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A B S T R A C T   

Background: Steroid hormones are essential signalling molecules in prostate cancer (PC). However, many studies 
focusing on liquid biomarkers fail to take the hormonal status of these patients into account. Steroid measure
ments are sensitive to bias caused by matrix effects, thus assessing potential matrix effects is an important step in 
combining circulating tumour DNA (ctDNA) analysis with hormone status. 
Methods: We investigated the accuracy of multi-steroid hormone profiling in mechanically-separated plasma 
(MSP) samples and in plasma from CellSave Preservative (CS) tubes, that are typically used to obtain ctDNA, 
compared to measurements in serum. We performed multiplex steroid profiling by liquid chromatogra
phy–tandem mass spectrometry (LC–MS/MS) in samples obtained from ten healthy controls and ten castration- 
resistant prostate cancer (CRPC) patients. 
Results: Steroid measurements were comparable between MSP and serum. A small but consistent decrease of 
8–21% compared to serum was observed when using CS plasma, which was considered to be within the 
acceptable margin. The minimal residual testosterone levels of CRPC patients could be sensitively quantified in 
both MSP and CS samples. 
Conclusions: We validated the use of MSP and CS samples for multi-steroid profiling by LC–MS/MS. The optimised 
use of these samples in clinical trials will allow us to gain further insight into the steroid metabolism in PC 
patients.   

1. Introduction 

Prostate cancer (PC) is a steroid-hormone dependent disease where 
androgens play a pivotal role in the evolution of the disease. Targeting 
the androgen receptor (AR) signalling pathway through androgen 
deprivation therapy (ADT) in locally advanced and metastatic PC is a 
highly effective way to inhibit tumour growth [1]. However, tumour 
cells will eventually become resistant to these low androgen concen
trations and show disease progression. Resistance mechanisms include 
AR modifications, like mutations and overexpression [2,3], and changes 

in androgen biosynthesis and metabolism, thereby increasing intra
tumoural androgen availability [4–6]. The continued importance of the 
androgen signalling pathway in castration-resistant prostate cancer 
(CRPC) is underlined by the survival benefits observed with second-line 
therapies such as the anti-androgen enzalutamide and adrenal ste
roidogenesis inhibitor abiraterone [7–10]. Circulating steroid levels are 
measured to verify efficacy of hormonal treatment and have a prognostic 
value in patients with PC [11–13]. 

The assessment of circulating steroid hormones relies heavily on 
sensitive, specific and accurate measurement techniques, especially at 
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castrate levels. Liquid chromatography–tandem mass spectrometry 
(LC–MS/MS) combines multi-steroid profiling capabilities with superior 
sensitivity and specificity [14,15] over older techniques [16,17], while 
maintaining high sample throughput [18,19]. Multi-steroid assays for 
LC–MS/MS have been successfully developed in recent years to improve 
the detection and diagnosis of disorders associated with abnormal ste
roid hormones concentrations [20–23]. 

Steroid measurements are predominantly performed in serum sam
ples. Previous LC–MS/MS studies have shown that steroids can be 
quantified reliably across different blood matrices [24–26], but there are 
differences observed between plasma and serum, use of glass or plastic 
tubes in the analytic process, or when using tubes with different stabi
lizing agents or with gel-separators for blood collection [24–29]. 
Consequently, alternative collection tubes and extraction methods must 
be validated before they can reliably be used for steroid profiling. 

The use of CellSave (CS) Preservative tubes in population- and 
patient-based cohorts has grown as this specialised ‘cell-stabilizing’ 
blood collection tube preserves both circulating tumour cells (CTCs) and 
cell-free circulating tumour DNA (ctDNA) [30,31]. These biomarkers 
allow for the assessment of tumour cell genomic characteristics such as 
genomic instability in these patients [32]. These samples are now 
extensively collected in (cancer) biobanks and could potentially also be 
used to measure patient steroid profiles. 

Mechanical blood separation methods are similarly gaining popu
larity in clinical chemistry due to their easy applicability compared to 
the use of a separation gel. The BD Vacutainer® Barricor™ is a 
mechanically-separated plasma (MSP) tube, and it has shown no obvious 
bias in steroid hormone measurements versus a gel-based plasma tube in 
a single study [33], but this was confined to a select number of five 
steroids, warranting further investigation. 

In this study, we aimed to determine if plasma obtained with MSP 
and CS tubes is suitable for multiplex steroid profiling, which, if 
confirmed, would streamline biomaterial collection for ctDNA and ste
roid profiling in cancer patients to the use of a single tube. To this end, 
we performed LC–MS/MS analysis on plasma samples obtained with 
MSP and CS tubes in comparison to serum obtained with standard SST™ 
II Advance Vacutainer® tubes, collecting blood from healthy control 
(HC) subjects and patients with metastatic CRPC (mCRPC). 

2. Materials and methods 

2.1. Subjects 

At the Erasmus MC Cancer Institute in Rotterdam, The Netherlands, 
healthy controls (HCs) and patients were included within study EMC- 
2016-761, which was approved by the medical ethical committee of 
our institute. HCs were all adult male subjects. Patients were adult 
subjects with mCRPC treated with ADT. Patients were eligible to start 
treatment with or were currently treated with second-line hormonal 
therapy (abiraterone with prednisone, enzalutamide or apalutamide). 
For all subjects the following exclusion criteria were applied: 1) an 
endocrine disease with altered activity of the hypothalamic-pituitary- 
adrenal or hypothalamic-pituitary-gonadal axis; and 2) the use of 
medications, excluding those used to treat PC, that interfered with 
circulating steroid levels or dysregulated the hypothalamic-pituitary- 
adrenal or hypothalamic-pituitary-gonadal axis. All subjects provided 
written informed consent before any study procedure. 

2.2. Samples 

Blood was collected from HCs and mCRPC patients in SST™ II 
Advance Vacutainer® (serum; BD, Franklin Lakes, NJ, USA), Vacu
tainer® Barricor™ (BD) and CellSave Preservative (Menarini Sillicon 
Biosystems Inc, Huntington Valley, PA, USA) blood collection tubes. All 
HC samples were processed within 6 h after blood collection, and all 
mCRPC patient samples within two days. All tubes were centrifuged at 

1711g for 10 min at room temperature. Plasma from CS tubes was 
subsequently centrifuged at 12,000g for 10 min at 4 ◦C. Samples were 
stored at − 80 ◦C until extraction. 

2.3. Steroid extraction 

Calibration series (0.25 ng/mL–500 ng/mL for HC, and 0.01 ng/ 
mL–500 ng/mL for mCRPC) were prepared in phosphate buffered saline 
(PBS) with 0.1% bovine serum albumin (BSA) or in charcoal-stripped 
pooled human serum (Goldenwest Diagnostics, Temecula, CA, USA). 
Steroids investigated were 17-hydroxyprogesterone, androstenedione, 
cortisol, cortisone, corticosterone, dehydroepiandrosterone (DHEA), 
dihydrotestosterone (DHT) and testosterone. The stripped-serum cali
bration series was used to quantify all steroids with the exception of 
androstenedione, due to a high background signal in stripped serum but 
not in PBS-BSA. An internal standard solution was prepared in meth
anol/water 50/50 with equal concentrations (1 μg/mL) of the following 
deuterated steroids: 17-hydroxyprogesterone-d8, cortisol-d4, cortico
sterone-d8, DHEA-d6, DHT-d3, testosterone-d3. All steroids were ob
tained from Sigma Aldrich, UK. 

400 μL of sample was transferred to hexamethyldisilazane-treated 
(Thermo Fisher) glass tubes (VWR, Amsterdam, The Netherlands). 20 
μL of the internal standard solution was added and all samples were 
thoroughly vortexed. Liquid-liquid extraction was performed as previ
ously described [34] by adding 2 mL methyl-tert butyl ether (MTBE, 
Sigma Aldrich, Zwijndrecht, The Netherlands) to each tube and vor
texing. The samples were left at room temperature for 30 min to allow 
phase separation. The upper organic layer was transferred and the MTBE 
was evaporated under nitrogen at 50 ◦C. The samples underwent a 
second liquid-liquid extraction with 2 mL MTBE. Samples were recon
stituted in 125 μL LC–MS grade 50% methanol (CHROMASOLV, Sigma 
Aldrich, Zwijndrecht, The Netherlands) before measurement. 

2.4. Steroid analysis by tandem mass spectrometry 

Steroid concentrations were measured by mass spectrometry (Xevo 
TQ-XS, Waters, Milford, MA, USA) after injection of 20 µL sample vol
ume and separation on an ACQUITY uPLC (Waters) with a Waters HSS 
T3 column (2.1 mm × 50 mm, 1.8 μm, Waters). The mobile phases 
consisted of water (A) and methanol (B) both with 0.1% formic acid and 
a 5-min linear gradient was used (45–75% B) with a flow rate of 0.6 mL/ 
min. The quantification of androgens [35] and glucocorticoids [36] in 
serum was previously reported, and multiple reaction monitoring set
tings were reported by Quanson et al. [37] and Jühlen et al. [38]. The 
current method represents an optimisation of these methods as steroid 
transitions were re-tuned for optimum response. The updated reaction 
settings, retention times and lower limits of quantification (LLOQ) can 
be found in Supplementary Table 1. A chromatographic separation of 
the eight steroids in methanol/water can be found in Supplementary 
Fig. 1, chromatograms of the LLOQ can be found in Supplementary Fig. 2 
and chromatograms of the internal standards and associated analyte 
channels, showing no interference, can be found in Supplementary 
Fig. 3. 

Steroids were quantified against the linear calibration series relative 
to an internal standard and were only included in the final analysis if the 
calibration series R2 was >0.99 and appropriate lower limits of quan
tification were reached. The LLOQ was set to the lowest calibration 
concentration that had a clearly defined peak and a signal-to-noise ratio 
>10. Samples with concentrations below the LLOQ were detectable, but 
quantification was less accurate. Accuracy of the method was verified in 
a separate measurement by quantification of analytical reference stan
dards (Cerilliant, Sigma) containing 17-hydroxyprogesterone, cortisol 
corticosterone and testosterone. Additionally, samples consisting of 
PBS-BSA or stripped serum spiked with corticosterone, cortisol, corti
sone, testosterone and DHT (0.03, 0.3, 3 and 30 ng/ml) and ran on three 
separate days were used to calculate accuracy and precision. 
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2.5. Statistics 

LC–MS/MS raw data was processed using MassLynx (v4.1, Waters). 
Statistical analysis was performed using GraphPad Prism (Version 6). 
Normality of the data was analysed with a D’Agostino & Pearson’s test. 
Comparisons of steroid hormone concentrations between the blood 
collection tubes were performed with Bland-Altman difference analysis 
and repeat measurements 1-way ANOVA with post-hoc Dunnett’s test. 
Correlations in hormone levels were determined by Deming regression. 
Group concentrations and differences are shown as mean ± SD, unless 
specified otherwise. P values were considered significant if <0.05. 

3. Results 

3.1. Comparison of blood collection tubes 

Analysis of the analytical reference samples showed quantification 
bias of less than 5% of the nominal concentration for the four steroids 
included, and accuracy in the spiked samples was >90% (Supplemen
tary Fig. 4). Baseline characteristics of the study participants are shown 
in Table 1. Circulating steroid levels of 8 steroids were determined by 
LC–MS/MS in plasma collected with CS and MSP tubes, respectively, and 
serum, all collected from 10 HCs and 10 mCRPC patients. Concentration 
ranges and deviation in CS and MSP tubes are reported in Table 2. 
Representative chromatograms of the different sample tubes are shown 
in Supplementary Fig. 5. Serum values below the LLOQ were detected 
for DHEA (HC: n = 1, mCRPC: n = 4), 17-hydroxyprogesterone (mCRPC: 
n = 2) and testosterone (mCRPC: n = 2) and excluded from further 

analysis. Low signal-to-noise ratios limited the reliability of DHT 
quantification, which could not be accurately quantified in two healthy 
control subjects as well as the mCRPC subjects. 

The values observed in MSP samples were comparable to those found 
in serum samples for most steroids. The only exception was DHEA, 
which was higher (21.3% ± 32.9% p < 0.05) in MSP samples than in 
serum (Fig. 1). In CS samples, significantly lower concentrations 
compared to serum samples were observed for corticosterone (− 16.2% 
± 15.2%, p < 0.001), 17-hydroxyprogesterone (− 9.4% ± 19.9%, p <
0.05), cortisol (− 13.2% ± 13.0%, p < 0.001), cortisone (− 14.4% ±
13.1%, p < 0.001), and androstenedione (− 18.4% ± 13.6%, p < 0.001). 
No significant differences were found for DHEA compared to serum. 

Similar steroid concentrations between HC and mCRPC subjects 
were observed for corticosterone, cortisol and cortisone (Fig. 2). Lower 
concentrations were observed for 17-hydroxyprogesterone, andro
stenedione, DHEA and testosterone in mCRPC subjects. This was likely 
due to a combination of castration (testosterone) and age-related effects, 
as the mCRPC subjects were older than the healthy control subjects. 

Circulating androgen concentration in mCRPC patients are >10 fold 
lower than in healthy men due to ADT, requiring highly sensitive 
techniques to accurately measure residual androgens. Therefore, the 
calibration series was expanded to include lower concentrations 
(0.01–0.25 ng/mL) to allow quantification of castrate testosterone 
levels. Accurate quantification at low concentration was achieved, with 
an analytic LLOQ for testosterone of 0.1 nmol/L. Similar to the other 
steroids, lower testosterone concentrations compared to serum were 
detected in CS samples, but not in MSP samples, at normal HC concen
trations (− 11.5% ± 2.8%, p < 0.001) and at castrate concentrations 
(− 16.9% ± 24.3%, p < 0.05) (Fig. 1). Low signal-to-noise ratios limited 
the reliability of DHT quantification which could not be accurately 
quantified in the mCRPC subjects with our assay. 

3.2. Correlation of steroid measurements between matrices 

The correlations between results obtained in MSP and CS samples 
compared to those results obtained in serum were independently 
determined by Deming regression (Fig. 3). For DHT analysis only HC 
samples were included. Corticosterone, DHEA and testosterone were 
normally distributed after log-transformation. Significant correlations 
(all p < 0.001) between both matrices and serum was observed for 17- 
hydroxyprogesterone, androstenedione, corticosterone, cortisol, corti
sone, DHEA and testosterone. The analysis also revealed a poor corre
lation for DHT between CS and serum (R2 = 0.60) and between MSP and 
serum (R2 = 0.45), whereas steroid concentrations measured in MSP and 

Table 1 
Characteristics of HCs and mCRPC patients.   

HCs mCRPC patients 

N 10 10 
Age (median (range)) 32 (25–56) 64 (59–76) 
Androgen Deprivation Therapy (n)  10 

Leuproreline  4 
Gosereline  4 
Bilateral orchiectomy  2 

Current second-line treatment (n)  6 
Enzalutamide  3 
Apalutamide  1 
Abiraterone + Prednisone  1 
Prednisone  1 

Abbreviations: HCs – healthy controls, mCRPC – metastatic castration-resistant 
prostate cancer. 

Table 2 
Relative differences in CS and MSP samples compared to serum samples.   

Healthy Controls (n = 10) mCRPC (n = 10)  

Serum CS MSP Serum CS MSP  
Range Rel. Difference Rel. Difference Range Rel. Difference Rel. Difference  
nmol/L mean (SD) % mean (SD) % nmol/L mean (SD) % mean (SD) % 

Corticosterone 2.32–32.71 − 20.08 (16.6)** 2.6 (11) 0.55–25.34 − 12.3 (13.3)* − 2.8 (9.8) 
17-hydroxyprogesterone 0.37–3.75 − 14.4 (15.3)* 3.16 (16.26) 0.1–1.75 − 3.2(24.1) − 2.2 (9.4) 
Cortisol 149.1–475.7 − 13.7 (6.1)*** − 0.14 (3.5) 7.43–504.6 − 12.7 (17.9)** − 1.3 (16.1) 
Cortisone 36.35–79.4 − 10.8 (6.3)*** − 2 (9.2) 0.1–80.81 − 17.9 (17.2)** − 1.5 (10.5) 
DHEA <LOQ–36.14 − 0.17 (18.8) 28.7 (46.6)* <LOQ–1.7 − 17.7 (16.5) 6.0 (12.2) 
Androstenedione 2.33–6.05 − 15.85 (13.5)** 6.9 (9.5) 0.48–3.19 − 21.2 (14.01)** 6.34 (10.4) 
Testosterone 7.47–17.74 − 11.48 (2.8)*** 0.82 (4.7) 0.13–0.78 − 16.9 (24.3)* − 2.8 (30.6) 
DHT <LOQ–1.64 − 11.26 (29.2) − 3.5 (30.4) <LOQ <LOQ <LOQ 

Relative differences are shown as mean ± SD. Statistical comparison was performed by repeated measurement 1-way ANOVA with post-hoc Dunnett’s Test. *p < 0.05, 
** p < 0.01, ***p < 0.001. 
Serum values below the LLOQ were detected for 17-hydroxyprogesterone (mCRPC: n = 2), cortisone (CRPC: n = 1), DHEA (HC: n = 1, mCRPC: n = 4), DHT (HC: n = 2, 
mCRPC: 10) and testosterone (mCRPC: n = 2). Additional measurements below the LLOQ were detected in CS samples for DHEA (n = 1, CRPC) and DHT (n = 1, HC) 
and in MSP samples for DHT (n = 1). 
Abbreviations: CS – CellSave Preservative, DHEA – dehydroepiandrosterone, DHT – 5α-dihydrotestosterone, HC – Healthy Control, mCRPC – metastatic castration- 
resistant prostate cancer, MSP – mechanically separated plasma. 
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CS samples, respectively, correlated more closely (R2 = 0.89, y = 0.89x 
+ 0.15) (data not shown). 

4. Discussion 

In this study, we investigated whether MSP- or CS-derived plasma, 
samples that are abundantly present in biobanks obtained from PC pa
tients, are suitable for multiplex steroid profiling by LC–MS/MS. We 
compared them to the current standard collection method using serum 
samples collected with SST™ II Advance Vacutainers®. We showed that 
measurements in MSP are equal to serum. When collecting plasma in CS 
tubes, steroid concentrations were 8–21% lower than measurements 
using serum or MSP. The Guideline on Bioanalytical Method Validation 
(2011) of the European Medicines Agency advises that accuracy must be 
within 15% of the nominal concentration and within 20% at the LLOQ 
[39]. The decreases observed for most steroids in CS plasma, using 
serum as a reference, were within this acceptable range (Table 2). 
Therefore, we conclude that CS plasma samples are suitable for steroid 
profiling, which can be combined with analysis of CTCs or ctDNA. 
However, caution is advised when interpreting results obtained in CS 
plasma samples against reference values that were obtained in serum, 
and direct comparison to samples collected in other tubes should be 
avoided. Nevertheless, these findings may reduce patient burden and 
open up the possibility to undertake detailed steroid profiling of large 
collections of biomaterial already collected for ctDNA analysis. 

In this study, most steroids could be quantified accurately within the 
range of the calibration series. Most of the Δ4-steroids, such as cortisol 
or testosterone, ionise more easily and so can be accurately quantified at 
low levels (0.03–0.15 nM). This allows for the quantification of testos
terone in mCRPC patients (typically < 0.5 nM) [11]. Δ5-steroids such as 

Fig. 1. CS and MSP samples compared to serum samples in healthy controls and mCRPC patients. Steroid concentrations from serum, CS and MSP samples obtained 
from ten HCs and ten mCRPC patients measured by LC–MS/MS. Bland-Altman plots show the relative difference of CS (black) and MSP (gray) measurements 
compared to serum. Continuous lines show the mean difference and dotted lines show the upper- and lower limits of the 95% confidence interval. Abbreviations: CS – 
CellSave Preservative, DHEA – dehydroepiandrosterone, HC – Healthy Control, mCRPC – metastatic castration-resistant prostate cancer, MSP – mechanically 
seperated plasma. 

Fig. 2. Circulating steroid concentrations in serum of HCs and mCRPC subjects. 
Steroid hormone concentrations in healthy controls (n = 10) and mCRPC pa
tients (n = 10). Four patients received no additional treatment, four received 
antiandrogens (enzalutamide (n = 3) or apalutamide (n = 1)), one received 
abiraterone and prednisone and one received prednisone. Line and error 
represent mean ± SEMs. Abbreviations: 17OHP – 17-hydroxyprogesterone, A4 – 
androstenedione, B – corticosterone, DHEA – dehydroepiandrosterone, mCRPC 
– metastatic castration-resistant prostate cancer, E – cortisone, F – cortisol, T – 
testosterone. 
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DHEA and saturated steroids such as DHT are poor ionisers and quan
tification at lower concentrations is beyond the sensitivity of the mass 
spectrometer [22]. Like testosterone, DHT levels are suppressed in cas
trated patients and the concentrations in these patients could not be 
accurately assessed. DHEA levels in men decline with age [40], and the 
mCRPC subjects in this study were older than the HC subjects. Conse
quently, values below the LLOQ were detected in four mCRPC patients 
and were excluded from the analysis. DHEA has been quantified in 
smaller serum volume (≤100 µL) to reduce ion suppression, but that 
would decrease sensitivity for other steroids, such as testosterone or 
DHT, which carried greater significance in our analysis. Alternatively, 
derivatization, for example to form an oxime, increases ionisability, and 
therefore sensitivity allowing low level quantification of Δ5- and 5α- 

reduced steroids [22]. However, the derivatization method is not suited 
for routine clinical diagnostic measurements due to increased sample 
preparation time and cost. In addition to this, fragmentation produces 
multiple derivatives for some steroids adding to the complexity of the 
analysis. 

Conjugated steroids, such as DHEA-sulphate (DHEA-S) or 
androsterone-glucuronide were not included in the method. While 
DHEA-S is the most abundant steroid in the circulation, it possesses no 
inherent androgenic activity and can only be converted into active an
drogens after deconjugation into DHEA. Conjugated steroids down
stream of testosterone and DHT are rapidly excreted with the urine, and 
quantification in serum may be less reliable compared to quantification 
in urine. Using traditional approaches, measurement of these steroids 

Fig. 3. Correlations between CS samples and MSP samples with serum samples. Deming regression analysis between measurements from serum and CS samples and 
between serum and MSP samples in HC and mCRPC patients combined. Corticosterone, DHEA and testosterone values did not pass normality testing (D’Agostino and 
Pearson), but did so after logarithmic transformation. Regression equations for testosterone are presented separately for HCs and mCRPC patients due to the bimodal 
distribution resulting from ADT. For DHT, only HC values were used as values in CRPC patients were below the LLOQ. Abbreviations: ADT – androgen deprivation 
therapy, CS – CellSave Preservative, DHEA – dehydroepiandrosterone, DHT – Dihydrotestosterone, HC – healthy controls, LLOQ – lower limit of quantification, 
mCRPC – metastatic castration-resistant prostate cancer, MSP – mechanically separated plasma. 
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would further add to the complexity of the analysis and decrease 
throughput, as additional time-consuming enzymatic digestion and 
purification steps would be required. However, methods directly quan
tifying DHEA-S [41] and downstream androgen conjugates [42] have 
been developed for LC-MS/MS. Combining the direct quantification of 
conjugated and unconjugated steroids may provide additional insight 
into the total production of androgens and the potential role of DHEA-S 
as a substrate for intratumoral androgen production [43] without 
limiting sample throughput. 

Matrix effects and cross-reactivity are established sources of inter
ference in steroid hormone profile studies with immunoassay and 
LC–MS/MS [24–29]. Previous studies have identified the type of blood 
sample tube as a potential source of interference. MSP tubes like BD 
Vacutainer® Barricor™ utilise mechanical separation of plasma, which 
makes them easily applicable, but the accuracy of steroid hormone 
measurements in these tubes has not been fully validated yet. Our study 
shows that multiplex steroid quantification in MSP samples is compa
rable to the serum collected with the reference tube, in line with a 
previous study that detected no bias versus gel-based plasma tubes using 
an immunoassay platform [33]. The only significant difference between 
steroid measurements in MSP and serum related to DHEA. While Four
nier et al. [33] reported comparable DHEAS concentrations between 
MSP and plasma tubes, it is possible than minor differences in decon
jugation compared to serum could affect DHEA concentrations. Quan
tification of DHEA at low concentrations with LC–MS/MS remains a 
challenge as its structure contributes to poor MS ionisation [22,44]. This 
challenge could be overcome by using a more sensitive mass spec
trometer or with the use of derivatization. Prior to using MSP tubes for 
clinical studies, however, full validation considering accuracy, precision 
and recovery with larger sample size is recommended. 

CS tubes are optimised for the measurement of circulating nucleic 
acids or tumour cells [30,31]. The use of this matrix for liquid biopsies 
has increased exponentially over the last years due to the successful 
genomic characterization of CTCs or free circulating nucleic acids, but 
no studies have investigated if plasma from CS tubes are suitable for 
quantification of circulating steroid hormone levels. Our experiments 
indicate that steroid measurements in CS samples are affected by a mild 
bias, which resulted in an approximate 8–21% decrease compared to 
serum. We observed similar effects in both HCs and mCRPC subjects. CS 
tubes contain 300 μL of Na2EDTA anticoagulant as well as an undis
closed preservative to stabilise cells in the sample. Due to the presence of 
the Na2EDTA there may be an inherent dilution of the sample, which 
amounts to approximately 3–4% on a 7.5–10 mL volume. This dilution 
factor is insufficient to account for the difference in circulating steroid 
hormone levels however, and it is possible that other factors also 
contribute towards the observed difference. 

This decrease was observed across a variety of different polarity 
steroids with different molecular weights. It is therefore unlikely that the 
preservative co-elutes with one of the steroids and suppresses the MS 
signal. Either there is an unidentified contaminant in the tubes which 
affects all steroids or the steroids themselves are being retained/bound 
to the tube itself. Steroids have been long recognised to bind to plastics 
[45], which may contribute to the lower values in the CS samples. 
Certain steroids, such as androstenedione, are particularly prone to 
instability in certain matrices, and concentrations may not remain stable 
over time [25]. 

Currently, CS tubes are most commonly utilised in oncological 
studies to obtain CTCs and ctDNA. Hormonal treatment options in 
breast- and prostate cancer involve potent suppression of oestrogens or 
androgens. For example, inhibition of testicular steroidogenesis by ADT 
will typically lower testosterone levels by >90% [11]. Interpretation of 
such changes is unlikely to be affected by the difference observed in CS 
samples. Especially within the context of a single study the relative 
difference should affect all samples identically as long as a single 
collection tube is used. As such, the observed difference is acceptable for 
most clinical purposes, including the use of CS samples for steroid 

profiling in PC patients. Combined investigation of steroid profiles and 
analysis of CTCs or ctDNA will decrease costs and reduce patient burden. 

In conclusion, MSP samples are suitable for steroid quantification, 
including castrate range of androgens. Similarly, CS samples are suitable 
for steroid measurements, although there is a consistent bias of 8–21% 
lower steroid hormone levels. Therefore, all samples in a research study 
should be collected in the same sample tubes to avoid potential variation 
due to effects from the tubes themselves. 
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