0
	ng1	742.00	742	0.000	381.04	27	8099	130	26		ng1	707.00	707	0.000	662.60	13	14670	42	17		ng1	1221.00	1221	0.000	4879.71	47	15201	184	36
	ng4	742.00	742	0.000	413.38	15	10698	119	118		ng 4	707.00	707	0.000	679.82	9	13462	48	124		ng4	1220.31	Inf	Inf	10818.60	38	19270	270	491
	ngx	742.00	742	0.000	419.05	15	10698	119	118		ng x	707.00	707	0.000	689.48	9	13462	48	124		ngX	1219.94	Inf	Inf	10921.50	44	20479	265	493
B-n44-k7	cc1	909.00	909	0.000	28.52	2	4408	81	0	B-n57-k7	cc1	1140.00	1140	0.000	6260.07	157	27777	83	0										
	cc4	909.00	909	0.000	13.35	1	4953	138	0		cc4	1140.00	1140	0.000	1226.55	31	14313	96	0										
	ccx	909.00	909	0.000	13.35	1	4953	138	0		ccx	1140.00	1140	0.000	1213.56	31	14313	96	0										
	ng1	909.00	909	0.000	33.16	1	4703	49	38		ng1	1140.00	1140	0.000	8327.71	157	31822	56	38										
	ng4	909.00	909	0.000	20.89	1	5112	86	230		ng4	1140.00	1140	0.000	5283.59	49	26902	112	88										
	ngx	909.00	909	0.000	21.09	1	5112	86	230		ng ${ }^{\text {d }}$	1140.00	1140	0.000	4655.95	41	26515	112	87										

$\left\|\begin{array}{l} \stackrel{n}{8} \\ 0 \\ 0 \end{array}\right\|$	000 \％\％			000988	$000 \underset{\infty}{\text { ¢ }}$	0008어ㅇㅕㅜ	＊ส તี
3	ホ						
$\stackrel{0}{\mathrm{E}}$							
Cis	응응		Bog oby 응		응응응응응 $0-000$		
\％					只是只只只只		
m							
$\begin{array}{\|c\|c} \frac{2}{2} \\ \stackrel{\rightharpoonup}{2} \end{array}$							

$\left\|\begin{array}{l} n \\ 0 \\ 0 \end{array}\right\|$	－000号足只					－00	$8 \stackrel{0}{\circ}$	－ 0
80		骂哭哭哭哭品获						
$\begin{aligned} & \text { 品 } \\ & 0 \\ & 0 \end{aligned}$								
$\begin{array}{\|l\|} \hline \frac{8}{8} \\ \frac{8}{8} \\ \hline \end{array}$	处の9スコニ					キ우욱ㄱํ		
$\stackrel{\cong}{\sharp}$	우웅ㅇㅇㅇㅇㅇㅇㅇㅇ 		coccos	®o웅우웅 				
:								
$\stackrel{\square}{\square}$			容言烒烒烒荷					
¢	888888守守守守守淙守							
$\frac{\vec{e}}{\frac{0}{2}}$						⿹ㅓㅇ		
8							求	d
0	为动的歀串品							$\because 8$
$\begin{array}{\|l} \substack{x \\ \vdots \\ \vdots \\ \hline} \\ \hline \end{array}$	氡员						 	
$\left.\frac{8}{8} \right\rvert\,$								ご下ご去
品						\＆옹ํㅇํ웅 		 ○i 웅
\％	88888888	88888888 00000		88888888 0000	88888888	8888888	88888888	88888888 $00^{\circ} 00^{\circ}$
¢							\％	
9								
号								Jु
毞			$\begin{array}{\|c} \text { 品 } \\ \text { 筑 } \\ \stackrel{\tilde{M}}{ } \end{array}$					

－	8					¢incos		ล่ 슨	
	$\stackrel{B}{B}$						O응		
$\frac{y_{z}^{8}}{8}$	${ }_{\sim}^{\circ}$		\％						
$\stackrel{\#}{\sharp}$									
\％	$\stackrel{\substack{5}}{\substack{N}}$								
$\stackrel{\square}{5}$									
\sim									
	$\begin{aligned} & \text { 若 } \\ & 0 \\ & \frac{y}{4} \end{aligned}$	$\begin{aligned} & \stackrel{9}{4} \\ & \stackrel{1}{0} \\ & \frac{\pi}{4} \end{aligned}$						$\stackrel{\circ}{\ddagger}$	
8	긍			㟋			$\stackrel{2}{7}$	$\stackrel{N}{6}$	8
	品								ล
品	$$				 				
何									
\％	7								
๓	$\begin{array}{\|c} \stackrel{8}{8} \\ \stackrel{\rightharpoonup}{8} \end{array}$								
$\frac{\stackrel{y}{e}}{\stackrel{\rightharpoonup}{x}}$								$\stackrel{\times}{\text { bob }}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$
	范				$\begin{aligned} & \stackrel{7}{7} \\ & \frac{1}{4} \end{aligned}$	$\begin{aligned} & \stackrel{y}{2} \\ & \frac{\pi}{4} \end{aligned}$	花	$\begin{aligned} & \text { 花 } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \substack{\text { 官 } \\ \hline} \end{array}$

$\left\|\begin{array}{c} 8 \\ 0 \\ 0 \end{array}\right\|$	000nปス	0009 치으N	$\stackrel{\infty}{\sim} \stackrel{\infty}{\sim}$		000\％ํสํ	｜000r880	－00 788	๑สี่	－00\％
$\overbrace{0}$	禺只只品旨告		フ88ロロR			吅			
$\begin{array}{\|c\|} \hline \frac{y}{8} \\ \stackrel{8}{8} \\ \hline \end{array}$						ニのの毎に			
$\underset{\sharp}{g}$				－					
\％	$\begin{array}{llll}8 & 8 & 8 & 8 \\ 0 & 8 & 8 & 8 \\ 0 & 8 \\ 0 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$	$\left\lvert\, \begin{array}{ccc} 8 & 8 & 8 \\ 0.8 & 8 & 8 \\ 0 & 8 & 8 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \\ 0 \end{array}\right.$	888888 000000	8.8 $00^{\circ} 0^{\circ} 0^{\circ}$		 －0．0．0．	응응응응ㅇㅇ 000000	ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ －0 0000	$\begin{array}{llll} 8 & 8 \\ 0 & 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \end{array}$
\％	促	힝 \＃\＃్ర \＃				응 9	영융앙형융융	发次员员促员	
\mathfrak{m}				8 8 8 8 8 8禺禺禺愚禺禺愚		888888 잉웅 웅 잉웅			
$\begin{gathered} \frac{0}{6} \\ \frac{8}{2} \end{gathered}$							F－	F－	
				$\begin{aligned} & \frac{20}{4} \\ & \frac{1}{4} \\ & \frac{2}{4} \\ & \frac{1}{4} \end{aligned}$			$\begin{aligned} & \frac{0}{4} \\ & \frac{10}{10} \\ & \frac{0}{4} \\ & 4 \end{aligned}$		

Instance	Method	LB	UB	Gap	Time	Nodes	Routes	CCs	$n g \mathrm{CCs}$	Instance	Method	LB	UB	Gap	Time	Nodes	Routes	CCs	$n g \mathrm{CCs}$	Instance	Method	LB	UB	Gap	Time	Nodes	Routes	CCs	$n g \mathrm{CCs}$
P-n16-k8	cc1	450.00	450	0.000	0.13	9	113	16	0	P-n45-k5	cc1	510.00	510	0.000	1313.52	38	13118	115	0	P-n55-k15	cc1	941.00	941	0.000	59.43	37	1392	84	0
	cc4	450.00	450	0.000	0.20	9	118	37	0		cc4	510.00	510	0.000	1230.04	40	14300	150	0		cc4	941.00	941	0.000	39.18	21	1445	175	0
	ccX	450.00	450	0.000	0.77	9	118	37	0		ccX	510.00	510	0.000	1249.55	40	14447	150	0		ccX	941.00	941	0.000	44.37	21	1445	175	0
	ng1	450.00	450	0.000	0.13	9	113	16	0		ng1	510.00	510	0.000	1485.28	37	12587	92	25		ng1	941.00	941	0.000	51.52	29	1360	70	4
	ng4	450.00	450	0.000	0.04	1	91	32	1		ng4	510.00	510	0.000	1793.47	31	11031	118	477		ng4	941.00	941	0.000	33.04	15	1364	85	22
	ngX	450.00	450	0.000	0.07	1	91	32	1		ngX	510.00	510	0.000	1801.73	31	11031	118	477		ngX	941.00	941	0.000	37.92	15	1364	85	22
P-n19-k2	cc1	212.00	212	0.000	35.26	9	4557	7	0	P-n50-k7	cc1	554.00	554	0.000	531.12	25	6295	104	0	P-n60-k10	cc1	744.00	744	0.000	2253.97	145	6697	154	0
	cc4	212.00	212	0.000	18.33	5	3327	6	0		cc4	554.00	554	0.000	509.64	25	6975	136	0		cc4	744.00	744	0.000	1396.09	85	5742	134	0
	ccx	212.00	212	0.000	18.30	5	3327	6	0		ccX	554.00	554	0.000	626.48	29	7546	140	0		ccX	744.00	744	0.000	1743.00	129	6225	154	0
	ng1	212.00	212	0.000	35.12	9	4557	7	0		ng1	554.00	554	0.000	597.77	25	6744	81	29		ng1	744.00	744	0.000	650.65	51	4210	97	10
	ng4	212.00	212	0.000	38.17	5	3297	8	5		ng4	554.00	554	0.000	541.69	21	5756	93	244		ng4	744.00	744	0.000	1684.65	79	5718	135	380
	ngX	212.00	212	0.000	38.44	5	3297	8	5		ngX	554.00	554	0.000	511.23	21	4975	89	245		ngX	744.00	744	0.000	1721.64	91	5429	108	380
P-n20-k2	cc1	216.00	216	0.000	58.26	17	8350	9	0	P-n50-k8	cc1	626.02	Inf	Inf	10813.20	956	20171	436	0	P-n60-k15	cc1	968.00	968	0.000	207.93	55	2575	117	0
	cc4	216.00	216	0.000	60.30	17	8294	9	0		cc4	625.87	630	0.660	10811.30	885	18613	512	0		cc4	968.00	968	0.000	243.50	59	2668	139	0
	ccX	216.00	216	0.000	60.65	17	8294	9	0		ccX	625.94	Inf	Inf	10801.90	865	18610	535	0		ccX	968.00	968	0.000	218.64	49	2502	137	0
	ng1	216.00	216	0.000	58.82	17	8350	9	0		ng1	626.01	Inf	Inf	10800.10	876	19930	411	41		ng1	968.00	968	0.000	197.53	49	2544	118	,
	ng4	216.00	216	0.000	107.15	21	9728	9	3		ng4	626.16	Inf	Inf	10813.30	842	19204	399	116		ng4	968.00	968	0.000	237.70	53	2551	133	17
	ngX	216.00	216	0.000	100.00	19	9325	9	7		ngX	626.10	629	0.463	10813.20	813	18406	354	132		ngX	968.00	968	0.000	298.74	61	2764	144	26
P-n21-k2	cc1	211.00	211	0.000	1.80	1	2777	0	0	P-n50-k10	cc1	696.00	696	0.000	577.61	123	4210	99	0	P-n65-k10	cc1	792.00	792	0.000	1917.97	66	6600	145	0
	cc4	211.00	211	0.000	1.79	1	2777	0	0		cc4	696.00	696	0.000	775.70	157	4667	134	0		cc4	792.00	792	0.000	1183.91	53	6402	144	0
	ccx	211.00	211	0.000	1.88	1	2777	0	0		ccX	696.00	696	0.000	806.39	157	4667	134	0		ccx	792.00	792	0.000	1145.85	53	6398	145	0
	ng1	211.00	211	0.000	1.80	1	2777	0	0		ng1	696.00	696	0.000	288.48	73	3092	97	8		ng1	792.00	792	0.000	1530.51	48	5788	107	38
	ng4	211.00	211	0.000	1.85	1	2777	0	0		ng4	696.00	696	0.000	1089.45	158	4449	133	250		ng4	792.00	792	0.000	4707.00	113	9130	157	365
	ngX	211.00	211	0.000	1.82	1	2777	0	0		ngX	696.00	696	0.000	953.60	131	4336	113	245		ngX	792.00	792	0.000	2212.93	57	7097	118	364
P-n22-k2	cc1	216.00	216	0.000	28.95	5	5371	4	0	P-n51-k10	cc1	741.00	741	0.000	181.65	37	3163	109	0	P-n70-k10	cc1	819.80	Inf	Inf	10825.00	226	12625	238	0
	cc4	216.00	216	0.000	29.16	5	5372	4	0		cc4	741.00	741	0.000	282.26	55	3238	158	0		cc4	819.61	Inf	Inf	10817.40	220	12522	290	0
	ccX	216.00	216	0.000	29.12	5	5372	4	0		ccX	741.00	741	0.000	195.22	37	3183	128	0		ccX	819.62	Inf	Inf	10828.50	209	11942	271	0
	ng1	216.00	216	0.000	29.17	5	5371	4	0		ng1	741.00	741	0.000	223.46	37	2949	105	8		ng1	819.81	Inf	Inf	10859.40	206	11373	214	9
	ng4	216.00	216	0.000	31.36	5	5761	4	1		ng4	741.00	741	0.000	210.04	31	3230	129	27		ng4	820.02	Inf	Inf	10805.20	197	11793	292	30
	ng X	216.00	216	0.000	31.59	5	5761	4	1		ngX	741.00	741	0.000	233.52	41	3248	128	27		ngX	819.69	Inf	Inf	10805.00	199	12462	263	29
P-n22-k8	cc1	590.00	590	0.000	0.05	1	239	2	0	P-n55-k7	cc1	565.29	Inf	Inf	10836.70	228	23661	207	0	P-n76-k4	cc1	586.32	Inf	Inf	11699.20	2	28220	4	0
	cc4	590.00	590	0.000	0.05	1	239	46	0		cc4	565.14	Inf	Inf	10821.10	211	22065	215	0		cc4	586.35	Inf	Inf	15208.30	3	28532	5	0
	ccX	590.00	590	0.000	0.09	1	239	46	0		ccX	565.23	Inf	Inf	10811.30	224	23023	226	0		ccX	586.35	Inf	Inf	15007.80	3	28532	5	0
	ng1	590.00	590	0.000	0.06	1	239	2	0		ng1	566.00	Inf	Inf	10876.30	217	23745	165	44		ng1	586.32	Inf	Inf	11847.50	2	28220	4	0
	ng4	590.00	590	0.000	0.07	1	239	46	3		ng4	565.56	Inf	Inf	10846.20	190	21146	179	82		ng4	586.32	Inf	Inf	10930.50	2	27459	5	1
	ngX	590.00	590	0.000	0.18	1	239	46	3		ngX	565.50	Inf	Inf	10857.40	193	21736	170	65		ngX	586.35	Inf	Inf	14667.70	3	28422	5	1
P-n23-k8	cc1	529.00	529	0.000	0.06	1	243	33	0	P-n55-k8	cc1	576.00	576	0.000	1261.99	31	9049	234	0	P-n76-k5	cc1	615.63	Inf	Inf	11993.20	6	23836	17	0
	cc4	529.00	529	0.000	0.07	1	238	33	0		cc4	576.00	576	0.000	1880.59	45	9180	273	0		cc4	615.74	Inf	Inf	10809.00	7	21963	15	0
	ccX	529.00	529	0.000	0.07	1	238	33	0		ccX	576.00	576	0.000	2248.38	57	9324	281	0		ccX	615.74	Inf	Inf	10846.30	7	21963	15	0
	ng1	529.00	529	0.000	0.07	1	248	22	5		ng1	576.00	576	0.000	729.57	17	6151	174	73		ng1	615.63	Inf	Inf	11973.20	6	23946	17	2
	ng4	529.00	529	0.000	0.05	1	237	27	10		ng4	576.00	576	0.000	1715.40	35	7451	174	495		ng4	615.76	Inf	Inf	12650.90	8	24331	17	2
	ngX	529.00	529	0.000	0.15	1	237	27	10		ngX	576.00	576	0.000	1726.61	35	7451	174	495		ngX	615.76	Inf	Inf	10844.20	7	22799	15	2
P-n40-k5	cc1	458.00	458	0.000	87.97	5	3601	65	0	P-n55-k10	cc1	690.99	Inf	Inf	10805.10	948	14192	374	0										
	cc4	458.00	458	0.000	88.84	5	4366	84	0		cc4	690.22	Inf	Inf	10808.70	944	13728	419	0										
	ccx	458.00	458	0.000	89.94		4366	84	0		ccx	690.20	Inf	Inf	10813.70	907	13688	444	0										
	ng1	458.00	458	0.000	106.29	5	3518	61	16		ng1	690.41	Inf	Inf	10804.00	873	13897	358	29										
	ng4	458.00	458	0.000	203.78	7	4109	58	299		ng4	691.53	Inf	Inf	10800.20	837	14426	371	81										
	ng X	458.00	458	0.000	205.70	7	4109	58	299		ngX	691.33	Inf	Inf	10815.20	761	13486	365	98										

[^0]: *E-mail: y.n.hoogendoorn@ese.eur.nl; Phone: +31 10408 1264; Address: PO Box 1738, 3000DR Rotterdam, The Netherlands; Corresponding author

