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A railway timetable states at what times trains arrive or depart at certain locations in the railway network.
The design of a timetable is an extremely complex puzzle, and years of investigations are necessary to
design a timetable from scratch. Amongst several other aspects, planners should take the travel demand, 
connections between trains, capacity on the tracks and in the train, and daily disturbances into account
when designing a timetable. This can easily lead to the situation that there are too many restrictions that a 
timetable has to satisfy, such that no longer a timetable can exist satisfying all these restrictions.

In the fi rst part of this thesis, methods are developed that can support the strategic, long-term design of
a timetable. Timetables are computed that match with travel demand as good as possible, without taking 
infrastructure capacity into account. Using these ideal timetables, one can make clear whether regular 
departure patterns are useful or not, and how this relates to the expected travel time of passengers.
Another method tries to fi nd a timetable that can be operated on a given infrastructure network, and that 
is as similar as possible to the ideal timetable.

The second part of this thesis is oriented towards short-term timetabling. First of all, a method is
developed that deals with the situation in which there are too many restrictions that a timetable has to 
satisfy. It fi nds relaxations to these restrictions, such that a feasible timetable can exist. This can be used 
when additional trains are scheduled into an existing network. Another approach aims at designing a
timetable that is robust against minor disturbances that can occur in the real-life operation. This helps in 
deciding where to add time supplements in the network to absorb delays.
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Chapter 1

Introduction

On an average working day, approximately 750.000 passengers use the train in the
Netherlands, mainly to travel to work or to school. These passengers are transported
by over 5000 scheduled sprinter and Intercity services per day (NS, 2019), operated
by the largest public transport railway operator in the Netherlands: NS (Nederlandse
Spoorwegen, the Dutch name for Netherlands Railways). Next to NS, there are a
number of other companies operating trains on the Dutch railway network, both
for the transport of passengers and for freight, leading to an even more congested
network. Designing a timetable, i.e., scheduling all these services, such that they
can be operated safely and efficiently in such a crowded network is an extremely
challenging problem and covers months up to years of preparations and planning.
This is one of the reasons that Decision Support Systems have been developed at
NS to support the design of a timetable (Hooghiemstra et al., 1999; Kroon et al.,
2009; Schrijver and Steenbeek, 1993). However, due to the strong increase of railway
services on the network, several systems can no longer be used to compute a timetable.

In this thesis, we develop new models and algorithms to support the design of a rail-
way timetable. Some of our methods are designed for a period long before the actual
operation of the timetable will take place. They can be used to develop completely
new timetables. It now becomes easier to select possible scenarios to investigate fur-
ther, thus speeding up the timetable design process. Two other methods are designed
for a period relatively close to the actual operation. The first method aims at finding
a timetable when some constraints that the timetable has to satisfy are in themselves
in contradiction. The second method aims at computing a delay-resistant timetable.

1
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Railway timetabling is an academically very challenging problem. This is motivated
by the large amount of literature focussing on this problem that has been produced
in the last decades, see for example Cacchiani and Toth (2012), Hansen and Pachl
(2014), Caimi et al. (2017) and Borndörfer et al. (2018) for overviews. However, more
research is needed to design new models and algorithms for railway timetabling, as
is indicated by the aforementioned references. Next to this, the increased utilisation
of the networks lead to new challenges that have to be overcome. In this thesis,
the models and algorithms are evaluated on the railway network in the Netherlands,
although they are not limited to use only in the Netherlands. Instead, many other
countries have a very crowded railway network, as is clearly shown by Boston Con-
sulting Group (2017). They also face the issue of Decision Support Systems that can
no longer be used, for example in Germany: Deutschland-TAKT (2019), Großmann
et al. (2015).

1.1 Railway Planning Problems

In order to understand the context in which a railway timetable is designed, it is
necessary to know what is considered as input to the timetabling problem. Further-
more, it is important to know how the other railway planning problems are related
to the timetabling problem, as timetabling is not the only planning problem that has
to be solved in order to provide a good service to the passengers.

The main railway planning problems are line planning, timetabling, rolling stock
scheduling and crew planning. There are several ways in which these different plan-
ning problems can be classified. A common classification is to consider the planning
horizon of the different planning problems, and in that case a strategic, a tactical and
an operational planning phase can be identified (Abbink, 2014; Huisman et al., 2005).
The strategic planning phase encompasses a time horizon of two to ten years before
the actual operation. The tactical phase covers the period of one to two years before
operation, while the operational phase covers the period of a few weeks up to months
before the actual operation. Real time planning can be considered as well, but this
mainly covers the management of the daily processes and not so much planning in
advance. An overview of how we position the different planning problems according
to the planning horizon is shown in Figure 1.1. A solution of one problem serves
as input for the next problem, i.e., a timetable serves as input for the rolling stock
scheduling problem. Note that, although the planning problems are often considered
in this order (Borndörfer et al., 2018), it is not the only way in which they can be
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considered. An alternative can be found in Schöbel (2017). We now briefly describe
the content of each of the aforementioned problems.

Planning problemPlanning phase

Infrastructure

Line planning

Timetabling

Rolling stock scheduling

Crew planning

Delay and disruption
management

Strategic

Tactical

Operational

Real time

Figure 1.1: Railway planning problems

Railway planning starts with the design of or the extensions to an infrastructural
network. New infrastructure increases the network capacity and hence influences
the services provided. Infrastructure is generally considered on a macroscopic, a
mesoscopic or a microscopic level (Goverde et al., 2016). The macroscopic level
contains the least amount of detail, the microscopic level the most. Macroscopic
level infrastructure is generally used a long time before the actual operation. Closer
to the operation, the mesoscopic and microscopic level are more relevant.

The line planning problem is the problem of selecting a set of train lines that have to
be operated on the infrastructure network. Each train line consists of a route through
the network, a list of stations where the train stops and a frequency at which the
line has to be operated. Overviews of approaches to solve the line planning problem
are provided by Kepaptsoglou and Karlaftis (2009) and Schöbel (2012). After the
line planning problem, a timetable is generated based on the line plan. More details
about timetabling are given in Section 1.2.

Having a timetable, physical train units must be assigned to the trips that have
to be operated. This is called the rolling stock scheduling. The objective here is
to schedule the train units in such a way that capacity is sufficient to accomodate
the passengers, while keeping the operators costs low, as rolling stock is one of the
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most expensive parts of the operations in the rail sector. Examples of creating the
schedules of rolling stock in rail networks can for example be found in Abbink et al.
(2004), Fioole et al. (2006), Maróti (2006) and Lin and Kwan (2014).

After the rolling stock has been scheduled, the crew is scheduled. Crew scheduling
is the problem of assigning tasks to personnel. The main restrictions that must be
satisfied here vary per country and railway company. In the Netherlands, important
restrictions are those imposed in the collective labour agreement. Furthermore, a
nice division of work has to be made. To date, crew planning is solved by a two-
phase approach: first crew scheduling, and then crew rostering (Abbink, 2014). In
crew scheduling, the days of work have to be constructed, and in crew rostering
the constructed duties have to be assigned to the crew members (Breugem, 2020).
Approaches to integrate the two phases can be found in Breugem (2020).

Finally, everyday operations never go as planned. Therefore, adjustments must be
made on a daily basis as soon as disturbances occur. The timetable has to be updated,
and rolling-stock and crew must be rescheduled. Approaches to do so can be found
in e.g. Veelenturf (2014). To some extent, disturbances and disruptions can be
anticipated, and it can be attempted to build schedules in a way that makes them
resilient towards these (cf. Cacchiani et al., 2008a; Lusby et al., 2018)

Railway planning is traditionally performed sequentially: First a line plan is determ-
ined, then a timetable is designed, followed by scheduling the rolling stock and the
crew, i.e., the order that is displayed in Figure 1.1. However, this does lead to subop-
timal solutions. Or, even worse, a solution for one planning problem can turn out to
be infeasible for the next problem. As an example, it can occur that in the line plan-
ning phase a line plan is determined that can never be scheduled in the timetabling
phase, as there are too many trains sharing a part of the infrastructure.

One option to avoid these ‘mis-connections’ between planning problems is to integrate
them into one problem. In the literature, there are several attempts integrating two
or more planning problems. For example, Schöbel (2015) integrate line planning
and timetabling, Lübbecke et al. (2018a) integrate line planning, timetabling and
rolling stock scheduling, and Huisman (2004) shows how the scheduling of personnel
and rolling stock can be integrated, which is done especially at bus companies. As
each of the aforementioned planning problems is already challenging to solve for
practical cases, the integration of multiple planning problems leads to even more
challenging problems to be solved, although in theory overall better solutions can be
obtained. An interesting overview of solutions methods to various planning problems,
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the integration of them, and a framework for iterative solving these problems in
different orders is given by Schöbel (2017).

1.2 Timetabling at Netherlands Railways

In timetabling, the task is to schedule a set of events, such that a set of restrictions is
satisfied. As input, a line plan is given, stating which trains must be scheduled, and
the output is a timetable. In macroscopic timetabling, each train line generates a set
of events, corresponding to the arrivals and departures of this train at the stations it
is visiting. For each of these events, a point in time has to be determined at which
this event takes place.

Two main variants of timetables can be distinguished, namely periodic and aperiodic
timetables. Whereas in an aperiodic timetable the timetable of every hour and day
can be different, a periodic timetable has a certain regularity. That is, the timetable
for a base period, generally one hour, is repeated multiple times, e.g., for a whole
day. In the off-peak hours, some trains can be deleted and in the nights only a
small number of trains are scheduled. Using a periodic timetable is often a design
principle. Hybrid combinations of periodic and aperiodic timetables can be used
as well (Robenek et al., 2017). The advantage of a periodic timetable is that the
timetable is relatively easy to remember and only a timetable for one base period has
to be designed. Periodic timetables are common in many European countries, also
this thesis focusses solely on periodic timetabling.

A timetable has to satisfy many restrictions, also referred to as activities or con-
straints. If a timetable exists satisfying all constraints, this timetable is called feas-
ible, if not, it is called an infeasible timetable. According to Caimi et al. (2017), a
model that is commonly used to generate a periodic timetable is the Periodic Event
Scheduling Problem (PESP) as introduced in Serafini and Ukovich (1989). In this
model, all activities are of a specific form and restrict the time difference between
pairs of events to be in a given (periodic) interval. The PESP framework can be
used to model practically all constraints that a timetable has to satisfy (Liebchen
and Möhring, 2007). Examples include driving activities (restricting the time dif-
ference between a departure and the next arrival), dwell activities (restricting the
time a train dwells at a station), transfer activities (to guarantee a good transfer
time from one train to another) and safety activities (to guarantee a safe operation
of a timetable). As an example, a driving activity can be used to restrict the time
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difference between the departure of an Intercity train from Rotterdam Central Sta-
tion and the next departure at Rotterdam Alexander to be at least 8 minutes, and
at most 10 minutes. More details about the PESP and its modelling framework are
provided in Chapter 2. Although finding a feasible solution to a PESP problem is
not an easy task, many techniques are available to find such a feasible schedule for
practical cases, often in a short time (cf. Caimi et al., 2017).

The task of finding a timetable that is not only feasible but optimal with respect to
some objective function is much more challenging. An objective function assigns a
value to a timetable, based on characteristics of the timetable. The task then is to
find the best timetable according to these objective values.

There are several options for an objective function. First of all, we have the min-
imisation of travel time of passengers in the timetable. Such an objective function
is used in Chapters 3 and 4 of this thesis. Travel time is not the only aspect of a
timetable that passengers prefer to have, they also like a timetable to be resilient,
i.e., to ‘absorb’ delays that occur in everyday practice. A method to achieve this
is to add time supplements to the trips of the trains, such that a small timebuffer
is created and delays do not propagate throughout the network. Overviews on how
resilient timetables can be created are for example provided by Goerigk and Schöbel
(2010), Cacchiani and Toth (2012) and Lusby et al. (2018). In Chapter 6 of this
thesis, an approach is given for dealing with periodically reoccurring disturbances.

A third option for an objective function can be used when no feasible timetable exists
satisfying all the constraints. Then a timetable is aimed for that satisfies as many
constraints as possible, or that modifies the constraints as little as possible, such that
they allow for a feasible solutions to exist. This is done in Chapter 5 of this thesis.

More (mathematical) details about the timetabling model, including a motivation
of the difficulties, solution techniques and a practical example, are provided in
Chapter 2.

1.3 Contributions

The contributions of this thesis are threefold. First of all, we propose several novel op-
timization problems that are aimed at improving the timetable design. Solving these
problems leads to better motivated decision making and insights into the timetable
structures. In Chapter 3, an optimization problem is proposed for the strategic plan-
ning phase, to compute what a timetable would ideally look like from a passengers
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perspective. To the best of our knowledge, we are the first in approaching this prob-
lem in such a systematic way. It is useful for determining new ways of scheduling
the trains and identifying important transfer and synchronisation options. The same
model is used in Chapter 4, but now more restrictions have to be incorporated, mak-
ing it a more challenging problem. Chapter 5 discusses the problem of finding a
feasible timetable, when the constraints are such that a feasible solution does not ex-
ist. This involves updating the constraints as little as possible. Chapter 6 discusses
the problem of computing a periodic timetable taking into account periodic disturb-
ances. Handling the so-called ‘robustness’ already in the design of a timetable has not
received much attention in the literature, especially not when the disturbances are
assumed to be periodic. Most existing approaches start from a given timetable, and
try to make that timetable robust, whereas we incorporate the robustness-concept
immediately in the first step of the timetable-design.

Secondly, for each of the proposed problems, we developed a solution approach. In
Chapter 3, a heuristic method is developed, in order to compute good solutions
even for networks of a national scale, to create relevant insights. This heuristic is
also applied in Chapter 4. Furthermore, in this chapter an iterative framework is
proposed to combine the method of Chapter 3 with an adapted version of another
existing method and to improve the obtained solutions. Chapter 5 proposes a heur-
istic method to iteratively search for conflicts in the network and to resolve them
as efficiently as possible. Hereby we balance the quality of the solutions and the
time needed to compute them. In Chapter 6, we use techniques from the literature
on robust optimization, in order to compute a robust timetable. More specifically,
we use a linear decision rule, reformulation techniques and cutting-plane methods to
find solutions.

Finally, we evaluate all the proposed optimization problems and our approaches
on real world data from NS. Because of this, the implications for the practice of
designing timetables can be evaluated. Decisions that are made regarding the design
of networks can now be better motivated and the throughput time of generating a
new railway timetable can be reduced.
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1.4 Thesis Outline

The main topic of this thesis is the design of models and algorithms for periodic
timetabling. Although timetabling is assigned to the tactical level (Figure 1.1), we
also consider it in other planning phases. Figure 1.2 provides a schematic overview
where each of the chapters in this thesis is positioned according to its objective and
planning phase.
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Chapter
2

Strategic
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Real time
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travel time

Minimal
violations Robustness

Chapter 3
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Figure 1.2: Schematic overview of the chapters in this thesis.

Chapter 3 considers passenger oriented timetabling in the strategic planning phase,
because it is aimed for designing timetables a long time before the actual opera-
tion, where infrastructure constraints are not important. Chapter 4 has the same
objective, but now in the tactical planning phase, here infrastructure restrictions
play an important role. Chapters 5 and 6 can both be considered in the tactical
and operational planning phases and are therefore positioned in the middle of these
phases. The reason for this is that they are mainly used when a large part of the
timetable already is constructed, and only smaller changes are made. In Chapter 5,
the objective is to find a timetable that violates the restrictions as litte as possible.
In Chapter 6, we compute a timetable that is robust against periodic disturbances.

Each of the aforementioned chapters builds upon the Periodic Event Scheduling Prob-
lem (PESP), which is explained in Chapter 2. This problem can be considered with
practically any objective function, and in the strategic to operational planning phases.
In real time (re)scheduling, the periodicity is less important and other methods can
be more suitable, so PESP is not so relevant there.
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Each chapter can be read as a separate entity. However, in order to understand
the mathematical models proposed in the chapters, understanding PESP is very
important. This is the underlying timetabling model that reappears in every chapter,
so it is recommended to read Chapter 2 first. Next, as already indicated in Figure 1.2,
Chapters 3 and 4 are closely related: Chapter 4 builds upon Chapter 3, so it is
recommended to read these chapters in that order. Chapters 5 and 6 can both easily
be read as independent chapters.

In the following, we briefly summarize Chapters 3–6. As each of these chapters is a
modification of papers (about to be) submitted to academic journals, we provide the
current status of each publication. Chapter 2 is a general overview about timetabling
models that is mainly based on Peeters (2003). The work in Chapter 3 and 5 has
been carried out independently under close supervision of the mentioned co-authors.
Chapter 4 is done together with Valentina Cacchiani and Chapter 6 with Thomas
Breugem, both under close supervision of the other mentioned co-authors.

Chapter 3: G.J. Polinder, M.E. Schmidt, and D. Huisman: “Timetabling for stra-
tegic passenger railway planning”, currently in second round of review at Trans-
portation Research Part B: Methodological. This paper has been awarded the
third price at the INFORMS RAS 2019 student paper competition and ranked
third at the selection of best papers of Rail Nörrkoping 2019.

Timetables are normally designed in the tactical planning phase (see Fig-
ure 1.1), taking into account a given line plan, safety restrictions arising from
infrastructural constraints, as well as regularity requirements and bounds on
transfer times. In this chapter, however, we propose a timetabling approach
that is aimed at decision making in the strategic planning phase, to determine
an outline of a timetable that is good from a passengers perspective. Instead
of including explicit synchronization constraints between train runs (as most
timetabling models do), we include the adaption time (waiting time at the sta-
tion of origin) in the objective function to ensure regular connections between
passengers’ origins and destinations. We model the problem as a mixed in-
teger quadratic program and linearise it. Furthermore we propose a heuristic
to generate good starting solutions. We illustrate the trade-offs between dwell
times and regularity of trains in two case studies based on the Dutch railway
network.
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Chapter 4: G.J. Polinder, V. Cacchiani, M.E. Schmidt, and D. Huisman: “An it-
erative heuristic for passenger-centric train timetabling with integrated adaption
times”, currently under review at Transportation Research Part B: Methodolo-
gical.

In this chapter, we aim at constructing a timetable that minimizes average
perceived passenger travel time, which, in addition to the in-train and trans-
fer times, includes the adaption time (waiting time at the station of origin).
Adaption time minimization allows us to avoid strict frequency regularity con-
straints and, at the same time, to ensure regular connections between pas-
sengers’ origins and destinations. Besides considering safety restrictions (i.e.,
headway times, overtaking and crossing constraints), passenger routing, based
on origin-destination demand pairs, must be taken into account when building
the timetable.

This problem can be modelled as an extension of a Periodic Event Schedul-
ing Problem (PESP) formulation, but cannot be directly solved by a general-
purpose solver for our real-size instances. In this chapter, we propose a heuristic
approach consisting of two phases that are executed iteratively. First, we solve
a simplified model, and determine an ideal timetable that minimizes the aver-
age perceived passenger travel time but neglects safety restrictions. Then, a
Lagrangian-based heuristic modifies train departure and arrival times as little
as possible, in order to obtain a timetable that is feasible with respect to safety
constraints. The obtained timetable is then evaluated to compute the res-
ulting average perceived passenger travel time, and a feedback is sent to the
Lagrangian-based heuristic so as to possibly improve the obtained timetable
from the passenger perspective, while still respecting safety constraints. We
have tested the proposed iterative heuristic approach on real-life instances of
Netherlands Railways, showing that it converges to a feasible timetable very
close to the ideal one.

Chapter 5: G.J. Polinder, L.G. Kroon, K.I. Aardal, M.E. Schmidt, and M. Moli-
naro: “Resolving infeasibilities in railway timetabling instances”, in preparation
for journal submission. This is an extension of Polinder (2015).

One of the key assumptions of timetabling algorithms is that a solution ex-
ists that meets the pre-specified constraints, like driving times, transfer con-
straints and headway constraints. If this assumption is satisfied, in most cases
a timetable can be found rapidly. Nowadays, railways are being used more
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intensively, which leads to a higher utilization of the network. Due to this
increased utilisation, capacity conflicts occur, so that no feasible solution to
the timetabling models can be found, without making subtle but non-trivial
changes to the initial input. Resolving these conflicts is essential for railway
companies with high utilization of infrastructure. In this chapter, we consider
infeasible timetabling instances together with a list of allowed modifications of
the constraints. We iteratively identify local conflicts in these instances and
resolve them by adapting some of the constraints, until there are no more con-
flicts. The adaptations of the constraints are changes in the right-hand sides
that we try to make as small as possible but that resolve the infeasibility. We
empirically show that our method can be improved by enriching the initial
minimal conflicts found with more timetabling constraints. In order to keep
the problems tractable, an iterative procedure is used to find solutions to sub-
problems corresponding to conflicts in the complete timetabling instance. In a
case study on instances from the Dutch railway network, we show that these
instances can be made feasible within a few minutes.

Chapter 6: G.J. Polinder, T. Breugem, T. Dollevoet, and G. Maróti: “An ad-
justable robust optimization approach for periodic timetabling”, published in
Transportation Research Part B: Methodological.

In this chapter, we consider the Robust Periodic Timetabling Problem (RPTP),
the problem of designing a periodic timetable that can easily be adjusted in
case of small periodic disturbances. We develop a solution method for a para-
metrized class of uncertainty regions. This class relates closely to uncertainty
regions known in the robust optimization literature, and naturally defines a
metric for the robustness of the timetable. The proposed solution method
combines a linear decision rule with well-known reformulation techniques and
cutting-plane methods. We show that the RPTP can be solved for practical-
sized instances by applying the solution method to practical cases of Neth-
erlands Railways (NS). In particular, we show that the trade-off between the
efficiency and robustness of a timetable can be analysed using our solution
method.





Chapter 2

Periodic Event Scheduling
Problem

The underlying theme of this thesis are models and algorithms for periodic railway
timetabling in various stages of railway planning. Regardless of the stage in which
timetabling is considered, the basis of all timetabling models in this thesis is the
Periodic Event Scheduling Problem (PESP) as introduced by Serafini and Ukovich
(1989). Notation and details of this model are discussed in Section 2.1. Section 2.2
discusses several solution techniques to solve PESP. A practical example is provided
in Section 2.3. A more extensive description of PESP and several of its properties
can be found in Peeters (2003).

2.1 Definition

The timetabling problem is traditionally preceded by the line planning problem in
railway planning, see also Section 1.1. In the line planning problem, a set of train
lines L is determined that have to be scheduled on the infrastructure network. This
set of lines is considered as input to the timetabling problem. A train line ` ∈ L is a
combination of a train type (e.g. Intercity of local train), a route, a list of stations
where the train stops and a frequency at which the line is to be operated per cycle
period. We assume that each train line is operated in both directions.

13
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There are generally three levels of detail at which an infrastructure network can
be considered: the macroscopic, mesoscopic and microscopic level (Goverde et al.,
2016). In (tactical) timetabling, the infrastructure is often considered on the mac-
roscopic level, that is, as railway stations with a number of tracks connecting them.
Further details like block sections and signalling systems are not important in the
tactical planning stage and can be included in a later planning stage (Radtke, 2014,
Chapter 3.4).

In the case of a macroscopic network, an event-activity network G = (V,A) can
be generated based on a line plan. In this network, the nodes represent the set of
departure and arrival events V , corresponding to the departures and arrivals of the
trains at the various stations in the network. The events are periodically reoccurring
with a cycle period T . For the experiments presented in this thesis, we take T = 60,
that is, we aim at a cyclic timetable with a period of one hour, and events are
scheduled in full minutes. The nodes are linked to each other by arcs, representing
activities A. Each activity is a relation between a pair of events, with lower and
upper bounds on their time difference. They can cover a wide range of restrictions,
see for example Odijk (1996), Peeters (2003). Examples of the most commonly used
activities include the following:

Drive activity This models the (minimum and possibly maximum) driving time
between two stations, based on the distance between them and the maximum
speed of the train. As an example, a drive activity can restrict the time dif-
ference between the departure of an Intercity train from Rotterdam Central
Station and the next arrival at Rotterdam Alexander to be at least 8 minutes.

Dwell activity This restricts the time difference between the arrival of a train at a
station and the time it departs. For small stations, this dwell time is mostly 0
or 1 minute, for larger stations this is usually four minutes.

Transfer activity In order to guarantee a good connection for passengers from one
train to another, transfer activities can be used to limit the time between the
arrival of one train at a station, and the departure of another train at the same
station. This is the time that passengers who arrive with the first train have
to alight from their train, change platforms, and board the second train.

Turnaround activity If a train has served a certain line and has reached its ter-
minal station, the same train is often used to serve the line in the other direction
as well. The minimum time restriction on this activity is at least the time that
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is needed for the driver to get to the other side of the train. Often, an upper
bound is provided as well, in order to avoid long turnaround times, as a heur-
istic measure aimed at reducing the number of vehicles needed to operate the
timetable and thus reduce rolling stock costs.

Safety activity A safety activity is used in order to guarantee a minimum headway
time between trains, to prevent collisions on single track areas, and to prevent
overtakings. For the interested reader, Section 2.A provides more details on
the modelling of various satefy activities.

Some timetabling restrictions cannot be included in PESP, like symmetry restrictions.
In a perfectly symmetric timetable, there exists a time at which all trains meet a
train of the same line in the other direction. As a consequence, transfer times in
both directions are the same and hence trips between any two stations have the same
duration in both directions. A complete overview of what can and what can not be
included in PESP is given by Liebchen and Möhring (2007).

The Periodic Event Scheduling Problem can now formally be stated as:

Definition 2.1 (PESP). Given a set V of events, a set A ⊆ V × V of activit-
ies, intervals [`ij , uij ] for all (i, j) ∈ A and a period length T , the Periodic Event
Scheduling Problem is to find a feasible periodic schedule, that is, find event times
π : V → {0, 1, . . . , T − 1} satisfying

(πj − πi − `ij modulo T ) + `ij ∈ [`ij , uij ] ∀ (i, j) ∈ A. (2.1)

Note that any PESP activity can be scaled in such a way that 0 ≤ `ij < T (cf. Peeters,
2003). Next to this, one may assume that for each activity we have uij − `ij < T ,
otherwise the activity would be redundant, as all time differences are allowed.

The general form (2.1) can be used to express all common timetabling constraints as
listed above. As an example of such an activity, consider a drive activity that states
that the time difference between arrival event π2 and departure event π1 should be
at least 15 minutes, and at most 18 minutes. This constraint can be written as

(π2 − π1 − 15 modulo 60) + 15 ∈ [15, 18], (2.2)

and is visualized in Figure 2.1.
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Figure 2.1: Example Periodic Constraint.

The highlighted area shows all feasible event times π2, given the scheduled time
π1 = 10. For this activity, scheduling π2 at minute 25 hence is a feasible solution.

2.1.1 Mixed Integer Programming Formulation

Equations (2.1) can be formulated as mixed-integer programming constraints by in-
troducing a term Tpij , where pij is an integer variable, representing the modulo
operator. T again is the cycle time. The result can then be written as

yij = πj − πi + Tpij (2.3a)

`ij ≤ yij ≤ uij (2.3b)

pij ∈ Z. (2.3c)

The additionally introduced variable yij represents the activity duration for activity
(i, j) ∈ A. As an example, if (i, j) is a transfer activity, yij denotes the duration of
this transfer, i.e., how many minutes of transfer time are available.

In the above reformulation of a PESP-activity, no integrality restriction is set on
the π-variable. Often integer values for π are desired as these variables represent
the timetable itself. However, given a vector p ∈ Z|A|, the constraint matrix of
(2.3) is totally unimodular, so a feasible solution exists with π ∈ {0, 1, . . . , T − 1}|V |,
assuming that `, u ∈ Z|A| (Liebchen and Peeters, 2009).

A solution to the reformulated PESP activity as in (2.3) can easily be found when
the values for the p-variables are known. In that case, the problem becomes a feasible
differential problem, which is polynomially solvable (Rockafellar, 1998), while PESP
is NP-complete (Serafini and Ukovich, 1989). Odijk et al. (2006) investigates the
problem of finding several classes of timetables that are based on the different values
the p-variables can have.
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2.1.2 Cycle Periodicity Formulation

A formulation that is equivalent to (2.3) is the Cycle Periodicity Formulation (CPF)
as introduced by Nachtigall (1999). This formulation is based on cycles in the (dir-
ected) graph representation of the PESP instance. Let C denote any cycle in the
timetabling graph G = (V,A). If we choose a direction in the cycle C in which the
cycle is traversed, let C+ and C− denote the set of arcs of this cycle that are tra-
versed in the forward and backward direction, respectively. Starting at any node in
this cycle, the cycle is traversed until we end up in the same node again. The sum of
the activity durations in C+ minus the sum of the activity durations in C− should be
an integer multiple of T . This sum of the activity durations is denoted by qCT , where
qC is an integer variable. Giving this notation, the Cycle Periodicity Formulation is
given as follows:

Definition 2.2 (CPF). Given a directed graph G = (V,A) representation of a PESP
instance as defined before, find yij for all (i, j) ∈ A such that∑

(i,j)∈C+

yij −
∑

(i,j)∈C−
yij = TqC ∀ C ∈ B (2.4a)

`ij ≤ yij ≤ uij ∀ (i, j) ∈ A (2.4b)

aC ≤ qC ≤ bC ∀ C ∈ B (2.4c)

y ∈ R|A|, q ∈ Zκ, (2.4d)

where B is the set of cycles in the graph, and κ = |B|.

Observe that in (2.4c) we have introduced bounds on the qC variables. These can be
taken as aC = −∞ and bC =∞, however, tighter bounds can be computed based on
the bounds of the activities that form the cycle as follows:

aC =

 1
T

 ∑
(i,j)∈C+

`ij −
∑

(i,j)∈C−
uij

 , (2.5a)

bC =

 1
T

 ∑
(i,j)∈C+

uij −
∑

(i,j)∈C−
`ij

 . (2.5b)

Although there is an exponential number of cycles in the graph, it is sufficient to
require the cycle constraints (2.4a) and (2.4c) only for cycles in an integral cycle basis
B, i.e., a basis B such that every non-basis cycle is an integer linear combination of
the cycles in B (Liebchen, 2003; Peeters, 2003). Such a cycle basis can for example
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be obtained by first finding a spanning tree in the graph. All the arcs that are not
in the tree provide a cycle in the graph together with the tree-arcs. All these cycles
together lead to an integral cycle basis of size κ = |A| − |V |+ 1. Hence we need only
a limited amount of cycles (Liebchen, 2003). If we define the width of a cycle as the
possible values qC can take, this is bC − aC + 1. The total width of a cycle basis can
then be computed as

W (B) =
∏
C∈B

(bC − aC + 1). (2.6)

If we find a basis B that reduces the value of W (B) as much as possible, this leads to
the smallest number of possible vectors q ∈ Z|B| and is a good candidate for a good
cycle basis. However, to the best of our knowledge, it is still an open problem how
to find a cycle basis that minimizes (2.6). An overview of the theory regarding cycle
bases is given in Liebchen and Peeters (2009).

An advantage of the cycle periodicity formulation over the traditional PESP formu-
lation is that CPF uses fewer integer variables: |A| − |V | + 1 (one for each cycle)
in contrast to |A| (one for each activity). Secondly, it uses equality constraints in-
stead of inequality constraints. These two properties are generally beneficial when
computing a solution by means of a branch-and-bound procedure. In general, using
the CPF with a good cycle basis, feasible solutions are found sooner and the best
bound is also improved more quickly when using an objective function. For a further
discussion and comparison of different PESP formulations, see for example Liebchen
et al. (2008).

2.1.3 Objective

Although PESP in itself is a feasibility problem, the formulation in (2.3) can be
extended by including an objective function that can be optimized. Several types of
objectives functions are possible, generally they are functions of the activity durations
y. One example is the minimization of passenger travel time, which can be written
as

Minimize
∑

(i,j)∈A

wijyij , (2.7)

where wij is a weight assigned to activity (i, j). These weights can for example
represent the number of passengers using this activity. More sophisticated methods
are possible to route the passengers in a timetabling model as we will see in Chapter 3
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and 4, however, using the weights of activities is an approximation that is relatively
easy to model and solve.

Another option for an objective function that is mentioned by Peeters (2003), is to
minimize the initial constraint violations, in cases where the PESP instance does not
allow for a feasible solution. Our approach to solve such a problem can be found in
Chapter 5.

A last approach that we mention is to maximize the robustness of the timetable. For
one approach, see Chapter 6, which also contains an overview of other approaches
regarding robust timetabling. Examples of various objective functions applied to
real life problems can for example be found in Caimi et al. (2017), Liebchen (2008),
Liebchen and Peeters (2009), Nachtigall (1999), Peeters (2003).

2.2 Solution Techniques

In its original formulation, PESP is a feasibility problem and various approaches exist
to solve it. One approach is to use an integer programming formulation, like (2.3) or
(2.4). This is also used for computing timetables that are actually put into practice
(Liebchen, 2008). A drawback of the integer programming approach is that is does
not scale well: It is very challenging to find (good) solutions for large instances.
Furthermore, because the constraints are ‘big-M ’ constraints (the constraints either
contain the term pijT or qCT ), the LP-relaxation is usually very bad and proving
optimality is a real challenge.

Where integer programming is a general approach that can be used to model many
different problems, there exist more dedicated approaches to find solutions for PESP.
Examples of these include constraint programming (Kroon et al., 2009; Schrijver and
Steenbeek, 1993) or using a Satisfiability (SAT) solver after applying a polynomial
transformation from PESP to SAT (Großmann et al., 2012; Kümmling et al., 2015a).
These approaches generally do not consider an objective function. However, also
when an objective function is considered, there are several dedicated approaches:
using a modulo-simplex heuristic (Goerigk and Schöbel, 2013; Nachtigall and Opitz,
2008), a matching-approach (Pätzold and Schöbel, 2016), using a SAT approach
(Matos et al., 2017), possibly combined with machine learning (Matos et al., 2020).
If a feasible solution exists, this can often be found rapidly with the mentioned
techniques.
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2.3 Example

We now provide an example to demonstrate how, for a small network, a timetable
can be found using the PESP formulation, with a cycle time of 60 minutes (T = 60).
This example is based on an example used by Kroon (2015). Consider a network
with stations S = {S1, S2, . . . , S6} and lines L = {l1, l2, l3}. All lines are operated in
both directions. An overview of this network together with the routes of the lines is
shown in Figure 2.2.

S1 S2 S3 S4

S5

S6

Figure 2.2: Example network

The solid line represents line l1, which is an Intercity train line that travels between
S1 and S4 and does not stop at S2, only at the remaining stations. The dashed line
represents line l2, which is a local train line that has the same route as l1, but has
an additional stop in S2. Finally, the dashdotted line is line l3, which is an Intercity
train line that travels between S5 and S6 and also stops at S3. The trip times
between the stations that the trains visit are shown in Table 2.1. In this network,
connections have to be realized between two pairs of trains: from S5 to S2 (line l3
to l2) and vice versa, and from S6 to S4 (line l3 to l1) and vice versa. For the first
connection, passengers need to change to a different platform, this connection should
take between 5 and 7 minutes. The other connection between lines 1 and 3 is a
cross-platform connection and should take between 2 and 3 minutes. Throughout
the whole network, a headway time of at least 3 minutes is required between any
two trains going in the same direction. Finally, we have the additional constraint
that the train that operates a line in one direction also serves the line in the other
direction, and a turn-around time of at least 7 minutes is needed at the end stations.

Combining all these restrictions leads to a PESP instance, in which 32 departure
and arrival events have to be scheduled. These event times are restricted by 48



Chapter 2 21

S1 ←→ S2 S2 ←→ S3 S3 ←→ S4
l1 10 – 11 11 – 13 18 – 20
l2 11 – 13 14 – 16 19 – 22

S5 ←→ S3 S3 ←→ S6
l3 20 – 22 31 – 33

Table 2.1: Trip times for the example instance

activities. These 48 activities cover 16 drive activities, 10 dwell activities, 12 headway
activities, 6 activities ensuring the turn around time of the trains and 4 ensuring the
connections. This leads to an event-activity network which can be pictured as a
graph with 32 nodes and 48 arcs, as is done in Figure 2.3.

This figure displays the events that have to be scheduled as circles (nodes) and the
activities as arcs in the graph. The nodes cover both arrivals and departures, the
arrival nodes are shaded in Figure 2.3. The allowed time interval for each activity
is shown next to it. On the left, the train lines are mentioned, which means that
all nodes that are at the left of, for example, l1 ↑ belong the line l1 in the forward
direction, i.e., driving from S1 to S4. l1 ↓ shows the nodes for the same line in the
backward direction. All nodes corresponding to one station are ‘grouped’ in shaded
regions. At the top and bottom of the graph, the corresponding station is displayed.

In the graph, the drive and dwell activities are marked as solid arcs. Within the
stations, the intervals are either [0, 0], denoting that a dwell time of 0 minutes is
allowed, i.e., the train does not stop, or [1, 3]. Safety activities are shown as dashed
arcs. The interval for these activities is [3, 57], which is the same as stating that
the departures or arrivals can not be closer to each other than 3 minutes. There
are 4 transfer activities in the network, denoted by dashdotted arcs. They impose
a restriction on the time difference between an arrival and a departure of another
train.

In this network, it would have been possible that passengers from S6 do not transfer
to l1 but to l2 instead, as both lines go to station S4. Which of these options is better
can only be determined once there is a timetable. It would have been possible to
model a flexible connection, i.e., that one feeder train (line l3) in this case, connects
to one out of multiple other connection trains (lines l1 or l2 in this case). See Kroon
et al. (2014) how this can be modelled. Finally, turnaround times for the trains are
marked by densely dotted arcs. Note that they actually impose no restriction, as all
time differences are allowed. It is possible to add a tighter upper bound, however,
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S1

S1

S2

S2 S3

S3

S4

S4

S5 S6

l1 ↑

l1 ↓

l2 ↑

l2 ↓

l3 ↑

l3 ↓

[10,11] [0,0] [11,13] [1,3] [18,20]

[18,20][1,3][11,13][0,0][10,11]

[11,13] [1,3] [14,16] [1,3] [19,22]

[19,22][1,3][14,16][1,3][11,13]

[20,22] [1,3] [31,33]
[31,33][1,3][20,22]

[7,56]

[7,56][7
,5

6]

[7
,5

6] [7,56][7,56]

[3,57] [3,57] [3,57] [3,57] [3,57] [3,57]

[3,57][3,57][3,57][3,57][3,57][3,57]

[5,7]

[5,7]

[5,7]

[5,7]

Figure 2.3: Network respresentation of the example instance

it is also possible to include the durations of these activities in an objective function
which is to be minimized, in order to shorten the turn around times. Setting tight
upper bounds for such activities can lead to infeasible timetabling instances as we
will see in Chapter 6.

For this network, we compute a solution, in which we minimize the durations of the
activities, each weighted by a certain weight factor. For drive and dwell activities, we
set the weight to 1, for turn around activities, we set the weight to 0.9, to model that
these are slightly less important. Finally, we set the weights of the other activities
to zero. This leads to a solution that is displayed in Figure 2.4. The time at which
an event takes place is shown in the nodes. Note that shifting each event by one
minute again leads to a feasible timetable with the same quality, because all events
are periodic events with a period of 60 minutes.

In Figure 2.4, several arcs are marked in bold. These arcs together form a spanning
tree in the network. Adding any of the non-tree arcs to the spanning tree generates a
cycle in the graph. These cycles together form a cycle basis for the Cycle Periodicity
Formulation, see Section 2.1.2. In each of these cycles, the sum of the activity
durations is a multiple of T , which was denoted by qCT . Bounds on this variable
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Figure 2.4: Solution for the example instance

qC can be computed according to (2.5). As an example, consider the cycle formed
by adding the arc between the two departure events of line l1 and l2 at station S1,
oriented in the direction of this added arc. Then the bounds can be computed as

aC =
⌈

1
60 (3 + 11 + 1 + 14 + 5− 3 + 5− 3− 13− 0− 11)

⌉
=
⌈

9
60

⌉
= 1 (2.8a)

bC =
⌊

1
60 (57 + 13 + 3 + 16 + 7− 1 + 7− 1− 11− 0− 10)

⌋
=
⌊

80
60

⌋
= 1 (2.8b)

This shows that in this cycle, despite the fact that the sum of process times can vary
between 9 and 80, there is only one possibility for the number of multiples of T . This
can help in a branch and bound procedure to solve a PESP instance.

Time-Space Diagram A graph that is often used to picture a timetable is a
Time-Space Diagram. This is a graph with on one axis space/distance, and on the
other axis time. Throughout this thesis, we plot the distance on the vertical axis. In
a time-space diagram, a line corresponds to the timetable of one train. The Time-
Space Diagrams corresponding to the solution shown in Figure 2.4 are pictured in
Figure 2.5.

Figure 2.5a displays the Time-Space diagram for the route between stations S1 and
S4. The stations are mentioned on the left of the figure. Time is shown on the
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S1

S2

S3

S4

:00 :10 :20 :30 :40 :50 :00

(a) S1 ←→ S4

S5

S3

S6

:00 :10 :20 :30 :40 :50 :00

(b) S5 ←→ S6

Figure 2.5: Time-Space diagrams displaying the solution in Figure 2.4

horizontal axis, one cycle time is displayed between :00 and :60. The solid line
displays the timetable for line l1. The corresponding train in the forward direction
departs from S1 at :00, passes S2 without stopping and dwells for one minute at S3,
which is indicated by the small horizontal part of the line at S3. Finally, it continues
to S4 to arrive there at :42. The train in the backward direction leaves S4 at :38 and
arrives at S3 at :57. It leaves there at :58 and travels to S2 and S1. Here it crosses
the cycle time and it goes back to the beginning of the cycle again. This is indicated
by the solid line corresponding to this train stopping at the right of the figure, and
re-entering the figure again on the left. The dashed line shows the timetable for line
l2. Figure 2.5b shows the Time-Space diagram for the route between stations S5 and
S6.

The provided example clearly shows the use of several types of activities that can be
considered in PESP instances. Furthermore, it shows how the instance can be rep-
resented by a timetabling graph, in which we can also relatively easy find an integer
cycle basis. Finally, we showed how a simple objective function can be included to
find solutions with specific properties.

Appendix

2.A Several Types of PESP Activities

When two trains share the same part of infrastructure, we introduce constraints
to prevent them from using it simultaneously. Trains can be driving in the same
direction or in opposite directions on that infrastructure. As mentioned before, we
use a macroscopic modelling of the infrastructure network. Safety activities are used
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to separate pairs of trains in time. In this appendix, we describe the modelling of
several safety activities. An assumption that is often made in timetabling is that
trip times are fixed. This reduces the problem size and is especially usefull when
modelling safety activities. We show how to deal with known and fixed trip times
and how the bounds of many of the safety activities can depend on some trip time
of a train on a part of the railway infrastructure.

For notational convenience, let ha and ta be the ‘head’ and ‘tail’ of an activity in the
PESP-graph respectively, i.e. for a = (i, j) ∈ A we have ha = j and ta = i. When
trip times are assumed to be fixed, one could think of the nodes in a PESP instance as
a combination of a departure event, a trip time and an arrival event, aggregated into
one contracted node. In this context, trip time activities link consecutive departures
of a train line to each other. The bounds in these activities consist of the trip time
from a departure to the next arrival, and the possible dwell time at the arrival station.
If this dwell time should be between d and d and the trip time is denoted by r, the
trip/dwell time activities are of the form

r + d ≤ πj − πi + Tpij ≤ r + d, (2.9)

with i and j the two departure events. Other common activities that arise in time-
tabling are dwell time, connection and synchronisation activities. An overview on
how to derive such PESP activities is shown in Peeters (2003). In practice, the ma-
jority of the activities however are on safety. In the remainder of this section, the
safety activities are explained, as well as the way they depend on trip times.

2.A.1 Trains Tunning in the Same Direction

Multiple trains using the same piece of infrastructure are separated in time by min-
imum headway times in order to guarantee a safe operation. In reality, such headway
restrictions are imposed at stations as well as in between stations at any point where
a conflict could occur, e.g., at points where train paths cross or merge. For the sake
of simplicity, we only refer to stations in the description here.

Suppose two trains share the same track between stations s and s′ and assume that
the trains must be separated in time upon arrival and departure by at least hminutes.
The departure and arrival times of train i at station s are denoted by πsdi and πsai
respectively. The travel time between the stations for train i is denoted by ri. If one
train departs from station s, the other train cannot depart in the h minutes before
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or after this departure. This leads to

πsd2
− πsd1

/∈ (−h, h). (2.10)

Since the timetable is cyclic, we can use this to model the above as a PESP activity:

πsd2
− πsd1

∈ [h, T − h]T , (2.11)

or equivalently by introducing the integer variable p:

h ≤ πsd2
− πsd1

+ pT ≤ T − h. (2.12)

This activity is required for each pair of trains departing from a station s. For
safety upon arrival at the next station s′, a similar activity holds: replace di by ai
(i ∈ {1, 2}) and s by s′.

In order to state this activity solely in departure events, note that πsdi + ri = πs
′

ai

(i ∈ {1, 2}), i.e., arrival time equals the departure time plus trip time. Substituting
this into the headway activity upon arrival leads to

h ≤ πsd2
+ r2 − πsd1

− r1 + Tp ≤ T − h (2.13)

Rewriting this by moving the trip times to the activity bounds gives

h+ r1 − r2 ≤ πsd1
− πsd2

+ Tp ≤ T − h+ r1 − r2 (2.14)

as the safety activity ensuring a correct headway time upon arrival. Clearly, these
bounds depend on the trip times of the trains towards station s′.

2.A.2 Single Track Headways

On some parts of the rail network, tracks are used in both directions. A train in
one direction can only enter this track once the train in the opposite direction has
cleared the track. There are several constraints that guarantee safety here. These
are also used if the train paths of one incoming and one outgoing train cross around
a station, which occurs frequently at larger stations.

Suppose stations s and s′ are given with a single track in between. Trains can only
pass each other at the stations. Train i (i ∈ {1, 2}) drives between s to s′ in ri

minutes. In Figure 2.6 a sketch is given in a time space diagram, with time on the
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horizontal axis and space on the vertical axis. Train 1 is shown twice, the second
denotes means the same train in the next cycle period, as is indicated by the departure
times next to the nodes. Trains must be separated in time. How large this headway
time h is, can be different if it concerns the time between an incoming train and the
next outgoing train (an in-out relation, indicated by ‘io’), or the other way round
(an out-in relation, indicated by ‘oi’).

s

s′

r1 r1r2

hs
′

io

hsiohsoi

hs
′

oi

πsd1
πsd1

+ Tπsa2

πs
′

a1
πs
′

d2
πs
′

a1
+ T

Figure 2.6: Single track time-space diagram

The activity to avoid a collision on such a single track is given by

hs
′

io + r1 ≤ πs
′

d2
− πsd1

+ Tp ≤ T − hsio − r2. (2.15)

The lower bound comes from the fact that πs′d2
− πs′a1

≥ hs′io, which implies

hs
′

io + r1 ≤ πs
′

d2
− πsd1

. (2.16)

The upper bound comes from the fact that πsd1
− πsa2

≥ hsio, which implies

πsd1
− πs

′

d2
≥ hsio + r2 =⇒ πs

′

d2
− πsd1

≤ −hsio − r2. (2.17)

Combining this with (2.16) and using cyclicity, leads to (2.15).

Clearly, trip times are involved in the bounds. Headway time constraints upon arrival
at stations can be stated without trip times being involved, by not contracting trip-
and dwell times into one new activity, and hence keeping a node for the arrival times.
For single-track constraints, this is not possible as is seen in the constraints stated
above, safety can only be guaranteed using the actual trip times of the trains involved.

2.A.3 Crossing Train Paths

In (2.15) it is assumed that both trains share the whole single track part. It is possible
that trains only use the same infrastructure close to a station and then go different



28 Chapter 2

ways. This basically means that no train can leave around the time an incoming
train enters the station, when their routes cross. This restriction does not have to be
as strict as the single-track restriction that prevents the trains meeting on the whole
single track part.

The restriction dealing with the time between an incoming train (train 1) and the
next outgoing train (train 2) at station s′ is (see also Figure 2.6)

hs
′

io ≤ πs
′

d2
− πs

′

a1
+ pT ≤ T − hs

′

oi, (2.18)

which, using the fixed trip times, is equal to

hs
′

io + r1 ≤ πs
′

d2
− πsd1

+ pT ≤ T − hs
′

oi + r1. (2.19)

(2.19) considers an in-out relation. The out-in relation leads to the restriction

hs
′

oi ≤ πs
′

a1
− πs

′

d2
+ pT ≤ T − hs

′

io, (2.20)

which is the same as

hs
′

oi − r1 ≤ πsd1
− πs

′

d2
+ pT ≤ T − hs

′

io − r1. (2.21)



Chapter 3

Timetabling for Strategic
Passenger Railway Planning∗

3.1 Introduction

The public transportation planning process is traditionally subdivided into a number
of steps which are assigned to either the strategic, the tactical, or the operational
planning phase. According to Huisman et al. (2005), the strategic phase encompasses
a time horizon of two to ten years before implementation and includes infrastructure
decisions and line planning. The timetabling problem is often allocated to the tactical
phase (approximately one year before implementation).

This chapter, however, focuses on strategic timetabling, i.e., the generating of a (pre-
liminary) timetable already in the strategic planning phase. Strategic timetabling
can be used to make strategic decisions with respect to timetables, like ”What should
the headway times be between consecutive trains at a station?” and ”Where should
good transfer connections between trains be made?”. Due to the location of strategic
timetabling early in the planning horizon, it can also be used to evaluate line plans
and to point to bottlenecks in the infrastructure, and thus to promising infrastructure
investments as is supported by Odijk et al. (2006).

∗This chapter, up to minor modifications, is a direct copy of G.J. Polinder, M. Schmidt, and
D. Huisman (2020): Timetabling for strategic passenger railway planning.
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The value of strategic timetabling has been recognized in the practice of transport-
ation planning. Following the example of Switzerland, the initiative Deutschland-
Takt aims at establishing a so-called ‘integraler Taktfahrplan’ in Germany from the
year 2030 on (Deutschland-TAKT, 2019). The transportation system should be re-
developed in such a way that connections between cities are served every 30 or 60
minutes, and that better transfer connections are provided. Reversing the current
planning practice, the creation of a so-called ‘target timetable’ should precede and
guide infrastructure investment decisions (e.g. in additional tracks between stations,
or additional platforms at stations). In the Netherlands, a similar approach is used
to evaluate infrastructure investments (Beter & Meer, 2014).

However, to the extent of our knowledge, models from academic research on time-
tabling as well as software tools for timetabling decision support are aimed at time-
tabling in the tactical (and operational) planning phase. Therefore, they focus on
operational feasibility on a given infrastructure, and are rather restrictive in model-
ling of quality requirements. While these features are suitable for the more restrict-
ive setting of tactical and operational planning (where changes in infrastructure and
major changes in passenger behaviour are not desirable or possible), they are not
appropriate to find new and innovative timetabling solutions as is desirable in the
strategic planning phase.

In this chapter we aim to close this gap by presenting an optimisation approach
to strategic timetabling. As common in railway timetabling, we aim at finding a
periodic timetable, i.e., we require that the timetable follows a repeating pattern and
hence the timetable of a base period is repeated throughout the day. Our objective
is to find a periodic timetable that minimizes average perceived travel time for a
given line plan. Different from most other timetabling models, we include adaption
time in the perceived travel time. Assuming that the desired departure time of a
passenger is known, the adaption time describes the time difference between this
desired departure time and his actual departure time. Whereas for example Yan et
al. (2019) penalizes regularity deviations to obtain a passenger oriented timetable, we
explicitly allow for irregularity. Using the adaption time allows us to omit regularity
constraints between runs of the same line (or runs of different lines that run in parallel
for part of their route), which are otherwise often used to ensure low adaption times
in an indirect way, simply by enforcing regular departures. Note that in case of
dense networks and high frequencies, where OD-pairs are served by more than one
line, the question which trains should be synchronized with each other becomes far
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from trivial to answer. In such situations, imposing regularity constraints may lead
to sub-optimal solutions or even infeasibility of the timetabling problem (Chapter 5).

This is illustrated in the following example. Consider three stations S1, S2, S3, and
travel demand between all pairs of stations. Assume that the line plan prescribes a
line from S1 via S2 to S3 with a frequency of two trains per hour, and a line from
S2 to S3 with a frequency of one train per hour. If we synchronize all trains between
S2 and S3, the headway time between the trains on this part of the route will be
20 minutes, but from S1 to S2 the headway times are 20 minutes and 40 minutes.
This is depicted in the time-space diagram in Figure 3.1a, where time and distance
are shown on the horizontal and vertical axis, respectively. On the other hand, if we
synchronize between S1 and S2, we have one headway of 30 minutes and two shorter
headway times between S2 and S3 (Figure 3.1b). Perfect synchronization on both
parts of the network is possible, but only if one of the trains from S1 to S2 waits
an additional 10 minutes at S2 (Figure 3.1c). Which of these solutions is best with
respect to average perceived travel times depends on the size of the travel demand
between the stations and the perceived value of adaption time compared to in-train
time, as will be further illustrated in Section 3.3.4.

Our timetabling model allows us to find the best trade-off in case of different syn-
chronization options for more complicated networks than the one sketched by expli-
citly including the adaption time into the perceived travel time, instead of deciding
on where to impose regularity constraints heuristically before the optimisation.

S1

S2

S3

40 20

20 20 20

(a) S2 → S3 synchronised

S1

S2

S3

30 30

15 1530

(b) S1 → S2 synchronised

S1

S2

S3

30 30

20 20 20

(c) All synchronised

Figure 3.1: Time space diagrams for different synchronisation options

We define the Strategic Passenger-Oriented Timetabling (SPOT) problem as follows:
Given a railway network consisting of stations and links connecting them, a line
plan specifying lines routes and frequencies on the network, and an estimate of the
hourly expected demand per origin-destination pair: find a timetable that minimizes
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average perceived passenger travel time under the assumption that passengers will
choose the route with least perceived travel time. Hereby, perceived travel time is
measured from the desired departure time on, that is, it includes adaption time.

Since we consider timetabling in the strategic planning phase, we cannot expect to
have accurate demand information. In particular, the exact timing of travel requests
is unknown. Therefore, we think that in this time frame it is appropriate to model
passengers’ desired departure times as evenly spread over the period and explicitly
use this assumption in our mathematical program for the SPOT problem. Both the
assumption that passengers indeed arrive randomly at the station and the assumption
that they adapt to the communicated timetable to a large extent can be modelled by
a parameter in our objective function which relates the perceived duration of waiting
at the origin to the in-train time.

We model the SPOT problem as a quadratic mixed integer program that extends
the traditional Periodic Event Scheduling Problem (PESP) model for periodic time-
tabling (Serafini and Ukovich, 1989). This model is explained in Chapter 2. We
linearise the SPOT model and develop a heuristic to find a starting solution. We test
our approach in two case studies based on the Dutch railway network.

Note that infrastructure constraints can be included in PESP (and thus also in our
SPOT model) as headway constraints in a natural way (Liebchen and Möhring, 2007).
However, due to the strategic perspective we take, we do not include them in our
approach for two reasons: to be able to identify promising infrastructure investments,
and to keep the model tractable. In later planning phases (tactical and operational
planning), when the timetabling focus shifts towards macroscopic and later micro-
scopic feasibility, such constraints can (and should) be added. Furthermore, in our
model we omit upper bounds on transfer times and regularity constraints, since this
would artificially restrict the solution space, and long transfers and irregular depar-
ture patterns are penalized in the objective function.

Our contribution in this chapter is fourfold. First of all, we formulate the Strategic
Passenger-Oriented Timetabling (SPOT) problem for timetabling in the strategic
planning phase. Secondly, we model this problem as a quadratic integer program
that integrates timetabling with passenger routing (on perceived-travel-time-minimal
routes) and linearise this formulation. Thirdly, we propose a heuristic to construct
a starting solution, in order to find good solutions even for complex large instances.
Fourthly, we test our model on two case studies based on the Dutch railway network,
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illustrating the trade-offs between the duration of dwell times and regularity of train
service.

The remainder of this chapter is organized as follows. In Section 3.2, we describe
literature that is related to our study. We discuss the SPOT problem in detail in
Section 3.3. In Section 3.4 we propose a quadratic integer programming model for
SPOT and linearize it. In Section 3.5 we describe how we solve it. In Section 3.6,
we evaluate our solution approach and perform a case study on two practical in-
stances from Netherlands Railways in Section 3.7. Finally, we conclude this study in
Section 3.8.

3.2 Related Work

In this section, we give an overview on related research. A general overview on
research related to periodic timetabling has been provided in Chapter 2. In Sec-
tion 3.2.1 we describe attempts to timetabling in the strategic planning phase. Sec-
tion 3.2.2 describes how passenger routing can be combined with periodic timetabling
and how this is done in existing literature.

3.2.1 Strategic Timetabling

Decisions in the public transportation planning process are traditionally assigned
to either the strategic, the tactical or the operational planning phase, according to
their location in the planning horizon. E.g., according to Huisman et al. (2005), the
strategic planning phase at the Dutch railway operator Netherlands Railways (NS)
spans a period from 20 to ‘few’ years before the date of implementation and en-
compasses rolling stock management, crew management, and line planning (see also
Chapter 1). Timetabling and rolling stock scheduling are allocated to the tactical
planning phase, and operational and short-term planning include detailing timetable
and rolling stock scheduling, as well as crew scheduling. However, finding a feasible
and good timetable for a given line plan becomes increasingly difficult with an in-
creasing utilization of the railway network. We therefore propose to include (a first
attempt on) timetabling already in the strategic planning phase, to be able to use
it as a tool to evaluate, and possibly reject proposed line plans. Several attempts
have been made in the literature to integrate line planning and timetabling, see, e.g,
in Burggraeve et al. (2017), Michaelis and Schöbel (2009), Schöbel (2017), Yan and
Goverde (2019). We follow a different approach, regarding timetabling as a problem
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on its own (as opposed to integrating it with line planning), but taking into account
typical characteristics of the strategic planning phase, like the lack of detailed passen-
ger information and the possibility to extend infrastructure. While in the practice of
public transportation planning, strategic attempts on timetabling are not uncommon
(see, e.g., Deutschland-TAKT, 2019), research on railway planning normally allocates
timetabling to the tactical phase. An omission of infrastructure constraints is not
uncommon in railway timetabling, see e.g., Borndörfer et al. (2017), Pätzold et al.
(2017), Robenek et al. (2017), Robenek et al. (2016), Schmidt and Schöbel (2015b),
but other than omitting infrastructure constraints, the approaches cited here do not
seem particularly tailored to strategic planning.

3.2.2 Timetabling and Passenger Routing

Timetables are evaluated according to different criteria. Following Cacchiani and
Toth (2012), the most prominent are that the timetable should be (1) ‘efficient’
and (2) ‘robust’. Overviews on approaches to deal with robustness can be found
in Cacchiani and Toth (2012), Lusby et al. (2018) and Chapter 6 of this thesis.
Efficiency can be aimed both at costs and travel time aspects (or a trade-off of
both). In the following we give an overview on how the literature addresses one
aspect of ‘efficiency’, namely minimizing the passenger travel times, since this is also
the objective we use in our model.

Early approaches to find timetables minimize passenger waiting times by assigning
weights, modeling passenger numbers, to activities in the objective function (see
the aforementioned references). These approaches, however, neglect that passengers
choose their routes based on the timetable, which makes it difficult to assign a-priori
weights to activities.

Thus, better results can be obtained when timetable and passenger routing are de-
termined simultaneously. Several approaches have been published regarding an in-
tegrated approach, both in periodic and aperiodic settings. Schmidt and Schöbel
(2015a) integrate passenger routing in aperiodic timetabling. Passenger demand is
a priori assigned to a departure event, and passengers are routed from that point
onwards. For periodic timetabling, a similar approach is taken by Borndörfer et al.
(2017). In this approach, train capacities are used to determine frequencies of train
lines. Furthermore, many performance criteria are introduced regarding several rout-
ing methods. A more recent approach where a viewpoint on applicability in practice
is taken is by Schiewe and Schöbel (2018). The authors study the effect of including
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only a subset of the OD-pairs, in order to reduce the computational effort and to
obtain good timetables in a short time. Hartleb and Schmidt (2019) also integrate
timetabling with passenger routing, but here passengers are not routed along shortest
paths, but a logit distribution is used. An alternative to integrating timetabling and
passenger routing in one integer programming model, is to iterate timetabling and
passenger routing. Kinder (2008), Lübbe (2009), Siebert (2011), Siebert and Goerigk
(2013) determine passenger flows by routing passengers through the network on, for
example, shortest paths with respect to the travel time. After this, the timetable is
optimised with respect to these flows and passengers are rerouted, until a stopping
criterium is reached.

The division of the public transportation planning into several sub problems (like line
planning, timetabling, vehicle scheduling, etc.) is likely to lead to globally suboptimal
solutions. Therefore, there are attempts to also integrate line planning and vehicle
scheduling into timetabling with passenger routing (see, e.g., Lübbecke et al., 2018b;
Schöbel, 2017). However, for real-life instances this leads to models that are hard to
solve, and in these cases each sub problem is solved separately.

None of the aforementioned approaches considers adaption time, although a few ap-
proaches exist which explicitly consider this. Some of them focus on a single corridor
and schedule the trains in such a way that the average adaption time is minimized
(Barrena et al., 2014a, 2014b). In these papers, a mathematical programming model
and a large-neighbourhood search algorithm to find good solutions is provided. A
similar situation is considered in Zhu et al. (2017), where the authors consider a bi-
level model. In the upper layer, a timetable is found based on passenger demand. In
a lower layer, passenger arrival times are updated such that passengers arrive shortly
before their train departs, in order to minimize adaption time. Another approach
to solve timetabling with integrated passenger routing including adaption times is
given in Gattermann et al. (2016), where the problem is modelled as a Satisfyabil-
ity problem and solved with a dedicated solver. Here passengers are assigned to a
time slice and a penalty is given if a passenger cannot depart within that time slice
and has to adapt to a different slice. Borndörfer et al. (2017) and Hartleb et al.
(2019) discuss and compare alternative evaluation functions for passenger-oriented
timetabling. Wang et al. (2015) propose an approach to reduce the operational costs
of trains which models demand as time-dependent and includes route choice. Finally,
Yin et al. (2017) include passenger demand and adaption time minimization into an
approach to optimise energy efficiency.
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In this chapter, we integrate timetabling and passenger routing in a mathematical
model and include the adaption time of passengers. By discarding the current infra-
structural situation, solutions to our model can be used to support decision making
in the strategic planning phase of railway planning.

3.3 Problem Definition

3.3.1 Periodic Timetabling

Following Chapter 2, a timetable is an assignment of points in time πi to events i.
In periodic timetabling, these events reoccur each base period with length T . The
periodic event-scheduling (PESP) approach (Serafini and Ukovich, 1989) visualizes
the set of periodic events and constraints on these events in a so-called event-activity
network G = (V,A). Each activity (i, j) ∈ A represents a constraint and is formulated
as a relation between events i, j ∈ V , stating that the time difference between these
two events should be in a given (periodic) time interval, bounded by a lower bound
`ij and an upper bound uij , where the word ‘periodic’ refers to the fact that event
times are considered modulo T . This can be formalized by requiring that a timetable
is a function π : V → {0, . . . , T − 1} on the departure and arrival events V such that

yij(π) = πj − πi + Tpij ∈ [`ij , uij ], (3.1)

for all activities (i, j) ∈ A. pij is an integer variable, denoting the shift from one
cycle period to the next, see also Chapter 2. We call yij(π) the duration of activity
(i, j) under timetable π.

As mentioned in Chapter 2, these activities can cover a variety of constraints that
a timetable has to satisfy, e.g., drive and dwell activities. It is common in periodic
timetabling to impose more constraints in the form of activities: firstly, a set of
constraints that impose infrastructure constraints (trains that use a common part
of the infrastructure must keep a safety distance), secondly a set of constraints that
is aimed to increase the quality of a timetable from the passengers’ perspective by
enforcing, e.g., synchronization of trains of the same line (or of lines with a similar
route), upper bounds on dwell times and coordination of transfers. Overviews on how
to model a variety of timetabling constraints in a PESP framework can be found in
Liebchen and Möhring (2007), Odijk (1996), Peeters (2003).
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In our model, the quality of the timetable is controlled by the objective function
‘total perceived travel time’. Therefore, the set of quality constraints is unnecessary
in our model. For routing purposes, however, we do include transfer activities in
our event-activity network, that connect the arrival event of a train at a station
with the departure events of other trains at the same station. The bounds on these
activities are set to [`ij , T + `ij − 1], with `ij representing the minimum time needed
for a transfer between arrival i and departure j. In this way, transfer activities do
not impose any constraint on the feasibility of a timetable, but can be used in a
convenient way to describe passenger routes and to compute their perceived travel
time. This is detailed in Section 3.3.2.

Furthermore, in many cases, in the strategic phase of the timetabling process, in-
frastructure does not impose hard constraints on the timetable yet. Therefore, we
propose to disregard (most of) the infrastructure constraints for timetabling in the
strategic phase as well.

Note that without infrastructure constraints and quality constraints, the event-
activity network consists of train paths, which are not connected to each other.
Therefore, finding a feasible timetable on such an event-activity network is trivial -
just choose an arbitrary time for each first event of a train and propagate it along
the train path. In other words, the difficulty of solving PESP as a feasibility problem
(see Section 3.2) can be attributed to the infrastructure and quality constraints.

It depends on the planning horizon and the budget for investments available, to
which extent infrastructure availability imposes hard constraints on the timetable,
or is subject to extension where needed. In this chapter, we neglect infrastructure
constraints, due to the early planning phase in which we consider the timetabling
problem. Adding all or some infrastructure constraints would pose no problem from a
modelling perspective, but would make the problem computationally harder to solve.

In the same way, quality constraints may be added to our model if they are considered
indispensable. We do believe, however, that in most cases the addition of quality
constraints does unnecessarily constrain the set of feasible solutions, and that our
objective function will find timetables of better quality if no quality constraints are
imposed.

Note that, as common in the railway planning literature, we do not yet consider the
rolling stock allocation to trips during timetabling, but postpone these questions to
the Rolling Stock Scheduling problem which is solved in the tactical planning phase
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(see Chapter 1) and outside the scope of this chapter. In line with that, we do not
consider constraints on the maximum number of passengers in a train, or operational
costs, as these are largely determined by the rolling stock schedule.

3.3.2 Passenger Demand, Route Choice, and Perceived Travel
Time

We consider passenger demand aggregated over all time periods, by assuming that
we have an OD-matrix OD, providing for each OD-pair k ∈ OD an estimate of the
average number of passengers dk that want to travel from the origin to the corres-
ponding destination per time period. While demand may differ between different
time periods, we assume that within the same time period, demand is uniformly
distributed over time. For each OD-pair k ∈ OD, we precompute the set of routes
among which the passengers may choose. A route r is a directed path through the
event-activity network. It consists of a sequence of trip, dwell, and transfer activities,
so r is an (ordered) subset of A. The set of routes for OD-pair k ∈ OD is denoted
by Rk. The set of all routes is

R =
⋃

k∈OD

Rk. (3.2)

For a fixed timetable π, the activity duration yij of drive, dwell, and transfer activities
(i, j) is given by (3.1) in dependence of the chosen timetable. The pure travel duration
of a route r is simply the sum of all activity durations on the route. To obtain the
perceived travel duration Yr(π) of route r for timetable π, we penalize each transfer
by adding a transfer penalty γt, that is

Yr(π) :=
∑

(i,j)∈r

yij + γt · 1t(i, j). (3.3)

The function 1t(i, j) is an indicator function, denoting whether activity (i, j) ∈ A is
a transfer activity or not.

However, the route choice of a passenger does not only depend on the perceived
route duration Yr(π), but also on the departure time of the route r. A passenger
will prefer a route with slightly longer perceived duration, if its departure time is
closer to his desired departure time. To formalize this idea, we introduce the notion
of the perceived travel time of the passenger, which includes the adaption time. The
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adaption time attr(π) for a passenger with desired moment of departure t on route r
under timetable π is defined as the time difference between t and the scheduled time
for the first event σ(r) on route r πσ(r):

attr(π) := πσ(r) − t mod T. (3.4)

Consequently, the perceived travel time of a passenger with desired departure time t
on route r under timetable π is

Ŷ tr (π) := γw · attr(π) + Yr(π), (3.5)

where γw is a weighting factor modelling the perception of adaption time in relation
to perceived duration of the route.

Note, however, that our demand data does not contain information on the individual
desired departure moments of passengers, but only aggregated information in the
form of average hourly demand for an OD-pair.

We therefore work with expected passenger numbers per minute. For an OD-pair
with an average demand of dk passengers per time period T , we assume that for each
possible departure moment t we have on average dk

T passengers who would like to
depart at time t.

Under the assumption that passenger demand is distributed uniformly over the
period, and that each passenger chooses a route which minimizes his perceived travel
time, we can thus compute the perceived travel time of a timetable π as

tt(π) :=
∑
k∈OD

T∑
t=1

dk
T
· min
r∈Rk

Ŷ tr (π). (3.6)

Note that demand will vary among periods. Since dk is the average demand for OD-
pair k per period, tt(π) is the total travel time under timetable π, averaged over all
considered periods.

3.3.3 Time-slice Based Reformulation of Route Choice and
Objective Function

Note that the formulation of the objective (3.6) suggests that to evaluate a timetable,
we have to determine T × |OD| routes, one for each OD-pair and each moment in
time. We can reduce the number of routes to be determined for the evaluation of a
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timetable considerably by dividing the time period into time slices for each OD-pair.
To this end, we denote the set of relevant departure events for OD-pair k, that is, all
first departure events σ(r) of the routes in r ∈ Rk by

V k =
⋃
r∈Rk

{σ(r)}. (3.7)

For an OD-pair k and a given timetable π, we divide the period into time slices,
according to the departure times πv of the relevant departure events v ∈ V k. Let
Skv denote the time slice between the relevant departure event v and the departure
event v′(π) ∈ V k that immediately precedes v according to timetable π.

Note that while passengers with desired departure time t do not necessarily take
the next departing route towards their destination, but the one that minimizes the
perceived travel time Ŷ tr (π) of which adaption time is only one component, for all
passengers with departure time in the same time slice Skv , the same route will be
optimal with respect to perceived travel time. Namely the route r with

Y kv (π) = min
r∈Rk

γw · (πσ(r) − πv mod T ) + Yr(π), (3.8)

i.e., the time difference from v to the departure event of that route (weighted with
the adaption time factor γw) plus the perceived route duration. Therefore, for each
OD-pair k, we aggregate demand in each time slice Skv .

Let Lkv(π) denote the length of time slice Skv in timetable π. Then the number of
passengers arriving during time slice Skv in timetable π is dk

T · L
k
v(π), and we can

compute the average waiting time for a passenger arriving during time slice Skv until
πv is W k

v (π) = Lkv(π)/2.

Thus, the total contribution to the total perceived travel time of passengers arriving
during time slice Skv is

dk
T
· Lkv(π) ·

(
γw ·W k

v (π) + Y kv (π)
)

(3.9)

and we can replace (3.6) by the rewritten objective function

tt(π) =
∑
k∈OD

dk
T

∑
v∈V k

Lkv(π) ·
(
γw ·W k

v (π) + Y kv (π)
)
. (3.10)
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This allows us to evaluate a timetable π by computing an optimal route per relevant
departure event.

3.3.4 Example

Let us reconsider the example given in Figure 3.1, to illustrate the evaluation of
different timetables according to (3.6). We consider the three OD-pairs (S1, S2),
(S2, S3), and (S1, S3) and the timetables (a), (b), and (c) from Figure 3.1. Note
that in each of the three considered timetables, there are three (non-dominated)
routes for OD-pair (S2, S3), and two (non-dominated) routes for OD-pair (S1, S2)
and (S1, S3). For each OD-pair, the time spent on driving activities is independent
of the route chosen, and identical for the three timetable. The difference in the
evaluation of the timetables stems purely from the adaption time, and for OD-pair
(S1, S3) additionally from the dwell time at station S2, which increases the in-train
time of OD-pair (S1, S3) on the second route by 10 minutes under timetable (c).

Let us consider OD-pair (S1, S2) in timetable (a). There are two relevant departure
events for this OD-pair, σ1 at time πσ1 = 0 and σ2 at time πσ2 = 40. Since T = 60
in this example, L12

σ1
= 20 and L12

σ2
= 40. Furthermore, W 12

σ1
= L12

σ1
/2 = 10 and

W 12
σ2

= L12
σ2
/2 = 20.

Therefore, the expected total adaption time for OD-pair (S1, S2) in timetable (a) is
d12
60 · (20 ·10+40 ·20) = d12 ·16.67, or 16.67 on average per passenger of this OD-pair.
In the same way, we compute the adaption time for the other OD-pairs under the
three different timetables. The results are summarized in Table 3.1.

Timetable
(a) (b) (c)

O
D
-p
ai
r (S1, S2) 16.67 15 15

(S2, S3) 10 11 10
(S1, S3) 16.67 15 16.67(+10)

Table 3.1: Expected average adaption time per passenger for OD-pairs (Si, Sj) in
the timetables shown in Figure 3.1. For OD-pair (S2, S3), additional waiting time
for timetable (c) is added in brackets

It is now easy to see that it depends on the number of passengers (and the weighting
factor γw that trades off adaption time and in-train time), which of these timetables
is optimal with respect to total perceived travel time. E.g., if d13 = 100, and d12 =
d23 = 0, we have a total adaption time of 15000 and no additional waiting time for
timetable (b), while for timetable (a) and (c), the adaption time would be higher.
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Furthermore, we observe that for each OD-pair, adaption time is lowest if the rel-
evant departure events are evenly spaced. This is a consequence of the fact that∑
v∈V k L

k
v = T for all k ∈ OD (the time slice lengths add up to the period length)

and of the corresponding term in the objective function (3.10) being quadratic in Lkv ,
since W k

v = Lkv/2. A formal proof is given in Appendix 3.C.

3.3.5 Problem Statement

We can now summarize the preceding sections by restating the definition of the
Strategic Passenger-Oriented Timetabling (SPOT) problem given in Section 3.1:
Given a railway network consisting of stations and links connecting them, and a line
plan specifying lines routes and frequencies on the network, described by a periodic
event-activity network as detailed in Section 3.3.1 and an OD-matrix OD, providing
for each k ∈ OD an estimate of the average number of passengers dk that want to
travel from the origin to the corresponding destination per time period, find a periodic
timetable π that fulfills constraints (3.1) and that minimizes the total perceived travel
time tt(π) as defined in (3.10).

Summarizing, our timetabling problems differs from most other timetabling literature
(compare Section 3.2) in the following two aspects:

On the one hand, our problem formulation explicitly aims at finding a timetable in the
strategic planning phase. Firstly, other than most publications on timetabling tar-
geted to the tactical planning phase, we purposefully omit infrastructure constraints
in our experiments, to allow our model to find an ideal timetable for a given line plan,
and in doing so to point at bottlenecks and necessary infrastructure improvements.
Note however, that from a modelling perspective, the inclusion of infrastructure con-
straints into our model is straightforward. Secondly, on a planning horizon of several
years, only a coarse estimate of demand data can be obtained. In particular, no reas-
onable estimate on desired departure or arrival times can be made so long in advance.
Our model requires only an estimate of daily averages per OD-pair. It assumes that
demand is uniformly distributed over the period, but demand may differ between
different periods, as is to be expected over a whole day of service.

On the other hand, by the definition of perceived travel time as objective function,
which includes adaption time in the evaluation of a timetable, we are able to omit
many artificial constraints that other models need to introduce to ensure quality
of the timetable. Our objective function balances the need for low transfer times,
low in-train waiting times, and equally spaced departures from the origins taking into
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account passenger numbers on the corresponding connections, and their impact on the
total perceived travel time. The omission of artificial, and often arbitrarily set quality
constraints expands the space of feasible solutions tremendously, and thus avoids the
problem of severely restricted or even infeasible timetabling instances, which occurs
increasingly often in view of the growing utilization of railway infrastructure (compare
Chapter 5).

3.4 Integer Programming Formulation for SPOT

In this section, we model the SPOT problem as a mathematical program and linearise
it. An overview of sets, constants, and variables used in the (linearisation of the)
mathematical program for SPOT is given in Table 3.10 in Appendix 3.B.

3.4.1 Precomputing Passenger Routes

We precompute possible routes for each OD-pair. For this, we use the method de-
scribed in Warmerdam (2004). This method first determines all direct travel options.
Next, this set of travel options is extended by all options with 1 transfer, then with
2 transfers, and so on, until a predefined maximum number of transfers is reached.
The (expected) duration of each of these routes is computed as the sum of the min-
imum time needed for the trips, increased with a small supplement for stops that
must be made, and multiplied by a percentage (which generally is 5%) to account for
uncertainty in the trip durations and to incorporate some robustness against delays.
If transfers are included in the route, additional time is added, based on the expected
transfer times. If there are n1 incoming connections, and n2 outgoing connections,
this expected transfer time equals 30/max{n1, n2} minutes. After the possible routes
have been generated, a check is done whether some routes are dominated by others.
In order to check dominance, routes are compared based on their expected duration,
geographical length and number of transfers. As an example, if route A is longer with
respect to travel time, and has more transfers than route B, it is discarded. Sim-
ilarly, if two routes are identical, except for the transfer station that is chosen, the
transfer station is chosen which has the highest number of trains and other options
are discarded.

Note that a different method to generate routes would be possible as well, as long as
the paths can be used as input to the model.
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3.4.2 Mathematical Programming Formulation

We can formalize the SPOT problem as described in Section 3.3 as follows:

min
∑
k∈OD

dk
T

∑
v∈V k

Lkv ·
(
γw ·W k

v + Y kv
)

(3.11a)

s.t. yij = πj − πi + Tpij ∀ (i, j) ∈ A (3.11b)

`ij ≤ yij ≤ uij ∀ (i, j) ∈ A (3.11c)

Yr =
∑

(i,j)∈r

(yij + γt · 1t(i, j)) ∀ r ∈ R (3.11d)

∆v,v′ = πv′ − πv + Tαv,v′ ∀ v, v′ ∈ V k (3.11e)

Lkv = min
v′∈V k\{v}

{∆v′,v} ∀ k ∈ OD, v ∈ V k (3.11f)

αv,v′ + αv′,v = 1 ∀ k ∈ OD, v ∈ V k,

v′ ∈ V k \ {v} (3.11g)

W k
v = 1

2L
k
v ∀ k ∈ OD, v ∈ V k (3.11h)

Y kv = min
v′∈V k

min
r∈Rk

v′

{Yr + γw ·∆v,v′} ∀ k ∈ OD, v ∈ V k (3.11i)

Lkv ∈ [0, T ] ∀ k ∈ OD, v ∈ V k (3.11j)

W k
v ∈ [0, T/2] ∀ k ∈ OD, v ∈ V k (3.11k)

Yr ∈ R≥0 ∀ r ∈ R (3.11l)

Y kv ∈ R≥0 ∀ k ∈ OD, v ∈ V k (3.11m)

πv ∈ {0, . . . , T − 1} ∀ v ∈ V (3.11n)

pij ∈ Z≥0 ∀ (i, j) ∈ A (3.11o)

αv,v′ ∈ {0, 1} ∀ k ∈ OD, v ∈ V k,

v′ ∈ V k \ {v}. (3.11p)

Constraints (3.11b) and (3.11c) are equivalent to (3.1). Constraints (3.11d) determine
the perceived duration Yr of each route r based on the activity durations associated
with timetable π, as specified in (3.3). To determine the lengths of time slices in
a periodic timetable, we introduce an additional binary variable αv′,v to replace
the module operator. Then (3.11e) defines an auxiliary variable denoting the time
difference between events v and v′. (3.11f) determines Lkv , the length of time slice
Skv , as the time distance to the previous periodic departure event in V k. Hereby,
constraints (3.11g) are required to impose an order between events, even when two
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departures happen at the same time. Constraints (3.11h) and (3.11i) determine
average waiting time until the end of time slice Skv and perceived travel time on an
optimal route from the end of time slice Skv , respectively, following Section 3.3.3. The
objective aggregates the contributions of all time slices for all OD-pairs as given in
(3.10). Constraints (3.11j)–(3.11p) state the domains of the variables.

3.4.3 Linearization of the SPOT Model

The model stated in (3.11) is non-linear. The objective function is quadratic as it
contains the term W k

v · Lkv = 1
2 (Lkv)2. Next to that, (3.11f) and (3.11i) contain one

or two minimums. For our computations, we linearise the objective function and
reformulate (3.11f) and (3.11i).

For the reformulation, we replace (3.11f) by the restrictions

Akv ≤ Qv′,v ∀ k ∈ OD, v′ ∈ V k \ {v} (3.12a)∑
v∈V k

Akv = T, ∀ k ∈ OD (3.12b)

where Qv,v′ is defined as the periodic time difference between events v and v′, i.e.,

Qv,v′ = πv′ − πv + Tαv,v′ . (3.13)

(3.12a) represents the minimum and (3.12b) ensures that all time differences add up
to T . Note that the latter is already a valid restriction in (3.11).

In order to reformulate (3.11i), we introduce new binary variables zkv,v′,r, denoting
whether passengers for OD-pair k ∈ OD, arriving before event v use route r, starting
with event v′. We refer to Appendix 3.A for details.

For the linearisation of the objective function, we introduce new variables xkv,d, de-
noting whether Akv ≥ d or not. For the details, we refer again to Appendix 3.A.

The model stated in this section determines a timetable that minimizes the total
perceived travel time of all passengers. No synchronisation constraints are added to
the model, instead, the objective is designed such that the optimal spread of trains
over time is determined.
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3.5 Solution Approach

For real-life instances, even for networks of small size, the size and nature of the
models easily exceed the capabilities of commercial solvers to find good solutions.
Also due to the complex nature of the models, we do not expect to solve the models
to optimality in a reasonable amount of time.

In this section we present the approach that we use in our experiments in order to find
good solutions in a reasonable time. First of all, we set a time limit TL. Secondly, we
can simplify our SPOT model in various ways. These simplifications are described in
Section 3.5.1. Thirdly, we develop a heuristic to generate a feasible starting solution.
This heuristic is described in Section 3.5.2.

3.5.1 Reduced Versions of SPOT

In this section we discuss some simplifications that can be made to the SPOT prob-
lem, which lead to a reduced model size and therefore possibly speed up the solution
process. These can be used as heuristic approaches towards solving the full SPOT
model.

The first two simplifications use a subset of the OD-pairs instead of the full set. In
the first simplification, we consider only passengers with a direct travel option. Note
that passengers from this set do not need to travel directly if a better connection is
available for them.

The second simplification is motivated by the observation that in practice, the dis-
tribution of OD-pair sizes is very skewed: only a few OD-pairs are very large and
cover a large part of the passengers. We expect that the timetable largely depends
on the large OD-pairs, and that including the remaining OD-pairs would only lead
to some minor changes to the timetable. To choose a subset of OD-pairs, we intro-
duce a parameter λ ∈ [0, 100]. We then include the OD-pairs which are largest in
passenger size such that in total at least λ% of the passengers is included. If λ is
small enough, only a few OD-pairs are included, while a large part of passengers is
taken into account. Note that when we combine the first two simplifications in our
experiments, we include the OD-pairs which are largest in passenger size among the
ones who have a direct travel option such that in total at least λ% of the passengers
with a direct travel option are included.

The third simplification is to require in the model that passengers always take the
first relevant train leaving from the station: in that case they are not allowed to
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wait for a later departing train. Note that also in this simplification, the order of
trains departing from a station is not fixed. The intuition for this simplification is
that for the majority of the passengers, waiting for a later train is in general not
beneficial. Therefore, we expect this to be a simplification that does not sacrifice
much in terms of quality of the solution, while still reducing the complexity of the
model significantly. To implement this simplification, the first minimum in (3.11i) is
taken over v′ ∈ {v} instead of over v′ ∈ V k. Equivalently, we take could zkv,v′,r = 0
if v 6= v′ in (3.22).

As a fourth possible simplification, we choose to include only direct routes and do
not allow for transfers. To achieve this, one could set the penalty γt to a very large
value, thus allowing transfers, but making them very expensive. However, we choose
to reduce the sets Rkv′ , such that it includes only direct routes. This implies that
OD-pairs for which no direct travel option exists cannot be included.

3.5.2 Heuristic to Find a Starting Solution

In this section we describe a heuristic approach to solve the integer program for
the SPOT problem. When trying to solve SPOT to optimality, the heuristically
generated solution can be used as a starting solution for the IP solver and in this
way, help to speed up the solution procedure.

First of all, we take only a subset of the passengers into account when generating this
heuristic solution. That is, in line with the second simplification mentioned in the
previous section, we take as few OD-pairs as possible, such that λ% of the passengers
are incorporated. Based on this subset of passengers, we compute a timetable by a
heuristic procedure.

In order to state our approach, we first group the variables of the integer programming
model for SPOT into the following sets:

Π = {πv : v ∈ V } (3.14a)

P = {pij : (i, j) ∈ A} (3.14b)

A =
{
αv,v′ : k ∈ OD, v ∈ V k, v′ ∈ V k \ {v}

}
(3.14c)

X =
{
xkv,d : k ∈ OD, v ∈ V k, d = 1, 2, . . . , T

}
(3.14d)

Z =
{
zkv,v′,r : k ∈ OD, v ∈ V k, v′ ∈ V k, r ∈ Rkv′

}
. (3.14e)
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The first two sets contain variables that relate to the timetable itself. The variables
in the set A are used to determine time differences between two events correctly.
Finally, the sets X and Z are introduced in the linearisation of our model, and are
related to the passenger routing.

To generate a good starting solution, we consecutively solve partial relaxations of the
SPOT model, as outlined below. Since for all steps we require that the variables in
the sets Π and P are integer, the timetabling constraints (3.11b), (3.11c), (3.11n),
and (3.11o) are fulfilled. Thus, in each step, we find a feasible timetable.

Note that as soon as a timetable is fixed, it is possible to evaluate it according to
objective function (3.11a). To this end, for each OD-pair we compute the lengths Y kv
of perceived-travel-time-minimal routes from each relevant departure event v ∈ V k

to the destination by solving a shortest path problem. Furthermore, we order the
relevant departure events, and thus compute the time difference between πv and the
departure time of the previous departure, Lkv , as well as the average waiting time for
these passengers W k

v = Lkv/2. This allows us to compute the objective value of the
timetable as specified in (3.11a).

We evaluate each timetable generated in the solution as described in (3.11a). The
best solution according to this evaluation is stored as the incumbent and only replaced
when a better solution is found.

The steps of the heuristic are detailed below. To give a quick overview, Table 3.2
displays for each step what type the variables are in that step, i.e., whether they are
continuous (R) or integer (Z) or mixed.

Each step is solved with a time limit, that is based on the overall time limit TL.
Furthermore, the solution for each step is used as a warm start for the next step.
The heuristic is a variant on the ‘Relax-and-Fix’ heuristic, as explained in Belvaux
et al. (1998), Wolsey (1998).

Step Π P A X Z Target gap (%)
1 Z Z R R R 0.0
2 Z Z Z and R R R 1.0
3 Z Z Z and R R R 1.0
4 Fixed Fixed Fixed Z Z 0.0

Table 3.2: Overview of the integrality of variables in the heuristic
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Step 1 In the first step, a solution is found that is feasible with respect to all time-
tabling constraints. Therefore, we relax all variables to continuous variables,
except for the timetabling related variables, i.e., those in Π and P. This model
is solved to optimality, or until a time limit of TL/10 is reached.

Step 2 In this step, we improve the time differences between trains to get a better
passenger routing, by changing a subset A′ of the variables in A into integers,
which we initialize as A′ = ∅.

In order to determine this set, we check for each pair of trains t1 and t2 whether
their geographical routes overlap. If so, let v1, v2 ∈ Π be the departure events
of trains t1 and t2, respectively, at their first shared station. Then A′ = A′ ∪
{αv1,v2 , αv2,v1}.

We change all variables in A′ into integers and set A = A \ A′ and A′ = ∅.
Then we re-optimise with a time limit of TL/10 or until an optimality gap of
1.0% is reached.

Step 3 In the previous step, a part of the α variables is changed into integers, but
the majority is still continuous. In this step we iteratively change the remaining
variables in A into integers, starting with the variables of which the value in
the incumbent solution is not close to integer.

In each iteration of this step, we define the set of variables that are to be
changed to integers as

A′ = {α ∈ A | 0.05 ≤ val(α) ≤ 0.95} . (3.15)

Here, val(α) denotes the value this variable α attains in the incumbent solution.

Again, we change the nature of all variables in A′ to integers, we set A = A\A′,
A′ = ∅ and re-optimise with a time limit of TL/10 or until an optimality gap of
1.0% is reached. This is continued until |A′| ≤ 50, in which case we set A′ = A
in order to limit the number of iterations. Furthermore, this ensures that after
these loops all α-variables have integer values.

Step 4 In this step, we fix all variables in Π, P and A to the value they attain in
the incumbent solution (according to the evaluation with all OD-pairs). Next,
we change all variables in X and Z to integers and reoptimise this model to
optimality.
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In order to better understand the heuristic, we highlight the rationale behind it. As
headway constraints are not considered, the timetabling part is relatively easy in
our model. Therefore we first find a timetable that is feasible with respect to the
timetabling constraints, and include the passenger routing part only as a continuous
relaxation. As this is a relatively easy task, we try to find an optimal solution here.
This can however lead to a bad timetable from the perspective of passengers, as the
time differences between events can be determined incorrectly, due to the continuous
nature of the variables in A. Therefore, in the next steps we try to improve this.

First, we determine where train lines meet for the first time. By making the cor-
responding variables integer, we aim at better spreading different train lines over
time. The expectation here is that by changing only a few variables to integers, a
good gain in terms of quality can be obtained, without making it too difficult. The
places where train lines meet are those places where frequencies on the tracks can
change and therefore the expectation is that these are crucial decisions. The next
step turns the remaining variables into integers. By experiments we found that the
values of the majority of the variables in A is very close to integer, and that the
remaining variables are generally rather close to 0.5. Therefore we select these vari-
ables that have 0.05 ≤ val(α) ≤ 0.95, i.e., that are not too close to integer values. By
selecting these variables, we expect to make a large step towards an overall feasible
solution. Iteratively these variables are changed to integers. When there are not
many variables left, we change the remaining variables into integers in order to limit
the number of iterations needed. Finally, for the best found timetable, we determine
the best routing and the heuristic finishes.

3.6 Computational Results

In this section, we apply our approach to two instances based on the network operated
by Netherlands Railways. We use these instances to computationally evaluate the
use of a heuristic starting solution and to investigate the effect of solving restricted
versions of our model.

In all experiments we discretise time to minutes and use a period length of one
hour, i.e., T = 60. For the perceived travel time, values for adaption time and
transfer penalty must be set (γw and γt). According to De Keizer et al. (2015), the
resistance for a transfer depends on many factors, but on average a penalty of 23
minutes (including 2 minutes of transfer time) is appropriate. Instead of 2 minutes,
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we use a minimum of 3 minutes for a transfer, so we use a value of γt = 20 in our
models, to obtain the penalty of 23 minutes. As adaption time is a relatively new
concept, there is not much research available to determine a good value for γw. We
want to emphasize the regularity of trains to reduce adaption time, but not over-
stress it because adaption time already appears in the objective as a quadratic term.
Therefore, we decided to use γw = 3.

In our implementation and when reporting objective values in this section, we only
report the ‘excess time’. That means, we subtract constant terms from the objective
function to improve numerical stability. For trip time, that implies that we subtract
the minimal duration of the shortest possible trip for that OD-pair. If some OD-pair
needs at least ν transfers, we subtract ν times the transfer penalty, and only penalize
additional transfers. Finally, to subtract a constant for the adaption time, we assume
that departure events are spread evenly over time, which leads to the lowest possible
adaption time (see Appendix 3.C for a proof), and subtract the corresponding value
for the adaption time. This also explains why we do not report relative gaps. If
we do not subtract the constant terms, all gaps would be relatively small. In our
experiments, the lower bound is often close to zero and hence relative gaps are very
large.

Our computations are carried out on a machine with an Intel Xeon Silver 4110
2.10Ghz processor and with 96 GB of RAM installed. The integer programs are
solved by Cplex 12.9.0 under default settings, using up to 15 parallel threads (IBM,
2019).

3.6.1 Instances

The instances that we use in this chapter are real-life instances of Netherlands Rail-
ways (NS), the largest operator of passenger trains in the Netherlands. The first
instance is the so-called ‘A2-corridor’, a network that contains 5 Intercity lines, that
all share part of their route. The second instance is the 2019 Intercity network of
Netherlands Railways (NS). In the remainder of this section, we describe the two
instances in more detail.

A2-corridor

The first instance we consider in this chapter contains the so called ‘A2-corridor’,
which is the part of the Dutch railway network between Eindhoven (Ehv) and Ams-
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Figure 3.2: Overview of the used instances

terdam Centraal (Asd). The line plan for this instance is shown in Figure 3.2a, where
each line is shown in a different style. The used abbreviations for the stations are
mentioned mentioned in Table 3.3.

Abbreviation Name Abbreviation Name
Ah Arnhem Mt Maastricht
Amr Alkmaar Nm Nijmegen
Asb Amsterdam Bijlmer ArenA Sgn Schagen
Asd Amsterdam Centraal Shl Schiphol
Ehv Eindhoven Std Sittard
Hdr Den Helder Ut Utrecht Centraal
Hrl Heerlen Vl Venlo
Ht ’s Hertogenbosch

Table 3.3: Abbreviations of the stations

The instance consists of 5 train lines, each with a frequency of 2 trains per hour
in both directions, leading to 20 trains in total. There are two lines that serve the
whole corridor, i.e., between Ehv and Asd, whereas one line only serves Asd - Ut,
and another line only serves Ut - Ehv. The fifth line (shown as a densely dotted line
in Figure 3.2a) does not serve the corridor itself, but it is important in this instance
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to determine good frequencies on the remainder of the network that is not part of
the corridor itself.

The reason to study this instance is that the ‘A2-corridor’ has a very high number
of passengers and it has been subject to intensive study in practice recently, since
Intercity-frequencies increased from four to six trains per hour here. In Asd and Ehv,
four of the six trains continue to Amr and Std, respectively. This raises the question
what the headway times should be between consecutive trains, both on the corridor
itself and on the remainder of the network. As an example, if the headway times
between all consecutive trains on the corridor is 10 minutes upon arrival in Ehv, and
trains do not get additional dwell time there, the pattern between Ehv and Std will
be irregular, headway times alternate between 10 and 20 minutes. In order to get a
more regular pattern, trains would have to get a longer dwell time in Ehv. We study
these kind of situations to find out what is the best solution from a perspective of
total perceived passenger travel time.

In this instance, we consider only OD-pairs that travel either in the southbound or
the northbound direction, and not in both directions. For example, OD-pairs Nm to
Ehv and vice versa are not considered, as they would have to travel via Ut. In total
the network has 34 relevant stations and we consider 891 OD-pairs. The average
number of routes per OD-pair is 6.3, with a maximum of 24 routes. The event-
activity network contains 1344 events and 1700 activities, of which 376 are transfer
activities.

Intercity Network

As second instance, we consider the 2019 Intercity Network of NS. In this network,
there are many OD-pairs without a direct connection. We thus expect that arrival
and departure times at important transfer stations will be influenced by the need
to make good transfer connections for these passengers. The network includes 95
stations and 76 trains in total. The geographical network is depicted in Figure 3.2b.
There are 8870 OD-pairs.

The corresponding event-activity network contains 3816 events and 6578 activities,
2442 of which are transfer activities. On average, each OD-pair has 11.8 travel
options, with a maximum of 280 possible options.

It is interesting to observe that when we consider passengers with a direct travel
option only, only 1960 OD-pairs remain, but these cover 79.1% of the passengers.
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In that case, 1760 of the transfer activities are not needed, which makes the model
simpler to solve. But even in this case, 682 transfer activities are kept, since it may be
beneficial for the passengers to transfer, even if there is a direct connection available.

3.6.2 Evaluation of the Solution Approach

In this section, we evaluate our solution approach, by computationally evaluating
the benefit of generating a heuristic starting solution instead of a cold start, and by
exploring the effects of, next to using the heuristic, solving several restricted versions
of the SPOT model on the quality of the timetable.

The Advantage of Generating a Starting Solution

To evaluate the benefits of using a starting solution, we compare running times of
the linearised SPOT model, with and without starting solution. We do this on three
different cases: the A2-corridor instance, the Intercity network instance with OD-
pairs which have a direct travel option, and the Intercity network instance with all
OD-pairs. In this experiment, we do not use any of the reductions described in
Section 3.5.1.

For generating a starting solution, we set λ = 30, i.e., at least 30% of the passengers
in the network are included. Given the distribution of the OD-pair sizes (only a few
OD-pairs account for a large portion of the passengers) and after performing several
tests, this turned out to be a reasonable number to use for this purpose. This leads to
including only a small subset of the OD-pairs in the model, while still ensuring that
a large portion of the passengers is covered. We then employ the heuristic procedure
described in Section 3.5.2.

To guide the search when no heuristic starting solution is generated, we first spend
20% of the allotted time on a model where all dwell times are set to their lower
bound. The remaining 80% of the time is spent on solving the full model.

For the A2-corridor, we set a total time limit of 2 hour for the computations. For
the Intercity case, we set a total time limit of 10 hours.

The results of our computations are shown by means of convergence plots in Fig-
ure 3.3. The horizontal axes display time in seconds on a logarithmic scale. Note
that the heuristic solves a strongly restricted problem with a subset of the passen-
gers, and therefore the objective values of the heuristic and the objective value of
the full model cannot be compared. Therefore, every time a new timetable is found
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in the solving process, its objective value (3.11a) is evaluated based on the full set
of OD-pairs, in the way described in Section 3.5.2. Figure 3.3 plots these evaluation
values over time.

In the convergence plots, each individual plot displays six lines. The dashed dark line
corresponds to the evaluation value of the timetables found by the heuristic. As this
model has incomplete information and is a partial relaxation, not every timetable
is necessarily an improvement over the previously found timetable and therefore the
dashed dark line is not monotonically decreasing. In fact, every time the solver
restarts in a new step of the heuristic, it may find an arbitrarily bad timetable and
passenger routings, thus causing the peaks in the dashed dark line. The evaluation
value of the best timetable found so far is shown by the solid dark line. The points
in time in which a better timetable (according to the evaluation value based on all
OD-pairs) is found is indicated by a circle. Once the heuristic finishes, its solution is
fed to the linearised SPOT model as a starting solution. From that point on, a lower
bound is available, which is shown as a dash-dotted dark line.

To indicate how much time is consumed for the different steps of the heuristic, we
indicate the time taken by the different steps in Figure 3.3 by means of shaded bars.
Each bar displays the step of the heuristic as well. As the third step iteratively
changes a subset of the α variables, we also display the iteration number, i.e., 3-2
denotes step 3, iteration 2. Only a few iterations are needed to turn all α variables
into integers. Step 4 is not displayed because this interval is too short to be visible on
the logarithmic time scale we use. More details on how much time is spent on each
step can be found in Table 3.4. This table also displays the number of OD-pairs used
for the heuristic, and its percentage of the total number of OD-pairs in the instance.

A2-corridor Intercity network
only direct

Intercity network
all OD pairs

# OD-pairs 17 (1.9%) 55 (2.8%) 70 (0.8%)
Time (s):
- Step 1 1 14 108
- Step 2 4 342 978
- Step 3-1 19 3613 3616
- Step 3-2 55 3620 3611
- Step 3-3 - 3606 2882
- Step 4 0 1 1
- Total: 79 11195 11195

Table 3.4: Details about the heuristic procedure
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Figure 3.3: Convergence plots for the comparison of solution approaches. The dark
lines display the heuristic approach, the light lines the standard approach. Solid
line: best solution found so far. Dash-dotted line: lower bound. Dashed dark line:
Current evaluation value. Dashed light line: Objective value according to solver.
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Figure 3.3: Convergence plots for comparison of solution approaches. (cont.)

For the solution process without starting solution, the dotted light line displays the
objective value according to the solver. Note that here we do not use a relaxation
nor do we restrict to a subset of the passengers. However, it is still possible that
in intermediate solutions, the chosen passenger routes are suboptimal for the chosen
timetable. The solid light lines shows the evaluation value of the timetable found.
We observe that in the beginning, there can be quite a difference between objective
value reported by the solver and evaluation value, but soon better routes are found
and the objective value reported by the solver decreases. The light dash-dotted line
displays the lower bound according to the solver.

Characteristics of the solutions and solving process are reported in Table 3.5. For
each instance, the left column displays the objective values after the time limit has
passed, for the case where a heuristic starting solution is used. It shows the value of
the heuristic solution, the value of the final solution, and a lower bound (provided
by CPLEX). The right columns displays the values for solving the model without
warm-start, and shows the final objective value and lower bound.

We observe in Figure 3.3 and Table 3.5 that although neither the full model, nor the
solution approach applying the heuristic could find an optimal solution, in all three
cases, better solutions are found when generating a heuristic starting solution first.
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With heuristic Without heuristic
Instance: A2-corridor
Heuristic objective value: 131.6
Final objective value 131.6 411.5
Lower bound 19.4 19.1
Instance: IC network - direct passengers
Heuristic objective value: 784.6
Final objective value 728.3 1041.2
Lower bound 118.4 123.1
Instance: IC network - all passengers
Heuristic objective value: 1440.6
Final objective value 1440.6 3364.1
Lower bound 98.5 98.9

Table 3.5: Comparison between using a heuristic starting solution or not

Even stronger, the heuristic finds a good solution, before the full model finds the first
feasible solution.

Solving Reduced Versions of SPOT

In this section we experiment with solving different reduced versions of SPOT in the
second stage.

The rationale behind this is that on the one hand, within the same time limit, we
may be able to get closer to optimality when working on a reduced problem version.
On the other hand, we hope that when reducing in the ‘right’ way, little relevant
information is lost, such that the timetable we find is good when evaluated for the
full problem.

To reduce the model, we experiment with four different parameters: (1) We take only
passengers who have a direct travel option (only Direct), or all passengers (all OD);
(2) We take λ ∈ {95, 99, 100}, i.e., we restrict the number of passengers that we take
into account; (3) We either allow passengers to transfer (trans) or not (noTrans); (4)
We either force passengers to take the first departing train (noWait), or let them wait
for a later train (wait). When we combine (1) and (2), we include the OD-pairs which
are largest in passenger size among the ones who have a direct travel option such
that in total at least λ% of the passengers with a direct travel option are included.
See also Section 3.5.1 for detailed explanations of the simplifications.
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We follow the two-stage approach motivated in the previous section: generate a
heuristic start solution, then use this to warm-start the reduced linearised SPOT
model. Note that take the above parameters already into account when constructing
the heuristic starting solution. E.g., when we do not consider OD-pairs with transfer
options (only Direct), only these are considered in the heuristic. Furthermore, when
we solve the reduced linearised SPOT model with a subset of the passengers, e.g.,
only 95% of the passengers, the heuristic uses a subset of this subset, that is, 30% of
this 95% of the passengers.

In the following we compare the evaluation values for our approach under different
parameter setting on the Intercity network instance. We chose this instance because
this is the most difficult instance to find good solutions for. Note that none of the
approaches finds a provably optimal solution within the given time limit.

In order to properly compare the resulting timetables, we have evaluated each of
them considering all passengers with full route choice. The corresponding evaluation
values are displayed in Figure 3.4.
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Figure 3.4: Evaluation values for Intercity network for different parameter settings

Note that when including all OD pairs, but not allowing transfers, this leads to many
OD-pairs not having a transfer option in the model. Therefore, we leave out these
situations.
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As can be seen in this figure, no single parameter choice seems to lead to clearly
superior results. As a tendency, in this instance it appears that the combination of
‘noWait’ and ‘trans’, i.e., forcing passengers to take the first train that is leaving,
and allowing transfers, leads to lower objective values. A possible explanation for
this is that the cases in which waiting at the station of origin is beneficial will be
very limited, especially as we are studying an Intercity network in which trains run
at the same speed. The option ‘noWait’ hence leads to a smaller model without
sacrificing much in terms of quality. Next to this, transfer options can significantly
improve route choices and providing them seems to be relevant. Overall, we conclude
that reducing the set of OD-pairs or the travel options on the Intercity network in
the proposed way is possible without leading the solution procedure towards bad
solutions. Since these reductions allow speed-ups in the solution procedure, working
on reduced models can therefore even lead to slightly better solutions if the solution
time is limited.

3.7 Case Studies

In this section, we take a closer look into the solutions obtained by the SPOT model.
In Section 3.7.1 we focus on the A2-corridor and demonstrate the trade-offs that our
model is able to make, between additional dwell times and regularity of train service.
In Section 3.7.2 we demonstrate how our method makes choices regarding transfer
connections between trains on the Intercity network. We discuss our findings, and
give insights on how our approach can be used in strategic railway planning.

Note that the solutions discussed in this section are the best found solutions within
the time limit of the approach, and thus not necessarily optimal. In this section,
we again use the two-stage approach by employing our heuristic algorithm first, and
using the result as a warm start for solving the full linearized SPOT model. For the
second stage we do not use any of the reductions mentioned in Sections 3.5.1.

3.7.1 Balancing Regularity and Dwell Times

We illustrate the outcome of our approach on the A2-corridor instance in more detail.
Specifically, we focus on what happens at the two locations Asd and Ehv where
frequencies change from six to four trains per hour. Remember that, when passing
from the corridor with frequency six to the part of the network with frequency four,
if the trains arrive with 10 minutes headway time between each pair of consecutive
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trains and no additional dwell time at the station is allowed, the headway times
will be irregular outside the corridor, alternating between 10 and 20 minutes. If
we want the patterns to be regular both on and off the corridor, additional dwell
times are required at Asd and Ehv, in order to make the transition between the
different frequencies. In order to shed light on the trade-offs at different values of
adaption time, we visualize two timetables for the A2-corridor. To find the first one,
we run our solution approach for different values of parameter γw, which relates the
perceived duration of adaption time to in-train time. In the first situation γw = 3,
thus adaption time is considered to be less pleasant than being in the train itself.
This will put a higher emphasis on the regularity of trains. In the second situation
γw = 1, thus adaption time is valued equal to in-train time.

Time space diagrams of the timetables for both situations are shown in Figure 3.5.
Time is shown on the horizontal axis, distance on the vertical axis, where also the
relevant stations are shown. Three train lines are drawn with a solid line, the other
two with a different line style because they are relevant for the description of the
results later in this section. More detailed timetables for the stations Asd and Ehv
are shown in Tables 3.6 and 3.7. Interesting to note is that the arrival pattern in Asd
with γw = 1 is perfectly regular, all headway times between consecutive trains are
exactly 10 minutes. However, when continuing towards Amr, the pattern becomes
very irregular, as there is no additional dwell time added, and the headway times
now alternate between 10 and 20 minutes. Also in Figure 3.5b, this irregularity is
clearly visible. With γw = 3, the irregularity north of Asd is reduced to headway
times of 13 and 17 minutes. In this case the headway times on the corridor are no
longer equal to 10 minutes and vary between 8 and 13 minutes.

γw = 3 γw = 1
From To Arrival Departure Arrival Departure
Mt Amr :07 :09 :14 :16
Hrl Asd :16 – :04 –
Nm Hdr :24 :26 :24 :26
Mt Amr :37 :39 :44 :46
Hrl Asd :46 – :34 –
Nm Hdr :54 :56 :54 :56

Table 3.6: Timetable for northbound trains at Asd

The arrival headway times at Ehv are fairly regular, they vary between 9 and 11
minutes, for both values of adaption time. Here also, departure headway times are
not perfectly regular. Instead, for γw = 3, they are even as large as 21 minutes, which
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Figure 3.5: Time space diagrams for Hdr to Mt.

is larger than the departure headway times at Asd. This clearly shows that in this
case, the emphasis lies on reducing waiting times for passengers already in the train,
and not on reducing adaption time for boarding passengers at Ehv and subsequent
stations.

Interesting to note in Figure 3.5, is what happens around Ut, for both values of γw.
The train line starting in Vl goes towards Shl (it is shown with a dotted line style
in Figure 3.5) and hence the corresponding trains leave the corridor at Ut. This
happens at :01 and :31 respectively when γw = 3. At Ut, a line coming from Nm
and going to Hdr (shown as a dashed line) enters the corridor to guarantee the six
train per hour frequency again. Interestingly, in both timetables, the trains of this
line depart from Ut at :58 and :28, i.e., around the same times that the trains of the
other line leave the corridor. That means, in the regular pattern that is present in
the corridor, these two lines replace each other.
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γw = 3 γw = 1
From To Arrival Departure Arrival Departure
Shl Vl :10 – :10 –
Asd Hrl :20 :21 :20 :21
Amr Mt :29 :30 :31 :32
Shl Vl :40 – :40 –
Asd Hrl :50 :51 :50 :51
Amr Mt :59 :00 :01 :02

Table 3.7: Timetable for southbound trains at Ehv

This instance clearly shows that trade-offs are made between regularity on the cor-
ridor and on the branches on the one hand, and additional dwell times at border
stations at the other hand. It shows that the value of regularity and the value of
short waiting and transfer times depend on the relative value of adaption time versus
in-train time γw.

3.7.2 Insights on the Intercity Network

The Intercity network of Netherlands Railways contains many train lines that are
linked to each other, because they share part of their route and because they can
offer good connections. We have analysed the timetable that was evaluated best in
the end of Section 3.6.2 (that is, the one found for parameter setting ‘only Direct’,
λ = 95%, ‘trans’, ‘noWait’) to demonstrate how our method can be used to generate
insights on the desired timetable. For the purpose of this chapter, we analyse the
timetable at two different stations, namely Leiden (Ledn) and Zwolle (Zl).

Leiden (Ledn). This station is located in the western part of the Netherlands and
can be reached from four different directions, which are Haarlem (Hlm), Schiphol
(Shl), The Hague (Gvc) and Rotterdam (Rtd). Figure 3.6 displays a schematic
overview of the line plan around Ledn. Each of the neighbouring stations is displayed,
and a line indicates a train line serving this station twice per hour per direction. As
can be seen, there are direct trains between each of the northern stations and each of
the southern stations. The timetable of the southbound trains is detailed in Table 3.8.

Two interesting observations are worth noting here. First of all, the trains depart
from Ledn two minutes apart from each other, and in a fixed order: the trains towards
Gvc depart first. Furthermore, all dwell times at Ledn are exactly 1 minute, i.e., no
dwell time is prolonged. Therefore, the trains need to arrive in Ledn following an
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Ledn

Hlm Shl

Gvc Rtd

Figure 3.6: Network at Ledn

From Arrive To Depart
Shl :00 Gvc :01
Hlm :02 Rtd :03
Hlm :16 Gvc :17
Shl :18 Rtd :19
Shl :30 Gvc :31
Hlm :32 Rtd :33
Hlm :46 Gvc :47
Shl :48 Rtd :49

Table 3.8: Timetable for southbound trains at Ledn

alternating pattern. They arrive in groups of two, but in subsequent groups, the
order is reversed: In the first group, first the train from Shl arrives, and after that
the train from Hlm, while for the second group this order is reversed. However,
passengers from the first train always have a transfer connection to the second train
of exactly 3 minutes. That means, in the first group of trains, passengers from Shl
can travel quickly to Rtd and Gvc, while passengers from Hlm towards Gvc have to
wait much longer. In the next group of trains, this order is reversed, now passengers
from Shl to Gvc have to wait.
Secondly, the headway times between trains on a leg of this network are never exactly
15 minutes. For the trains coming from Hlm and for the trains towards Gvc and Rtd,
it varies between 14 and 16 minutes. For the trains coming from Shl, headway times
are even as large as 18 minutes. This illustrates that regularity is not a necessary
condition for a good timetable.

Zwolle (Zl). Even though this station is situated in the less-populated northern
part of the country, it is a crucial station in the network as all trains going further
north have to pass Zl. Secondly, trains come and go in four main directions, Gronin-
gen (Gn), Leeuwarden (Lw), Amersfoort (Amf) and Lelystad (Lls). The relevant
directions in this Intercity network are displayed in Figure 3.7. It is a similar situ-
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ation to the Leiden station. However, in Zl, the frequency of the lines is only one
train per hour. In Table 3.9, the arrival and departure times of the trains in the
southbound direction are shown.

Zl

Lw Gn

Lls Amf

Figure 3.7: Network at Zl

From Arrive To Depart
Gn :28 Lls :29
Lw :30 Amf :32
Gn :57 Amf :02
Lw :59 Lls :00

Table 3.9: Timetable for southbound trains at Zl

The trains arrive in Zl in two groups, approximately at :00, and approximately at :30,
with the train from Gn arriving earlier than the train from Lw in both cases. The
train from Gn to Lls arrives in Zl at :28. Passengers can either stay in their train and
continue towards Lls, or transfer to the train to Amf, leaving at :32. In contrast, the
passengers in the train from Lw to Amf do not have a connection to Lls and should
take the direct train half an hour later. However, half an hour later, the dwell time
of the train coming from Gn is prolonged, so now passengers can actually transfer
between both trains. Note that, so far, we have seen few cases in which dwell time
was prolonged. However, in this case, a slightly prolonged dwell time of the train in
Gn to Amf can greatly reduce the travel time for passengers fron Lw to Amf, as they
would have to wait approximately 30 minutes for their transfer connection otherwise.
In the timetable at Ledn, we have not seen these prolonged dwell times, as this would
be less beneficial there due to the higher frequencies.

The above discussion indicates how SPOT can be used to design timetables, and
give valuable insights in the strategic timetabling phase. We observe that in Ledn
and Zl, the solution is often close to regular, but that exceptions from these patterns
can improve the timetables in some cases. This implies that we may overlook good
timetables, when imposing regularity constraints. Especially in Ledn, we see that
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these irregular patterns allow the alternating order of trains, and in turn the altern-
ating connections between trains.
Secondly, we see that for some stations longer dwell times are good to ensure trans-
fers, especially if the alternative for missing the transfer would be a long waiting
time, when frequencies are low.

3.8 Conclusions and Further Research

In this chapter we introduced the Strategic Passenger Oriented Timetabling (SPOT)
problem. This problem aims at finding a timetable pattern which is optimal for
passengers, explicitly including adaption time into the perceived passenger travel
time. In our approach to solve the SPOT problem, we formulated a quadratic integer
program. We linearised it, and we proposed and tested an approach for solving it.
We have shown in our case studies, how the solutions generated by the SPOT model
can be used to learn about desirable patterns at key points of the network.

Due to the strategic nature of the problem at hand, we formulated the SPOT problem
without including headway constraints, so that the underlying timetabling problem
is relatively simple. However, the inclusion of adaption time in the model formulation
leads to a quadratic objective, making the model harder to solve again. We achieved
improvement with respect to the solution time by warm-starting the model with a
heuristically achieved solution. Still, in none of our instances we were able to prove
optimality of the solution found, with a lower bound far off the best solution found. It
may be promising to investigate further solution methods, possibly working directly
on the quadratic formulation of the program, or to investigate how better bounds
can be determined.

Most timetabling models for the tactical planning phase do not include adaption time
into the perceived travel time, thus implicitly assuming that passengers will fully
adapt to the timetable and not suffer from inconveniently placed departure times.
To overcome this questionable assumption, the SPOT model could also be applied
to a setting that includes headway constraints in the PESP model. In addition,
our current model formulation uses the assumption that passengers arrive uniformly
distributed over the period for the definition of passenger groups and average waiting
times. It would be worth investigating to what extend it is possible to incorporate
different passenger distributions.
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A different idea on how to move from the strategic towards the tactical planning
phase is to consider the timetable obtained with SPOT as an ideal timetable, and
adjust it, where needed, to make it ‘fit’ with infrastructure requirements. A method
to do this is proposed in Chapter 4.
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Appendix

3.A Linearisation

The SPOT model in (3.11) contains a quadratic objective and has several minimums
in the constraints. In Section 3.4.3, constraints (3.11f) are linearised. In this section,
we linearise the remainder of the model.

3.A.1 Objective

The objective function (3.11a) is a quadratic function. Using that W k
v = Lkv/2, the

objective can be written as

min
∑
k∈OD

dk
T

∑
v∈V k

γw
2
(
Lkv
)2 + Lkv · Y kv . (3.16)

We linearise this expression by writing Lkv as a sum of binary variables, defined as

xkv,d =
{

1 if Lkv ≥ d
0 otherwise

∀ k ∈ OD, v ∈ V k, d ∈ {1, . . . , T}. (3.17)

For a stronger formulation, we can impose the additional restrictions that

xkv,d ≤ xkv,d−1 ∀ k ∈ OD, v ∈ V k, d ∈ {2, . . . , T}. (3.18)

Using these new variables, we can write

Lkv =
T∑
d=1

xkv,d,
(
Lkv
)2 =

T∑
d=1

(2d− 1) · xkv,d. (3.19)

Substituting this in (3.16) results in a multiplication of binary variables xkv,d by
bounded variables Y kv . This can be resolved by introducing new variables Rkv,d =
Y kv · xkv,d. The objective then becomes to minimize

∑
k∈OD

dk
T

∑
v∈V k

T∑
d=1

[γw
2 (2d− 1) · xkv,d +Rkv,d

]
. (3.20)

By defining lkv and ukv as the lowest and highest possible values for Y kv respectively,
we add the following additional restrictions to correctly determine the value for the
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variables Rkv,d:

Rkv,d ≤ ukv · xkv,d (3.21a)

Rkv,d ≥ lkv · xkv,d (3.21b)

Rkv,d ≤ Y kv − lkv ·
(
1− xkv,d

)
(3.21c)

Rkv,d ≥ Y kv − ukv ·
(
1− xkv,d

)
. (3.21d)

3.A.2 Minimums

Constraints (3.11f) and (3.11i) both contain a minimum, which we can linearise.
(3.11f) is already linearised in Section 3.4.3. Constraints (3.11i) are replaced by the
following set of restrictions for every k ∈ OD and every v ∈ V k:

Y kv ≤ Yr + γw ·Qv,v′ ∀ v′ ∈ V k, r ∈ Rkv′ (3.22a)

Y kv ≥ Yr + γw ·Qv,v′ −Mk
v ·
(
1− zkv,v′,r

)
∀ v′ ∈ V k, r ∈ Rkv′ (3.22b)∑

v′∈V k

∑
r∈Rk

v′

zkv,v′,r = 1. (3.22c)

We introduced new binary variables zkv,v′,r, which correspond to the route that is
chosen. That means, if zkv,v′,r = 1, passengers wait from event v to v′ (which can be
the same), and take route r, starting at v′. For computational stability, the newly
introduced constantsMk

v have to be chosen as small as possible, but still large enough
to make the second set of constraints redundant if zv,v′,r = 0, i.e., we can take

Mk
v = γw · T + max

r∈Rk

{
Y r
}
− max
r∈Rk

{Y r} , (3.23)

where Yr, Yr denote the highest and lowest possible value for the variable Yr respect-
ively.

As we are minimizing the perceived passenger travel time, we can exclude the newly
introduced constraints (3.21a), (3.21c) and (3.22a) in order to reduce the model size.

To summarize, in the linearisation we take several steps. First of all, the objective
(3.11a) is replaced by (3.20). Here, additional variables xkv,d and Rkv,d are introduced,
with additional restrictions (3.18), (3.21b) and (3.21d). Secondly, the minima are
replaced by linear restrictions. First of all, for notational reasons we defined Qv,v′ in
(3.13). By using this, we replace (3.11f) by (3.12), and (3.11i) by (3.22b)–(3.22c).
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3.B List of Symbols

This appendix summarizes all notation used in this chapter in Table 3.10.

Sets
V The set of events (indexed by v, i or j)
A The set of activities (indexed by a or (i, j))
OD The set of all OD-pairs (indexed by k)
R The set of all routes (indexed by r)
Rk The set of routes for OD-pair k (indexed by r)
V k The set of departure events for OD-pair K (indexed by v or v′)
Constants
T The cycle period
dk The number of passengers for OD-pair k ∈ OD
γw The objective coefficient for adaption time
γt The penalty for using a transfer
Variables
πv The timing of event v ∈ V
pij A modulo parameter used for the shift from one cycle period to another,

for activity (i, j) ∈ A
yij The duration of activity (i, j) ∈ A
Yr The duration of route r ∈ R
Lkv The number of minutes before event v, in which no other departure event

for OD-pair k takes place
W k
v The expected waiting time for passenger for OD-pair k, for who event v

is the first departure event
Y kv The perceived travel time for passengers of OD-pair k, from the timing

of event v onwards
αv,v′ A binary variable ensuring the correct determination of the time difference

between event v and v′
Qv,v′ The time difference between event v and v′
xtv,d A linearisation variable, indicating whether Lkv ≥ d or not
zkv,v′,r A linearisation variable, indicating which route is chosen
Rkv,d A linearisation variable, replacing Y kv · xkv,d

Table 3.10: List of sets, constants, and variables for the (linearised) SPOT model
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3.C Proof of Lower Bound on Adaption Time

Lemma 3.1. Let k ∈ OD be an OD-pair and V k the set of relevant departure events,
let T denote the period length. Then the adaption time contribution for OD-pair k,∑
v∈V k

dk
T · L

k
v ·W k

v is bounded below by dk · T
2|V k| , that is

∑
v∈V k

dk
T
· Lkv ·W k

v ≥ dk ·
T

2|V k| . (3.24)

Proof. Remember that W k
v = 1

2L
k
v and

∑
v∈V k L

k
v = T , thus the adaption time

contribution of OD-pair k can never be smaller than

min dk
T
·
∑
v∈V k

1
2(Lkv)2 (3.25a)

s.t.
∑
v∈V k

Lkv = T (3.25b)

Lkv ≥ 0 ∀v ∈ V k. (3.25c)

Consider any feasible solution Lk = (Lkv)v∈V k to this optimization problem. We can
write Lkv = T

|V k| + δv with
∑
v∈V k δv = 0 due to (3.25b) and obtain

∑
v∈V k

(Lkv)2 = 1
2
∑
v∈V k

(
T

|V k|
+ δv

)2
(3.26a)

=
∑
v∈V k

((
T

|V k|

)2
+ 2 T

|V k|
δv + δ2

v

)
(3.26b)

=
∑
v∈V k

(
T

|V k|

)2
+ 2 T

|V k|
∑
v∈V k

δv︸ ︷︷ ︸
=0

+
∑
v∈V k

δ2
v︸ ︷︷ ︸

≥0

(3.26c)

≥ |V k| ·
(

T

|V k|

)2
= T 2

|V k|
. (3.26d)

Hence, we obtain
dk
T
·
∑
v∈V k

1
2 (Lkv)2 ≥ dk ·

T

2|V k| . (3.27)





Chapter 4

An Iterative Heuristic for
Passenger Centric Train
Timetabling with Integrated
Adaption Times∗

4.1 Introduction

In modern day rail transportation systems, many trains are full, in particular in rush
hours. Combining this with an increased attention to environmental pollution in
terms of carbon dioxide and nitrogen emissions, a shift towards public transportation
is desired. This makes the trains even more crowded, leading to a higher number of
trains on the tracks. The problem of designing a good railway timetable with limited
infrastructure resources already is a challenging problem. Increasing the frequencies
of trains makes it even more complicated to find a good timetable. In a good time-
table, travel options for passengers are spread regularly over time, so passengers can
travel whenever they like and do not have to wait a long time (Chapter 3). How-
ever, when infrastructure resources become limiting to accommodate all trains, this

∗This chapter is, up to minor modifications, a direct copy of G.J. Polinder, V. Cacchiani,
M.E. Schmidt, and D. Huisman (2020): An iterative heuristic for passenger-centric train timetabling
with integrated adaption times.
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regularity of train services cannot always be realised. In such a situation, trade-offs
must be made between having a regular service or having increased waiting times.
Furthermore, improving the level of service on one part of the network often implies
a decreased level of service on other parts of the network.

In this chapter, we aim at constructing a timetable that minimizes average perceived
passenger travel time, and that can be safely operated on a given infrastructural
network. The perceived travel time does not only consist of the time a passenger
actually travels, but also includes adaption time. Adaption time is the time difference
between the desired moment of departure and the actual departure time. That means,
if a passengers would like to depart at :40, and can depart only at :50, the adaption
time is 10 minutes. As is common in many European countries, we compute a periodic
timetable, i.e., a timetable for a base period that is repeated throughout the day.

We consider infrastructure constraints on a macroscopic level (Goverde et al., 2016).
That is, we consider railway stations with a number of tracks connecting them. Note
that we do not include infrastructure within stations, both only between station. An
approach for timetabling within stations can be found in Zwaneveld et al. (1996).
In macroscopic timetabling, safety constraints impose a minimum time difference
between trains that share part of the tracks to avoid crossings and overtakings that
are not possible due to the infrastructure and to enforce a minimum safety distance
between trains running on the same track.

Many timetabling approaches impose an upper time limit on transfer times and reg-
ularity of services by additional constraints. Instead of using these strict constraints,
we omit them, since our objective, the minimization of the perceived travel time of
passengers, will penalize long transfer times and waiting times at origin stations.
In particular, adaption time minimization allows to effectively synchronize trains at
stations based on passenger demand. Furthermore we allow to cancel planned trains
if that leads to a better objective value.

We define the Passenger-Oriented Timetabling (POT) problem as follows: Given an
infrastructure network with stations and tracks connecting them, and a line plan,
specifying line routes, stopping patterns and frequencies: find a timetable including
all or a subset of the trains that satisfies the headway restrictions induced by the
infrastructure network and minimizes average perceived travel time, where we assume
that passengers will travel on shortest route according to perceived travel time.
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POT can be formulated as a mixed-integer linear program combining a periodic
event scheduling model with an approach for modelling average perceived travel
time including adaption time as developed in Chapter 3 for strategic timetabling.
However, the resulting model is very difficult to solve. Therefore, in this chapter
we propose an iterative approach that combines (extended versions of) two existing
approaches. First of all, we compute an ideal timetable, that is: a timetable that
does not need to respect infrastructure restrictions, using the method of Chapter 3
for strategic timetabling. Secondly, we transform this ideal timetable into a feasible
timetable, that is: make it satisfy the infrastructure restrictions, using an extension
of the Lagrangian heuristic (LH) proposed in Cacchiani et al. (2010) with the goal
to find a timetable that stays as close as possible to the ideal timetable, but satisfies
the safety restrictions induced by the infrastructure. In a next step, we compare the
resulting timetable to the ideal timetable and evaluate how the changes influence
the quality of the timetable. Based on this, we provide feedback to the Lagrangian
heuristic to improve the quality of the newly found timetable.

Our contribution in this chapter is threefold: First, we define the POT problem,
which calls for determining a timetable that minimizes the average perceived travel
time (that includes the adaption time) and satisfies safety restrictions. Secondly,
we propose an iterative approach to POT that extends and combines an integer
programming approach to find an ideal (but possibly infeasible) timetable with a
Lagrangian heuristic to repair this timetable to feasibility, and employs feedback
from the former to the latter to improve the timetable from a passenger perspective.
Thirdly, we demonstrate our approach on three case studies on the Dutch railway
network. We show that our algorithmic approach performs better than the alternative
of directly incorporating safety restrictions in the integer program for timetabling,
and that it converges to a feasible timetable very close to the ideal one.

The remainder of this chapter is organized as follows. In Section 4.2, we give an
overview on research that is related to and relevant for this study. In Section 4.3
we introduce and define the POT problem in detail. Afterwards we describe our
iterative approach to solve this problem in Section 4.4. We test our approach on
three case studies on the Dutch railway network in Section 4.5. Finally, the chapter
is concluded in Section 4.6.
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4.2 Related Work

The problem of finding a train timetable using the Periodic Event Scheduling Problem
(Serafini and Ukovich, 1989) is discussed in Chapter 2. In this section, we focus on
extensions of this formulation and on other modelling approaches.

Timetabling based on time-space graphs. Time-space graphs constitute an
alternative graph-based modelling approach to event-activity networks. In these ap-
proaches, time is discretized, and a time-expanded network is used: nodes correspond
to events at specific time instants, and a path in the graph corresponds to a time-
table. In time-space graph models, variables represent the choice of arcs (or paths)
of this graph. Approaches based on these kind of models have mainly been used
for aperiodic timetabling, although recent works have shown their effectiveness for
periodic timetabling as well (Martin-Iradi and Røpke, 2019; Zhang et al., 2019).

An advantage of time-space graph models is that constraints on run and dwell times
of a single train are directly embedded within the definition of the graph: only arcs
corresponding to feasible run or dwell times are added. In addition, computing a
timetable for a single train corresponds to solving a shortest path problem, and can
be efficiently done by dynamic programming algorithms. Time-space graph models
easily allow the option of not scheduling some trains by assigning them a dummy
path: this is particularly useful when no feasible solution containing all trains ex-
ists, for example in highly congested networks. The drawback of these models is
the size of the graph that can be extremely large for practical instances. For this
reason, most approaches in this category solve the timetabling problem heuristically
by decomposing it through column generation or Lagrangian relaxation, i.e., trains
are scheduled in sequence. As a consequence, it is difficult to handle constraints that
involve multiple trains.

Several works propose models based on time-space graphs. Brännlund et al. (1998)
apply Lagrangian relaxation of infrastructure constraints, and propose a heuristic
algorithm based on this relaxation that uses subgradient optimization and bundle
methods. A similar approach is developed in Caprara et al. (2002) for timetabling
on a corridor: safety restrictions are relaxed in a Lagrangian way, and near-optimal
multipliers are obtained through a subgradient optimization procedure. Cacchiani et
al. (2010) extend the time-space graph based approach from Caprara et al. (2002) to
insert freight trains into an existing aperiodic timetable, staying as close as possible
to given ideal timetables for the freight trains.
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Cacchiani et al. (2008b) and Martin-Iradi and Røpke (2019) propose methods that
are based on column-generation for models in which variables represent paths in
the time-space graph. Zhang et al. (2019) propose a multi-commodity network flow
model for periodic timetabling, and apply Lagrangian relaxation and Alternating
Direction Method of Multipliers. Recently Ait-Ali et al. (2020) presented a bundle
method based on a disaggregate approach, where the optimisation is performed with
separate dual information for each train.

In this chapter, we extend the heuristic from Cacchiani et al. (2010) to deal with peri-
odic timetabling, and use it in the second phase of our approach to make a given ideal
timetable feasible with respect to safety constraints induced by the infrastructure.

Passenger-centric objective functions. There are several approaches to meas-
ure the quality of a timetable from the viewpoint of the passengers, and, as shown
in Hartleb et al. (2019), the choice of evaluation approach will have an impact on
which timetables are considered to be ‘good’ and ‘optimal’. A common approach
in Operations Research approaches to timetabling is to minimize the total passenger
travel time. The most simple models for measuring and optimizing travel time within
a PESP approach minimize a function over the weighted durations of the activities
in the timetabling instance, where weights represent the number of passengers using
that activity (cf. Section 2.1.3). This relies on the assumption that it is a priori
known on which activities passengers travel.

Schmidt and Schöbel (2015a) propose a mixed-integer linear programming model that
integrates (aperiodic) timetabling and passenger routing. Borndörfer et al. (2017)
provide a similar, PESP-based model for the periodic case and study the impact of
different routing assumptions. As PESP is already a challenging problem in itself,
the integration of this problem with passenger routing makes it even more difficult
to find good solutions. Schiewe and Schöbel (2018) propose an ‘applicable’ approach
that relies on (heuristic) preprocessing and bound generation. Lübbe (2009) and
Siebert and Goerigk (2013) solve the problem iteratively: first passengers are routed
through the network. Based on these fixed routes a timetable is computed. Then
passengers are rerouted based on the timetable. This is repeated until a stopping
criterium is met.

Martin-Iradi and Røpke (2019) propose a time-space-graph-based approach to find
periodic timetables minimizing passenger travel time, and include frequency con-
straints to guarantee that trains of the same line are spread along the cycle time.
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In a column generation approach that is designed to minimize the travel times of
the trains, each feasible solution found during the process is evaluated with respect
to the passenger travel time, and the best solution is kept. In Farina (2019), the
same problem as in Martin-Iradi and Røpke (2019) is considered and modelled on a
time-space graph, and a Large Neighbourhood Search algorithm is proposed.

The above-mentioned approaches have in common that they evaluate timetables
based on the assumption that every passenger will choose the shortest route (with
respect to (perceived) travel time) towards his destination, just as we do in this
chapter. It is well understood in transport modelling, however, that not all passengers
will choose the shortest route (de Dios Ortúzar and Willumsen, 2011). Instead,
in transport modelling discrete choice models are used to describe how passengers
distribute over different route options. Hartleb and Schmidt (2019) investigate how
to integrate passenger distribution models instead of routing along shortest routes
into PESP.

Including adaption time into passenger-centric objectives. Next to the
travel time between departure at the origin and arrival at the destination, also the
number of travel options between origin and destination and their timing play a cru-
cial rule in evaluating timetables from a passenger perspective (de Dios Ortúzar and
Willumsen, 2011). E.g., a timetable with four travel options between origin and des-
tination, offered every fifteen minutes, would most likely be preferred to a timetable
where there is just one such option (or four, all departing at the same time), even if
in the latter case the travel time is slightly shorter.

Focusing solely on passenger travel time, measured from departure at the origin in
the evaluation of a timetable, neglects the effect that the spread of travel options over
time has on the quality of a timetable. This can be overcome by including adaption
time in the objective function, while making an assumption on the distribution of
‘desired departure times’ of passengers.

There are several publications on timetabling on lines and corridors, where adaption
time is explicitly included in the objective function. Often, ‘adaption time’ is called
‘waiting time’ in this context. We use the term ‘adaption time’ throughout this
literature review, also when referring to literature where the authors use the term
‘waiting time’, to avoid confusion with the waiting time at transfers. For single rail
rapid transit lines, Barrena et al. (2014a) and Barrena et al. (2014b) propose, re-
spectively, an exact and an adaptive large neighborhood search minimizing adaption
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time. A single rail line is also considered in Zhu et al. (2017), where a bi-level model is
proposed: the upper level model determines the train headway times to minimize the
total passenger perceived costs (given by adaption time, in-vehicle time and penalty
costs associated with arriving at the destination outside the desired interval), while
the lower level determines passenger arrival times at their origin stations. A genetic
algorithm is used to solve it. Yin et al. (2017) proposed an integrated approach to
determine train schedules and speed profiles with the aim of minimizing energy con-
sumption and passenger adaption time. A Lagrangian based algorithm is developed
for solving it for a bidirectional urban metro line. A rail corridor is considered in
Niu et al. (2015), where a quadratic model to determine train timetables based on
given time-varying passenger demand data is proposed. It aims at minimizing the
total adaption time at stations, and is solved for a high-speed rail line.

Wang et al. (2015) propose a very detailed event-driven model for timetabling on
urban networks with the objective to minimize a weighted sum of travel time (in-
cluding adaption time) and energy consumption. Their solution approach is based
on sequential quadratic programming and a genetic algorithm, and tested on a small
network with two cyclic lines.

Instead of including adaption time into the objective function, Gattermann et al.
(2016) group passengers into time slices, and add a penalty to the objective func-
tion if passengers do not depart within the respective time slice. They propose a
(non-linear) PESP-based mathematical programming formulation, and transfer it to
a SAT formulation to solve it. While the model allows to group passengers into (pre-
defined) time slices and penalize deviation from the respective time slice, which is a
heuristic to include adaption time. However, in the numerical experiments reported
in Gattermann et al. (2016), only one time slice (that spans the whole period) is
used.

In Chapter 3 we considered timetabling in the strategic railway planning phase. Like
in the POT problem, that chapter aims at finding a periodic timetable that minimizes
perceived travel time (a weighted sum of in-train, transfer, adaption time and transfer
penalties) under the assumption that passenger demand is uniformly distributed over
the period. However, in contrast to the POT problem, safety constraints are not
considered, with the argument that these are not relevant in the strategic planning
phase. In this chapter, we use the approach developed in Chapter 3 to compute an
ideal timetable in the first phase of our solution approach.
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Compared to the existing literature on passenger timetabling, we include the adaption
time minimization in the objective, instead of having strict regularity constraints in
order to gain flexibility. In addition, we consider a large railway network while most
works tackle the problem on a single line or corridor.

4.3 Problem Description

4.3.1 Input

The timetable that is to be designed is based on three items: First, the infrastruc-
ture network on which the trains operate. Secondly, an origin-destination matrix
representing passenger demand. Thirdly, a line plan that specifies line routes and
frequencies.

As usual in tactical planning, we consider the infrastructure on the macroscopic level
(see also Section 2.1). That means, the network contains the stations, a number of
tracks between the stations, estimated drive and dwell times, and headway times
between consecutive trains. Further details like block sections and signalling systems
are not important in the tactical planning stage and can be included in a later
planning stage (Radtke, 2014, Chapter 3.4).

Passenger demand is given in the form of an origin-destination matrix OD. For
each OD-pair k ∈ OD, the corresponding matrix entry dk represents the number of
passengers who want to travel from the origin to the destination in one period.

A line plan specifies a set of train lines that are to be operated on the given infra-
structure network. Each train line consists of a route through this network, a list of
stations where the train stops and a frequency that specifies how often the line is op-
erated per hour. We assume that all lines are operated in both directions. Note that
in the line planning phase, no timetable is known yet. Therefore, while line planning
can take into account constraints on the infrastructure utilization, and on eligible
frequencies, it is not ensured that there exists a feasible timetable where all trains
specified in the line plan can be operated, see also Odijk et al. (2006). Therefore, we
allow our method to cancel trains if necessary.

4.3.2 Passenger Oriented Timetabling

Based on the infrastructure network, the demand encoded in the OD-matrix OD, and
the line plan, the passenger-oriented timetabling (POT) problem can be summarized
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as

Minimise
∑
k∈OD

dk ·Rk(π) (4.1a)

Such that TimetablingRestrictions(π) (4.1b)

RoutingRestrictionsk(π) ∀ k ∈ OD. (4.1c)

Here, π is the timetable, dk is the demand for OD-pair k and Rk(π) is the average
perceived travel time for the passengers of OD-pair k.

We aim at finding a timetable π that is operationally feasible (as ensured in con-
straints 4.1b) and integrate the routing of passengers through the network (con-
straint (4.1c)) in such a away that the average perceived travel time (objective (4.1a))
is minimized.

Timetabling restrictions. The timetabling restrictions (4.1b) can be formulated
as standard PESP constraints. This is detailed in Chapter 2, with the particularity
that synchronization constraints and upper bounds on transfer times are not included
in this chapter. However, each PESP-activity requires an upper bound, hence transfer
activities as well. We deal with this by setting for such (i, j) ∈ A the upper bound
to uij = `ij + T − 1. Due to this, all time differences between events i and j are
possible, i.e., there is no operational restriction. When for example πj = πi + 2 and
`ij = 3, the time difference between events i and j is two minutes, but also any
multiple of T minutes can be added (due to the Tpij term in the PESP constraints,
see Section 2.1.1). In this case, the actual transfer time is not 2 minutes, but 62
(when T = 60), since `ij = 3 en uij = 62. By this way of modelling, the proper
transfer times for passengers can be determined. The same principle holds when
upper bounds of, for example, trip and dwell times are omitted. In this way, no
operational restrictions are added. In Section 4.4, when our model is explained,
these transfer activities are used to determine the correct passenger paths and their
perceived duration.

Passenger route choice and evaluation of the timetable. Constraints (4.1c)
are auxiliary constraints that compute passenger routes according to shortest per-
ceived travel times in the timetable, to be able to evaluate the timetable with respect
to total perceived travel time in the objective (4.1a). We model this following the
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approach outlined in Chapter 3. The perceived travel time consists of the following
components:

Adaption time This is the time difference between the desired departure time of the
passenger and the moment the train departs that brings him to his destination.
The adaption time is weighted by a factor γw.

In-train time This is the time the passenger actually spends in the train, both
when the train is driving and when it dwells at a station.

Transfer time This is the time a passenger has to spend on some station to transfer
from one train to another. The transfer time is weighted by a factor γs.

Transfer penalty If the passenger needs to transfer from one train to another, a
penalty of γt is added for each transfer. This is done to model the fact that
passengers in general do not like to have a transfer (De Keizer et al., 2015).

By optimizing with respect to total perceived travel time, which includes the adaption
time, we are able to exclude synchronisation constraints and upper bounds on transfer
times from our modelling, and thus trade-off the synchronization on different part of
the network in our model. This is illustrated by means of an example in Section 3.1.

Note that while the adaption time depends both on the chosen route and on the
desired departure time of the passenger, in-train time, transfer time, and transfer
penalty are characteristics of the route. We therefore refer to the weighted sum of
these as perceived route length in the remainder of this chapter.

To evaluate the timetable, we follow the approach described in Chapter 3, which we
briefly restate here. We assume that passenger demand per OD-pair is distributed
uniformly over the period. I.e., every time unit (in our model: every minute) dk

T

passengers would like to depart from the origin station of OD-pair k to travel to the
destination station of OD-pair k. The rationale behind this assumption is that the
timetable is usually constructed a number of years to six months before the actual day
of operation, and we cannot expect that time-dependent demand is known accurately.

To compute the average perceived travel time for an OD-pair k, Rk(π), we group
passengers according to their first possible departure time and the routes they would
take correspondingly. This allows us to compute in-train time, transfer time, transfer
penalty and average adaption time per route and weigh it with the corresponding
passenger number, to obtain Rk(π) as a weighted average. If, due to train cancella-
tions, there is no route from origin to destination of OD-pair k, we set Rk(π) := M ,
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where M is a (high) penalty value. In the remainder of this chapter, we refer to
dk ·Rk(π) as the evaluation contribution of OD-pair k ∈ OD.

To evaluate the timetable we sum up the evaluation contributions of the OD-pairs
and obtain ∑

k∈OD

dk ·Rk(π) (4.2)

which we use as objective function (4.1a) in our problem.
For a more detailed description of the grouping of passengers, we refer to Chapter 3.

4.3.3 Lower Bound and Excess Evaluation Contribution

Based on minimum drive, dwell, and transfer times and penalties, we can compute
lower bounds on perceived route lengths. Furthermore, by predetermining routes for
each OD-pair, we can compute a lower bound on the total adaption time of one OD-
pair, by assuming that departure times for this OD-pair are perfectly synchronized.
The sum of the lower bound for perceived route length for an OD-pair, multiplied
with the number of passenger for this OD-pair, and the lower bound on adaption
time, gives us a lower bound on the OD-pair’s perceived travel time. We refer to the
difference between the evaluation contribution of an OD-pair and the so-computed
lower bound as excess evaluation contribution. The sum of lower bounds over all
OD-pairs provides us with a lower bound on the evaluation value of the timetable.

4.4 Solution Approach

This section describes the algorithmic approach that we use to solve the problem.
We first outline the overall approach, before we describe the involved steps in more
detail.

4.4.1 High Level Description of the Solution Approach

It is possible to extend the mathematical programming formulation for strategic
passenger-oriented timetabling from Chapter 3 to include safety constraints (head-
way, overtaking and crossing contraints) that model infrastructure requirements, by
adding more PESP-constraints. In that way, POT can be modelled as a mixed-integer
(quadratic) program. However, the incorporation of the safety restrictions leads to a
strongly interconnected event-activity network, which in itself leads to a challenging
PESP problem to solve on networks of realistic size (cf. Goerigk and Liebchen, 2017;
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Liebchen et al., 2008). Combined with the variables and constraints introduced to
the model and the objective function, the problem formulation becomes unsuitable
to solve large real-world instances on general purpose IP solvers. In Section 3.6.2,
it is motivated that this is already challenging for instances without infrastructure
constraints.

Therefore, in this section we propose an iterative approach. A graphical overview of
our approach is shown in Figure 4.1. The numbers mentioned in the sequel refer to
the numbers in this figure.

Make an ideal
timetable

Make a feas-
ible timetable

Ideal timetable,
Profit structure (1)

Evaluate & update
profit structure

Feasible
timetables (2)

Updated profit
structure (3)

Done

Best Time-
table found (4)

Figure 4.1: Flow diagram of our approach

In a first step, we construct an ‘ideal’ timetable (i.e., one which does not need to
take safety restrictions into account) using the solution approach for the strategic
timetabling problem from Chapter 3. An extension of the Lagrangian heuristic (LH)
from Cacchiani et al. (2010) is used to modify the timetable to make it feasible
with respect to infrastructure restrictions, while staying as close as possible to the
ideal timetable. As LH requires a particular structure for the objective (as outlined in
Section 4.4.2), a transition has to be made from one module to the next. This is done
by specifying a profit structure for each train in the line plan, that is based on the
relative importance of the trains (1). In fact, different profit structures are used, to
generate a pool of feasible timetables with LH. We detail in Section 4.4.2, in the part
about new features of LH, how profit structures are chosen. We evaluate all feasible
timetables from the pool of timetables found with LH (2) with the evaluation function
(4.2). Based on the evaluation values, we select one or several feasible timetables for
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comparison with the ideal timetable. We check for which OD-pairs the evaluation
contribution is improved became better and for which it gets worse. Based on this,
we update the profit structure (3) and rerun LH to hopefully find a better timetable.

We repeat this procedure, until no improvements are found any more. We then end
with the best found timetable (4). How to find an ideal timetable is already explained
in Chapter 3. The other phases of the algorithm are explained in more detail below.

4.4.2 Make a Feasible Timetable

In this section, we focus on the second phase of our solution approach. After an
ideal timetable is computed, we compute a timetable that is feasible, i.e., satisfies all
the safety restrictions, and is as similar as possible to the ideal one. A Lagrangian
heuristic algorithm (LH) is used in this second phase. It extends the method proposed
in Cacchiani et al. (2010), where it has been applied for solving a non-periodic train
timetabling problem. For the sake of clarity, we briefly describe the main steps of
LH, and refer to Cacchiani et al. (2010) for further details. Then, we present the new
features added to LH in order to cope with additional real-world constraints.

Main Steps of LH

LH takes as input the description of the infrastructure network, an ideal timetable,
and a profit structure. The ideal timetable contains, for every train, the desired
departure and arrival times at every visited station. In order to derive a feasible
timetable, LH can change the ideal timetable (i) by moving (earlier or later) the
departure time of some trains from their origin stations (shift) and consequently
moving the arrival and departure times, at all the stations visited by the train, by the
same amount, (ii) by increasing the dwell time at some of the visited stations (stretch)
and (iii) by cancelling trains. Each of these changes is undesirable, and thus it is
penalised, but not all changes have the same importance. Clearly, train cancellation
has a deeper impact on passengers, as the line frequency is reduced or even some OD-
pairs might not have a travel option to reach their destinations. However, shift and
stretch also affect the passenger travel as they influence the adaption, in-train and
transfer times. In addition, the same change applied to different trains (e.g., intercity
versus local trains, high- versus low-frequency train lines) has different consequences.

In order to obtain a feasible timetable that is as similar as possible to the ideal
one, and also to give different importance to the different changes, we define a profit
structure. In particular, each train is associated a train profit theta0, a shift penalty
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ρsh, a stretch penalty ρst, a maximum shift value λsh, and a maximum stretch value
λst. The train profit corresponds to the importance of scheduling the train, and is
decreased by ρsh for every minute of shift, and by ρst for every minute of stretch.
The maximum shift and stretch values represent the bounds on the changes of the
respective type that can be applied to obtain a feasible timetable. Note that, as in
Cacchiani et al. (2010), we do not consider the option of decreasing the dwell time at
a station, nor that of increasing the train travel time between consecutive stations.

To represent the train timetabling problem, LH uses a time-space multi-graph, in
which every node corresponds to a train event, i.e., to a departure or an arrival time
of a train from/at a station along a track. Arcs represent the travel of a train between
two consecutive stations or the stop of a train at a station, and are partitioned
into arc sets, one for each train. Different trains can have different trip and dwell
times, but it is also possible that two (or more) trains have the same departure and
arrival nodes: therefore, there can be multiple arcs (of different trains) between the
same nodes, i.e., we deal with a multi-graph. A path in this time-space multi-graph
corresponds to a train timetable that respects the train trip and dwell times. An
Integer Linear Programming (ILP) model based on this time-space graph contains
one binary variable for each arc, that assumes value one if the arc is selected in the
solution. In this ILP, each arc is assigned a profit that is used to obtain a timetable as
close as possible to the ideal one. The profit associated with the travel arc of a train
from its origin station to the consecutive one is given by the train profit decreased by
the shift penalty counted for every minute of shift incurred by that departure time,
i.e., it is θ0− ρsh · δsh, where δsh corresponds to the number of minutes of shift. The
profit associated with each arc corresponding to a stop at a station is zero, if that
arc corresponds to the minimum dwell time, or is decreased by the stretch penalty
counted for every minute of stretch incurred at that station, i.e., by ρst · δst, with δst

being the number of minutes of stretch. Hence, for any train t, the total profit θt of
this train is computed (with a slight abuse of notation) as θt = θ0−ρsh ·δsh−ρst ·δst.
Clearly, if a train is cancelled, no profit is obtained.

The objective of LH is to maximise the total profit of all trains, i.e., to maximize∑
t∈T θ

t, with T being the set of trains. The constraints require to select, for each
train, arcs that form a path in the time-space graph, and do not conflict with arcs
selected for any other train, i.e., satisfy all safety restrictions. Obviously, the difficulty
of solving the problem comes from the latter constraints: therefore, LH applies a
Lagrangian relaxation of all these constraints. This allows us to easily compute
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the solution of the relaxed problem (Lagrangian solution) by dynamic programming,
since it consists of finding, for each train, the most profitable path in the time-space
graph. In order to improve the Lagrangian multipliers associated with the relaxed
constraints, LH iteratively executes a subgradient optimization procedure, in which
Lagrangian multipliers are updated and added to the arc profits, so as to take into
account the constraint violations or looseness. Meanwhile, at each iteration of the
subgradient optimization procedure, to determine a feasible timetable, LH applies the
following steps: (i) it orders trains based on their profits in the Lagrangian solution
(Lagrangian profit), (ii) schedules one train at a time in the most profitable way
while avoiding all conflicts with the previously scheduled trains, and (iii) applies a
local search procedure that tries to find a better path for one train at a time (if it
had shift, stretch or was cancelled) by keeping all other paths as fixed, and this time
considering the original arc profits.

New Features of LH

Adapting LH to periodic timetabling. The version of LH developed in Cacchi-
ani et al. (2010) is developed for a non-periodic train timetabling problem. However,
it is capable of handling a ‘periodicity’ of one day: namely, in the non-periodic time-
tabling problem, the timetable was repeated in the same way every day. In this
chapter, we apply LH to a periodic train timetabling problem, where the cycle time
is one hour: in this context, beside changing the length of the period, we need to
ensure that the duration of the total shift time window (earlier and later shift) plus
the total stretch is smaller than the cycle time: 2 · λsh + λst < T . If this is not
guaranteed, then we cannot uniquely define the shift or stretch penalty of an arc:
for example, a shift of one minute would not be different from a shift of sixty-one
minutes. We note that this limitation is reasonable, since usually at least two trains
with the same origin and destination stations should be scheduled in each cycle time,
and thus it is not useful to globally shift or stretch a train more than the cycle time.

Rolling stock restrictions. Another change is applied to the original LH as de-
scribed in Cacchiani et al. (2010) in order to deal with basic rolling stock constraints:
in practice, usually trains of the same line (i.e., trains with the same origin and des-
tination stations, and stopping at the same intermediate stations) are scheduled in
‘pairs’, so that when a train is scheduled in one direction, another train is also sched-
uled in the opposite direction. The reason is that, in this way, the same rolling
stock (physical train) is assigned to both services, and we also obtain a more regular
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timetable that has the same number of trains running in both directions. In general,
according to the line frequency, there can be more than two trains of the same line
in a period: in this case, we need to guarantee that the same number of trains is
scheduled in both directions. Since LH allows train cancellation as one of the changes
that can be applied to obtain a feasible timetable, we need to guarantee that, if a
number of trains of a line is cancelled in one direction, then the same number of trains
is also cancelled in the opposite direction. Clearly, this can be easily obtained by
simply cancelling additional trains: however, cancelling trains is highly undesirable.
Therefore, we modify LH by including a new procedure as follows. At each iteration
of the subgradient optimization procedure, when a feasible timetable has been de-
termined and the local search procedure has been executed to improve it, we check,
for every train line, the number of trains cancelled in each direction. If this num-
ber is not the same in both directions, then we cancel additional trains, so that the
same number of trains is scheduled in both directions. Once all train lines have been
processed, for each train line, we try to reschedule trains in pairs by computing, for
each train, the most profitable path compatible with the previously scheduled ones:
this computation is performed by dynamic programming considering the original arc
profits. Note that it is possible to schedule previously cancelled trains thanks to the
additional train cancellation applied at the beginning of this procedure. If the same
number of feasible paths is found for both directions of a line, then the corresponding
train paths are fixed in the execution of this procedure, otherwise trains are cancelled
again. Since this procedure can change the set of scheduled trains, after executing it,
we apply the local search procedure to possibly further improve the timetable. We
observe that, for the considered instances, the number of trains per line is two or
four, and thus this procedure can be executed efficiently.

Intermediate shift penalties. A final extension we developed is used for the
feedback process, that is applied after the timetables have been evaluated. In this
process, LH takes as input the infrastructure description, the ideal timetable, and a
new profit structure. Beside the possibility of updating shift and/or stretch penalties,
we also include, during the feedback, the option of penalising the shift at some
intermediate stations visited by a train (so not only at the origin station of the
train). Indeed, we observed that the timetables produced by LH sometimes show
irregular departure headway times from some intermediate stations, and it is thus
useful to penalise this irregularity. To this aim, we add, for every minute of shift, an
intermediate shift penalty ρiss to the profit of each arc that corresponds to the stop of
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a train at a station s: based on the dwell time at the station, the departure time from
that station determines the corresponding intermediate shift. LH is then executed by
considering these additional penalties in the computation of the Lagrangian solution
and of the feasible timetable, and in the local search procedure.

Note that adding an intermediate shift penalty at a station where a train line starts,
has no effect on this specific train line, since there is no arc associated with a dwell
time of this train line at this station. However, for departing trains of this line, we
do have the regular shift penalty, but this is not penalized on an arc associated with
a stop of a train.

4.4.3 Evaluate and Update Profit Structure

In the remainder of this section, we describe how we provide feedback and update
the profit structures, in order to find better timetables.

We evaluate each timetable generated by LH using the evaluation function (4.2). The
best timetable according to this evaluation function after running LH is referred to
as the best pure Lagrangian (BPL) timetable. By comparing the evaluation contri-
butions of all OD-pairs in the ideal timetable π and in the BPL-timetable π′, we can
identify the OD-pairs for which the evaluation contribution increased the most. We
inspect the routes chosen for these OD-pairs and the corresponding trains to find the
reason of the increase. In a ‘feedback’ step, we generate a new set Ψ of updated profit
structures, based on the initially chosen profit structure S to penalise the undesired
changes more. Since we are not able to predict by how much we should penalize de-
viation from the ideal timetable, we use a set of penalty values P and create several
profit structures based on S and P . We proceed as follows:

1. Identify the OD-pairs for which the evaluation contribution increased the most.
This increase can be caused by high passenger numbers or by a high increase
in the perceived travel time. We refer to these OD-pairs as relevant OD-pairs
in the remainder of this section. Let O = {o1, o2, . . . , oκ} be the set of origin-
stations for the relevant OD-pairs.

2. We create |O| · |P | new profit structures, one for each combination of penalty
values from P at each station. We create the corresponding profit structure as
follows: for each station oi ∈ O and for each pj ∈ P , we create a new profit
structure that is based on S, with an additional intermediate shift penalty of
value pj that is assigned to all trains passing station oi. Furthermore, all trains
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for which oi is an origin or terminal station and which are relevant for the
corresponding OD-pair identified in step 1, receive shift penalty max{ρsh, pj},
where ρsh is the regular shift penalty for train t in profit structure S.

If |O| > 1, we generate additional profit structures. In these new profit struc-
tures we apply the same principle as above, but now we apply the penalties to
all pairs of stations. That means, for each oi, oj ∈ O and for each pm, pn ∈ P ,
apply (intermediate) shift penalty pm to station oi and penalty pn to station
oj .

Given the set of updated profit structures Ψ, we again run LH, as outlined in Sec-
tion 4.4.1. Each of these profit structures leads to a new timetable which we evaluate.
If any of these timetables gives a better evaluation value, we stop the feedback pro-
cess and finish with the best timetable generated using Ψ. Else, execute steps 1 and
2 again with the original profit structure as input, but now also identify OD-pairs as
relevant for which the evaluation contribution increased the most in the best time-
table generated using the profit structures in Ψ. The timetable that is the best after
providing feedback is referred to as the best after feedback (BF).

We underline that the intermediate shift penalty is not adopted at every intermediate
station where there are irregular departure headway times, but only at those that
cause a significant increase in the evaluation value. Indeed, it would not be effective
to penalise shifts at every station, since some changes are needed in order to get
a feasible timetable. Therefore, we aim at penalizing the changes that have most
impact on the evaluation value of the timetable. For the same reason, we do not use
the intermediate shift penalty when LH is applied to the ideal timetable in the first
round before the feedback process.

The rationale behind our feedback approach, is that adaption times have a strong
influence on the evaluation value of a timetable. If LH causes a higher irregularity
in the new timetable compared to the ideal timetable, the evaluation value is likely
to increase. For this reason, we focus on the shift penalties in the feedback process.
However, many alternative strategies to provide feedback in order to reduce the
evaluation contributions of OD-pairs can be thought of, as we can update initial
train profits, shift and stretch penalties, maximum shift and maximum stretch, as
well as adding intermediate shift penalties. We experimented with different strategies
on how to update profit structures before we identified this one which was successful
on our three test instances and that is presented here.
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4.5 Case Study

In this section we perform three case studies. First, we describe the three instances
in Section 4.5.1. Next, in Section 4.5.2 we describe the parameters that are used in
our approach. In Section 4.5.3, we describe and discuss the obtained results. Finally,
in Section 4.5.4 we benchmark our iterative approach with solving the POT model
as an integer program.

4.5.1 Instances

Here we describe the instances that we consider in more detail. Each instance is
based on a central corridor. Figure 4.2 displays for each instance an overview of the
network, the central corridor on which the instance is based is highlighted.
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Figure 4.2: Networks of the three instances considered

A2-corridor instance

The first instance we consider is the ‘A2-corridor’, which is a corridor between the
stations Eindhoven (Ehv) and Amsterdam Central (Asd). The network contains 34
stations. Furthermore, five train lines are operated on this network with a frequency
of two trains per hour in both directions, so there are 20 trains in total. All of them
are Intercity-lines. The map of the corresponding network is shown in Figure 4.2a.
We label five out of the 34 stations because they are used in the feedback of our
approach. The stations Ehv and Asd are the ends of the central corridor, as is
indicated by the highlighted line.
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In this instance, we consider 891 OD-pairs in total. The underlying event-activity
network contains 1344 events and 1460 drive and dwell activities. Note that these
events do not only cover arrivals and departures at stations where the train stops,
it also covers departure and arrival times of stations that the train passes, as also
in these locations, consecutive trains need to satisfy the headway time of 3 minutes.
To build the model for constructing the ideal timetable, 376 transfer activities are
included to ensure the transfer possibilities. Note that they do not impose operational
restrictions on the timetable as explained in Section 4.3.2. For a full mathematical
programming formulation of POT, infrastructure constraints should be added. This
leads to 2964 additional activities modelling safety distances.

Rotterdam-Groningen instance

The second instance covers part of the 2019 line plan of Netherlands Railways (NS,
2017). It is centered on the line between Rotterdam (Rtd, in the South-West) and
Groningen (Gn, in the North-East). This line is highlighted in Figure 4.2b. All
lines that share a part of their route with the indicated line are added. Note that
a consequence of this way of instance construction is that some, but not all lines
operating on the network arcs indicated in black are included in our instance. The
network contains 77 stations, of which 6 are labelled because they occur in our
description of the results. In total we have 60 trains in the network, of which 26 are
Intercity trains.

The underlying event-activity network of this instance contains 1664 events and 1716
drive and dwell activities. The model for constructing the ideal timetable has 1402
additional transfer activities to enable all passenger routes. In order to deal with the
restrictions modelling safety distances, 4004 additional activities are needed. There
are 3810 OD-pairs. Note that, although there are many more trains compared to the
A2-corridor instance, the number of events, as well as of drive and dwell activities,
increased only slightly compared to the A2-corridor. The reason for this is that we
now have a number of trains which only have a short route (and thus less events are
needed per train line). The main increase is seen in the number of transfer activities,
to generate all possible transfer routes, as well as in the number of activities modelling
safety distances.
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Extended A2-corridor instance

The third instance is an extension of the A2-corridor instance. The line plan is based
on all train lines in the 2019 network of Netherlands Railways that share a part
of their route with the corridor between Amsterdam Central (Asd) and Eindhoven
(Ehv). This corridor is highlighted in Figure 4.2c, which also shows the remainder of
the network, including the locations of several stations that we use in the discussion
of the results later on. The total number of trains in this network is 88 and the
network contains 140 stations.

This instance considers 11121 OD-pairs. The event-activity network contains 3160
events and 3308 drive and dwell activities. Furthermore, 3592 transfer activities are
added to enable all passenger routes in the model to construct the ideal timetable.
Adding the restrictions modelling safety distances leads to 8360 additional activities.

4.5.2 Parameters

This section describes the parameters that we use in our experiments. First, we
describe instance parameters, as well as the parameters for the objective function.
Next, we detail the profit structure that we use for LH.

To compute an ideal timetable, an integer programming problem has to be solved.
The same has to be done for solving POT directly, as we do in Section 4.5.4. For
this, we use a machine with an Intel Xeon Silver 4110 2.10Ghz processor with 96 GB
of RAM installed. These mathematical programs are solved by Cplex 12.9.0 under
default settings, using up to 15 parallel threads (IBM, 2019).

Instance and objective function parameters

In all our experiments we discretise time to minutes and use a period length of one
hour, i.e., T = 60. In each of the instances, we take a headway time of three minutes
into account between two trains leaving or entering a station. Furthermore, trains
cannot overtake each other between two stations. When trains in opposite directions
must be separated in time when entering or leaving a station, we require this time to
be at least one minute. If there are two tracks between stations, trains in the same
direction will share one track, the other track is for the other direction. Finally,
if there are four tracks available, two tracks are used per direction. The Intercity
trains use one track and the local trains use the other, the same holds for the other
direction.
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The perceived travel time for the passengers consists of in-train time, transfer time, a
transfer penalty, and the adaption time. In line with Chapter 3 and De Keizer et al.
(2015), we set γt = 20, i.e., the transfer penalty equals 20 minutes. Secondly, we use
γs = 1, i.e., transfer time weighs as much as in-train time. This is done since we
already have a transfer penalty. Finally, we take γw = 3, i.e., adaption time weights
three times as much as in-train time.

If passengers no longer have a travel option when trains are cancelled, we add a
penalty of value M to the average perceived travel time of these passengers. In our
experiments, we set this value M to be 24 · T , i.e., it equals a full day of travel time.

Finally, since the numbers in the OD-matrix are confidential, we scale all evaluation
values. That is, we divide all evaluation numbers by the evaluation value of the ideal
timetable, and multiply this by 100, so the evaluation value of the ideal timetable
is indexed to 100. That means that an increase in the evaluation value by one unit
means the evaluation value is 1% higher than that of the ideal timetable.

Chosen profit structure

As explained in Section 4.4.2, the Lagrangian heuristic requires the specification of a
profit structure. Different profit structures can produce different timetables. As an
initial profit structure, we define the train profits based on the train type (Intercity,
local, etc.) and also on line frequencies. For the train type ‘Intercity’, we consider a
base profit of 4000. For the train type ‘local train’, the base profit is reduced by 10%
to 3600. For trains that partly operate as an Intercity and partly as a local train, the
base profit is reduced by 5% (to 3800). Then, for each pair of consecutive stations
that the train visits, we identify the number of trains that travel between the same
pair of consecutive stations, and take the minimum m of these numbers along the
train route. The train profit θ0 is then computed as its base profit divided by m. As
an example, if we consider a local train line, whose line frequency is two, and that is
the only train line offering a service on some part of the network, then on this part
of the network, there are only two trains and hence m = 2. Then the profit for the
trains in this line is θ0 = (4000 · 0.9)/2 = 1800. If another line with frequency two is
present as well on the considered part of the network, we have m = 4 and the profit
is 900.

For the shift and stretch penalties (ρsh and ρst), we consider equal values for all trains,
and globally three alternative options: (1) ρsh = 20 and ρst = 10; (2) ρsh = ρst = 15;
(3) ρsh = 10 and ρst = 20. Namely, we assign more importance to the shift penalty
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in the first case, same importance to both changes in the second case, and more
importance to the stretch penalty in the third case. Indeed, it is not known a priori
whether a shift or a stretch is worse: it depends on the location where this happens
and what the influence is on the regularity of trains in general. In addition, we
want to explore a rather broad spectrum of profit structures, because it is not a
priori known which changes in the timetable have the least negative effect on the
evaluation of the timetable according to evaluation function (4.2).

As maximum shift and maximum stretch (λsh and λst), we also consider the same
values for all trains, and start by setting λsh = λst = 5: this means that each
train can have its departure time from its origin station up to 5 minutes earlier or
5 minutes later, and a total stretch along its route of up to 5 minutes. Then, we
also consider two other options, that increase the possibilities of scheduling trains:
λsh = 10 and λst = 5, and λsh = 5 and λst = 10. Indeed, when the maximum shift
and stretch are set to small values, it might not always be possible to schedule all
trains, leading to low quality of the solutions. Overall, by combining the different
shift/stretch penalties and the maximum shift/stretch, we thus have 9 different profit
structures that lead to 9 timetables. The total number of iterations for each run of
LH is set to 250 in our experiments.

In the feedback process, we set values for the intermediate shift penalties ρiss at some
stations s, as well as for the initial shift penalty ρsh of a train starting in such a
station. We use values of 10, 20 and 30 for these penalties.

4.5.3 Results of the algorithm

We execute our timetabling approach presented in Section 4.4 on the three instances.

A2-corridor

Make an ideal timetable. Since obtaining an optimal solution is out of reach
for this instance, we use a time limit of two hours. The resulting timetable has, as
mentioned earlier, a normalized objective value of 100. All other values are reported
in relation to this value. The lower bound that is proven by CPLEX is 97% of the
objective value. Hence the remaining gap is 3%.

Figure 4.4a displays a time-space diagram, showing the ideal timetable between Hdr
and Ut. Hdr is in the most northern part of the network and Ut is halfway the
corridor (see Figure 4.2a). Time is shown on the horizontal axis, between 0 and 60,
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i.e., one cycle period is displayed. Space is shown on the vertical axis, where several
stations are mentioned. The lines on the right of the figures display the number of
tracks that are present. In the diagram itself, each line corresponds to a train and
displays at what time a train visits a given location. Figure 4.3 displays the routes
of the five train lines in this instance.

Hdr

Amr

Asd

Shl

Ut

Nm

Vl
Ehv

Std

Mt
Hrl

Figure 4.3: Overview of lines in A2-corridor.

Even though no regularity restrictions are added to the model, we see in Figure 4.4a
that the trains are spread over time rather regularly in this network. This is due to
the inclusion of the adaption time in the objective function. Adaption time is low, if
departure times of routes for an OD-pair are equally spaced in time. However, the
ideal timetable on the A2-corridor does not satisfy the headway restrictions. There
are two conflicts, which are indicated by circles in Figure 4.4a. Between Ut and Asb,
two trains are scheduled at the exact same time (one line is shown dashed). Between
Hdr and Sgn, two trains are scheduled to cross each other in a single track area,
where trains can only pass each other at stations.

Make a feasible timetable. In order to make a feasible timetable, we run LH
with the nine different parameter sets specified in Section 4.5.2 for the profit, shift
and stretch penalties and bounds. This leads to nine feasible timetables, all satisfying
the headway restrictions. Note that although LH allows to cancel trains, for all nine
chosen parameter sets, all trains are scheduled. The best found timetable in this
step, BPL, has an evaluation value of 100.18, i.e., the evaluation value increased by
0.18% with respect to the ideal timetable. For this BPL timetable, the time space
diagram is shown in Figure 4.4b. There it can clearly be seen that the conflicts are
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resolved. Trains that crossed on a single track area are now stretched in such a way
that they pass each other at a station. Secondly, the trains that were scheduled at
the same time are now moved away from each other.

Evaluate & update profit structure. In order to provide feedback, we follow
the approach stated in Section 4.4.3.

Identify OD-pairs. The first step is to identify the OD-pairs for which the eval-
uation contribution worsened the most. In order to do so, and to investigate the
differences between the ideal timetable π and the best found feasible timetable BPL,
we compare the timetables with respect to the excess evaluation contribution of each
individual OD-pair in Figure 4.5.
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Figure 4.5: A2-corridor: ideal timetable vs BPL-timetable.

In Figure 4.5a, we see the difference in excess evaluation contribution for individual
OD-pairs between timetables π and BPL. Each OD-pair is represented by a star,
the stars are sorted from left to right according to the excess evaluation contribution
of the corresponding OD-pair in the ideal timetable. As can be seen, for many OD-
pairs the excess evaluation contribution is small in the ideal timetable, for only a few
OD-pairs it is large. In this instance, the latter correspond to OD-pairs which have
a high demand and a small irregularity in their departure pattern: recall that the
evaluation contribution is weighted by the number of passengers, i.e., a large increase
for only a few passengers can count less than a small increase for many passengers.
The vertical coordinate indicates the difference in evaluation value between π and
BPL. In particular, if a star lies above 0, the evaluation contribution of the OD-pair
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has increased after applying LH. But there are also some OD-pairs which have a
lower evaluation contribution after applying LH, these can be found below 0. Two
OD-pairs are labelled in the figure, these are the OD-pairs with the highest increase
in perceived travel time that clearly stand out and on which we base the feedback.
As can be seen, the OD-pair Ut-Asd has an excess evaluation contribution of 0.38
in the ideal timetable, and that evaluation contribution now increased to 0.47 in the
BPL-timetable, due to a more irregular departure pattern at Ut.

In Figure 4.5b we see a different visualization of the differences between π and BPL
with respect to the evaluation contribution. All 891 OD-pairs are shown on the
horizontal axis sorted by their corresponding increase in evaluation contribution. As
can be seen well in this figure, there are many OD-pairs for which the evaluation
contribution hardly changed, only for a minority there are major changes. Hence,
also in this figure it can be seen that the BPL timetable is very close to the ideal
one, and only few OD-pairs were subject to an increase in perceived travel time.

Update profit structure. Two OD-pairs are identified as relevant: Ut-Asd and
Ut-Asa. These two OD-pairs have the same set of travel options, as the trains from
Ut to Asd first pass Asa (see Figure 4.2a). In fact, Asa is the only station where
the trains from Ut to Asd stop. Passengers on these OD-pairs can choose from six
different trains. Thus, to minimise adaption time upon departure in Ut, the headway
times between consecutive trains would be 10 minutes, in that case the trains would
be perfectly spread over time. In the ideal timetable we have headway times of 12
minutes (2 times) and 9 minutes (4 times), as is visible in Figure 4.4a. That means
that in the ideal timetable the trains are not spread equally over time, and this causes
the excess evaluation contribution of the relevant OD-pairs in the ideal timetable to
be relatively large, in particular because these adaption times are weighted with
the (high) passenger numbers. In the BPL-timetable, the departure pattern in Ut
becomes even less regular. The headway times now are 15 minutes (twice), 9 minutes
(twice) and 6 minutes (twice), see Figure 4.4b.

Based on these observations, we add intermediate shift penalties at Ut as described
in Section 4.4.3, to improve the timetable for Ut-Asd and Ut-Asa. We start with
the profit structure leading to the BPL timetable, and generate three new profit
structures using values of 10, 20 and 30 as penalty values. Ut is intermediate station
to 20 trains where these are added as intermediate shift penalties ρisUt. No trains start
their journey in Ut so no regular shift penalties have to be updated. We run LH with
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the three new profit structures and evaluate the resulting timetables. Unfortunately,
in this case, none of these timetables give an overall improvement.

Identify OD-pairs. In all of the three timetables obtained using the updated
profit structures, we see that the OD-pairs Ut-Asd and Ut-Asa are not improved,
in fact, for the OD-pairs in the other direction (Asd-Ut and Asa-Ut) the situation
becomes worse compared to the BPL timetable. The regularity at Asd (and in line
with that also at Asa) is lost. Therefore, we identify these two OD-pairs as the new
OD-pairs to provide additional feedback.

Update profit structure. As described in Section 4.4.3 we modify the initial
profit structure that was used to find the BPL timetable and add shift penalty values
at Ut and Asd. Asd is intermediate station to 8 trains, and for 2 trains the start
station. This leads to 12 new profit structures: 3 for adding the three different
penalty values 10, 20, and 30 at Asd and 9 for the combinations of Ut and Asd. Note
that a shift penalty at Asd can also improve the timetable at Ut, since these two
stations are close to each other and there is only one stop in between.

Evaluation. After evaluating the 12 additional timetables, we find that the best
evaluation value among the 12 created timetables now is 100.10, which is an improve-
ment with respect to the BPL timetable. The time space diagram for this timetable
is shown in Figure 4.4c. Note the improved regularity between Ut and Asd. The best
timetable is found in the second feedback-iteration, and we refer to it as the Best
after feedback (BF).

We now extend Figure 4.5 by adding grey stars, showing the evaluation contribu-
tions in the BF-timetable. Note that the OD-pairs Ut-Asa and Ut-Asd improve in
the second iteration, as the grey stars representing these OD-pairs are now on the
horizontal axis (the indicated arrows show the link between the two black and the
corresponding grey stars). However, there are also some OD-pairs for which the per-
ceived travel time increases in comparison to the BPL timetable. This is best seen in
Figure 4.6b. Here, the same line as in Figure 4.5b is shown as a thick line. Now, the
excess evaluation contributions for the OD-pairs in the timetable after feedback are
added in grey. It is visible that some OD-pairs for who the evaluation contribution
did not change in the BPL timetable are now changed: for some the perceived travel
time decreases, but for others it increases.
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Figure 4.6: A2-corridor: Timetable comparisons after feedback.

Summary. A summary of the progress of our approach on the A2-corridor is given
in Table 4.1. The table displays the evaluation values for the best timetables found
in the steps of the algorithm. The last row of the table shows the lower bound that is
found by CPLEX when solving the integer programming model for finding an ideal
timetable, which is, of course, also a lower bound on the objective value of a feasible
timetable.

Timetable Evaluation
value

Ideal 100
Best Pure Lagrangian 100.18
Feedback step 1 (FB-1) 100.23
Feedback step 2 (FB-2) 100.10
Lower bound 97.00

Table 4.1: Evaluation values for A2-corridor

A visual summary of our approach is displayed in Figure 4.7. Here, the evaluation
values of all computed timetables are displayed. The horizontal axis displays the
step in the algorithm. The vertical axis shows the evaluation value of the timetable.
First, the evaluation value of the ideal timetable is shown at the bottom left. Then,
the black lines and dots link this evaluation value to the evaluation values of the
nine timetables computed by LH. Next, the grey lines and dots display the values of
the timetables computed during the feedback process. The evaluation values of the
three timetables computed in the first and second feedback step (FB-1 and FB-2)
are shown, with lines linking these evaluation values to the evaluation value of the
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BPL timetable. It is clearly visible that the evaluation value of the BF timetable is
lower than that of the BPL timetable.
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Figure 4.7: Overview of the progress in A2-corridor

Rotterdam-Groningen instance

Make an ideal timetable. Since this instance is more challenging than the pre-
vious one, we set a time limit of 4 hours to solve the model for constructing the ideal
timetable. The best solution that we find within the time limit has a normalized
objective value 100. The lower bound that is proven by CPLEX is 92.69% of the
objective value, hence the remaining gap is 7.31%.

The ideal timetable is shown in terms of time-space diagrams in Figure 4.8 for two
corridors that play a role in the description of the results: Rotterdam (Rtd) to Utrecht
(Ut) and Leiden Central (Ledn) to The Hague Central (Gvc). See Figure 4.2b for
the location of the stations.

The ideal timetable does not satisfy the headway restrictions on the two mentioned
corridors. For example, between stations Gd and Wd, two trains are scheduled at the
exact same time on the same track and hence do not satisfy the headway restrictions
(see the circled area in Figure 4.8a). Also on the other corridor violations of the
headway restrictions occur. For example, two trains from the same direction arrive
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in Gvc at the same time, while there is only one track available for them, so the
headway restriction upon arrival of two trains is not satisfied (see Figure 4.8b).

Make a feasible timetable. In order to find a timetable that is feasible with
respect to current infrastructure, we run LH with the standard parameters. In seven
out of the nine resulting timetables, all trains are scheduled. In two of them, two
trains are cancelled. However, also in these timetables there are still travel options
for all passengers. The best evaluated timetable has an evaluation value of 100.59
and has all trains scheduled. The time space diagrams for this BPL-timetable on the
two aforementioned corridors are displayed in Figures 4.8c and 4.8d, which clearly
show that the conflicts are resolved.

Evaluate & update profit structure.

Identify OD-pairs. In order to investigate the differences between the ideal time-
table π and the BPL-timetable, we make the same plots as for the previous instance,
showing the differences in evaluation contribution per OD-pair. Figure 4.9a displays
each OD-pair as a star, where the excess evaluation contribution to the ideal time-
table is the horizontal coordinate and the increase in evaluation contribution is the
vertical coordinate. These increases in the evaluation contribution are summarised
in Figure 4.9b, where all 3810 OD-pairs are shown on the horizontal axis, sorted by
their corresponding increase in evaluation contribution. Note that for many OD-pairs
the evaluation contribution does not change.
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Figure 4.9: Rotterdam-Groningen: Ideal timetable vs BPL-timetable.
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In the BPL-timetable, there are three OD-pairs that stand out, as is indicated in
Figure 4.9a: Ledn-Laa and Ledn-Gvc are two OD-pairs that have very similar routes,
they have the same origin and their destinations are close to each other, see also
Figure 4.2b. The corresponding excess evaluation contributions increased by +0.056
and +0.044 respectively with respect to the ideal timetable. The third OD-pair for
which the evaluation value increased significantly is Rtd-Ut, its excess evaluation
contribution increased by +0.050 with respect to the ideal timetable. This OD-pair
is located on a different part of the network than the other two OD-pairs.

Update profit structure. The origin stations for the aforementioned OD-pairs
are Ledn and Rtd. At both of these stations, the regularity of departure times has
worsened when shifting from the ideal to the BPL-timetable. Therefore, we make
new profit structures, based on the one leading to the BPL-timetable, where we add
the intermediate shift penalties of values 10, 20 and 30 to Ledn and Rtd. Ledn is
intermediate station for 8 trains and no relevant trains start their journey in Ledn.
Rtd is for no train an intermediate station, instead, 6 trains start their journey there
so we update the regular shift penalty. This leads to 15 new profit structures: 3 with
the penalty only at Ledn, 3 with the penalty only at Rtd, and 9 for all combinations.

Evaluation. We run LH on these new profit structures and evaluate the resulting
timetables. We find the best timetable to have an evaluation value of 100.55. This
timetable is referred to as the best after feedback (BF).

Like for the previous instance, we extend Figure 4.9 by plotting the evaluation con-
tributions of the OD-pairs in the BF-timetable, in order to get insight into the dif-
ferences with respect to the BPL-timetable. The result is displayed in Figure 4.10.
Figure 4.10a shows for each OD-pair the increases in evaluation contribution with
respect to the ideal timetable. The black stars correspond to the BPL-timetable, and
the newly added grey stars correspond to the BF-timetable. To increase visibility,
we connected the black and grey stars which correspond to the relevant OD-pairs.
As can be seen in this figure, the evaluation contribution for the three OD-pairs is
improved. The increase in evaluation contribution with respect to the ideal timetable
of Ledn-Laa reduces to −0.001, i.e., the timetable for this OD-pair is better than the
ideal timetable. The increase in evaluation contribution for Ledn-Gvc now reduces
to +0.037 and Rtd-Ut reduces to +0.040.
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Figure 4.10: Rotterdam-Groningen: Timetable comparisons after feedback.

To understand how the evaluation contribution of OD-pair Ledn-Laa is improved in
the feedback step, we examine the time-space diagrams in Figures 4.8b–4.8f. In the
ideal timetable for our instance, passengers can either take a local train directly from
Ledn to Laa. The alternative is to take an Intercity train that does not stop at Laa,
but travels to Gvc, where passengers can transfer to a local train back to Laa.

In the ideal timetable, the Intercity train from Ledn arrives in Gvc at :02, and
passengers have a 5 minute transfer connection to a local train back to Laa. In the
BPL-timetable though, the Intercity train comes in four minutes later and arrives in
Gvc at :06, while the local train back to Laa is not shifted in time. A transfer time of
one minute is too short and hence passengers have to wait half an hour, thus leading
to a very high evaluation value contribution.

In the feedback, trains get an intermediate shift penalty at Ledn. This causes the
Intercity train still to arrive in Gvc later than in the ideal timetable, but earlier
than in the BPL-timetable: it now arrives at :03. Passengers can again make the
connection to the local train and we are in a similar situation as in the ideal timetable.

This illustrates how the additional penalties lead to a different timetable and how
feedback can be used to improve the timetable that is found.

Note that the 2019 NS line plan (NS, 2017) contains more trains between Ledn and
Laa that we did not include in our instance. The observed effect is thus particular
to our instance and would not be observed in the actual Dutch network.

Summary. Table 4.2 summarizes the results of our approach on the Rotterdam-
Groningen instance. The evaluation values are displayed for each step in our al-
gorithm.
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Timetable Evaluation
value

Ideal 100
Best Pure Lagrangian (BPL) 100.59
Feedback step 1 (FB-1) 100.55
Lower bound 92.69

Table 4.2: Evaluation values for Rotterdam-Groningen instance

Also for this instance, we summarize the evaluation values found in the different
steps of the algorithm in Figure 4.11. On the left, we see the evaluation value of
the ideal timetable. Right of it, we see the evaluation values of the nine timetables
found by the Lagrangian heuristic. Two lines are drawn with a dash-dotted line,
these correspond to the timetables where some trains are cancelled. We observe that
cancelling trains does not automatically lead to bad timetables, as long as all OD-
pairs can still travel. This is because the cancelling of trains gives us more freedom
to schedule other trains.
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Figure 4.11: Overview of the progress in Rotterdam-Groningen instance

Extended A2-corridor

Make an ideal timetable. Also for this instance, we use a time limit of four
hours to solve the model for constructing the ideal timetable. Normalizing the best



108 Chapter 4

timetable to an evaluation value of 100, the best lower bound is 93.00, i.e., the
remaining gap is 7.0%.

Time-space diagrams displaying the ideal timetable are shown in Figure 4.12 for three
corridors in the network: Arnhem (Ah) to Nijmegen (Nm), Amsterdam Central (Asd)
to Schiphol (Shl) and Zaandam (Zd) to Utrecht (Ut). See Figure 4.2c for the location
of these stations. In this dense network, there are numerous conflicts between trains
that have to be resolved in the next step.

Make a feasible timetable. Using the same initial profit structures as in the
earlier cases, in the first step of LH nine feasible timetables are computed. In three
of these timetables, all trains are scheduled. In the other six, trains are cancelled in a
way that causes some passengers not to have a travel option any longer. This is highly
undesirable and highly penalized in the evaluation function. This leads to these six
timetables having a bad evaluation value. Consequently, the feasible timetable with
the best evaluation value is one in which all trains are scheduled. Its evaluation value
is 101.51. The corresponding time-space diagrams are shown in Figure 4.12.

Evaluate & update profit structure.

Identify OD-pairs. As a first step, we identify the OD-pairs for which the shift
from the ideal timetable to the BPL-timetable caused a high increase in the evalu-
ation contribution. The changes in the evaluation contribution for each OD-pair are
pictured in Figure 4.13, in a similar way as in the previous two cases. We observe
that for many OD-pairs there are only few or little changes (see also Figure 4.13b).
However, there are a few OD-pairs for which the evaluation contribution increases
significantly as is visible in Figure 4.13a. The highest increase is visible for the the
OD-pair Ah-Nm. Its evaluation contribution increases by +0.062. Besides Ah-Nm,
Asd-Ut (+0.045), Asd-Zd (+0.039) and Asd-Shl (+0.038) account for the largest
increases in the evaluation value.

And indeed, inspecting the timetable differences (see the supporting time-space dia-
grams in Figure 4.12), we see that departure and arrival patterns have changed at
Asd, trains now sometimes depart in a less regular pattern. Also the pattern of
departures at Ah is less regular in the BPL-timetable than in the ideal timetable
(compare also Figures 4.12a and 4.12d).
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Figure 4.13: Extended A2-corridor: Ideal timetable vs BPL-timetable.

Update profit structure. As prescribed in our approach from Section 4.4.3, we
update the profit structure for trains at the stations Ah and Asd with penalty 10,
20, or 30, leading two 15 new profit structures (3 for the shift penalties at Asd, 3 for
the shift penalties at Ah, and 9 for the combinations).

Evaluation. We run LH with the new profit structures and obtain 15 new solutions.
When evaluating these timetables, we find an improved timetable with an evaluation
value of 101.28, i.e., a reduction of 0.23 with respect to the BPL-timetable. This new
timetable is referred to as the BF-timetable.

Figure 4.14 displays the new evaluation contributions, both for the BPL-timetable
and BF-timetable. The black stars correspond again to the increase in evaluation
contribution when comparing the ideal timetable with the BPL-timetable. The grey
stars show the same result when comparing the ideal timetable with the BF-timetable.
The OD-pairs that had a high increase in evaluation contribution now improved sig-
nificantly: the increase in evaluation contribution for Ah-Nm reduced from +0.062 to
0 (see also the time space diagram in Figure 4.12g). For Asd-Ut, the increase in eval-
uation contribution reduced from +0.045 to +0.014 and for Asd-Zd it reduced from
+0.039 to +0.027. The increase for Asd-Shl remained the same. The improvements
for the first three mentioned OD-pairs are shown by means of arrows in Figure 4.14a.

Although the overall evaluation value of the new timetable improved and the contri-
butions of the aforementioned three OD-pairs improved as well, now other OD-pairs
have a higher evaluation contribution, as already indicated in Figure 4.14b. An
improvement for some OD-pairs can indeed imply a worsening for others. In the
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Figure 4.14: Extended A2-corridor: Timetable comparisons after feedback.

BF-timetable, there is an OD-pair (Hlm-Asd) which now has an excess contribution
which is similar to that of Ah-Nm in the BPL-timetable.

Summary. Table 4.3 summarizes the main results of our approach on the extended
A2-corridor instance in terms of evaluation values for each of the steps.

Timetable Evaluation
value

Ideal 100
Best Pure Lagrangian (BPL) 101.51
Feedback step 1 (FB-1) 101.28
Lower bound 93.00

Table 4.3: Evaluation values for extended A2-corridor instance

A visual summary of the computations is shown in Figure 4.15. For each computed
timetable, the evaluation value is plotted. On the left the evaluation value of the ideal
timetable is shown. Next, the results of the timetables after running LH are indicated
by the black dots and lines. If in some timetable not all trains are scheduled, this
is indicated by the dash-dotted line. As can be seen, many timetables have a bad
evaluation value, they are not even visible in the figure. The reason for this is that
in these timetables not all passengers have a travel option. In grey, the evaluation
values of the timetables after feedback are shown. Again, we use dash-dotted lines
for the timetables where not all trains are scheduled.



112 Chapter 4

Id
ea
l

LH FB

98

100

102

104

106

108

110

Iteration

Ev
al
ua
tio

n
va
lu
e

Progress on extended A2-corridor instance

Figure 4.15: Overview of the progress in the extended A2-corridor instance

4.5.4 Comparison to a Benchmark Approach

In order to further evaluate our approach to solving POT, we compare it to the
benchmark approach of modelling POT as a mixed-integer linear program. To make
this comparison, we model POT as a mixed-integer linear program as described in
Chapter 3, but additionally include infrastructure capacity constraints in the there-
described model for strategic timetabling. We then solve it with the approach de-
scribed in Chapter 3. Note that the extended mixed-integer programming approach
from Chapter 3 does not allow to cancel trains, as does our model. However, since
there are no trains cancelled in any of the best timetables we found in the three con-
sidered instances, a fair comparison of results is possible. The results are displayed
in Table 4.4.

In this table, for each instance, the result of several approaches to find a feasible
timetable are shown. The first result is the best timetable that is obtained after
computing an ideal timetable, and then running LH. The table reports the evaluation
value of the timetable in the third column. The fourth column shows the time it
took to compute this timetable. Where the time is split up in two parts, the first
number shows the time spent on computing the ideal timetable, the other number
shows the time spent on LH and feedback. Note that the time for inspection of the
timetable and adjustment of the profit structure in the feedback loop is not included,
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Instance Approach Evaluation
value

Time
(hours)

A2

Ideal + LH 100.18 2 + 0.03
Ideal + LH + FB 100.10 2 + 0.11
POT
- After 2.11 hours 105.80 2.11
- After 8 hours 104.88 8

Lower bound CPLEX 97.09

Rotterdam
Groningen

Ideal + LH 100.59 4 + 0.06
Ideal + LH + FB 100.55 4 + 0.18
POT
- After 4.18 hours 105.64 4.18
- After 16 hours 103.69 16

Lower bound CPLEX 92.72

Extended A2

Ideal + LH 101.51 4 + 0.14
Ideal + LH + FB 101.28 4 + 0.49
POT
- After 4.49 hours - 4.49
- After 16 hours - 16

Lower bound CPLEX 93.00

Table 4.4: Benchmark results

because this is a manual process. The second result that is shown for each instance
is the evaluation value of the best timetable found after applying feedback. Third,
the value of the best timetable after solving the integer programming formulation
for POT including infrastructure capacity restrictions is shown. Next to the value
that is obtained when reaching the time limit, we also show the evaluation value
of the best timetable found in the time it took the iterative approach to compute
the solutions listed. That means, for the A2-corridor instance, computing an ideal
timetable, running LH and including feedback took 2.11 hours. In the same time,
the full POT model found a solution of value 105.80. Finally, we mention the lower
bound as computed by CPLEX when solving the POT model until the time limit is
reached. Note that the CPLEX lower bounds are stronger than those mentioned in
Section 4.5.3 where we report lower bounds on the MILP model for finding the ideal
timetable, because the POT model is more restrictive and therefore, combined with
a longer computation time, a stronger lower bound is more likely.

We observe that our approach is able to find better solutions in less time, even when
no feedback is included. In particular, for the extended A2-corridor instance, we were
not able to find any feasible timetable within 16 hours using the MILP formulation
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for POT, while the approach of this paper generates a reasonably good one within a
bit more than four hours.

4.6 Conclusion and Further Research

In this chapter, we proposed an approach to solve the tactical timetabling problem.
Hereby we specifically focused on the quality of the timetable for the passengers.
In order to find a feasible passenger-oriented timetable for challenging real world in-
stances, for which the timetabling model itself already is challenging, we used variants
of two existing approaches. These two approaches are combined into an algorithmic
framework. First, an ideal timetable is computed, thereby neglecting infrastructure
related restrictions. Next, through a Lagrangian heuristic, this timetable is modified
to obtain a feasible timetable with respect to infrastructure. A feedback mechanism
is used to improve the found solutions. We showed that for real-life instances, based
on the network operated by Netherlands Railway, we can obtain satisfying results.
Furthermore, we show that the provided feedback indeed leads to (overall) better
timetables.

Interesting further research would include the further automatisation of the feedback
procedure. Although this procedure is formalized in Section 4.4.3, it can still require
manual inspection of the results in order to find a good feedback option. Furthermore,
it would be interesting to investigate effects of including station capacity in our
models. In addition, our current approach uses the assumption that passengers
arrive uniformly distributed over the period. To include more detailed passenger
information that may become available when entering the tactical or operational
planning phase, different modelling approaches may be needed.
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Resolving Infeasibilities in
Railway Timetabling
Instances.∗

5.1 Introduction

In Europe, many public transportation companies operate a cyclic timetable, which
means that the timetable is repeated every time period, usually every hour. A
mathematical model that is commonly used for finding such a cyclic (also called
periodic) timetable is the Periodic Event Scheduling Problem (PESP) as introduced
in Serafini and Ukovich (1989) and explained in Chapter 2. The task in PESP is
to schedule a set of events V in such a way that a set of activities A (restrictions)
are satisfied. In this chapter, we use the notion of a PESP-instance: an instance I
contains events V , activities A and bounds `ij , uij for all (i, j) ∈ A. If for an instance
I a feasible solution π : V 7→ {0, 1, . . . , T − 1} exists satisfying all activities, we call
the instance I feasible. Else, we call it infeasible. The problem of infeasible instances
is already recognized by Kroon and Peeters (2003).

Chapter 1 argued that there can be instances for which no feasible solution exists,
especially since railway networks can be very crowded with trains. However, it can

∗This chapter is a modified version of G.J. Polinder, L.G. Kroon, M.E. Schmidt, K.I. Aardal,
M. Molinaro (2018): Resolving infeasibilities in railway timetabling instances.
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also occur that too many requirements are formulated that the timetable has to
satisfy, which results in the fact that no feasible solution exists. These restrictions
are not necessary to ensure a safe operation, they are only added to improve the
quality of the timetable. To show how a conflict can arise in a practical situation,
we consider the following example.

Example 5.1. Consider the situation where two trains with a different speed use the
same track between two stations. A mathematical model that describes this situation
and schedules the departure of train t (t ∈ {1, 2}) at the first station (πt1), and the
arrival (πt2) and departure (πt3) at the next station, is as follows:

π1
2 − π1

1 ∈ [6, 7] (5.1a)

π2
2 − π2

1 ∈ [7, 8] (5.1b)

πt3 − πt2 ∈ [1, 1] ∀ t ∈ {1, 2} (5.1c)

π2
j − π1

j ∈ [3, 57] ∀ j ∈ {1, 2, 3} (5.1d)

π2
j − π1

j ∈ [30, 30] ∀ j ∈ {1, 3} (5.1e)

The first train needs at least 6 and at most 7 minutes to travel between the stations
(5.1a). The other train needs at least 7 minutes and at most 8 minutes (5.1b). Both
trains dwell for exactly one minute after their arrival at the station (5.1c). The
trains share the same track and hence are separated in time (the headway time) by
3 minutes upon departure and arrival (5.1d). Secondly, planners want the trains
to be perfectly spread over time, thus enforcing a 30-minute interval between their
departures at both stations (5.1e).
Due to the flexibility in the trip times, a feasible solution can be found by setting
the trip times for both trains to 7 minutes. However, in many practical timetabling
models, trip times are fixed, leading to infeasible instances as we see next.

The example stated above schedules both departure and arrival times. When travel
times are assumed to be fixed, it is possible to merge pairs of trip and dwell activities
and state PESP instances solely in departure events. When trip times are fixed, the
width of the intervals in (5.1a) and (5.1b) is zero. Then, knowing the time of a depar-
ture event, the time for the next arrival event follows immediately. Fixed trip times
have several advantages. First of all, fewer event times have to be determined, thus
reducing the complexity of the problem. Secondly, when modelling single track safety,
fixed trip times are needed to model this correctly using only PESP-constraints. Fur-
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thermore, fixed trip time reduce the solution space and can thus decrease running
time of solution methods. However, assuming fixed travel times implicitly leaves less
flexibility in the constraint set, since there is no freedom in choosing a travel time.
Liebchen and Möhring (2007) describe under which circumstances this flexibility loss
can be overcome, but this has a cost also.

Now assume that trip times are fixed in Example 5.1: the first train uses 6 minutes
to travel and the other train uses 7 minutes. The instance can now be stated solely
in departure events as is done in (5.2). A graph representation of the instance (an
event-activity network) is shown in Figure 5.1. Note that events π1

2 and π2
2 now have

vanished, and the instance contains three activities less.

π1
3 − π1

1 ∈ [7, 7] (5.2a)

π2
3 − π2

1 ∈ [8, 8] (5.2b)

π2
j − π1

j ∈ [3, 57] ∀ j ∈ {1, 3} (5.2c)

π2
j − π1

j ∈ [30, 30] ∀ j ∈ {1, 3} (5.2d)

Clearly, no feasible timetable exists for this instance, as activities (5.2a), (5.2b) and
(5.2d) prevent the existence of a solution. We say these activities together form a
conflict.

π1
1 π1

3

π2
1 π2

3

[7, 7]

[8, 8]

[30, 30][3, 57] [3, 57] [30, 30]

Figure 5.1: Infeasible PESP instance

Problem Statement

In this chapter, we deal with PESP instances for railway timetabling for which no
feasible timetable exists. That is, the instances contain sets of activities that together
form a conflict, thus prohibiting the existence of a feasible solution. The focus of this
chapter is not to solve PESP but to resolve the infeasibilities in infeasible PESP
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instances. This ‘resolving’ is done by changing bounds of the PESP-activities as
little as possible where this is needed.

Formally, we define the problem which we solve in this chapter as follows.

Definition 5.1 (Infeas-PESP). Let I be an infeasible PESP instance, with event-
activity network G = (V,A). For each a ∈ A, let `a (ua) denote lower (upper)
bounds of the activity and τ `a (τua ) the given maximum allowed deviations of these
bounds. The task is to find new activity bounds `′a = `a − s`a (u′a = ua + sua), where
s`a ∈ [0, τ `a] (sua ∈ [0, τua ]), such that, with respect to these new bounds, a feasible
timetable π : V → {0, 1, . . . , T − 1} exists, or to decide that no such change exists.

Note that it might not always be possible to find changes to the activities satisfying
the given bounds τ . In that case, no resolution of a conflict is possible. If a resolution
of a conflict exists, we aim at finding one that violates the original activities as little
as possible. Since activities model different real-life constraints, like drive and dwell
times, transfer times, or safety distances, the violation of one activity may be more
undesirable than that of another activity. For this reason, we introduce weights on
the activity violations, which we try to minimize heuristically.

The remainder of this chapter is structured as follows. In Section 5.2, we review the
literature on PESP and conflict solving and state our contribution. In Section 5.3, we
describe the above outlined procedure in more detail. First, the notion of a conflict
is formally defined in Section 5.3.1. Next, several models are formulated to resolve
a conflict in Section 5.3.2. Also several methods to add more relevant activities
to conflicts are shown. The iterative algorithm to subsequently resolve conflicts is
proposed in Section 5.3.3. Computational results are presented in Section 5.4. We
end with a conclusion and discussion in Section 5.5.

5.2 Literature Review and Contribution

As mentioned in Section 5.1, a commonly used model for finding a feasible periodic
railway timetable is the Periodic Event Scheduling Problem (Serafini and Ukovich,
1989). This model is stated and explained in Chapter 2, including an overview of
what can be included and how it can be solved. In the review of this chapter, we
focus on conflicts in PESP instances.
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5.2.1 PESP Conflicts

As described in Section 2.2, there exist various techniques to solve PESP instances.
Many of the techniques find good solutions for large networks within a reasonable
amount of time. However, many of these as well rely on the assumption that a feasible
solution always exists. That this is not always true for real life PESP instances has
already been noted in literature. Kroon and Peeters (2003) mention that this problem
can be caused by assuming fixed trip times which is an assumption that is often made
in railway timetabling (cf. Kroon and Peeters, 2003; Kümmling et al., 2015a). In
order to incorporate more flexibility into the used mathematical models, the authors
state under which necessary and sufficient conditions trip times can be allowed to
vary. This provides slightly more flexibility in the planning processes, but in real-life
busy railway networks, conflicts still arise.

A powerful technique to solve PESP instances which has been used for about three
decades is constraint programming (Schrijver and Steenbeek, 1993). Here, some
event in the network is fixed to a specific time and the implications this has for other
event times are propagated throughout the network. By using smart rules and search
strategies, a good solution can often be found rapidly. This technique has been in use
at Netherlands Railways for many years. It has the additional property that, if no
solution exists, it provides a set of constraints that together can never be satisfied.
These sets of constraints can be used to resolve the infeasibility. However, this
technique is not very suitable to resolve conflicts. A tool is available that determines
the minimum slack needed per constraint bound (Odijk et al., 2003), however, this
does not take domain specific knowledge into account and the proposed relaxations
can actually not be allowed in practice.

Also more recently more attention has been paid to infeasible PESP instances. In
the TAKT program (Deutschland-TAKT, 2019), timetables are generated for the
German railway network. In these large instances, often infeasibilities are found that
have to be repaired (Kümmling et al., 2015a). Powerful solvers that are used to
compute timetables for the German railway network are based on a Satisfiability for-
mulation (Großmann et al., 2012). In such a formulation, an infeasibility (a conflict)
is a set of clauses for which no solution exists. According to Kümmling et al. (2015b),
powerful solvers exist to extract such a set of clauses, which then are resolved. In
order to do this, a binary search heuristic is combined with a MaxSAT approach.
More details on this method are provided by Großmann et al. (2015).
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The most intuitive way to resolve infeasibilities is to relax the bounds of the activities
involved. The method by Großmann et al. (2015) finds changes to upper bounds of
activities, and in some cases lower bounds as well, in order to determine if a feasible
timetable exists. The authors use a function which assigns a weight to each activity,
indicating how expensive it is to change this activity. The weight is set to infinity if
an activity cannot be changed. However, in the paper, no specific weight function is
provided. The authors, however, claim that in railway instances typically only dwell
time activities and connection activities can be relaxed. This is due to the fact that
PESP does not allow for dependencies between activity (see also Kümmling et al.
(2015b)), which is the case when trip times are not assumed to be fixed. The method
is tested on several instances, among which the largest one contains all the high speed
lines and some of the most important regional train lines in Germany.

5.2.2 Our Contribution

In this chapter, we propose a heuristic methodology to resolve infeasible PESP in-
stances by altering bounds of PESP activities. Our method is applicable both to
PESP instances with variable trip times, and to PESP instances with fixed trip
times. In the former case, the altering of the bounds corresponds to a widening of
the interval which bounds the time difference between two events. For PESP with
fixed trip times, we relax activities in the above-described way, except the trip time
activities. For these, we instead consider a change of the trip time itself, i.e., we
change the bounds instead of relaxing them. This is a novelty with respect to ex-
isting approach that resolve infeasibilities. To take implicit interdependencies in the
activity set into account, we introduce relations between the PESP activities.

We propose a mixed-integer program (MIP) that is able to alter PESP activities in
both ways described above, and can hence solve conflicts both in PESP instances
with variable and with fixed trip times. While in theory, our MIP model could be
used to resolve all conflicts in the PESP instance at the same time, infeasible PESP
instances encountered in (timetabling) practice are too large to be resolved in one
go. To be able to resolve large PESP instances, we propose a methodology that
iteratively detects minimal conflicts (that is, a minimal set of activities that cannot
be satisfied simultaneously), enriches them in a heuristic way, and solves them using
the MIP. This procedure is repeated until all conflicts are resolved.

In our computational experiments, we systematically analyse and compare which
methods of enriching a conflict work well and demonstrate that this is a good strategy
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to obtain better solutions. We evaluate our approach on timetabling instances from
Netherlands Railways (NS), which has one of the most intensively used railway net-
works in the world, with over 75.000 activities in the PESP model. Our method
is able to resolve conflicts, even in such a large and highly utilized network, within
minutes.

We ran our computational experiments based on weights defined after communication
with planners from NS. However, the short computation times of our method would
even allow to use our method in an interactive way: Planners could set weights based
on a first judgement of the importance of activities, and then adjust them based on
the result found, to guide the solution into the desired direction.

5.3 Conflict Resolving

PESP instances arising in practice can be infeasible. This means they contain a
set of activities that cannot be satisfied simultaneously. The aim is to make such
instances feasible and in this section we describe our approach to achieve this goal
(see Section 5.1 for a formal definition of the problem).

We propose an iterative procedure, as follows:

• Identify a local conflict (an exact definition is given in Section 5.3.1).

• Carefully select additional activities and events to be added to this local conflict,
in order to find a better resolution of this conflict.

• Resolve the conflict using a MIP that minimizes a weighted sum of the changes
in the network activities.

• Modify the activities based on the solution provided by the MIP and search for
a new conflict (go back to the first step)

• As soon as we do not encounter a conflict anymore, we try to further optimize
the changes that are made.

This procedure is detailed in the following sections.

5.3.1 Conflicts in PESP

In order to be unambiguous in the terms we are using, we give a definition of what
we mean by the term ‘conflict’.
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Definition 5.2 (Conflict). A conflict is a set of events and PESP activities such
that no timetable exists for these events satisfying all the activities.

In line with the definition of a conflict, we have the following definition of a minimal
conflict:

Definition 5.3 (Minimal conflict). A minimal conflict is a conflict that has the
additional property that no single activity can be removed, while still satisfying the
definition of a conflict.

Note that minimal conflict does not mean it is of minimum size, i.e., with the least
number of events. In fact, minimal conflicts can arbitrarily differ in size, as we show
next.

In Figure 5.2 a conflict graph is shown with events V = {1, . . . , 5}. For each i ∈
V \ {1}, we have an activity joining this event to the previous event i − 1 ∈ V .
Furthermore, we have the activities π5 − π1 ∈ [11, 11]T and π5 − π1 ∈ [12, 12]T .
Clearly, the latter two activities form a conflict, which we denote by C1. However, the
activity π5−π1 ∈ [12, 12] together with the set of activities πi−πi−1 ∈ [`i−1,i, ui−1,i]
for all i ∈ V \ {1} form a conflict, too. We denote this conflict by C2. Both conflicts
are minimal: removing any constraint from the conflicts would resolve these conflicts.
However, the number of activities in each conflict is different.

π1 π2 π3 π4 π5
[2, 2] [3, 3] [1, 1] [5, 5]

[11, 11]

[12, 12]

Figure 5.2: Minimal conflicts

By definition, any infeasible PESP instance contains at least one conflict. There ex-
ist different methods on how to identify conflicts, see, e.g., Kümmling et al. (2015b).
In this chapter, we describe a methodology to make the PESP instance feasible by
resolving the conflicts through a change in activity bounds, as defined in Defini-
tion 5.1.

When modelling railway timetabling instances as PESP problems, PESP activities
describe different types of real-life railway timetabling constraints (see Chapter 2).
One of these types are market requirements, which refer to transfer activities, stating
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the arrivals and departures of different trains at the station need to be matched to
allow for convenient transfers, and synchronization activities, which lead to an equal
spacing in time of trains of the same line. That this can be suboptimal from a
passenger perspective is motivated in Chapter 3.
By how much one is allowed to deviate from these activities and how much a deviation
is penalized depends on the instance, and should in practice be decided based on
discussion with the train operator.

5.3.2 Resolving a Single Conflict

In order to find a model to resolve conflicts in PESP, note that each PESP activity
states that the difference in time between pairs of events should be within a given
periodic interval. In case of a conflict, these intervals are too small, thus preventing
the existence of a solution to PESP. Therefore, the bounds must be changed in order
to obtain a feasible solution. The goal of this section is the following: given a specific
conflict in the network G (represented by a subgraph GC of G), find a change of
activity bounds, such that the conflict is removed. More specifically, we are given an
instance I = (G,w, τ) being a triple of:

1. a PESP instance represented by its event activity network G = (V,A);

2. a weight vector w ∈ R2|A|: for each bound of each activity a weight is given;

3. a vector τ ∈ R2|A| denoting by how much each bound of each activity can be
changed;

Among all possible activity bound changes, we aim to find the one that minimizes
a weighted sum of the deviations from the original activity set (to be defined more
specifically in the next paragraph).

In the following paragraphs, we present our approach for solving conflicts in PESP.
We do this based on the integer-programming formulation of PESP (see Section 2.1.1),
since this is the most intuitive MIP formulation for PESP. However, the cycle peri-
odicity formulation (CPF, Section 2.1.2) can be extended analogously, and we use
an extension of this formulation for our experiments in Section 5.4 to speed-up com-
putation times. Details can be found in Appendix 5.A.

The methods we describe in this section can be applied to conflicts of any size. In
particular, by choosing GC := G we could consider the whole network as one conflict
to be resolved. However, there is a trade-off between computation time for solving
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individual conflicts: the smaller the conflict, the shorter the time to solve it, and
the more activities contained in each conflict, the less conflicts we have to solve. In
particular, in realistic instances as the ones we consider in our experiments, G is too
big to be resolved at once, which is why we follow the proposed iterative heuristic of
detecting and resolving conflicts one by one. The trade-off between time needed to
resolve one conflict and total number of conflicts to be resolved is further discussed
later in this section, as well as several ways of enriching conflicts. The described
trade-off is illustrated in our experiments in Section 5.4.

Basic model

A conflict can be represented by a conflict graph GC = (NC , AC) ⊆ G where NC
and AC are the events and activities in the conflict. Let ha and ta be the ‘head’
and ‘tail’ of activity a ∈ A respectively, i.e. for a = (i, j) ∈ A we have ha = j and
ta = i. In order to resolve a conflict, activity-bounds must be changed. To be able
to decrease lower bounds and to increase upper bounds, we introduce two new sets
of (slack) variables: s`a ∈ [0, τ `a] indicates by how much the lower bound is decreased
for an activity a, and sua ∈ [0, τua ] gives by how much its upper bound is increased.
Then, for a general graph G = (V,A), and thus specifically for the conflict graph GC ,
we obtain the model PESP-IP-Ext:

min
∑
a∈A

w`as
`
a + wuas

u
a (5.3a)

s.t. `a − s`a ≤ πha − πta + Tpa ≤ ua + sua , ∀ a ∈ A (5.3b)

s`a ∈ [0, τ `a], sua ∈ [0, τua ]. ∀ a ∈ A (5.3c)

πi ∈ {0, 1, . . . , T − 1} ∀ i ∈ V (5.3d)

pa ∈ Z≥0 ∀ a ∈ A (5.3e)

where w`a and wua are the weights corresponding to the lower and upper bound of
activity a respectively. The choice of weights in such a model depends heavily on the
specific application and what kind of solutions are sought (Großmann et al., 2015).
An equivalent formulation based on the cycle periodicity formulation for PESP can
be found in Appendix 5.A.

Fixed trip times

We now discuss an extension of the described model which includes adjustments to
bounds related to fixed trip times.
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One advantage of assuming fixed trip times is that the problem size is reduced, only
half of the event times need to be determined. Furthermore, in order to model
safety constraints on single tracks, a known and fixed trip time is necessary (see
Appendix 2.A).

Using fixed trip times implies that trip-dwell and trip time activities are stated
between two departure events and incorporates both a trip period and a dwell period
at a station. This dwell time interval is denoted by [d, d]. If the trip time for this
part of the network equals r, the trip-dwell activity is of the form

r + d ≤ πha − πta + Tpa ≤ r + d. (5.4)

In the case that dwell time is fixed (i.e. d = d), or that a train does not stop at a
station, it holds that `a = ua = r + d for this activity.

When adjusting activities involving fixed trip times, we do not relax activity bounds
as in the previous paragraph, but allow the trip time r itself to change. That means,
when the trip time is changed by δ, constraint (5.4) is rewritten to

r + δ + d ≤ πha − πta + Tpa ≤ r + δ + d, (5.5)

rather than widening the span of the constraint. Trip time changes can imply changes
to bounds of safety activities, as is illustrated in the following example.

Example 5.2. Consider the headway time between trains 1 and 2 entering a station.
For a headway time h, the constraint modelling this requirement reads

h ≤ πa2 − πa1 + Tp ≤ T − h, (5.6)

where ai denotes the arrival event of train i. However, since we state activities in
departure events when assuming fixed trip times we use the fact that πai = πdi + ri

to reformulate (5.6) as

h ≤ πd2 + r2 − πd1 − r1 + Tp ≤ T − h, (5.7)

or equivalently

h+ r1 − r2 ≤ πd2 − πd1 + Tp ≤ T − h+ r1 − r2. (5.8)

When r1 or r2 changes, this safety activity should be changed accordingly.
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In order to model these dependencies among activities, we introduce variables c`a
and cua to denote the total change made to an activity a ∈ A. Changes can be
made to an activity because either the activity itself is relaxed, for example by
relaxing market requirements, or due to trip time changes in related activities. So the
introduced change-variables consist of two parts: a slack component sa = (s`a, sua) ∈
[0, τ `a]× [0, τua ], as was introduced in the previous model, accounting for changes in its
own activity bound, and an implied change component cimpa , accounting for changes
to this activity based on changes in other activities. This leads to the definition:

c`a = s`a + c`,impa

cua = sua + cu,impa

∀ a ∈ A. (5.9)

Here, the implied changes can be defined as
c`,impa =

(
λ`a
)T
s

cu,impa = (λua)T
s

with λ`a, λua ∈ {0,±1}2|A| ∀ a ∈ A, (5.10)

where s ∈ R2|A| is the vector of all slack variables for each activity and each bound.
Here, λ is a vector containing the coefficients how the bounds of this activity depend
on changes in other activities, like the +r1 − r2 in (5.8). T denotes that the vector
is transposed.

Summarizing the constraints stated above leads to the following mixed integer pro-
gramming model PESP-IP-Dep:

min
∑
a∈A

w`as
`
a + wuas

u
a (5.11a)

s.t. `a − c`a ≤ πha − πta + Tpa ≤ ua + cua , ∀ a ∈ A (5.11b)

c`a = s`a + c`,impa , cua = sua + cu,impa ∀ a ∈ A, (5.11c)

c`,impa =
(
λ`a
)T
s, cu,impa = (λua)T

s ∀ a ∈ A (5.11d)

s`a ∈ [0, τ `a], sua ∈ [0, τua ] ∀ a ∈ A (5.11e)

πi ∈ {0, 1, . . . , T − 1} ∀ i ∈ V (5.11f)

pa ∈ Z≥0 ∀ a ∈ A. (5.11g)
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The model presented above is an extension of PESP-IP-Ext in the sense that it can
deal with changes in (fixed) trip times in the way that is shown in equation (5.5) in
addition to relaxations. If we take λ`a = λua = 0 for each a ∈ A, we have c`,impa =
cu,impa = 0, and we arrive at the PESP-IP-Ext model again.
An equivalent formulation based on the cycle periodicity formulation for PESP can
be found in Appendix 5.A.

Redistribute time supplements. As described in the previous sections, the
choice of the weights in the objective function is very important to find good solutions
to PESP instances arising in timetabling problems. Another method that can help
to guide the solution towards a specific direction is to redistribute time supplements
which are added when designing a timetable. When designing a timetable, planners
take into account that in a daily practice operations do not go as planned. Especially
in train scheduling, this is very important, since the vehicles are bound to the tracks,
and hence disturbances can easily influence the daily operations, leading to trains
being delayed. In order to avoid the disruption of the daily operations as much as
possible, schedulers add time supplements to the travel time on some parts of the
train journey. That means, they plan that the train uses more time than actually
needed, in general between 5% and 7% on the total journey. These additional minutes
that are added are called time supplements. Within a journey, these supplements are
added to parts of the journey by some rules. However, they could as well be added
at slightly different places, without loosing much in terms of resilience. In this para-
graph, we propose a method that finds solutions that redistribute these supplements
to different trip activities, in order to obtain a feasible timetable. This does not
change the total journey time of a train, but only redistributes the supplements.

Guiding the search for a solution towards these solutions is modelled by defining a
variable za = sua − sla for each trip activity a ∈ Atrip, accounting for the change in
trip time. Here, Atrip ⊆ A is the set of trip activities. Let Ta ⊆ Atrip be the set of
trip activities between the two main stations closest to the part that is involved by
activity a. Then the total change Ca on this part of the train series is calculated as

Ca =
∑
e∈Ta

ze. (5.12)

If nothing is changed in the trip time between these two main stations, we have
Ca = 0. Also if the time supplements are redistributed between the stations, this
value will be zero as well, since the changes to individual activities cancel out.
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In order to find solutions that redistribute time supplements, we penalize solutions in
the objective functions, that do not do this. In order to do so, note that Ta consists
of a set of consecutive trip activities. Let a∗ ∈ Ta be the first of these consecutive
activities. Next, we introduce a variable ta ≥ 0 for each a ∈ Atrip and add

γ ·
∑

a∈Atrip

ta (5.13)

to the objective function, where γ is an objective coefficient to be chosen. Further-
more, we add the constraints

− ta∗ ≤ Ca and Ca ≤ ta
∗

∀ a ∈ Atrip, (5.14)

to the model, where a∗ ∈ Ta is as defined before. By doing this, we penalize the
changes only once. By adding the above objective term and constraints, changes in
trip times that are not compensated for in other trip time activities, get an additional
penalty.

Resolving only minimal conflicts

In this section, we give an example to illustrate why identifying and resolving minimal
conflicts within our iterative approach can lead to bad performance. Next we describe
how to enrich conflicts to overcome this issue.

A minimal conflict in the sense of definition 5.3 does not necessarily grasp the real-life
conflict in full detail. There might be more activities that are relevant to this conflict,
but do not appear in the minimal conflict. We now slightly extend Example 5.1
with two additional activities which are often used in practice, to demonstrate that
activities that are not included in the minimal conflict, can be relevant for making
the PESP instance feasible.

Example 5.3. The reduced model in (5.2) contains a conflict, formed by the activ-
ities (5.2a), (5.2b) and (5.2d). These activities form a cycle in the constraint graph
as well, see Figure 5.1. Considering this cycle C, the bounds on the multiples of T
that have to be in this cycle (qC) can be calculated (see Section 2.1.2) as

aC =
⌈

7 + 30− 8− 30
60

⌉
= 0,

bC =
⌊

7 + 30− 8− 30
60

⌋
= −1.



Chapter 5 129

Note that aC > bC , which shows that this cycle forms a conflict.

The following changes to the activity bounds would resolve the minimal conflict:

1. Change the trip time of the first train from 7 to 8 minutes.

2. Change the trip time of the second train from 8 to 7 minutes.

3. Reduce the synchronisation requirements to allow a little flexibility, i.e., set the
bounds in (5.2d) from [30, 30] to [29, 31].

However, suppose that the trains not only are synchronized to depart 30 minutes
apart from each other, but that their departure times are actually fixed to a specific
time. That is, the restrictions π1

1 = 20 and π2
1 = 50 are added. Note that these

restrictions can be added in a PESP-form as well, by introducing an additional event
π0, and the activities π1

1 − π0 ∈ [20, 20] and π2
1 − π0 ∈ [50, 50]. Due to symmetry of

solutions, we can always shift a solution in such a way that π0 = 0.

These additional restrictions show that option 3 to resolve the conflict does not lead
to a feasible model. Therefore, resolving a minimal conflict might not lead to an
overall feasible solution and more activities must be taken into account to find a
good conflict resolution and to better capture the real-life conflict.

Methods to enrich a conflict

We now propose several ways to add more activities to a conflicts. In the remainder of
the section we call a subgraph of the total timetabling graph containing some conflict
a conflict graph. If the problem represented by this graph is a minimal conflict, we
call it a minimal conflict graph. When enriching a conflict, we always start with a
minimal conflict.

The models described in the previous section aim at resolving a part of the full PESP
network, representing the railway timetabling problem. In this section we describe
various methods to enrich minimal conflicts. First of all, for all trip time and trip-
dwell time activities that are involved in the conflict, we add all activities for which
the bounds depend on these trip times.

An event in a PESP instance specifies a departure or arrival at some location in the
railway network. A conflict, or more generally, a set of events, corresponds to some
physical location in the railway network. This property is used in defining several of
the methods listed below.
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1. Use n1 previous conflicts
If hardly any activities are added to a conflict, it might imply that there still
is a conflict around the same location in the network, but now represented
by a different set of activities. Hence, it may happen that in a next step of
our iterative approach we find a conflict that is related to the previously found
conflict. Therefore, it can be beneficial to resolve these conflicts simultaneously
in order to obtain a better conflict resolution. Even the conflict found more
iterations back can be relevant for this conflict conflict. Therefore we define a
parameter n1. When solving a conflict, we check the previously found conflicts
up to at most n1 conflict back, to see if they share some events. If so, we
add these events to the minimal conflict graph. More precisely, let Vi and
Vi−j be the set of nodes in the current conflict and the conflict j iterations ago
respectively. Then, start with j = 1 and as long as j ≤ n1, check if Vi∩Vi−j 6= ∅.
If this is true, set Vi = Vi ∪ Vi−j and increase j by 1, else we stop.

2. Add neighbouring activities (depth n2)
Example 5.3 demonstrated that it can be useful to add more events to a con-
flict. Therefore, in this method we take all events in the conflict graph and add
all incoming and outgoing activities of the corresponding nodes to the conflict
graph, including the corresponding events. After having performed this addi-
tion, it can be repeated several times. The number of times we perform this
operation is called the depth and is denoted by n2.

A practical interpretation of adding neighbouring activities is that in this way
more events of the same train or more events of trains using the same tracks
are added.

3. Add all interrelated activities:
One way to add more useful activities to a conflict, without including new
events, is to add all activities for which both corresponding events are already
involved in the conflict. This rule for enriching a conflict is called add all in-
terrelated activities. This does not enlarge the number of events in the conflict,
or in its geographical interpretation, it only adds more activities.

If the conflict shown in Example 5.1 were to be enriched by only adding inter-
related activities, no new useful relations would be added. If the incoming and
outgoing activities were added (already for n2 = 1), the conflict would be fully
captured and a good resolution would be proposed.
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4. Add single track
Many conflicts in the rail network arise when single track legs are involved.
The best way to resolve conflicts here is to consider all trains sharing this
part of the infrastructure. Otherwise, there is a high risk of not resolving the
conflict in the right way, thus postponing the problem. If we add single track,
we add all activities and events that involve trains on this single track leg of
the infrastructure.

5. Add n3 trips
In some cases, it is useful to look at the locations where the trains travel that
are involved in the conflict. For each train, we add, if possible, n3 trips before
and n3 trips after the part that is involved in the conflict, if this is possible.
This means the conflict is extended geographically for all involved trains. This
method of adding additional trips is called add n3 trips.

All of these methods can be used on their own to enrich minimal conflicts, or be
combined. They are evaluated experimentally in Section 5.4.

5.3.3 An Iterative Algorithm to Resolve Infeasible PESP In-
stances

We now combine what is described in the previous subsections. We first describe the
individual iterations of the algorithm. Next, we use this as a subroutine to describe
the final algorithm to resolve all conflicts in a PESP instance.

Resolve a single conflict

In this section we state our algorithm to enrich, and resolve conflicts. A key ob-
servation for understanding the design of our algorithm is the observation that the
computation time for a model like PESP-IP-Dep can increase rapidly as the model
size increases, since PESP is NP-complete (Serafini and Ukovich, 1989). Hence we
have to be careful not to increase computation time too much when adding additional
activities, while still taking care of the solution quality. Therefore, if we cannot re-
solve the enriched conflict in a certain time limit, we resolve the minimal conflict
graph instead, and then successively add activities. In doing so, we can use the
objective value found for a subproblem as a lower bound for the larger problem,
supported by the following proposition:
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Proposition 5.1. Suppose two graphs G1 ⊆ G2 are given, and the optimal objective
values according to the corresponding MIP model PESP-IP-Dep are z∗1 and z∗2 . Then
z∗1 ≤ z∗2 .

Proof. Since G2 contains at least all activities of G1, the model corresponding to G1

is a relaxation of the model of G2 and hence z∗1 ≤ z∗2 .

Using the objective value of a subproblem as a lower bound for the larger problem, can
help the solver to determine optimality since a possibly good lower bound already is
available. However, we can also provide the full solution instead of only the objective
value. There is a good chance that this solution satisfies many constraints, and hence
it can be used as a ‘warm start’ for the solver. Whether we supply this solution as a
warm start or not is encoded in a Boolean parameter b3.

We now describe how we encode the methods we use for enriching conflicts. Note
that also the order in which the methods are executed influences the final conflict
graph. For ease of notation, we encode a combination of the methods as follows:
n1n2b1b2n3b3, where ni corresponds to an integer number and bi to a boolean value
(i ∈ {1, 2, 3}). All these correspond to the rules described before and are defined as
follows:

n1 This refers to the method add previous conflicts, with parameter n1 (option 1).

n2 This value denotes the neighbourhood depth for adding neighbouring activities
(option 2).

b1 If this is true, we add all interrelated activities (option 3).

b2 If this is true, we add single track activities (option 4).

n3 We apply the rule ‘add n3-trips’, i.e., for each train in the conflict, we add n3

trips before and after the trips involved in the conflict (option 5).

b3 If this is true, we provide the solution to a subproblem as a ‘warm start’ for a
larger problem.

When enriching a conflict, all these methods are executed in the order they appear
in the encoding. As an example of an encoding, the code 00ff0f refers to the method
that always resolves a minimal conflict without adding further constraints.

Our algorithm is stated as Algorithm 5.1 on page 134. It is parametrized by the
aforementioned encoding, which defines the maximum level of additional activities.
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The subgraph corresponding to the ‘maximum level of additional activities’ is denoted
by C+, and its corresponding encoding is denoted by enc∗. Let S be a list, containing
the subgraphs for C+ that are generated by the encodings from the previous section in
the following order (where the variable with the asterisk denote the value they have in
encoding enc∗): For n2 ∈ {0, . . . , n∗2}: for b2 ∈ {false, b∗2}: for n3 ∈ {0, . . . , n∗3}: for
b1 ∈ {false, b∗1}: generate the subgraph corresponding to the encoding n∗1n2b1b2n3b

∗
3

and name them S1, . . . , Sκ in the order they are generated. So Si ∈ S (i = 1, . . . , κ)
and κ = |S|. Furthermore, S1 is the minimal conflict, and Sκ = C+. The PESP-IP-
Dep models corresponding to these subproblems can be solved consecutively. Each
MIP model corresponding to Si provides a lower bound for the model corresponding
to Si+1, if it is a subgraph, according to Proposition 5.1.

In this algorithm, we take as input a minimal conflict C. Next, we enrich this conflict
(line 1). We then try to resolve the conflict in the resulting constraint graph by the
CPF-Dep model (line 3). We allow t1 minutes for this. The time limits in the
algorithm are dynamic. That means the following: If the time limit is ρ minutes, we
allow at least ρ minutes to solve the model. If in the last ρ/4 minutes of this allowed
time improvements are found, either in the lower bound or the upper bound of the
model, we continue optimization for another ρ/4 minutes, until no improvements are
found any more. The rationale behind this is that in solving PESP, we can often
find rapid improvements in the beginning, and then often find ourselves in one of
the following situations: We can have found the best solution, and the lower bound
(slowly) is updated to prove optimality; or we are ‘stuck’ for some time and both the
lower and upper bounds do not change. We want to break away from being stuck,
but also not break out too early if all we have to do is prove optimality.

If in these t1 minutes the model is solved to optimality, we use the found solution
as a solution to the conflict (line 5). If not, we start with the smallest subproblem,
and solve it (line 11). The time limit t2 is usually set high in order to ensure that
an optimal solution to the minimal conflict is found. This solution is then used as a
lower bound for resolving the next conflict graph for which we impose a time limit
of t3 minutes (line 13). If a time limit is exceeded or all subproblems are solved, the
last best found solution is used to resolve the conflict (line 20).

Resolve a full PESP instance

Until now, we have seen how a single conflict can be resolved. Now we describe
the final algorithm which, given a PESP instance, iteratively searches for conflicts,
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Data: Conflict C, time limits t1, t2, t3, weight vector w ∈ R2|A|, bound vector
τ ∈ R2|A|.

Result: One of the following: 1. Values for c`a and cua (for each a ∈ AC) such
that changing the activity bounds by these values leads to a feasible
resolution of conflict C; 2. Proof that no resolution exists; 3.
Time-limit exceeded;

1 Enrich conflict C, giving enriched conflict C+;
2 Build conflict graph for C+;
3 Solve PESP-IP-Dep model for C+ in t1 minutes (dynamic time limit);
4 if optimal solution found to PESP-IP-Dep then
5 Process solution found to C+ setting activity bounds as:
6 `a ← `a − c`a
7 ua ← ua + cua ;
8 else
9 Find sub-problems S1, . . . , Sκ;

10 Set S ← S1;
11 Solve PESP-IP-Dep model for S in at most t2 minutes (dynamic time limit);
12 for i = 2, . . . , κ do
13 Solve Si in t3 minutes (dynamic time limit). If b3 is set to true, use

solution to Si−j as a warm start and lower bound, with j ∈ N>0 as
small as possible such that Si−j ⊆ Si;

14 if optimal solution found for Si then
15 Set S ← Si;
16 else
17 break;
18 end
19 end
20 Process the solution found to S by changing activities, by setting:
21 `a ← `a − c`a
22 ua ← ua + cua ;
23 end

Algorithm 5.1: Resolving one conflict
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resolves them by Algorithm 5.1 (or notifies us that no feasible solution exists) and,
if it terminates, provides a conflict-free PESP-instance and a timetable.

Data: PESP instance I, time limits t1, t2, t3, TL, iteration limit IL, weight
vector w ∈ R2|A|, bound vector τ ∈ R2|A|.

Result: One of the following: 1. List of adapted PESP activities such that
conflict is resolved together with a timetable; 2. Proof that no
resolution exists; 3. Time-limit or iteration-limit exceeded;

1 Set it_count = 0;
2 Search for a conflict C;
3 while A conflict C is found and it_count < IL and elapsed time < TL do
4 Run Algorithm 5.1 on conflict C;
5 if C cannot be resolved then
6 Stop algorithm: it is not possible to modify PESP parameters within the

prespecified bounds to obtain a feasible solution to PESP;
7 else
8 Search for a new conflict C in I.;
9 end

10 end

Algorithm 5.2: Resolving a PESP instance

This algorithm finds a conflict in the PESP instance or certifies that no such conflict
exists. Next, it resolves the conflict. Afterwards, the search for more conflicts is
continued until no conflict exist any more. If there are no more conflicts, we find a
timetable and post-optimize it. Note that if Algorithm 5.1 determines that a certain
conflict cannot be resolved, this means that there is no feasible solution to PESP,
even with the allowed modifications of the activity bounds.

Due to the time limits set in line 3, Algorithm 5.2 will terminate after a pre-specified
time, even if the conflicts in the network are not resolved up to that point in time
and no unresolved conflict is found.

Note that for fixed values of the modulo parameters p, PESP-IP-Ext is totally un-
imodular. Hence when all activity bounds `a and ua and all entries of τ are integer,
every time we run Algorithm 5.1 we widen at least one constraint interval by at
least one unit. Since we do not allow to undo the changes in step 9, the algorithm
terminates at the latest when all PESP activity bounds are maximally relaxed, that
is after

∑
a∈A(τ `a + τua ) iterations.

That implies that if we ran the algorithm without time limits on an an instance
of type PESP-IP-Ext, it would terminate in finite time (under the assumption that
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RAM and memory of our computer are enough to resolve the occurring conflicts as
specified in Algorithm 5.1).

For instances of type PESP-IP-Dep, that is, in particular, when we model changes
in the trip times as adjustments of trip times instead of a relaxation of the activity
interval, we can give no such guarantee since a trip time that is changed once from
value r to r′ may be changed back in a later iteration, if the corresponding activity
occurs in a second conflict. So-induced cycles can be prevented to a certain extent
by enlarging conflict graphs as described in the previous section. A second approach
to avoid the repeated changing of trip times is described in the following.

Tabu search

In Algorithm 5.2, conflicts are resolved iteratively. If one conflict is resolved, we
search for the next one and resolve it. One thing that might happen is that the
resolution of one conflict in some iteration, creates a new conflict. If we undo the
first change, it might resolve the second conflict but again generate the first one.

There are several possibilities to avoid this going back-and-forth. Note that this situ-
ation would have been avoided if more activities would have been taken into account
in resolving the first conflict. However, as this increases the size of the problems
to be solved, we use a different approach in addition. For each a ∈ A, we define
κa as the number of times the slack variables for this activity have been changed.
Then the objective coefficient, penalizing changes to this activity, is multiplied by
gκa (g > 1) to make changes to this activity more expensive and at the same time
avoiding models to become infeasible if this activity has to be changed back again.
Throughout the experiments, we use g = 2.

Finding a timetable & post-optimisation

If the iteration limit or time limit in Algorithm 5.2 is not exceeded, the algorithm
terminates with a conflict-free PESP instance. A dedicated PESP-solver can be used
to solve such an instance (cf. Kümmling et al., 2015a; Schrijver and Steenbeek,
1993). Once we have this timetable, together with the original PESP instance, we
can build the PESP-IP-Dep model and restrict the event times to be in an interval,
given by the event time from the timetable plus or minus a deviation η ∈ [0, T/2],
where η = 0 corresponds to no freedom and η = T/2 to full freedom. So suppose
event π is scheduled to be at .27, we then add the restriction that π ∈ [27−η, 27+η].
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We call this model PESP-IP-Dep(η). The reason to use a model based on PESP-IP
rather than CPF, is that the event times are explicitly included in this model.

If we first solve the model with η = 0, we find the changes to the activities that
are needed to make the found timetable feasible and we can determine the objective
value that is achieved when making this PESP instance feasible. In a next step, we
increase η to a positive value and resolve the model. Since the timetable was feasible
for PESP-IP-Dep(0), it surely is for PESP-IP-Dep(η) where η > 0. Hence, better
solutions might be found since the feasible space of this model increases in η. So
reoptimizing leads to a new change in the activity bounds and a new objective value
that is not higher than the objective value obtained with η = 0.

5.4 Experiments

In order to test our methodology in practice, and to analyse the impact of different
methods to enrich conflicts, we have tested it on several instances which are provided
by Netherlands Railways and are based on the Dutch railway network. They vary
between a tiny instance and the complete Dutch network. We present a description of
the instances, together with the computational results in this section. Computations
are performed on a 64-bit PC with an Intel(R) Core(TM) i7-4700MQ processor with
3.40 GHz and 16.00 GB of RAM installed, operating under Windows 7 Professional.
The implementation is done using JAVA 1.8, IBM ILOG CPLEX 12.6.2 (IBM, 2015)
is used to solve the MIP models, allowing for 4 parallel threads.

In this chapter, several methods are shown to enrich conflicts. Different ways of
enriching conflicts can result in different solutions to the model on how to change
some of the PESP-activities. This in turn can influence the number of conflicts found
in total. If a solution to some conflict is found that is not only feasible with respect
to this specific conflict, but also in the larger context of the total PESP instance, the
number of conflicts that must be resolved is likely to be small, but the computation
time might be large. On the other hand, resolving many small conflicts might lead
to a lot of iterations of the algorithm, but probably to a relatively short computation
time. Therefore, in the experiments we tested many different methods of enriching
conflicts, to determine a pattern in which methods work well and which do not.

For finding a conflict or a timetable, the CADANS solver (Odijk et al., 2002; Schrijver
and Steenbeek, 1993) is used. This solver finds a minimal conflict or a timetable
based on Constraint Programming. For an instance of the size of the Dutch railway
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network, the computation time is often only a few minutes (cf. Caimi et al., 2017,
sec. 6.1). However, our methodology does not depend on the algorithm used for
conflict detection and any other algorithm for conflict detection could be used instead.

To solve the conflicts, we used the approach described in Section 5.3.2 based on
fixed trip times, since the considered instances contain fixed trip times. Instead of
solving PESP-IP-Dep however, we used an equivalent formulation based on the cycle
periodicity formulation which has been proven to be faster in practice, stated as
CPF-Dep in Appendix 5.A. To solve CPF-Dep, a minimum weight spanning tree
is found where the weights of the activities are the number of possibilities for the
corresponding process time, i.e., wa = ua− `a + 1 for activities a ∈ A. Based on this
tree, an integral cycle basis is generated.

Throughout the post-optimization, we first solve the PESP-IP-Dep(η) model with
η = 0, to determine the initial objective value. Next, we relax the model to η = 5
and reoptimize, to find the objective value for this model with more freedom.

5.4.1 Den Helder - Schagen (Hdr-Sgn)

The first instance we consider is a small single-track network between stations Den
Helder and Schagen.

Instance description

Physical network. The network consists of four stations as is shown in Figure 5.3,
where the layout of this instance is displayed. There is a bridge between Anna
Paulowna and Den Helder Zuid, which is shown as a dashed line, that can be opened
during some time of the day and hence no trains can pass during that time. This
means that the passing times of trains at this bridge must be known in order to know
when the bridge can be opened. Note that trains can pass each other only at the
stations, since the intermediate tracks are all single track.

Den Helder Den Helder Zuid Anna Paulowna Schagen

Figure 5.3: Den Helder - Schagen network.

Train services. On this network, two train lines are operated. Line 1 is an Intercity
line, stopping only at Den Helder and Schagen and running in both directions, twice
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per hour. Line 2 is a so-called sprinter line, that runs once per hour and stops at all
stations.

Activities. For service reasons, line 1 is required to drive in a 30-minute pattern,
i.e. the trains leave the first station of their journey 30 minutes apart from each other.
Furthermore, they should leave Den Helder at .29 or .59, because of connection times
to other modes of transport.

In Table 5.1, an overview is given of the different PESP-activities that are present
in this instance. The different types of activities are shown in the first column, and
how often they occur in the instance is shown in the second column. A trip time
activity refers to a situation where a train does not stop at some station, a trip-dwell
activity refers to the situation where a train drives to a station and dwells there for
some time. A synchronisation activity requires trains to drive in a given pattern (for
example, 30 minutes apart). A fixation activity specifies a specific departure time.
Safety activities all deal with headway times.

Objective coefficients and algorithmic limits. A trip(-dwell) activity involves
a given planned trip time r, including a dwell time in case of trip-dwell activities.
This trip time is used to define the maximum allowed changes to the lower (upper)
bound of an activity bound as shown in column 3 (4). The objective coefficients for
the changes to lower and upper bound are shown in the last two columns. A linear
objective is used in this model.

In this instance, we do not allow to change safety activities, all other activities can
be adjusted. The parameter sets are chosen together with NS planners.

Activity
type Number Maximum

allowed slack
Objective
coefficient

Trip time 20 min{1, r} 2 max{20− 2r, 10} max{7− r, 2}
Trip-dwell 4 min{1, r} 2 max{18− 2r, 8} max{6− r, 2}

Synchronisation 2 10 10 5 5
Fixation 2 5 5 5 5
Safety 156 0 0 0 0

Table 5.1: Bounds and coefficients for changes

As time limits, we used one hour, and the iteration limit was set to 500. Because
this instance is small, these limits are actually never met.
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Results of the methodology

When running the algorithm, a minimal conflict was found involving the Intercity
lines in both directions and the sprinter line in one direction. In total 25 nodes and 38
activities were involved. Using 00ff0f as the maximum level of additional activities,
a feasible timetable is found in two iterations.

The proposed solution is to decrease the trip time on one of the trips, i.e., to accelerate
the train, and to change the frequency of the Intercity line to 29/31 instead of 30/30.
The fixations are relaxed by one minute. The total computation time is 0.9 seconds,
while finding a solution for the models to resolve a conflict took 0.2 seconds.

The most prominent reason why the resolution of the first conflict caused another
conflict, is that the sprinter train was involved in one direction only. If both directions
were taken into account, which can be achieved by enriching a conflict by the method
00ft0f for example, the solution was found in one iteration. On single track networks,
every train that uses this track provides a large limitation on the changes that are
feasible. The solution in this case is identical to the solution that was found in
the case with the two iterations. Computation times are comparable as the total
computation time now is 0.7 seconds and 0.2 seconds are used to resolve the conflict.

5.4.2 Rotterdam - Utrecht (Rtd–Ut)

Instance description

Physical network. The underlying network for this instance are the tracks between
Gouda and Zwolle, with legs from Gouda to Rotterdam and The Hague, as well as
from Zwolle to Leeuwarden and Gouda. The majority of this network is double track,
except for the part between Gouda and Utrecht, which mainly has four tracks. The
interested reader is referred to www.sporenplan.nl for more details about this net-
work. Figure 4.2b also displays the location of these stations in the railway network.

Train services. The basis for the instance are the Intercity trains that share tracks
between Rotterdam and Utrecht. Next to this, we added some additional trains.
In total, the instance consists of the following trains (the numbers are added for
references later on):

500 Intercity between Rotterdam and Groningen (1 time per hour).

12500 Intercity between Rotterdam and Leeuwarden (1 time per hour).

http://www.sporenplan.nl
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2000 Intercity between Rotterdam and Utrecht (2 times per hour).

2800 Intercity between The Hague and Utrecht (2 times per hour).

4000 Sprinter train between Rotterdam and Uitgeest (2 times per hour). This train
shares infrastructure with the Intercity trains between Rotterdam and Gouda.
Next, it has to cross the Intercity paths halfway between Gouda and Utrecht.

5600 Sprinter train between Utrecht and Zwolle.

Activities. Both lines 2000 and 2800 are synchronized to drive exactly 30 minutes
apart from each other. Furthermore, lines 500, 12500 and 2800 are synchronised at
Utrecht and Rotterdam to drive 15 minutes apart from each other.

Objective coefficients and algorithmic limits. In Table 5.2 the maximum al-
lowed changes and the objective coefficients are shown, which were chosen based on
expertise from NS planners. Furthermore, the number of activities of each type is
displayed.

Activity
type Number Maximum

allowed slack
Objective
coefficient

Trip time 512 min{1, t} 2 max{20− 2t, 10} max{7− t, 2}
Trip-dwell 167 min{1, t} 2 max{18− 2t, 8} max{6− t, 2}
Frequency 93 10 10 30 30
Fixation 18 5 5 20 20

Connection 14 1 5 30 25
Safety 2257 0 0 0 0

Table 5.2: Bounds and coefficients for changes in Rtd–Ut

The PESP instance contains 699 events and 3061 actitivies. This instance contains
many Intercity trains, sharing the same infrastructure. However, all these trains
might have different driving characteristics as they use different train types. There-
fore, the corresponding trip times can be different, which is undesirable because it
consumes more capacity on these tracks and it easily gives rise to conflicts. Hence,
solutions that redistribute buffer times are desired. In order to find these, the corres-
ponding actitivies are added and the corresponding objective term gets a coefficient
of value 10 (the γ in (5.13)).

For the algorithm, we set an iteration limit of 500 iterations and a time limit of 2
hours.
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Results of the methodology

Using the encoding stated in Section 5.3.2, we tested all possible combinations of the
following ways to enrichting a conflict:

• n1 ∈ {0, 1, 2}, the number of previously found conflicts that are added.

• n2 ∈ {0, 1, 2}, the neighbourhood depth.

• n3 ∈ {0, 2, 4, 6, 8, 10}, the number of additional trips of the train lines that are
involved.

Furthermore, the true/false parameters could take both values, which correspond to
adding the interrelated actitivies or not, adding all trains in single track parts or not
and providing solutions of subproblems as a warm start or not.

This led to 432 possible methods of adding additional actitivies. Out of these 432
methods, 48 have led to the algorithm exceeding the iteration limit. All of these 48
methods had neighbourhood depth equal to zero and no interrelated actitivies were
added.

For the remaining methods, results are shown in Figures 5.4 and 5.5. The legend
shows which method is used to enrich conflicts. For example, .1t... shows that first
all actitivies are added that have a relation with the conflict, and next all interrelated
actitivies are added. The dots indicate that the parameter for this method is left
open, so in the figure, there are several dots corresponding to .1t..., all indicating a
different setting where the parameter on the dots is varied.

In Figure 5.4, a plot is shown of the number of iterations that are performed versus
the total objective value (Figure 5.4a) and the objective value obtained after post-
optimization (Figure 5.4b). By using the three different types of gray, we distinguish
between the results for adding neighbouring activities or not. Also, we distinguished
between adding interrelated activities or not by using different symbols. As is clear
from these figures, adding more activities leads to a smaller number of iterations and
a better initial objective. Also, for the objective obtained after post-optimization,
the same observation can be made. For neighbourhood depth 1 and 2, a solution
with objective value 97 was obtained in nearly all methods. Also, a difference can be
seen between the methods that add interrelated activities or not. In general, doing
so leads to fewer iterations to find a feasible timetable.

In Figure 5.5, plots are shown for the total time in seconds versus the objective value.
The same color schemes are used here as in the previous figure. As is clear, in general
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Figure 5.4: Rtd–Ut - Number of iterations versus objective value
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the medium-gray dots (neighbourhood depth 0) correspond to methods that lead to
solutions being found rapidly, however, with a high objective value in general. Also,
if these solutions are improved, they are still worse than the solutions corresponding
to methods with a different neighbourhood depth. There are a few exceptions, having
a really long computation time and a high objective value.

In general we can observe that resolving only the minimal conflicts does not work
well. All the methods that have led to exceeding the iteration limit, hardly added any
activities to the minimal conflict. Furthermore, we saw a tendency that increasing
the neighbourhood depth leads to better solutions. However, this may come at the
cost of an increase in computation time. A trade-off has to be made, where to stop
adding additional activities. Adding too many leads to an increased problem size,
without providing additional relevant information.

5.4.3 Dutch Network 2013 (NL2013)

Instance description

This instance was used as a basis to generate the full Dutch timetable of 2013,
including transfer and synchronisation requirements. The timetabling instance is
initially infeasible. In order to obtain the actual timetable in 2013 in the Netherlands,
trip time and synchronisation requirements were changed manually.

The Dutch railway network is one of the most heavily used railway networks in Europe
(Boston Consulting Group, 2017). There are many trains operated on this network,
many of them sharing a piece of infrastructure in the network, thus generating many
interdependencies in the network. Therefore, finding a feasible timetable for this
instance is a challenging task. This is why we ran experiments on this network, to
test the performance of our algorithmic framework. The only expected changes are
on trip times and synchronisation requirements.

Objective coefficients and algorithmic limits. The allowed changes, the cor-
responding coefficients and the number of PESP-constraints for each type are shown
in Table 5.3. They are similar to the previous case. Here, the constraints to redistrib-
ute buffer times between stations are not added to the IP. We have set a maximum
of 500 iterations and 3 hours of computation time. The network consists of 9085
nodes and 75309 activities with 448 trains in total.
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Activity
type Number Maximum

allowed slack
Objective
coefficient

Trip time 5670 min{1, t} 2 max{20− 2t, 10} max{7− t, 2}
Trip-dwell 2966 min{1, t} 2 max{18− 2t, 8} max{6− t, 2}
Frequency 291 10 10 30 30
Fixation 18 5 5 20 20

Connection 0 1 5 30 25
Other 66212 0 0 0 0

Table 5.3: Bounds and coefficients for changes in NL2013

Results of the methodology

For this instance again several methods are tested to enrich a conflict. We varied the
parameters of the methods as follows:

• n1 ∈ {0, 1, 2}, the number of previously found conflicts that are added.

• n2 ∈ {0, 1, 2}, the neighbourhood depth.

• n3 ∈ {0, 2, 4}, the number of additional trips of the train lines that are involved.

Furthermore, the true/false parameters could take both values, which correspond to
adding the interrelated activities or not, adding all trains in single track parts or not,
and providing solutions of subproblems as a warm start or not.

This led to 216 possible methods of adding additional activities. Out of these 216
methods, 1.8% exceeded the iteration limit, which are methods that had neighbour-
hood depth 0 and no interrelated activities added. 49.5% exceeded the overall time
limit and 20.37% exceeded the time limit allowed for finding conflicts or a timetable
in one of the iterations. We do not recognize a clear pattern in which combination of
parameters causes violation of the time limit. The results for the remaining methods
are shown in Figures 5.6 and 5.7.

Although the results are less clear than in the previous case, again we see that
the methods that have neighbourhood depth 0 tend to lead to a higher number of
iterations. Although the computation time in general is low, again the objective
value is very high. For neighbourhood depth 1 and 2 the results are identical.

Another observation here is that almost all methods that have neighbourhood depth
0 and no addition of interrelated activities, did not lead to a feasible result within
the given time and iteration limits.
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5.5 Conclusion and Discussion

We developed a methodology to relax PESP activities to resolve infeasible PESP
instances. This approach supplements current timetabling algorithms, which suffer
from the fact that increased demand for capacity usage as well as quality requirements
often lead to (on first sight) infeasible timetabling instances. We resolve conflicts in a
PESP model with as few deviations as possible, based on predefined activity weights
and bounds. Our approach is iterative in the sense that we find a conflict in the
existing PESP instance, solve this conflict using a MIP model, and then search for
the next conflict. In contrast to existing approaches on resolving infeasible PESP
instances, our approach can deal with fixed trip times, an assumption that is often
made in PESP instances arising from railway timetabling.

We find that in our iterative approach of finding and resolving conflicts it is important
not to resolve only minimal conflicts, but to carefully add more activities from the
timetabling instance to these minimal conflicts, in order to find good solutions as well
as to improve computation times. We proposed several methods to enrich the minimal
conflicts. From our computational results, we have seen that adding neighbouring
activities in the constraint graph in general leads to better results. In our experiments
based on parts of or the whole the Dutch railway network, feasible timetables are
found in reasonable time in most cases.

Our approach requires the choice of many parameters, namely the allowed deviations
of the original bounds and the weights in the objective function, which will steer the
algorithm towards a solution. In practice, these parameters would need to be chosen
based on the expertise and preferences of the railway operator - and could be adjusted
based on the feedback of the operator when seeing the generated solution. It would
even be possible to incorporate expert feedback (in the sense of resetting and fine-
tuning parameters) after the resolution of each conflict.

Appendix

5.A Solving Conflicts by Extending the Cycle Peri-
odicity Formulation

Analogously to the described extension of PESP-IP, we can extend the Cycle Peri-
odicity Formulation for PESP to resolve conflicts. The cycle periodicity formulation
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is explained in Section 2.1.2. In makes use of a ‘process time’ of an activity a ∈ A,
which we denote here as xa, i.e.,

xa = πj − πi + Tpij . (5.15)

This appendix details how the extensions of PESP-IP can be modelled using the
Cycle Periodicity Formulation.

5.A.1 Equivalent for PESP-IP-Ext

We can extend CPF in the same way as described in Section 5.3.2 for PESP-IP to
resolve conflicts.

We assume a cycle basis B is given. The Cycle Periodicity Formulation equivalent to
PESP-IP-Ext is denoted by CPF-Ext and can be stated as follows:

min
∑
a∈A

wlas
`
a + wuas

u
a (5.16a)

s.t.
∑
a∈C+

xa −
∑
x∈C−

xa = TqC ∀ C ∈ B (5.16b)

`a − s`a ≤ xa ≤ ua + sua , ∀ a ∈ A (5.16c)

aC ≤ qC ≤ bC ∀ C ∈ B (5.16d)

s`a ∈ [0, τ `a], sua ∈ [0, τua ] ∀ a ∈ A (5.16e)

xa ∈ R ∀ a ∈ A (5.16f)

qC ∈ Z ∀ C ∈ B. (5.16g)

The objective function should be the same and the activity bounds are altered in
the same way, by adding and subtracting the right slack variables, which are the
same as well, so Constraint (5.16a), (5.16c) and (5.16e)–(5.16g) are essentially the
same. The sum of all process times should still be equal to a multiple of T as in
Constraint (5.16b). Finally, the number of multiples of T in each cycle C can be
bounded by (5.16d), where the bounds are calculated as:

aC =
⌈

1
T

(∑
a∈C+

(`a − τ la)−
∑
a∈C−

(ua + τua )
)⌉

, (5.17a)

bC =
⌊

1
T

(∑
a∈C+

(ua − τua )−
∑
a∈C−

(`a − τ la)
)⌋

. (5.17b)
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Here, we assume worst case situations, i.e., we calculate the lowest and highest pos-
sible values, based on the maximum allow changes, in order to have a model that is
not too restrictive. This shows that PESP-IP-Ext and CPF-Ext are equivalent.

5.A.2 Equivalent for PESP-IP-Dep

In order to get the CPF equivalent for PESP-IP-Dep, we use a similar approach. The
model is referred to as CPF-Dep and stated as

min
∑
a∈A

wlas
l
a + wuas

u
a (5.18a)

s.t.
∑
a∈C+

xa −
∑
a∈C−

xa = TqC , ∀ C ∈ B (5.18b)

aC ≤ qC ≤ bC ∀ C ∈ B (5.18c)

`a − c`a ≤ xa ≤ ua + cua ∀ a ∈ A (5.18d)

c`a = s`a + c`,impa , cua = sua + cu,impa ∀ a ∈ A (5.18e)

c`,impa =
(
λ`a
)T
s, cu,impa = (λua)T

s ∀ a ∈ A (5.18f)

La = `a − τ `a −max{c`,impa } ∀ a ∈ A (5.18g)

Ua = ua + τua + max{cu,impla } ∀ a ∈ A (5.18h)

aC =
⌈

1
T

(∑
a∈C+

La −
∑
a∈C−

Ua

)⌉
∀ C ∈ B (5.18i)

bC =
⌊

1
T

(∑
a∈C+

Ua −
∑
a∈C−

La

)⌋
∀ C ∈ B (5.18j)

s`a ∈ [0, τ `a], sua ∈ [0, τua ] ∀ a ∈ A, (5.18k)

xa ∈ R, c`a, c
u
a ∈ R, λ`a, λ

u
a ∈ {0,±1}2|A| ∀ a ∈ A (5.18l)

qC ∈ Z ∀ C ∈ B. (5.18m)

Here, constraints (5.18b) relate the processes in a cycle to an integer multiple of T .
Constraints (5.18d) give bounds on the allowed process times and correspond to the
bounds of a PESP activity. Constraints (5.18c) bound the integer variable for each
cycle, denoting how many multiples of T can possibly occur in a cycle. Bounds on
these variables are calculated by (5.18i) and (5.18j). It makes use of the smallest
and largest possible bounds for each activity, which are calculated by (5.18g) and
(5.18h), in order to avoid having a model that is too restrictive. Note that again
PESP-IP-Dep and CPF-Dep are equivalent.
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An Adjustable Robust
Optimization Approach for
Periodic Timetabling∗

6.1 Introduction

The timetable of a railway operator is the backbone of daily operations. It is therefore
no surprise that forced deviations from the planned timetable can be extremely costly:
A recent investigation of the Dutch government estimated the annual societal costs of
disturbances in the Dutch railway system at 400 to 500 million euros (Kennisinstituut
voor Mobiliteitsbeleid, 2019). These costs come from productivity loss, and from the
uncertainty that passengers experience in the time their journey takes. Resilience
against possible disturbances is therefore a crucial aspect of the operated timetable.

A railway timetable is an assignment of departure and arrival times for a given set of
train services. The input to timetabling specifies this set of train services, including
all locations where the train shall call. Our focus in this chapter is on generating
(periodic) timetables, which have to be designed a few months before the actual
operation.

∗This chapter, up to minor modifications, is a direct copy of G.J. Polinder, T. Breugem, T. Dol-
levoet, and G. Maróti (2019): An adjustable robust optimization approach for periodic timetabling.
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The actual operations often differ from what was planned. For example, trains may
not be able to run at full speed or have to dwell longer at some stations. These are
all disturbances, events that can influence the execution of a timetable by causing
delays. In this chapter, we focus on small disturbances, leading to delays of up
to a few minutes. Although the timetable was designed several months before the
operations, it should still be operable with a limited amount of delays, no matter
when and where the unpredictable disturbances occur. A robust timetable is one
for which this is the case. In order to achieve robustness, a timetable allocates time
supplements on top of the technically minimal travel times and dwell times. These
supplements can absorb the unexpected increase of travel and dwell times and thereby
limit the accumulation of delays.

In this chapter, we consider disturbances that reoccur in every cycle period during a
day. Because their reappearance is the same for every cycle period of the timetable,
we refer to them as periodic disturbances. Periodic disturbances are seen, for example,
on autumn days when the fallen leaves lead to slippery rails, and thus to increased
travel times. When designing the timetable to be operated in autumn, it is known
that fallen leaves lead to increased travel times during some days. However, it is
not known yet at which days this will happen. Similarly, the dwell times at some
stations increase on sunny summer days when many people take the train to the
beach. One can expect this to happen, say, in August, but it is unknown which days
will be sunny. In both cases, a timetable is announced for a period of several weeks
or months, while the periodic disturbances affect a few days only. The timetable
must balance the service quality of the normal days and the delays of the disturbed
days.

Achieving robustness generally conflicts with achieving efficiency in a timetable. In
an efficient timetable, passengers have little waiting time, and can travel quickly
from their origin to their desired destination. Robust solutions prefer larger time
supplements since they offer more potential to absorb delays. However, the increased
time supplements are added on undisturbed days, as well. That is, the passengers
will experience longer travel times even if there are no disturbances on that day.

In this chapter we aim at finding a periodic timetable which is robust against small
periodic disturbances. An adjustable robust periodic timetable is one that can easily
be adapted to cope with such disturbances. In particular, the periodic disturbances
can be incorporated without changing the structure of the timetable. Note that
this leads to a complex optimization problem. The underlying periodic timetabling
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problem is NP-hard (Serafini and Ukovich, 1989) and known to cause major compu-
tational challenges in practice, as well. The robust extension adds to the complexity
in that it needs to keep track of the consequences of many possible disturbances.

In this chapter, we formulate the Robust Periodic Timetabling Problem (RPTP), an
adjustable robust formulation for the periodic timetabling problem. We propose a
solution method for a parametrized uncertainty region, and we study the interplay
between three values: (i) the severity of the disturbance; (ii) the total amount of
timetable adjustments; and (iii) the efficiency of the undisturbed timetable. We
apply our approach to practical instances from Netherlands Railways (NS), and show
that good solutions can be obtained for challenging real-world instances.

To the best of our knowledge, this chapter contains one of the first approaches to
incorporate periodic disturbances in the Periodic Event Scheduling Problem, and to
combine this with standard robust optimization techniques. Furthermore, we are the
first to analyse the efficiency and robustness of a timetable with respect to a recovery
budget in the context of periodic timetabling in such detail.

The contribution of this chapter is twofold. Firstly, we propose an adjustable robust
extension of the periodic timetabling problem. Second, we demonstrate the viab-
ility of adding adjustable robustness extensions to practically relevant optimization
problems. In fact, periodic timetabling is an application where the nominal (i.e., non-
robust) optimization problems pose a considerable challenge. Our robust extension
turns out to be tractable by using the proper combination of modelling and solution
techniques.

The remainder of this chapter is organized as follows. In Section 6.2 we formalize
the RPTP. We give an overview of related work in Section 6.3. In Section 6.4 we
propose a mathematical formulation for the problem. We introduce two assumptions
in Section 6.5, on which we base our solution method in Section 6.6. We apply this
method to practical instances from Netherlands Railways in Section 6.7. Finally, the
chapter is concluded in Section 6.8.

6.2 Problem Description

The periodic timetabling problem is explained in Chapter 2. The key components
for this problem are the set of events V and of the set of activities (constraints) A.
Each constraint states a restriction of the time difference between two events, and is
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generally written as
`ij ≤ πj − πi + Tpij ≤ uij . (6.1)

For more information about these activities and periodic timetabling in general, we
refer to Chapter 2. In this section, we focus on the incorporation of robustness in
periodic timetabling and highlight the problem we deal with in this chapter.

The goal of the PTP is to find a feasible timetable. It is common practice, however, to
include an objective which maximizes the efficiency or the robustness of the timetable.
These two objectives are conflicting: Efficiency is achieved by minimizing the planned
duration of trip and dwell activities, while robustness is achieved by adding time
supplements on these activities. The duration of an activity is defined as the time
difference between the two involved events, i.e., as πj − πi + Tpij in (6.1).

In practice, operations often differ from the plan due to disturbances, thus rendering
the planned timetable infeasible. We assume that the uncertainties manifest them-
selves in the lower bounds of the PESP-constraints (6.1). This assumption is in line
with the literature (Goerigk, 2015; Goerigk and Schöbel, 2010; Liebchen et al., 2009).
We note that uncertainties in the upper bounds can be easily incorporated in the
models, and that they have no effect on the methodology proposed in this chapter.

Suppose that a driving activity is given that states that the time difference between
arrival event π2 and departure event π1 should be at least 10 minutes, and at most
13 minutes. This constraint can be written as π2 − π1 + Tp12 ∈ [10, 13], which is
visualized in Figure 6.1 (where the cycle time is 60 minutes). The highlighted area

0 6010

π1

20

π2

Figure 6.1: Example Periodic Constraint.

shows the possible event times π2, given the scheduled time π1 = 10. For this activity,
scheduling π2 at minute 20 is a feasible solution. In fact, this would be the unique
optimal solution from an efficiency-perspective.
Now suppose that a disturbance affects this activity: The travel time will be at
least 11 minutes due to slippery tracks. This implies that the feasibility interval
changes from [10, 13] to [11, 13], as shown in Figure 6.2. Notice that the highlighted
area shrunk by 1 minute. As a result, the originally scheduled pair of event times
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0 6010

π1

21

π∗2

Figure 6.2: Example Periodic Constraint with Disturbance.

becomes infeasible. A possible solution is to shift event time π2 = 20 by one minute
to π∗2 = 21, thereby making the schedule feasible again. The shift of event time π2 is
known as the recourse action for the given disturbance.

Given an uncertainty set (i.e., a set of possible disturbances), we determine a time-
table that maximizes the efficiency while we require that for every disturbance in
the uncertainty set, at least one recourse action should exist such that the timetable
remains feasible. This implies that two things have to be taken into account whilst
constructing a robust timetable: (i) the set of possible disturbances, and (ii) the
set of feasible recourse actions. The latter is restricted by introducing a budget. The
budget limits the recourse actions: The total amount of adjustments must not exceed
the budget. This assures that the adjustable timetable has the desirable property of
not being too different from the nominal timetable.

The RPTP can now be stated as follows: Given an uncertainty set, and a recovery
budget, create a feasible periodic timetable such that the efficiency is optimized,
whilst assuring that, given the budget, there exists feasible timetable adjustments
for each possible disturbance. A solution to the RPTP is specified by a nominal
timetable, and a recourse action for every possible disturbance. By varying the
uncertainty set and recovery budget, different ‘good’ timetables can be obtained.

6.3 Literature Review

When operating a periodic timetable in practice, disturbances and disruptions are
faced on a daily basis. Disturbances are small perturbations to the operation of
a timetable and generally cover small delays, while disruptions have much more
influence and can cause long delays and train cancellations. Common examples of
a disruption are the blockage of a track or failures of signs and switches. In the
past, so called contingency plans were used to reschedule the trains (Ghaemi et al.,
2017). There is a rich stream of literature on ad-hoc rescheduling of the timetable
in case of a given disruption, see, for example, Ghaemi et al. (2018), Louwerse and
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Huisman (2014), Meng and Zhou (2011), Veelenturf et al. (2016), Zhu and Goverde
(2019, 2020). Also, much research has been devoted to rescheduling the timetable in
case of known smaller disturbances, such as delays of several minutes, see D’Ariano
et al. (2007), Pellegrini et al. (2015). In both cases, a real-time setting is considered,
which means that the disturbance or disruption is known. Lamorgese and Mannino
(2015) developed an algorithm to achieve automatic disturbance management, which
is operational in Norway. We refer to Cacchiani et al. (2014) for an overview of
recovery models for railway timetabling. In contrast, in robust timetabling, the
occurrence of disturbances is considered already in the design of the timetable, i.e.,
in the planning phase.

The field of robust optimization has developed quickly in recent years. We refer to
Ben-Tal et al. (2009b) and Bertsimas et al. (2011) for a detailed overview of robust
optimization and associated techniques. Gorissen et al. (2015) also give a detailed
overview of robust optimization techniques, thereby focusing on applicability in prac-
tice. Adjustable robustness is a specific technique in robust optimization, in which
a two-stage problem is considered, where in the second stage an additional decision
has to be made, according to some decision rule. This idea has been successfully ap-
plied to practical problems (see, e.g., Ben-Tal et al. (2005), Ben-Tal et al. (2009a)).
Yanıkoğlu et al. (2018) give a survey on several techniques in adjustable robust op-
timization, thereby providing some examples of decision rules. Interesting work has
been done in Iancu et al. (2013) and Zhen et al. (2018), and references therein,
which prove optimality for classes of decision rules based on the underlying problem
structure.

In recent years, robust timetabling has received much attention (see e.g., Cacchiani
and Toth (2012), Goerigk and Schöbel (2010), Lusby et al. (2018) for detailed over-
views). Although much interesting work has been done, there still seems to be a
lack of consensus: As noted in Lusby et al. (2018), there is currently no clear and
unique definition of robustness for timetabling. We therefore cover only a subset of
the approaches in this overview which are most closely related to our research.

Most research regarding robust timetabling has focused on aperiodic timetabling.
Fischetti and Monaci (2009) introduce light robustness, and apply this robustness
concept to the aperiodic timetabling problem. The light robustness framework aims
at finding a robust solution, without deviating too much from the optimal nominal
objective value. The first papers that apply adjustable robustness in timetabling
are Liebchen et al. (2009), Cicerone et al. (2009), and Cicerone et al. (2012). The
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adjustability of a solution relates to the existence of a rescheduling algorithm, which
resolves possible infeasibilities as soon as the disturbance becomes known. Finally,
Goerigk and Schöbel (2010) and Goerigk and Schöbel (2014) introduce the concept of
Recovery-to-Optimality, which aims at minimizing the recovery cost of the solution
(i.e., the cost incurred when making the disturbed solution feasible again).

One of the first approaches to increase the reliability of a periodic timetable that we
are aware of is by Kroon et al. (2008). The authors apply a stochastic programming
approach in order to improve the robustness of an input timetable, by adding time
supplements at strategic places. Later on, this method is improved by Maróti (2017).
Bešinović et al. (2016), Goverde et al. (2016) develop a robust timetable using a
microscopic-macroscopic approach to timetabling and the robustness is measured as
delay-settling time, which is obtained though Monte-Carlo simulation. Stochastic
programming and adjustable robustness are closely related in that both approaches
aim at finding a nominal solution that can be repaired in any disturbance scenario.
The main conceptual difference is the objective. Stochastic programming models
minimize the expected repair costs subject to a given probability distribution of the
disruptions. In contrast, adjustable robustness considers worst-case repair costs; in
particular, it does not assume any known probability distribution.

Another approach to increase the robustness of a timetable is presented by Dewilde
et al. (2014). Here, a timetable is developed that minimizes the expected travel time
of the passengers. To this end, the expected travel time is defined, for each edge in
the event-activity network, as a function of the time supplement allocated to that
edge. By minimizing the expected travel time, the trade-off between the planned
travel time and the delays that occur in practice is automatically incorporated (see
Sels et al., 2016). Another approach considering these time supplements is Sparing
and Goverde (2017). Here, cycles in the event-activity network are considered, and
critical circuits are sought (Goverde, 2007). Such a circuit determines the minimum
cycle time that is possible, and hence the most buffer time in the timetable. More
time supplements can be added in this case. If the cycle time decreases, the timetable
becomes more robust. A related concept is found in Odijk et al. (2006), where a good
order of trains is determined in order to maximize the buffer times between trains.

Liebchen et al. (2009) note that the adjustable robustness framework can also be
applied to periodic timetabling. They observe that a choice has to be made re-
garding the (a)periodicity of the disturbances. They, however, do not provide any
computational results for the periodic case. Liebchen et al. (2010) consider periodic
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timetabling, by rolling out a periodic instance to a non-periodic instance. Goerigk
(2015) extends the Recovery-to-Optimality approach to the periodic case. For small
cases, a mixed-integer programming approach is taken. For larger instances, for
which this approach is intractable as the nominal problem already is notoriously dif-
ficult, a local search heuristic is applied. Within a provided time limit, this approach
tries to improve the robustness of the current solution.

As is clearly shown in Lusby et al. (2018), current literature has devoted much
attention to robust timetabling. The main focus of many of these approaches is
on aperiodic timetabling. For periodic timetabling, only few approaches exist, and
many of these focus on aperiodic disturbances. This, in general, means that a roll-out
has to be done which can be evaluated over different scenarios. In the majority of
the cases, a robust timetable is found based only on a limited number of scenarios
(Kroon et al., 2008; Liebchen et al., 2010). These approaches suffer from the curse of
dimensionality, i.e., they quickly become intractable if more scenarios are included.
Therefore, in practical cases, only few scenarios can be considered. There is only
one paper that we are aware of, that considers periodic timetabling with periodic
disturbances (Goerigk, 2015), but it also deals with a finite number of scenarios and
a heuristic is used for larger cases.

We add to the robust optimization literature by proposing a method to find a periodic
timetable, that can be adjusted once a possible disturbance occurs. It deals with
periodic disturbances, which has received only limited attention so far. Our model
extends a known model, the PESP, for the fairly challenging Periodic Timetabling
Problem.

6.4 Mathematical Model

In this section we present a mathematical formulation for the RPTP. We first de-
velop the necessary notation and terminology in Section 6.4.1. We then present the
mathematical formulation in Section 6.4.2, and we conclude by characterizing the set
of admissible decision rules in Section 6.4.3.

6.4.1 Notation and Terminology

We consider a network of events V and activities A. The set Ā ⊆ A denotes the
set of all activities related to the efficiency of the timetable (i.e., the set of activities
related to trip, dwell, and transfer activities). Let wij denote the weight assigned to
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each of these activities. These weights specify the relative importance (e.g., based
on the number of passengers) of each of the activities. Furthermore, let β denote
the budget that is available for the timetable adjustments. These adjustments are
measured at a subset V̄ ⊆ V of the events (e.g., all arrivals at important stations, or
at all stations where the trains stop).

Each activity (i, j) ∈ A has an associated lower bound `ij and upper bound uij ,
restricting the time difference between events i and j according to (6.1). Furthermore,
a subset D ⊆ A of the activities is prone to disturbances. In the example of the
fallen leaves, the set D contains all driving activities that are influenced by fallen
leaves, thus, those that traverse regions with many trees. These disturbances manifest
themselves in the lower bounds of the activities. Formally, we are given an uncertainty
set Z of disturbances, which influence the subset of activities D. Let ζij denote the
effect of disturbance ζ ∈ Z on activity (i, j) ∈ D. It is assumed that ζij is in [0, 1].
The lower bound of activity (i, j) ∈ D, given that the disturbance ζ ∈ Z occurs, is
given by

`ij + gijζij . (6.2)

Here the non-negative scalar gij regulates the impact of the disturbance on the lower
bound. The found timetable should be robust against all disturbances in Z. That
is, for every possible disturbance ζ ∈ Z, there should exist timetable adjustments
such that the solution is feasible for the ‘disturbed’ lower bounds given by (6.2).
We assume that Z always includes a ‘nominal disturbance’, i.e., a disturbance ζ0

with ζ0
ij = 0, for all (i, j) ∈ D. This assures that the timetable is feasible for the

non-disturbed lower bounds.

6.4.2 Mathematical Formulation

We now formalize the RPTP. First, we introduce the following decision variables.

• πi for all i ∈ V . The variables πi specify the event time of event i ∈ V . Due
to the periodicity of the timetable, it must hold that πi ∈ {0, 1, . . . , T − 1} (see
also Chapter 2).

• yiζ for all i ∈ V and ζ ∈ Z. The variables yiζ specify the recovery action (i.e.,
the shift in event time) for event i ∈ V , given scenario ζ. These variables are
the essence of adjustable robustness: The values yiζ together indicate how a
timetable π is adjusted in order to deal with scenario ζ.
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• pij for all (i, j) ∈ A. The integer variables pij are used to model the modulo
operator in the PESP constraints. In particular, it is used to model the number
of cycle periods between events i and j (see also Chapter 2).

The RPTP, for a given budget parameter β, can now be expressed as follows.

min
∑

(i,j)∈Ā

wij (πj − πi + Tpij) (6.3a)

s.t.
∑
i∈V̄

yiζ ≤ β ∀ ζ ∈ Z (6.3b)

πj + yjζ − πi − yiζ + Tpij ≥ `ij + gijζij ∀ (i, j) ∈ D, ζ ∈ Z (6.3c)

πj + yjζ − πi − yiζ + Tpij ≥ `ij ∀ (i, j) ∈ A \D, ζ ∈ Z (6.3d)

πj + yjζ − πi − yiζ + Tpij ≤ uij ∀ (i, j) ∈ A, ζ ∈ Z (6.3e)

yiζ0 = 0 ∀ i ∈ V (6.3f)

pij ∈ Z+ ∀ (i, j) ∈ A (6.3g)

πi ∈ {0, 1, . . . , T − 1} ∀ i ∈ V (6.3h)

yiζ ∈ R+ ∀ i ∈ V, ζ ∈ Z. (6.3i)

The objective (6.3a) expresses that we minimize a weighted sum of the duration of
the activities. Generally, this is the minimization of the planned travel times of the
passengers (i.e., we optimize the efficiency of the timetable). Constraints (6.3b) assure
that the sum of the adjustments to the timetable is at most β, and (6.3c), (6.3d), and
(6.3e) assure that the timetable can be made feasible for every possible scenario in
Z. In particular, (6.3d) and (6.3e) represent (6.1) for the adjusted timetable. Here,
πi + yiζ and πj + yjζ are the adjusted times when events i and j take place, given
that disturbance ζ occurs. For transfer activities, for example, this ensures that the
transfers are maintained for all disturbances. Constraints (6.3c) are similar to (6.3d)
and take the increased lower bounds for disturbance ζ into account. Constraints (6.3f)
enforce that no adjustments are made for the nominal (i.e. undisturbed) scenario,
thereby assuring that (6.3a) is correctly specified. Finally, constraints (6.3g)–(6.3i)
specify the domains of the decision variables. Note that (6.3) might have infinitely
many constraints, depending on the uncertainty region Z.

We emphasize that we do not impose πi + yiζ < T for events i ∈ V and disturbances
ζ ∈ Z. If πi + yiζ ≥ T for some event i and disturbance ζ, it means that event i is
actually rescheduled to πi + yiζ − T if disturbance ζ occurs. Also observe that the
decision variables pij are not adjustable. This implies that the recourse actions do
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not change the structure of the timetable. In the next section, we explain in detail
what this means.

6.4.3 Analysis Decision Rules

Given a disturbance ζ ∈ Z, the time when event i ∈ V takes place is given by πi+yiζ .
Here, the variables yiζ describe how the timetable should be adjusted based on the
disturbance ζ. In contrast, the variables pij can not be changed in order to cope with
the disturbance. In this section, we describe the consequences of the p-variables not
being adjustable.
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Figure 6.3: Two cyclic orders of events i1, i2, i3 ∈ V .

We first explain what we mean by the cyclic order of events. Consider three events
i1, i2, i3 ∈ V . There are two possible cyclic orderings of the events i1, i2, and i3,
as visualized in Figure 6.3. In Figure 6.3a, the cyclic order (i1, i2, i3) is depicted.
Here, after event i1 has occurred, event i2 takes place before event i3. Note that this
holds for all three time lines depicted in this figure. In particular, the cyclic orders
(i1, i2, i3), (i2, i3, i1), and (i3, i1, i2) are equal. Intuitively, this cyclic order means
that after observing event i1, we first observe event i2 and then i3. In Figure 6.3b,
the cyclic order (i1, i3, i2) is depicted. In this case, after the occurrence of event
i1, event i3 occurs before event i2. Observe that the cyclic order of three events is
independent of the start time of a cycle and thus invariant under time shifts.

Consider now a set of three events I = {i1, i2, i3} ⊆ V that induces a clique in the
PESP graph. This means that there is an activity between any two distinct events
i, i′ ∈ I. More formally, there exists (i, i′) ∈ A for all i, i′ ∈ I with i 6= i′. Three
events form a clique, for example, if the events take place at the same platform or
use a common part of the infrastructure. If uii′ < T for all these (i, i′), the non-
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adjustability of the p-variables implies that the cyclic order of these three events is
not changed as a result of a disturbance. We now prove this claim formally.

Proposition 6.1. Let events i1, i2, i3 ∈ V induce a clique: (i, i′) ∈ A for all i, i′ ∈
{i1, i2, i3} with i 6= i′. If uii′ < T for all such (i, i′), then every feasible decision rule
leaves the cyclic order of events i1, i2, and i3 intact.

Proof. Let a feasible solution (π̂, p̂, ŷ) for (6.3a) – (6.3i) be given. Assume, without
loss of generality, that π̂i1 ≤ π̂i2 ≤ π̂i3 . It holds by definition that π̂i3 ≤ π̂i1 + T . We
will prove for every disturbance ζ ∈ Z that

π̂i1 + ŷi1ζ ≤ π̂i2 + ŷi2ζ ≤ π̂i3 + ŷi3ζ ≤ π̂i1 + ŷi1ζ + T. (6.4)

This implies that the cyclic order remains intact.

We first consider the inequality

π̂i1 + ŷi1ζ ≤ π̂i2 + ŷi2ζ . (6.5)

By our assumption that π̂i1 ≤ π̂i2 , it holds that

0 ≤ π̂i2 − π̂i1 = π̂i2 + ŷi2ζ0 − π̂i1 − ŷi1ζ0 . (6.6)

We prove by contradiction that p̂i1i2 ≤ 0. In order to do so, assume that p̂i1i2 ≥ 1.
We then obtain from the above that

π̂i2 + ŷi2ζ0 − π̂i1 − ŷi1ζ0 + p̂i1i2T ≥ T. (6.7)

Using that ui1i2 < T , this contradicts feasibility for ζ0. We conclude that p̂i1i2 ≤ 0.
To show that (6.5) is satisfied, assume on the contrary that (6.5) were not satisfied
for a given ζ ∈ Z. We then obtain

π̂i2 + ŷi2ζ − π̂i1 − ŷi1ζ + p̂i1i2T ≤ π̂i2 + ŷi2ζ − π̂i1 − ŷi1ζ
< 0 ≤ `i1i2 ≤ `i1i2 + gi1i2ζi1i2 . (6.8)

This contradicts feasibility for ζ. By contradiction, (6.5) must be satisfied. In a
similar fashion, it follows from π̂i2 ≤ π̂i3 that

π̂i2 + ŷi2ζ ≤ π̂i3 + ŷi3ζ (6.9)
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for all ζ ∈ Z. It remains to prove that

π̂i3 + ŷi3ζ ≤ π̂i1 + ŷi1ζ + T. (6.10)

By our assumption that π̂i3 ≤ π̂i1 + T , it holds that

0 ≤ π̂i1 − π̂i3 + T = π̂i1 + ŷi1ζ0 − π̂i3 − ŷi3ζ0 + T. (6.11)

It follows that p̂i3i1 ≤ 1. To see this, assume on the contrary that p̂i3i1 ≥ 2. We then
obtain

π̂i1 + ŷi1ζ0 − π̂i3 − ŷi3ζ0 + p̂i3i1T ≥ T. (6.12)

Using that ui3i1 < T , this contradicts feasibility for ζ0. We conclude that p̂i3i1 ≤ 1.
Now, if (6.10) were not satisfied, then

π̂i1 + ŷi1ζ − π̂i3 − ŷi3ζ + p̂i3i1T ≤ π̂i1 + ŷi1ζ − π̂i3 − ŷi3ζ + T

< 0 ≤ `i3i1 ≤ `i3i1 + gi3i1ζi3i1 . (6.13)

This contradicts feasibility for ζ. By contradiction, (6.10) must be satisfied for all ζ ∈
Z. It follows that the cyclic order of events is preserved in the solution (π̂, p̂, ŷ).

The decision rules that we obtain can easily be implemented in practice. Changing
the cyclic order of events in order to deal with a disturbance might require dispatchers
to set the routing of trains manually. The fact that the cyclic order of events does
not change implies that no manual adjustments are necessary to operate the adjusted
timetable. It also means that the timetable is adjusted by propagation and absorption
of delays only.

6.5 Modelling Assumptions

In this section, we discuss two assumptions we make, which are used in our solu-
tion approach for the RPTP. We first discuss the uncertainty region in detail in
Section 6.5.1. Next, we discuss a specific decision rule we use in Section 6.5.2. The
combination of these leads to our solution approach in Section 6.6.
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6.5.1 Parametrized Uncertainty Region Zα

We assume the uncertainty set Z as introduced in Section 6.4 to have a specific
structure: We consider a parametrized uncertainty set Zα, where α regulates the
‘severity of disturbance’ in the system. This is also known as a ‘budget of uncertainty’
(Bertsimas et al., 2011). To give a formal definition of the uncertainty set, Zα is given
by all ζ with 0 ≤ ζij ≤ 1, for all (i, j) ∈ D, and∑

(i,j)∈D

ζij ≤ α. (6.14)

Note that this includes the uncertainty regions considered in Goerigk and Schöbel
(2010) and Goerigk (2015). Furthermore, it generalizes the simplex and box uncer-
tainty regions (Ben-Tal et al., 2009b).

1

1

Z2

Z1.5

Z1

ζ1

ζ2

Figure 6.4: Uncertainty region Zα for two activities. The highlighted areas indicate
the uncertainty region for different values of α. Note that there is overlap between
the different regions, i.e., Z1 ⊆ Z1.5 ⊆ Z2.

Figure 6.4 shows the uncertainty region Zα for |D| = 2. The highlighted areas show
the uncertainty region for different values of α. Note that the uncertainty region
depends only on the ranges of the uncertain parameters. This means that part,
but not all, of the correlation is expressed in the uncertainty region: Negatively
correlated events will lead to linearly bounded uncertainty (i.e., the simplex region),
whereas allowing general correlation (including perfect correlation) is captured by
box uncertainty. In this sense, the control parameter α can be seen as a measure for
both correlation between the disturbances and the ‘size’ of the disturbance: For two
dimensions, α = 1 corresponds to the simplex region, and α = 2 corresponds to box
uncertainty. This approach is more conservative than, e.g., stochastic programming,
as only the support of the distribution of uncertain parameters is taken into account:
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If the solution is feasible for the entire support, then it must be feasible for any
distribution over this support.

We conclude by emphasizing that the scenarios ζ are real-valued vectors from the unit
hyper-cube. Thus a typical ζ has strictly positive components only. In particular,
the sets Z1 and Z2 are not confined to vectors with at most one or two non-zero
components, respectively.

6.5.2 Linear Decision Rule

For the large-scale problems encountered in practice, it is generally impossible to
solve (6.3) for arbitrary decision rules. We therefore restrict our attention to linear
decision rules, in order to simplify (6.3). This can be seen as a heuristic approach:
By only considering linear decision rules, we allow less flexibility when dealing with
disturbances. Other, more complex decision rules are not considered. As a result, if
we obtain a solution to (6.3), its objective value is an upper bound on the optimal
solution value of (6.3).

In particular, we assume that the decision rule yiζ can be written as a linear function
of ζ. That is, we introduce a decision variable δikl ∈ R+ for each i ∈ V and (k, l) ∈ D,
and assume that yiζ can be written as

yiζ =
∑

(k,l)∈D

δiklζkl, (6.15)

for all i ∈ V . The functional form (6.15) is generally known as a linear decision rule.
The linear decision rule assumes that the recovery action is a linear combination (with
weights δik`) of the disturbance vectors ζ. The weights express the extent by which
a disturbance of an arc influences the realised event times: Each unit of disturbance
of arc (k, `) will require a recovery time of δik` at event i.

It is important to note that, although the linear decision rule is generally not an
optimal policy, it is always an admissible recourse function. That is, every feasible
linear decision rule is a feasible recourse function.

The resulting model is obtained by substituting the linear decision rule into the
original model. That is, we use (6.15) to reformulate constraints (6.3b)–(6.3e). After
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rearranging terms, we obtain the new set of constraints∑
i∈V̄

∑
(k,l)∈D

δiklζkl ≤ β ∀ ζ ∈ Z (6.16a)

πj − πi + Tpij ≥ `ij + gijζij +
∑

(k,l)∈D

(
δikl − δ

j
kl

)
ζkl ∀ (i, j) ∈ D, ζ ∈ Z (6.16b)

πj − πi + Tpij ≥ `ij +
∑

(k,l)∈D

(
δikl − δ

j
kl

)
ζkl ∀ (i, j) ∈ A \D, ζ ∈ Z (6.16c)

πj − πi + Tpij ≤ uij +
∑

(k,l)∈D

(
δikl − δ

j
kl

)
ζkl ∀ (i, j) ∈ A, ζ ∈ Z. (6.16d)

The new model is obtained by replacing (6.3b)–(6.3e) with (6.16a)–(6.16d). Note
that (6.3f) is trivially satisfied for (6.15).

6.6 Solution Approach

The key issue when modelling robust optimization problems, is dealing with the
intractability of the original model. In the case of linear uncertainty over a polyhedral
region, as introduced in Section 6.5, two methods are most common: The constraint
is reformulated as a finite system of inequalities using LP duality (see e.g., Ben-Tal
et al., 2009b), or constraints are separated iteratively using a cutting-plane method
(also known as the adversarial approach). Bertsimas et al. (2016) give a detailed
comparison of the reformulation technique and the cutting-plane method, where they
show there is no clearly dominating method. We found the best-suited method for
the RPTP to be a combination of the two. These two techniques that we use to solve
the original model are outlined in this section, as well as a heuristic approach to find
a benchmark solution.
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6.6.1 Reformulation

In our approach, we only reformulate (6.16a). That means, (6.16a) is replaced by
the system of inequalities

αλ+
∑

(i,j)∈D

µij ≤ β (6.17a)

λ+ µkl ≥
∑
i∈V̄

δikl ∀ (k, l) ∈ D (6.17b)

µij ∈ R+ ∀ (i, j) ∈ D (6.17c)

λ ∈ R+. (6.17d)

The decision on whether to reformulate a constraint or not, can be made based on
the uncertainty set. In the case of Zα, the reformulation of one constraint requires
a total of |D| new constraints and |D| + 1 new variables (see Appendix 6.A for a
detailed overview of the reformulation). For the considered instances, D has roughly
the same size as A. This implies that reformulating (6.16b), (6.16c), and (6.16d)
results in roughly |A|2 additional constraints. As a result, reformulating all of the
constraints (6.16b)–(6.16d) might perform well for smaller instances, but would lead
to an intractable model (from a practical point of view) for the larger instances. For
this reason, we have used the cutting-plane approach for these sets of constraints.

6.6.2 Cutting-Plane Method

In order to discuss the cutting-plane method in more detail, we consider the formu-
lation

min
∑

(i,j)∈Ā

wij (πj − πi + Tpij) (6.18a)

s.t. αλ+
∑

(i,j)∈D

µij ≤ β (6.18b)

λ+ µkl ≥
∑
i∈V̄

δikl ∀ (k, l) ∈ D (6.18c)
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πj − πi + Tpij ≥ `ij + gijζij +
∑

(k,l)∈D

(
δikl − δ

j
kl

)
ζkl ∀ (i, j) ∈ D, ζ ∈ Lijα (6.18d)

πj − πi + Tpij ≥ `ij +
∑

(k,l)∈D

(
δikl − δ

j
kl

)
ζkl ∀ (i, j) ∈ A \D, ζ ∈ Lijα (6.18e)

πj − πi + Tpij ≤ uij +
∑

(k,l)∈D

(
δikl − δ

j
kl

)
ζkl ∀ (i, j) ∈ A, ζ ∈ U ijα (6.18f)

pij ∈ Z+ ∀ (i, j) ∈ A (6.18g)

πi ∈ {0, 1, . . . , T − 1} ∀ i ∈ V (6.18h)

δikl ∈ R+ ∀ i ∈ V, (k, l) ∈ D (6.18i)

µij ∈ R+ ∀(i, j) ∈ D (6.18j)

λ ∈ R+, (6.18k)

where Lijα , U ijα ⊆ Zα for all (i, j) ∈ A. The constraints (6.18d), (6.18e), and (6.18f)
are enforced for only a subset of the scenarios. Initially, we have Lijα = U ijα = {ζ0},
and in each cutting-plane iteration, we extend these sets. For convenience in the
description of the algorithm, we only consider (6.18d), noting that the methodology
for (6.18e) and (6.18f) is identical.

Consider some fixed (i, j) ∈ D. Whenever a solution (π̂, p̂, δ̂) is found for the reduced
set of constraints, we check whether (6.18d) is violated for some ζ ∈ Zα \Lijα . If this
is the case, then ζ is added to Lijα , and the model is solved again. This procedure
is repeated until no more violations can be found. At that point, the found solution
is feasible for all possible disturbances. Note that this algorithm is equivalent to
applying Benders Decomposition on the fully re-formulated model.

To check whether a constraint (6.18d) is violated for some ζ ∈ Zα, we determine a
disturbance ζ̂ ∈ Zα, given by

ζ̂ = arg max
ζ∈Zα

gijζij +
∑

(k,l)∈D

(
δ̂ikl − δ̂

j
kl

)
ζkl

 , (6.19)

and add ζ̂ to Lijα whenever

π̂j − π̂i + T p̂ij < `ij + gij ζ̂ij +
∑

(k,l)∈D

(
δ̂ikl − δ̂

j
kl

)
ζ̂kl. (6.20)

Note that if the solution (π̂, p̂, δ̂) is feasible with respect to ζ̂, it is for all ζ ∈ Zα.
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An optimal solution for (6.19) can be determined efficiently as follows. For a given
(i, j) ∈ D, the maximization problem (6.19) boils down to a linear knapsack problem
over the activities D, with capacity α and cost coefficients cij = gij + δ̂iij − δ̂

j
ij for

activity (i, j), and ckl = δ̂ikl−δ̂
j
kl for all activities (k, l) ∈ D\{(i, j)}. For this problem,

an optimal solution can be found efficiently by determining the dαe activities with
largest nonnegative cost coefficient. As noted in Bertsimas et al. (2016), this can be
done in O (|D|+ α logα) time, using an efficient partial sorting algorithm. Gorissen
et al. (2015) note that it is not uncommon that the cutting-plane approach converges
to optimality in only a small number of iterations.

6.6.3 Benchmark Solution

One way of avoiding delays in a timetable, is to absorb them as soon as possible.
Based on this principle, we generate a benchmark solution by requiring that each
activity has enough time supplements to absorb any possible disturbance on that
activity. That is, we require that

πj − πi + Tpij ≥ `ij + max
ζ∈Zα

gijζij . (6.21)

This imposes additional restrictions on the durations of activities and leads to solving
a standard PESP model, where the efficiency is to be optimized. As an example,
assume that all trip activities (i, j) ∈ A can require up to one additional minute due
to a disturbance. In that case, gij = 1 for all trip activities (i, j) ∈ A, and we require
that the minimum duration of these activities is at least `ij + 1. The only thing to
be optimized is the additional duration of the trip and dwell time activities.

If a solution can be found, this solution is also feasible for (6.3), with a trivial linear
decision rule (i.e., δ equals the zero-function: δik` = 0 for all i ∈ V , (k, `) ∈ D ),
and no recovery budget. Such a benchmark solution may not exists if the worst-
case disturbances are higher than what the restrictions of the underlying timetabling
problem can handle. We note that our case studies never reach such a high level,
therefore we always find benchmark solutions.

The benchmark solution can be used as a starting solution to be improved upon in
the further optimization. Furthermore, it implements a simple and natural idea to
cope with the uncertainty, therefore it is a suitable comparison point for the outcome
of our robust optimization models. The benchmark solution captures the spirit of
current railway practices. Most operators follow the UIC recommendations by setting
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the time supplements uniformly to 6-8% of the technically minimal travel times. Our
benchmark solution slightly deviates from these recommendations because applying
them strictly would lead to an infeasible timetabling problem.

To summarize our approach, we propose a solution method for the RPTP that builds
upon a linear decision rule. Combining this with the uncertainty region Zα, this
decision rule gives an upper bound for the original problem in (6.3). The ‘linear-
ized’ model is solved by combining reformulation with cutting planes: Constraints
(6.18b) and (6.18c) are the dual reformulation of the budget constraint (6.16a), and
Constraints (6.18d) – (6.18f) represent (6.16b)–(6.16d) for only a subset of the dis-
turbances. A simple heuristic is used to generate a feasible solution. Next, the model
is solved iteratively, identifying disturbances corresponding to violated cuts in each
iteration, until all constraints are satisfied, and hence an optimal solution to (6.18)
has been found.

6.7 Computational Experiments

We test the adjustable robust approach on real-life instances of Netherlands Railways
(NS), the largest operator of passenger trains in the Netherlands. The instances
feature the trains in the so-called ‘Kop van Noord-Holland’ region in a 1-hour period.
Note that Kroon et al. (2008) report their computational results for the same region,
although the approach and aim of that paper is quite different from ours.

The nominal periodic timetabling problem is formulated by using standard methods
from the PESP literature, including various pre-processing steps and using cycle
periodicity formulation inequalities (cf. Liebchen and Peeters (2009) and Chapter 2).

We study the relation between the three aspects of the timetable: recovery budget
(β), robustness and efficiency. Robustness is expressed by the parameter α of the
uncertainty set, ranging between zero and the number of disturbable arcs |D|. Note
that D is considered input. In what follows we measure a solution’s efficiency loss
as the total amount of time supplements needed, defined as∑

(i,j)∈Ā

πj − πi + Tpij − `ij . (6.22)

That is, we consider all trip and dwell activities, and we add up the difference between
the planned activity time and the minimal activity time. The best possible efficiency
is achieved if the total time supplement is zero.
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We consider two instances. Case 1 is a study on a medium-sized, yet non-trivial, sub-
network of the region. It includes 20 services connecting 20 stations (Figure 6.5a).
Case 1 has a PESP model with 589 nodes and 1668 activities. We assume that
disturbances can occur on all dwell activities and most of the trip activities related
to station Alkmaar (Amr): A trip activity can require up to 1 minute more time
than in the nominal problem, a dwell activity can require up to 2 minutes more;
there are 22 disturbable activities in total. Thus, gij = 1 if (i, j) ∈ D represents a
trip arriving at or departing from Alkmaar, and gij = 2 if (i, j) ∈ D represents a
dwell activity at Alkmaar. The robustness parameter α ranges from 0 to 22. Case
1 has a feasible solution to our model with maximal efficiency where the total travel
time of the trains is

∑
(i,j)∈Ā `ij = 622.

Case 2 is a large study that includes all 44 services of the region, connecting 38 sta-
tions (Figure 6.5b). It covers about 8% of all passenger services of NS. Disturbances
of up to 1 minute can occur on all trip activities. Here, the set D ⊆ A contains all
driving activities and gij = 1 for all (i, j) ∈ D. The PESP model has 1321 nodes
and 4862 activities of which 276 activities are disturbable. Case 2 has a feasible
solution with maximal efficiency, too, where the total travel time of the trains is∑

(i,j)∈Ā `ij = 1406.

We emphasize that our case studies are non-trivial timetabling problems. The nom-
inal optimization problem itself takes 6.2 seconds for Case 1 and about 5 minutes for
Case 2. In fact, Case 2 approaches the limits of what periodic timetable optimization
models can handle in a non-robust setting. Adding just a few services to Case 2 raises
the typical computation times dramatically: Near-optimality cannot be reached after
several hours of CPU times, the optimality gaps often remain above 90%.

Our computations are carried out on a machine with an Intel Xeon E5-2650 v2
2.60Ghz processor and with 64 GB RAM. The integer programs are solved by
Cplex 12.8.0 with 15 parallel threads (IBM, 2017). The cutting-planes are imple-
mented via a Lazy Constraint Callback.

6.7.1 Kop van Noord Holland: Case 1

In this section, we discuss the computational results for Case 1. We first investigate
the relation between the robustness and the recovery budget for a maximally efficient
timetable, and then the trade-off between the efficiency, robustness, and recovery
budget.
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Figure 6.5: The railway networks considered in the case study.

Relation between robustness and recovery budget

Our first experiments aim at finding the relevant values of the recovery budget β. For
each value α ∈ {0, . . . , 22} we adjust our robust optimization model to determine the
smallest possible recovery budget under the assumption that all time supplements
are zero (that is, that the solution is maximally efficient).

In order to speed up these calculations, we observe that an optimal solution for a
higher value of α is always a feasible solution for a lower value of α. Therefore we
solved the problem in a decreasing order of α, using the best solution found so far as
a starting solution by means of Cplex’s MIP start feature.

The solid line in Figure 6.6 indicates the optimal budget for each value of α. Mind
that α = 0 is the nominal scenario (i.e., there is no disturbance), and α = 22 is the
scenario where each disturbable activity is indeed maximally disturbed. It turns out
that each α admits a maximally efficient timetable. Therefore the obtained values
indicate the largest amount of useful recovery budget for each α. We note that the
recovery budget can rise to 360 minutes which is more than 57% of the total nominal
travel times.

For each value of α, we have obtained a timetable that is maximally efficient and
minimizes the required budget β. We now evaluate three of these timetables for all
possible robustness values α. We consider the timetable found without considering
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Figure 6.6: Trade-off between robustness and recovery budget. Solid line: The
optimal budget for each α. Other lines: Maximally efficient timetables, optimized
for one specific value of α and evaluated under various levels of disturbances.

robustness (α = 0) and those found with a low and a high uncertainty level (α = 1
and α = 22, respectively). The dotted line in Figure 6.6 shows the budget needed
to recover the timetable optimized for α = 0. The recovery budget of this particular
solution starts growing rapidly with α, and no recovery is possible for α > 3.

The dashed and dash-dotted line in the figure show the optimal recovery costs of two
timetables that are optimized for a low and a high level of robustness, respectively.
The benefit of taking a suitable level of robustness into account is clearly visible in the
figure. Optimizing a timetable for a small level of robustness leads to recovery costs
for high values of α that are higher than the optimum. For α = 22, the recovery
costs are 392 which is roughly 9% from the optimal costs (360). If a high level
of uncertainty is taken into account, the recovery costs are close to the optimum.
Only for medium values of α the costs are slightly higher than the optimum. It is
interesting that for none of the timetables that we have found the recovery budget
equals the optimal budget for every value of α.
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In this figure we see that maximally efficient solutions give rise to very different
recovery costs. The result demonstrates our method’s ability to find the most robust
solution among all efficient solutions.

Trade-off between efficiency, robustness, and recovery budget

In the second set of experiments we apply the adjustable robust optimization model as
described in Sections 6.4–6.6: We seek the lowest efficiency loss for given combinations
of robustness level α and recovery budget β. We set a time limit of 4 CPU hours for
each optimization run. Again, we carry out the computations, for each given β, in a
decreasing order of α, and we use the previous round’s solution as a feasible starting
solution.

Our results for α ∈ {0, . . . , 22} and β ∈ {0, 10, 20, 30, 50, 75, 100, 150} are summarised
in Figure 6.7. The vertical axes indicate the efficiency loss, both in absolute and
relative terms. The left axis shows the amount of added time supplements, as defined
in (6.22). The right axis displays the relative objective value increase with respect to
a maximally efficient solution. Not all combinations are solved to optimality within
the time limit; the dashed lines indicate the best found lower bounds. In fact, the
computation times vary heavily, both for finding good solutions, and for proving
optimality.

Figure 6.7 shows the intuitively clear relation between the recovery budget and the
steepness of the curves. The time supplements trade delay propagation for delay
absorption: A high budget allows for more propagation, and hence less time sup-
plements are needed in the nominal timetable. The efficiency rapidly decreases for
small β as the robustness level α increases, whereas large values of β admit a milder
efficiency loss.

The curves for the individual budget values β reach their maximum height at surpris-
ingly low values of α; this effect becomes increasingly stronger as β decreases. For
example, the efficiency loss for β = 50 is identical for each α ≥ 13. The uncertainty
parameter α = 13 requires such an amount of time supplements that is sufficient for
all scenarios, even with α = 22. That is, there exists an optimal solution for α = 13
which is optimal for α = 22, as well.

More detailed information about the results can be gained from Figure 6.8. Here,
heatmaps are shown for the solutions found with α ∈ {1, 13, 22} and β ∈ {0, 30, 100}.
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Figure 6.7: Trade-off between efficiency and robustness for various recovery budgets
β.

The darker the color on the segments between stations, the more time supplements
are added here.

Clearly, most of the time supplements are added around the station of Alkmaar
(Amr), as is expected. Some are added at the tracks right next to Alkmaar, and
some also a little bit further away, even though the disturbance could not directly
affect these tracks. Secondly, we see that time supplements are added if there is
no recovery budget available (β = 0) and that the solution hardly changes if more
uncertainty is considered. If more budget is available, we see that a higher level
of uncertainty is needed before time supplements are necessary. This confirms that
our model indeed adds time supplements at reasonable locations and first uses the
available recovery budget whenever possible.

The main benefit of our approach is the mere fact that it enables one to carry out
detailed studies on the trade-off between robustness, efficiency and recovery budget.
The decision makers gain a valuable insight into the consequences of sacrificing some
efficiency for the sake of improved robustness.
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Figure 6.8: Graphical results for Case 1
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6.7.2 Kop van Noord Holland: Case 2

Case 2 contains all services of the ‘Kop van Noord Holland’ region, and disturbances
are allowed on each trip activity. This is a non-trivial study; the nominal timetabling
problem, without any robustness consideration, needs about 5 minutes to be solved
to optimality. We want to explore the capabilities and limitations of our adjustable
robust approach by considering an underlying problem that is close to the limitations
of the non-robust model.

We consider α ∈ {1, . . . , 5, 10, 25, 50, 100, 150, 200, 250, 276} as uncertainty paramet-
ers, recovery budgets β ∈ {10, 100}, and we minimize the efficiency loss for each
combination of these parameters. Recall that α = 0 is the nominal scenario, and
α = 276 is the scenario where each disturbable activity takes a disturbance of 1
minute. Each optimization run has a time limit of 5 hours.

The budgets of 10 and 100 minutes comprise 0.71% and 7.1% of the total train
travel time of an optimally efficient solution, respectively. For a comparison, the
timetables of NS feature travel times where the planned time supplement is 7-8% of
the technically minimal travel times. We report our computational results with a
wider range of budget values in Appendix 6.B.

We compare the model’s outcome to the benchmark solution described in Section 6.6.3.
This benchmark timetable adds (at least) 1 minute time supplement to each disturb-
able activity; its efficiency loss is 276 which is 19.6% of 1406, the total train travel
time of an optimally efficient solution. We take various measures to reduce the solu-
tion time of the adjustable robust approach. We use the benchmark timetable as a
feasible starting solution. Also, similarly to Section 6.7.1, we start the computations
with α = 276 and we proceed toward α = 1 using the solutions of the previous rounds
as a starting point.

Table 6.1 and Figure 6.9 summarize our results with the robust optimization approach
using a linear decision rule in terms of the best objective value and the best lower
bound of the MIP models. In addition, we report an upper bound on the optimality
gap and the improvement upon the benchmark solution.

Our model is able to find feasible solutions that significantly improve the benchmark
timetable. For α ≥ 2, our solutions have 3.6 to 31.2% less efficiency loss. The
improvement is limited under the tight recovery budget β = 10. However, the more
realistic budget β = 100 allows for an improvement of 18.5% even under the highest
disturbance level, and for slightly larger improvements for lower disturbance levels.
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(b) The case β = 100.

Figure 6.9: Trade-off between efficiency and robustness in Case 2 for various recovery
budgets β. Solid line: objective value; dashed line: lower bound.

For α = 1 we find dramatic improvements; the choice of β = 100 admits a maximally
efficient robust timetable. We note that the cases with 1 < α < 275 are intractable
by scenario-based robust optimization approaches. Indeed, the uncertainty regions
have, for integer α, at least

(276
α

)
vertices; this results in more than 1010 scenarios

for α = 5, and more than 1081 scenarios for α = 150.

In addition, our model provides meaningful lower bounds on the efficiency loss (see
again Figure 6.9). They provide a valuable insight to decision makers for evaluating
the candidate timetables. The proven optimality gap is remarkably low for α ≥ 100
(with a budget of 10) and for α ≥ 200 (with a budget of 100). It turns out that the
small improvement percentage 3.6% for β = 10 (see Table 6.1) is often paired with
a lower bound that prevents substantially better solutions. We do admit, though,
that the optimality gaps for α < 100 are high. This is also reflected in the fact that
the solutions for α = 2 and α = 3 have a lower objective value with β = 10 than
with β = 100, even though a higher budget allows for a better solution. The superior
solutions for α = 1 suggest that the large gaps are likely caused by not finding near
optimal solutions. For situations with moderate disturbance, better solutions might
be found with a different solution methodology.

Figure 6.10 displays the heatmaps of the solutions that are found with two different
combinations of α and β. In the case with small disturbances, we see that the
majority of the time supplements are added at the west side of the network and at
the tracks in the diagonal direction. The reason for this is that the majority of the
trains use these tracks and thus a correct execution of the timetable is very important
here. Furthermore, time supplements are added on the very north of the network, as
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β = 10 β = 100
α UB LB Opt. Impr. UB LB Opt. Impr.
1 38 2 95% 86.2% 0 0 0% 100.0%
2 190 6 97% 31.2% 201 0 100% 27.2%
3 199 13 94% 27.9% 201 0 100% 27.2%
4 211 33 85% 23.6% 201 0 100% 27.2%
5 219 40 82% 20.7% 204 0 100% 26.1%

10 236 117 50% 14.5% 204 0 100% 26.1%
25 266 164 38% 3.6% 204 0 100% 26.1%
50 266 216 19% 3.6% 204 56 72% 26.1%
100 266 244 8% 3.6% 212 31 85% 23.2%
150 266 259 3% 3.6% 212 123 42% 23.2%
200 266 262 1% 3.6% 212 198 6% 23.2%
250 266 266 0% 3.6% 225 180 20% 18.5%
276 266 266 0% 3.6% 225 180 20% 18.5%

Table 6.1: Results for the ‘Kop van Noord Holland’ – Case 2.

there is only single track available here. Hence, the timetable is very sensitive to any
disturbance and delays easily propagate to other trains using the same tracks. With
an increased recovery budget and more uncertainty, time supplements are added
throughout the network, but the largest increase is seen on the southern tracks.

Gamma 10/tt 01.txt

(a) α = 1, β = 10.

Gamma 100/tt 150.txt

(b) α = 150, β = 100.

Figure 6.10: Graphical results for Case 2
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6.8 Conclusion

In this chapter, we proposed an adjustable robust extension of the Periodic Time-
tabling Problem (PTP): the Robust Periodic Timetabling Problem (RPTP). The
RPTP is a challenging optimization problem, as the non-robust PTP is already known
to be computationally difficult. We developed a solution method for the RPTP for a
class of uncertainty regions. This class relates closely to uncertainty regions known
in the robust optimization literature, and allows for a natural quantification of the
robustness of a timetable.

The developed solution method consists of two parts. We first reduce the model
size by assuming a linear decision rule, i.e., the recourse actions depend linearly on
the disturbances. The size of the resulting model is only a fraction of the original
model’s size, albeit at a loss of freedom in the decision rule. As a result, this approach
can be considered to be heuristic. The new model is solved using dual reformulation
techniques and cutting-plane methods, both well-established techniques in the robust
optimization literature.

We showed that the RPTP can be solved for practical-sized instances by applying the
solution method to instances of Netherlands Railways (NS). In particular, we studied
the interplay between the severity of the disturbances, the total amount of timetable
adjustments, and the efficiency of the undisturbed timetable. Our experiments show
that the RPTP remains computationally tractable: Good solutions for challenging
instances can be found in reasonable time. We also saw, however, that for large scale
instances with moderate disturbance there remains room for improvement.

Interesting further research would include the analysis of different, more complex,
decision rules. In particular, it would be interesting to quantify the possible efficiency
loss due to a linear decision rule. Note, however, that this would most likely greatly
complicate any possible solution method. Furthermore, it would be interesting to
consider a different class of uncertainty regions, based on, e.g., historical data.

Further research is needed to refine the solution methodology in order to find better
solutions in situations with moderate disturbances.

Acknowledgments. We thank Prof. Dick den Hertog for his valuable comments
and suggestions, which were helpful in improving this work.
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Appendix

6.A Robust Counterpart

We now show how to derive the robust counterpart of (6.16a). We first reformulate
the general constraint

a+ bTζ ≤ u ∀ζ ∈ Z, (6.23)

with a ∈ R, and b and ζ ∈ Rd, following the methodology of Ben-Tal et al. (2009b).
We assume that the uncertainty set Z is given by

Z = {ζ ∈ Rd : Dζ ≤ d}, (6.24)

for some D ∈ Rp×d and d ∈ Rp. Constraint (6.23) can equivalently be written as

a+ max
ζ∈Rd
{bTζ : Dζ ≤ d} ≤ u. (6.25)

By applying LP-duality, this transforms to

a+ min
θ∈Rp+

{dTθ : DTθ = b} ≤ u. (6.26)

It is easily seen that (6.26) can only be satisfied if we can find a θ such that

a+ dTθ ≤ u (6.27a)

DTθ = b (6.27b)

θ ∈ Rp+. (6.27c)

The system of inequalities (6.27) is known as the tractable reformulation of (6.23).

We now consider the special case where Z = Zα. This implies that DT = [1,−I, I],
with I the identity matrix of dimension d, and dT = [α,0T,1T]. Hence, if we write
θT = [λ,φT,µT], where λ ∈ R+ and φ,µ ∈ Rd+, and use the definition of D and d,
we obtain the constraints

a+ αλ+ 1Tµ ≤ u (6.28a)

λ1− φ + µ = b (6.28b)

λ ∈ R+, φ,µ ∈ Rd+. (6.28c)
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The φ variables function solely as slack variables, and hence the model can be written
in the more compact form

a+ αλ+ 1Tµ ≤ u (6.29a)

λ1 + µ ≥ b (6.29b)

λ ∈ R+ (6.29c)

µ ∈ Rd+. (6.29d)

6.B Additional Numerical Results for Case 2

Table 6.2 summarizes our computational results on Case 2, using the recovery budget
values {5, 10, 20, 50, 100, 200}.

β = 5 β = 10 β = 20 β = 50 β = 100 β = 200
α UB LB UB LB UB LB UB LB UB LB UB LB
1 103 6 38 2 11 0 0 0 0 0 2 0
2 213 37 190 6 202 0 213 0 201 0 117 0
3 228 53 199 13 202 0 213 0 201 0 178 0
4 236 64 211 33 211 1 213 0 201 0 178 0
5 237 123 219 40 212 10 213 0 204 0 178 0
10 271 143 236 117 220 65 213 1 204 0 178 0
25 271 185 266 164 256 49 213 55 204 0 181 0
50 271 249 266 216 256 166 232 55 204 56 183 0
100 271 263 266 244 256 221 232 157 212 31 183 61
150 271 269 266 259 256 239 233 182 212 123 192 85
200 271 270 266 262 256 249 233 213 212 198 192 57
250 271 264 266 266 256 255 233 221 225 180 218 147
276 271 271 266 266 258 255 234 225 225 180 217 138

Table 6.2: Results for the ‘Kop van Noord Holland’ – Case 2.
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Summary and Conclusions

In this thesis, we developed new models and algorithms to support the design of
a railway timetable. In Chapter 3, we proposed a new optimisation approach for
strategic timetabling, i.e., to develop a completely new timetable from scratch. This
is extended in Chapter 4 and applied to timetabling situations in which infrastructure
related restrictions are relevant. In Chapter 5, we proposed an iterative approach
to modify bounds of PESP-activities, to allow the existence of a feasible solution
to a PESP instance. Finally, in Chapter 6, we proposed a mathematical model
that incorporates periodic disturbances in a periodic timetabling model, to compute
a delay-resistant timetable. All methods are tested on real-world instances from
Netherlands Railways (NS).

7.1 Main Findings

In Chapter 3, we introduced the Strategic Passenger Oriented Timetabling (SPOT)
problem. This problem aims at finding a timetable pattern which is optimal for
passengers, explicitly including adaption time into the perceived passenger travel
time. In our approach to solve the SPOT problem, we formulated a quadratic integer
program, thus integrating a timetabling model with a passenger routing problem.
Due to the strategic nature of the problem at hand, we formulated the SPOT problem
without including safety constraints, so that the underlying timetabling problem is
relatively simple. However, the inclusion of adaption time in the model formulation
leads to a quadratic objective, making the model harder to solve again. We linearised
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the resulting model, and we proposed and tested an approach for solving it. We
improved with respect to the computation time by warm-starting the model with a
heuristically achieved solution. We have shown in our case studies, how the solutions
generated by the SPOT model can be used to learn about desirable patterns at key
points of the network.

In Chapter 4, we proposed an approach to solve the tactical timetabling problem.
Similar to Chapter 3, we focused on the quality of the timetable for the passengers.
In order to find a feasible passenger-oriented timetable for challenging real world
instances, for which the timetabling model in itself is already challenging, we used
variants of two existing approaches. These two approaches are combined into an
algorithmic framework. First, an ideal timetable is computed, thereby neglecting in-
frastructure related restrictions, as is done in Chapter 3. Next, through a Lagrangian
heuristic, this timetable is modified to obtain a feasible timetable with respect to in-
frastructure. A feedback mechanism is used to improve the found solutions. We
showed that for real-life instances, based on the network operated by NS, we ob-
tained satisfying results. Furthermore, we showed that the provided feedback indeed
leads to (overall) better timetables compared to the initially computed timetable.

In Chapter 5, we developed a methodology to relax PESP activities to resolve in-
feasible PESP instances. This approach supplements current timetabling algorithms
operated in practice, which suffer from the fact that increased demand for capacity
usage as well as quality requirements often lead to (on first sight) infeasible time-
tabling instances. We resolved conflicts in a PESP model with as few deviations as
possible, based on predefined activity weights and bounds. Our approach is iterative
in the sense that we find a conflict in the existing PESP instance, solve this conflict
using a MIP model, and then search for the next conflict. In contrast to existing
approaches on resolving infeasible PESP instances, our approach can deal with fixed
trip times, an assumption that is often made in PESP instances arising from rail-
way timetabling. We found that in our iterative approach of finding and resolving
conflicts it is important not to resolve only minimal conflicts, but to carefully add
more activities from the timetabling instance to these minimal conflicts, in order to
find good solutions as well as to improve computation times. We proposed several
methods to enrich the minimal conflicts. From our computational results, we con-
cluded that adding neighbouring activities in the constraint graph in general leads to
better results. In our experiments based on parts of or the whole the Dutch railway
network, feasible timetables are found in reasonable time in most cases.
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Finally, in Chapter 6, we proposed an adjustable robust extension of the Periodic
Timetabling Problem (PTP): the Robust Periodic Timetabling Problem (RPTP).
The RPTP is a challenging optimization problem, as the non-robust PTP is already
known to be computationally difficult, especially if also the service constraints are
considered, which is the case in this chapter. We developed a solution method for
the RPTP for a class of uncertainty regions. This class closely relates to uncertainty
regions known in the robust optimization literature, and allows for a natural quan-
tification of the robustness of a timetable. The developed solution method consists
of two parts. We first reduce the model size by assuming a linear decision rule, i.e.,
the recourse actions depend linearly on the disturbances. The size of the resulting
model is only a fraction of the original model’s size, albeit at a loss of freedom in the
decision rule. As a result, this approach can be considered to be heuristic. The new
model is solved using dual reformulation techniques and cutting-plane methods, both
well-established techniques in the robust optimization literature. We showed that the
RPTP can be solved for practical-sized instances by applying the solution method to
instances of NS. In particular, we studied the interplay between the severity of the
disturbances, the total amount of timetable adjustments, and the efficiency of the
undisturbed timetable. Our experiments show that the RPTP remains computation-
ally tractable: Good solutions for challenging instances can be found in reasonable
time. We also saw, however, that for large scale instances with moderate disturbance
there remains room for improvement.

7.2 Practical Implications and Recommendations

The research presented in this thesis has been evaluated on practical instances of NS.
Especially the Chapters 3–5 show interesting opportunities for further applications
in practice and it would be recommended to design a Decision Support Systems
integrating these approaches.

The approach in Chapters 3 and 4 considers the passengers as a starting point,
i.e., based on passengers a timetable is designed. This leads to several interesting
applications. The first of them is that the approach must be used to generate ideas
for a new timetable. It should specifically be used as a Decision Support System, that
can point out interesting characteristics of a newly computed timetable, that can be
interesting for passengers. These characteristics should than be further investigated
to find out why this characteristic is chosen and why it can be beneficial for the
network. As an example, we have seen in practical tests performed by NS and by
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ourselves that in many solutions, trains are not synchronized. Instead, quite different
solutions came out on some occasions. If two intercity trains and two local trains
operate between two stations, currently they are often operated in an alternating
manner, i.e., first an intercity train and then a local train. However, it turns out
that first operating two intercity trains and then two local trains can be very good
solutions as well. This is a suggestion the models can provide which should be
considered to apply it in practice.

A second feature of this Decision Support System would be that it can help in guid-
ing investments in infrastructure. Whereas traditionally the infrastructure network
is considered as input to the line planning and timetabling problem, we can now
reverse the order and start with a timetable (and a line plan). This implies that
decisions on investments in infrastructure can now be guided by such a timetable,
to obtain a better match between passenger demand and the service a network can
offer. As an alternative, a hybrid approach can be chosen, in which part of the
infrastructure is considered as input, and other parts are still flexible. The related
safety restrictions can be included, either by the approach from Chapter 3, or using
the iterative approach from Chapter 4. A comparison can be made to what extend
safety restrictions influence the quality of the timetable for passengers, and thus be
a measure to what extend an infrastructural investment is useful.

A third feature to be added to this system is to add the approach from Chapter 5.
It may turn out that the tactical timetabling approach from Chapter 4 leads to a
timetabling instance where many trains are cancelled. In that case, the approach from
Chapter 5 can be used to detect conflicts in the instances and to propose solutions
to resolve the conflict such that the tactical timetabling problem can find improved
solutions with less cancelled trains.

7.3 Further Research

Optimizing a periodic timetable for perceived travel time of passengers, which in-
cludes adaption time, leads to a challenging optimisation problem. Especially if also
headway restrictions are taken into account into the timetabling part of the model,
as is done in Chapter 4. Although we proposed a heuristic optimisation approach
to find reasonably good solutions, there is still a large optimality gap remaining,
which needs to be reduced further. Currently, NS is further developing the approach
from Chapter 3 to further close the optimality gap and reduce computation times.
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Furthermore, they are deducing practical implications for the design of their railway
network.
Our current model formulation in Chapter 3 (and hence also Chapter 4) relies on
the assumption that passengers arrive uniformly distributed over the period for the
definition of passenger groups and average waiting times. To include more detailed
passenger information that may become available when entering the tactical or op-
erational planning phase, different modelling approaches may be needed. Another
property of the model is that one minute of additional perceived travel time for 50
passengers, weighs as much as 50 minutes for one passengers. It would be interesting
to adapt the model to be able to incorporate other options here as well.

Reducing the optimality gaps from Chapter 3 will also benefit the approach proposed
in Chapter 4. This chapter relies on the modelling approach from Chapter 3, as it is
used in the proposed algorithmic framework. Interesting further research regarding
this framework would include the further automatisation of the feedback procedure.
Although this procedure is formalized in Section 4.4.3, it can still require manual
inspection of the results in order to find a good feedback option.
Furthermore, it would be interesting to include station capacity in our models.

One of the key difficulties in Chapter 5 is to determine good values for the parameters
of the algorithm, in order to find solutions that best represent solutions desired in
real life applications. In practice, these parameters would need to be chosen based on
the expertise and preferences of the railway operator - and could be adjusted based
on the feedback of the operator when seeing the generated solution. It would even
be possible to incorporate expert feedback (in the sense of resetting and fine-tuning
parameters) after the resolution of each conflict.

In Chapter 6, it would be interesting to further analyse different, more complex,
decision rules. In particular, it would be interesting to quantify the possible efficiency
loss due to a linear decision rule. Note, however, that this would most likely greatly
complicate any possible solution method. Furthermore, it would be interesting to
consider a different class of uncertainty regions, based on, e.g., historical data.
Further research is needed to refine the solution methodology in order to find better
solutions in situations with moderate disturbances.
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Nederlandse Samenvatting
(Summary in Dutch)

Het feit dat op een gemiddelde werkdag ongeveer 750.000 reizigers in Nederland de
trein gebruiken, laat zien dat de trein een belangrijk vervoersmiddel is. Met de
toenemende aandacht voor milieubewust transport is de verwachting dat het vervoer
via het spoor nog verder zal toenemen. Het is daarom van groot belang dat het
vervoersaanbod op het spoor efficiënt is ingericht om reizigers zo snel mogelijk van
hun herkomst naar hun bestemming te brengen. In dit proefschrift doen we onderzoek
naar het opzetten van een vervoersnetwerk dat zo gunstig mogelijk is voor reizigers.

In Nederland wordt een cyclische dienstregeling gehanteerd. Dat wil zeggen dat de
dienstregeling zich telkens na een bepaalde periode herhaalt; in Nederland is dat elk
uur. De dienstregeling voor één uur noemen we het basisuurpatroon. Hoewel het
mogelijk is dat op specifieke momenten (bijvoorbeeld tijdens de spits of de nacht)
meer of minder treinen rijden dan in het basisuurpatroon zijn opgenomen, vormt dit
patroon de basis voor de dienstregeling.

Voordat een dienstregeling kan worden gemaakt moet een lijnvoering bekend zijn.
De lijnvoering geeft aan welke treinen zullen gaan rijden, hoe vaak per uur, wat hun
route is en waar ze zullen stoppen. Bij het maken van een dienstregeling worden
deze treinen ingepland. Dat moet op een zodanige manier worden gedaan dat aan
een grote hoeveelheid restricties en wensen wordt voldaan. We noemen er een aantal:

• Veiligheidseisen verplichten dat er voldoende tijd moet worden ingepland tussen
twee treinen die hetzelfde stukje spoor gebruiken.

• Om onnodig wachten door reizigers te voorkomen, moeten aansluitingen tussen
treinen zo efficiënt mogelijk zijn.
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• Naast goede aansluitingen is het voor reizigers belangrijk dat reisopties zo veel
mogelijk verspreid zijn over de tijd.

• Ook moet een dienstregeling bestand zijn tegen kleine verstoringen.

• Tenslotte is het een reële mogelijkheid dat er dermate veel eisen aan dienst-
regelingen worden gesteld, dat er geen enkele dienstregeling bestaat die aan al
die eisen voldoet. In dat geval zullen enkele eisen moeten worden versoepeld.

Al met al is het maken van een dienstregeling een erg ingewikkelde puzzel, waarbij
de technieken van mathematische besliskunde van grote betekenis zijn. In dit proef-
schrift gebruiken we deze technieken om methoden te ontwikkelen die helpen bij het
ontwerpen van een dienstregeling.

In hoofdstuk 3 wordt een methode ontwikkeld die een ideaal basisuurpatroon bepaalt.
Dat wil zeggen: hoe zouden treinen idealiter moeten worden ingepland om reizigers
zo snel mogelijk naar hun bestemming te brengen als we voldoende infrastructuur
tot onze beschikking zouden hebben? We nemen dus aan dat treinen elkaar nooit
kunnen hinderen, iedere trein zou op zijn eigen spoor kunnen rijden en in stations is
altijd voldoende capaciteit beschikbaar om treinen te laten stoppen. Als gevolg van
deze aanname kan elke willekeurige dienstregeling worden gerealiseerd, maar niet elke
dienstregeling is even gunstig voor reizigers. Om de kwaliteit van een dienstregeling
te beoordelen, gebruiken we als maat de ‘totale ervaren reistijd’ van alle reizigers
samen. De ervaren reistijd van een reiziger is een gewogen som van verschillende
tijden: de tijd in de trein, de tijd die de reiziger moet wachten op zijn vertrekstation,
de tijd die besteed wordt aan een overstap, plus een ‘boete’ (in de vorm van tijd)
voor iedere overstap die een reiziger moet maken. De ideale dienstregeling die we
zoeken in dit hoofdstuk is dus een dienstregeling die de totale ervaren reistijd van
alle reizigers samen minimaliseert.
Uit de resultaten in dit hoofdstuk blijkt dat het gunstig is om de vertrekmomenten
van treinen te spreiden over de tijd, als we naar één reiziger kijken. Als er bijvoorbeeld
twee treinen per uur vertrekken, is het gunstig om de tijd tussen deze twee treinen
zo dicht mogelijk bij de 30 minuten te houden, in plaats van 20 en 40 minuten tijd
tussen de vertrekmomenten. Hierdoor is de verwachte wachttijd op het herkomst-
station zo klein mogelijk, als deze reiziger op ieder willekeurig moment op het station
kan arriveren. Houden we echter rekening met meerdere reizigers die allemaal andere
herkomsten en bestemmingen hebben, dan blijkt dat deze spreiding vaak niet voor
iedereen de beste oplossing is. Een perfecte spreiding is meestal niet mogelijk zonder
op andere punten in de dienstregeling consessies te doen, bijvoorbeeld in halteer-
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tijden: de tijd die een trein stilstaat op een station. Dit is met name het geval als
het aantal treinen per uur op een traject wijzigt, en is het beste te illustreren aan
de hand van een voorbeeld. Als er vanuit Groningen naar Utrecht twee treinen per
uur vertrekken, dan is het voor reizigers vanuit Groningen het beste als deze treinen
30 minuten na elkaar vertrekken, zodat de verwachte wachttijd zo klein mogelijk is.
Als er echter vanuit Zwolle nog een extra trein naar Utrecht gaat, zou het voor reiz-
igers van Zwolle naar Utrecht het beste zijn als deze drie treinen vanuit Zwolle 20
minuten na elkaar vertrekken. Als alle treinen even snel rijden, gaan deze twee opties
nooit goed samen, en moet er ergens een compromis gesloten worden. Onze meth-
ode maakt inzichtelijk wat vanuit het perspectief van alle reizigers samen een goed
compromis is. Daaruit blijkt dat het regelmatig verstandiger is om treinen in een
onregelmatig patroon te laten vertrekken vanaf stations om op andere locaties betere
aansluitingen of vertrekpatronen te kunnen realiseren en voor alle reizigers samen
een betere dienstregeling te verkrijgen. Evenzo kan het gunstig zijn om niet altijd
dezelfde treinen op elkaar aan te laten sluiten, maar dit af te wisselen; bijvoorbeeld
het ene kwartier de ene aansluiting en het andere kwartier een andere aansluiting.
De manier van plannen uit hoofdstuk 3 is met name geschikt om te gebruiken lang
voordat de dienstregeling daadwerkelijk gaat worden uitgevoerd, omdat deze meth-
ode een ruwe structuur bepaalt en omdat er in dit stadium ook nog mogelijkheden
zijn om infrastructuur aan te leggen.

In hoofdstuk 4 wordt het model uit hoofdstuk 3 uitgebreid: we nemen niet langer
aan dat er voldoende infrastructuur is, maar houden rekening met de bestaande
infrastructuur. Dit is daarmee een lastiger probleem, maar we hebben een iter-
atieve methode ontwikkeld die voor lijnvoeringen met bijna 100 treinen alsnog een
goed basisuurpatroon kan maken. Daarnaast heeft deze methode als voordeel, in
tegenstelling tot veel bestaande dienstregelingsalgoritmen, dat enkele treinen niet
ingepland worden als de capaciteit op het spoor ontoereikend is. De methode die
toegepast wordt gaat op zoek naar een dienstregeling die kan worden uitgevoerd op
de bestaande infrastructuur en die zo dicht mogelijk bij een ideale dienstregeling blijft
zoals berekend is in hoofdstuk 3.

De methoden die in hoofdstuk 5 en 6 zijn beschreven, zijn eveneens relevant om te
komen tot een dienstregeling die gunstig is voor reizigers. De beschreven methoden
kunnen circa een half jaar voor de daadwerkelijke uitvoering van de dienstregeling
worden toegepast. In hoofdstuk 5 gaan we verder in op het probleem dat een dienst-
regeling aan te veel eisen moet voldoen, met als gevolg dat geen enkele dienstregeling
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mogelijk is. We onderzoeken hoe we aan zoveel mogelijk eisen kunnen voldoen en
welke eisen moeten worden versoepeld om alsnog een dienstregeling te kunnen maken.
Hiervoor wordt een heuristieke methode gebruikt die iteratief kleine conflicten oplost.
Met kleine aanpassingen aan de eisen waar de dienstregeling aan moet voldoen blijkt
het mogelijk een goede dienstregeling te maken. Een deel van de planningsproble-
men kan opgelost worden door extra tijd die in de dienstregeling toegevoegd is om
vertragingen te absorberen iets anders te verdelen.

In hoofdstuk 6 bespreken we hoe een dienstregeling kan worden gemaakt die robuust
is tegen verstoringen. In een robuuste dienstregeling worden verstoringen zoveel
mogelijk ‘geabsorbeerd’. In dit hoofdstuk gaan we uit van periodieke verstoringen.
Dit zijn verstoringen die elk uur op eenzelfde manier terugkomen, maar die niet
elke dag optreden. Een voorbeeld hiervan is een dag dat er veel bladeren op de
rails vallen, waardoor treinen langzamer moeten rijden. Op reguliere dagen moet de
‘normale’ dienstregeling worden gereden. Echter, op een dergelijke herfstdag moet de
dienstregeling aangepast worden, zonder daarbij een hele andere dienstregeling uit te
voeren. Onze methode berekent een dienstregeling die op reguliere dagen uitgevoerd
kan worden, maar hij bepaalt ook hoe deze dienstregeling aangepast kan worden
in het geval van kleine verstoringen. Op een aantal locaties in het netwerk krijgen
treinen dan een bepaalde hoeveelheid extra tijd om de eventuele verstoringen zo goed
mogelijk op te vangen.

Concluderend worden in dit proefschrift verschillende methoden voorgesteld die nut-
tig zijn bij het ontwerpen van een dienstregeling waarbij de primaire focus ligt op
de reiziger. Met name de eerste twee hoofdstukken beginnen vanuit het oogpunt van
de reiziger in plaats van, zoals in veel bestaande modellen wordt gedaan, vanuit het
oogpunt van de bestaande infrastructuur. Met de methoden die in dit proefschrift
zijn voorgesteld kunnen spoorvervoerders nog betere dienstregelingen ontwerpen om
zo goed mogelijk aan te sluiten op de vervoersvraag van de reiziger.
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New models and applications 
for railway timetabling

GERT-JAAP POLINDER
A railway timetable states at what times trains arrive or depart at certain locations in the railway network. 
The design of a timetable is an extremely complex puzzle, and years of investigations are necessary to 
design a timetable from scratch. Amongst several other aspects, planners should take the travel demand, 
connections between trains, capacity on the tracks and in the train, and daily disturbances into account 
when designing a timetable. This can easily lead to the situation that there are too many restrictions that a 
timetable has to satisfy, such that no longer a timetable can exist satisfying all these restrictions.

In the fi rst part of this thesis, methods are developed that can support the strategic, long-term design of 
a timetable. Timetables are computed that match with travel demand as good as possible, without taking 
infrastructure capacity into account. Using these ideal timetables, one can make clear whether regular 
departure patterns are useful or not, and how this relates to the expected travel time of passengers. 
Another method tries to fi nd a timetable that can be operated on a given infrastructure network, and that 
is as similar as possible to the ideal timetable.

The second part of this thesis is oriented towards short-term timetabling. First of all, a method is 
developed that deals with the situation in which there are too many restrictions that a timetable has to 
satisfy. It fi nds relaxations to these restrictions, such that a feasible timetable can exist. This can be used 
when additional trains are scheduled into an existing network. Another approach aims at designing a 
timetable that is robust against minor disturbances that can occur in the real-life operation. This helps in 
deciding where to add time supplements in the network to absorb delays.

The Erasmus Research Institute of Management (ERIM) is the Research School (Onderzoekschool) in 
the fi eld of management of the Erasmus University Rotterdam. The founding participants of ERIM are the 
Rotterdam School of Management (RSM), and the Erasmus School of Economics (ESE). ERIM was founded 
in 1999 and is o�  cially accredited by the Royal Netherlands Academy of Arts and Sciences (KNAW). The 
research undertaken by ERIM is focused on the management of the fi rm in its environment, its intra- and 
interfi rm relations, and its business processes in their interdependent connections.

The objective of ERIM is to carry out fi rst rate research in management, and to o� er an advanced doctoral 
programme in Research in Management. Within ERIM, over three hundred senior researchers and PhD 
candidates are active in the di� erent research programmes. From a variety of academic backgrounds and 
expertises, the ERIM community is united in striving for excellence and working at the forefront of creating 
new business knowledge.
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