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Objective: Stereotactic radiosurgery (SRS) is one of the
treatment modalities for vestibular schwannomas (VSs).
However, tumor progression can still occur after treatment.
Currently, it remains unknown how to predict long-term SRS
treatment outcome. This study investigates possible magnetic
resonance imaging (MRI)-based predictors of long-term
tumor control following SRS.

Study Design: Retrospective cohort study.

Setting: Tertiary referral center.

Patients: Analysis was performed on a database containing
735 patients with unilateral VS, treated with SRS between
June 2002 and December 2014. Using strict volumetric
criteria for long-term tumor control and tumor progression, a
total of 85 patients were included for tumor texture analysis.
Intervention(s): All patients underwent SRS and had at least
2 years of follow-up.

Main Outcome Measure(s): Quantitative tumor texture
features were extracted from conventional MRI scans. These
features were supplied to a machine learning stage to train
prediction models. Prediction accuracy, sensitivity, specific-

ity, and area under the receiver operating curve (AUC) are
evaluated.

Results: Gray-level co-occurrence matrices, which capture
statistics from specific MRI tumor texture features, obtained
the best prediction scores: 0.77 accuracy, 0.71 sensitivity,
0.83 specificity, and 0.93 AUC. These prediction scores
further improved to 0.83, 0.83, 0.82, and 0.99, respectively,
for tumors larger than 5cm?>.

Conclusions: Results of this study show the feasibility of
predicting the long-term SRS treatment response of VS
tumors on an individual basis, using MRI-based tumor
texture features. These results can be exploited for further
research into creating a clinical decision support system,
facilitating physicians, and patients to select a personalized
optimal treatment strategy. Key Words: Machine
learning—Magnetic resonance imaging—Radiomics—
Stereotactic radiosurgery—Treatment prediction—Tumor
texture—Vestibular schwannoma.

Otol Neurotol 41:€1321-e1327, 2020.

The main treatment goal for vestibular schwannomas
(VSs) has shifted in the last decades from complete
removal of the tumor to functional preservation of
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adjoining cranial nerves in cases where the tumor is
not life-threatening (1). Consequently, stereotactic radio-
surgery (SRS) is considered to be an attractive alternative
of microsurgery, especially for small- to medium-sized
VSs (2). The motivation for this is found in lower overall
posttreatment morbidity and overall increased preserva-
tion rates of cranial nerve functions when compared with
microsurgery (3). Moreover, microsurgery invokes a
substantially larger overall cost on average, compared
with SRS (4,5). For large VSs, utilizing SRS as treatment
strategy is significantly more controversial. If clinical
symptoms due to their mass effect are present, microsur-
gery is the obvious choice. However, if these symptoms
are absent, there is no clear volume threshold for consid-
ering microsurgery over SRS, and each medical center
has its own strategy concerning larger VSs. Most medical
centers consider microsurgical resection as the optimal
treatment strategy (6—8). However, there are studies
showing the safety and efficacy of SRS for treating large

© 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of Otology & Neurotology, Inc.
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FIG. 1. Examples of different vestibular schwannoma tumor textures on contrast-enhanced MRI scans. The depicted tumors have
comparable volumes. Part A: near-homogeneously enhanced lesion. Part B: small irregularities in texture. Part C: Heterogeneously
enhanced lesion with an apparent hypo-intense area. MRI indicates magnetic resonance imaging.

and giant VS tumors (7—14). Furthermore, with increas-
ing tumor size, microsurgery becomes more complicated
and the risk of surgery inducing morbidity increases (15—
17). This makes the potential benefit of SRS even more
relevant for larger tumors.

However, SRS on VSs has a significant drawback:
long-term tumor control is not obtained in all patients. If
tumor progression is not stopped, salvage microsurgical
treatment may be needed. Such an intervention negates
the previously mentioned reasons for electing SRS over
microsurgery in the first place. Moreover, microsurgical
excision of tumor tissue following SRS is considered
more difficult than if the tumor was not irradiated (18).
Thus, it can be concluded that SRS is an attractive
treatment modality for VSs, but only if the tumor
responds well to this treatment.

Currently, it is not possible to a priori predict the SRS
treatment response of a VS on an individual basis. To enable
such prediction, tumor-specific information should be
assessed. Readily accessible clinical data that can provide
such information are available in the form of magnetic
resonance imaging (MRI) scans. It is well-known that the
MRI findings in VSs are highly variable in the gray-level
inhomogeneity of the tissue itself. VS tumors can appear
micro- or macro-cystic (19), hemorrhagic (20), and with
variable contrast enhancement patterns. Some examples can
be found in Figure 1. These MRI differences reflect varia-
tions in histology, such as cell proliferation and micro-
vessel density (21,22). As such, these MRI images may
provide sufficient information to enable the individual
prediction of the SRS treatment response.

In this paper we therefore investigate quantitative,
tumor-specific parameters obtained from conventional
MRI scans. These so-called radiomic features may pro-
vide information on differences in tumor biology,
enabling the creation of a patient-specific tumor model
that can be employed for predicting the long-term SRS
treatment response. The aim of this study is to explore the
prediction of long-term tumor control, employing radio-
mic features obtained from MRI scans.

MATERIALS AND METHODS

The medical ethics review committee waived a formal
approval procedure for this retrospective study.

Otology & Neurotology, Vol. 41, No. 10, 2020

Patient Cohort

All patients with unilateral VS treated with SRS in our
center between 2002 and 2014 were identified. This cohort
consisted of all VS patients remaining after excluding
patients with neurofibromatosis type 2 (NF2), those previ-
ously treated for their VS, or with less than 2 years of post-
SRS follow-up. Furthermore, we excluded patients with
small VS tumors, as these tumors show little to no variation
in texture. The associated volumes of such small tumors are
ill-defined. Analysis of the voxel intensity variations in our
data showed that tumor texture becomes discernible in
tumors around 1cm® (unpublished data). Since an exact
volumetric cut-off is arbitrary, we opted for an approach
based on the controversy to treat larger tumors with SRS.
Thus, we investigated all tumors with a minimum volume of
1.42 cm?, because this corresponds to the volumes reported in
literature for Koos Grade IV tumors (23).

A widely applied approach for obtaining models that are able
to predict treatment outcomes, is supervised machine learning
(sML) (24). This technique employs training data with pre-
determined classification labels to discover and identify spe-
cific patterns, possibly undiscernible to the human eye, that
distinguishes cases in the training data with correct labels. As
such, it is crucial that the input data has high-quality labels (i.c.,
a high certainty of the assigned classification label) such that the
trained model is robust. Therefore, a well-defined classification
labeling is needed in this research. These labels were defined as
long-term tumor control, and true tumor progression. Conse-
quently, strict definitions for both controlled and progressive
tumors are required and are discussed below. Patients that could
not be labeled were excluded from further analysis.

Treatment and Follow-Up

Stereotactic radiosurgery was performed using the Leksell
Gamma Knife model 4C or Perfexion (since November 2008;
both Elekta AB, Stockholm, Sweden). A dose of 13 Gy was
prescribed to the isodose line, covering 90 to 99% of the tumor
volume. For treatment planning, T1-weighted with (T1CE) and
without (T1) Gadolinium administration, and T2-weighted (T2)
MRI scans were obtained for each patient. Treatment was
carried out in a single fraction with frame-based fixation.

After treatment, each patient was subjected to a follow-up
schedule with a standard interval of | year. A TICE MRI with a
slice thickness of 1 mm was obtained at each follow-up visit. In
the case of suspected radiological progression or new or wors-
ening symptoms, the standard interval was reduced. If the tumor
displayed radiological regression or stability for several years,
the standard interval was extended. All follow-up MRIs were
employed for determining a volumetric treatment response.
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FIG. 2. Processing block diagram of the development of a prediction model.

Tumor volumes were determined by segmenting the tumor
using the treatment planning software (GammaPlan versions
10 and 11, Elekta AB, Stockholm, Sweden).

Definitions of Treatment Outcome

True tumor progression was detected using linear measure-
ments in a clinical setting. An increase in tumor size was
accepted and considered as radiation-induced swelling during
the first 2 years after treatment (25,26), unless the enlargement
was deemed too excessive for the considered patient by the
radiosurgical team. These failures may have been the result
from swelling and not due to true tumor progression. As
radiation-induced swelling is a radiobiological distinct response
from true tumor progression, we excluded patients that had
salvage treatment within the first 2 years following SRS, to
avoid inaccuracy through misclassification. Volumetric pro-
gression after this period was considered true tumor progres-
sion. This was always confirmed by the radiosurgical team. In
addition, we looked for discrete volume increases after the
initial 2 years, which were undetected by linear measurements
performed in the clinical setting. However, these increases were
detectable with the volumetric analyses performed in this
research. These potentially missed failures are defined as
two consecutive significant increases in tumor volume among
three consecutive follow-up MRIs, where a minimum of 10%
increase in volume is deemed significant (27).

A definition for long-term tumor control highly depends on
the time-period in which treatment failures could still occur.
There is no certainty that a specific VS will not progress
anymore after a predefined time. Hence, long-term tumor
control cannot be defined without concessions. Therefore, in
this study, we defined it as absence of progression beyond
129 months following treatment. This cutoff is based on the
latest-occurring failure in our large database, which was iden-
tified at 129 months after treatment.

Post-Processing and Model Training

To enable individual treatment outcome prediction, an sML
algorithm is constructed that analyzes all MRI voxels within
the tumor contour. Figure 2 depicts a general block diagram of
such an algorithm. The different stages of this algorithm are
described below.

First, for each patient, the T1-, TICE-, and T2-MRI scans
(Intera and Ingenia, both Philips Healthcare, Best, the
Netherlands) were extracted from the treatment planning system,
including tumor contours drawn by the neurosurgeon during

treatment planning. The matrix sizes of these MRIs were
256 x 256 for T1 and T1CE, and 512 x 512 for T2.

Second, the MRI scans were normalized because its data
provides relative values. As this is non-trivial, a generalized
intensity-scale method was employed based on the work by
Madabhushi and Udupa (28). This method performs piecewise-
linear normalization utilizing tissue-specific landmarks. These
landmarks included the brainstem and the stereotactic G-frame
fiducial markers (Elekta AB, Stockholm, Sweden) in the T1-
and T1CE-scans. Additionally, for T2-scans, the cerebrospinal
fluid was included as landmark.

Third, after normalization, the following radiomic features
were extracted.

1) Twenty first-order statistics (FOS) features: statistical
properties (e.g., average and variance) of all voxel values,
ignoring spatial interaction between image voxels.

2) Four Minkowski functionals (MFs) (29,30): morpholog-
ical properties from groups of voxels whose intensity is
above a specific threshold.

3) Four gray-level co-occurrence matrix (GLCM) features
(31): spatial distribution properties of gray-levels in the
image voxels, depending on inter-voxel distances, view-
ing angles, and their quantization levels.

4) Thirteen gray-level size zone matrix (GLSZM) features
(32): statistical properties on the size of homogeneously
enhanced zones for each gray-level, depending on their
quantization levels.

The illustrations in Figure 3 demonstrate a graphical expla-
nation of the MFs, while Figure 4 depicts explanations of the
GLCM and GLSZM calculations. All features are calculated on
the complete tumor, thus in three-dimensional space.

Fourth, the extracted features are applied to an sML stage to
train predictive binary classification models, classifying either
true tumor progression or long-term tumor control. Training
was performed on a single feature vector, i.e., an array of
numerical values, for each individual feature extractor. This
is to prevent overfitting, caused by too many included features.
If the number of features is large compared with the number of
tumors, each tumor can be uniquely identified by one individual
feature vector. This results in high prediction scores, but the
resulting model may have unreliable performance on new data.
A single feature vector is individually created per MRI modal-
ity. Furthermore, for the combination of all three MRIs, the
individual feature vectors are combined. Together with all the
different parameter settings for each feature extractor and the

Otology & Neurotology, Vol. 41, No. 10, 2020
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FIG. 3. Visualization of the Minkowski functionals (MFs). The top row represents the visualization of the calculations of the MFs in two-
dimensional images. In these simple images of 6 x 6 pixels, we can calculate the number of white pixels (R), the length of the boundary of all
white shapes (S), and the number of white shapes minus the number of black shapes within white shapes (7). As such, each image is
represented by three values. For three-dimensional images like MRIs, four metrics can be calculated in the same way: 1) the number of white
voxels, 2) the number of open faces, 3) the number of open edges, and 4) the number of open vertices. This can be done for multiple
threshold levels, resulting in different binary representations of the tumor. An example of these representations can be found at the bottom
row of the figure. Here, part A represents the original MRI image. Parts B, C, and D were generated with thresholds T equal to 0.5, 0.7, and

0.8, respectively. MRI indicates magnetic resonance imaging.

different settings for the employed sML algorithm, a large
number of models are trained and evaluated. All parameters,
settings, and calculated features per feature extractor are listed
in Table 1 in the Supplemental Digital Content file SDC-Tables,
http://links.lww.com/MAO/B84. For implementation of sup-
port vector machines, training was carried out by the classifi-
cation learner application from MATLAB (version 2018b, the
MathWorks Inc., Natick, MA).

Fifth, with increasing tumor volumes the number of tumor
voxels increases, thereby expanding the amount of texture
information. Therefore, we explored the impact of the tumor
volume on the prediction results, by imposing various volume
thresholds for specific selections of the data. The evaluated
volume thresholds were 2, 3, 4, and 5cm’.

Finally, validation of the resulting individual models was
performed using 10-fold cross-validation. In this method,
depicted in Figure 1, the model was subsequently trained with
90% of the MRIs and validated on the 10% left-out scans. This
was repeated 10 times, each time leaving out a different set of
MRIs. This method resulted in values for accuracy (ACC;
correct prediction rate), sensitivity (SENS; proportion of actual
controlled tumors correctly identified), and specificity (SPEC;
proportion of actual progressed tumors correctly identified).
Furthermore, bootstrapping was performed to determine the
area under the receiver operating characteristic (AUC; degree of
distinction between the two prediction classes), including con-
fidence bounds. An AUC value equal to 1 translates to the
ability to perfectly distinguish the two classes, while a value of
0.5 can be interpreted as random selection.

RESULTS

Cohort
After exclusion of patients with NF2, previous treat-
ment, and small tumors, 379 patients were extracted from
a database of 735 patients. Of these, 30 patients (7.9%)

Otology & Neurotology, Vol. 41, No. 10, 2020

did not have a post-SRS follow-up beyond 2 years, either
due to salvage treatment for their VS (seven patients,
1.8%), or because they were lost to follow-up (23
patients, 6.1%). After excluding these, a total of 349
patients with a median follow-up of 74 months were
identified for this study. Of these 349 patients, 30 (8.6%)
needed salvage treatment due to recurrent tumor progres-
sion. Of the remaining patients, 13 (3.7%) displayed a
volumetric tumor progression. By combining these two
groups, a so-called progressed tumor cohort of 43
patients (12%) was defined. A total of 42 patients were
identified as having obtained long-term tumor control,
according to our strict definition of at least 129 months
absence of true tumor progression. As such, a total of 85
patients were included in the model training.

Evaluation of Radiomic Features

After stratifying for volume, the total number of
patients per volume threshold per group can be found
in Table 1. The results of the optimal model for each
individual feature extractor, including the additional
volume thresholding, can be found in Table 2. The
highlights of the obtained results are described below.

The optimal model trained with FOS features, without
any additional volumetric threshold, obtained ACC,
SENS, SPEC, and AUC values of 0.67, 0.74, 0.60, and
1.00, respectively. The lower- and upper bounds for the
AUC value were 0.99 and 1.00, respectively. For increas-
ing volume thresholds, the results increased up to 0.83,
0.94, 0.64, and 0.88 for tumors larger than 5 cm®, with
lower- and upper bounds of the AUC value of 0.59 and
0.96, respectively. Even though the ACC, SENS, and
SPEC increased, the AUC value decreased, with a lower
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FIG. 4. Graphical representation of the calculations of (top) the
gray-level co-occurrence matrices (GLCMs), and (bottom) the
gray-level size-zone matrices (GLSZMs) using the same simple
gray-level image. The GLCM is calculated by counting inter-pixel
relations. These relations depend on 1) the inter-pixel distance (in
this example equal to unity), 2) the inter-pixel angle (in this
illustration 0 degrees), and 3) the number of quantization levels,
which is the number of different pixel values (here equal to 5). The
resulting GLCM matrix (top-right) is calculated by counting the
number of each specific combination of pixel-pairs. In this exam-
ple, the pair “1-2” is highlighted. The resulting value in the
corresponding position of the final matrix is equal to “4,” as there
are four pairs “1-2.” For the GLSZM (bottom), the number of
zones with equal-valued connected pixels and specific size is
counted. The pixel values depend on the number of quantization
levels, and for different levels distinct GLSZMs can be calculated.
In this figure, some example zones are highlighted. These zones
consist of connected pixels with the values “1” and “5” of size 2
and 4, respectively. As there are two zones with pixel value “1” of
size 2, the corresponding position in the resulting matrix becomes
“2.” The same can be done for the zone with the value “5.” This
results in a “1” on the corresponding position in the matrix. From
each of these matrices a single feature vector is calculated
incorporating the above-described statistics, which is then
employed for training.

bound only slightly above 0.5. This is most likely caused
by the reduced number of tumors in the dataset, resulting
in a less robust model.

The performance scores of the optimal MF-based
model obtained ACC, SENS, SPEC, and AUC values
0f0.68,0.64,0.73, and 0.96, respectively. The lower- and
upper bounds for the AUC value were 0.90 and 0.98,
respectively. For increasing volume thresholds, the
results are increasing up to 0.76, 0.83, 0.64, and 0.88
for tumors larger than 5 cm’, with AUC lower- and upper

TABLE 1. Number of patients in both cohorts after
additional volume thresholding

Volume Threshold (cm®) True Tumor Progression Long-term Tumor Control

- 42 43
2 38 38
3 30 28
4 22 18
5 18 11
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TABLE 2. Classification results obtained using radiomics
features and additional volume thresholding (in em’)

Feature Prediction

Extractor Score - 2cm’ 3em’  4em? 5¢m’

FOS ACC 0.67 0.63 0.73 0.66 0.83
SENS 0.74 0.74 0.80 0.68 0.94
SPEC 0.60 0.53 0.64 0.65 0.64
AUC 1.00 0.86 1.00 0.94 0.88

MF ACC 0.68 0.71 0.67 0.72 0.76
SENS 0.64 0.74 0.73 0.64 0.83
SPEC 0.73 0.69 0.60 0.82 0.64
AUC 0.96 0.91 0.97 0.76 0.88

GLCM ACC 0.77 0.75 0.76 0.82 0.83
SENS 0.71 0.76 0.80 0.86 0.83
SPEC 0.83 0.73 0.72 0.76 0.82
AUC 0.93 0.92 0.87 0.90 0.99

GLSZM ACC 0.71 0.73 0.67 0.77 0.69
SENS 0.79 0.71 0.80 0.86 0.78
SPEC 0.63 0.74 0.52 0.65 0.55
AUC 0.88 0.78 0.99 0.84 1.00

The different feature extractors are first-order statistics (FOS),
Minkowski Functionals (MFs), gray-level co-occurrence matrices
(GLCMs), and gray-level size-zone matrix (GLSZMs). The results
are given in accuracy (ACC), sensitivity (SENS), specificity (SPEC),
and area under the receiver operating characteristic (AUC).

bounds of 0.66 and 0.96. Again, the AUC value
decreased. Furthermore, the specificity decreases signif-
icantly as well. However, the lower bound of the AUC
value now remains well above the 0.5 value.

For the GLSZM-trained models, the optimal model
obtained ACC, SENS, SPEC, and AUC values of 0.71,
0.79, 0.63, and 0.88, respectively. The lower- and upper
bounds for the AUC value were 0.75 and 0.94, respec-
tively. For the additional volume thresholds, these results
remain comparable, depending on the specific threshold.
The best results are obtained for tumors larger than 4 cm”,
having an ACC, SENS, SPEC, and AUC of 0.77, 0.86,
0.65, and 0.84, respectively, with AUC lower- and upper
bounds of 0.67 and 0.95, respectively.

For the GLCM-based features the ACC, SENS, SPEC,
and AUC values were 0.77, 0.71, 0.83, and 0.93, respec-
tively. The lower- and upper bounds of the AUC value
were 0.83 and 0.98, respectively. If additional volume
thresholding was applied, these results increased to 0.83,
0.83, 0.82, and 0.99, respectively, for tumors larger than
5cm’. With this threshold, the lower- and upper bound of
the AUC value were 0.94 and 1.00, respectively. In
contrast with the previous feature extractors, the AUC
values of GLCM features improved for increasing tumor
volumes, including the confidence bounds.

DISCUSSION

This work concentrated on finding indicators for pre-
diction of the long-term treatment response of SRS-
treated VS patients. The ability to a priori predict such
a treatment response can significantly impact the

Otology & Neurotology, Vol. 41, No. 10, 2020
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treatment selection process and may improve the overall
treatment outcome. Recently, there is an increasing inter-
est of radiomics in various oncological fields, including
intracranial tumors, in relation to their specific pathology
and treatment response (33—37). For VS tumors, only
incidental literature is available and concerns the predic-
tion of early treatment response, i.e., radiation-induced
swelling (38,39). The present paper is, to the best of our
knowledge, the first research to focus on the prediction of
long-term tumor control following SRS treatment of VS
tumors, using MRI-based radiomics. We evaluated tumor-
specific parameters obtained from conventional MRI
scans in a large database with long follow-up, enabling
a high-throughput mining of MRI data which can then be
exploited for a machine learning approach. Furthermore,
we employed objective definitions for true tumor progres-
sion and long-term tumor control. The highest obtained
prediction accuracy, sensitivity, specificity, and AUC
values were 0.83, 0.83, 0.82, and 0.99, respectively. In
other words, the best-performing model is able to correctly
predict the treatment outcome in our own data in 83% of all
cases (accuracy), progressed tumor in 82% of the cases
(specificity), and controlled tumor in 83% of the cases
(sensitivity). The most-predictive features were based on
GLCM s and in tumors larger than 5 cm>. These GLCMs
measure the distribution of co-occurring voxels at a given
gray-value, revealing certain properties about the spatial
distribution of the gray-levels in the image. Furthermore,
the obtained results show that the prediction improves for
increasing tumor volumes. This is most likely caused by
the amount of voxels: larger tumors have more tumor
voxels, resulting in an increased amount of texture infor-
mation. However, for increasing volume thresholds, the
number of available tumors decreases. This can cause
overfitting in the machine learning stage, which results
in models that are too fine-tuned to the data, giving high
prediction results on the training data. As such, these
models may not be robust in predicting the treatment
outcome on new unseen data.

A problematic aspect in predicting treatment outcome is
the classification of long-term tumor control and true tumor
progression, which is crucial in a supervised machine
learning approach. Generally, treatments are classified as
failed if salvage treatment is needed. Although this is a valid
clinical definition, various centers use different motivations
before considering salvage treatment (27). As such, there is
no clear consensus on whether a treatment has failed.
Furthermore, subtle progressions may have been missed
in the clinical setting, using linear measurements. This is
why we implemented an objective measure for failure, i.e.,
true tumor progression, using the volumetric tumor
response. Moreover, it is hypothesized that radiation-
induced swelling is related to different radiobiological
aspects of the tumor compared with true tumor progression.
To avoid the misclassification of this phenomenon, true
tumor progression was defined based on volumetric tumor
assessments beyond 2 years after treatment. Long-term
tumor control is also difficult to define, as tumor progression
can occur many years after SRS. Kondziolka et al. (40)
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reported that after 4 years following SRS, no further
increase in volumes were identified. Contrarily, Hasegawa
et al. (41) reported that only after 10 years of follow-up, no
more treatment failures occurred. In our extensive database,
we determined the latest-occurring tumor progression at
129 months following treatment. Therefore, we adopted this
as cutoff for determining tumor control. We realize that
these definitions may have had an impact on the obtained
results, e.g., tumors now classified as controlled tumor may
show tumor progression in the future. However, it can be
argued that tumor progression is a very unlikely phenome-
non beyond 10 years after treatment.

Another possible confounder in this study is its retro-
spective character. As a consequence of our long-term
tumor control definition, the implemented algorithm used
MRIs that were at least 10 years old to find aspects of
tumor texture that distinguish tumor control from pro-
gression. However, MRIs have improved in the course of
time. It is therefore possible that the currently used
conventional MRIs exhibit more detailed radiomic fea-
tures, leading to improved SRS outcome prediction.

Finally, the obtained results are based on the data from
a single institution. As such, the obtained models may
suffer from input bias errors. Furthermore, overfitting of
the trained models is a concern for larger tumors, as the
number of tumors that meet our strict criteria of long-
term tumor control and true tumor progression, decreases
significantly with increasing volume thresholds. To
prove the robustness of the results, the obtained algo-
rithms need to be validated on large datasets from
multiple centers with sufficiently long follow-up.

Nevertheless, the results of this study show that pre-
diction of long-term tumor control after SRS treatment of
larger VS tumors is feasible with the use of radiomic
features. This radiomics-based information can poten-
tially be used in a clinical decision support system.
Individual MRI scans can serve as an input to software,
which contains a well-trained tumor texture model. Such
a system can then present the patient and treating physi-
cian with prediction scores, facilitating the selection of a
personalized optimal treatment strategy.
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