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We use the roll-out of the national health insurance in Ghana to assess the cushioning effect of coverage
on the financial consequences of health shocks and resulting changes in coping behaviors. We find a
strong reduction in medical expenditures, preventing households from cutting non-food consumption
and causing a decrease in the volume of received remittances as well as labor supply of healthy adult
household members. Moreover, we present evidence that the insurance scheme reduced the likelihood
that households experiencing a health shock pulled their children out of school in order to put them
to work. Avoidance of such costly coping mechanisms is potentially an important part of the social value
of formal health insurance.
� 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

A common view in the literature has been that the value of
introducing social insurance can be inferred from the fluctuations
in consumption after households experience an income or expen-
diture shock (Townsend, 1994). If consumption does not fluctuate
very much, then the welfare gains from smoothing consumption
through social insurance must be small (Morduch, 1995). Contrary
to this perspective, Chetty and Looney (2006) argue that uninsured
households facing shocks could employ strategies to protect (min-
imum) consumption levels. These strategies are potentially detri-
mental in the short and long term. This may especially apply to
poorer economies, where wealth and access to financial instru-
ments is limited, which can force households to resort to costly
means of consumption smoothing. In this case, welfare gains from
insurance may actually be very large even though consumption
does not fluctuate much.

This paper aims to empirically assess this conceptual point by
examining the impact of a national health insurance program in
Ghana on basic consumption and reliance on costly strategies to
cope with the financial consequences of health shocks. When
introducing social insurance, the protection frommedical expendi-
tures has been a top priority for many governments in the develop-
ing world, which illustrates the relevance of the application
examined in this analysis (World Bank, 2014).

There are several empirical studies showing that basic con-
sumption does not always fluctuate with shocks, evidenced by
the wide range of reported estimates (e.g., Gertler and Gruber,
2002; Mohanan, 2013). To protect their consumption levels,
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households have been shown to resort to costly self-insurance
strategies such as taking out informal loans with high interests
(e.g., Khan et al., 2015), selling productive assets (e.g., Rosenzweig
and Wolpin, 1993), and removing children from school (e.g., Mitra
et al., 2016). Much less empirical evidence is available on the avoid-
ance of costly consumption-smoothing mechanisms when social
insurance programs are introduced. Empirical work is limited to
either small insurance schemes run by non-profit organisations
(e.g., Landmann and Frölich, 2015; Janzen and Carter, 2019), or
schemes with partial population and risk coverage (e.g., Liu,
2016).1 While reporting encouraging findings, it may not replicate
well for government-run insurance schemes aimed to provide broad
protection to the population at large.2 In fact, there are numerous
examples of programs that were scaled up by governments in terms
of the number of people covered and program components, but the
size of the measured treatment effect differed substantially (Al-
Ubaydli et al., 2017; King et al., 2009; Bagnoli, 2019).

In order to close this gap in the literature, this paper presents
causal estimates for the effects of the Ghanaian national health
insurance scheme (NHIS), which served as a precedent for many
countries of the African continent and, thus, can be found in a sim-
ilar form elsewhere (Alhassan et al., 2016).3 Besides out-of-pocket
medical payments and consumption, we examine the effects on
the utilisation of various means of consumption-smoothing. These
include taking out loans, the reception of remittances, supply of
labor by non-sick adult household members, and child labor. Since
the latter is likely to adversely affect the childrens’ well-being later
in life,4 it serves as an example of a potentially very costly strategy
from a social point of view. Thus, it is indicative of the high value
of formal insurance despite small consumption responses.

Our analysis exploits the fact that the staggered implementa-
tion of the scheme overlapped with the roll-out of the fifth round
of the Ghanaian Living Standards Survey. We are able to observe,
within the same district, enumeration areas (EAs) interviewed
right before the NHIS introduction, and EAs interviewed right
thereafter. This allows us to use a regression discontinuity design
with time and district fixed effects, where the running variable
measures the months from the NHIS implementation at the district
level. Because the timing of interviews of households is external to
the timing of the NHIS adoption, we argue that, within the same
district, whether a household was observed before or after NHIS
implementation is as good as random. We indeed find no system-
1 Landmann and Frölich (2015) report a reduction in child labor in the context of a
randomized control trial that paired micro-credit with a micro health and accident
insurance in Pakistan. Janzen and Carter (2019) investigate the impacts of an index-
based micro livestock insurance and find a reduction in sales of productive assets
among poor households. Liu (2016) examines a large insurance covering mainly
inpatient medical treatments in rural China and finds a reduction in the employment
of children and an increase in school attendance.

2 More evidence is available on the incentive effects of large insurance schemes in
the developing context (e.g. Bergolo and Cruces, 2014; Gerard and Gonzaga, 2016).

3 Edmonds (2006), to our knowledge, is the only study examining the utilization of
costly consumption smoothing strategies in response to a large government run
program. The author investigates the effect from receiving fully anticipatory social
pension income in South Africa. He finds strong improvements in school attendance
and child labor when poor households become eligible for social pension. However,
the paper’s insights about the social value of social insurance is diminished by the fact
that, as opposed to the setup characterised in Chetty and Looney (2006), the event
resulting in the benefit was fully anticipated and the pension yielded a net increase in
income.

4 See Heady (2003),Borga (2019), and Mussa et al. (2019) for the effects of child
labor on skill and human capital formation. Dumas (2012) and Keane et al. (2018)
show detrimental effects of child labor on cognitive development. Also, children who
work early on were found to have lower wages (Emerson and Souza, 2011; Posso,
2017) and a worse health status (Beegle et al., 2009; Sturrock and Hodes, 2016) later
in life. Of course, it is not to question that food consumption profiles of children can
be important determinants of their future health and education (e.g., Christian and
Dillon, 2018).
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atic discontinuities in the characteristics of households that were
interviewed around the time of the NHIS introduction.

We start by showing strong impacts on out-of-pocket medical
payments. In specific, we find that the NHIS resulted in a reduction
of out-of-pocket payments for medical care of about US$4, or about
20% of the mean observed before the program was implemented.
This estimate falls in the lower range of previous papers (King
et al. (2009);Bauhoff et al. (2011); Limwattananon et al. (2015)).
When splitting the sample by the length of a sickness episode,
which we show was unaffected by the NHIS, estimation results
reveal that out-of-pocket payments decreased by approximately
US$13 for households experiencing more intense sickness epi-
sodes. Since we do not find any impact among households with a
low sickness intensity, our results for out of pocket payments seem
largely driven by households facing intense sickness episodes.
Despite the large savings in out-of-pocket payments among the
latter, we find limited effects on their consumption. In specific,
we observe close to zero responses in food consumption and an
increase in non-food consumption of about US$4.

We then examine the effects on households’ means of con-
sumption smoothing. We find that the NHIS crowded out remit-
tances and labor supply of the adults in households facing more
intense sickness. Importantly, our results show that the NHIS
avoided the use of costly coping strategies among these house-
holds. We observe a reduction in child labor and improvements
in children’s school attendance as result of the introduction of
the NHIS.

The remainder of the paper is organized as follows. First, we
describe the roll-out of the NHIS in Ghana. Then, we describe the
data used and develop our research design. In Section 4, we
describe our empirical specification, and Section 5 presents our
results and robustness checks. Section 6 concludes.
2. Institutional background

The Ghanaian NHIS. In August 2003, the Ghanaian government
passed the National Health Insurance Act 650, establishing the
terms of the NHIS. The implementation of the insurance was orga-
nized at the district level and managed by local authorities,
through the establishment of district-wide insurance schemes
(DMHIS) (Gajate-Garrido, 2013). Districts capacity to set up DMHIS
varied significantly, and while some districts started adopting the
NHIS in 2003, the country was fully covered only by October
2007 (see Fig. 1). Generally, districts that had more developed
pre-NHIS health care systems adopted the NHIS earlier.5

Coverage. The NHIS was implemented to ensure equitable and
universal access to health care by removing the financial barriers
imposed by user fees. The NHIS health care package covered basic
health care services, including inpatient and outpatient consulta-
tions, essential drugs, maternity care (normal and cesarean deliv-
ery), eye care, dental care, and emergency care. The NHIS
package was particularly generous in the range and extent of
medicines covered. All DMHIS were required to adhere to the
defined benefit package (Gajate-Garrido, 2013).

Premiums. Covered health services were financed through a
Health Insurance Levy (a 2.5 percent tax on specific goods and ser-
vices made in or imported to Ghana), and the payment of insurance
5 The capacity of districts to set up DMHIS depended in part on whether (partial)
health insurance coverage was already in place. Specifically, existing government-
sponsored Mutual Health Organizations (MHOs), which were organized at the
district-level and offered coverage to informal sector workers, were automatically
converted to DMHIS (Agyepong and Adjei, 2008). As a result, districts that had a
better health care provision system and a higher number of MHOs were able to more
easily obtain licenses for the NHIS than districts that needed to build their health care
organizations from scratch.



Fig. 1. Spatial Roll-out of the NHIS. Source: own data collection on NHIS
implementation date.
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premiums. NHIS annual premiums were income-related, set at a
minimum of 72,000 Ghana cedis (GHS) per adult (US$ 7.5), and a
maximum of 480,000 GHS (US$ 50).67 In a typical two-parent family
with three children, the entire family would have been covered for
144,000 GHS per year (US$ 15). This premium is about 3 percent
of the annual minimumwage in 2006 (Otoo et al., 2009). Satisfaction
surveys during the first months of its implementation raised the
issue of the affordability of its annual premium. This concern was
backed up by moderate initial take-up rates of insurance (Sulzbach
et al., 2005). However, a comparison of the NHIS premium with
MHOs shows the advantages of the NHIS for its enrollees
(Sulzbach et al., 2005). For a typical family, the premiums paid under
MHOs for inpatient coverage were comparable to those paid under
the NHIS for the full coverage package.

Health Care Use. Sulzbach et al. (2005) show that insured indi-
viduals sought formal health care sooner after the onset of illness
than their uninsured counterparts. Greater coverage from the NHIS
also induced behavior consistent with moral hazard. Debpuur et al.
(2015) highlight numerous ways in which the insured took advan-
tage of the NHIS, such as frequent and unnecessary visits to health
facilities, impersonation, or even feigning sickness to collect drugs
for non-insured persons.
8 Regressing the date of the interview on a wide range of EA characteristics yields
mostly insignificant point estimates.

9 We were unable to find information on the exact implementation date for 18
3. Data and research design

3.1. Data

The purpose of this paper is to identify the impact of public
health insurance on households’ out-of-pocket spending and the
incidence of informal insurance mechanisms used to cope with
these expenditures and other financial consequences of health
shocks. To analyze these effects, we use household data from the
fifth round of the Ghana Living Standards Survey (GLSS), collected
from October 2005 to September 2006. The fifth round of the GLSS
interviewed 37,128 individuals in 8,687 households.
6 In 2007, the exchange rate was 9,600 GHS to US$1.
7 Formal sector employees paid their premiums on a monthly basis, while

members of the informal sector had to pay annual premiums.
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Because the timing of implementation of the NHIS across dis-
tricts is not random, our empirical strategy relies on within district
variation as opposed to cross-district variation. Correctly identify-
ing geographic information is therefore central to our analysis. The
finest within-district level reported in the survey is the enumera-
tion area (EA), which roughly corresponds to villages (in rural
areas) and neighborhoods (in urban areas). EAs within the same
district were surveyed at different times, with no systematic order.
Importantly, the date of the survey of each EA is orthogonal to key
defining characteristics, such as population, economy, infrastruc-
ture, provision of education, and health care facilities.8 This orthog-
onality is key for the identification of the impact of the NHIS, as we
will explain below.

We link the GLSS data to information on the exact implementa-
tion date of the NHIS at the district level. We collected these data
from several sources, ranging from district level NHIS web-pages to
newspaper articles and phone calls to district level NHIS authori-
ties.9 Fig. 1 shows the map of Ghana’s 110 districts, colored by date
of adoption of the NHIS. Some districts adopted the NHIS as early as
January 2003 as part of a pilot. By January 2005 it became a national
policy, and local authorities consistently started adopting the NHIS.
By October 2007, all local authorities had successfully introduced
the NHIS in their districts. During the period of the survey, 53 dis-
tricts adopted the NHIS. Of these, 52 districts had at least one EA sur-
veyed before and one after the adoption of the NHIS. We only keep
households in such districts, to ensure that there is within-district
variation, resulting in a final sample of 28,946 individuals in 5341
households.

We construct variables measuring household out-of-pocket
medical expenditures, consumption, loans and remittances
received, adult labor supply, as well as child labor (following the
ILO definition), and time allocation (school attendance and house-
hold chores).10 We refer to Tables A.1 and A.2 in Appendix A for
more details on the construction of these variables. Means of all out-
come variables for the pre-NHIS period are reported jointly with the
estimates of our empirical analysis in Section 5.
3.2. Research design

In an ideal experiment, one would randomly grant NHIS access
to districts and compare household responses to health shocks in
districts with access to the NHIS to the counterfactual behavior
of ex-ante similar households in districts without access to the
NHIS. Absent this, we obtain within district variation by exploiting
the fact that the NHIS was rolled out simultaneously to the fifth
round of the GLSS in some districts.

We construct d, a measure of the months between the date of
interview and the NHIS implementation date in the district of res-
idence. Setting the date the district adopted the NHIS to zero, the
survey contains households from EAs interviewed at d < 0, and
households from EAs interviewed at d P 0. By keeping only these
districts having both negative and positive (or zero) values of d,
we can exploit the within-district variation in the timing of the
survey. If within each district, timing is truly orthogonal to EA
characteristics, within-district variation in exposure to the NHIS
at the time of the survey is as good as random. In this case, EAs
interviewed before the NHIS implementation in the district repre-
districts of the 110. We drop observations from these districts.
10 One costly coping strategy that has been discussed in the literature is selling of
assets and land (Rosenzweig and Wolpin (1993)). Unfortunately, we are not able to
examine these indicators because our data captures only asset and land sales over the
previous 12 months, which does not fit to our empirical strategy.
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sent suitable controls for EAs interviewed after the NHIS was avail-
able in the district. This measure d is the running variable of our
regression discontinuity (RD) design, which is presented in detail
in Section 4.

Our research design captures the reduced-form short-term
impact estimates of the reform, where the first stage corresponds
to the impact of the NHIS rollout on the health insurance take-up
of households. Our data do not allow us to correctly identify
changes in health insurance coverage due to the implementation
of the NHIS. We can, however, rely on reported national enrollment
rates to get an impression of the extent of NHIS coverage. Fig. A.1 of
Appendix A shows that national enrollment in 2006 was around 20
percent, and increased to almost 40 percent in 2007. These figures,
however, are low bounds of the real coverage rate of the NHIS, as
households were frequently allowed to enroll under the NHIS after
the occurrence of a health shock (Gajate-Garrido, 2013).
13 Although manipulation of the running variable is not a potential issue in this
4. Empirical specification

For each outcome variable, we estimate the following
regression:

Yhts ¼ b0 þ b1f ðdhtsÞ þ hNHIShts þ b2hðdhtsÞNHIShts þ dXhts þ ls

þ ct þ ehts ð1Þ

where d is the months separating the date of the interview t for a
given household h and the date of NHIS implementation in the dis-
trict s. NHIShts is a variable taking value 1 if d P 0, and 0 if d < 0. X is
a vector of pre-determined characteristics,11 ls and ct are district
and time fixed effects, and e is the error term. We allow the polyno-
mial to differ from the left to the right of the month of NHIS imple-
mentation. h is the coefficient of interest, and it captures the effect of
NHIS implementation at the district level on household responses.
f ð:Þ and hð:Þ are some polynomial expansions in d. Because of the
small number of observations, there is not enough variation to allow
both functions to vary non-linearly. We impose in what follows that
f ð:Þ and hð:Þ are two different linear trends before and after NHIS
implementation, acknowledging that this may represent a limitation
for some of the outcome variables.

We determine the optimal bandwidth to the left and right of the
discontinuity of d using the bandwidth selector method provided
by Calonico et al. (2016). We choose to estimate the model with
a bandwidth of 6 months which is the optimal bandwidth for the
majority of our outcome variables.12 This comes with two impor-
tant advantages in our context. First, being the largest among all out-
come specific optimal bandwidths, it implies a relatively large
sample size (3,718 households) and, thus, relatively precise esti-
mates. Second, one bandwidth for all outcomes ensures consistency
in the number of observations which improves the interpretation of
results (e.g., decomposing the effects on medical spending into con-
sumption responses and other means of insurance). We show the
robustness of our results to other outcome-specific optimal band-
widths in Section 5.3.

Following Kolesár and Rothe (2018), we cluster standard errors
by the level of treatment assignment. In our context, treatment
depends on the combination of the date of implementation of
the NHIS (at the district level) and the date of survey (at the EA
level). Thus, treatment assignment takes place at the EA level,
which determines whether a household is observed before or after
11 We include as control variables the age and gender of the head of the household,
educational attainment of parents, household composition, an indicator for rural, poor
and migrant households, and sector of employment of the head.
12 Exceptions are the rate of remittances, household chores, school attendance (all
5 months), outpatient expenditures, food consumption, and loan amount (all
4 months).
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the introduction of the NHIS. We therefore cluster the standard
errors by EA, and are confident that the number of clusters (520
EAs) is sufficiently large for cluster-robust inference (Cameron
and Miller, 2015). We show that inference is robust to cluster
choice in Section 5.3.

Threats to Identification. The validity of our research design
requires the counterfactual outcome being orthogonal to the date
of implementation relative to the interview date. That is, in the
absence of the NHIS, households at the left and right of the discon-
tinuity in the assignment variable would have fared the same.

To present support for the assumption of no underlying selec-
tion on either side of the discontinuity, we perform several empir-
ical balancing tests.13 To test the balancing of characteristics on both
sides of the discontinuity, we assess whether the sample averages of
household characteristics are similar in the samples before and after
NHIS implementation. We select characteristics that, a priori, should
not be affected by the NHIS introduction such as household compo-
sition, the main source of household income, and education of adult
household members. Columns (1), (2) and (3) in Table 1 demonstrate
that household characteristics are similar in both samples. We note
that in the sample after the introduction of the NHIS the share of
fathers living in the household is lower, and the share of mother
without a formal education higher.14 These differences, however,
do not translate into poorer households and other household charac-
teristics, nor in differences in sector of employment.

We also estimate specification (1) using the pre-determined
household characteristics as dependent variables. Column (4) of
Table 1 shows a marginally significant discontinuity around the
cutoff for the share of formal sector employees, but no other signif-
icant differences. Given the balancing results, we are confident that
the households before and after the discontinuity are
comparable.15

Analysis by Health Shock. To gain more intuition on the effects
of the NHIS, we assess howmuch these vary by health shock inten-
sity. We expect that households experiencing more severe health
shocks respond most to the introduction of the NHIS, for two rea-
sons. First, the savings in out-of-pocket payments of insured
households are most likely larger among these households (Liu,
2016). Second, because households can enroll with the NHIS after
a health shock occurs (Gajate-Garrido, 2013), the enrollment rate
among households reporting more intense sickness is possibly lar-
ger. Since our main specification allows recovering the reduced
form effects from the NHIS, but not the effect for insured house-
holds, observing stronger effects on these households experiencing
relatively strong health shock is in line with the effects being dri-
ven by the NHIS.

We perform this analysis by splitting the sample using a health
shock measure that we construct based on the self-reported num-
ber of days of sickness over the two weeks before the interview.
Specifically, we define our health shock measure as the ratio of
the weighted sum of the days that every adult in the household
has reported being ill over the two weeks before the interview,
by the period of reference (14 days). That is:

HShts ¼
PI

i¼1aihts
14nh

;

setup, we run a McCrary (2008) density test. We do not reject the null hypothesis of a
smooth density around the time of exposure to the NHIS (p-value = 0.18).
14 We control for these characteristics in our empirical specification, and show in
the sensitivity section that the results are not affected by the inclusion or exclusion of
these controls.
15 Yet, data six months away from NHIS introduction are systematically different
from data just around the date of the introduction, highlighting the need for inclusion
of f ð:Þ and hð:Þ in the regression equation.



Table 1
Balancing Test of Means Around the Months of Exposure to the NHIS.

Sample of analysis Test of equal means RD test

d 2 ½�6;0Þ d 2 ½0;6� p-value
(1) (2) (3) (4)

Rural household 0.676 0.689 0.483 0.115
(0.468) (0.463) (0.192)

Poor 0.268 0.296 0.110 0.118
(0.443) (0.457) (0.114)

Household size 4.723 4.590 0.294 0.704
(2.925) (2.835) (1.410)

Father in household 0.588 0.554 0.091 0.035
(0.493) (0.497) (0.064)

Married or cohabiting 0.768 0.743 0.130 0.027
(0.423) (0.437) (0.035)

Age head 44.915 44.846 0.903 �2.067
(14.100) (14.926) (2.079)

Number of children in household 1.421 1.332 0.141 �0.018
(1.625) (1.488) (0.695)

Formal sector (paid worker) 0.052 0.054 0.803 0.037�
(0.222) (0.226) (0.021)

Informal sector (paid worker) 0.057 0.068 0.267 �0.052
(0.232) (0.251) (0.065)

Own business 0.231 0.248 0.322 �0.117
(0.422) (0.432) (0.078)

Not working 0.031 0.035 0.570 �0.023
(0.173) (0.183) (0.014)

Born in village 0.607 0.578 0.117 �0.012
(0.489) (0.494) (0.064)

No education (father) 0.554 0.594 0.129 �0.030
(0.496) (0.491) (0.019)

Some school (father) 0.186 0.167 0.176 0.004
(0.389) (0.373) (0.024)

No education (mother) 0.243 0.273 0.075 0.001
(0.429) (0.446) (0.012)

Some school (mother) 0.156 0.136 0.121 0.013
(0.363) (0.343) (0.031)

HS ratio 0.162 0.158 0.634 �0.004
(0.099) (0.111) (0.010)

High sickness intensity 0.412 0.487 0.345 0.087
(0.134) (0.145) (0.099)

Households 1,200 2,518 3,718

Notes: Columns (1) and (2) report the sample averages, and standard deviation in parentheses, 6 months before and 6 months after the NHIS implementation, respectively.
Column (3) reports the p-value of a test of equal means. The fourth column reports the h coefficients estimation of specification (1) with demographic characteristics and a
health shock measure as the dependent variables. Standard errors, clustered by enumeration areas, are in parenthesis.
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where a are the days individual i from household h has reported
being ill or injured over the two weeks before the interview, and
nh is the number of individuals in household h.

We use HS to divide households with at least one day of sick-
ness into low and high intensity of sickness, according to whether
HS is below or above the median. This maximises the sample size
of the low and high intensity samples. Among households report-
ing an illness or injury, the median of this sickness intensity mea-
sure is 0.1. That is, for the median household, 10 percent of the
days in the last two weeks were lost to illness. Low sickness house-
holds, therefore, are households which reported that they were less
than 10 percent of the days in the last two weeks ill.

By distinguishing households according to the intensity of
health shock as opposed to whether a health shock is reported at
all, we aim to solve the potential endogeneity problem that the
incidence of health shocks are reported more often after the intro-
duction of the NHIS.16 The intensity of the health shock is unrelated
to the introduction of the NHIS if households correctly report the
16 We find that 56% of households reported a health shock before the NHIS. This
figure increases to 61% of households after the NHIS. This is because households tend
to report more often an episode of sickness if they sought health care than if they did
not (Murray, 1996). Since the insurance coverage increases the propensity to seek
health care, and individuals recall better sickness periods when they have sought
care, reporting health shocks is positively correlated to the introduction of the NHIS.

5

number of sickness days once they remember a sickness episode.
To verify that, we estimate specification (1) using HS as dependent
variable. By construction of this variable, the estimation sample only
includes households that report any illness episode. The second last
row of Table 1 reports the results. We observe no statistically signif-
icant effect of the introduction of the NHIS. 17 This result makes us
confident to split the sample using this variable.
5. Results

This section documents the effect of the introduction of the
NHIS on medical expenditures and consumption using a RD design.
It then moves on to exploring how a national health insurance pol-
icy can affect risk-coping mechanisms, with a particular focus on
costly coping mechanisms.

One of the advantages of RD designs is that results can be pre-
sented graphically, which provides a transparent way of showing
how the effects from introduction a national public health insur-
ance is identified. Throughout the paper, we will begin with a
17 Panel A of Fig. B.1 in the Appendix shows the RD graphs for this health shock
measure. Consistent with the results presented in Table 1, we do not find any
discontinuity from crossing the cutoff. The same applies for a binary variable
indicating a high sickness intensity (see last row of Table 1 and Panel P of Fig. B.1 in
the Appendix).



Sílvia Garcia-Mandicó, A. Reichert and C. Strupat Journal of Public Economics 194 (2021) 104314
graphical depiction of key outcomes before turning to a more
detailed regression-based analysis. Given our empirical model con-
siders district and time fixed effects, we plot the residuals from a
regression of the outcome of interest in order to net out time
and district fixed effects. The residualized outcomes are aggregated
in bins by months to NHIS implementation, around nine months of
the introduction month of the NHIS.18 The figures include separate
fitted linear trends on each side of the cutoff estimated, and a trian-
gular Kernel-weighted local polynomial fit.19 The fitted lines best
illustrate the trends in the data and the size of the jump, whereas
the binned means provide a sense of the underlying variability in
the data. Confidence intervals are constructed on the linear fit, with
errors clustered at the enumeration area level (corresponding to the
treatment assignment level).

5.1. The introduction of the NHIS on household expenditures

5.1.1. Medical payments
Panel A of Fig. 2 displays the relationship between the introduc-

tion of the NHIS and medical out-of-pocket payments. Medical
out-of-pocket payments are the sum of inpatient, outpatient and
medicine payments. The expenditures are measured in x10,000
Gahanian Cedis (GHS), which was slightly more than US$1 in
2005/2006. The graph reveals that medical payments are constant
in the months leading up to the implementation of the NHIS, which
is reassuring to the fact that there are no pre-trends once differ-
ences between the districts are taken into account.20 More impor-
tantly, there is a sharp drop in payments for individuals just to the
right of the cutoff.21 Payments decline in the months after the imple-
mentation, which is in line with a greater usage and enrolment to
the NHIS. The discontinuity and declining trend are also captured
by a triangular-weighted polynomial fit on the full width of the data.
Here, the measured drop is even slightly larger than with a linear fit.

We show the RD graphs for inpatient, outpatient and medicine
payment separately in Fig. B.2 in Appendix B. They reveal that the
drop in medical out-of-pocket payments is due to savings in med-
icine payments and not due to a reduction in inpatient or outpa-
tient care.

In the first panel of Table 2, we present regression results. The
first row of the table displays the results for medical out-of-
pocket payments which mirror those displayed in Fig. 2, Column
(2) shows that there is a 38,300 GHS (US$4) drop in payments after
the implementation of the NHIS, which amounts to a 20% reduction
compared to the mean (see Column (1)). To give a perspective of
the magnitude of the effect, the average monthly NHIS premium
is about US$1.25 per household, so net savings are large. Medicine
expenditures are most affected by the introduction of the NHIS. We
observe a drop in 28,400 GHS (US$3, or 23% of the mean). Inpatient
out-of-pocket payments, which were already covered by district
insurances before the introduction of the NHIS, are not signifi-
cantly affected. Neither are outpatient expenditures.

As 25% of households in our sample did not incur any medical
out-of-pocket expenditures, the medical variables are highly
18 This is the widest bandwidth that our data allows for without any gaps.
19 The local polynomial regression involves fitting the response to a polynomial
form of the regressor via locally weighted least squares, and the choice of a triangular
Kernel allows giving more weight to observations closer to the discontinuity.
20 In our sample, seven households were interviewed during the first two weeks of
the month when their month of interview corresponded to the time of NHIS
implementation. This implies that they could have had medical expenditures before
the NHIS while being classified as under the NHIS. Our results are fully robust to their
exclusion.
21 Our empirical strategy could be underestimating the impact of the introduction of
the NHIS if households delay their medical expenditures in expectation to the
introduction of the NHIS. If there was anticipation, we might see a dip in payments in
the months right before the NHIS. Panel A indicates that this does not seem to be the
case.
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skewed to the left. These may be more appropriately estimated
after applying a logarithmic transformation (lnðxþ 1Þ). Column
(3) of Table 2 summarizes the results. Using this specification,
we estimate a reduction of 17% in medical out-of-pocket payments,
which is similar to respective estimates when using levels.

Columns (4) to (9) in Table 2 present the results after dividing
the sample for these households with less and more sickness,
based on the health shock intensity measure previously described.
They indicate that the effects observed in the full sample are driven
by the sample with higher sickness intensity.22 Hence, the intro-
duction of the NHIS resulted in higher savings in medical out-of-
pocket payments for households experiencing a relatively large
health shock. These households saw their medical expenses reduced
by 119,800 GHS (US$13, or 30% of the mean) after the introduction of
the NHIS. This effect is again driven by a reduction in medicine pay-
ment of about 50%.

We also present results on the probability of experiencing
catastrophic health care expenditures in Panel A2 of Table 2. As
it is standard in the literature, we measure the incidence of catas-
trophic health care expenditures through an indicator taking value
1 when health care expenditures represent 10 percent or more of
the total household expenditure (Cylus et al., 2018; Wagstaff
et al., 2018).23 In line with the results presented for medical expen-
ditures in levels and logarithms, the effects are driven by the sample
experiencing more sickness. For these households, we observe a
reduction of 11 percentage points (15%) in the probability of incur-
ring in catastrophic health care expenditures.
5.1.2. Consumption
Panel B in Fig. 2 presents RD graphs for consumption measure,

which measures the sum of food and non-food frequent consump-
tion, and excludes health care components (see Appendix A for
more details). The fitted lines show that consumption is higher in
the months right after the introduction of the NHIS (although mar-
ginally insignificant). Panel B in Fig. B.2 of Appendix B shows
results for the two components of consumption. The introduction
of the NHIS only affected non-food expenditures.

Turing to the regression results, Panel B1 of Table 2 shows a
positive estimate on consumption from the introduction of the
NHIS, which is statistical significant after the lnðxþ 1Þ transforma-
tion. When disaggregating the components of consumption, we
find that the introduction of the NHIS led to marginally higher
non-food consumption (housing, utilities, transportation, etc.) by
27,500GHS (US$3), or 6% of the mean. Food consumption, which
represents the biggest share of consumption, is not affected by
the NHIS.

Focusing on the more sickness sample, we do not find effects of
the NHIS on food consumption but an increase in non-food con-
sumption by GHS 33,800 (US$4, or 9% of the mean). These results
suggest that, in the absence of health insurance, non-food expendi-
tures must have absorbed more of the health shock in order for
food consumption levels to remain unchanged (Skoufias and
Quisumbing, 2005).

We discreticize consumption and use the official consumption
poverty line of the Ghanaian Statistical Service set at 44.9% of the
mean consumption in 2005/2006 (Ghana, 2018). We measure the
incidence of consumption poverty by using an indicator taking
value 1 when the household consumes more than the consumption
22 Using the full sample, we check whether the propensity of having a highly intense
illness episode changed due to the NHIS implementation (the reference category
includes households with either a relatively short or no sickness episode at all). We do
not find any statistically significant effect of the NHIS on this variable (results are
available upon request).
23 This measure is the official indicator for monitoring of financial protection among
the Sustainable Development Goals (SDGs; indicator 3.8.2).



Table 2
RD estimates effects of NHIS introduction on household expenditures.

Full Sample Less Sickness More Sickness

Mean Level Logarithm log(x + 1) Mean Level Logarithm log(x + 1) Mean Level Logarithm log(x + 1)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A.1 Medical expenditures
Total 18.74 �3.83** �16.77** 27.61 �3.79 �5.87 39.96 �11.98** �29.20*

(1.83) (8.04) (2.94) (4.60) (5.55) (16.36)
Inpatient 0.03 0.01 �0.21 0.03 0.00 �0.03 0.08 0.07 �0.19

(0.02) (0.27) (0.01) (0.14) (0.11) (1.26)
Outpatient 6.39 �1.84 �0.83 14.90 3.55 3.06 17.98 �1.39 �3.30

(1.03) (4.39) (2.78) (5.51) (2.28) (10.92)
Medicine 12.39 �2.84** �27.71** 12.69 0.23 6.19 21.90 �10.66** �38.58***

(0.99) (13.72) (0.38) (10.50) (5.15) (13.40)

A.2 Catastrophic medical expenditures (rate)
Total 45.12 �0.07* 56.43 �0.05 72.14 �0.11**

(0.04) (0.08) (0.05)

B.1 Consumption
Total 141.80 4.04 3.65* 116.11 3.75 2.13 112.75 3.77 6.33*

(2.59) (1.63) (5.15) (2.21) (3.08) (2.67)
Food 82.15 �1.06 0.35 69.32 0.03 0.30 71.15 0.45 0.51

(0.93) (0.20) (1.60) (0.25) (0.20) (0.26)
Non-food 49.05 2.75* 3.30*** 36.99 1.18 1.83 34.95 3.38* 5.93***

(1.45) (1.45) (1.56) (1.98) (0.72) (2.43)

B.2 Consumption poverty level
Rate 31.80 0.02 46.21 0.01 0.02 61.53 0.08

(0.10) (0.08) (0.05)
Households 3,718 1,073 881
EA (cluster) 520 447 378

Notes: Columns (1)–(3) report estimates on the full sample of households in districts that implemented the NHIS during the time of the survey. Columns (4)–(6) and (7)–(9)
limit the analysis to households below and above the median of the health shock measure, respectively. Columns (1), (4) and (7) report the mean in the pre-NHIS period.
Columns (2), (6) and (8) report the effects of the outcomes measured in levels (�10,000 GHS). Columns (3), (6) and (9) report the effects of the outcomes after a logarithmic
transformation (log(x + 1)). We report estimates in these columns after multiplying them by 100, and so should be interpreted approximately as a percent effect. All
coefficients are estimated using an RD model with separate linear trends on each side of the cutoff and triangular weights. The bandwidth of these regressions is 6 months
before and after the introduction of the NHIS. All specifications include district and time fixed-effects, as well as control variables measured at the time of the survey (age and
gender of the head of the household, educational attainment of parents, household composition, an indicator for rural, poor and migrant households, and sector of
employment of the head). Standard errors in parentheses are clustered at the EA level. ⁄⁄⁄p < 0.01, ⁄⁄p < 0.05, ⁄p < 0.10.
1 US$ 9,259 GHS in 2006.

Fig. 2. Household expenditures. Notes: This figure displays residualized household medical out-of-pocket payments (Panel A) and consumption (Panel B) in � 10,000 GHS.
The residualized outcomes are aggregated in bins by months to and after NHIS implementation. The figures include separate fitted linear trends on each side of the cutoff, and
a triangular Kernel-weighted local polynomial fit. Confidence intervals are constructed on the linear fit, with errors clustered at the enumeration area level (corresponding to
the treatment assignment level)..
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poverty line and 0 otherwise. We do not find significant estimates
of the NHIS implementation on the incidence of consumption
poverty.

Our results indicate that a fraction of the estimated savings in
medical out-of-pocket payments were used for higher non-food
consumption among households experiencing a relatively large
health shock. In what follows, we will evaluate how the remaining
savings in medical expenditures shaped households’ behavior.
7

5.2. Coping mechanisms

5.2.1. Loans and remittances
We begin our analysis on how the introduction of a public

health insurance scheme impacts coping strategies by exploring
loans and remittances. Both borrowing and remittances have been
shown to be key instruments to cover liquidity shortages (see
among others, Morduch (1995), Chetty and Looney (2006), Islam



26 We check whether the findings for the other outcomes change due to this sample
restriction and present the estimates in Table B.2,B.3 and B.4 of the Appendix. We find
similar results on all outcomes as compared to the full sample.
27 We note that the linear trend fitting the pre-NHIS data exhibits a declining trend.
However, when fitting the more flexible line, such as the triangular-weighted shown
in the figure, this trend is largely eliminated. This difference is likely attributable to
outliers and the fact that the fitted linear trend reacts more sensitive to them. We
show in the sensitivity section that adding triangular weights does yield qualitatively
similar regression results.
28 Table B.2 shows that the introduction of the NHIS does not have an effect on the
hours spent doing household chores for children in households not experiencing a

Sílvia Garcia-Mandicó, A. Reichert and C. Strupat Journal of Public Economics 194 (2021) 104314
and Maitra (2012), Strupat and Klohn (2018)). The introduction of a
public health insurance scheme would reduce the need to rely on
these instruments to cope with the financial consequences of a
health shock.

The RD graphs in Panels A and B of Fig. 3 show the (residual-
ized) borrowing of households through loans and the reception
of remittances. Our first observation is the higher incidence of
remittances over borrowing through loans: while only 2% of house-
holds borrowed loans before the NHIS, around 20% of households
were receiving remittances.24 This is in line with previous work
showing that obtaining credit from formal lenders is a less direct
way to obtain financing in the face of a health shock than receiving
money from family or friends (Islam and Maitra, 2012). We do
observe a jump at the discontinuity in the incidence of borrowing
from introduction of the NHIS. This jump, however, is not statisti-
cally significant. Furthermore, the NHIS does not decrease the
amount borrowed, as shown in the top right graph. We instead
observe a clear drop in the incidence of remittances post-NHIS.
The amount of remittances received also decreases after the NHIS,
although the difference at the discontinuity is not statistically
significant.

Turning to the regression results, Panels A and B in Table 3 show
the estimated effects corresponding to the RD graphs. The esti-
mates are negative for both the rate and amount of loans and
remittances. The effect on the incidence of remittances is statisti-
cally significant at the 10 percent level, but this does not translate
into lower remittances. In the more sickness sample, both the inci-
dence (by 2.2 percentage points, or 6%) and amount of received
remittances (by almost US$5) decrease significantly due to the
NHIS implementation.

5.2.2. Adult labor supply
We now analyse intra-household labor supply as a potential

source of insurance (Dercon, 2002; Gertler and Gruber, 2002). To
that end, we observe the labor responses of the healthy adults, that
is, these adults that do not report any illness or injury. Panel C of
Fig. 3 shows the RD graphs of their residualized employment par-
ticipation and earnings. There is a drop in employment participa-
tion once crossing the cutoff (10 percent level of statistical
significance). We also observe a drop in labor earnings around
the time of the NHIS introduction but it is statistically insignificant.
Measurement error in this variable is a common problem in devel-
oping countries and a likely explanation of the large standard
errors (Meyer and Sullivan, 2003). The trend in earnings is negative
after NHIS introduction, possibly indicating the greater crowding
out of adult labor supply as NHIS enrolment rates increase.

Panel C in Table 3 reports respective RD estimates. We estimate
a sizeable drop in employment participation of over 2%.25 Our
results are in line with health insurance crowding-out the need for
other household members to increase their employment participa-
tion to cover the medical expenditures. As already observed in the
RD graph, this drop in participation is not accompanied by signifi-
cantly lower labor earnings, which are likely measured with
imprecision.

5.2.3. Costly coping mechanisms
We close our analysis by assessing whether the introduction of

a national health insurance policy can prevent the reliance on
costly coping mechanisms when health shocks occur. To this end,
24 Note that overall borrowing is not captured in our measure, as the questionnaire
only measures borrowing through formal sources. Informal borrowing, most common
in developing settings with limited access to capital markets, is thus not assessed
here.
25 We find no employment effects in the subsample of ill adult household members
(see Table B.1 in the Appendix).
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we consider the impact of the NHIS on human capital investments
in children, in particular, schooling of children and child labor.
Panels C and D of Fig. 3 graphically show the RD results for the
effects of the introduction of the NHIS on the incidence of child
work, earnings, and on the time allocation of children (class atten-
dance and household chores). The sample selected for this section
is different than the sample used before, in that we exclude these
households that have no children. The final sample is of 2,228
households.26 Upon crossing the cutoff, the rate of child labor drops.
This drop is statistical insignificant.27 The RD graph for child earn-
ings does not show any clear trend, possibly due to the low incidence
of formally paid child laborers: child labor tends to be remunerated
in kind (ILO, 2007). School attendance increases after the NHIS
implementation. There is, however, large variation in this outcome
variable. Household chores, on the other hand, neatly drop upon
crossing the threshold. It is interesting to observe that the NHIS
implementation affects household chores as early as the first month
after the introduction.

Panel D and E in Table 3 shows the corresponding regression
estimates. The effect on child labor is small and not statistically
significant in the full sample. The weekly hours attending school
increase by 2%. Analogously, the hours spent on household chores
decrease by 2%.

Differences in the responses become stronger when dividing the
sample by health shock intensity. The effect on child labor from
introducing the NHIS is pronounced with a statistically significant
decline in the incidence by 8.8 percentage points in the high sick-
ness intensity sample. The time spent attending class increases by
one hour in the same sample. The effects of the NHIS on household
chores are qualitatively similar regardless of the intensity of the
health shock28 When investigating the effect on earnings from child
labor, we find negative but statistically insignificant effects. How-
ever, child labor earnings are commonly very imprecisely measured
wherefore standard errors are expected to be large.29 Overall, these
improvements in children outcomes are consistent with the intro-
duction of the NHIS reducing households’ reliance on costly self-
insurance mechanisms when facing a health shock.

5.2.4. Aggregating the results
To put our results in perspective, in this section, we use the esti-

mated effects of the outcome variables in levels to get a rough
sense of the magnitude of the responses in terms of consumption
and use of coping mechanisms vis-a-vis the measured out-of-
pocket medical savings. The objective of this aggregation exercise
is to get an intuition whether our results are consistent with each
other, as opposed to provide a precise decomposition analysis
where one would take the estimates at face value.30
health shock. This is reassuring to the fact that the outcome responds to the
interaction of the NHIS with health shocks, giving plausibility to our interpretation.
29 We also do not find any effect on schooling expenditures, which are generally
very low. Results are available upon request.
30 For instance, some of our outcome variables are skewed and, thus, the results
should be viewed as giving a direction of the magnitudes of the effects only. That said,
we can show that the magnitude of the effects is similar when using a log-
transformation of the outcomes.



Fig. 3. Coping mechanisms. Notes: This figure displays residualised loans and remittances at the intensive and extensive margin (Panels A and B), adult labor supply (Panel C),
and children outcomes (Panels D and E). Amounts are reported in �10,000 GHS, incidence is measured from 0 to 1. Time allocation of children (class attendance and
household chores) is measured in hours. See notes to Fig. 2 for more details.

31 While the earning measure does not take into account the value resulting from
self-production, the food expenditure measure in our analysis does. Thus, the effects
of NHIS on self-production are reflected in the analysis of food consumption
responses but not in the analyses of the impacts on earnings.
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In line with a marked dose–response function between health
impairments and the benefits of insurance, the results for house-
holds with shorter sickness episodes are much less pronounced
than for households with a more sickness intensity. We find for
households experiencing health shocks with more sickness inten-
sity that medical expenditures decrease by approximately US$13.
Out of these savings, about US$4 sustain the increase in non-food
expenditures. In addition, the savings allow for a drop in remit-
tances received of roughly US$5. Consistent with the idea that
the remaining savings go to a combination of lower earnings from
adults and children, we find negative and statistically significant
impacts on both adult employment and child labor. We also find
a drop in earnings, but the estimated effects are neither significant
for adults nor for children. One likely reason for statistical insignif-
icance is that earnings measures from survey data are often subject
9

to large measurement errors (Meyer and Sullivan, 2003), which
tend to bias the results towards zero. Another reason is that labor
earnings, in particular the earnings of children, are partially remu-
nerated in-kind (ILO, 2007). Indeed, children can work as con-
tributing family members within households in our context
(GLSS, 2014) and can protect food consumption levels by addi-
tional labor increasing the share of self-produced food.31

To further improve our understanding of magnitudes of the
effects reported in this paper, we compare our findings with those
reported in other studies. In terms of effects on out-of-pocket pay-



32 Reducing the bandwidth implies a decline in the number of clusters which causes
a downward bias of the cluster-robust variance in settings with a few clusters. Yet, in
our case, the standard errors reported for different bandwidths do not seem to
systematically differ which supports our previous argumentation that the number of
clusters is sufficiently large in our analysis (see Section 4).
33 We aim to group together EAs that are more similar than others even though they
all belong to the same bin (i.e., same value of the running variable) by using this
interaction term. The month of the NHIS introduction is arguably very useful in this
regard because EAs can be observed at very different points in time and are therefore
likely be quite different from one another (e.g., exposed to different temporary
shocks).

Fig. 3 (continued)
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ments, our point estimate falls in the lower range of several studies
estimating the effect of comprehensive health coverage (Wagstaff,
2010; Limwattananon et al., 2015). In these studies, enrolment
rates were considerably higher (with more than 60% of the eligible
population being enrolled). Similarly, our estimated effects on
child labor in the full sample fall short relative to Landmann and
Frölich (2015) who also report very high enrolment rates. King
et al. (2009), on the contrary, report estimates for the effects on
out of pocket payments that are relatively close to ours. The
authors find a drop in out-of-pocket payments of about 23% from
the introduction of the public health insurance scheme in Mexico
which had an enrolment rate of roughly 45%. All in all, this compar-
ison to other studies suggests that the enrolment rate in our setting
was likely below 50%, with a lower bound of 20% as suggested by
potentially under-reported statistics provided in NHIA (2010)
(see also Section 2).

5.3. Sensitivity

We conduct several robustness checks to assess the sensitivity
of our findings. We describe in brevity the tests below, and refer
the reader to Tables B.2, B.3 and B.4 in Appendix B.

Triangular weights. As we have presented the triangular
kernel-weighted local polynomial fit in all figures of our RD design,
we also use this weight in our regression analysis. Observations
that are nearer the cutoff receive greater weight, which yields sim-
ilar results to our main specification (Row B of the sensitivity
tables).

Bandwidth choice. When using a 4 and 5 month bandwidth,
we obtain results that are consistent with those from our main
specification (Rows C and D of the sensitivity tables). This sensitiv-
ity check result speaks against a large possibility that the findings
10
reported throughout this paper are an artefact of misspecification
error and under-estimated standard errors as a result of the dis-
creteness of our running variable, respectively (Kolesár and
Rothe, 2018).32

Clustering. While Kolesár and Rothe (2018) recommend clus-
tering at the level of treatment assignment, as we do in the main
part of the paper, we find that our results are robust to more tradi-
tional ways of clustering. Specifically, we observe similar results
when standard errors are clustered by the running variable inter-
acted with the month of NHIS introduction (Row E of the sensitiv-
ity tables).33 If anything, our baseline approach produces more
conservative inference. We also test that the results are consistent
to clustering at the running variable, district level, and at the inter-
action between the date of implementation of the NHIS and date of
our survey (not reported, results available upon request).

Randomization inference. Since the size of the estimation
sample is relatively small, we check the robustness of our results
to a randomization inference test. This test allows the proper infer-
ence in context of small samples, stratified or clustered treatment
assignments, or nonstandard randomization techniques (Heß,
2017). The resulting significance levels of the point estimates are



Table 3
RD estimates effects of NHIS introduction on coping mechanisms against health shocks.

Full Sample Less Sickness More Sickness

Mean Level Logarithm log(x + 1) Mean Level Logarithm log(x + 1) Mean Level Logarithm log(x + 1)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A. Loans
Rate 1.95 �0.53 3.80 �0.56 3.70 0.15

(1.78) (1.30) (0.93)
Amount 24.01 �1.49 �8.95 23.98 �7.41 �2.57 30.05 �5.98 �2.79***

(3.56) (9.32) (11.46) (1.71) (11.44) (1.29)

B. Remittances
Rate 18.33 �1.18* 19.44 �2.08 35.37 �2.24**

(0.68) (1.36) (1.00)
Amount 118.21 �4.13 �2.91 125.45 �4.27 �4.72 201.45 �4.63* �2.89**

(2.39) (2.21) (3.34) (23.13) (3.05) (1.43)

C. Adult labor supply
Employment 85.72 �2.17� 86.39 �2.54 87.57 �5.71*

(1.14) (2.26) (2.97)
Earnings 147.15 �13.36 �2.53 124.49 �1.39 1.23 330.37 �15.26 �3.50

(11.77) (4.05) (3.70) (3.70) (46.45) (6.60)
Households 3,718 1,073 881
EA (cluster) 520 447 378

D. Child labor
Rate 18.08 �1.02 18.78 �0.27 36.36 �8.00**

(6.46) (8.69) (3.79)
Earnings 2.95 �1.10 �1.33 4.82 �0.89 �0.30 9.91 �1.19 �2.57

(1.67) (1.95) (1.61) (1.43) (4.28) (3.20)

E. Children time allocation
HH Chores 5.85 �0.33*** �1.59** 5.23 �0.32*** �1.77** 7.18 �0.51** �2.78**

(0.11) (0.70) (0.10) (0.64) (0.22) (1.26)
School 23.01 0.58* 1.95** 23.89 0.49 1.53** 19.66 1.01* 2.59**

(0.33) (0.92) (0.31) (0.76) (0.39) (0.96)
Households 2,228 619 597
EA (cluster) 516 368 311

Notes: See notes in Table 2.
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fully consistent to those reported in the main section of the paper
(Row F of the sensitivity tables).

No control variables. We include control variables in our main
specification as there are some minor imbalances across pre- and
post-NHIS samples (see Table 1). However, our results are fully
consistent to removing all control variables from the regression
equation (Row G of the sensitivity tables).

Sample selection.We impose the same sample restriction used
for children outcomes in all regressions. That is, we restrict the
analysis to households with children. We observe some differences
in the magnitude relative to the point estimates obtained for
households with and without children (Row H of the sensitivity
tables). This especially applies to the full sample, which is not split
by health shock intensity. Nevertheless, removing childless house-
holds does not alter the inference and main conclusions reported in
the previous section.

Alternative health shock measures. In order to explore
whether our results change if we use different health shock mea-
sures, we define two different indicators. First, we take the ratio
of the weighted sum of the days that every adult in the household
reported having their activities of daily living (ADL) limited by an
illness or injury.34 Just as with the sample divided by our sickness
34 Analogous to the previous measure, we construct:

ADLhts ¼
PI

i¼1adlihts
14nh

;

where adl are the days individual i from household h has reported a limitation on
their ADL due to sickness, over the two weeks before the interview.The median lim-
itation ratio of illnesses over all household members is 0.07. Accordingly, we classify
households in which less than 7 percent of the days in the last two weeks were
affected by an ADL limiting illness as low ADL limited households.
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intensity measure, we find that the responses to the NHIS are con-
centrated among households with more ADL limitations (see Row I
of the sensitivity Tables B.3 and B.4). For these households, the NHIS
entailed a large drop in medical payments. We must note that the
samples are much smaller (459 households for less sickness sample
and 404 households for more sickness sample), since a smaller frac-
tion of households reported ADL limitations in the survey. This
explains the larger standard errors and relatively pronounced dis-
crepancies when using the log as opposed to the level of variables.
Notwithstanding, the results are similar to the results of our stan-
dard measure and confirm that the NHIS has a greater impact among
households with more severe health shocks.

The second health shock variable follows our standard measure,
but identifies households that lost at least one week (over the two
weeks before the interview) due to sickness as being exposed to a
health shock. While this measure is relatively more straightfor-
ward to interpret, the estimates rely on a small sample of 264
households. We find very large effects on medical payments, an
increase in consumption (from non-food consumption), a sizeable
drop in remittances and an improvement in children outcomes
(see Row J of Table B.4). The point estimates tend to be larger than
when using our standard health shock measure. This is evidence in
support of the hypothesis that the NHIS had a greater impact on
households with more severe health shocks, i.e., a dose response
function between sickness intensity and avoidance of means of
consumption smoothing as a result of insurance.35
35 Consistent with this, when limiting our sample to households that have not
experienced any health shock, we find no statistically significant effects of the NHIS
on the various outcomes of interest (see Row I of B.2).



Fig. A.1. NHIS Enrolment Rate. Source:NHIA (2010).
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6. Conclusion

In this paper, we exploit the fact that the implementation of the
NHIS overlapped with the roll-out of the fifth round of the GLSS.
We are able to observe, within the same district, enumeration
areas (EAs) interviewed right before the NHIS introduction, and
EAs interviewed right after. Because the timing of the interview
was external to the timing of the NHIS adoption, we argue that,
within the same district, whether a household was observed before
or after the NHIS implementation was as good as random. We
exploit this variation using a regression discontinuity design,
where the running variable was the months’ from the NHIS imple-
mentation at the district level.

Our results suggest that the introduction of the national health
insurance have induced savings in healthcare expenditures, partic-
ularly from expenditures in medicines. Decreased out-of-pocket
payments have translated into greater non-food frequent con-
sumption and a drop in received remittances. Our results suggest
that these responses from NHIS implementation were larger for
households that experienced a relatively large health shock. For
these households, in addition, we find an increase in class atten-
dance and a drop in child labor. This could be indicative that
households experiencing severe health shocks refrained from
Table A.1
Variable definitions.

Variable Survey question

I. Health outcomes
Outpatient expenditures Outpatient expenditures paid by the household

Inpatient expenditures Inpatient expenditures paid by the household

Medicine purchases Value of medicine purchased by the household

Medical out-of-pocket
payments

–

Catastrophic health care
expenditures

–

Health shock intensity HS Days of illness/injury over the past two weeks?

Less sickness –

More sickness –

II. Consumption

Food consumption How much was spent on . . .since last visit?

Non-food consumption How much was spent on . . .since last visit?

Consumption –

Poverty consumption Is household consumption below the poverty line?

III. Loans and remittances
Remittances received for

health purposes
Does this household receives or collects money or goods
other individual? Use of the cash received.

Amount of remittances
received for health
purposes.

What was the total amount of the cash this household re
this individual during the past 12 months? Use of the ca

Loans for health purposes Does any member of the household owe money or good
person, institution, or business? Purpose of the loan.

Amount of loans for
health purposes

What was the total amount of the original loan? Purpose

12
reducing their investments in human capital of children. Avoidance
of these costly self-insurance mechanisms is potentially an impor-
tant part of the social value of formal health insurance.
Appendix A. Additional descriptives

Fig. A.1 and Tables A.1–A.3.
Selection criteria Timing and
Units

Household outpatient expenses related to
illness/injury over the past two weeks

GHS, over the
past two weeks;

Household inpatient expenses related to
illness/injury over the past two weeks

GHS, over the
past two weeks;

Household medicine expenses related to
illness/injury over the past two weeks

GHS, over the
past two weeks;

Sum of household medical expenses related to
illness/injury over the past two weeks

GHS, over the
past two weeks;

Medical out-of-pocket payments > 10% of the
income in the past two weeks

binary, over the
past two weeks;

Sum of all household members days of illness/
injury over the past two weeks, divided by 14

ratio, over the
past two weeks;

Health shock intensity 6median intensity
sample

binary, over the
past two weeks;

Health shock intensity > median intensity
sample

binary, over the
past two weeks;

Amount spent on food items by household
(including own produce consumption)

GHS, over the
past two weeks;

Amount spent on non-food frequent
consumption (excluding healthcare) by
household

GHS, over the
past two weeks;

Amount spent on food and non-food items by
household

GHS, over the
past two weeks;

Household daily consumption 644.9% mean
daily consumption in Ghana

binary, over the
past two weeks;

from any = 1 if remittances received used for health
purposes.

Binary, at the
time of
interview;

ceived from
sh received.

Amount received in remittances that will be
primarily used for health.

GHS, at time of
interview;

s to another = 1 if money borrowed for health purposes. Binary, at the
time of
interview;

of the loan. Amount of money borrowed for health
purposes.

GHS, at the time
of interview;



Table A.2
Data sources and variable definitions (cont.).

Variable Survey question Selection criteria Timing and Units

IV. Labor market supply of adults
Employment Did any work in the past seven days? = 1 if adult not experiencing a health

shock during the past two weeks of the
household responded yes

0/1 dummy, over the past
week;

Earnings Will you receive any payment for this work?
Amount received?

Monetary payment received for work by
adult

GHS, over the past week;

V. Children outcomes
Child labor Hours worked in the past 7 days? = 1 if children below 12 work more than

one hour per week, children aged in
between 12 and 13 work 14 h or more,
and teens between 14 and 17 work more
than 43 h

0/1 dummy, over the past
week;

Hours of household
chores

Disaggregated questions on hours spent doing different
household chores

Sum of all reported hours spent doing
household chores by children

hours, over the past week;

Hours of class attended How many hours of class did Name attend last week? Hours of school attended by child Hours, over the past week;
Hours of homework How many hours of homework did Name do last week? Hours of homework done by child Hours, over the past week;

Table A.3
Sample sizes by optimal bandwidth.

Full Sample Less Sickness More Sickness
(1) (2) (3)

Observations by Optimal Bandwidth for medical payments, consumption, loans and remittances
4 months
Households 3,073 889 777
EA (cluster) 430 369 326
d�dateNHIS (cluster) 45 44 44
5 months
Households 3,502 1,009 843
EA (cluster) 486 345 296
d�dateNHIS (cluster) 53 52 52
6 months
Households 3,718 1,073 881
EA (cluster) 520 447 378
d�dateNHIS (cluster) 60 59 58

Observations by Optimal Bandwidth for children outcomes
5 months
Households 2,097 584 570
EA (cluster) 486 345 296
d�dateNHIS (cluster) 53 52 51
6 months
Households 2,228 619 597
EA (cluster) 516 368 311
d�dateNHIS (cluster) 60 59 57
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Appendix B. Additional results

Figs. B.1 and B.2.
Tables B.1–B.4.
Fig. B.1. Health shock measures. Notes: See Notes to Fig. 2. Panel A uses the sample of households which report any sickness episode (1950 households). Panel B uses the full
sample of households (3718 households).
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Fig. B.2. Medical expenditures and consumption (GHS, �10,000). Notes: See Notes to Fig. 2.

Table B.1
RD estimates effects of NHIS introduction on labor supply of ill adults.

Full Sample Less Sickness More Sickness

Mean Level Logarithm log(x + 1) Mean Level Logarithm log(x + 1) Mean Level Logarithm log(x + 1)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Ill adult labor supply
Employmentq 12.81 1.98 13.46 1.34 12.34 1.63

(1.63) (1.00) (1.76)
Households 2,179 968 1211
EA (cluster) 553 421 498
Earnings� 55.96 0.10 0.01 118.42 �0.05 0.00 10.12 0.23 0.01

(0.45) (0.01) (1.01) (0.02) (0.20) (0.01)
Households 1,852 843 1,009
EA (cluster) 466 362 420

Notes: See notes in Table 2. Employment coefficients are estimated with an optimal bandwidth of 7 months, and earnings of 5 months. Reported sample sizes are these of the
optimal bandwidths.
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Table B.2
Sensitivity tests.

Medical
expenditures

Consumption Loans Remittances Adult labor supply Child labor Household chores School
attendance

Level Log Level Log Rate Level Log Rate Level Log Rate Level Log Rate Level Log Level Log

A. Baseline -3.83** -0.17** 4.04 0.04* -0.53 -1.49 -0.09 -1.18* -4.13 -0.02 -2.17* -13.36 -0.03 -1.02 -0.33*** -0.02** 0.58* 0.02**

(1.83) (0.08) (2.59) (0.02) (1.78) (3.56) (0.09) (0.68) (2.39) (0.02) (1.14) (11.77) (0.04) (6.46) (0.11) (0.01) (0.33) (0.01)
B. Triangular weights �3.98* �0.14** 4.08 0.03* �0.51 �3.46 �0.09 �1.13 �6.26 �0.02 �3.78*** �14.18 �0.03 �0.30 �0.30*** �0.01 0.51 0.02**

(2.09) (0.07) (2.80) (0.02) (1.57) (3.55) (0.09) (0.72) (4.29) (0.02) (0.77) (12.57) (0.03) (5.33) (0.10) (0.01) (0.36) (0.01)
C. BW 5 months �4.11** �0.16** 3.91 0.05** �0.46 �1.46 �0.09 �1.18 �5.16 �0.02 �3.20*** �13.14 �0.03 �0.89 �0.33*** �0.02** 0.58 0.02**

(1.81) (0.08) (2.64) (0.02) (1.81) (3.56) (0.09) (0.69) (4.50) (0.02) (0.87) (12.20) (0.03) (6.54) (0.11) (0.01) (0.34) (0.01)
D. BW 4 months �3.69** �0.16** 2.87 0.03* �0.42 �1.90 �0.09 �1.21* �6.22 �0.02 �1.56* �14.77 �0.03 �0.74 �0.33*** �0.02** 0.59 0.02**

(1.86) (0.08) (2.75) (0.02) (1.82) (3.65) (0.09) (0.69) (4.60) (0.02) (0.89) (13.26) (0.03) (6.56) (0.11) (0.01) (0.34) (0.01)
E. Cluster �3.83*** �0.17*** 4.04 0.04* �0.53 �1.49 �0.09 �1.18** �4.13 �0.02 �2.17** �13.36 �0.03 �1.02 �0.33*** �0.02** 0.58** 0.02**

(1.49) (0.05) (2.31) (0.02) (1.02) (3.41) (0.05) (0.51) (2.68) (0.01) (0.84) (12.73) (0.04) (5.27) (0.08) (0.00) (0.28) (0.01)
F. RI �3.83** �0.17** 4.04 0.04* �0.53 �1.49 �0.09 �1.18 �4.13 �0.02 �2.17* �13.36 �0.03 �1.02 �0.33*** �0.02** 0.58* 0.02**

p-value [0.05] [0.03] [0.14] [0.06] [0.56] [0.67] [0.24] [0.11] [0.14] [0.31] [0.09] [0.32] [0.54] [0.76] [0.01] [0.01] [0.09] [0.04]
G. No controls �4.46** �0.18** 3.99 0.06*** �0.75 �3.00 �0.09 �1.40* �3.89 �0.02 �1.63* �13.92 �0.03 �0.72 �0.31*** �0.02** 0.56* 0.02**

(1.95) (0.08) (2.78) (0.02) (1.94) (3.65) (0.09) (0.71) (4.48) (0.02) (0.97) (12.08) (0.03) (6.71) (0.09) (0.01) (0.31) (0.01)
H. No childless HH �5.95*** �0.21* 3.18 0.03* �2.19 �0.45 �0.15 �0.33 �3.54 �0.04 �1.60** �19.69 �0.03 �1.02 �0.33*** �0.02** 0.58* 0.02**

(2.33) (0.11) (3.68) (0.02) (2.13) (6.31) (0.12) (0.83) (6.00) (0.03) (0.75) (18.46) (0.04) (6.46) (0.11) (0.01) (0.33) (0.01)
I. No health shock �0.67 �0.02 �2.34 0.05 �1.63 �6.06 �0.01 �3.04 �4.84 �0.02 �2.24 �4.30 �0.03 3.45 �0.29 �0.01 0.01 0.00

(1.55) (0.02) (4.52) (0.03) (1.11) (5.73) (0.13) (1.89) (3.11) (0.02) (2.80) (3.08) (0.03) (6.83) (0.24) (0.00) (0.39) (0.01)

Notes: The first row reports our baseline results, as presented in Tables 2 and 3. Row B reports estimates when clustering at the interaction between the running variable and the date of implementation of the NHIS level. Row C
shows the estimate and p-value (in brackets) from performing a randomized inference test. Row D shows the results from the baseline specification using a bandwidth of 5 months around the cutoff, and row E of 4 months. In Row F,
we use triangular weights so that observations nearer the cutoff have more influence. Row G shows the baseline specification estimated without control variables. In row H, we run the baseline specification on a sample excluding
these households without children (sample of 2,228 households). Lastly, row I presents the results for the sample of households not reporting any health shock in the two weeks before the interview (sample of 1,764 households).
For all outcomes, log-transformed estimates should be multiplied by 100 and interpreted as percent change.

Table B.3
Sensitivity tests- Less sickness sample.

Medical
expenditures

Consumption Loans Remittances Adult labor supply Child labor Household chores School
attendance

Level Log Level Log Rate Level Log Rate Level Log Rate Level Log Rate Level Log Level Log

A. Baseline -3.79 -0.06 3.75 0.02 -0.56 -7.41 -0.03 -2.08 -4.47 -0.04 -2.54 -1.39 0.01 -0.27 -0.32*** -0.02** 0.49 0.02**

(2.94) (0.05) (5.15) (0.02) (1.30) (11.46) (0.02) (1.36) (3.34) (0.03) (2.26) (3.70) (0.04) (8.69) (0.10) (0.01) (0.31) (0.01)
B. Triangular weights �1.11 �0.05 7.16 0.02 0.07 �13.89 �0.03 �2.27 �6.04 �0.04 �3.25 �1.10 0.02 �0.45 �0.29** �0.02** 0.41 0.01

(2.57) (0.06) (5.56) (0.03) (1.46) (18.08) (0.02) (1.33) (4.72) (0.22) (2.49) (4.18) (0.04) (7.36) (0.12) (0.01) (0.37) (0.01)
C. BW 5 months �1.18 �0.06 4.00 0.04 �0.46 �8.10 �0.03 �2.15 �4.41 �0.04 �3.84 �0.45 0.01 �0.30 �0.32*** �0.02** 0.49 0.02**

(2.43) (0.05) (5.29) (0.03) (1.33) (12.31) (0.02) (1.40) (3.36) (0.23) (2.38) (3.75) (0.04) (8.69) (0.10) (0.01) (0.31) (0.01)
D. BW 4 months �2.55 �0.05 4.37 �0.02 �0.59 �11.46 �0.03 �2.18 �4.87 �0.04 �1.23 �1.34 0.01 �0.24 �0.32*** �0.02** 0.51 0.02**

(2.64) (0.05) (5.52) (0.03) (1.35) (15.70) (0.02) (1.42) (3.54) (0.23) (2.37) (4.00) (0.04) (8.80) (0.10) (0.01) (0.31) (0.01)
E. Cluster �3.79 �0.06 3.75 0.02 �0.56 �7.41 �0.03** �2.08 �4.47 �0.04 �2.54 �1.39 0.01 �0.27 �0.32*** �0.02*** 0.49 0.02**

(2.47) (0.05) (5.74) (0.02) (1.13) (9.83) (0.01) (1.15) (3.17) (0.16) (1.89) (3.99) (0.05) (6.84) (0.08) (0.00) (0.32) (0.01)
F. RI �3.79 �0.06 3.75 0.02 �0.56 �7.41 �0.03 �2.08 �4.47 �0.04 �2.54 �1.39 0.01 �0.27 �0.32*** �0.02** 0.49 0.02**

p-value [0.14] [0.18] [0.41] [0.33] [0.45] [0.56] [0.11] [0.11] [0.25] [0.34] [0.29] [0.52] [0.74] [0.84] [0.01] [0.02] [0.22] [0.04]
G. No controls �3.20 �0.07 1.40 0.06** �0.75 1.16 �0.02 �1.69 �4.98 �0.04 �2.81 �0.81 0.01 1.29 �0.30** �0.02** 0.56 0.02**

(3.05) (0.05) (6.72) (0.02) (1.15) (1.80) (0.02) (1.23) (3.31) (0.23) (2.51) (3.66) (0.04) (8.78) (0.12) (0.01) (0.34) (0.01)
H. No childless HH �3.15 �0.07 �6.95 0.04 0.76 3.79 �0.03 �2.24 �6.10 �0.05 �2.46 1.89 0.00 �0.27 �0.32*** �0.02** 0.49 0.02**

(2.20) (0.06) (6.39) (0.03) (1.71) (2.64) (0.03) (2.02) (6.41) (0.28) (3.06) (6.39) (0.05) (8.69) (0.10) (0.01) (0.31) (0.01)
I. ADL healh shock �1.43 �0.07 2.03 0.06* �0.04 1.60 0.05 �2.23 �3.33 �0.03 �0.13 2.66 0.03 1.79 �0.33** �0.02** 0.28 0.02

(7.45) (0.05) (9.32) (0.03) (1.74) (2.15) (0.23) (2.01) (4.83) (0.02) (2.38) (4.25) (0.07) (11.42) (0.15) (0.01) (0.55) (0.02)

Notes: See notes to Table B.2. Sample size for row I is 681 households (353 clusters).
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Table B.4
Sensitivity tests- More sickness sample.

Medical
expenditures

Consumption Loans Remittances Adult labor supply Child labor Household chores School
attendance

Level Log Level Log Rate Level Log Rate Level Log Rate Level Log Rate Level Log Level Log

A. Baseline -11.98** -0.29* 3.77 0.06* 0.15 -5.98 -0.03*** -2.24** -4.63* -0.02** -5.71* -15.26 -0.03 -8.00** -0.51** -0.03** 1.01** 0.03**

(5.55) (0.16) (3.08) (0.03) (0.93) (11.44) (0.01) (1.00) (3.05) (0.01) (2.97) (46.45) (0.07) (3.79) (0.22) (0.01) (0.39) (0.01)
B. Triangular weights �12.17** �0.21 6.69 0.08** �0.12 �6.85 �0.03*** �2.08** �4.16*** �0.27** �8.58** �17.67 �0.04 �7.69* �0.41** �0.02** 1.06** 0.03**

(5.58) (0.14) (3.41) (0.04) (0.92) (12.64) (0.01) (0.88) (1.15) (0.13) (3.11) (46.08) (0.07) (4.18) (0.19) (0.01) (0.45) (0.01)
C. BW 5 months �10.65** �0.29* 4.98 0.07*** 0.17 �7.06 �0.03*** �2.26** �4.00* �0.28** �7.28** �16.95 �0.03 �7.68** �0.52** �0.03** 1.00** 0.03**

(5.04) (0.16) (3.45) (0.03) (0.94) (12.46) (0.01) (1.01) (2.14) (0.14) (3.07) (48.03) (0.07) (3.85) (0.23) (0.01) (0.40) (0.01)
D. BW 4 months �10.35* �0.24 6.05 0.09** 0.26 �7.65 �0.03*** �2.24** �4.70*** �0.27* �6.81** �24.12 �0.03 �7.27* �0.52** �0.03** 1.01** 0.03**

(5.28) (0.16) (3.83) (0.04) (0.95) (12.63) (0.01) (1.01) (1.39) (0.14) (3.40) (53.39) (0.07) (3.93) (0.23) (0.01) (0.40) (0.01)
E. Cluster �11.98*** �0.29*** 3.77 0.06*** 0.15 �5.98 �0.03*** �2.24*** �4.74** �0.29** �5.71* �15.26 �0.03 �8.00* �0.51*** �0.03** 1.01** 0.03***

(3.57) (0.09) (2.08) (0.02) (0.77) (8.38) (0.01) (0.56) (2.17) (0.10) (3.41) (37.37) (0.05) (4.50) (0.17) (0.01) (0.36) (0.01)
F. RI �11.98** �0.29* 3.77 0.06** 0.15 �5.98 �0.03*** �2.24*** �4.74* �0.29** �5.71* �15.26 �0.03 �8.00** �0.51** �0.03** 1.01** 0.03**

p-value [0.04] [0.08] [0.34] [0.03] [0.45] [0.56] [0.01] [0.04] [0.09] [0.04] [0.09] [0.46] [0.54] [0.04] [0.05] [0.02] [0.02] [0.02]
G. No controls �12.94** �0.36** 1.54 0.10*** �0.32 �6.53 �0.03*** �2.24** �4.71 �0.29** �4.48 �14.62 �0.02 �8.18** �0.41** �0.02** 0.94** 0.02**

(5.94) (0.19) (3.24) (0.03) (0.94) (12.75) (0.01) (1.06) (3.67) (0.14) (2.92) (46.21) (0.06) (4.03) (0.18) (0.01) (0.34) (0.01)
H. No childless HH �12.89** �0.35 4.68 0.08*** 0.37 �11.68 �0.05** �3.12** �4.32 �0.39** �5.69* �24.43 �0.04 �8.00** �0.51** �0.03** 1.01** 0.03**

(5.60) (0.21) (4.51) (0.03) (1.29) (22.33) (0.02) (1.42) (3.29) (0.19) (3.25) (61.65) (0.09) (3.79) (0.22) (0.01) (0.39) (0.01)
I. ADL health shock �8.12* �0.38** 3.03 0.01 �1.29 �6.41 �0.11 �3.23 �6.55 �0.04** �5.61 �34.16 �0.09 �7.07 �0.57*** �0.02** 0.55 0.02**

(4.61) (0.15) (2.31) (0.03) (1.53) (7.27) (0.11) (1.76) (20.80) (0.02) (5.02) (37.27) (0.05) (8.51) (0.20) (0.01) (0.36) (0.01)

J. Severe health shock �13.98** �0.57** 2.44 0.08* �0.63 �3.50 0.00 �4.59 �10.31 �0.06* �11.28** �122.33 �0.08 �8.21 �0.74*** �0.05*** 0.66 0.04**

(6.52) (0.25) (2.02) (0.04) (3.54) (3.64) (0.41) (3.45) (21.39) (0.03) (4.98) (148.96) (0.11) (8.88) (0.20) (0.01) (0.78) (0.02)

Notes: See notes to Table B.2. Sample size for row I is 630 households (331 clusters). Sample size for row J is 336 households (209 clusters).
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