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Abstract

For a variety of routing and scheduling problems in aviation, shipping, rail, and

road transportation, the state-of-the-art solution approach is to model the prob-

lem as a set covering type problem and to use a branch-price-and-cut algorithm to

solve it. The pricing problem typically takes the form of a Shortest Path Problem

with Resource Constraints (SPPRC). In this context, valid inequalities are known

to be ‘robust’ if adding them does not complicate the pricing problem, and ‘non-

robust’ otherwise. In this paper, we introduce ‘resource-robust’ as a new category

of valid inequalities between robust and non-robust that can still be incorporated

without changing the structure of the pricing problem, but only if the SPPRC

includes specific resources. Elementarity-robust and ng-robust are introduced as

widely applicable special cases that rely on the resources that ensure elementary

routes and ng-routes, respectively, and practical considerations are discussed. The

use of resource-robust valid inequalities is demonstrated with an application to the

Capacitated Vehicle Routing Problem. Computational experiments show that re-

placing robust valid inequalities by ng-robust valid inequalities may result in better

lower bounds, a reduction in the number of nodes in the search tree, and a decrease

in solution time.
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Note from the authors

This document is a preliminary version of the paper that includes computational results

for the Capacitated Vehicle Routing Problem. We are currently applying the ideas in

this paper to other valid inequalities and other problems, and we are performing addi-

tional numerical experiments to better showcase the potential of resource-robust valid

inequalities.

1 Introduction

Set covering and set partitioning models play an important role in operations research and

have been used to solve a broad range of vehicle routing and crew scheduling problems

(Desaulniers et al., 2005). These problems are typically solved with a branch-price-and-

cut (BPC) algorithm, in which the column generation subproblem (pricing problem) is a

Shortest Path Problem with Resource Constraints (SPPRC).

In this paper, we are interested in set covering and set partitioning type problems that

are solved with column generation and for which the pricing problem is an Elementary

SPPRC (ESPPRC), i.e., only elementary paths are allowed (Irnich and Desaulniers, 2005).

Even though the ESPPRC is the main focus, results are stated more generally for the

SPPRC where possible.

This ESPPRC is common for vehicle routing problems, where the elementarity stems

from the requirement that clients are visited only once. We refer to Toth and Vigo (2014)

for an overview of common vehicle routing variants and to Costa et al. (2019) for a recent

survey on BPC algorithms for vehicle routing.

The same methodology is used to solve a variety of problems in different areas. In

aviation, applications include aircraft routing (Barnhart et al., 1998a), aircraft sequenc-

ing (Ghoniem et al., 2015), and airline schedule recovery (Eggenberg et al., 2010). In

shipping, the ESPPRC appears as a pricing problem in, e.g., liner shipping service design

(Plum et al., 2014) and berth allocation and quay crane assignment (Vacca et al., 2013).

Railway applications include timetable design and engine scheduling (Bach et al., 2015)
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and integrated timetabling and crew scheduling (Bach et al., 2016).

In BPC algorithms, valid inequalities are used to strengthen the Linear Program-

ming (LP) relaxations and thereby reduce the number of nodes in the search tree. On

the other hand, valid inequalities may complicate the pricing problem. For example,

the well-known clique and odd-hole inequalities for the set partitioning polytope can-

not straightforwardly be used in a BPC algorithm without changing the structure of the

pricing problem dramatically (Jepsen et al., 2008).

Fukasawa et al. (2006) distinguish robust and non-robust valid inequalities based on

how the inequalities impact the pricing problem. Valid inequalities are called robust if

adding them does not change the structure of the pricing problem. This is the case when

the associated reduced costs can be projected onto the arcs of the SPPRC pricing problem.

Many valid inequalities fall into this category, including strengthened comb cuts, k-path

cuts, subtour elimination constraints, and rounded capacity cuts (Costa et al., 2019).

Adding non-robust valid inequalities complicates the pricing problem. However, the

overall performance of the BPC algorithm may improve if non-robust valid inequalities

are used with care. This is demonstrated by Jepsen et al. (2008), who introduce the

subset-row inequalities and apply them to the Vehicle Routing Problem with Time Win-

dows. Other non-robust valid inequalities are surveyed by Costa et al. (2019), including

elementary cuts, strengthened capacity cuts, clique cuts, k-cycle elimination cuts, and

strong degree cuts.

In this paper, we introduce a new category of valid inequalities that lie somewhere be-

tween robust and non-robust: resource-robust valid inequalities. Resource-robust valid

inequalities can be incorporated in the BPC algorithm without changing the structure of

the pricing problem, but only if the SPPRC includes specific resources. By formalizing

the concept of “changing the structure of the pricing problem”, we formulate conditions

under which a valid inequality is resource-robust.

Of particular interest are resource-robust valid inequalities that depend on resources

associated with a state-space relaxation. State-space relaxation is an important tool for
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speeding up the pricing problem at the cost of slightly weaker LP bounds. An example is

the ng-route relaxation introduced by Baldacci et al. (2011), which is commonly used in

state-of-the-art algorithms to relax the elementarity condition in vehicle routing problems.

State-space relaxations are typically implemented through resources in the ESPPRC.

As such, resource-robust valid inequalities that depend on these resources are widely

applicable.

To demonstrate the benefit of adding resource-robust valid inequalities, we present

an application to the Capacitated Vehicle Routing Problem (CVRP). We introduce the

ng-Capacity Cuts (ngCC) as a stronger alternative to the well-known rounded capacity

cuts. If the ng-route relaxation is used, the ngCCs can be added without changing the

structure of the pricing problem. In Section 5 we detail why this is not a completely free

lunch. However, exploiting the state-space relaxation allows for significantly reducing the

impact that these stronger valid inequalities have on the pricing problem.

In our computational experiments, we compare a simple BPC algorithm with and

without ngCCs. Our experiments show that using ngCCs improves the average per-

formance of the BPC algorithm on clustered instances in which the customers have a

relatively high demand. This proof of concept demonstrates that using resource-robust

valid inequalities can be advantageous for solving set covering and set partitioning models.

In the literature, reducing the impact of non-robust valid inequalities is studied by

Pecin et al. (2017b). The authors introduce the limited-memory Subset-Row Cuts (lm-

SRCs), based on the subset-row cuts presented by Jepsen et al. (2008). Each lmSRC

is associated with a memory, which is a subset of the nodes in the graph used for the

SPPRC. Varying the size of the cut memory allows for balancing the strength of the cut

and the impact on the pricing problem. In Pecin et al. (2017a), the cut memory of the

lmSRCs is defined for arcs instead of nodes.

In relation to the work by Pecin et al., the main idea of this paper is to define cut

memory based on the existing resources in the SPPRC. Valid inequalities for which this

is possible do not require additional resources to keep track of the cut memory. As such,

the structure of the pricing problem is not affected.
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This paper is structured as follows. In Section 2, we present the preliminaries that

we need for the remainder of the paper. In Section 3, we formally introduce resource-

robust valid inequalities and we discuss their theoretical properties. Our application to

the CVRP is detailed in Section 4, and computational results are presented in Section 5.

Finally, we present our conclusions and some directions for further research.

2 Preliminaries

In this section, we briefly summarize the models, methods, and enhancements that are

needed for the remainder of this paper. First, we formally introduce set covering and set

partitioning models. Next, we describe a basic BPC algorithm, and we explain column

generation and labeling. Finally, we discuss state-space relaxations, and in particular,

the ng-route relaxation.

2.1 Set covering and set partitioning models

Let G = (V,A) be a directed graph with vertices V = {0, 1, . . . , n + 1} and arc set

A ⊆ V × V . Each vertex i in the set V ′ = {1, 2, . . . , n} corresponds to a task that has to

be performed.

Tasks are performed by routes. A route is a path in G from 0 to n + 1, possibly

adhering to many restrictions. We say that a task is covered by a route if the route visits

the corresponding vertex. In vehicle routing, the task can be to deliver a package, and

the route can be the route of a vehicle. In aviation, a task may correspond to an incoming

aircraft and a route may correspond to a runway schedule.

Let R be the set of all feasible routes. The cost of traversing an arc (i, j) ∈ A is given

by cij ∈ R. Let cr be the cost of using route r ∈ R, which is the sum of the arc costs.

We consider the problem of selecting a set of feasible routes that cover all tasks at

minimum cost. This problem is known as the Set Covering Problem (SCP) if tasks may

be repeated, and as the Set Partitioning Problem (SPP) is every task must be performed

exactly once (Garfinkel and Nemhauser, 1969). In the remainder, we restrict ourselves
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to the SPP, as extending our results to the SCP is trivial.

For every route r ∈ R, let the binary variable xr ∈ {0, 1} indicate whether route r is

contained in the solution. Let the parameter ari be equal to one if task i ∈ V ′ is covered

by route r ∈ R, and zero otherwise. The SPP can now be expressed as follows.

min
∑
r∈R

crxr, (1a)

s.t.
∑
r∈R

arixr = 1 ∀i ∈ V ′, (1b)

xr ∈ {0, 1} ∀r ∈ R. (1c)

The Objective (1a) is to minimize the cost of the selected routes. The Constraints (1b)

ensure that all tasks are performed exactly once. Note that for the SCP, these constraints

are inequalities. Equations (1c) enforce that route selections are binary.

In this paper, we are interested in route sets R that satisfy the following two con-

ditions. First, all routes r ∈ R are elementary, i.e., no vertices are repeated. Second,

the feasibility of the routes can be modeled through resource constraints (Irnich and

Desaulniers, 2005).

Following Irnich and Desaulniers (2005), a resource vector is a vector T ∈ RR that

is defined for all vertices on a route. Each of the components of a resource vectors is

called a resource. When following the route, this vector changes according to resource

extension functions (REFs) associated with the arcs, denoted with fij : RR → RR.

Feasibility of routes with respect to resources is defined with resource windows [ei, li]

associated with the vertices, with ei, li ∈ RR. A resource vector, and thus per extension a

route, is feasible if its associated resource vector lies within the resource window (defined

component-wise) for each of the visited vertices. Note that the definition of REFs allows

the individual resources to influence each other, which makes resource constraints a very

flexible modeling tool.

In many applications, resources do not influence each other. In that case, we refer
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to the REFs of a specific resource fij : R → R, by abuse of notation. For example, a

resource may correspond to time, and the REFs ensure that time progresses. Its resource

window can correspond to the hard time window in which the specific task needs to be

executed.

2.2 Branch-price-and-cut algorithm

Barnhart et al. (1998b) introduce the term brance-and-price for branch-and-bound al-

gorithms that rely on column generation to solve the LP relaxations. BPC algorithms

additionally add valid inequalities to strengthen the LP relaxation.

In this section, we discuss column generation and labeling algorithms. Adding valid

inequalities is discussed extensively in Section 3. For details on the other components,

we refer to the survey by Costa et al. (2019).

2.2.1 Column generation

We refer to (1a)-(1c) as the integer master problem, and to its LP relaxation as the master

problem. To effectively deal with the potentially large amount of route variables, column

generation is used to solve the master problem.

In each iteration, column generation algorithms solve a restricted master problem

(RMP), which is obtained by restricting the master problem to a subset of the variables.

After solving the RMP, a pricing problem is solved to find variables that have a negative

reduced cost and can potentially improve the current solution. A selection of these

variables is added to the RMP, and the process is repeated. Once all variables have

non-negative reduced costs, the RMP solution is optimal for the master problem.

The reduced cost of xr, denoted by c̄r, can be expressed as follows. For all i ∈ V ′,

let λi ∈ R be the optimal dual values corresponding to Constraints (1b). For notational

convenience, we define λ0 = λn+1 = 0. Let the parameter brij be equal to one if arc

(i, j) ∈ A is on route r ∈ R, and zero otherwise. Define the modified arc cost of arc
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(i, j) ∈ A as c̄ij = cij − λi. It follows from LP duality that

c̄r = cr −
∑
i∈V ′

ariλ
i =

∑
(i,j)∈A

cijb
r
ij −

∑
i∈V ′

ariλ
i =

∑
(i,j)∈A

c̄ijb
r
ij. (2)

The pricing problem is to find a feasible route r ∈ R for which the sum of the

modified arc costs is negative. Alternatively, one can find the route that minimizes c̄r. If

the minimum is non-negative, no additional variables need to be added to the RMP.

The pricing problem can be solved as an Elementary Shortest Path Problem with

Resource Constraints (ESPPRC), using the modified arc costs (Irnich and Desaulniers,

2005). This follows immediately from our assumptions on the route set R: All routes are

elementary, and feasibility of the routes can be modeled through resources constraints

(Section 2.1).

2.2.2 Labeling algorithm for the ESPPRC

The ESPPRC is typically solved with a labeling algorithm. A labeling algorithm maintains

a set of labels that correspond to paths that start at vertex 0. Labels are extended over

all arcs to generate new labels, as defined by the REFs. Infeasible labels are immediately

removed, and dominance rules are used to eliminate labels that are not Pareto-optimal.

When no more labels can be generated, we have obtained a set of feasible paths from

vertex 0 to vertex n + 1. By construction, the elementary shortest path is among these

paths.

A label is defined by the tuple L = (i, c̄, T, E, p). For label L, we refer to these

components as i(L), c̄(L), T (L), E(L), and p(L), respectively. The vertex i(L) ∈ V is

the current endpoint of the path that belongs to L, c̄(L) is the reduced cost of this path

up to i(L), T (L) ∈ RR is the vector of current resource values, E(L) ⊆ V ′ is the set

of visited vertices, and p(L) is the predecessor label of label L. The visited vertices are

used to enforce elementarity of the routes, which is why we also refer to E(L) as the

elementarity resources.

We point out that in the literature, the set of visited vertices E(L) is often replaced
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by the set of unreachable vertices (Feillet et al., 2004). That is, vertices that cannot be

visited due to resource constraints are added to E(L). As this modification affects the

resource-robust valid inequalities presented in this paper, we discuss unreachable vertices

in more detail in Section 3.4.1.

Let L′ = L ⊕ j be the label that is generated by extending label L over the arc

(i(L), j) ∈ A. To enforce elementarity, we require that j /∈ E(L). The label L′ is given by

i(L′) = j, c̄(L′) = c̄(L) + c̄i(L)j, E(L′) = E(L)∪ {j}, p(L′) = L and T (L′) = fij(T (L)). If

r(L′) is not within the resource bounds [ej, lj] defined at j, then the extension is infeasible,

and L′ is discarded.

For label dominance, we consider the common case that the REFs are non-decreasing

and only upper resource windows are present (Irnich and Desaulniers, 2005). Informally,

the REFs are non-decreasing if inequalities among cost and resources are preserved by

arc extensions. When these assumptions are satisfied, we call the pricing problem of

non-decreasing type.

Definition 1 (Pricing problem of non-decreasing type). The ESPPRC is of non-decreasing

type if only upper resource windows are present and inequalities are preserved along label

extensions. That is, for given labels L and L′ with the same current vertex i(L) = i(L′),

and for a given extension over any arc (i(L), j) ∈ A, we have that c̄(L) ≤ c̄(L′),

E(L) ⊆ E(L′) and T (L) ≤ T (L′) imply c̄(L⊕ j) ≤ c̄(L′ ⊕ j) and T (L⊕ j) ≤ T (L′ ⊕ j).

For the SPPRC, the elementarity resources are not considered.

When the pricing problem is of non-decreasing type, Irnich and Desaulniers (2005)

show that the non-decreasing dominance rule can be used.

Definition 2 (Non-decreasing dominance rule). If the pricing problem is of non-decreasing

type, label L dominates label L′ if all of the following are true:

• i(L) = i(L′),

• c̄(L) ≤ c̄(L′),

• T (L) ≤ T (L′),
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• E(L) ⊆ E(L′).

and at least one of the inequalities is strictly satisfied. This dominance rule is referred to

as the non-decreasing dominance rule.

If label L′ is dominated by some label L, then label L′ cannot be part of a cost-optimal

path, and may be eliminated. Dominance checks can be performed every time a new label

is created, but this is not required. More details are given in Section 5.1.

2.3 State-space relaxations

A common method to speed up the labeling algorithm is by using a state-space relaxation.

State-space relaxations substitute the elementarity requirement of the routes by a weaker

condition. As there may be 2n different sets of visited vertices E(L), relaxing elementarity

may significantly reduce the number of non-dominated labels.

When a state-space relaxation is used, the set of feasible routes R is expanded. To

deal with non-elementary routes, we redefine ari to be the number of times that vertex

i ∈ V ′ is visited, and brij to be the number of times that arc (i, j) ∈ A is used. Note

that the solution to the integer master problem (1) does not change, as selecting non-

elementary routes would violate Constraints (1b). The additional variables do affect the

LP relaxation, which becomes weaker. State-space relaxations thus allow for balancing

the strength of the bound and the speed of the labeling algorithm.

Different state-space relaxations have been proposed in the literature. Houck et al.

(1980) introduce 2-cycle elimination, which relaxes elementarity by allowing cycles of

length three or more. Irnich and Villeneuve (2006) discuss the more general k-cycle

elimination, which allows cycles of length k+1 or more. Desaulniers et al. (2008) propose

partial elementarity, which requires elementarity for only a subset of the vertices. Baldacci

et al. (2011) introduce the ng-route relaxation, which only allows cycles that leave a

certain neighborhood. A generalization is presented by Bulhões et al. (2018), which is

discussed in Section 3.4.4.

For the ng-route relaxation, every vertex i ∈ V ′ is assigned a neighborhood Ni ⊆ V ′

such that i ∈ Ni. The set of visited vertices E(L) is replaced by the set Π(L), which is
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updated according to the rule

Π(L⊕ j) = (Π(L) ∩Nj) ∪ {j}. (3)

The feasibility and dominance rules (see Definition 2) j /∈ E(L) and E(L) ⊆ E(L′) are

replaced by j /∈ Π(L) and Π(L) ⊆ Π(L′), respectively.

It will be instructive to interpret the sets E(L) and Π(L) as different ways to retain

information about the visited vertices. The set E(L) contains all visited vertices, and

with a slight abuse of language, we may say that the label L has a perfect memory if it

remembers all previous visits through E(L).

With the set Π(L) we associate the ng-memory, which is typically imperfect. This

follows from the update rule (3): When label L is extended to L ⊕ j, the intersection

Π(L) ∩Nj tells us that L forgets all previous visits, except those in the neighborhood of

j. Next, the visit to j is added to the memory.

When using the ng-route relaxation, a label can be extended to a previously visited

vertex j, and thus create a cycle, if the previous visit to j is forgotten first. This requires

visiting a vertex k for which j /∈ Nk, i.e., visiting a neighborhood that does not contain

j. The advantage of using ng-memory Π(L) instead of perfect memory E(L) is that

the labels can be compared on their memory of the visits within the neighborhood only,

which allows more labels to be dominated. In the case that Ni = V ′ for all i ∈ V ′, then

the label never forgets a visit, and Π(L) = E(L).

3 Resource-robust valid inequalities

In practice, valid inequalities are added to the SPP (Problem (1)) to strengthen the LP

relaxation. The main difficulty in using valid inequalities is incorporating their duals into

the pricing problem, which is modeled as an SPPRC. In the literature, the distinction

is made between robust and non-robust valid inequalities (Fukasawa et al., 2006). The

duals of robust valid inequalities can be incorporated without changing the structure of

the SPPRC. Including non-robust valid inequalities, on the other hand, complicates the
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pricing problem.

In this section, we first make the notion of “complicating the pricing problem” more

concrete. With this notion, we formally introduce a new category of valid inequalities

that lie somewhere between robust and non-robust: resource-robust valid inequalities.

Informally, resource-robust valid inequalities are robust when the SPPRC includes specific

resources.

3.1 Impact of robustness on the pricing problem

In the literature, robust and non-robust valid inequalities are distinguished by their im-

pact on the pricing problem. As mentioned in the introduction, robust cuts do not change

the structure of the pricing problem, i.e. their duals can be projected onto the arcs (Fuka-

sawa et al., 2006). This property is in contrast with non-robust cuts, where one needs

additional resources or adjusted dominance rules in order to incorporate them into the

pricing problem.

To formalize the above contrast, we use Definition 3. Our definition focuses on main-

taining the non-decreasing type (see Definition 1) of the pricing problem, so that the

non-decreasing dominance rule can still be employed without modification.

Definition 3 (Robust impact on the pricing problem). Given a pricing problem of non-

decreasing type, a valid inequality has a robust impact if the duals can be included such

that the pricing problem is still of non-decreasing type, without adding any additional

resources.

It is immediately clear that the non-decreasing dominance rule is still valid when

adding a valid inequality with a robust impact. In that sense, the “structure” of the

pricing problem is preserved. It is also clear that non-robust cuts do not fall into this def-

inition; their inclusion requires modification of the dominance rule or additional resources.

In the remainder of this paper, whenever we refer to (not) “changing the structure of the

pricing problem”, we mean it in the sense of Definition 3.
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3.2 Definition of resource-robustness

Whenever a valid inequality gets added to the RMP, its duals need to be included into the

SPPRC to preserve the validity the labeling algorithm. More specifically, this amounts

to altering the cost update c̄(L) and potentially adding additional resources. For a single

valid inequality with dual σ, the cost update when extending label L over arc (i, j)

becomes

c̄(L⊕ j) = c̄(L) + c̄ij − σΥij(C(L)), (4)

where C(L) are cut-specific resources and Υij gives the factor with which σ is subtracted

from the reduced cost of the label. We call C(L) the cut memory of the valid inequality

and Υij the dual application function. Note that the definition of the cut memory, its

REFs and the dual application function uniquely define a cut in the RMP.

Our terminology concerning cut memory is inspired by the presentation of the limited-

memory Subset-Row Cuts (lmSRC) by Pecin et al. (2017b). To incorporate the duals

of the lmSRCs in the SPPRC, the authors introduce an additional resource for every

cut, which can be seen as its memory. By limiting the information that is stored in

the memory, the impact of these non-robust valid inequalities on the pricing problem is

reduced.

Robust valid inequalities do not need additional resources in the SPPRC. As such,

we say that the cut memory is empty, or that no cut memory is necessary. This implies

that the dual application function is a constant for every arc (i, j). In other words, one

can redefine the reduced arc costs c̄ij as c̄ij − σΥij. The duals are thus projected onto

the arcs, and the structure of the pricing problem is not affected.

It follows immediately from linear programming duality that dual application func-

tions define the coefficients of the associated valid inequalities. This is formalized as

Proposition 4.

Proposition 4. Consider a valid inequality for which the dual application function Υij is

known for every arc (i, j) ∈ A. Let route r ∈ R consist of the arcs (i1, j1), . . . , (iKr , jKr) ∈

A, and let C1, . . . , CKr be the associated cut memories. Then the coefficient dr of route
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variable xr in the valid inequality is given by

dr =
Kr∑
k=1

Υikjk(Ck). (5)

We are now ready to define resource-robust valid inequalities. The main idea is that

resource-robust valid inequalities have a cut memory that can be derived from existing

resources, so no additional resources are necessary. Definition 5 also includes conditions

on non-decreasingness. It is proven in Theorem 7 that these conditions ensure that

resource-robust valid inequalities do not complicate the pricing problem.

Definition 5 (Resource-robust valid inequality). A valid inequality with cut memory C

and dual application function Υij(C) is resource-robust for a vector of resources X if and

only if

1. −σΥij(C) is non-decreasing in C for all (i, j) ∈ A and for all feasible values of σ,

2. C = F (X) for some non-decreasing function F .

By Proposition 4, the first condition can equivalently be stated in primal form.

Corollary 6. Condition 1 of Definition 5 holds if and only if any of the following are

true for dr as defined in Proposition 4 and for some constant d ∈ R:

• Υij(C) is non-decreasing in C for all (i, j) ∈ A and the valid inequality is of the

form
∑

r∈R drxr ≤ d,

• Υij(C) is non-increasing in C for all (i, j) ∈ A and the valid inequality is of the

form
∑

r∈R drxr ≥ d,

• Υij(C) is constant in C for all (i, j) ∈ A and the valid inequality is of the form∑
r∈R drxr = d.

Proof. Follows immediately from Proposition 4, Definition 5, and the fact that the three

cases have dual σ ≤ 0, σ ≥ 0, and σ ∈ R, respectively.
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Note that Corollary 6 implies that a resource-robust equality is always robust. After

all, Υij(C) is constant for cut memory C. This implies Υij(C) = Υij, which allows the

dual to be projected on the arcs.

The main benefit of the newly defined resource-robust valid inequalities is stated in

the following theorem.

Theorem 7. If the pricing problem is of non-decreasing type, and if resources X are

included in the SPPRC, then valid inequalities that are resource-robust for X have a robust

impact on the pricing problem, i.e., non-decreasingness is preserved and no additional

resources are required.

Proof. For ease of exposition, we give the proof for a single valid inequality. The argument

can be repeated when multiple valid inequalities are involved.

Let C be the cut memory of label L. By definition, C = F (X), so no additional

resources are necessary to determine C. By combining the two conditions of Definition 5,

we have that−σΥij(C) = −σΥij(F (X)) is non-decreasing inX, which is a non-decreasing

resource by assumption. The original REF for the reduced cost c̄(L) is also non-decreasing

by assumption, and adding the non-decreasing term −σΥij(C) preserves this property.

We conclude that no additional resources are necessary, and the REFs remain non-

decreasing. Thus, by Defintion 3, the cuts have a robust impact on the pricing problem.

This also implies that the non-decreasing dominance rules of Definition 2 remain valid

after updating c̄(L).

Theorem 7 shows that the dual application function of a resource-robust valid in-

equality can be written in terms of the existing resources X, while maintaining non-

decreasingness. This is similar to how the dual application function of a robust valid

inequality can be projected onto the existing arc costs. In both cases, existing label

information is used, and no additional resources are necessary.

Due to our particular interest in resource-robust valid inequalities that relate to el-

ementarity and to state-space relaxations, we define the following two terms. If the

resources X equal the elementarity resources E, we call the valid inequality elementarity-

robust. If X equals the ng-resources Π, then the valid inequality is ng-robust.
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3.3 Example: SDCs and their ng-equivalent

The Strong Degree Cuts (SDCs), introduced by Contardo et al. (2014), are given by

∑
r∈R

min{1, ari}xr ≥ 1 ∀i ∈ V ′, (6)

where min{1, ari} is a binary parameter that indicates whether route r has visited task i

at least once. Contardo et al. (2014) introduced these cuts as an alternative to enforcing

elementarity in the pricing problem. That is, not including the elementarity resources

and using these cuts instead gives the same master problem lower bound and better

algorithmic performance (Contardo et al., 2014).

We will now show, as an example, that the SDCs are elementarity-robust. One way

to correctly apply the dual σi ≥ 0 is to subtract σ the first time that task i is visited (and

only the first time). To model this behavior, we introduce the cut memory Ci, which

consists of a single resource that is one if i is visited at least once, and zero otherwise.

The dual application function can then be stated as

Υjk(Ci) =


1 if Ci = 0, k = i

0 else.

(7)

This function is non-increasing in Ci, as increasing Ci from zero to one cannot in-

crease the value of the dual application function. Hence, by Corollary 6, Condition 1

of Definition 5 is satisfied. We mention that Contardo et al. (2014) define the same cut

memory and dual application function, just not explicitly.

To show that Condition 2 of Definition 5 is satisfied for the elementarity resources, we

construct a non-decreasing function Fi such that Ci = Fi(E). By definition, Ci is one if

and only if i has been visited, which results in Ci = |E ∩ {i}| ≡ Fi(E). It is immediately

clear that E ⊆ E ′ implies Fi(E) ≤ Fi(E
′), and thus Fi is non-decreasing.

As both conditions in Definition 5 are satisfied, we conclude that the SDCs are

elementarity-robust. It follows by Theorem 7 that SDCs can be added without changing

the structure of the pricing problem, given that the elementarity resources are available
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(i.e., no state-space relaxation is applied). The new dominance rules are the same as

those in Definition 2, except that the new dual application functions need to be added

to the reduced cost function c̄(L).

The example shows how resource-robustness can be used to obtain simple dominance

rules. Beside this illustration, the fact that SDCs are elementarity-robust has little prac-

tical value. It can be seen that min{1, ari} = ari for all elementary routes r and vertices

i ∈ V ′. Therefore, when elementarity is enforced in the subproblem, the Constraints (6)

are redundant and may simply be removed.

This derivation does lead to another interesting observation: by replacing the elemen-

tarity resources E in the cut memory Ci ≡ |E ∩ {i}| by ng-resources Π, we obtain new

cuts. These cuts, which we call the ngSDCs, trade the elementarity-robustness of the

SDCs for ng-robustness, at the expense of being weaker than the SDCs.

The ngSDCs state that tasks that are in ng-memory cannot be revisited. Therefore,

when the ng-route relaxation is used, the ngSDCs are redundant. However, as mentioned

at the start of this section, the SDCs are used to enforce elementarity in the subproblem

with the same master problem lower bounds. Following the exact same argument as by

Contardo et al. (2014), it can be shown that the ngSDCs can serve as an alternative to

enforcing ng-routes in the subproblem. Similarly, this leads to the same lower bound

as if the ng-route relaxation were used. Given the computational succes of the SDCs,

studying the performance of using ngSDCs is an interesting topic for future research.

Finally, we point out the importance of the sign of the inequality in Equation (6). If

the sign would be the other way around, then the dual σi ≤ 0 would be non-positive. As a

result, the dual application function should be non-decreasing (instead of non-increasing)

by Corollary 6, and the valid inequality would not be elementarity-robust.

3.4 Practical aspects of ng-robust valid inequalities

In this section, we consider some practical aspects of using ng-robust or elementarity-

robust valid inequalities that are important when implementing a BPC algorithm. As

elementarity-robust is a special case of ng-robust (see Section 2.3), this section focuses
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on the latter. Recall that ng-robust valid inequalities depend on the ng-memory, denoted

by Π(L).

3.4.1 Unreachable vertices

A common acceleration technique for BPC algorithms, introduced by Feillet et al. (2004),

is to consider unreachable vertices instead of visited vertices. We now show that ng-robust

valid inequalities may be incompatible with this acceleration technique, and we propose

a way of mitigating this disadvantage.

Applied to the ng-route state-space relaxation, using unreachable vertices amounts

to the following. Let Π(L) be the ng-memory of label L. Next, determine a set of

unreachable vertices U(L) ⊆ V ′\Π(L) that cannot be reached by any extension of L due

to the resource constraints. In vehicle routing, for example, the set U(L) may correspond

to the set of orders that cannot be added to the current vehicle without violating the

capacity constraint. The resources Π(L) are then replaced by Π∗(L) ≡ Π(L) ∪ U(L).

The fact that Π(L) is no longer a resource in the SPPRC affects the ng-robust valid

inequalities. By Definition 5, the cut memory of an ng-robust valid inequality is defined

as C = F (Π(L)) for some non-decreasing function F . As Π(L) is no longer available,

one may try to define C = F ∗(Π∗(L)) for some non-decreasing function F ∗, but there is

no guarantee that this is possible. The main complicating factor is that Π∗(L) ⊆ Π∗(L′)

does not imply Π(L) ⊆ Π(L′), which ruins non-decreasingness.

To mitigate the disadvantage of not being able to use unreachable vertices, we propose

a heuristic: use Π(L) to determine the cut memory and to evaluate the dual application

functions, and use Π∗(L) in the dominance rules. This allows too many labels to be

dominated, but if a route with negative reduced cost is found, this route is valid and

can be added to the RMP. Only when the heuristic fails to find such a route, we need to

weaken the dominance rules by using Π(L) instead of Π∗(L). Such heuristic pricing is

discussed in more detail in Section 5.1.1.
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3.4.2 Dynamic ng-route relaxation

Roberti and Mingozzi (2014) introduce the dynamic ng-route relaxation. In this case,

the initial neighborhoods Ni ⊆ V ′ for all i ∈ V ′ are dynamically expanded to make non-

elementary routes infeasible after they are generated. By excluding more non-elementary

routes, the lower bound is improved. For more details, we refer to Roberti and Mingozzi

(2014).

Expanding the neighborhoods in the dynamic ng-route relaxation results in some

computational overhead when ng-robust valid inequalities are used. First, the reduced

costs of columns in the column pool (columns that are currently not part of the RMP,

but may be added later) will have to be recalculated. This follows from the fact that

expanding the neighborhoods changes the ng-memory, which changes the cut memory,

and therefore the evaluations of the dual application functions. Second, if the coefficients

of the ng-robust valid inequalities depend on the cut memory, which is case in Sections 4.1,

these coefficients have to be updated as well.

On the other hand, ng-robust valid inequalities have the benefit that they increase

in strength when the neighborhoods are expanded, thereby improving the lower bound

of the relaxation. This result is stated formally as Proposition 8. Note that “increase in

strength” is formally an abuse of language, as technically the SPP formulation becomes

stronger instead of the cuts. However, as we only consider one formulation (the SPP),

this should be clear from context.

Proposition 8. Valid inequalities that are ng-robust weakly increase in strength when

the ng-route relaxation neighborhoods are expanded from Ni to N+
i ⊇ Ni for all i ∈ V ′.

Proof. For a given label L, let Π(L) and Π(L)+ respectively denote the ng-memory before

and after expanding the neighborhoods. It follows immediately from the definition of ng-

memory that Π(L) ⊆ Π+(L).

Corollary 6 gives three possible descriptions for the valid inequality. In the first case,

Υij(C) is non-decreasing in C, and the valid inequality is of the form
∑

r∈R drxr ≤ d,

with dr =
∑Kr

k=1 Υikjk(Ck) as in Proposition 4. By non-decreasingness, Υij(Π(L)) ≤
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Υij(Π
+(L)). Hence, the left-hand side coefficients weakly increase when the neighbor-

hoods are expanded, which makes the valid inequality weakly stronger.

The argument for the second case is analogous. The third case is trivial, as the dual

application function is constant, and the coefficients do not change when the neighbor-

hoods are expanded. This completes the proof.

3.4.3 Bidirectional labeling

Righini and Salani (2006) propose bidirectional labeling to speed up labeling algorithms

such as the one presented in Section 2.2.2. Bidirectional labeling algorithms generate

both forward paths starting in vertex 0 and backward paths starting in vertex n+ 1. By

combining forward and backward paths, feasible routes are generated.

Bidirectional labeling requires that the REFs can be inverted (redefined for the back-

ward path) in such a way that the inverted functions are also non-decreasing. Irnich

(2008) defines inverse REFs that are applicable to a wide range of problems. Baldacci

et al. (2011) define inverse ng-paths and the associated inverse ng-memory Π−1(L).

In the presence of ng-robust valid inequalities, inverting the REF of the reduced cost

function c̄(L) is impossible in general. The reduced cost function depends on the dual

application functions, which depend on the ng-memory. For the backward path, only

the inverse ng-memory is available, which does not contain any information about the

forward path. It follows that the duals cannot be applied correctly.

To achieve compatibility with bidirectional labeling, we propose to relax the ng-robust

valid inequalities as follows. For the forward path, apply the duals in the same way as

in the monodirectional labeling algorithm. For the backward path, evaluate the dual

application functions as if Ni = {i} for all i ∈ V ′, i.e., no visits are remembered, and

therefore Π−1(L) = {i(L)}. The relaxed valid inequality is robust on the backward path,

which means that the reduced cost function can be inverted. It follows from Proposition 8

that the relaxed valid inequality is indeed not stronger than the original, and is therefore

valid.

Another relaxation can be obtained when the ng-robust valid inequality is symmetric
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in the sense that the cut remains valid if Π(L) is replaced by Π−1(L) everywhere. The

ngSDCs and the valid inequalities presented in Section 4.1 have this property, for example.

In this case, the opposite relaxation is possible: the valid inequality is made robust on the

forward path by assuming that Π(L) = {i(L)} when duals are applied, while the reduced

cost on the backward path is calculated using Π−1(L).

In a bidirectional labeling algorithm, either or both relaxed valid inequalities can be

used instead of the original ng-robust valid inequality. Additionally, we note that any

positive linear combination of the two relaxations results in an ng-robust valid inequality

that is compatible with bidirectional labeling.

3.4.4 Arc-based ng-memory

Bulhões et al. (2018) present a generalization of the ng-route relaxation in which the

ng-memory is updated according to neighborhoods associated with the arcs. That is, the

vertex neighborhoods Nj for j ∈ V ′ are replaced by arc neighborhoods Nij for (i, j) ∈ A.

The update rule (3) is replaced by

Π(L⊕ j) = (Π(L) ∩Nij) ∪ {j}. (8)

Note that the ng-memory Π(L) is still a set of vertices and remains non-decreasing

in L. It is straightforward to verify that changing the update rule does not affect any

of our results. That is, ng-robust valid inequalities are compatible with the generalized

ng-route relaxation.

4 Application to the CVRP

In this section, we apply the notion of resource-robustness to the Capacitated Vehicle

Routing Problem (CVRP). In the CVRP, every route corresponds to a delivery route,

and every task corresponds to a delivery to a client. A positive demand qi > 0 is associated

with every task i ∈ V ′, and the total demand of a route cannot exceed the vehicle capacity

Q > 0. To ensure feasibility, we assume that qi ≤ Q for all i ∈ V ′. For more information
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on the CVRP and other vehicle routing problems, we refer to Toth and Vigo (2014).

We introduce the ng-Capacity Cuts (ngCCs) as a stronger alternative to the well-

known rounded capacity cuts for the CVRP. The ngCCs are analyzed theoretically, and

we present a separation algorithm to find violated inequalities. We also discuss other ng-

robust valid inequalities that can be derived in the same way. In Section 5, the ngCCs

are tested empirically with computational experiments.

In terms of constraints, the CVRP is one of the simplest problems that fit in our

framework. It can be stated as a set partitioning problem in which all routes are ele-

mentary, with the single additional constraint that routes respect the vehicle capacity.

Many vehicle routing problems include the CVRP as a special case, and our results for

the CVRP are immediately applicable to these problems.

4.1 ng-capacity cuts

Capacity cuts for the CVRP are based on the following observation. Let S ⊆ V ′ be

a subset of the tasks, with total demand
∑

i∈S qi. As each route respects the vehicle

capacity Q, at least
⌈

1
Q

∑
i∈S qi

⌉
routes are needed to execute the tasks in S. Rounding

up the fraction is allowed, as the number of routes is integral, which follows from the

integrality of the route variables.

4.1.1 Capacity cuts and strengthened capacity cuts

Two known classes of capacity cuts are the rounded Capacity Cuts (CCs, Augerat et al.

(1998)) and the Strengthened Capacity Cuts (SCCs, Baldacci et al. (2004)). Before

stating the ngCC, we discuss these valid inequalities in reverse order.

The SCCs are given by

∑
r∈R

ζSCCr (S)xr ≥

⌈
1

Q

∑
i∈S

qi

⌉
, (9)

with ζSCCr (S) a binary parameter equal to one if route r contains any task in S, and

zero otherwise. Note that the left-hand side is the number of routes that visit S, and the
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right-hand side is the lower bound discussed before.

The SCCs are known not to be robust, but can be shown to be elementarity-robust

in the same way as in the example in Section 3.3. Let the cut memory CS consist of a

single resource that is one if the set S is entered at least once, and zero otherwise. The

dual application function is given by

ΥSCC
ij (CS) =


1 if i /∈ S, j ∈ S, CS = 0

0 else.

(10)

It is straightforward to prove elementarity-robustness by verifying the conditions in Def-

inition 5.

The CCs are a robust but weaker alternative to the SCCs, given by

∑
r∈R

ζCCr (S)xr ≥

⌈
1

Q

∑
i∈S

qi

⌉
, (11)

with ζCCr (S) the number of times that route r enters the set S. The associated dual

application function is given by

ΥCC
ij =


1 if i /∈ S, j ∈ S

0 else.

(12)

Note that the CCs are robust, and therefore the cut memory CS = ∅ is empty. As

mentioned in Section 3.2, the dual can be projected onto the arcs.

It is important to note that the CCs over-estimate the left-hand side of (9) by double-

counting the entries into the set S. For the SCCs, only the first entry into the set S

increases the value of ζSCCr . For the CCs, every time an arc (i, j) ∈ A is used with i /∈ S

and j ∈ S, the value of ζCCr is increased. As a result, routes that enter and leave S more

than once are counted double. This double-counting results in a valid inequality that is

weaker, but does not require any cut memory, because it is not necessary to remember

whether S has been visited before.

Naturally, as the CCs and SCCs are different kinds of cuts, separation also differs
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between them. We discuss this in more detail in Section 4.3.

4.1.2 ng-capacity cuts

We are now ready to introduce the ngCCs. The ngCCs have a similar structure to the

CCs and the SCCs, and fall in between the two in strength and in robustness. Where

the CCs are robust and the SCCs are elementarity-robust, the ngCCs are ng-robust.

The ngCCs are defined as

∑
r∈R

ζngr (S)xr ≥

⌈
1

Q

∑
i∈S

qi

⌉
, (13)

where ζngr (S) equals the number of times route r travels into set S for the first time,

according to the ng-memory. That is, whenever route r travels into S, it is counted if

and only if all nodes in set S are not contained in the current ng-memory Π(L).

Figure 1 shows an example for a route r = (0, 1, 2, 3, 4, 5, n + 1) and a subset S =

{1, 3, 5}. Assume that the neighborhoods are given by N1 = N3 = N4 = N5 = {1, 3, 4, 5}

and N2 = {2, 3}. In this example, route r travels into S three times in total, which

implies ζCCr (S) = 3. As r travels into S at least once, we have ζSCCr (S) = 1. According

to ng-memory, the route enters S two times : first when traveling from 0 to 1 (as the

ng-memory for this extension is empty), and second when traveling from 2 to 3 (the visit

to 1 is not remembered because 1 /∈ N2). Traveling from 4 to 5, the ng-memory equals

{3, 4}, so this entry is not counted. It follows that ζngr (S) = 2.

Figure 1: Example instance for the ngCCs.

For the ngCCs, whether the entries into the set S are double-counted depends on

the current state of the ng-memory. It follows that ζSCCr (S) ≤ ζngr (S) ≤ ζCCr (S), which
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implies that the ng-capacity cuts are valid for the CVRP. Note that if the ng-memory is

perfect (Ni = V ′ for all i ∈ V ′), then double-counting is eliminated and the ngCCs are

equivalent to the SCCs. On the other hand, if Ni = {i} for all i ∈ V ′, then every entry

is double-counted, which makes the ngCCs equivalent to the CCs.

To incorporate the ngCCs into the pricing problem, we use the cut memory Cng
S ,

which equals one if S has been visited according to ng-memory and zero otherwise. That

is, Cng
S ≡ min{1, |S ∩ Π(L)|}. The dual application function is given by

Υng
ij (Cng

S ) =


1 if i /∈ S, j ∈ S, Cng

S = 0

0 else.

(14)

We verify ng-robustness by checking the two conditions in Definition 5. First, we

note that Υng
ij (Cng

S ) is non-increasing in the cut memory Cng
S . Second, the cut memory

Cng
S = min{1, |S ∩ Π(L)|} is non-decreasing in the ng-memory Π(L). It follows that the

ngCCs are ng-robust.

By Theorem 7 we have that the duals of the ngCCs can be incorporated without

changing the structure of the pricing problem. After adding the dual application functions

to c̄(L), the non-decreasing dominance rules can be used.

4.2 Effect on the lower bound

Next, we present an example to demonstrate the size of the effect that ngCCs can have

on the lower bound. In this example, using only CCs results in an optimality gap of 50%.

By including ngCCs, the optimality gap is reduced to 0% and the optimal solution is

found at the root node.

Our five-task CVRP instance on a complete graph is presented in Figure 2a, with

vertices 0 and n + 1 at the same location. The cost for traversing arcs (0, 2), (0, 3), and

(0, 4) is equal to one, and all other arcs have cost zero. The demand for each task is

displayed next to the task vertex, and vehicle capacity Q is set to 29. The neighborhoods

are defined as N1 = N2 = N3 = N4 = {1, 2, 3, 4} and N5 = {5}. Finally, the colored

arrows show an optimal solution to the master problem when all CCs are included. Each
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colored tour corresponds to a route variable with value xr = 0.5. It can be seen that the

corresponding objective value is equal to 0.5.

(a) RMP solution that satisfies all CCs. (b) RMP solution that satisfies all ngCCs.

Figure 2: Example instance where ngCCs increase the lower bound.

In this fractional solution, the ngCC corresponding to S = {1, 2, 3} is violated: The

number of vehicles needed is
⌈

30
29

⌉
= 2, whereas only 1.5 vehicles currently serve these

tasks. The CC corresponding to the same set counts both entries of the blue route

(0 → 1 → 4 → 3 → n + 1) into S. For the ngCC, the second entry is not counted, as

1 ∈ N4. Adding the violated ngCC to the master problem results in an integer optimal

solution with objective value 1, shown in Figure 2b.

We hypothesize that ngCCs are most effective for instances with high demand clusters

of tasks, as is the case for {1, 2, 3, 4} in the example. If capacity is restrictive, this may lead

to fractional routes that enter subsets of the cluster multiple times. As tasks in clusters

are typically in each others neighborhoods, the ngCCs can prevent double counting in

this case, which leads to stronger cuts and better bounds.

4.3 Separation algorithm

We present a separation algorithm to find violated ngCCs for the current solution to the

master problem. That is, for current (fractional) values of the xr variables, the separation

algorithm returns a set of tasks S ⊆ V ′ for which Equation (13) does not hold.

Instead of designing a specialized separation scheme, we propose to construct a sepa-

ration network such that violated ngCCs in the original network correspond to violated
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CCs in the separation network. Existing separation algorithms for CCs, such as those

presented by Lysgaard et al. (2004), can then be leveraged to separate ngCCs.

Definition 9 (κ-scaled separation network). For a given κ ∈ N, the κ-scaled separation

network is constructed from the original network as follows.

1. Scale down all non-zero route variables xr > 0 to obtain

x̄r =
xr

min
{
κ,
⌈

#(r)
2

⌉} ,
with #(r) the number of tasks that route r visits (double counting multiple visits).

2. Project the x̄r variables onto the arcs to obtain arc flows.

3. Introduce zero-demand dummy tasks following Algorithm 1 in Appendix A to restore

the in- and outflow of each task to one.

Proposition 10. For a given κ ∈ N, if a violated ngCC in the original network corre-

sponds to a subset S ⊆ V ′ that is entered at most κ times by every non-zero route r, then

the CC corresponding to S in the separation network is violated as well.

Proof. See Appendix B.

Corollary 11. For κ = maxr∈R|xr>0

⌈
#(r)

2

⌉
, all violated ngCCs in the original network

correspond to violated CCs in the separation network.

Proof. Follows immediately from Proposition 10 and the fact that every route can enter

subset S at most
⌈

#(r)
2

⌉
times.

By Corollary 11, all violated ngCCs can be found by separating CCs on a separation

network with sufficiently high κ. In the reverse direction, violated CCs on the separation

network do not necessarily correspond to violated ngCCs. For performance reasons, we

therefore propose to start with a separation network for κ = 1, and only increment the

parameter when no more violated ngCCs can be found.
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4.4 Application to other valid inequalities

The derivation in Section 4.1 and the separation algorithm in Section 4.3 are not specific

to the ngCCs, and can be used to derive ng-robust variants of other cuts in the literature

as well.

For example, consider the k-path cuts, which are given by

∑
r∈R

∑
(i,j)∈A

brijxr ≥ k(S), (15)

with S ⊆ V ′ a subset of tasks and with k(S) ≥ 1 a lower bound on the number of routes

that enter S in any feasible solution. Recall that brij is the number of times that arc (i, j)

is used in route r. Note that CCs are specific k-path cuts with k(S) =
⌈

1
Q

∑
i∈S qi

⌉
.

In the same way that we derive ngCCs from the CCs in Section 4.1, one can immedi-

ately derive ng-robust k-path cuts from the k-path cuts. As special cases, this includes

ng-robust subtour elimination constraints (Dantzig et al., 1954) and ng-robust 2-path cuts

(Kohl et al., 1999). It is straightforward to see that the same is true for the generalized

k-path cuts presented by Desaulniers et al. (2008). For all these ng-robust valid inequal-

ities, κ-scaled separation networks as introduced in Section 4.3 allow existing separation

algorithms to be used.

The ngSDCs presented in Section 3.3 provide another example. These cuts can serve

as an alternative to enforcing ng-routes in the subproblem, similarly to how the SDCs

can enforce elementarity in the subproblem.

5 Computational experiments

In this section, we empirically compare the effects of adding CCs or ngCCs in a BPC al-

gorithm for the CVRP. The goal of these experiments is to study the performance of using

ng-robust cuts –and, more generally, resource-robust cuts– in a relatively simple setting.

A straightforward BPC algorithm is implemented in C++, following the descriptions in

Sections 2.2 and 2.3, details of which are discussed in Section 5.1.
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All experiments are run on an Intel Xeon W-2123 3.6GHz processor and 16GB of

RAM. The algorithm is run on a single thread, and a time limit of three hours per

instance is imposed. CPLEX version 12.7.1 is used to solve the RMP.

5.1 Implementation BPC algorithm

The basic steps of the BPC algorithm are implemented as described in Sections 2.2 and

2.3. To model the CVRP, we use current load q(L) as an additional resource. Its REF is

defined as q(L⊕ j) = q(L) + qj with upper resource window Q. That is, if q(L⊕ j) > Q,

the extension of L to j is infeasible. For notational convenience, we denote q0 = qn+1 = 0.

Following Pecin (2014), dominance checks are only performed between labels with the

same current load.

The ng-route relaxation is implemented as described in Section 2.3. Neighborhoods of

size 10 are constructed by selecting the nearest clients. For valid inequalities, either CCs

or ngCCs are added, with dual application functions defined in (12) and (14), respectively.

The duals of the CCs are projected onto the arcs, as discussed in Section 3.2. The ngCCs

are included by adding the dual application functions to the reduced cost of the label, as

discussed in Section 4.1.2.

5.1.1 Heuristic pricing

To quickly discover negative reduced cost columns, we use heuristic pricing as described

by Desaulniers et al. (2008), among others. See Costa et al. (2019) for a survey on this

topic. The original pricing problem is simplified through aggressive dominance and arc

elimination. The former ignores some of the resources in the dominance check, and the

latter ignores unpromising arcs based on their reduced costs.

If a route with negative reduced costs is identified, it can be added to the RMP. When

no more routes can be found, the labeling algorithm is applied again with more resources

and more arcs are taken into account. Eventually, the full problem —with all arcs and

resources— is solved, which guarantees that all negative reduced cost columns are found.

As discussed in Section 3.4.1, the unreachable vertices acceleration technique is in-
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compatible with ng-robust valid inequalities when the pricing problem is solved exactly,

but may be included heuristically. Therefore, we employ this technique when either no

ngCCs are present in the model, or heuristic pricing is used as discussed above. The set

of unreachable vertices is taken to be the set of tasks that cannot be added to the current

route without violating the capacity constraint.

5.1.2 Separation of valid inequalities

As discussed in Section 4.3, we separate ngCCs by separating CCs on κ-scaled separation

networks. The CCs are separated with the CVRPSEP package by Lysgaard (2003), which

is described by Lysgaard et al. (2004). We modify the code to prevent CVRPSEP from

terminating early if one of the four heuristics is successful. This is done because not

all violated CCs in the separation network correspond to violated ngCCs in the original

network. In preliminary experiments, no cuts have been found for κ > 4, so κ = 4 is set

as the maximum value.

For each potential cut defined by subset S ⊆ V ′, it is determined whether the cut is

added as an ngCC or as a weaker CC. Even though ngCCs do not change the structure

of the pricing problem, we find that it is not worth the effort to evaluate the more

complicated dual application function if the strength of the ngCC and the CC is similar.

Let vng(S) and vCC(S) be the violation of the ngCC and the CC corresponding to

subset S ⊆ V ′, respectively. If vng(S) ≥ max{0.2, vCC(S) + 0.1}, then the cut is added

as an ngCC. Else if vCC(S) ≥ 0.1, then the cut is added as a CC. Otherwise, the violated

valid inequality is ignored.

Next to the above heuristic separation procedure, we also experiment with exact sep-

aration of CCs and ngCC. To this end, the separation problems are formulated as MIPs

and solved by CPLEX. These MIPs (see Appendix C for details) are able to find the

single most violated CC or ngCC in the current solution. Therefore, it is impractical to

separate all cuts using this exact separation. Instead, we only execute the exact separa-

tion whenever the heuristic one fails, in order to find any additional cuts the heuristic

separation might have missed.
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5.1.3 Branching rule

As is common in the literature (e.g., see Desrochers et al. (1992)), we branch on the arc

flows zij ∈ {0, 1}, which are defined as zij =
∑

r∈R b
r
ijxr for all (i, j) ∈ A. Recall that brij

is the number of times that arc (i, j) is used in route r.

We use approximate strong branching, similarly to Ropke (2012) and Pecin et al.

(2017b). For a given arc (i, j) ∈ A, the score of a potential branch is given by ∆ =

0.75 min{∆+,∆−}+ 0.25 max{∆+,∆−}, where ∆+ and ∆− are the objective values after

forcing the arc flow zij to one or zero, respectively. The arc to branch on is chosen as

follows:

1. Select the 30 arcs for which |zij − 1
2
| is the smallest.

2. For these arcs, calculate the ∆-score without generating any additional routes.

Select the five arcs with the highest score.

3. For these arcs, calculate the ∆-score while generating additional routes with heuris-

tic pricing only. Select the arc with the highest score to branch on.

5.2 Test instances

We test the BPC algorithm on the A, B and P benchmark instance classes by Augerat

(1995). The instance classes mainly differ in where tasks are located in the Euclidean

plane: for the A instances the placement is uniform, for the B instances it is clustered

and for the P instances the placements are derived from real-life instances.

As hypothesized in Section 4.2, we suspect the ngCCs to work best in clustered

instances where capacity is restrictive. Therefore, we find it interesting to also test the

performance of the algorithm on the Augerat B instances (for which the task locations

are clustered) with the demand doubled (or set to the vehicle capacity, if exceeding). We

call these the B2 instances. The restriction on the number of vehicles is ignored for all

instances.
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5.3 Separation strategies

To compare the performance of using CCs to using ngCCs, the BPC algorithm is tested

for six different separation strategies. Three strategies only use CCs, while the others

allow for ngCCs. An overview is presented in Table 1.

Cut type Max κ Separation type

cc1 CC 1 Heuristic

cc4 CC 4 Heuristic

ccX CC 4 Exact

ng1 ngCC 1 Heuristic

ng4 ngCC 4 Heuristic

ngX ngCC 4 Exact

Table 1: Overview of separation strategies.

The cut type in Table 1 indicates whether CCs or ngCCs are used. The next column

states the maximum value of κ that is used for the κ-scaled separation networks, as

discussed in Section 4.3. If maxκ = 1, then only CCs are separated. Note that for the

ngCC separation methods, these CCs may be added as ngCCs. If maxκ = 4, then the

value of κ may be increased up to four to allow more ngCCs to be found. The final

column indicates whether valid inequalities are separated with the heuristic or with the

exact implementation, as discussed in Section 5.1.2. Note that the exact separation is

executed only when the heuristic separation (with Max κ = 4) fails to find sufficiently

violated cuts.

5.4 Computational results

In this section, we analyze the performance of the BPC algorithm on the instances dis-

cussed in Section 5.2 for the six strategies introduced in Section 5.3. We first compare

CCs and ngCCs on how well they contribute to closing the integrality gap for the consid-

ered instances. Next, we analyze the time spent in different parts of the algorithm. For
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detailed tables with numerical results, we refer to Appendix D.

5.4.1 Relevant gap closing

To evaluate how the different strategies contribute to closing the optimality gap, we

introduce the relevant gap metric. For a given instance, the relevant gap of a given

separation strategy s at time t is given by

relgaps,t = min

{
z∗ − LBs,t

z∗ − LBroot

, 1

}
,

where LBs,t is the lower bound of strategy s at time t, LBroot is the lowest lower bound

obtained by any of the strategies at the root node (immediately before branching), and

z∗ is the optimal objective value of the instance (or the best-known lower bound rounded

up to the nearest integer, if no strategy reached optimality).

When a branch-and-bound process starts, the lower bound LBs,t is set to 0 and stays

that way until the root node is solved. During that period, LBs,t is smaller than LBroot

which means the relevant gap is fixed at one. Only when the root node with cuts is

solved does LBs,t ≥ LBroot hold, which means the relevant gap can become lower than

one. Given enough time, the gap will decrease to zero, at which point the relevant gap

is closed and the problem is solved to optimality. As the relevant gap ranges between

zero and one, we can average over all instances and compare their performance with each

other. By defining LBroot as-is, we focus only on closing the gap after solving the root

node.

Figure 3 presents the average relative gaps over time for all tested instances classes,

and for all six separation strategies, based on the data in Appendix D. Note that the

graph stops at 10800 seconds, which corresponds to the time limit of 3 hours.

Our first observation is that for the A, B, and P instances, the average relevant gap

over time progresses very similarly for the six strategies. This indicates that the additional

strength of the ngCCs compensates for the overhead of evaluating more complicated dual

application functions, and for the fact that the unreachable vertices acceleration technique

cannot always be used (see Section 3.4.1). Although the ngCCs do not seem to improve
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(a) Augerat B instances. (b) Augerat B2 instances.

(c) Augerat A instances. (d) Augerat P instances.

Figure 3: Average relevant gap over time (logarithmic scale).

performance, they also do not hinder the algorithm for these instances.

For the B2 instances, on the other hand, the strategies that use ngCCs clearly demon-

strate better performance. On average, ng1 outperforms the strategies cc1, cc4, and ccX

for most of the runtime. Recall that for ng1 only CCs are separated, which are potentially

added as ngCCs. The strategies ng4 and ngX allow for more ngCCs to be found, which

improves performance further. The average relevant gap is closed up to 19 percentage

points further at the same time, or looking at it differently, the same average relevant

gap is obtained up to 9309 seconds earlier.

The difference in average relative gap for the strategies in Figure 3b decreases over

time. This is a consequence of the typical behavior where the last part of the gap is the

most difficult to close. For the relevant gaps close to zero, the ng strategies still obtain
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the same value significantly faster than the cc strategies. If route enumeration is used to

close the remainder of the gap (e.g., see Pessoa et al. (2009) and Baldacci et al. (2011)),

this process can be started significantly earlier.

It is also of interest to see how the relevant gap decreases per node of the branching

tree, rather than per time unit. This more clearly demonstrates the effect of the valid

inequalities, rather than how time-efficient the current implementation is. Figure 4 shows

the average relevant gap per solved node for each of the four instance classes.

(a) Augerat B instances. (b) Augerat B2 instances.

(c) Augerat A instances. (d) Augerat P instances.

Figure 4: Average relevant gap per node

We observe from Figure 4 that using ngCCs results in smaller relevant gaps for a

given number of nodes in the search tree. This effect is especially pronounced at the root

node, where ng4 and ngX close the relevant gap up to 23 percentage points further than

the other strategies. Again, the clearest advantage is observed for the B2 instances.
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It is noteworthy that ng1 performs similarly to the cc separation strategies, showing

that naive separation of ngCCs simply does not yield enough cuts. On the other hand,

there is barely any difference between ngX and ng4, showing that the κ-scaled separation

networks are able to capture the most relevant valid inequalities, and that exact separation

is unnecessary.

Comparing Figures 3 and 4, we see that the performance of the ng strategies is better

when measured per node of the search tree than per unit of time. The main reason is that

solving a single node with the ng strategies is more expensive than with the cc strategies,

even though the structure of the pricing problem is the same. This is an important

observation that is explored further in Section 5.4.2.

In all four instance classes –especially the A and P instances–, the differences between

the CCs and ngCCs become less prevalent as the number of nodes increases. In part, this

is again due to the last part of the gap being the most difficult to close. Furthermore,

the ng strategies typically solve less nodes within the three hour time limit, and therefore

the bound stops improving after a certain number of nodes, earlier than is the case for

the cc strategies.

5.4.2 Time spent per node

Table 2 reports the amount of time spent on the different components of the BPC algo-

rithm, on average per node. These numbers are shown for each separation strategy and

for each instance class. The columns LP, PP, and SEP represent the average time per

node spent on solving LPs, solving pricing problems (heuristically and/or exactly), and

executing the cut separation, respectively. The BRANCH column presents the average

time needed for approximate strong branching (see Section 5.1.3), and TOTAL gives the

average total time spent per node.

The PP column is further detailed by columns PPi for i ∈ {0, 1, 2, 3, 4}. PP0 up to

PP3 represent the time spent solving different levels of heuristic pricing, each level taking

more resources or arcs back into account (see Section 5.1.1). PP4 corresponds to time

spent solving the exact pricing problem.

35



As both LPs and pricing problems are solved during branching, the columns LP,

PP, SEP and BRANCH do not add up to TOTAL. In fact, minus some computational

overhead, LP, PP and SEP add up to TOTAL approximately.

We see from Table 2 that the total time per node for the ng1 strategy is similar to

that of the cc strategies, while the ng4 and ngX strategies require more time. This agrees

with the earlier observation in Section 5.4.1 that only separating CCs and adding them

as ngCCs does not yield much benefit.

The additional time spent on pricing for ng4 and ngX can in part be explained by

the fact that more cuts are found, and therefore the pricing problems are called more

often. To isolate this effect, Table 3 presents the average time spent per pricing problem,

instead of per node.

It can be seen from Table 3 that the time taken by heuristic pricing is not significantly

different between separation strategies, while exact pricing is more expensive for the ng

strategies. This may be because the unreachable vertices acceleration technique cannot

be used when solving the exact pricing problem for the ng strategies, as discussed in

Section 3.4.1.

Moving back to Table 2, we see that for the A and B instances, separation strategies

ng4 and ngX require more time to determine which arc to branch on. Recall that our

approximate strong branching rule only solves heuristic pricing problems, which have

a similar solution time over all strategies. As such, we attribute this difference to the

increase in LP solution time due to the larger number of valid inequalities that are added

by ng4 and ngX.

The SEP column demonstrates that the total time spent on separating valid inequal-

ities is small compared to the total time per node. It is clear that increasing κ up to

four (cc4 and ng4) but the overall time increase is very small. This supports the claim

that κ-scaled separation networks provide a practically efficient way of separating valid

inequalities. It is also clear that exact separation (ccX and ngX) is much more expensive

than heuristic separation, especially for the B2 instances.

We would like to point out that while the ng strategies require more time per node,
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Class Sep. PP0 PP1 PP2 PP3 PP4

A cc1 0.006 0.055 0.256 1.009 2.768
A cc4 0.008 0.055 0.234 0.936 2.910
A ccX 0.007 0.055 0.236 0.938 2.860
A ng1 0.006 0.056 0.257 1.017 4.189
A ng4 0.007 0.056 0.239 0.948 4.492
A ngX 0.007 0.055 0.234 0.887 4.155

B cc1 0.004 0.044 0.279 1.416 4.065
B cc4 0.005 0.041 0.249 1.354 4.346
B ccX 0.005 0.042 0.252 1.274 4.185
B ng1 0.004 0.040 0.247 1.194 6.299
B ng4 0.005 0.043 0.261 1.422 7.292
B ngX 0.005 0.044 0.262 1.328 6.994

B2 cc1 0.001 0.008 0.034 0.088 0.109
B2 cc4 0.001 0.009 0.035 0.089 0.113
B2 ccX 0.001 0.009 0.035 0.087 0.120
B2 ng1 0.001 0.009 0.039 0.102 0.214
B2 ng4 0.001 0.011 0.045 0.115 0.254
B2 ngX 0.001 0.011 0.045 0.116 0.249

P cc1 0.011 0.057 0.247 0.878 2.518
P cc4 0.013 0.059 0.258 0.890 2.699
P ccX 0.013 0.060 0.261 0.902 2.656
P ng1 0.011 0.059 0.261 0.935 3.325
P ng4 0.013 0.061 0.259 0.883 3.623
P ngX 0.014 0.065 0.283 0.938 3.479

Table 3: Average time per pricing problem (in seconds).

Figure 3 shows that the additional work is worth the effort. Due to the stronger bounds,

the total time for the BPC algorithm does not increase for the A, B, and P instances,

and even decreases for the B2 instances. We also note that the CVRP pricing problem

is relatively simple, and for problems with a more complicated pricing problem, the

advantage of having stronger bounds may be more pronounced.

The findings in this section also provide opportunities to improve performance fur-

ther. To reduce the amount of time spent on exact pricing, more sophisticated heuristics

pricing techniques may be used. For example, tabu search (Desaulniers et al., 2008)

may be adapted to take the new dual application functions into account. By having

better heuristics, the exact pricing problem, which is relatively slow for the ng4 and ngX
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strategies, can be avoided more often.

6 Conclusion

In this paper, we consider valid inequalities for set covering type problems that are solved

by branch-price-and-cut, and for which the pricing problem is a SPPRC. This is a broad

class of problems with routing and scheduling applications in aviation, shipping, rail, and

road transportation.

We introduce resource-robust as a new category of valid inequalities between robust

and non-robust. Theoretical properties are considered, and it is proven that resource-

robust valid inequalities can be incorporated in the BPC algorithm without changing the

structure of the pricing problem, under the condition that the resources that the cut is

robust for are already included in the SPPRC.

Elementarity-robust and ng-robust are identified as two widely applicable special cases

of resource-robust valid inequalities. These valid inequlaities are based on the resources

that enforce routes to be elementary or ng-routes, respectively, which are common in

practice.

We discuss important practical aspects of using elementarity-robust and ng-robust

valid inequalities in combination with common acceleration techniques such as unreach-

able vertices, dynamic ng-route relaxation, bidirectional labeling, and arc-based ng-

memory. The latter three are discussed theoretically, while the first is included in our

computational experiments. This choice was made to isolate the effect of the ngCCs

without any additional improvements.

An application to the CVRP is provided, for which we derive an ng-robust variant

of the well-known rounded capacity cuts. We show with an example that adding these

ngCCs instead of the CCs can reduce the optimality gap from 50% to 0%. A separation

algorithm for the ngCCs is presented based on the newly introduced κ-scaled separation

networks, which allows leveraging separation algorithms for the CCs to separate the

ngCCs.
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We point out that ng-robust variants of other cuts may be derived in the same way as

well. This results in ng-robust (generalized) k-path cuts, subtour elimination constraints,

and 2-path cuts. We also mention how to obtain ng-robust strong degree cuts, and how

these can be used to enforce ng-routes in the master problem.

To explore the potential benefit of using resource-robust valid inequalities, we per-

form computational experiments for a relatively simple set partitioning problem with a

relatively straightforward BPC algorithm. In particular, we compare CCs and ngCCs on

how they affect the performance of the BPC algorithm for solving the CVRP.

In the computational experiments, we observe that ngCCs increase the solution time

per node of the search tree, but this is compensated by the stronger bounds that are

obtained. For the A, B, and P, instances, the performance for CCs and ngCCs is similar.

For the clustered high-demand B2 instances, there is a clear advantage in using ng-robust

valid inequalities. We find that especially exact pricing is expensive for ngCCs. Therefore,

we note that performance may be improved further by using more sophisticated heuristic

pricing techniques that incorporate the new dual application functions, which could be a

direction for further research.

We conclude that resource-robust valid inequalities are widely applicable and compu-

tationally promising, and there are several interesting avenues for further research. To

isolate the effect of the valid inequalities, the computational experiments in this paper

consider a relatively simple problem and a straightforward implementation. However, it

will be very interesting to see the interaction of resource-robust valid inequalities with

other valid inequalities and acceleration techniques in state-of-the-art implementations

for different set covering type problems. Another direction would be to derive resource-

robust analogues of known valid inequalities, or even find completely new ones.
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A Restoring in- and outflow of a task

Figure 5: A method to restore the in- and outflow of a task to one, for given α ∈ (0, 1).

Algorithm 1 Algorithm to restore the in- and outflow all tasks to one

1: for all tasks i ∈ V ′ do
2: Calculate reduced missing in- and outflow α ≡ 1−

∑
r∈R a

r
i x̄r

3: if α > 0 then
4: Introduce dummy nodes i′ and i′′ with qi′ = qi′′ = 0, with flow on arcs (i, i′),

(i, i′′), (i′, i) and (i′′, i) equal to α
2

and flow on arcs (i′, i′′) and (i′′, i′) equal to 1 − α
2

(see Figure 5).
5: end if
6: end for

B Proof Proposition 10

Proposition 10. For a given κ ∈ N, if a violated ngCC in the original network corre-

sponds to a subset S ⊆ V ′ that is entered at most κ times by every non-zero route r, then

the CC corresponding to S in the separation network is violated as well.

Proof. Let S be a subset of tasks corresponding to a violated ngCC in the original net-

work. Furthermore, it is entered at most κ times by every non-zero route r. This gives us

that ζCCr (S) ≤ κ for all r with xr > 0. As every route can enter a subset at most
⌈

#(r)
2

⌉
times, we have

ζCCr (S) ≤ min

{
κ,

⌈
#(r)

2

⌉}
≡ κr

for all r such that xr > 0. Multiplying ζngr (S) ≥ ζSCCr (S) = min{ζCCr (S), 1} with κr, we

I



get the following string of inequalities:

κrζ
ng
r (S) ≥ min{κrζCCr (S), κr} ≥ ζCCr (S),

where the last inequality follows from the fact that κr ≥ 1 and ζCCr (S) ≥ 0 (so ζCCr (S) ≤

κrζ
CC
r (S)).

As the ngCC in the original network for subset S is violated, we have

∑
r:xr>0

ζngr (S)xr <

⌈
1

Q

∑
i∈S

qi

⌉
.

Combining this with the previously proven inequality, we get

⌈
1

Q

∑
i∈S

qi

⌉
>
∑
r:xr>0

ζngr (S)xr

=
∑
r:xr>0

κrζ
ng
r (S)x̄r

≥
∑
r:xr>0

ζCCr (S)x̄r.

Note that the right-hand-side corresponds to a CC in the κ-scaled network (when aug-

menting S with its dummy nodes). So, this CC corresponding to S is violated in the

κ-scaled network as well.

C Exact separation of ngCCs and CCs

For the exact separation of CCs and ngCCs, we use the integer programs (16) and (17)

respectively. The programs find the most violated CC or ngCC by minimizing the left-

hand-side of the valid inequality (13) and (11), while keeping the right-hand-side constant.

To separate a CC or ngCC exactly, we execute the program a number of times, each

for a different value of θ, which represents
⌈

1
Q

∑
i∈T qi

⌉
, the right-hand-side of the cut.

As θ is integer, we execute the program for θ ∈
{

1, 2, . . . ,
⌈

1
Q

∑
i∈V qi

⌉}
. If in any of

the stages a violated cut is found, we return that cut and terminate the separation.

II



Otherwise, no violated cuts are present in the current solution.

min
∑

(i,j)∈A

xijzij, (16a)

s.t. zij ≥ yj − yi ∀(i, j) ∈ A, (16b)

(θ − 1)Q+ 1 ≤
∑
i∈V

qiyi , (16c)

θQ ≥
∑
i∈V

qiyi , (16d)

y0 = yn+1 = 0 , (16e)

zij, yi ∈ {0, 1} ∀(i, j) ∈ A. (16f)

In (16), xij, (i, j) ∈ A represents the arc flows of the current (not necessarily integer)

solution to the RMP (xr)r∈R, with xij =
∑

r∈R b
r
ijxr. The binary decision variables yi

equals 1 if task i is in the subset S of the CC and equals 0 otherwise. The binary decision

variable zij equals 1 if arc (i, j) enters this set S and 0 otherwise.

Equation (16a) is the objective: it counts the number of vehicles entering set S.

Equation (16b) makes sure that zij equals 1 if yj = 1 and yi = 0. The constraint is inactive

otherwise. Next, constraints (16c) and (16d) make sure that θ equals
⌈

1
Q

∑
i∈S qi

⌉
, where

we add 1 to the left-hand-side of (16c) as we assume all qi to be integer. Constraint (16e)

ensures that the depots 0 and n+ 1 cannot be in set S. Finally, constraint (16f) restricts

the variables to be binary.

III



min
∑
r∈R

#(r)∑
k=1

xrzrk, (17a)

s.t. zrk +
∑

i∈Πr(k−1)

yi ≥ yrk ∀r ∈ R, k ∈ {1, . . . ,#(r)} (17b)

(θ − 1)Q+ 1 ≤
∑
i∈V

qiyi , (17c)

θQ ≥
∑
i∈V

qiyi , (17d)

y0 = yn+1 = 0 , (17e)

zrk, yi ∈ {0, 1} ∀i ∈ V, r ∈ R, k ∈ {1, . . . ,#(r)} (17f)

In (17), xr represents the current (not necessarily integer) solution to the RMP. Again,

the binary decision variable yi equals 1 if task i is in the subset S of the ngCC and 0

otherwise. The binary variable zrk equals 1 if route r travels into S as the kth task on

the route for the first time, according to its ng-memory. Here, k ∈ {1, . . . ,#(r)}, where

#(r) is the number of tasks on the route. Furthermore, let rk be the kth task on the

route, where we set r0 = 0 and r#(r)+1 = n+1 the starting and ending depot respectively.

We also define Πr(k) is the ng-memory of route r at its kth task.

Equation (17a) is the objective: it counts the number of vehicles entering subset S for

the first time, according to ng-memory. Constraint (17b) makes sure that zrk is forced

to 1 if its kth task is in S and all tasks in its current ng-memory are not in S. Next,

constraints (17c)-(17f) are identical to their counterparts (16c)-(16f).
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