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The problem

Osteoarthritis is one of the world’s oldest diseases, and yet no curative treatments are 
available. Osteoarthritis is the most common chronic degenerative joint disease world-
wide and has been present throughout history, evidenced by the presence of osteoar-
thritis in the fossilized ankle bones of Iguanodon bernissartensis (Figure 1), the first 
ever recognized dinosaur species[1, 2]. Not only dinosaur fossils have been found with 
osteoarthritis, also early bird ancestor (Caudipteryx)[3], marsupial (Diprotodon)
[4], and mammal (Glyptodont and Canis dirus)[5, 6] fossils are known. In fact, probably 
the first common ancestor to all bony vertebrates (Eutelestomi) could have been 
affected by os-teoarthritis[7]. Early man was also plagued by osteoarthritis. The 
disease is one of the most common features seen in archeo-paleontology[8], with 
evidence from Neander-thals[9], early inhabitants of America[10], Egyptian 
mummies[11, 12], medieval citi-zens and knights[13] (Figure 1), up to the modern 
day where 4-5% of the entire world population has at least one joint affected by OA[2]. 

Symptoms of the disease are stiffness, loss of mobility and loss of function in the 
affected joint, with pain described as the most dominant and disabling symptom of the 
disease[14]. Not surprisingly, osteoarthritis is the single biggest cause for joint pain 
and disability worldwide[2]. Currently osteoarthritis is the third most rapidly grow-
ing chronic disease worldwide[2]. Combined with the global increase in risk factors for 
osteoarthritis (aging, joint injury and obesity), the impact and burden of osteoarthri-
tis will only continue to rise. Yet, no curative treatments for osteoarthritis are known, 
and much of the pathology of osteoarthritis remains a mystery. Thus, it is high time to 
unravel the mysteries surrounding osteoarthritis, a disease plaguing its hosts for over 
hundreds of millions of years. 

►Figure 1: A brief Timeline of Osteoarthritis. Osteoarthritis is one of the oldest known diseases in
the world; the first known bony vertebrate (Guiyu onerios) might already have had osteoarthritis. Fos-
sil evidence dates back to the cretaceous (~125 Ma), and ample evidence of the disease exists in the
Pleistocene, where even the H. neanderthalensis was affected by osteoarthritis. Osteoarthritis is seen
throughout human history, from ancient Egypt, Greece (where Hippocrates first described signs of the
disease) and medieval Europe to the modern day, however it was not until 1889 that osteoarthritis got
its name. With the discovery of the helix structure of DNA, genetic research into osteoarthritis started
in full; from family studies, twins studies, linkage scans and the first Genome-wide association study to
the start of this thesis on “Osteoarthritis; Genotypes and phenotypes in all their complexity”. Ma: Mega
annum, ka: kilo annum, annum: one year. BC: Before Christ, AD: Anno Domini
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What is osteoarthritis? 

The first descriptions of osteoarthritis can be traced back to writings of Hippocrates 
(460-375 B.C.E.)[15](Figure 1). However, from these first writings until the beginnings 
of the 19th century, all forms of rheumatic joint diseases, including osteoarthritis, were 
called “gout”. In 1802, William Herben the Elder recognized osteoarthritis as a separate 
disease for the first time[16]. However, it took until 1889 that John Kent Spender of Bath 
England coined the name osteoarthritis[17]. The name referring back to the ancient 
Greek of Hippocrates, where osteo- comes from the Ancient Greek ὀστέον (ostéon) 
meaning “bone” and arthritis from the combination of arthr- ἄρθρον (árthron) mean-
ing “joint, limb” and -itis from ῖτις(îtis) meaning “pertaining to”, and together forming 
osteoarthritis: “bone pertaining to the joint/limb”. 

As implied by the name, osteoarthritis pathology commonly involves the bone, 
however, we now know that osteoarthritis is a disease of the whole joint (Figure 2). 
Affecting multiple tissues within the joint, most notably the cartilage and bone, but also 
the synovium, and possibly the muscles and tendons of the joint[18]. Osteoarthritis is a 
degenerative disease involving an active and complex process of multiple mechanical, 
metabolic and inflammatory pathways leading to the destruction and failure of the af-
fected joint[19]. the most common and characteristic features of the disease pathology 
are the degradation of the articular cartilage, together with the formation of new bone, 
osteophytes, at the margins of the joint. Other known pathological features of osteoar-
thritis are bone sclerosis, cartilage lesions, cysts, chondrocalcinosis, and synovial in-
flammation. 

Long has it been thought that osteoarthritis was an inevitable part of aging, that 
it was a passive “wear-and-tear” disease. However, we now know that osteoarthritis 
is an active and dynamic disease, an imbalance between the repair and destruction of 
joint tissue[19]. In addition, osteoarthritis is associated with increased comorbidity and 
even increased mortality[20]. More and better understanding of the pathological pro-
cesses and pathways involved is imperative, if we want to develop treatment strategies 
for osteoarthritis.  

The definition of osteoarthritis is based on the pathological effects of the disease 
on any combination of the tissues involved. Therefore multiple definitions of osteoar-
thritis exist. However, the most used definitions are radiographic or clinical osteoarthri-
tis. The radiological definition usually consists of the Kellgren-Lawrence grading scale, 
based on the presence and severity of joint space narrowing (JSN) and osteophytosis 
(OST)[22], while the clinical definition is focused on the clinical symptoms; pain, swell-
ing and stiffness of the joint[23]. Although there is some standardization in osteoar-
thritis definitions [24], definitions can still vary per study[25]. Although there is some
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▲Figure 2: Characteristics of an osteoarthritic joint. A) Schematic overview of a healthy articular joint.
B) Schematic overview of characteristics and structural changes in a joint affected by osteoarthritis. Any
combination of these changes can be seen in an osteoarthritic joint. Figure adapted from[21].

standardization in osteoarthritis definitions [24], definitions can still vary per study[25]. 
Also, as osteoarthritis is a heterogenous disease, involving many pathological pathways 
all leading to the same outcome, subgroups with distinct pathology are possibly unrec-
ognized. All contributing to heterogeneity and complexity of osteoarthritis research.

The complexity of osteoarthritis  

Osteoarthritis is a complex multifactorial disease. Not just because it has had a turbu-
lent and long history or that the pathology affects multiple tissues of the whole joint. 
Osteoarthritis is a complex disease in the scientific sense, where complex means: both 
genetic and environmental factors play an important role in the development of the dis-
ease. Multiple environmental risk factors have been recognized for osteoarthritis, with 
age, physical activity and obesity as the most well-established risk factors[21]. 

The complex interplay between the different environmental risk factors them-
selves and with the underlying genetic risk factors, determines an individual’s risk for 
developing osteoarthritis. Mostly from twin studies we have learned that the predicted
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risk for osteoarthritis that can be contributed to genetics is estimated to be ~39%-65% 
depending on the joint affected[20]. The heritability component of knee osteoarthritis 
is ~40%, hip osteoarthritis ~60% and for osteoarthritis of the hand ~39%-65% depend-
ing on the hand joint[26-28]. Thus, a large part of the risk for osteoarthritis is deter-
mined by genetic variation. Understanding how and which genetic variations contrib-
ute to OA risk is important, as this will lead to more knowledge of disease pathogenesis, 
which in turn could lead to the development of new treatment or preventive strategies.  

Genetics: a primer  

Genetics is the study of heredity, genes and genetic variation. DNA, or deoxyribonu-
cleic acid, is a complex molecule that stores all of the genetic information, the instruc-
tions for development, function and maintenance of an organism. The DNA consists of 
two strands that wind around each other in a double helix, like a twisted ladder[29]. 
Each strand consists of a sugar-phosphate ‘backbone’ to which one of four nucleotides 
(bases) are bound; Adenine (A), Thymine (T), Cytosine (C) or Guanine (G). Each “rung” 
of the ladder consists of a base pair (bp), which are two nucleotides held together by 
hydrogen bonds; A always pairs with T, and C always pairs with G. The human DNA 
contains the genetic code for ~20.000-25.000 genes (average number of parts in a car 
is ~30.000). A gene is a part of the DNA that gets copied (transcribed) into RNA, which 
is translated into proteins. Proteins are the essential building blocks and machinery 
of a cell, performing all manner of functions. The transcription of DNA to RNA and the 
translation of RNA to protein is called the “central dogma of molecular biology” [30] 
(Figure 3). 

Although the DNA sequence between any two humans is for ~99.5% similar, each 
individual is unique, as is their DNA sequence. Variations in the genetic code can explain 
differences between individuals, such as hair colour, height, shape of the face, or disease 
risk. On average, an individuals’ genome differs on 4.000.000 to 5.000.000 sites from 
the human reference genome[31]. Many different types of genetic variation exist, of 
which the most common in the human genome is the Single Nucleotide Variation (SNV 
or SNP)[32] (Figure 3). Each SNV, named with its reference SNV cluster ID (rsID), rep-
resents a single nucleotide difference on the DNA from the human reference genome. In 
total there are currently ~335.000.000 SNVs known based on ~1 million human ge-
nomes sequenced [33], and they can occur anywhere on the DNA, both in coding and in 
non-coding regions. In the coding regions a SNV could affect the translation of a gene 
into a protein, and in the non-coding regions it could affect the regulation of gene ex-
pression (gene transcription). 
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▲Figure 3: The central Dogma of Molecular Biology DNA can be copied into DNA or translated into
RNA, RNA can be copied into RNA or translated into protein. A) Schematic representation of the molec-
ular dogma, depected as nucelotide letters or as an schematic image. B) Representation of the possible
effect of a single nucelotide variant on protein translation, due to the SNV the protein triplet code
does not code for the amino acid Asparagine (N) but for Lysine(K), a nonsynonymous SNV, as the SNV
changes the protein code. A synonymous SNV does effect DNA and RNA sequence but not the protein
amino acid sequence.

However, SNVs that have a large effect on the functioning of a gene can impact 
reproductive success and will not propagate into a population, and thus will occur in-
frequent in a population (<1%). Common SNVs, those that occur frequently in a pop-
ulation(>1%), have usually relatively small effects, and, thus, are under less selective 
pressure[34]. Certain SNVs in relative proximity tend to always co-occur together, they 
are said to be in linkage disequilibrium (LD). Such a group of SNVs is called a haplotype, 
and, as with individual SNVs, different haplotypes occur at different frequencies in dif-
ferent human populations, and they will differ more in frequency if the populations are  
geographically and ancestrally more different[35]

Complex genetics 

Since genetic variation can explain differences in disease risk between individuals, in-
vestigating which and how specific genetic variations can increase or decrease disease 
risk could provide insight into the disease pathology. In order to identify which genetic 
variation is related to a disease, several approaches have been tried, including linkage 
analysis in families or sib-pairs  and, genome wide association studies (GWAS). 

Gregor Johan Mendel was the first to demonstrate that traits can be inherited 
from parent to offspring in his plea plant (Pisum sativum) experiments in 1865[36]. 
With his experiments he laid the foundation for the field of genetics. However, it was 
not until the 20th century that his work was rediscovered and, it took until 1941 that 
Stecher et al., first postulated the possible involvement of genetics in osteoarthritis. He 
first described that the Herben’s nodes (bony nodes on the joints) seen in hand osteo-

risk for osteoarthritis that can be contributed to genetics is estimated to be ~39%-65% 
depending on the joint affected[20]. The heritability component of knee osteoarthritis 
is ~40%, hip osteoarthritis ~60% and for osteoarthritis of the hand ~39%-65% depend-
ing on the hand joint[26-28]. Thus, a large part of the risk for osteoarthritis is deter-
mined by genetic variation. Understanding how and which genetic variations contrib-
ute to OA risk is important, as this will lead to more knowledge of disease pathogenesis, 
which in turn could lead to the development of new treatment or preventive strategies. 

Genetics: a primer  

Genetics is the study of heredity, genes and genetic variation. DNA, or deoxyribonu-
cleic acid, is a complex molecule that stores all of the genetic information, the instruc-
tions for development, function and maintenance of an organism. The DNA consists of 
two strands that wind around each other in a double helix, like a twisted ladder[29]. 
Each strand consists of a sugar-phosphate ‘backbone’ to which one of four nucleotides 
(bases) are bound; Adenine (A), Thymine (T), Cytosine (C) or Guanine (G). Each “rung” 
of the ladder consists of a base pair (bp), which are two nucleotides held together by 
hydrogen bonds; A always pairs with T, and C always pairs with G. The human DNA 
contains the genetic code for ~20.000-25.000 genes (average number of parts in a car 
is ~30.000). A gene is a part of the DNA that gets copied (transcribed) into RNA, which 
is translated into proteins. Proteins are the essential building blocks and machinery 
of a cell, performing all manner of functions. The transcription of DNA to RNA and the 
translation of RNA to protein is called the “central dogma of molecular biology” [30] 
(Figure 3). 

Although the DNA sequence between any two humans is for ~99.5% similar, each 
individual is unique, as is their DNA sequence. Variations in the genetic code can explain 
differences between individuals, such as hair colour, height, shape of the face, or disease 
risk. On average, an individuals’ genome differs on 4.000.000 to 5.000.000 sites from 
the human reference genome[31]. Many different types of genetic variation exist, of 
which the most common in the human genome is the Single Nucleotide Variation (SNV 
or SNP)[32] (Figure 3). Each SNV, named with its reference SNV cluster ID (rsID), rep-
resents a single nucleotide difference on the DNA from the human reference genome. In 
total there are currently ~335.000.000 SNVs known based on ~1 million human ge-
nomes sequenced [33], and they can occur anywhere on the DNA, both in coding and in 
non-coding regions. In the coding regions a SNV could affect the translation of a gene 
into a protein, and in the non-coding regions it could affect the regulation of gene ex-
pression (gene transcription). 



 18 | Chapter 1.1

arthritis were inherited[37, 38]. it would not be It would not be until 1989, after the 
discovery of the DNA structure by Watson and Crick[29], that through linkage studies 
in families the first gene associated with osteoarthritis would be found. In genetic link-
age studies inheritance of DNA regions, marked via genetic markers,  is linked with the 
occurrence of the disease in a family. Using this method, a genomic region containing 
mutations (rare SNVs) in the COL2A1 gene was found to co-occur with osteoarthritis, 
in two families with high occurrence of premature osteoarthritis of several joints[39]. 
However, these mutations in the COL2A1 gene are very rare, while osteoarthritis is very 
common in the population, nor could the COL2A1 mutations explain the occurrence of 
other familial forms of osteoarthritis[40]. All indicating that osteoarthritis is also com-
plex at the genetic level. Indicating that not one gene is involved in osteoarthritis risk 
but many genes are[40]. 

Since linkage studies are primarily useful to identify large effects of rare genetic 
variants for monogenetic (single gene) diseases, they are not suited for the study of 
complex diseases. In complex diseases, multiple genetic variations in multiple genes 
and their interaction with the environment  determine the risk of disease. Since hun-
dreds, if not thousands of variants can be involved, each individual variant will have a 
small effect on disease risk[41]. Osteoarthritis has both rare monogenetic forms, such 
as the COL2A1 mutations, and the much more common complex forms of the disease 
for which we now know that several hundreds of common variants with more subtle 
effects are involved in the genetic architecture of the disease (Figure 4). Thus other 
methods are needed for the study of complex diseases, methods than can identify sub-
tle effects of many hundreds of variants across the genome. Genome-wide association 
studies (GWASs) are such a method.

Genome-Wide  Association Studies

In a genome-wide association study (GWAS) many millions of SNVs are examined 
whether a certain SNV occurs more frequently in individuals with the disease than in 
individuals without the disease[41]. The GWAS study design was made possible with 
the advent of cheap genotyping methods, where hundreds of thousands sites of  genet-
ic variation (SNVs) are measured on a single array. Through these measured SNVs the 
genotype of other SNVs within the same linkage(LD) block can be inferred by imputa-
tion (Figure 5).  Early arrays measured the genotype of hundreds of thousands of SNV 
uniformly distributed across the genome. However, this did not accurately or efficiently 
captured all LD blocks within the human genome, thus resulted in missing information 
on genetic variation in certain sections of the genome. Current arrays more efficiently
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▲Figure 4: Allele frequency and osteoarthritis disease risk. Early onset osteoarthritis or Mendelian/
monogenetic forms of osteoarthritis,  are caused by single gene mutations. Such genetic variants have
large effects, but are rare in the population. Known genes with rare mutations that give rise to early
onset osteoarthritis are given in the box. For late onset or the common form of osteoarthritis, many
variants and genes confer risk. Meaning that almost all of these variants must have small to moderate
effect sizes. Thus common variants with large effect sizes are unlikely to exist for common diseases, al-
though it is possible.  In the box known GWAS identified loci associated with osteoarthritis are given.
Figure adapted from [34, 42]

utilizes the LD between SNVs by only measuring the genotype of “tagging” SNVs, SNVs 
which “tag” the genotype of their LD block (Figure 5), resulting that only several hun-
dreds of thousands SNV are needed to efficiently “tag” the full variation across the en-
tire genome.

Although imputation methods thus provide a cheap method for identifying the 
full genomic variation, the quality and accuracy of the imputation is dependent on the 
quality of the reference information. The SNV linkage blocks (haplotypes) needed for 
imputation are based on reference haplotypes generated via whole genome sequencing 
in populations. The first efforts to create the  human “haplotype-map” was done by the 
HapMap consortium, in 2005, with the last of the data published in 2009[35, 43]. This 
first haplotype map was based on the whole genome sequencing data of 692 individuals 
from 11 global populations[43]. Different haplotypes occur with different frequencies 
in different populations, some might even be population specific. Thus, more whole ge-
nome sequences across multiple population are needed to improve the human haplo-
type map, and thereby the quality and accuracy of imputation.  This was done in the fol-
lowing 1000 Genomes project, which contained 1,092 whole genome sequences from 
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▲Figure 5: Single Nucleotide Variants, Haplotypes , Imputation and Tagging SNVs. A) 5 short stands
of DNA from four versions of the same genetic location in 5 different individuals. Most of the DNA se-
quence is identical, except for 12 single Nucleotide Variations (SNV) nucleotide variations (SNVs). Each
SNV has several possible alleles (A/T/G/C). B) From the 5 individuals DNA sequence, 3 haplotypes can
be distinguished. A haplotype is made up of a particular combination of alleles that are inherited to-
gether (in linkage). Only the SNVs are shown and 4 of them are marked. C) Tagging SNVs. By just  geno-
typing these 4 tagging SNVs the genotype of the other 8 SNVs in linkage could be determined a.k.a.
imputed, and identify these 3 haplotypes. Thus if an individual has the genotype G-A-T-G at these 4
SNVs, their haplotype would be determined as number 2. Note that haplotypes can occur at different
frequencies in different populations, haplotype 3 in this example occurs at a lower frequency than hap-
lotype 1 and 2. More reference sequences are needed to be able to detect other possible haplotypes,
thereby determining the best tagging SNVs and thus to improve the accuracy and quality of imputation.

11 global populations[44], and this number has rapidly increased over the last years 
with the Haplotype Reference Consortium (HRC, n=64,976)[31] and Trans-Omics for 
Precision Medicine (TOPMed) imputation (n= 4,800,000)[45]. Resulting in more and 
more accurate imputations and more genetic variants for GWAS to use.      

About 1 million of haplotypes (in the Caucasian genome) are examined at the 
same time in a GWAS, thus strict multiple testing corrections are needed to prevent 
false positive results. For this reason SNVs are genome wide significant in a GWAS if the 
SNV if the threshold of p-value≤5x10-08 is reached. Since this genome wide significance 
still is nominally a p-value≤0.05 (but now corrected for the 1 million LD blocks across 
the human genome), such genome wide discoveries have to be replicated in an inde-
pendent study to distinguish true findings from coincidence. From the many GWASs 
performed since the first GWAS in 2005, we know that the effect sizes of the majority 
of associated SNVs (GWAS hits) are relatively small. Thus, due to the small effect of the 
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SNVs associated with complex diseases, GWASs need very large sample sizes to have the 
statistical power to robustly identify associated genetic variations. 

In sum, a GWAS uses imputed genotype information of millions of SNVs to identi-
fy genetic associations in large sample sizes. SNVs are included into the GWAS, without 
any a-priori selection, all possible SNVs that can be imputed are included. This is also 
termed “hypothesis-free”. However, contrary to popular belief, GWASs are not truly hy-
pothesis-free, as GWASs assume that the disease or investigated trait has a genetic com-
ponent[41]. This is why GWAS has proven to be a very successful method for finding 
genetic variation associated with complex disease,  such as osteoarthritis [41] (Figure 
4) and, not so much for being a “dog-person”[46].

Epigenetics: beyond genetic complexity

A GWAS identifies SNVs or a genomic region (locus) to be associated with a disease or 
trait, it only very rarely directly identifies genes. Only through many subsequent steps 
in downstream bio-informatics and functional studies to test the candidate genes in 
the region associated genes can be identified. However, it is not always very easy to 
determine how a SNV could affect a gene or which gene it would affect, especially with-
in the context of a disease or trait. SNVs can be located anywhere in the genome, and 
only 2% of the genome consists of coding DNA. However, the 98% non-coding DNA is 
not without function and is thought to have several important roles including in gene 
regulation.: the regulation of the 2% coding DNA,  via gene regulatory sequences. These 
are stretches of DNA sequences that are involved in the regulation of gene expression. 
Usually DNA binding proteins, such as transcription factors (TF), can bind to these DNA 
sequences and regulate gene expression. Such gene regulatory sequences can be identi-
fied in the DNA by examining where these TF bind the DNA, or by examining epigenetic 
modifications. 

Epigenetic modifications are modifications to the DNA base pairs and DNA bind-
ing proteins that do not alter the DNA sequence, but do affect gene activity and expres-
sion. Many such epigenetic modifications are known, these include DNA methylation 
and histone modifications. How these epigenetic modifications can be used for GWASs 
is detailed in Chapter 1.2. Epigenetics is also a mechanism by which the environment 
can affect gene activity and regulation, and, thus, influence disease risk. What the role is 
of epigenetics in skeletal disorders such as osteoarthritis is also detailed in Chapter 1.2. 
Throughout this thesis, epigenetics is used in GWAS, in order to gain more insight into 
osteoarthritis pathology, and ultimately provide novel treatment options. Chapters 2-4 
use epigenetics for GWAS interpretation and in Chapter 3 these GWAS interpretations 
even lead to possible clinical implications for osteoarthritis patients.  
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Genome-wide osteoarthritis association studies

The research field of osteoarthritis was an early adaptor of GWASs and has proven to be 
relatively successful in finding underlying genetic variations, results of which (for 2013) 
are summarized in Figure 4. The first GWAS performed for osteoarthritis was done in 
2008, and identified a single region/locus of the DNA [47]. As stated before, several hun-
dreds of genes are probably involved in osteoarthritis. Each common SNV, as identified in 
GWAS, will only pose a small risk for osteoarthritis, meaning that probably hundreds if not 
thousands of SNVs will be associated. Due to these small effect sizes of individual SNVs, 
very large numbers of osteoarthritis cases and controls are needed for successful and ro-
bust SNV discovery through GWAS [41]. For this reason, GWAS researchers are forced to 
collaborate in order to collect such large sample sizes. 

The first osteoarthritis collaboration, the TREAT-OA (Translational Research in Eu-
rope Applied Technologies for OsteoArthritis) consortium, included 6,709 osteoarthritis 
cases, and 44,439 controls [48]. This consortium only confirmed the previously found sin-
gle genetic locus in 2008, a far cry from the hundreds thought to exist. Although this was a 
massive effort in 2008, the sample size was still too small for robust GWAS findings. Thus, 
even larger collaborative efforts were needed. Chapter 4 presents the results from the 
Genetics of Osteoarthritis (GO) consortium. This is the most recent and largest collabora-
tive effort on osteoarthritis genetics, including ~180.000 osteoarthritis cases and 600.000 
controls, a ~26 fold increase in sample size from the first collaborative effort.

Phenotypes for osteoarthritis

Increasing the number of cases and controls involved in a study is not the only way to 
increase the power to robustly detect associated genetic variants. To reduce the hetero-
geneity seen in complex diseases(such as in osteoarthritis), the use of endophenotypes 
or stratified phenotypes of the disease is possible (Figure 6). The use of such phenotypes 
to reduce osteoarthritis heterogeneity will be presented in  Chapter 2. Endophenotypes 
are phenotypes (characteristics, traits) of the disease that are more closely related to the 
underlying genetics, than to the disease itself [49]. For example, the thickness of cartilage 
in the joint is considered an endophenotype for osteoarthritis[50]. This is because the 
amount of articular cartilage is fixed, there is limited replacement of the collagen matrix 
after skeletal maturity, even with the occurrence of disease. Meaning that the total carti-
lage thickness in a joint is largely determined by underlying genetics[51]. Chapter 2.1 
presents the results of using cartilage thickness in the hip joint as an endophenotype for 
hip osteoarthritis. This and other osteoarthritis endophenotypes are depicted in Figure 6. 
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Other than using endophenotypes, stratified osteoarthritis phenotypes can also 
be used to reduce heterogeneity and increase GWAS power. Stratified phenotypes aim 
to differentiate subgroups within the diagnosis of osteoarthritis[25]. These can be 
based on a single pathological phenotype of osteoarthritis (e.g., amount of osteophytes 
or bone marrow lesions present) or based on multiple characteristics (clinical, radio-
graphic osteoarthritis, joint function and disability)(Figure 6). Indeed, multiple broad 
term categories could be recognized for osteoarthritis stratified phenotypes based on 
either structural (pathological structure formations) aetiological (based on the under-
lying cause of osteoarthritis) characteristics or pain (clinical osteoarthritis, presence of 
inflammation), joint function/disability (range of motion, gait), and molecular (which 
pathological molecular pathway is dominant) (Figure 6). Many more stratified osteo-
arthritis phenotypes might be possible and will be discovered as continued work on os-
teoarthritis and its phenotypes yields more genetic loci and etiological insight into the 
biological mechanism underlying this disease. Chapter 2.2 and 3.1 will demonstrate 
the results of using structural osteoarthritis phenotypes for the identification of genetic 
variants associated with hand osteoarthritis.

Osteoarthritis pain, inflammation & the microbiome

As described, the -itis suffix in osteoarthritis comes from the Ancient Greek ῖτις (îtis) 
meaning “pertaining to”. However, in recent years the –itis suffix in a disease name has   
come to be associated with inflammation. In recent history there has been much de-
bate, as osteoarthritis was thought to be a disease without any inflammatory involve-
ment[52, 53]. Currently, however, the involvement of synovial inflammation in osteoar-
thritis pathology has been well established, and thought to be one of the causes for the 
pain seen in osteoarthritis affected joints[54]. Several causes for this inflammation have 
been postulated, such as traumatic joint injury (sports, accidents, falls etc.), leading to 
joint damage and inflammation, triggering more damage and inflammation. A novel fac-
tor postulated to be involved in osteoarthritis related inflammation is the gastrointesti-
nal(gut) microbiome[55, 56] (Figure 6).

The gastrointestinal microbiome consists of trillions of microorganisms, mainly 
bacteria, living in our intestinal tract. These microorganisms are important in the di-
gestion of our food, and recent research has shown that there is also a very important 
role for the microbiome in health and disease. This has become clear by observing  the 
composition of the microbiome, or rather the change in composition of the microbiome 
(dysbiosis) which has been linked to several disorders and diseases [57, 58]. Most nota-
bly the effect of the microbiome on obesity and the effect of obesity on the microbiome
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has been well-documented[59, 60]. Individuals with high BMI (body mass Index) have 
a significantly different microbiome than those who are not obese.Obesity is one of the 
most well-known and characterized risk factor for osteoarthritis [61, 62]. The increased 
risk for osteoarthritis is thought to be due to increased loading of the joint. Howev-
er, this would not explain the observed increased risk for osteoarthritis in non-weight 
bearing joints, such as the hands[63]. Another explanation is the increased systemic 
inflammation seen in obese individuals[64], which is thought to arise due to the differ-
ences/dysbiosis in the microbiome of obese individuals[65]. Postulated is that changes 
in the gut microbiome due to the environment (obesity) can lead to an increased sys-
temic inflammatory state (low grade inflammation)[55]. This is something that will be 
explored in Chapter 5.

Osteoarthritis In the Rotterdam Study

All of the studies in this thesis were performed with the use of the “Rotterdam Study” co-
horts, also known in Dutch as the “Erasmus Rotterdam Gezondheid Onderzoek”(ERGO)
[66]. This is a population-based prospective cohort, designed to study the determinants 
of aging.  The Rotterdam Study consists of several sub-cohorts (Figure 7),  all consisting 
of individuals (>45 years of age) living in the well-defined suburb of Ommoord in the 
city of Rotterdam, the Netherlands. Participants were examined in detail at baseline in 
1990 via home interviews and an extensive set of examinations at the specifically built 
research enterer in Ommoord. In addition, follow-up examinations were repeated every 
3-4 years. The Rotterdam Study focusses on 14 different research lines in the context
of  “healthy aging” which includes all major organ systems and related diseases and ,
important for the studies described in this thesis, also diseases of the musculoskeletal
system such as osteoporosis and osteoarthritis, In addition, many important determi-
nants of disease are documented and studied including, e.g., medication use, dietary
patterns, and genetics and genomics. Also extensive bio-banking is part of this long
running cohort study, in particular blood is collected at each follow-up measurement
from which DNA was extracted. The DNA has been subjected to several genetic analyses, 
most notably a large SNP array genotyping effort, to allow GWAS studies taking place
with all the data in RS, which started in 2008 and has since been extended to include al-
most the complete cohort. Relevant for OA research, radiographs were made of multiple 
joints, such as knees, hips and hands at baseline and during follow-up examinations. All
radiographs have been scored on the Kellgren-Lawrence osteoarthritis severity scoring
by expert clinicians.
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▲Figure 7: Overview of the Rotterdam Study.  The four Rotterdam Study (RS) cohorts are indicated,
and their start and follow-up visits.The Rotterdam Study started in 1990 and is currently still ongoing.
Boxes indicate the number of participants for each cohort and visit. RS-I-1 is the largest cohort, and it’s
box size functions as reference for the other box sizes. Data used in this thesis: X-ray data was available
for RS-I-1, RS-1-2, RS-1-4, RS-II-1, RS-II-2, RS-III-1 and RS-III-2. Microbiome and pain data was available
for RS-III-2. Pharmacological data was avalible for RS-I, and RS-II.

Outline and aim of this thesis

The aim of this thesis is to identify novel genes involved in the pathogenesis of osteo-
arthritis, in order to gain greater insight into the pathology of osteoarthritis and bring 
possible preventive or curative treatments closer for one of the world’s oldest diseases.

In Chapter 2, osteoarthritis endophenotypes and structural phenotypes are 
used to increase GWAS power and identify novel genes associated with osteoarthritis. 
Next, , in Chapter 3 also the interaction with the environment is investigated, in partic-
ular the use of vitamin K antagonists, to identify novel, and perhaps modifiable, genetic 
influences associated with osteoarthritis. In Chapter 4, the results of the largest GWAS 
to multiple osteoarthritis phenotypes is presented, including functional follow-up to 
identity possible causal genes. Lastly, in Chapter 5, the possible influence of the gastro-
intestinal microbiome composition on osteoarthritis related knee pain and inflamma-
tion is investigated. 
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Chapter 1.2

Role of Epigenetics in Bone 
and Cartilage
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Abstract

Phenotypic variation in skeletal traits and diseases is the product of genetic and envi-
ronmental factors. Epigenetic mechanisms include information‐containing factors, oth-
er than DNA sequence, that cause stable changes in gene expression and are maintained 
during cell divisions. They represent a link between environmental influences, genome 
features, and the resulting phenotype. The main epigenetic factors are DNA methyl-
ation, posttranslational changes of histones, and higher‐order chromatin structure. 
Sometimes non‐coding RNAs, such as microRNAs (miRNAs) and long non‐coding RNAs 
(lncRNAs), are also included in the broad term of epigenetic factors. There is rapidly 
expanding experimental evidence for a role of epigenetic factors in the differentiation 
of bone cells and the pathogenesis of skeletal disorders, such as osteoporosis and os-
teoarthritis. However, different from genetic factors, epigenetic signatures are cell‐ and 
tissue‐specific and can change with time. Thus, elucidating their role has particular dif-
ficulties, especially in human studies. Nevertheless, epigenome-wide association stud-
ies are beginning to disclose some disease‐specific patterns that help to understand 
skeletal cell biology and may lead to development of new epigenetic‐based biomarkers, 
as well as new drug targets useful for treating diffuse and localized disorders. Here we 
provide an overview and update of recent advances on the role of epigenomics in bone 
and cartilage diseases. 
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Epigenomics as a Link Between Environment, Genotype, and 
Phenotype

Phenotypic variation in skeletal traits and diseases is the product of genetic and en-
vironmental factors. The extent to which genetics shapes the phenotype is different 
across the different skeletal conditions. Nevertheless, the genetic component of skel-
etal traits is large, varying from 30% (knee osteoarthritis [OA]) to 80% (bone mineral 
density [BMD]). This does not mean there is no effect of the environment. In fact, these 
DNA‐sequence variants form the template upon which environmental factors can influ-
ence the phenotype, by a number of mechanisms, including epigenetic marks. Wadding-
ton coined the term epigenetics to describe the interactions between the environment 
and the genes leading to the development of phenotype[1]. The modern definition of 
epigenetic mechanisms includes information‐containing factors, other than DNA se-
quence, that cause stable changes in gene expression and are maintained during cell 
divisions[2].

The main epigenetic factors are DNA methylation, posttranslational changes of 
histones, and higher‐order chromatin structure. Sometimes non‐coding RNAs, such 
as microRNAs (miRNAs) and long non‐coding RNAs (lncRNAs), are also included in 
the broad term of epigenetic factors. However, the exact definition of epigenetics and 
its components is still a matter of controversy[3]. Together these different epigenetic 
mechanisms are key factors behind the regulation, function, and cell fate of all tissues 
and cells. Not surprisingly, there is a large body of evidence supporting the role of epi-
genetics in skeletal development, the maintenance of bone mass, and skeletal disorders. 
Our purpose here is to provide an overview and update of recent advances on the role 
of epigenomics in bone and cartilage diseases.

Epigenomic marks

DNA methylation

DNA methylation refers to the covalent addition of a methyl group to cytosines in DNA, 
particularly when they are part of CpG dinucleotides. In somatic cells, more than 80% 
CpGs are methylated, especially in repetitive sequences in intergenic regions and introns, 
whereas CpGs in gene promoters may be methylated or not. In general, the methylation 
of CpGs in gene promoters is associated with repression of gene expression, whereas 
the methylation of gene bodies and other regulatory regions (such as enhancers)[4] 
has a less predictable effect. Up to 20% of the variation in DNA methylation is influ-
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enced by genetic variation, but the majority of the variation in methylation is caused by 
other factors, including environmental and stochastic variation. Indeed, variation in DNA 
methylation increases with age[5] and is thought to have a role in the relation between 
environmental risk factors and disease risk. As all epigenetic marks, DNA methylation is 
dynamic; methyl groups can be added and removed from the DNA by specialized proteins, 
DNA‐methyl‐transferases (DNMTs) and ten‐eleven translocation (TET) proteins, respec-
tively (see Box 1 for an explanation of epigenomic terms).

Chromatin structure

The spatial organization of the DNA itself in the cell nucleus, the chromatin structure, is 
also important for the functional read‐out of the genome. Histones are critical compo-
nents of the chromatin (Figure 1). In fact, DNA‐bound histones play major roles in the 
regulation of gene transcription. Posttranslational modifications (PTM) of specific amino 
acids in the N‐terminal tail of histones, such as methylation, phosphorylation, acetylation, 
and ubiquitylation, remodel the shape of the chromatin. This, in turn, alters the DNA's ac-
cessibility for proteins involved in the transcription machinery, thereby regulating gene 
expression[6]. Histone PTMs are dynamic and a number of enzymes are able to add or 
remove histone marks. For example, acetyl groups can be added by histone acetylases 
(HATs) and removed by histone deacetylases (HDACs). 

Next to histone PTMs, also the spatial organization of the chromatin itself in the 
nucleus can modulate gene expression. Chromosome‐conformation capture techniques 
have shown that the genome is divided into so‐called topological associated domains 
(TADs), which are large (megabase scale) compartments of the genome. These regions 
interact more frequently with themselves than the rest of the genome and enhancers usu-
ally contact genes located within these TADs but not outside[7]. Distant enhancers and 
their target gene promoters are brought into contact with each other using the formation 
of so‐called “DNA‐loops,” mediated by, for example, CTCF and cohesins (Figure 1).

Non‐coding RNAs

Besides chromatin‐related marks and structure, non‐coding RNAs (ncRNAs) are 
also frequently included among the mechanisms of epigenetic control[8]. They are clas-
sified as small RNAs (<200 nucleotides) and long RNAs (>200 nucleotides). The best‐
known subset of small RNAs are microRNAs (miRNAs, 18 to 25 nucleotides), which in-
hibit protein synthesis by binding to the 3′‐untranslated region of target mRNAs. Long
non‐coding RNAs (lncRNAs) modulate the activity of both nearby genes and distant genes 
by a variety of mechanisms. For instance, they often serve as scaffolds for transcription 
factors and other molecules involved in initiation of transcription, including repressive 
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chromatin modifiers such as polycomb repressive complex proteins (PRC1 and PRC2) 
or activating chromatin modifiers[9]. Some lncRNAS are mainly located in the cytosol, 
where they target mRNAs and downregulate protein translation. Interestingly, they may 
also act as decoys for miRNAs, thus preventing the inhibitory effect of the binding of 
miRNAs to their target mRNAs[10].

Box 1:  Epigenomics‐Related Terms

•	 Chromatin: The complex of DNA and its packaging molecules. The core of the chromatin is the nucleosome, 
which consists of an octamer of 4 histones around which 147 bp of DNA is wrapped around.

•	 Chromosome conformation capture and Hi‐C: Techniques used to map the spatial (3D) organization of the 
chromatin in the nucleus. Chromosome conformation capture (3C) quantifies the number of interactions 
between a given loci and the rest of the genome. In Hi‐C, all genomic interaction between all genomic 
regions are quantified.

•	 CTCF: CCCTC‐binding factor, highly conserved zinc finger protein involved in diverse genomic regulatory 
functions, including transcriptional activation/repression, insulation, imprinting, and X‐chromosome 
inactivation, through mediating the formation of chromatin loops.

• DNA methyl‐transferases (DNMTs): Family of enzymes responsible for the methylation of DNA. DNMT1 
recognizes hemimethylated CpG sites on newly replicated DNA and thus it maintains the methylation 
pattern through cell divisions. On the other hand, DNMT3A/3B are the novo methylases, capable of 
converting unmethylated CpGs into methylated CpGs in double‐strand DNA, which is particularly important 
during embryogenesis and cell differentiation.

• Epigenetics: Mechanisms causing changes in gene expression that are heritable through cell divisions and 
do not include modifications of DNA sequence.

• Epigenome‐wide association study (EWAS): Studies of the relationship between many epigenetic marks 
distributed throughout the genome and phenotypic characteristics. So far, most studies aimed to analyze 
DNA methylation.

• Epigenomics: Usually refers to the epigenetic changes in many genes or even through the whole genome.
• Genome‐wide association study (GWAS): Studies of the relationship between many genetic variants 

(usually hundred thousands or millions) distributed throughout the genome and phenotypic characteristics.
• Histone code: Hundreds of different posttranslational modifications (PTMs) and their combinatorial 

patterns form a code, the histone code. This code can give rise to a prescribed transcriptional or other 
genomic regulatory response, interpreted by specialized proteins that can read, write, and erase histone 
PTMs.

• Histone deacetylases (HDACs): Family of enzymes removing acetylation marks from histone tails. These 
epigenetic “erasers” are very important for modulating gene expression because histone acetylation is 
usually associated with active chromatin.

• Long non‐coding RNAs (lncRNAs): ncRNAs with more than 200 nucleotides that regulate gene expression 
and interact with other epigenetic mechanisms.

• Methylation quantitative trait loci (meQTL): A DNA locus (usually a single‐nucleotide polymorphism 
[SNP]) that is associated with DNA‐methylation levels from a certain CpG.

• MicroRNAs (miRNAs): Small ncRNAs, 18 to 25 nucleotides long. One known function (of the many that are 
known) of miRNA’s target mRNAs, which interferes with protein translation.

• Non‐coding RNAs (ncRNAs): RNAs that do not code proteins but have regulatory roles on chromatin 
structure, gene expression, or translation. There are multiple types, with different sizes and functions.

• Quantitative trait loci (QTL): A DNA locus that is associated with a particular quantitative phenotypic trait.
• Ten–eleven translocation (TET): Family of proteins involved in the demethylation of CpGs.
• Topologically associated domain (TAD): Chromatin conformation capture techniques, such as Hi‐C, 

showed that the genome was divided in compartments that interact more frequently with themselves 
than the rest of the genome. Regulatory regions, such as enhancers, usually contact genes located within 
the same TAD as the regulatory region but not outside of their TAD.
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▲Figure 1: Schematic overview of epigenetics: chromatin modifications and structure. (A) The DNA
in the nucleus is present in the form of chromosomes. These inhabit distinct territories within the
nucleus, allowing for the formation of distinct intra‐ or interchromosomal contacts. DNA methylation
is the chemical addition of a methyl group to cytosines in DNA. The chromatin is organized in nucleo-
somes made of DNA wrapped around an octamer of 4 histones (H2A, H2B, H3, and H4). Posttranslation-
al modifications (PTM) of specific amino acids in the N‐terminal tail of histones, such as methylation,
phosphorylation, acetylation, and ubiquitylation, remodel the shape and subsequently the function of
the chromatin into repressive and active chromatin. Chromatin loops enable distant enhancers to come
into close contact with their target gene promoters or create regions of gene silencing. The proteins
CTCF and cohesin are known to be involved in the mediation of such chromatin loops. (B) Histone tails
can contain many different or even multiple PTMs. This combination of PTMs, the histone code, confers
meaning on the function or the state of that particular part of the chromatin. For several histone PTMs,
their chromatin state is known, such as H3K4me1 for active enhancers and H3K4me3 for active promot-
ers. (C) Chromatin conformation capture techniques, such as Hi‐C, have revealed the compartmental-
ization of the genome into topologically associated domains (TADs), which are regions of preferential
chromatin interactions. Depicted here is a stylistic interpretation of Hi‐C data, where the darker colored
the bloc between two genomic regions, the more genomic interactions are quantified.

Epigenomic interplay

It is worth emphasizing that epigenetic mechanisms often act in concert by interacting 
with each other. For example, MeCP2, a protein recognizing methylated CpGs, promotes 
the activity of HDACs. On the other hand, some histone marks modulate the binding of 
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DNMTs and subsequently DNA methylation. The methylation of promoters regulates the 
transcriptional activity not only of protein‐coding genes but also of miRNAs and other 
non‐coding RNAs. In turn, miRNAs contribute to modulating the synthesis of DNMTs 
and histone‐modifying enzymes. lncRNAs also influence the activity of genes encoding 
chromatin‐modifying enzymes and miRNAs[10]. Although the sequence of molecular 
steps is still unclear, there is evidence for the notion that DNA, RNA, and histone pro-
teins, along with their modifications, act in a concerted fashion to bring about chroma-
tin states that are important for dictating genomic functions[8] (Figure 1).

Epigenetic programming during development

From the moment of conception to adulthood, the environment shapes the phenotypic 
output. It is thought that there are certain “high sensitive” windows especially during 
development that have major influence on the epigenome[11]. The developmental or-
igins of health and disease concept suggests that poor developmental experience can 
increase the risk of non‐communicable diseases in later life, including cardiovascular, 
metabolic, neurological, and skeletal disorders[12]. A variety of mechanisms, including 
DNA methylation and other long‐lasting epigenetic marks, may mediate the influence 
of the environment on the developing organism[13, 14]. A few studies have explored 
the role of developmental factors in skeletal disorders. In a systematic review of the 
literature, a positive association between birth weight and bone mass was clear among 
children, unclear among adolescents, and weak among adults. The effect was stronger 
on bone mineral content (BMC) than on BMD regardless of age[15]. This suggests that 
intrauterine growth is more closely related to bone size than to bone density and that 
the effect tends to be mitigated by postnatal influences. It seems that early life expo-
sures are important for determining peak bone mass, which may be a reflection of the 
combined influence of intrauterine and early postnatal environmental exposures.

Maternal nutrition and specifically the maternal vitamin D status may be a critical 
factor for an adequate intrauterine growth rate[16], but studies have shown conflicting 
results.[17]. Rather surprisingly, in the Rotterdam cohort, severe maternal 25(OH)D de-
ficiency (<25 nmol/L) during mid‐pregnancy was associated with higher offspring BMC 
and bone area at 6 years of age, while no associations were found between maternal 
vitamin D status and offspring BMD[18]. In experimental animals, vitamin D status has 
a transgenerational effect on the methylation of multiple genes[19]. However, human 
studies about the relationship between maternal vitamin D levels and DNA methylation 
in offspring have given controversial results[16]. Therefore, the actual relevance of ma-
ternal vitamin D on DNA methylation and the bone mass of the offspring is still unclear.
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Whether related to parental influences or not, a few studies reported an associ-
ation of the methylation of some genes (such as NOS, RXRA, and CDKN2A) in cord blood 
and childhood bone mass[20-22]. However, those results have not been confirmed in 
other cohorts yet. Although less studied than the relationship between early life expe-
riences and osteoporosis, some data support a developmental component in OA. For 
example, exposure to Chinese famine during childhood has been associated with arthri-
tis (including both OA and inflammatory arthritis) in later life[23]. Similarly, in a Brit-
ish study, lower weight at birth and year 1 was associated with higher rates of OA[24]. 
Weight and body length differences, which have a clear developmental component, 
may explain, at least in part, those associations. Another example is finger length pat-
tern, which is thought to be an indicator of prenatal androgen exposure. Type 3 finger 
length pattern (longer fourth digit than second digit) has been associated with having 
symptomatic knee OA and chronic pain[25]. which might be explained by an influence 
of embryogenic sex hormone exposure on brain development[26]. It is thought that 
epigenetic programming plays a role in all of these associations, but the exact role of 
epigenetic factors in the relation between prenatal exposures and skeletal diseases has 
not been elucidated yet.

Epigenomic plasticity in adult life

In addition to the developmental epigenetic programming, there is an enormous epig-
enomic plasticity in adult life. The variance in epigenetic marks increases with age, 
which is thought to reflect the response to environmental exposures in such a way that 
they modulate the expression of genes. However, studies in highly inbred rodent lines 
highlighted that a part of the phenotypic variation could not be attributed to environ-
mental exposures[27]. Also, monozygotic twin studies examining discordances have 
shown that part of the phenotypic variation is attributed to so‐called “stochastic” vari-
ation, possibly caused by “molecular noise” due to imperfect control of the molecular 
interactions in the cell[28]. Stochasticity, or random variation, is thought to have a large 
impact on disease susceptibility[29, 30].

DNA Methylation and Skeletal Disorders

DNA methylation and the differentiation of skeletal cells

Osteoclast precursors derive from hematopoietic stem cells, whereas the bone‐ and 
cartilage‐forming cells, osteoblasts and chondrocytes, derive from mesenchymal stem 
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cells (MSCs). Pluripotent MSCs can also differentiate into other cell types, such as ad-
ipocytes and myocytes. The differentiation of MSCs toward the osteoblastic lineage is 
induced by the master transcription factors RUNX2 and osterix and is stimulated by 
ligands of the Wnt and BMP pathways[31]. As it happens in other tissues, epigenetic 
factors play critical roles in determining the fate of MSCs. Specifically, genes that are 
characteristic of the osteoblast‐osteocyte lineage (such as alkaline phosphatase, scle-
rostin, RANKL, osteoprotegerin, etc.) tend to undergo demethylation and de‐repression 
during the differentiation of MSCs[32-34]. In line with this concept, the demethylating 
agents 5‐azacytidine and 5‐deoxy‐azacytidine improve the osteogenic differentiation 
of MSCs[35, 36]. The ability of MSCs to proliferate and differentiate may decrease with 
aging, a phenomenon that may be explained, at least partially, by changes in the methyl-
ation and hydroxymethylation of DNA[37-39].

The differentiation of osteoclast precursors is associated with marked changes 
in their DNA methylation signature, with hypermethylation and hypomethylation oc-
curring in a variety of gene categories. In this process, PU.1 may play an important role, 
by recruiting DNMT3B to hypermethylated promoters, and TET2, which converts 5‐
methylcytosine to 5‐hydroxymethylcytosine, to genes that become demethylated[40]. 
Another DNA methyltransferase, DNMT3A, is essential to methylate and repress anti‐
osteoclastogenic genes, thus allowing osteoclast differentiation to continue[41]. On the 
other hand, by influencing the expression of RANKL and OPG in cells of the osteoblast‐
osteocyte lineage, DNA methylation indirectly contributes to regulating osteoclasto-
genesis[33]. Although cartilage does not undergo a remodeling process as bone does, 
epigenetic mechanisms also contribute to regulation of chondrogenesis and cartilage 
maintenance. DNA methylation modulates the expression of genes involved in cartilage 
homeostasis, such as GDF5, SOX9, and MMP13[42].

A number of studies have explored the relation between genome-wide methyl-
ation patterns and skeletal disease status in humans. These so‐called epigenome-wide 
association studies (EWAS) have a hypothesis‐free approach that have the potential 
to find novel genes and/or pathways involved in skeletal disease. Because epigenetic 
marks are tissue specific, it makes sense to perform these studies in the tissue of inter-
est. For osteoporosis, this would be bone, but for osteoarthritis, the tissue of interest is 
less straightforward because there are many tissues involved, including cartilage, bone, 
and synovial tissue. In addition, epigenetic marks in the circulation (blood) could be 
indicative of systemic mechanisms playing a role in disease and could also be easily 
accessible biomarkers for the disease. An overview of published studies in the field of 
osteoarthritis and osteoporosis is given in Table 1.
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Epigenomewide studies in osteoarthritis

A relatively large number of EWAS have been done focusing on the differences in the 
methylome of diseased versus preserved cartilage[43-47], cartilage from hip frac-
ture[48, 49], controls[48, 50], or neocartilage engineered from MSCs[51] (Table 1). 
Although the exact genes that are identified in the studies can differ, the identified path-
ways that emerge are robust. They involve skeletal development and morphogenesis 
and known signalling pathways (such as the TGFβ, Wnt, HOX) involved in skeletal devel-
opment. Also, inflammation seems to be a pathway that is identified by multiple studies 
and two studies have also shown the possibility of clustering a subset of patients char-
acterized by methylation differences in (or near) inflammatory genes[50, 52]. It is in-
teresting to note that genome-wide methylation studies consistently found enrichment 
of differentially methylated CpGs in enhancer regions[53]. This suggests that modifica-
tions of DNA methylation marks may be more important in distant regulatory regions 
than in proximal promoters. This observation is consistent with other EWAS of complex 
diseases, where most of the associations found have been highly enriched in enhancer 
regions. Good annotation and interpretation of these enhancers are therefore of great 
importance. Methylation patterns can also be used to calculate a so‐called “epigenetic 
age,” which is thought to reflect biological aging and has been linked to a whole range 
of age‐related diseases and time of death[54, 55]. One study examined the relation be-
tween this “epigenetic clock” and osteoarthritis and observed accelerated aging in OA 
cartilage[56].

Epigenomewide studies in osteoporosis

The number of EWAS studies that examine osteoporosis as an endpoint is much lower 
than the cartilage studies described above. The first study examined femoral head bone 
tissue from hip fracture and OA patients using a limited set of methylation sites, and 
showed among a number of pathways, differentially methylated regions in the family 
of HOX‐genes[57]. A second, more recent study, examined MSCs in fracture versus OA 
patients and identified a number of differentially methylated genes in stem cell and os-
teoblast differentiation pathways[58]. In another study using bone biopsies of women 
with low (osteoporotic) or normal BMD[63]. differentially methylated CpGs were found 
at a lenient false discovery rate (FDR<0.1)[59]. Because bone is a multicellular tissue, 
methylation differences could also reflect the changes in cell‐type proportions, which 
was not accounted for in the published studies.

Methylation signatures in the circulation can potentially be powerful biomarkers 
for disease. A large EWAS examining methylation patterns of circulating leukocytes was 
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performed in a collaborative study examining the relationship with BMD in a total of 
5,515 participants[60]. However, this did not result in robustly associated CpGs, sug-
gesting that blood might not be the correct tissue to study the epigenomic features in 
relation to bone phenotypes. In contrast, another small study examining 22 controls 
versus 22 osteoporotic women (defined by low BMD) identified a large number of dif-
ferentially methylated sites[61]. Importantly, this study lacked replication and adjust-
ment of several important possible confounders, such as cell counts and BMI.

Non‐coding RNAs in Skeletal Disorders

Among ncRNAs, miRNAs have been most extensively studied in relation to bone and car-
tilage diseases. More than 35 miRNAs modulate the differentiation of osteoblast precur-
sors in vitro, through various mechanisms, including targeting master regulators such 
as RUNX2 (see recent reviews)[62-64]. A few of them have demonstrated effects on 
bone in animal models in vivo and may be involved in osteoclast‐osteoblast communi-
cation. For example, osteoclast‐derived exosomal miR‐214‐3p inhibits osteoblast activi-
ty in vitro and reduces bone formation in vivo[65]. The miR‐34 family and miR‐214 also 
tend to have a negative influence on bone formation[66]. On the other hand, miR‐2861 
and miR‐29a stimulate bone formation. Interestingly, they target HDACs, thus illustrat-
ing the interactions between different layers of epigenetic marks[67]. As with the os-
teoblastic lineage, several miRNAs influence osteoclast differentiation in vitro. Some 
of them have been validated in vivo. For instance, miR‐503, which targets RANKL, and 
miR‐34a inhibit bone resorption in animal models, whereas miR‐148a tends to stimu-
late resorption[62, 64, 68]. Some miRNAs are abundant in cartilage and appear to be 
important for the regulation of metalloproteases, toll‐like receptor signalling, and other 
genes involved in catabolic pathways[69]. A recent review of 57 studies about miRNA 
expression in cartilage revealed 46 differentially expressed miRNAs in OA, which were 
involved in autophagy, chondrocyte homeostasis, and degradation of the extracellular 
matrix[70]. For instance, miR‐140 is involved in the pathogenesis of OA by regulating, 
at least in part, MMP13 and ADAMTS5. miR‐140 is downregulated in OA cartilage and 
the intra‐articular injection of miRNA‐140 alleviates OA progression in rats[71]. The 
potential role of other miRNAs in OA pathogenesis has been recently reviewed[42, 72]. 
In a few cases, their effects have been validated by gain‐of‐function or loss‐of‐function 
experiments in vivo (Table 2).
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Table 2:  Selected miRNAs With Effects on Bone or Osteoarthritis Shown in Loss‐of‐Function or Gain‐of‐
Function Experiments In Vivo

Positive effects on bone 
formation or bone 
mass [ref.]

Negative effects on 
bone formation or 
bone mass [ref.]

Amelioration of  
osteoarthritis [ref.]

Aggravation of  
osteoarthritis [ref.]

miR‐135 [147] miR‐103 [148] miR‐140‐5p [149] miR‐101 [150]
miR‐141 [151] miR‐125b [152] miR‐142‐3p [153] miR‐181a‐5p [138]
miR‐145a [154] miR‐133 [155] miR‐210‐5p [156] miR‐221 [157]
miR‐148 [158] miR‐138‐5p [159] miR‐370 [160]
miR‐199a‐5p [161] miR‐140 [76] miR‐373 [160]
miR‐21a [74] miR‐145a [162] miR‐98 [163]
miR‐216a [164] miR‐146 [165]
miR‐26aa [166] miR‐148 [167]
miR‐29b‐3p [168] miR‐208 [169]
miR‐335 [77] miR‐21a [170]
miR‐34a‐5p [171] miR‐214‐3p [66]
miR‐503 [172] miR‐222 [75]
miR‐286 [167] miR‐23b [173]
miR‐375 [174] miR‐26aa [175]

miR‐31‐5p [78]
miR‐341 [76]
miR‐3831 [77]

A Some miRNAs have shown contradictory effects in different models.

Use of miRNAs to diagnose and treat disease

The translational potential of miRNAs is large, since they can potentially be used to 
directly treat disease. A number of miRNAs enhance the osteogenic differentiation of 
MSCs; hence, they have been pointed out as potential therapies to promote bone regen-
eration. For example, scaffolds and particles loaded with analogs of miR‐21 or miR‐148 
potentiate bone regeneration in experimental models, at least in part, by interacting 
with the RUNX2 pathway[73, 74]. On the other hand, anti‐sense oligonucleotides and 
“sponges” inhibiting miR‐22, miR‐29, miR‐31, miR‐133, miR‐138, or miR‐214 have a 
stimulatory effect on osteogenesis and may improve fracture healing[62, 75, 76]. Also, 
miRNA‐engineered MSCs may find a role in bone regeneration[77, 78]. miRNA‐based 
therapies have also been explored in joint disorders. In this view, the intra‐articular 
injection of lentiviruses expressing miR‐140 and miR‐210 ameliorated joint disease in 
experimental models of OA[79].

Many cells can secrete miRNAs (mainly via exosomes) that are detectable in the 
synovial fluid and the circulation. Hence, several miRNAs have been suggested as poten-
tial biomarkers for the diagnosis or follow‐up of skeletal disorders (see recent reviews)
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[72, 80-82]. However, in general, the identity of regulated miRNAs varies widely across 
the studies and sometimes conflicting evidence is found. In addition, given the absence 
of replication across study outcomes and the small sample sizes, these studies should 
be considered as exploratory and further replication and validation is warranted. It is 
also to mention that circulating levels of miRNAs reflect processes in the whole body, 
most notably those of blood cells, and therefore miRNA signatures could be influenced 
by co‐morbid conditions and other circumstances (such as aging in general, low‐grade 
inflammation, etc.)[80]. Thus, published data are promising, but more work is needed 
before miRNAs can serve as robust diagnostic and prognostic tools in the clinic.

Histones and Chromatin Structure in Skeletal Disorders

Evidence is slowly being accumulated for a role of histone PTMs in chondrocyte and 
osteoblast differentiation, skeletal development, and the pathogenesis of OA and oste-
oporosis[83-88]. There is a well‐established role for HATs and HDACs in chondrogen-
esis, involving the regulation and function of Sox9 and its downstream targets. Sox9 is 
an essential regulator of chondrocyte differentiation and homeostasis[89]. The HDAC 
KDM4B mediates Sox9 activation by removing a repressive histone PTM (namely, meth-
ylation of lysines 9 in histone 3; H3K9me3) from the Sox9 promoter region, which in 
turn triggers TGF‐β‐mediated chondrogenesis.[90] Regulation of downstream targets 
of Sox9 is also dependent of histone remodelers. The HDAC Sirt1 binds to the enhancer 
and promoter region of COL2A1, which in turn recruits the HATs p300/CBP[91]. These 
form a complex with Sox9 at the COL2A1 promoter. By relaxing the chromatin structure 
near the COL2A1 promoter by P300/CBP through their HAT activity, Sox9 is able to ini-
tiate COL2A1 expression[92, 93]. Recently, the HDAC KDM6B has also been suggested 
to regulate COL2A1 expression, possibly also by direct interaction with the promoter of 
COL2A1[94]. Conversely, the HDAC ELF3 suppresses COL2A1 transcription by inhibiting 
the HAT activity of the Sox9/CBP complex[95, 96].

Many other histone remodelers are being implicated in osteoblast and chondro-
cyte development[83, 97]. Recently, KDM6B, a HDAC, has been shown to be significant-
ly increased in expression during cartilage development[94]. Also, identified through 
genome-wide association studies (GWAS), DOT1L, a histone lysine methyltransferase, 
might be involved in chondrocyte differentiation and homeostasis[98, 99]. The pro-
teins that “read” the histone PTMs are also important for cell differentiation. Proteins 
from the bromodomain and extra‐terminal domain (BET) family recognize and bind to 
acetylated lysine on histones, forming a scaffold for protein complexes involved in gene 
transcription[100, 101]. The inhibition of BET proteins leads to a suppression of os-
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teoclast differentiation and activity in vitro[100]. Because of these seemingly key roles, 
HDACs, HAT, and BET have been suggested as novel therapeutic targets in a range of 
skeletal diseases[97, 102]. Thus, JQ1 and other inhibitors of BET proteins ameliorate 
bone loss in ovariectomized mice and several preclinical models of inflammatory disor-
ders, such as arthritis and periodontitis[102, 103].

However, it is important to keep in mind that most histone remodelers and read-
ers also fulfil essential roles in other tissues and cell types[104]. For example, DOT1L is 
not only essential for chondrogenesis and cartilage homeostasis[99] but, also for telo-
mere silencing, meiotic checkpoint control, and DNA damage response[105, 106]. Mu-
rine knockout models of DOT1L show multiple developmental abnormalities, not only 
restricted to skeletal abnormalities[106]. Similar observations can be made for most 
histone remodelers associated with skeletal development and disease, such as the sir-
tuins (SirT1)[107], KDM6B[108], and BET proteins[109]. Because histone remodelers 
and readers are involved in a plethora of cellular processes in diverse cell types[110], 
globally administered therapeutic targeting may produce off‐target and side effects, il-
lustrating the need to examine such histone remodelers and readers in careful detail.

The chromatin structure itself can also modulate gene regulation and expression. 
For example, disruption of the TAD structure near certain genes can cause congenital 
skeletal disorders. Depending on the type and size of the of TAD disruption, brachy-
dactyly, syndactyly, and polydactyly may be caused by changes in enhancer‐promoter 
regulation in the WNT6/IHH/EPHA4/PAX3 locus[111]. Further, the deletion of a TAD 
boundary as a disease mechanism has also been proposed for Liebenberg syndrome, 
a rare disorder where the arms of the patient acquire morphological characteristics 
similar to those of the legs[112]. For a comprehensive review regarding the disruption 
of TADs and skeletal disorders, see Lupiáñez and colleagues[7].

Up to now, only small‐scale data are available on histone modifications and 3D 
chromatin structure of chondrocytes and bone. This may reflect the novelty of these 
data, the costs, material amounts, and skills needed to perform such experiments and 
analysis. However, recent large‐scale efforts from the ROADMAP consortium[113] and 
the encyclopedia of DNA elements (ENCODE)[114] have built genome-wide maps of 
several histone modifications and chromatin conformations in multiple human cells and 
tissues, including bone and cartilage[4]. Those data are freely accessible (Table 3) and 
can be used as an epigenomic reference map for the locations of regulatory elements 
in osteoblasts and chondrogenic cells. To our knowledge, no chromatin conformation 
capture data of chondrocyte or osteoblast is available. However, TADs have been shown 
to be stable across cells, tissues, and even species, which highlights biological relevance  
and suggests that they function as a general 3D framework to determine domains of
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possible interaction partners. Thus, chromatin conformation maps are a valuable re-
source to identify potential causal variants and possible causal genes in GWAS. TAD 
boundaries can be used to limit possible causal genes, and reference epigenome maps 
can help to identify active genes and variants in cell‐specific active regulatory elements.

Interpretation of Epigenetic Studies: Problems and Tools

Cause or effect: confounding and reverse causation

Interpretation of epigenetic studies is not trivial because many factors can influence 
the association between the phenotype and epigenetic features. In contrast to DNA‐
sequence variants, epigenomic features are dynamic, meaning that they can be highly 
tissue specific (especially enhancers), dependent on environmental stimuli and devel-
opmental stage. This makes epigenetic analysis vulnerable for classical epidemiological 
pitfalls such as confounding and reverse causation. Besides the previously mentioned 
cellular heterogeneity as a potential confounder in case of multicellular tissues, such as 
bone or synovial tissue, a major issue is reverse causation. In cross‐sectional studies, 
one can never be sure whether the epigenomic features cause the phenotype or vice ver-
sa. With respect to the epigenetic studies performed in cartilage and bone, this problem 
is also realistic. The massive epigenomic deregulation apparent in degraded cartilage 
can be a consequence of a process initiated by an entirely different cause of the disease. 
It is possible to use known genetic association and the concept of mendelian random-
ization to investigate the potential causal relationships between DNA methylation and 
the phenotype of interest.[115] In these kinds of studies, single nucleotide polymor-
phisms (SNPs) known to influence the CpG site are used as genetic instruments to test 
for causation. Similarly, SNPs associated with the trait/disease of interest can then be 
used to test whether they are associated with methylation levels at the same CpG site. 
In this way, the direction of cause can be disentangled (Figure. 2). This approach has 
recently been used to show that DNA methylation differences associated with BMI are 
predominantly a consequence of adiposity, rather than a cause[116]. In addition, this 
methodology has also been used to suggest that several known risk factors do not show 
a causal effect on bone fracture, except for BMD[117]. Similarly, high BMI was shown 
to cause OA, but other known clinical risk factors did not have a causal relationship 
with OA[118]. Typically, these mendelian randomization studies need genetic data with 
large sample sizes, which is increasingly available for both osteoporosis (GEFOS con-
sortium) and osteoarthritis (Genetics of OA‐consortium). However, sample sizes for the 
methylation studies in target tissue are typically small (Table 1), and therefore collab-
oration and meta‐analysis across the different data sets are needed. This is increasingly 
recognized in the field[119].
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Integrating different omic levels

Interpretation of epigenomic data is complicated by the fact that the function of the ge-
nome is not fully known. It has become apparent that gene expression can be regulated 
by genomic features (enhancers/insulators) far away from the gene[120]. In fact, recent 
studies in cancer show that variation in methylation in distal enhancers account for a 
larger part in the regulation of expression, then promoter‐methylation variation[121]. 
Similarly, den Hollander and colleagues observed that only 10% of the differentially 
methylated regions in cartilage is associated with differential expression of the nearest 
gene[45]. Integrating epigenomic data with data from other molecular layers, such as 
RNA expression and/or protein expression, can help to identify the function of the epig-
enomic features.

Epigenetics as mechanism for genetic etiology of disease

Of all the genetic loci identified by GWAS for complex diseases (such as OA and osteo-
porosis), the majority does not affect the protein coding but is instead thought to affect 
gene expression regulation. Epigenetics may mediate genetic risk, meaning that the 
methylation state of a specific locus is driven by a nearby genetic variant(s), also called 
a methylation quantitative trait locus (meQTL). In this way, integration of epigenomic 

◄Figure 2: Mendelian randomization to
study causal relationships in epigenomic
epidemiology. (A) The relationship be-
tween DNA methylation and the studied
trait is difficult to interpret because it can
be subject to classical epidemiological pit-
falls, such as confounders and/or reverse
causation. (B) To establish causal path-
ways for observed associations between
(molecular) markers and clinical outcome,
genetic variation can be used as a causal
anchor. When examining the causal rela-
tion from the DNA methylation marker
to the skeletal trait, a genetic variant (or
combination of genetic variants) (G1) can
be used that are robustly associated with
the methylation marker. To study reverse
causation, one can examine the causal
relationship from skeletal trait to meth-
ylation by using a second set of genetic
variants (G2) that are robustly associated
with the skeletal trait of interest. Statisti-
cal methods to perform this analysis have
been reviewed elsewhere.[115]
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and genetic data can be used to elucidate the function and biological pathway 
underly-ing the genetic association. Large-scale studies in blood have shown that 
meQTLs are widespread (>30% of all CpGs have a meQTL), but that only 10% of the 
meQTLs also associate with expression levels of nearby genes[122]. A number of 
studies have ex-amined the relation between previously identified genetic loci for 
BMD and/or OA and methylation (and/or gene expression) in the target tissue. 
These studies identified a number of meQTLs specific for cartilage[123-125], 
suggesting that methylation medi-ates the association between the genetic locus and 
disease. Notably, absence of a meQTL in these studies does not mean that methylation 
does not play a role, since methylation is dynamic and context-dependent and can be 
dependent on a specific stimulus or de-velopmental stage.

Annotating epigenomic features: available information regarding skeletal tissues

Recent large-scale efforts have provided new understanding in the function of 
epigen-etic modifications, and efforts are ongoing to map histone modifications, 
transcription factor binding, and 3D chromatin structure of multiple cell types and 
tissues[5, 43, 44]. The data generated by these large-scale efforts are publicly 
available and contain DNA annotation on multiple levels: histone modification, 
binding of transcription factors and other DNA binding proteins, methylation, gene 
expression, DNA accessibility, and chro-matin conformation. Some also contain 
epigenetic information on cartilage and bone tissues; most notably are the 
“reference” epigenomes for osteoblasts and chondrocytes generated by the ROADMAP 
consortium (Table 3). The reference epigenomes construct an annotation of functional 
elements, ie, enhancers, promoters, etc., of the DNA per cell type,[4] which has already 
been proven to be a valuable resource for skeletal GWAS and EWAS, to finemap causal 
SNPs, CpGs, and genes, and also to provide for a hypothesis on the mechanism 
underlying GWAS/EWAS findings for skeletal outcomes[126, 127].

The interesting SUPT3H‐RUNX2 locus provides a good example on how 
different levels of molecular data can be combined to build a model for the regulatory 
mecha-nisms involved in the RUNX2 locus, a master regulator of osteoblast and 
chondrocyte regulation (Figure 3). This locus encompasses a region of roughly ∼700 

kb, where multiple genetic association signals have been identified for OA[127]. 
BMD[128], OPLL (ossification of the posterior longitudinal ligament of the spine), 
cartilage thickness (measured as the minimum joint space width)[127]. height[129]. 
and facial morpholo-gy[130]. Interestingly, these GWAS signals are independent from 
each other[127]. Data from the ROADMAP consortium shows that several of the GWAS 
signals are located in different (potential) enhancers in cartilage and osteoblast cells. 
This suggests that the genetic association with various skeletal phenotypes might 
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▲Figure 3: Hypothetical model for RUNX2 regulation and expression. Several GWAS findings are
linked to skeletal phenotypes located in the SUPT3H‐RUNX2 locus. OA = osteoarthritis; BMD = bone min-
eral density; OPLL = ossification of the posterior longitudinal ligament of the spine; FM = facial morphol-
ogy. (A) The locations of the GWAS findings coincide with possible active enhancers and promoter ele-
ments in chondrogenic cells and osteoblast. In addition, near some of these enhancer and promoter
elements, CTCF binding was found in Chip‐seq experiments in osteoblasts. For rs10948172, also meQTL
effects on 4 CpG sites have been found in chondrogenic cells. (B) We hypothesize that the SNPs are lo-
cated in long‐range enhancers, which regulate RUNX2 gene expression during osteoblast and chondro-
genic differentiation.

arise due to a difference in control of RUNX2 expression. Recent studies have 
shown that regulation of RUNX2 is tightly regulated by multiple epigenetic 
mechanisms, such as miR-204/211 and other miRNAs[131, 132], HDAC[133], and 
DNA methylation[123, 134]. Also, some of the genetic associa-tion signals near 
RUNX2 exert effects on epigenetics. For the osteoarthritis-associated SNP, 
rs10948172, it has been shown to operate as a methylation quantitative trait loci 
(mQTL) for 4 CpG sites in the RUNX2 locus[123, 134]. Nevertheless, the GWAS signals 
are positioned at a relative large distance from RUNX2, and chromatin interaction from 
regulatory region to gene promoter is needed. Using TAD localizations from the 3D ge-
nome browser, we notice that all skeletal genetic RUNX2 signals are within one TAD. 
This makes physical interaction of enhancers—promoters through chromatin “looping” 
likely to occur within this region. Such loops are mostly regulated by several DNA bind-
ing proteins such as cohesin and/or CTCF[135]. Using data from the ENCODE database, 
RUNX2 P1 and P2 promoter regions (Figure 3). One can imagine that depending on the 
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developmental stage, the different enhancer regions are actively involved in regulation 
of expression, and different chromatin loops are established with the P1 and/or P2 pro-
moter of RUNX2. The RUNX2 regulatory region carries all elements of a so‐called su-
per‐enhancer region, which is a genomic region comprising multiple enhancers. These 
super‐enhancers are typically identified near genes important for cell‐identity/master 
transcription regulation genes, which require detailed regulation of expression, such as 
is the case for RUNX2.

What Will the Future Hold?

Advances in understanding the epigenomic mechanisms have greatly expanded our 
knowledge about the molecular mechanisms involved in the differentiation and activity 
of cells responsible for skeletal homeostasis, which are central players in the pathogen-
esis of disorders such as osteoporosis and OA. Thus, we can anticipate that epigenetic 
mechanisms must also play an important role in these disorders and may become the 
foundation for new therapies. However, much more research is needed in order to use 
epigenetic marks as biomarkers of disease risk or progression and to introduce epigen-
etic‐based therapies into the clinic.

To date, association studies aimed to elucidate the association of epigenetic 
signals with bone phenotypes have had limited reproducibility, particularly regarding 
DNA methylation marks. Similarly, some miRNA signatures have been produced in a 
few small‐size studies, but replication in larger studies is still pending. Of course, this is 
critical before introducing the analysis of epigenetic markers as tools for diagnosis or 
prognosis of disease. It will likely require large collaborative, epigenome-wide studies.

A major issue regarding therapy aimed at modulating epigenetic mechanisms is 
related to lack of specificity and undesired effects. Drugs interfering with DNA methyla-
tion are already being used to treat some bone marrow disorders, but their widespread 
effects make them rather unsuitable for non‐neoplastic disorders. Thus, CRISPR‐based 
methods and other procedures to induce targeted DNA methylation changes to specific 
loci in somatic cells may greatly help to first delineate the effects of methylation marks 
and then to epigenetically modify the activity of specific genes[136]. SAHA‐PIPs are a 
novel class of histone modifiers made by conjugating selective DNA binding pyrrole‐
imidazole polyamides (PIPs) with the histone deacetylase inhibitor SAHA. They show 
some selectivity and modulate the transcription of certain clusters of genes[137].

Localized skeletal disorders, such as some forms of OA and delayed‐union frac-
tures may be amenable to local therapies, such as agonists and antagonists of specific 
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miRNAs or genetically/epigenetically engineered MSCs. The local nature of the disease 
and the therapy may help to avoid generalized undesired effects. In this line, antisense 
oligonucleotides of miRNA 181a‐5p attenuate cartilage destruction when injected into 
the knees of rats and mice with experimentally induced OA[138].

The task of revealing the role of epigenomic variants and pathways is even more 
difficult because, unlike the genome, the epigenome is cell‐ and tissue‐specific and may 
change over time. Thus, studies may need to be done using skeletal samples, which pos-
es obvious difficulties for human studies and particularly for those requiring sampling 
at multiple time points. For studies on developmental processes for bone and cartilage 
in humans, model systems such as human stem cells and IPSCs might prove a good al-
ternative. In addition, organ on a chip technology is promising for studying early disease 
processes. In this regard, recent findings that suggest that some molecules circulating 
in blood may be used as biomarkers of the status of solid tissues, if confirmed, may 
facilitate using epigenetic elements as biomarkers. In the skeletal field, miRNAs have 
been mostly studied from this perspective. However, methylation marks in circulating 
cell‐free DNA are also being actively explored in cancer and other disorders.

Technical advances to facilitate high‐throughput analysis of epigenomic marks at 
decreasing costs are emerging and will facilitate larger‐scale applications. Sequencing 
costs are continuously going down, making it possible to generate increasing amounts 
of data. The bottleneck for these “big data” studies is the data analysis, which in general 
requires the same costs as generation of the raw data itself. An emerging technique 
is single‐molecule sequencing, with Pac Bio's single‐molecule real‐time sequencing 
(SMRT) and Oxford Nanopore's (ON) nanopore sequencing as the most prominent play-
ers in the field. SMRT and ON are able to directly sequence native DNA or RNA, making 
it possible to directly measure chemical groups attached to the nucleic acid sequence 
(such as methylation), avoiding the bias of other techniques due to the necessary ampli-
fication and/or bisulphite treatment. Although single‐molecule sequencing is still in a 
developmental stage, more and more applications are being developed, indicating that 
the technique is almost ready for wider‐scale applications.

Another important technical advance is single‐cell epigenomics, which is devel-
oping rapidly. Single‐cell “omic” technologies have emerged as powerful tools to explore 
cellular heterogeneity at individual cell resolution. Previous scientific knowledge in 
cell biology is largely limited to data generated by bulk profiling methods, which only 
provide averaged read‐outs that generally mask cellular heterogeneity. Single‐cell tech-
nology has recently led to the identification of a self‐renewing skeletal stem cell that 
generates progenitors of bone, cartilage, and stroma but not fat[139]. In addition, the 
first study applying single‐cell RNAseq on OA cartilage identified seven chondrocyte 
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subpopulations in cartilage[140].

Because of the high sensitivity of single‐cell genomics, attention must be put into 
experimental setup and execution of this technology. Careful handling and processing of 
cells is critical to preserve the native epigenetic and expression profile; only then mean-
ingful analysis and conclusions can be drawn. This is especially important for the study 
of skeletal cells because their natural habitat is normally deeply embedded in the ex-
tracellular matrix and getting a single‐cell solution from cartilage or bone is not trivial.

A new field of epigenetic regulation is epi‐transcriptomics[141]. These are RNA 
modifications that represent a novel layer of regulation of gene expression. Early re-
ports show the existence of many different dynamic RNA modifications. The role of 
these RNA modifications in regulating gene expression is largely unexplored, but recent 
evidence suggests that these RNA modifications are key switches for RNA metabolism.

It took more than 1,500 years to evolve from Ptolomeo's map to good world 
maps. The map of the human epigenome is probably much more complex. Fortunately, 
technical advances allow us to be optimistic and not expect such a long time for the final 
drawing. However, building the maps of the human epigenome and specifically of hu-
man skeletal cells, as well as the tracks to be travelled to get into the core mechanisms 
driving the move from healthy bones and joints toward disease, is still a formidable 
work. Intensive collaboration of multiple research groups working together is a must 
to accomplish such a daunting task. Previous experience in the genetic field shows that 
it may be difficult to do, but it is feasible. A new world of hope for millions of patients 
is ahead.
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Abstract

Objective Osteoarthritis is one of the most frequent and disabling diseases of the elder-
ly. Only few genetic variants have been identified for osteoarthritis, which is partly due 
to large phenotype heterogeneity. To reduce heterogeneity, we here examined cartilage 
thickness, one of the structural components of joint health. 

Methods We conducted a genome-wide association study of minimal joint space width 
(mJSW), a proxy for cartilage thickness, in a discovery set of 13,013 participants from 
five different cohorts and replication in 8,227 individuals from seven independent co-
horts. 

Results We identified five genome-wide significant (GWS, p-value≤5·0*10−08) SNPs an-
notated to four distinct loci. In addition, we found two additional loci that were sig-
nificantly replicated, but results of combined meta-analysis fell just below the genome 
wide significance threshold. The four novel associated genetic loci were located in/
near TGFA (rs2862851), PIK3R1 (rs10471753), SLBP/FGFR3 (rs2236995), and TREH/
DDX6 (rs496547), while the other two (DOT1L and SUPT3H/RUNX2) were previously 
identified. A systematic prioritization for underlying causal genes was performed us-
ing diverse lines of evidence. Exome sequencing data (n = 2,050 individuals) indicated 
that there were no rare exonic variants that could explain the identified associations. In 
addition, TGFA, FGFR3 and PIK3R1 were differentially expressed in OA cartilage lesions 
versus non-lesioned cartilage in the same individuals. 

Conclusion We identified four novel loci (TGFA, PIK3R1, FGFR3 and TREH) and con-
firmed two loci known to be associated with cartilage thickness. The identified associ-
ations were not caused by rare exonic variants. This is the first report linking TGFA to 
human OA, which may serve as a new target for future therapies.
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Introduction

In spite of advances in the understanding of OA, the absence of effective therapeutic 
targets demonstrates that a better comprehension of its causes and pathophysiological 
mechanisms is needed. Since genome-wide genetic studies are hypothesis-free and do 
not suffer from the bias of previous knowledge, they have the potential to identify novel 
biological pathways involved in OA. The discovery of novel genes has the potential to 
identify novel treatment options. In addition, more personalized medicine approaches 
for OA can be explored through prediction of risk for disease as well as classification of 
disease subtypes.

Heritability of hip OA has been estimated to be around 40–60%. However, to 
date only few genetic variants have been successfully identified[1,2]. The reasons for 
finding only a modest number of genetic loci associated with hip OA can be attributed 
partially to relatively modest samples sizes in comparison to other complex diseases, 
such as myocardial infarction[3]. In addition, phenotype heterogeneity is an important 
issue in OA genetics as this is well known to reduce power to robustly detect signals. 
The problem of heterogeneity in genetic association studies of OA has been highlight-
ed before[4,5] and is exemplified by the fact that the definition of the phenotype is a 
combination of bone and/or cartilage features as well as clinical complaints. Moreover, 
there is growing consensus that OA can be divided into multiple sub-phenotypes each 
with their own aetiology and risk factors. For example, it has been demonstrated that 
individuals with hip OA, where only cartilage degradation is involved (atrophic OA 
form), are linked to a different systemic bone phenotype compared to individuals with 
OA where bone formation is also present[6]. As a way to overcome this, we examined 
a quantitative trait, which is one of the structural components of joint health, cartilage 
thickness, as a distinct phenotype. 

Joint Space Width (JSW) is considered to be a proxy for cartilage thickness mea-
sured on hip radiographs. Minimal JSW (mJSW) has been shown to be a more reliable 
measure for hip joint health compared to the classical Kellgren & Lawrence score[7]. 
Previously, we have demonstrated that using only a modest discovery sample size (n = 
6,000), we were able to successfully identify a genome-wide significant association of 
the DOT1L locus with mJSW as well as hip OA[1,8]. We now aimed to perform a more 
powerful analysis by combining data from five studies in the discovery phase, and sub-
sequent replication in seven additional studies, amounting to a total sample size of 
21,240 to identify new genes implicated in joint health using mJSW as a proxy for carti-
lage thickness. Using whole exome sequence data from 2,050 individuals we screened 
the discovered genes for potential functional variants. Subsequently we used multiple
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▲Figure 1: Manhattan plot for association of mJSW in the discovery phase. The -log10 p-values, for
each of the 2.5 million tests performed as part of the genome wide association of minimal joint space
width of the hip (mJSW), plotted against their position per chromosome. Full results of the discovery
GWAS are accessible through https://www.glimdna.org. The grey solid horizontal line corresponds to
the genome-wide significant threshold (p-value=5x10-08). The dotted grey line corresponds to the selec-
tion for replication threshold (p-value=1x10-05).

approaches that leverage different levels of information to enforce evidence of candi-
date genes annotated close to the associated signals.

Results

Identification of novel genetic loci associated with cartilage thickness

Genome-wide Association analysis of mJSW of the hip with genetic variants was per-
formed in a discovery set that included 13,013 individuals (see Supplementary Table 
1  and Supplementary Text 1 for cohort specifics) with data on ±2,5 million genotyped 
or HapMap Phase II imputed SNPs. We applied extensive quality control measures (see 
Supplementary Table 2 and Supplementary Table 3 for details on quality control and 
exclusion criteria) leaving a total of 2,385,183 SNPs available for association analyses. 
Genomic control inflation factors for the p-values of the RS, TwinsUK, MrOS, and SOF 
GWAS were low (λ=1.02, 1.01, 1.02 and 0.99 respectively), and the inter quantile-quan-
tile plot (Supplementary Figure 1) also indicated no residual population stratification 
due to cryptic relatedness, population substructure or other biases.

The discovery analysis yielded eighteen independent SNPs with suggestive evi-
dence for association (p-value<1x10−05) with mJSW, of which five (four genetic loci) met 
the genome-wide significance threshold of p-value≤5*10−08 (Figure 1). The top SNPs 
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from these eighteen loci were selected for replication in an additional 8,227 individuals 
from seven different cohorts. We observed that six of the eighteen SNPs significantly 
replicated (p-value<0.05) with the same direction of effect (Table 1). When we com-
bined discovery and replication results in a meta-analysis, the five SNPs that met ge-
nome-wide significance in the discovery analysis became more significant and another 
two SNPs that replicated in independent cohorts reached suggestive evidence (p-val-
ue≤1*10−06) for association in the combined meta-analysis.

The top signal in the combined meta-analysis, rs1180992 (Table 1, p-
valuecombined = 3.2x10-16), is located in the intronic region of the previously OA 

associated DOT1L gene. This variant is very close to and in linkage disequilibrium with 
rs12982744 (D’=1, r2=1), which was previously found in association with mJSW and hip 
OA [1,8]. The DOT1L signal was followed in strength of association by rs2862851 (p-
valuecombined = 5.2x10−11), which is annotated to the intronic region of TGFA (Figure 2a). 

Two variants near RUNX2, rs10948155 and rs12206662, also reached genome-wide 
significance for association with mJSW (Figure 2b). The two variants in the RUNX2 
locus were weakly correlated (r2<0.2). Conditional analysis, using GCTA, showed that 
both SNPs represented different signals (Supplementary Table 4). Finally, the last 
signal that reached genome-wide significance was rs10471753, an intergenic variant 
closer to PIK3R1 (~450 Kb) than to SLC30A5 (~750Kb) (Table 1, p-valuecombined = 

3.8x10−9). Other suggestive signals for association with mJSW at a p-value≤ 1x10−6 
including signals with significant replica-tion were rs496547 (p-value=1.5*10−07), a 
downstream gene variant located in the 3’ of TREH and, an intron variant annotated 
near SLBP (rs2236995; p-value=9x10−07). All other additional signals selected in the 
discovery stage did not replicate. 

Association of identified loci with hip OA and other musculoskeletal phenotypes

We examined whether the five GWS and two suggestive mJSW loci were also 
associated with hip OA in a total of 8,649 cases and >57,000 controls. Detailed 
description of the cohorts and OA definitions is given in supplementary Table 1. 
Table 2 shows the asso-ciations found with hip OA. We observed that five of the seven 
identified mJSW loci were also associated with hip OA (p-value<0.05). Apart from the 
known DOT1L locus, the vari-ant near TGFA was significantly associated with hip OA 
(Table 2, p-value=4.3x10−05). In addition, the SNP near SLBP and the two SNPs near 
RUNX2 were associated with hip OA. One of the latter SNPs, rs10948155, is in high LD 
with a variant (rs10948172, D’=0.95 and r2=0.90) previously found in association with 
hip OA in males at borderline GWS level[2]. However, in our study, rs10948155 was 
just marginally associated with hip OA in the overall analysis (Table 2, p-value=0.021). 
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▲Figure 2: Regional association plot for the locus of rs2862851 rs12206662/rs10948155. SNPs are 
plotted by position in a 800-kb window versus association with mJSW (−log10 P) for A. rs2862851 
(TGFA locus) and B. rs12206662/rs10948155 (SUPT3H/RUNX2 locus). The purple dot highlights the 
most sig-nificant SNP in discovery analysis. Blue peaks indicate recombination rates. The SNPs 
surrounding the most significant SNP are color coded to reflect their LD with this SNP (from pairwise 
r2 values from the HapMap CEU). Genes, exons and the direction of transcription from the University 
of California at Santa Cruz genome browser are depicted. Plots were generated using Locus Zoom [9].
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Table 2: Association of mJSW loci with Hip osteoarthritis

Hip osteoarthritis

SNP Locus EA Beta SE p-value

rs2862851 DOT1L A 0.06 0.02 6.9x10-05

rs2236995 TGFA T -0.05 0.02 2.5x10-03

SUPT3H-RUNX2 T 0.01 0.02 7.6x10-01

rs10948155 SUPT3H-RUNX2 A -0.04 0.02 2.3x10-02

PIK3R1 C 0.14 0.00 1.3x10-04

rs496547 TREH-DOX6 A 0.01 0.02 5.8x10-01

rs11880992 SLBP T -0.06 0.02 9.7x10-05

SNP: single nucleotide polymorphism, EA: effect Allele, SE: standard Error.

We observed the second variant in this genomic region, an intronic variant in RUNX2, 
rs12206662, to have a larger effect size (β=0.14, p-value=1.1*10−04, r2=0.09 with 
rs10948172).

We further examined whether the identified loci were found associated with 
other phenotypes in earlier reports (Table 3). Five of the seven identified mJSW SNPs 
mapped to loci that have previously been associated with other bone-related pheno-
types, primarily height. However, many of the identified height loci were not highly cor-
related with the mJSW signal (Table 3). Additional adjustment for height did not have 
an effect on the described association with mJSW; they showed an independent, possi-
bly pleiotropic effect, on both traits. A particularly dense number of associations with 
different bone related phenotypes were present in the RUNX2 5’region, where variants 
have been associated to BMD[10], height[11], osteoarthritis[2] and ossification of the 
spine[12]. Given the low LD between the variants underlying the different GWAS sig-
nals, it is likely that these represent independent associations.

Prioritization of genes underlying the genetic loci

We used multiple approaches that leverage different levels of information (e.g., gene 
expression, regulatory regions, published literature, mouse phenotypes) to prioritize 
candidate genes at each mJSW locus. Table 4  shows the summarized results from these 
analyses. In addition to the seven loci identified in the current study, we also analyzed 
five previously published loci for hip OA[2]. First, we focused on two gene prioritization 
methods: (i) DEPICT, a novel tool designed to identify the most likely causal gene in a 
given locus, and identify gene sets that are enriched in the genetic associations[21], and 
(ii) GRAIL which uses existing literature to identify connections between genes in the
associated loci[22]. The DEPICT analysis yielded seventeen significantly prioritized
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Table 3: Association of mJSW loci with other skeletal phenotypes

Hip osteoarthritis

SNP Locus EA Beta SE

rs2862851 DOT1L A OA[1]

Height[13]

rs12982744 (r²=1.0)

rs2523178(r²=0.1)

rs2236995 TGFA T - -

Rs1220662 SUPT3H-RUNX2 T OA[2], 

Height[13]

BMD[10], 

OPLL[12]

rs10948172(r²=0.09)

rs10948222(r²=0.0)

rs117755164(r²=0.04)

 927485(r²=0.0)

rs10948155 SUPT3H-RUNX2 A OA[2], 

Height[13]

BMD[10], 

OPLL[12]

rs10948172(r²=0.84)

rs10948222(r²=0.0)

rs117755164(r²=0.21)

 927485(r²=0.0)

Rs10471753 PIK3R1 C - -

rs496547 TREH-DOX6 A Height[14]

Metabolite levels[15]

Vitiligo[16]

Celiac Disease/
RS[17]

SLE[18]

rs494459 (r2=0.36)

rs507080(r2=21)

rs638893 ((r2=0.02)

rs10892279(r2=0.36)

rs4639966(r2=0.36)

rs11880992 SLBP T Height[14] rs2247341(r²=0.6)

SNP: single nucleotide polymorphism, EA: effect Allele, SE: standard Error.

genes (FDR >0.05), from which three genes were also significantly prioritized in the 
GRAIL analysis (Supplementary Table 5 and Supplementary Table 6). Next, using 
the Online Mendelian Inheritance in Man (OMIM) database (http://omim.org), we iden-
tified genes with mutations implicated in abnormal skeletal growth in humans; for 50% 
of the loci, a skeletal syndrome gene was present (Supplementary Table 7). Similar-
ly, we investigated if any of the genes had a known bone and cartilage development 
phenotype in mice. Very similar to the human phenotypes, the mice knockouts of the 
same genes resulted in bone and cartilage phenotypes (http://mousemutant.jax.org/) 
(Supplementary Table 7). Other supporting biological evidence that we gathered con-
sisted of known expression quantitative loci (eQTL) and nonsynonymous variants in 
LD (r2>0.6) with the lead SNP of a locus (Supplementary Table 8 and Supplementary 
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Table 9), as well as expression in bone and cartilage tissue in mice using data from the 
Jackson lab database (Supplementary Table 7).

To further explore which genes are possibly underlying the genetic associations 
identified in this study, we analyzed gene expression in a paired set of non-lesioned and 
OA-lesioned cartilage samples of the RAAK study acquired from 33 donors at the time 
of joint replacement surgery for primary OA[19]. We first examined which genes are 
expressed in a set of seven human healthy cartilage samples (Supplementary Table 7). 
Additionally, we tested which of the genes located in 1MB region surrounding the lead 
SNP were differentially expressed in OA-lesioned cartilage versus non-lesioned carti-
lage of the same hip. Of the 152 genes that were selected, 129 genes were represented 
on the array. Of those, 64 genes were significantly expressed in the cartilage samples. 
For eight of the twelve loci, we found genes that were differentially expressed in OA 
lesioned cartilage versus non-lesioned cartilage (Table 4, Supplementary Table 10). 
Differential expression in cartilage healthy vs OA affected cartilage was performed like-
wise (Supplementary Table 10), while additionally adjusting for sex and age. Given 
the relatively small number of healthy samples (n=7) with large age range these data 
are less robust and we did not use these data in gene prioritization.

For each gene a prioritization score was computed, based on equally weighting of 
the ten lines of evidence (Table 4). Following this approach, RUNX2 is highly likely to be 
the causal gene associated with rs12206662 and rs10948155. Similar strong evidence 
is found for rs788748 (IGFBP3) and rs10492367 (PTHLH). In addition, suggestive ev-
idence for a causal gene is found for the following: rs10471753 (PIK3R1), rs835487 
(CHST11), rs2862851 (TGFA), rs6094710 (SULF2), rs9350591 (COL12A1) and rs11177 
(GNL3). However for some loci the current evidence is ambiguous, suggesting more 
than one gene as the potentially causal one; rs2236995 (FGFR3 or SLBP), rs11880992 
(GADD45B or DOT1L) and rs496547(KMT2A or UPK2) (Table 4)

Exome sequencing of prioritised genes

In 2,628 individuals from the Rotterdam Study, exome sequencing was performed at a 
mean depth of 55x. Of those, 2,050 individuals also had mJSW and hip OA phenotype 
data. Baseline characteristics of those individuals were similar to the source popula-
tion, mean age was 67.3 years, 57% of the individuals were female and mean of mJSW 
was 3.81 mm (SD 0.82). Details of the experimental procedure and variant calling are 
given in the supplementary material (Supplementary Text 2). Only the variants with 
a minimal allele count of three in the total population were selected for analysis. With-
in the sixteen prioritized genes, a total number of 158 variants were identified in the 
protein-coding region, of which 85 were non-synonymous and one was a stop-gain mu-
tation (Table 5, Supplementary Table 11). We first performed a single variant test, 
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where we tested each of the 86 variants changing the amino-acid sequence for asso-
ciation with the mJSW trait (Supplementary Table 11). We observed four nominal 
significant associations, with rare variants in SULF2, TGFA, RUNX2 and FGFR3. None of 
these rare exonic variants explained the original association between the GWAS hit and 
mJSW or hipOA when tested in a multivariate model (Supplementary Table 12). Next, 
we performed a burden test (SKAT)[23], to investigate whether the cumulative effects 
of the variants present in the sixteen selected genes were associated to mJSW, while 
adjusting for age and gender (Table 5). We observed a nominal significance burden test 
(p-value<0.05) for TGFA, SULF2, CHST11 and RUNX2 for mJSW. However, none of these 
findings reached significance after correction for multiple testing.

mJSW associated SNPs in regulatory regions

For most of the loci, no obvious protein-coding variants were found that could explain 
the associations. In previous studies it was shown that disease-associated variants are 
enriched in regulatory DNA regions[24,25]. We therefore examined whether the iden-
tified DNA variants (or SNPs in high LD) resided in chondrocyte and/or osteoblast spe-
cific enhancer regions, using data from ENCODE and ROADMAP[26–28]. To this end, 
we compared CHIP-seq signals from five different chromatin state markers (H3K4me3, 
H3K4me1, H3K36me3, H3K27me3, H3K9me3) in chondroblasts and osteoblasts to four 
cell lines from another origin. Together, these chromatin state markers identify promot-
er and enhancer activity in each of the cell lines. With the exception of rs2862851, we 
observed that for all mJSW genetic loci, SNPs in high LD were located in cell regulatory 
regions in chondroblast and/or osteoblast cells (see Figure 3 for an overview and Sup-
plementary Tables 13-18. for each locus).

Discussion

Only a modest number of genetic variants has been successfully identified through ge-
nome-wide association studies for OA This can in part be explained by the phenotypic 
heterogeneity of OA. Therefore, we used mJSW, a proxy for cartilage thickness in the 
hip joint, as one of the structural components of joint health. An additional advantage 
of this phenotype is its continuous nature, which increases power compared to a di-
chotomous trait, such as OA-status. We identified six independent loci associated with 
cartilage thickness in the hip joint, of which four surpassed genome-wide significance 
(TGFA, PIK3R1, SUPT3H-RUNX2, DOT1L) and two were suggestive for association with 
mJSW (SLBP/FGFR3, TREH-DDX6). Four of these loci (TGFA, SUPT3H-RUNX2, DOT1L and 
FGFR3) were also associated with hip OA.
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Table 5: Association between protein coding variants identified by exome-sequencing and mJSW.

Genetic variants tested
Gene Non-synonymous STOP gained mJSW P-value*
CHST11 3 - 0.05

COL12A1 23 1 1.00

DOT1L 13 - 1.00

FGFR3 12 - 0.64

GADD45B 1 - 0.91

GNL3 5 - 0.64

IGFBP3 2 - 0.28

KMT2A 8 - 0.40

NCOA3 7 - 0.24

PIK3R1 3 - 0.80

PTHLH 0 - -

RUNX2 2 - 0.05

SLBP 1 - 0.16

SULF3 3 - 0.05

TGFA 1 - 0.04

UPK2 1 - 0.74

*Burden Test P-value: burden test was performed between the protein-coding variants in the candidate
genes and mJSW.

The fact that we were able to identify six loci with the current sample size (13K 
individuals in the discovery) indicates that cartilage thickness is a phenotype providing 
a better yield in number of discoveries than the efforts ran with traditional composite 
radiographic scores. As a comparison, the largest GWAS study up to now, arcOGEN with 
7,4K cases and 11K controls as discovery, yielded one locus in the overall analysis, and 
seven additionally in a number of stratified analyses. Interestingly, in the current manu-
script we report on rs10948155, which is in high LD (r2>0.8) with a locus from arcOGEN

which was only marginally associated (p-value below genome-wide significance 
threshold) with OA in males only[2]. By using a cartilage specific endophenotype, ev-
idence for this locus is elevated here to genome-wide significance in the total popula-
tion, underscoring the increased power when more specific endophenotypes are used. 
Endophenotypes are quantifiable biological traits intermediate in the causal chain be-
tween genes and disease manifestation (in this case osteoarthritis). JSW can be pre-
cisely measured throughout the life of individuals[7] and also displays variation in nor-
mal subjects. Therefore, mJSW may be more tractable for the genetic dissection of OA. 
Across the cohorts in this manuscript, mJSW has been measured in different ways, using 
both hand measured JSW on radiographs as well as (semi) automatic software which 
could have added some noise to the overall meta-analysis. Future cross-calibration of 
JSW measurements might aid in a more precise measurement and additional power to 
pick up genetic loci.
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▲Figure 3: mJSW and OA associated variants are co-localized with potential gene regulatory mark-
ers. We examined the epigenetic histone marks in Chondrogenic cells, osteoblasts, hMSC, K562, HUVEC,
HeLA and NHEK cells. This heatmap of the percentage of variants in gene regulatory regions (enhancer/
promoter associated regions) in high LD (r2 >0.8) with lead GWAS SNP. Enrichment was calculated
according [25].

 To the best of our knowledge, we are the first to scrutinize exome variants in 
relation to OA identified by large scale re-sequencing. We did not find low frequency 
exonic variants in any of the prioritized genes that could explain the observed associa-
tions with mJSW. We do have to keep in mind that the power of the exome sequencing 
effort is smaller than the original discovery analysis. We were unable to examine vari-
ants with allele frequencies below 0,07%. In addition, for rare or low allele frequen-
cies, we only had power to detect relatively large effect sizes. For example, we had 80% 
power to detect a beta of 0,7 mm (almost 1SD) difference for a variant with 1% allele 
frequency. However, we tested all of the discovered exome variants in a multivariate 
analysis, and found that the novel identified rare exome variants did not affect the as-
sociation between the GWAS-identified variants and mJSW in the same sample. This 
suggests that the associations between mJSW and the identified SNPs are not explained 
by rare exonic variants and likely exert their effects through regulation of expression. 
Indeed, supporting this hypothesis, we found that many these variants (or SNPs in LD) 
were annotated in regions that were annotated as regulatory active in chondroblastic 
and/or osteoblastic cells. However, more work is needed to examine the exact biological 
mechanism underlying the identified genetic loci.

TGFA (Transforming Growth Factor Alpha, rs2862851) was the strongest novel 
locus associated with cartilage thickness and hip OA. TGFA has been suggested to be 
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involved in endochondral bone formation in mice, specifically the transition from hy-
pertrophic cartilage to bone[29]. Recent, TGFA has also been implicated in the degener-
ation of articular cartilage during OA in rats[30]. Our results now imply a relationship 
between TGFA and human OA. In addition to the genetic association, we also show that 
TGFA expression is higher in human OA affected versus non-lesioned cartilage, possibly 
indicating that TGFA has a role in cartilage remodelling.

Functional characterization of the TGFA-associated locus by an examination of 
the histone methylation marks representing promoter or enhancer activity, did not re-
veal an obvious explanation for the functional impact of the SNP. However, the examined 
histone mark data represent unstimulated cells, and it is anticipated that the promoter 
and enhancer activity change upon stimulation of the cells. It is becoming more clear 
that effects of SNPs can be stimulus and context dependent, as has recently been shown 
for human monocytes, where many regulatory variants display functionality only after 
pathophysiological relevant immune stimuli[31].

The identified SUPT3H-RUNX2 locus contains two variants, rs12206662 and 
rs10948155, which are partially independent of each other. Where rs12206662 is lo-
cated in the first intron of the RUNX2 gene near the second transcription start site (the 
so-called P2 promoter), rs10948155 is located more than 500kb away from RUNX2 
between CDC5L and SUPT3H. However, rs10948155 is in high linkage disequilibrium 
with SNPs near in the P2 promoter and SNPs located in chondroblast specific enhancer 
regions. Possibly, these enhancer regions regulate RUNX2 gene expression during en-
dochondral differentiation. RUNX2(Runt-related transcription factor 2) is a master 
transcription factor for controlling chondrocyte hypertrophy and osteoblast differen-
tiation[32]. Previous genome-wide association studies have identified variants in the 
SUPT3H-RUNX2 locus associated with other bone and cartilage related phenotypes in-
cluding height[14], bone mineral density[10] and ossification of the posterior longitu-
dinal ligament of the spine[12]. All these previously published loci are independent of 
the two mJSW SNPs identified in the current study. We hypothesize that the SNPs are 
located in long-range enhancers, which regulate RUNX2 gene expression during endo-
chondral differentiation via a chromatin-loop mediating protein.

We have also identified rs10471753, with PIK3R1(Phosphoinositide-3-Kinase, 
Regulatory subunit 1 alpha) as the closest and strongest prioritized gene, related to 
rs10471753 associated with mJSW. Mutations in this gene are known to cause the 
SHORT syndrome, which is a rare multisystem disease with several manifestations in-
cluding short stature, hernias, hyper extensibility and delayed dentition [33]. Taken 
together with the fact that PIK3R1 is differentially expressed in OA affected cartilage, 
these results identify PIK3R1 as the most likely causal gene. Another possibility is that 
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not PIK3R1 but rather a long-non-coding RNA (lncRNA), lnc-PIK3R1-4:1, is causal, since 
a variant in LD with the lead SNP is located in the predicted transcription start site of 
this lncRNA potentially affecting its expression. Although conserved in mice and zebraf-
ish, thus far no function has been ascribed to this lncRNA [34].

We confirmed a locus previously associated with cartilage thickness, the DOT1L 
locus. Our identified SNP, rs11880992 is in high LD with the previously reported SNP 
rs129827744, and both are associated with cartilage thickness and hip OA[1]. Despite 
the previously presented suggestive evidence for involvement of DOT1L in chondrogen-
ic differentiation, DOT1L did not receive a high score in our systematic prioritization 
study; the gene GADD45B, located in the region 500Kb downstream of the lead SNP, 
received a similar score. GADD45B is a transcriptional co-factor for C/EBP-β, a master 
regulator of chondrocyte differentiation[35]. Thus, it remains unclear which gene or 
genes in this locus contribute to the cartilage phenotype. Further research is needed to 
determine whether DOT1L is the true causal gene in this locus.

Our analyses suggest that the majority of prioritized genes in hip OA associated 
loci are involved in cartilage and bone developmental pathways; including TGFA, RUNX2, 
FGFR3, PTHLH, COL12A1 and others that seem to affect bone and/or cartilage develop-
ment such as PIK3R1 and KMT2A We hypothesize that the mJSW and OA associated 
variants influence gene expression regulation. The dysregulation of these genes and 
mechanisms during development may, later in life, result in an increased risk for OA.

The identified mJSW SNPs are associated with hip OA, but not with knee OA. We 
have analysed the identified SNPs also for association with knee OA in the TREAT-OA 
meta-analysis dataset[36], but found no association. This observation fits in the overall 
finding that many of the identified genetic loci for OA seem to be site-specific [37], and 
support the hypothesis that the aetiology of OA is different in each joint. Nevertheless, 
this observation can still be a result of low power in the GWAS studies that have been 
done for OA till now[38], and final conclusions on this aspect cannot be drawn at this 
point.

This is the first report linking TGFA to human OA most likely by affecting mJSW. It 
may serve as a new target for future therapies. We have identified multiple mJSW asso-
ciated loci which have previously been associated with other bone and cartilage related 
phenotypes such as bone mineral density and height, displaying a possible pleiotropic 
effect for the analysed traits. It will be important to understand how mJSW and OA as-
sociated variants can affect the developmental processes that regulate morphometry 
of the hip joint, including the formation of articular cartilage. Therefore further expres-
sion and functional studies are warranted of genes identified to be associated with hip 
OA phenotypes.
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Materials and Methods

Ethics statement

The participating studies were approved by the medical ethics committees of all partici-
pating centres, and all participants gave their written informed consent before entering 
the study

Discovery GWAS, replication and meta-analysis

We conducted genome-wide association studies of mJSW for each cohort of the discov-
ery stage: Rotterdam Study I (RS-I), Rotterdam Study II (RS-II), TwinsUK, SOF and MrOS 
using standardized age-, gender and population stratification (four principal compo-
nents) adjusted residuals from linear regression. Cohort description and details of the 
single GWAS studies are given in Supplementary Text 1 and Supplementary Table 1. 
The 6 cohorts used in the discovery stage were combined in a joined meta-analysis using 
inverse variance weighting with METAL[39]. Genomic control correction was applied to 
the standard errors and P-values before meta-analysis. SNPs with a p-value<=5×10−6 
were selected for replication. The top SNPs for each independent locus were taken for 
replication in seven studies: the Genetics of Osteoarthritis and Lifestyle (GOAL) study, 
the Chingford study, CHECK (Cohort Hip & Cohort Knee), Genetics osteoARthritis and 
progression (GARP) study, the Genetics of Generalized Osteoarthritis (GOGO), the John-
ston County Osteoarthritis Project (JoCo) and additionally the Nottingham OA case-con-
trol study for association with Hip OA (see Supplemental material for detailed infor-
mation of the cohorts). Association of the SNPs with mJSW was additionally adjusted 
for height to test its independence. Secondary analyses included: association of the top 
SNPs with hip OA using logistic regression analysis (age and gender adjusted and by 
study centres an/or relatedness when it was pertinent). We used conditional analyses 
to investigate whether there are any independent signals in the identified associated 
loci, which were implemented using GCTA-COJO analysis[40].

Phenotype description of minimal Joint Space width (mJSW)

The mJSW was assessed at pelvic radiographs in anterior-posterior position. The mJSW 
was measured in mm, along a radius from the center of the femoral head, and defined 
as the shortest distance found from the femoral head to the acetabulum. Within the 
Rotterdam Study, we used a 0.5 mm graduated magnifying glass laid directly over the 
radiograph to measure the minimal joint space width of the hip joints[41]. Within SOF 
and MrOS, a handheld caliper and reticule was used to measured mJSW to the nearest 
0.1mm between the acetabular rim and proximal head of the femur[42]. For CHECK, 
mJSW was measured semi-automatic with the Software tool HOLY[43].
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Phenotype description of radiographic hip OA

Radiographic hip OA was defined in the RS-I, RS-II, RSIII, Twins-UK, Chingford, and JoCo 
studies using Kellgren and Lawrence (KL) grade. Hip OA cases were defined as a KL 
grade≥2 on either side of the hip or THR due to OA. Hip OA controls were defined as 
no THR for OA and KL grade≤1 and JSN≤1. In MrOS and SOF cohorts, radiographic hip 
OA case-control was defined by a modified Croft grade, as previously described[44], 
where cases were defined as a Croft score ≥ 2 on either side of the hip or THR due to 
OA and controls were defined as a Croft score ≤ 1 on both sides of the hip and no THR. 
Hip OA cases in the GOAL and Nottingham OA studies were defined by having THR, and 
controls were radiographically free of hip OA, as previously described [45]. In GARP, hip 
osteoarthritis was defined as pain or stiffness in the groin and hip region on most days 
of the preceding month in addition to femoral or acetabular osteophytes or axial joint 
space narrowing on radiography or prosthesis due to osteoarthritis. In GOGO, hip OA 
was defined as KL grade>=2, or minimal joint space width<=2.5 mm, or the combina-
tion of joint space narrowing grade>=2 and any osteophyte of grade>=1, or history of 
joint replacement for OA. In JoCo, hip OA cases were defined as KL grade>=2 or THR in 
at least one hip. Hip OA controls were defined as KL grade<= 1 in both hips.

Gene prioritization analysis

We have used several available tools and publicly available databases to prioritize genes 
in known and newly discovered osteoarthritis associated regions. Locus gene sets were 
constructed by taking a region of 500Kb upstream and 500Kb downstream of the lead 
SNP of that locus. We analysed 152 genes in 13 independent loci associated with mini-
mal joint space width in the hip joint (mJSW) for 7 loci, hip OA for 4 loci, total joint re-
placement (TJR) for 1 locus and total hip replacement (THR) for 1 locus[2]. We analysed 
the following biological evidence for each gene at all loci; Nearest located genes: Taken 
from the UCSC genome browser, GRCh37/hg19[46]. DEPICT gene prioritization: Da-
ta-driven Expression-Prioritized Integration for Complex Traits, a novel tool designed 
to identify the most likely causal gene in a given locus and to gene sets that are enriched 
in the genetic associations[21]. DEPICT was used to prioritize genes in a 1MB region 
around the found SNPs that were significant associated with the osteoarthritis pheno-
type, taking a region of 500Kb upstream and 500Kb downstream of the lead SNP of 
that locus. Gene prioritization analysis was performed to directly investigate functional 
similarities among genes from different associated regions, significance was defined by 
false discovery rate (FDR ≤ 5%). GRAIL gene prioritization: Gene Relationships Across 
Implicated Loci (GRAIL), was used to determine connectively between genes across OA 
implicated loci based on literature associations [22]. A GRAIL analysis was performed 
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on 10 independent OA associated loci, based on existing literature in PubMed till August 
2014. Mouse gene expression and phenotype: For each investigated gene, expression in 
mouse bone and/or cartilage tissue during several developmental stages as well as for 
adult tissue was determined using data from the Jackson lab database (http://www.in-
formatics.jax.org/). In addition mouse phenotype data was also obtained for each gene. 
OMIM phenotype: Using the Online Mendelian Inheritance in Man (OMIM) database we 
examined which genes were involved in abnormal skeletal growth syndromes when 
mutated (http://omim.org). Expression quantitative trait loci: eQTL information was 
taken from the Blood eQTL browser (http://genenetwork.nl/bloodeqtlbrowser/) and 
the eQTL browser (http://www.ncbi.nlm.nih.gov/projects/gap/eqtl/index.cgi) using 
the lead SNP in each locus [20]. Non-synonymous variants: Last we determined if there 
were any nonsynonymous variants in LD (r2>0.6) with the lead SNP of a locus, using 
HaploReg V2 and the SNP Annotation and Proxy Search (SNAP) tools[47,48]. For each 
gene we assigned a score based on equally weighted lines of evidence.

Human cartilage gene expression

We have used cartilage samples from the RAAK study to study gene expression in pre-
served and affected cartilage from individuals undergoing joint replacement[19]. The 
ongoing Research Arthritis and Articular Cartilage (RAAK) study is aimed at the bio-
banking of blood, joint materials (cartilage, bone and where available ligaments of 
knees and hips) and bone marrow stem cells (hip joints only) of patients and controls in 
the Leiden University Medical Center and collaborating outpatient clinics in the Leiden 
area. At the moment of collection (within 2 hours following surgery) tissue was washed 
extensively with phosphate buffered saline (PBS) to decrease the risk of contamination 
by blood, and cartilage was collected of the weight-bearing area of the joint. Cartilage 
was classified macroscopically and collected separately for macroscopically OA affected 
and preserved regions. Classification was done according to predefined features for OA 
related damage based on colour/whiteness of the cartilage, based on surface integrity 
as determined by visible fibrillation/crack formation, and based on depth and hardness 
of the cartilage upon sampling with a scalpel. During collection with a scalpel, care was 
taken to avoid contamination with bone or synovium. Collected cartilage was snap fro-
zen in liquid nitrogen and stored at -80°C prior to RNA extraction. Tissues have been 
stored tailored to apply staining and immunohistochemistry(IHC). Furthermore, DNA 
and RNA have been isolated from the preserved and affected areas of the respective 
tissues in order to apply genetic, transcriptomic and epigenomic profiling with respect 
to the OA pathophysiological process.

After in vitro transcription, amplification, and labeling with biotin-labeled nu-
cleotides (Illumina TotalPrep RNA Amplification Kit) Illumina HumanHT-12 v3 mi-
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croarrays were hybridized. Sample pairs were randomly dispersed over the microar-
rays, however each pair was measured on a single chip. Microarrays were read using 
an Illumina Beadarray 500GX scanner and after basic quality checks using Beadstudio 
software data were analyzed in R statistical programming language. Intensity values 
were normalized using the “rsn” option in the Lumi-package and absence of large scale 
between-chip effects was confirmed using the Globaltest-package in which the individ-
ual chip numbers were tested for association to the raw data. After removal of probes 
that were not optimally measured (detection p-value>0.05 in more than 50% of the 
samples) a paired t-test was performed on all sample pairs while adjusting for chip (to 
adjust for possible batch effects) and using multiple testing correction as implement-
ed in the “BH” (Benjamini and Hochberg) option in the Limma-package. Analyses for 
differential expression between OA and healthy and between preserved and healthy 
cartilage was performed likewise, adjusting in addition for sex and for age.

Exome sequencing

Exome sequencing was performed in 2628 individuals from the Rotterdam Study the 
average mean coverage was 55x, corresponding to approximately 80% of the targeted 
regions covered by at least 20 reads. The exome sequencing was performed in house 
(HuGe-F, www.glimDNA.org). Details of the technical procedure and variant calling are 
given in S2 Text. We tested the exome variants for association with mJSW and/or hip 
OA in two ways. Each individual variant was tested for association with mJSW using 
the single variant option within RV-test, while adjusting for age and sex. In addition, 
we did a burden test for each of the selected genes by using SNP-set kernel association 
test (SKAT-O). SKAT aggregates individual score test statistics of SNPs in a SNP set and 
computes SNP-set level p-values for a gene[23].

Visualization of the regulatory landscape of mJSW associated loci

For each of the top mJSW GWAS associated SNPs the LD region was determined using 
the 1000G Phase 1 population using the Haploreg tool [47]. The LD threshold was set at 
r2≥0.8. For each of these SNPs it was determined if the variant was located in a potential 
enhancer region using the Roadmap consortium reference epigenomes data set[27]. 
Heatmaps were constructed by calculating the percentage of variants in LD with the 
top mJSW GWAS found SNP located in enhancer regions as defined by the Roadmap 
epigenome chromatin states. The reference epigenomes were downloaded from the of-
ficial data portal accompanying[27]. Reference epigenome data was used from mesen-
chymal stem cell derived chondrocyte cultured cells, Osteoblast, Bone marrow derived 
cultured mesenchymal stem cells, K562, HUVEC, HeLA and NHEK cells. Reference epig-
enomes were chromatin state models based on ChIPseq data of 5 core histone marks 
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(H3K4me3, H3K4me1, H3K36me3, H3K27me3, H3K9me3) and an additional H3K27ac 
histone mark, the Roadmap expanded 18-state model.

ChIPseq data of mesenchymal stem cell derived chondrocyte cultured cells, and 
bone marrow derived cultured mesenchymal stem cells were generated by the NHI 
roadmap epigenomics project [28]. ChIPseq data of, Osteoblast, K562, HUVEC, HeLA 
and NHEK cells were generated by the ENCODE consortium[26]. All data and annota-
tion tracks were downloaded through the UCSC genome browser table tool. Visualiza-
tion of all ChIPseq annotation and roadmap full epigenomes tracks was done through 
the UCSC genome browser on GRCh37/hg19. Heatmaps were plotted in R using the 
CRAN software packages gplots and RcolorBrewer. Enrichment was calculated accord-
ing to methods described in Trynka et al[25].
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Abstract 

Background: Despite recent advances in the understanding of the genetic architecture 
of osteoarthritis (OA), only two genetic loci have been identified for OA of the hand, in 
part explained by the complexity of the different hand joints and heterogeneity of OA 
pathology..

Methods: We used data from the Rotterdam Study (RSI, RSII and RSIII) to create  three 
hand OA phenotypes based on clustering patterns of radiographic OA severity to in-
crease power in our modest discovery GWAS in the Rotterdam Study (RS) (n=8,700), and 
sought replication in an independent cohort, the Framingham Heart Study (n=1,203). 
We used multiple approaches that leverage different levels of information and function-
al data to further investigate the underlying biological mechanisms and candidate genes 
for replicated loci. We also attempted to replicate known OA loci at other joint sites, 
including the hips and knees.

Results: We found two novel genome-wide significant loci for OA in the thumb joints. 
We identified WNT9A as a possible novel causal gene involved in OA pathogenesis. Fur-
thermore, several previously identified genetic loci for OA seem to confer risk for OA 
across multiple joints: TGFa, RUNX2, COL27A1, ASTN2, IL11 and GDF5-loci.

Conclusions: We identified a robust novel genetic locus for hand OA on chromosome 1, 
of which WNT9A is the most likely causal gene. In addition, multiple genetic loci were 
identified to be associated with OA across multiple joints. Our study confirms the poten-
tial for novel insight into the genetic architecture of OA by using biologically meaningful 
stratified phenotypes. 
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Introduction

Osteoarthritis (OA) is a serious destructive joint disorder and the third most rapidly 
rising condition associated with disability[1]. Despite this, no effective treatments that 
target OA are available. Current treatments only manage pain, not the underlying mech-
anisms of disease etiology. An estimated 5% of the world population is affected by OA, 
with hand OA as one of its most prevalent forms. Given the high prevalence with age 
and high estimated lifetime risk rates for symptomatic hand OA (39.8%), the number 
of individuals affected will only continue to increase[2, 3]. Hand OA has a high clinical 
burden, involving considerable pain, deformity, and impaired function[4-6]. In addition, 
hand joints are non-weight bearing, and therefore may reflect the systemic aspects of 
the disease more than knee and/or hip OA, where mechanical loading is a dominant risk 
factor[7]. A better understanding of hand OA, its causes and pathophysiological mecha-
nisms is therefore urgently needed.

Hand OA is a complex multifactorial disorder. It shares risk factors, such as re-
petitive movements and obesity, with OA at other joint sites[8, 9]. Hand OA also has a 
strong genetic component, with heritability estimates ranging from 39%–84% depend-
ing on the hand joint affected[10, 11]. Recently, major advances were made in elucidat-
ing the genetic background of hip and knee OA, using large (n>400,000 individuals) 
genome-wide association studies (GWAS)[12-14]. Yet, for hand OA only two common 
genetic loci have been found near the MGP and ALDH1A2 genes[15, 16]. The lack of 
findings for hand OA may be attributed to the modest samples sizes (n<9,000 individu-
als) in previous GWAS and disease heterogeneity[17], which is known to reduce power 
to robustly detect genetic loci[18]. 

Osteoarthritis in the hand may be present in any joint, but is most prevalent in the 
distal interphalangeal joints (DIP), first carpometacarpal (CMC1) and trapezioscaphoid 
(TS) joints, followed by the proximal interphalangeal joints (PIP). Osteoarthritis is least 
prevalent in metacarpophalangeal joints (MCP)(19, 20). Diverse definitions of hand OA 
have been used including nodal hand OA (interphalangeal (IP) joints), thumb base OA 
(CMC1/TS), and generalized hand OA (DIP/PIP/CMC1)[19, 20] with varying results, 
suggesting that disease etiology may differ between the joints. Moreover, OA affects 
multiple tissues within the joint including cartilage and bone. This further contributes 
to disease heterogeneity and warrants the assessment of hand OA by endophenotypes 
such as joint space narrowing (JSN) and osteophytes (OST) that may capture separate 
biological processes underlying OA pathology. The use of endophenotypes, quantifiable 
biological phenotypes intermediate to the genes and the disease, has been successfully 
used in OA for the detection of novel genetic loci[16, 21, 22] in knee and hip OA, and 
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may provide new insights into hand OA. For heterogeneous diseases such as OA, strati-
fication of OA phenotypes into different dimensions of disease is one way of increasing 
power in GWAS[18]. There are few GWAS of hand OA and none have examined hierar-
chically defined clusters of OA joint presentation in the hands or hand OA endopheno-
types that may provide new insights into hand OA pathogenesis. We therefore set out to 
examine the occurrence of OA across hand joints and conduct a GWAS stratified by hand 
OA patterns [23] to identify novel genetic loci for hand OA.

Methods

GWAS, discovery, replication and meta‐analysis

We conducted genome-wide association studies (GWASs) on radiographic structural 
phenotypes for OA of the hand using data from the Rotterdam Study (RS) (n~8,700)
[24]. For a detailed description of the RS, sub-cohorts and GWAS methods, see online 
Supplementary  Text and Table 1. Briefly, genotypes were imputed to the Haplotype 
Reference Consortium reference panel (v1.0) using the Michigan Imputation Server[25]. 
We assessed genetic associations in each RS sub-cohort using linear regression mod-
els adjusted for age, sex and the first four genetic principal components.  RVtests[26] 
was used for the GWAS analyses and results were quality controlled using EasyQC[27]. 
Variants with an imputation quality<0.3, minor allele frequency<0.05 or effective allele 
count<5 were excluded and genomic control correction was applied to all standard er-
ror and p-values. Meta-analysis between the discovery cohorts was performed using 
fixed-effects inverse variance weighting with METAL[28]. Manhattan plots and QQ-plots 
were generated using R and R package qqman[29]. Independent variants with a p-val-
ue<1x10-06 and a chi-squared statistic test of heterogeneity p-value>1x10-06 were select-
ed for replication in the Framingham Heart Study (FHS) (n=1,203)[30]. For a detailed 
description of the FHS, see the online Supplementary Text. Summary level data 
from the discovery and replication stage were combined in a joint meta-analysis 
(METAL)[28]. Variants met criteria for replication if the association reached a p-
value<0.05, had the same direction of effect as the discovery sample, and reached a 
joint meta-analysis p-value<5x10-08. Replicated variants were also examined for 
association with clinical OA (i.e., hospital diagnosed OA) based on GWAS summary 
statistics from a large-scale OA meta-analysis of data from the UK Biobank and 
Icelandic deCODE populations[14, 15]. For a detailed description of the UK Biobank 
and deCODE, see the online Supplementary Text. Associations that reached a p-
value<0.01 were considered statistically significant.
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Table 1: General Characteristics of the  study population

Cohort RS-I RS-II RS-III
Hand

 n (OA cases) 4,829 (1,830) 1,791 (688) 2,071 (526)
Female (%) 2773 (0.57) 964 (0.54) 1180 (0.57)

Age (sd) 67.6(7.9) 64.6(7.9) 57.1(7.0)
Klsum (aver.(sd)) 8.4 (9.9) 6.9 (4.0) 4.7 (6.5)

Osteophytes (aver.(sd)) 7.1 (7.8) 6.8 (8.2) 4.6 (6.3)

JSN (aver.(sd)) 0.84 (2.4)  0.34 (1.3) 0.2 (0.8)
Finger

n (OA cases) 4,839 (1,244) 1,803 (474) 2,072 (298)
Female (%) 2779 (0.57) 972 (0.54) 1181 (0.57)

Age (sd) 67.6(7.9) 64.6(7.9) 57.1(7.0)
Klsum (aver.(sd)) 5.8 (7.4) 4.5 (6.1) 3.0 (4.7)

Osteophytes (aver.(sd)) 4.7 (5.5)  4.3 (5.8) 2.9 (4.5)
JSN (aver.(sd)) 0.6 (1.9) 0.25 (1.1) 0.1 (0.7)

Thumb
n (OA cases) 4,882 (916) 1,813 (255) 2,083 (166)
Female (%) 2785 (0.57) 972 (0.54) 1184 (0.57)

Age (sd) 67.6(7.9) 64.6(7.9) 57.1(7.0)
Klsum (aver.(sd))  2.1 (3.3) 1.2 (2.3) 0.8 (1.7)

Osteophytes (aver.(sd)) 1.3 (2.1) 0.93 (1.7) 0.6 (1.3)
JSN (aver.(sd)) 0.4 (1.0) 0.18 (0.63) 0.1 (0.4)

OA: osteoarthritis, KL: Kellgren-Lawerence, JSN: joint space narrowing, aver.: average, sd: standard de-
viation, RS: Rotterdam Study

Detailed phenotype descriptions

For each participant, all hand joints (16 joints per hand, 32 joints per individual) were 
scored for Kellgren and Lawrence (KL) grade[31] based on hand radiographs. KL grade 
is a semi-quantitative score ranging from 0-4, where higher scores indicate more severe 
disease. Radiographic OA was defined as KL-grade ≥2 (definite joint space narrowing 
and definite osteophytes). Each joint was also scored for individual radiographic fea-
tures including joint space narrowing (JSN) and osteophytosis (OST)[31]. The JSN and 
OST scores are semi-quantitative scores ranging from 0-3, where 0=none, 1=possible, 
2=definite and 3=marked. 

We conducted hierarchical clustering of KL grade across all hand joints to identi-
fy patterns of disease occurrence defined by location and disease severity (see online 
supplementary text). This yielded three semi-quantitative hand OA phenotypes for 
analysis: 1) hand KLsum=sum of KL grades across all DIP, PIP, MCP, IP, and CMC1 joints 
in both hands (15 joints per hand, 30 joints per individual, hand KLsum score range: 0 
- 120), 2) finger KLsum=sum of KL grades across all DIP and PIP joints in both hands
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▲Figure 1: Tree-dendrogram and multidimensional scaling (MDS) plot of KL scores in the joints
of the hand. a. tree-dendogram of complete hierarchal clustering of Euclidean distance matrix of KL
scores of groups of joints. Joints were grouped per ‘type’ and per hand, left or right. b. MDS plot of KL
scores for all hand joints left (L) and right (R), not grouped per “type”. Data consisted of all available
data from RSI, RSII and RSIII (n=8,691). Selected clusters are depicted by the different dashed lines.  OA:
osteoarthritis, KL: Kellgren-Lawrence OA severity score, TS: trapezioscaphoid joints, CMC: carpometa-
carpal joints, PIP: proximal interphalangeal joints, DIP: distal interphalangeal joints, MCP: metacarpo-
phalangeal joints and IP: interphalangeal joints. L/R: left or right joint, number denotes which joint, i.e.,
PIP2L: the second PIP joint at the left hand. See supplementary figures 2-3 for dendrogram and MDS
plots for joint space narrowing and osteophytosis.

(8 joints per hand, 16 joints per individual, KLsum score range: 0 - 64), and 3) Thumb 
KLsum=sum of KL grades across the CMC1 and TS joint (2 joints per hand, 4 joints per 
individual, KLsum score range: 0 - 16). Individuals with a missing KL grade in one or 
more hand joints were excluded from the analysis of phenotypes that required scoring 
of the missing joint(s). Also, individuals with missing age, sex or genetic principal com-
ponents were excluded from all analyses (Table 1).

Post GWAS analysis

Post GWAS analysis consisted of multiple bioinformatic and functional analyses (online 
Supplementary Text). Briefly, all GWAS variants were annotated using HaploReg 
(V4.1) and FUMA[32, 33]. Intersection of variants with epigenetic markers, 
proteins, tran-scription factor (TF) motifs and binding, and chromatin interactions 
was done using data from ROADMAP, ENCODE, HaploReg (V4.1) and the 3D genome 
browser[34-37]. Functional studies included expression quantitative trait loci (eQTL) 
analysis, methyl-ation expression quantitative trait loci (meQTL) analysis, ATAC-seq 
analysis and dif-ferential gene expression analysis. All functional analyses were 
performed in human articular cartilage. Details are provided in the online 
Supplementary Text.  
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Results 

Patterns of osteoarthritis severity in joints of the hand

We used hierarchal cluster analysis on the KL-grades of all 32 hand joints of the left hand 
and right hand to identify clusters (Figure 1).  Tight symmetric clustering between the 
left and right joints was seen, in addition to clustering based on joint group, which is in 
line with previous findings [19, 38, 39] (Figure 1a – b).   Clustering based on individual 
radiographic features, joint space narrowing (JSN) and number of osteophytes (OST), 
produced similar symmetric and joint group clusters (online Supplementary Figures 
S1 and S2). We observed consistent clustering of the PIP with the DIP joints and the TS 
with the CMC joints (Figure 1, online Supplementary Figure S1 and S2). Based on 
these analyses, we created three semi-quantitative hand OA phenotypes: hand KLsum, 
thumb KLsum and finger KLsum (Table 1).    

Identification of genetic hand osteoarthritis loci

We conducted genome-wide association studies (GWAS) on each of the three iden-
tified hand OA phenotypes in a discovery sample that included RS-I, RS-II and RS-III 
cohorts (n~ 8,700) (Table S1). In total, we identified seven independent signals with 
genome-wide suggestive association (p-value<1x10-06) which were taken forward for 
replication in the Framingham Heart Study (FHS, n=1,203) (Figure 2, Table 2). In to-
tal, four independent signals were genome-wide significant in the meta-analysis (p-val-
ue≤5x10-08), of which three were significantly replicated (p-value<0.05) (Table 2). Two 
of these signals were novel osteoarthritis associated loci. The first and most significant 
novel locus was located on chromosome 1 near the ZNF678, WNT3A and WNT9A genes, 
with rs10916199 as the lead single nucleotide variant (SNV). This signal is replicated 
(p-value<0.05) and genome-wide significantly associated with thumb KLsum (beta=-
0.31, p-value=2.36x10-13). The second replicated novel locus is located on chromosome 
11 containing the F2, LRP4 and CREB3L1 genes, and is associated with thumb KLsum 
(beta=-0.19, p-value=4.7x10-08). We also identified two known OA associated loci. The 
first locus was located near the MGP gene, with rs4767133 as the lead SNV. This locus 
was previously found to be associated with hand KLsum [16]. The second known OA 
locus, also located on chromosome 12, is the CCDC91-locus, which was also previously 
found to be associated with hand KLsum, though it did not reach genome-wide sig-
nificance[16]. Here, the lead variant rs12049916, was genome-wide significantly asso-
ciated with hand KLsum (beta=0.78, p-value=1.5x10-08) and finger KLsum (beta=0.58, 
p-value=2.0x10-08), but did not reach nominal significance in the replication cohort, 
though the direction of effect was the same between discovery and replication cohorts 
(Table 2).
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▲Figure 2: Combined Manhattan-plot of GWAS discovery results of all radiographic hand OA struc-
tural phenotypes. thumb= thumb KLsum score, finger= finger KLsum score and hand: handklsum score.
GWAS discovery consists of RSI, RSII and RSIII, and was adjusted for age, sex, and the first four genetic
principle components. The −log10 p-values, for each of the ~11 million SNPs analyzed (remaining after
EASYQC quality control) from the association studies is plotted against their position per chromosome.
The dotted red horizontal line corresponds to the genome-wide significant threshold (p-vslur=5*10−08).
The solid grey line corresponds to the selection for replication threshold (p-value=5*10−06). Lead SNP
location is represented by [] (intronic), if the SNP is localized intergenic the dashes denotes the distance,
-≤10 kb, --≤100 kb, ----≤1 Mkb, ----≥1 Mkb. GWAS, genome-wide association studies. For plots of the indi-
vidual GWAS see Supplementary Figures 3-5.

To examine if replicated loci were also associated with clinically defined OA, we 
looked up findings in GWAS summary statistics from a recent large-scale OA meta-analy-
sis that included the UK Biobank and deCODE populations[14, 15](Table 3). Of the nov-
el signals, only rs10916199 (thumb KLsum) was significantly associated with its match-
ing clinical OA phenotype (thumb OA: OR=0.9, 95%CI=0.86-0.95, p-value=5.7x10-05). 
Of the known signals, rs4764133 was significantly associated with multiple clinical 
OA phenotypes: thumb OA (OR=1.07, 95%CI= 1.03-1.12, p-value=6.3x10-04), finger OA 
(OR=1.12, 95%CI=1.07-1.17, p-value=5.7-10-07), hand OA (OR=1.09, 95%CI=1.04-1.13, 
p-value=6.7x10-05), and nominal significantly with knee OA (OR=0.99, 95%CI=0.96-
1.00,  p-value 1.8x10-02)(Table 3).

WNT9A as potential causal gene for thumb OA

We examined the rs10916199 locus in more detail given the strong and consistent as-
sociation with thumb OA. Different levels of information were leveraged for all genes 
within 1Mb surrounding rs10916199 in order to prioritize a putative causal gene (Fig-
ure 3, online supplementary text). First, we meta-analyzed two human osteoarthritic 
cartilage expression quantitative trait loci (eQTL) datasets (n=116, hip/knee joints, on-
line supplementary Table S1)[40, 41] and found no significant effect of rs10916199 
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Table 3: Association with xosteoarthritis phenotypes

Thumb OA 
(7,280 cases; 605,132 controls)

Finger OA 
(7,037 cases; 222,772 controls)

rsID EA EAF OR 95%CI P-value OR 95%CI P-value

rs10916199 A 0.81 0.91 0.86-0.95 5.7x10-05 0.98 0.93-1.04 0.57

rs2070852 C 0.69 0.97 0.89-1.05 0.47 0.99 0.94-103 0.58

rs4764133 T 0.39 1.07 1.03-1.12 6.3x10-04 1.12 1.07-1.17 5.7x10-07

rs12049916 A 0.77 1.00 0.96-1.05 0.87 0.99 0.94-1.04 0.67

Hand OA 
(8,591 cases; 224,326 controls)

Hip OA  
(17,151 cases, 613,790)

rsID EA EAF OR 95%CI P-value OR 95%CI P-value

rs10916199 A 0.81 1.03 0.98-1.08 0.32 1.00 0.98-1.03 0.95

rs2070852 C 0.69 0.99 0.96-103 0.80 0.98 0.96-1.01 0.22

rs4764133 T 0.39 1.09 1.04-1.13 6.7x10-04 0.99 0.96-1.01 0.30

rs12049916 A 0.77 0.99 0.94-1.04 0.68 0.96 0.93-0.99 2.9x10-03

KneeOA 
(24,919 cases, 613,702 controls)

rsID EA EAF OR 95%CI P-value

rs10916199 A 0.81 0.99 0.97-1.02 0.59

rs2070852 C 0.69 0.99 0.97-1.01 0.40

rs4764133 T 0.39 0.98 0.96-1.00 0.018

rs12049916 A 0.77 0.99 0.97-1.01 0.27

Thumb OA, Finger OA, HandOA GWAS summary statistics are from the DECODE cohort, Hip OA 
and Knee OA summary statistics are from a meta-analysis of DECODE and UKbiobank cohorts. 
OA: osteoarthritis, EA: Effect Allele, NEA: Non Effect Allele, EAF: Effect Allele Frequency, SE: Standard 
Error, OR: odds ratio, CI: Confidence Interval

on gene expression in these datasets. Next, there were significant methylation 
quantitative trait loci (meQTL) associated with rs10916109 and two CpG sites in 
human osteoar-thritic cartilage (knee/hip joints): CpG09796739 (beta=0.39, FDR p-
value=8.3x10-07) and CpG11520395 (beta=0.21, FDR p-value=5.5x10-03) (Figure 
3e, zone 2). These methylation sites are located in a region flanking an active 
transcriptional start site in primary osteoblasts and chondrogenic cells (Figure 3b).

To further assess co-localization of the identified genetic loci with regulatory 
function during cartilage differentiation, we intersected the GWAS signals in the lo-cus 
with accessible chromatin regions (ATAC-seq peaks) in rare human fetal cartilage 
acquired from proximal and distal long bones from gestational day(E) 59 of 
development[42]. Two of the SNVs in high LD (r2≥0.8) with rs10916199 
(rs74140304 and rs11588850) intersected with accessible chromatin regions 
across multiple human long bone cartilage (Figure 3c). In addition, rs74140304 also 
intersected with an active transcription start site in osteoblast and chondrogenic cells 
(Figure 3b)[28]. Next, we examined 3D chromatin conformation in the locus. 
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Since no chromatin conformation capture data were available for chondrogenic or 
bone cells, we examined data from hu-man mesenchymal stem cells (hMSC), which are 
stem cell progenitors for chondrocytes and osteoblasts (Figure 3g)[28]. The genomic 
location of rs1158850 (Figure 3g, zone 2) appears to come into close proximity with 
the promoter region of WNT9A (Figure 3g, zone 3). In addition, CTCF binding peaks 
in osteoblasts also intersect with the WN-T9A promoter region (Figure 3f, zone 3), and 
are located near rs11588850 (Figure 3f, zone 2).

Next, differential expression analysis between OA lesioned and preserved carti-
lage (hip/knee joints) identified WNT9A as the most significant result, with increased 
expression in OA lesioned cartilage (n=21, fold change=2.42, p-value=9.4x10-08, online 
Supplementary Table S2). Lastly, we examined whether rs11588850 may significantly 
affect (p-value<4.0x10-08) the regulatory transcription factor (TF) binding motifs (37) 
located within the WNT9A promoter[35]. The minor allele (G) of rs11588850 is in high 
linkage disequilibrium (r2>0.8) with the OA risk increasing allele (G) of rs10916199, 
which significantly increases the binding affinity of the TF binding motif for RAD21 
(G-allele LOD=11.2, A-allele LOD=9.8). The RAD21 protein has been previously shown 
to bind to the WNT9A promoter region (online Supplementary Table S3). Thus, our 
results indicate WNT9A as novel OA associated gene, where rs1158850 is a potential 
regulatory variant for WNT9A (Figure 3, zone 2-3).   

Additional hand osteoarthritis associated loci

Osteoarthritis is highly heritable and co-occurrence of OA in multiple joint sites is well 
recognized[43]. As the hand joints are non-weight bearing, causes of OA in these joints 
may reflect effects of systemic risk factors, unlike the hip and knee joint where me-
chanical loading is a dominant risk factor[7]. Thus, we examined whether other known 
OA loci may also confer risk for hand OA (Figure 4). For 29 of the previously reported 
OA associated SNVs[13, 14], nominally significant associations (p-value<0.05) were ob-
served for one or more hand OA phenotypes. Strong associations were seen for known-
hand OA loci: ALDH1A2-locus (rs3204689), MGP-locus (rs4767133)(Figure 4a and 4b) 
and COG5 (rs3815148)[44], an SNV identified from a candidate gene study for hand OA. 
Interestingly, the MGP- and ALDH1A2-loci, were only associated with finger and/or 
hand OA phenotypes, but not with thumb OA. In contrast, the BCL7A-locus 
(rs11059094), was only associated with thumb OA. Strikingly, several reported knee 
and hip OA loci were also associated with hand OA phenotypes in our study 
(Bonferroni, p-value<5.8x10-04): RUNX2-locus (rs12154055), COL27A1-locus 
(rs919642), ASTN2-locus (rs13253416), IL11-locus (rs4252548), TGFa-locus 
(rs3771501) and GDF5-locus (rs143384)(Figure 4b). Since some of these known loci 
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▲Figure 4: Heatmap depicting the effect of OA associated SNVs in in each hand OA phenotype. a.
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were previously found to be associated with knee and/or hip OA, they may reflect 
common mechanisms across all joints in OA.  

Discussion

We identified four genome-wide significant loci associated with hand OA phenotypes, 
of which two were novel and specific for thumb OA. Integration of multiple lines of 
data provided cumulative evidence that WNT9A may be a causal gene for thumb OA. 
We first conducted a cluster analysis of hand joints to identify less heterogeneous 
clusters of joints that served as the basis of the hand OA phenotypes assessed in this 
GWAS. With this approach of using radiographically defined biologically relevant OA 
phenotypes to reduce phenotype heterogeneity and increase statistical power, we 
were able to robust-ly identify known and novel OA loci despite our modest sample 
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size (n~9,900)[18, 22]. This indicates that assessment of stratified phenotypes in OA 
may be warranted to im-prove  GWAS statistical power and provide novel insight into 
OA biology. 

Using bioinformatic analysis and functional genomics datasets, we were able 
to identify rs1158850 as potential causal variant. This SNV is nearby meQTL CpGs and 
the G allele of this variant is predicted to increase RAD21 (RAD21 Cohesin Complex 
Compo-nent) binding affinity in a region that has chromatin interactions with the 
WNT9A pro-moter. RAD21 is a part of the cohesion complex, involved in the formation 
of chromatin loops with CTCF[45]. Both RAD21 and CTCF bind to the WNT9A 
promoter region. In line with these findings, WNT9A expression was significantly 
increased in OA lesioned cartilage compared to preserved OA cartilage. Combining all 
results, we postulate that rs1158850 is located in a gene regulatory element, 
increases RAD21 binding, and me-diated by CTCF, interacts with the WNT9A 
promoter to influence WNT9A expression.  

WNT9A (Wingless-type MMTV integration site family, member 9A) previously 
known as WNT14, is a member of the WNT gene family, and has been shown to play a 
central role in synovial joint formation[46, 47]. Knockout WNT9A mice have severe 
skel-etal developmental defects, and are neonatal lethal[48]. Expression of WNT 
members by chondrocytes leads to the destruction of the cartilage matrix by the 
upregulation of Wnt/β-catenin signaling. Inhibition of WNT members has been 
suggested as a plausible OA therapeutic strategy, with recent success in a murine 
model of OA[49, 50]. However, this is the first evidence for WNT9A, a non-canonical 
Wnt ligand, in human OA.  

In addition, to identifying novel OA loci, we also provide evidence for  a sub-set 
of generalized OA genetic risk loci: GDF5 (rs143384), TGFα (rs2862851/rs3771501), 
RUNX2 (rs12154055), ASTN2 (rs2480930, rs13823416), COL27A1 (rs919642), and IL11 
(rs4252548). These loci should be given priority as potential therapeutic targets since 
genetically supported drug targets have been shown to double the success rate of 
ther-apeutics in clinical development and intervention at these target loci may be 
beneficial regardless of which joint site is affected by OA [51]. 

Although collectively our findings implicate WNT9A in thumb OA, there are 
sever-al limitations. First, age is the most predominant risk factor for OA, yet the 
genetic back-ground may determine the age of onset, rather than the lifetime risk for 
OA. Therefore, future genetic studies may benefit from examining the age of onset 
rather than adjust for age[52]. Second, our functional findings are based on 
chondrogenic data sourced from several different tissues that did not include 
tissues from the hand joints. How-ever, consistent results were found across the  
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available chondrogenic source material, indicating a more general role for the 
WNT9A locus in chondrocyte functional pathways. Given the complex nature of OA 
susceptibility and the fact that pathophysiologic causes are not uniform across 
skeletal sites, alterations in WNT9A expression may be seen in other joints, but may 
have a more marked detrimental effect on the thumb joints.  

In summary, by examining the distribution of radiographic OA features in 
the hand joints, we identified three distinct hand OA phenotypes that provided the 
basis for identification of a novel locus for thumb OA despite our modest sample size. 
We iden-tified WNT9A as a plausible causal gene for thumb OA, providing new 
insights into the genetic architecture of hand OA and a new candidate for OA 
therapeutic development.
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Abstract

Objective Osteoarthritis (OA) is the most common form of arthritis and the leading 
cause of disability in the elderly. Of all the joints, genetic predisposition is strongest for 
OA of the hand; however, only few genetic risk loci for hand OA have been identified. Our 
aim was to identify novel genes associated with hand OA and examine the underlying 
mechanism.

Methods We performed a genome-wide association study of a quantitative measure of 
hand OA in 12,784 individuals (discovery: 8,743, replication: 4,011). Genome-wide sig-
nificant signals were followed up by analysing gene and allele-specific expression in a 
RNA sequencing dataset (n=96) of human articular cartilage.

Results We found two significantly associated loci in the discovery set: at chr12 (p-val-
ue=3.5x10−10) near the matrix Gla protein (MGP) gene and at chr12 (p-value=6.1x10−9) 
near the CCDC91 gene. The DNA variant near the MGP gene was validated in three addi-
tional studies, which resulted in a highly significant association between the MGP vari-
ant and hand OA (rs4764133, Betameta=0.83, p-valuemeta=1.8x10−15). This variant is high 
linkage disequilibrium with a coding variant in MGP, a vitamin K-dependent inhibitor of 
cartilage calcification. Using RNA sequencing data from human primary cartilage tissue 
(n=96), we observed that the MGP RNA expression of the hand OA risk allele was sig-
nificantly lower compared with the MGP RNA expression of the reference allele (40.7%, 
p-value<5x10−16).

Conclusions Our results indicate that the association between the MGP variant and in-
creased risk for hand OA is caused by a lower expression of MGP, which may increase 
the burden of hand OA by decreased inhibition of cartilage calcification.
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Introduction

Osteoarthritis (OA) is the most frequent joint disorder worldwide. An estimated 22% of 
the adult population has a joint affected by OA and this incidence increases to 49% in in-
dividuals over 65 years of age.[1] All synovial joints can be affected by OA, with hand OA 
as one of the most common forms of OA. Hand OA is characterised by osteophyte forma-
tion, bony enlargements of finger joints and cartilage degradation in the joints. One of 
the factors contributing to cartilage degradation is the increase of calcified cartilage in 
the joint.[2,3] In addition, hand OA is related to the occurrence of OA at other sites, most 
notably with knee OA.[4,5] Patients affected by hand OA suffer from pain and disability, 
impacting their quality of life. OA is a leading cause of chronic disability,[6] yet currently 
no effective therapeutic treatments against OA are known. It is therefore imperative to 
dissect the underlying mechanism of disease aetiology as this may enhance effective 
and targeted drug development.

OA has a strong genetic component. Depending on the joint affected, the herita-
bility of OA is estimated in the range of 40%–60%,[7,8] with hand OA having the largest 
heritability, that is, ~60%.[9,10] Therefore, in recent years, several large-scale genetic 
studies have been performed to identify the underlying genes and pathways leading to 
OA. Multiple significantly associated loci for OA of the hip and knee have been identi-
fied through genome-wide association studies (GWAS).[11–18] However, thus far, only 
one report has described a robust association with OA of the hand.[19] In this previous 
report, common variants in the ALDH1A2 and rare variants in chromosome 1p31 were 
genome-wide significantly associated with hand OA using a discovery cohort of 837 
cases and 77,325 controls.

In this study, we aimed to identify novel genes and pathways involved in the ae-
tiology of OA of the hand by performing a large-scale genome-wide association study 
(GWAS). We used a semiquantitative measure for OA of the hand in order to increase 
statistical power. We gathered a large sample size of 12,754 individuals for analysis, 
by combining data from three studies in the discovery phase and an additional three 
cohorts for replication. Next, we conducted functional follow-up of our top finding to 
investigate the underlying mechanism.
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Results

GWAS of KL sum score

We conducted a GWAS of a semiquantitative measure of hand OA, a bilateral summed 
score of KL scores,[20] which grades radiographic OA severity, across all hand joints 
(KL sum score, range of 0–120). The discovery set consisted of three Rotterdam Study 
cohorts (RSI, RSII and RSIII) and included 8,743 participants with KL sum scores. Repli-
cation was done in another 4011 individuals from three different cohorts; LS, Framing-
ham Heart Study and Twins UK (TUK). General characteristics of the discovery cohorts 
and replication cohorts can be found in Supplementary Table 3 and Supplementary 
Text 1.

The discovery analysis yielded two novel independent genome-wide significant 
loci (p-value≤5*10−8) on chromosome 12, an intergenic region between matrix Gla pro-
tein (MGP) and ERP27 and an intronic region in CCDC91. We also identified seven oth-
er novel loci with suggestive significance (p-value<5x10−06) (Figure 1). In total, nine 
loci were selected for replication in 4,011 individuals from three different cohorts (LS, 
FHS and TUK). Using a Bonferroni corrected p-value <5.56x10−03, we significantly repli-
cated one of nine loci, rs4764133 (Betameta=0.83, SEmeta=0.10, p-valuereplication=3.4x10−07, 
p-valuemeta=1.8x10−15) with the same direction of effect as identified in the discovery
analysis (Table 1 and Supplementary Figure 1). This locus maintained genome-wide
significance and another locus near ENPP3 reached near genome-wide significance
(chr6: 132063842:D, Betameta=0.58, SEmeta=0.11, p-valuemeta=3.8x10−07) in the combined
discovery and replication joint meta-analysis (Table 1). Since the KL sum score has a
skewed distribution, the top hit was also reanalysed in the discovery set using a Poisson 
regression (rs4764133, Betapoisson=0.12, SEpoisson=0.02, p-valuepoisson=1.98*10−11).

Our top replicated and genome-wide significant finding, rs4764133 [T] (p-val-
uemeta=1.80*10−15, Beta=0.83, MAF=0.39) is located in a non-coding intergenic region 
between MGP and endoplasmic reticulum protein 27 (ERP27). However, variants in high 
LD with rs4764133 (r2≥0.8) span a  ~80 Kb region encompassing multiple genes, in-
cluding MGP and an open-reading frame C12orf60 (Figure 2a). Moreover, several of 
these variants are located in an mRNA transcript, including a non-synonymous variant 
in MGP, and variants in 3′ and 5′UTR of MGP and C12orf60 (Table 2, Figure 2b). The
non-synonymous variant in MGP, rs4236, is predicted to be non-damaging (STIFT=1, 
tolerated; polyPhen=0, benign) causing a threonine to alanine amino acid substitution. 
Two variants are located in predicted active promoter region of MGP (rs1800801) and 
C12orf60 (rs9668569) in chondrogenic cells and primary osteoblasts (Table 2).
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▲Figure 1: GWAS results for association with the KL sum score in the discovery phase. Manhattan
plot for association with the KL sum score, adjusted for age and sex, in the discovery cohorts of RSI, RSII
and RSIII. The −log10 p-values, for each of the ~11 million SNPs analysed (remaining after EASYQC quali-
ty control) as part of the genome-wide association with the KL sum score, plotted against their position
per chromosome. The red dotted horizontal line corresponds to the genome-wide significant threshold
(p-value=5×10−08). The dotted grey line corresponds to the selection for replication threshold (p-val-
ue=5×10−06). SNP location represented by [], if the SNP is localised intergenic the dashes denotes the
distance, -≤10 kb, --≤100 kb, ---≤1000 kb, ----≤1 Mkb, -----≥1 Mkb. GWAS, genome-wide association stud-
ies; KL, Kellgren and Lawrence score

Next, we investigated the association of rs4764133 with bilateral severe hand OA 
and bilateral finger OA using the discovery set (RSI, RSII and RSIII). We found a strong 
association with finger OA (p-value=3.09x10–08, OR=1.25) and nominal significant asso-
ciation with severe hand OA (p-value=2.80x10–02, OR=1.36), which has a low frequency 
in the population (Supplementary Table 4.). To see if rs4764133 also confers risk for 
other forms of OA, that is, OA of the hip and knee, we used the GWAS summary data of 
the treat OA consortium [27] and the recently published minimal joint space width of 
the hip (mJSW) meta-analysis.[18] No association was found between rs4764133 and 
hip or knee OA (Supplementary Table 4.). However, we did find a nominal significant 
association between rs1049897 and cartilage thickness in the hip joint(mJSW) (r2=0.98 
with rs4764133) (p value=1.28x10–02, Beta=−0.398).

Gene expression analyses

In order to identify potential causal genes located in the LD block surrounding 
rs4764133, we assessed gene expression of MGP, ERP27, ART4, SMOC3 (C12orf69) and 
C12orf60 in articular cartilage, the primary OA affected tissue. RNA sequencing was ob-
tained on articular cartilage from patients with primary OA who had total joint replace-
ment surgeries of either the knee (n=25) or hip (n=22) joint. Expression levels of 
ERP27, C12orf60, ART4 and SMOC3 were substantially lower than MGP expression levels 
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▲Figure 2: Locus zoom plot for rs4764133. 150 kb upstream and downstream of rs4764133 has been
taken as plotted region (A). Zoom in on MGP and three SNPs in high LD with top SNP that are located
in the MGP mRNA transcript (B). Also represented is ROADMAP chromatin 18-state data of two tissue
types: human mesenchymal stem cell (hMSC)-derived cultured chondrogenic cells and primary osteo-
blasts. In both these cell types, the chromatin contains active marks surrounding the MGP promoter.
LD:linkage disequilibrium; MGP: matrix Gla protein.

in articular cartilage (Supplementary Figure 2a). Nonetheless, neither MGP, ERP27, 
ART4,SMOC3 nor C12orf60 showed significant difference in gene expression between 
paired Preserved (P) and OA lesioned (OAL) articular cartilage. However, while these 
genes are not differentially expressed in OA affected cartilage, it is possible that the 
identified GWAS SNPs affect gene transcription. When we analysed the relationship be-
tween the top SNP and expression analysis in a classical expression quantitative trait 
loci (eQTL) analysis, we did not to detect significant correlations between rs1049897, 
rs4236 or rs1800801 and absolute MGP, ERP27, ART4, SMOC3 or C12orf60 expression 
levels (Supplementary Figure 2b). However, we did observe several variants in high 
LD located in the mRNA transcript of MGP and C12orf60, allowing us to assess allele spe-
cific expression (ASE) for these genes. We were unable to study ASE for ART4, SMOC3 
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and ERP27, since no SNP in high LD with rs4764133 is present in the coding region. 
In ASE, the influence of exonic alleles on gene expression in -cis is measured within 
heterozygote subjects, circumventing strong effects from environmental or trans-acting 
influences. This property results in ASE analysis to be a more statistically powerful ap-
proach, when compared with classical eQTL analysis.[28] Subsequently, we found that 
the OA risk alleles for three coding variants in high LD with the lead variant, rs4236 
(Supplementary Figure 3a, 39.6% C allele, p-value<5x10–16), rs1049897 (Supplemen-
tary Figure 3b, 44.4% A allele, p-value<5x10–10) and rs1800801 (Figure 3a, 40.7% T 
allele, p-value<5x10–16), were significantly correlated with lower expression of MGP, 
marking imbalanced expression among heterozygotes, independent of the disease sta-
tus of the articular cartilage. No ASE was observed between SNPs rs11276, rs3088189 
and rs1861698 (residing in C12orf60 and in high LD with the lead SNP, r2>0.8, Table 
2). Technical and biological replication was performed using a custom allele-specific 
TaqMan assay for rs1800801 in eight additional heterozygous individuals for which we 
isolated RNA from P cartilage (n=2), OAL (n=2) or both (n=4) from patients with prima-
ry knee OA and confirmed the observed imbalance in preserved articular cartilage (Fig-
ure 3b, relative allelic difference=0.92, p-value<1x10−06), as well as in eight knee sub-
chondral bone samples (Figure 3c, relative allelic difference=0.78, p-value<1x10−04).

Discussion

Here, we show for the first time, that there is a robust genome-wide significant associa-
tion between rs4764133, located near MGP, and hand OA. Furthermore, we performed 
functional validation showing that MGP coding variants in LD with rs4764133 are as-
sociated with ASE of MGP, which may increase risk of hand OA by lowering inhibition 
of articular cartilage calcification, since MGP is an essential inhibitor of cartilage calcifi-
cation. [29,30] These findings suggest that MGP could be considered a prioritised drug 
target for hand OA, since genetically supported drug targets double the success rate of 
therapeutics in clinical development.[31]

MGP is an essential inhibitor of cartilage calcification, and genetic deficiencies of 
MGP in humans and mice have been linked to abnormal mineralisation of soft tissues, 
including cartilaginous tissue.[29,32] Furthermore, MGP has been previously implicat-
ed in relation to OA. A small candidate study reported marginally significant association 
between hand OA and genetic variants in MGP (rs1800802 and rs4236).[33] This is 
consistent with our findings that the minor allele for rs4764133 and related coding 
variants in high LD (r2>0.8), rs1800802 and rs4236, increase the risk of hand OA and 
that we found high expression of MGP in both P and OAL articular cartilage. In contrast, 
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▲Figure 3: Allelic imbalanced expression of MGP marked by the alleles among heterozygotes of
rs1800801 (a), in the assessed cartilage RNA sequencing dataset. Validation of selected rs1800801 us-
ing a custom TaqMan assay confirmed the imbalance (b). Allelic imbalance was also assessed with a
custom TaqMan assay in subchondral bone samples (C). Preserved (P) and OA lesioned (OAL) samples
are shown respectively in blue and red, and genomic DNA (TaqMan control) in black (G). For ASE results
for rs4236 and rs1049879, see Supplementary Figure 3 and for information on the samples, see Supple-
mentary Table 2 ASE, allele-specific expression; MGP, matrix Gla protein; OA, osteoarthritis.
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another study showed that an MGP protein complex is excreted by healthy articular 
chondrocytes, but not by OA-affected chondrocytes,[34] although we only assessed 
MGP expression and not MGP protein complex excretion. 

Although the loci with ASE are known to be enriched for eQTLs, [35] we were 
unable to detect an association between the MGP genotype and MGP RNA expression 
levels in cartilage. This could have been due to our modest sample size (knee joint, 
n=25 and or hip joint, n=22) in combination with large heterogeneity of the tissue. No-
tably, the available cartilage samples originated from different joint sites (knee and hip) 
and different disease stage (preserved versus affected) and had large age range of the 
individuals. Also, it is known that ASE is a more powerful technique than classical eQTL 
analysis to identify functional SNPs influencing expression of genes.[28] While the ex-
tent of imbalance could be considered relatively modest, an increasing number of OA 
associated SNP alleles appear to mark ASE by comparable amount.[19,36–38] From a 
more biological perspective, one could consider a prolonged, although slight, deviation 
from homeostasis due to modest ASE of cartilage relevant genes to be of substantial in-
fluence over time. This latter hypothesis could contain the molecular basis for increased 
risk towards developing OA among the ageing population. Additionally, we observed 
that the rs1800801 alleles also affected expression of MGP in subchondral bone sam-
ples. This could imply that, in parallel to an effect in cartilage, the presumed disturbed 
cartilage homeostasis is further affected by the underlying bone, further enabling the 
view that OA is a pathology of the entire joint.

Our findings may give an explanation for the known vitamin K association with 
OA: MGP-mediated calcification inhibition is dependent on γ-carboxylation by vitamin 
K.[39] It has been shown that low vitamin K intake is correlated with OA.[40] Thus, 
vitamin K intake may be a potential therapeutic treatment in OA. Recently, a first ran-
domised control trial testing the effects of vitamin K on OA was published, which re-
ported no overall effect of vitamin K on hand OA.[41] Despite the low power of the trial, 
there was a significant beneficial effect on joint space narrowing (cartilage degrada-
tion) among those individuals that were vitamin K deficient at the start of the trial.[41] 
Thus, an adequately powered study of vitamin K may be justified based on the found 
MGP association. Furthermore, genetic predisposition for hand OA was not taken into 
account in the trial. Perhaps, genetic predisposition for hand OA (MGP-risk variants) in 
combination with insufficient vitamin K intake might potentiate cartilage calcification 
and subsequent risk for developing hand OA. Therefore, future OA trails, therapeutic 
and preventive treatments might benefit from taking a personalised medicine approach 
since genetically supported drug targets double the success rate of therapeutics in clin-
ical development.[31]
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Styrkarsdottir et al [19] reported on common genetic variants that associate with 
severe hand OA, among the replication cohorts were the Leiden and Rotterdam cohorts.
[19] Although we observe suggestive signals at the reported locus (ALDH1A2 gene, 
1p31), the respective variants did not meet the genome-wide significance threshold in 
our analyses (Supplementary Table 5). This difference is likely caused by the marked-
ly different phenotypes that were used for either analyses. Where Styrkarsdottir et al 
studied a dichotomous severe hand OA phenotype, our phenotype was semi-quantita-
tively phenotype.

To conclude, we here present coding variants in MGP that are associated with 
radiographic hand OA, and the hand OA risk allele marks lower expression of MGP in ar-
ticular cartilage. Our findings suggest that MGP might play an important role in hand OA 
pathogenesis through pathways related to articular cartilage calcification and vitamin 
K. Better understanding of MGP gene and protein regulation and its relation to vitamin 

K intake and OA may reveal novel therapeutic drug targets for hand OA.

Materials & Methods

Discovery GWAS, replication and meta‐analysis

For a detailed description on the GWAS methods, participating studies, quality control 
procedures for genotyping and imputation, see online Supplementary Text 1 and Sup-
plementary Table 1.

Detailed phenotype description of Kellgren and Lawrence  sum score

We have used a semi-quantitative bilateral measure of OA of the hand based on the ra-
diographic Kellgren and Lawrence (KL) score.[20] Using radiographs of both hands, the 
KL score was determined for each joint in the hand. Using these KL scores we defined 
the KL sum score: the total KL score, the sum, of the following hand joints for both hands 
(left and right): all distal interphalangeal joints, all proximial interphalangeal joints, all 
metacarpophalangeal (MCP) joints, the interphalangeal joint and the first carpometa-
carpal joint, which gives the sum of 15 joints on each hand, and in total 30 joints for 
both hands together, resulting in a minimum score of 0 and a maximum score of 120. 
In the Leiden Studies (LS) cohort, no KL scoring was done of the MCP joints, resulting 
in a KL sum score of maximum 88. Individuals lacking KL grading for both hands or one 
hand and individuals with missing age or gender information were excluded from all 
analyses in all cohorts. As the KL sum score has a skewed distribution, the top finding 
of the meta-analysis was repeated in the discovery cohorts using a Poisson regression.
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Visualisation of the associated loci and the regulatory landscape

For the top GWAS-associated single nucleotide polymorphism (SNP), the linkage dis-
equilibrium (LD) region (r2 >0.8) was determined using the 1000G Phase-1 population 
using the HaploReg V3 tool.[21] Using the ROADMAP-generated reference epigenomes, 
we determined if any of the variants in high LD were located in potential gene regula-
tory regions in primary osteoblasts (generated by ENCODE) and bone marrow-derived 
chondrocytes (ROADMAP).[22,23] The 18-state chromatin reference epigenomes were 
downloaded from the ROADMAP epigenomes data portal.[23] SNPs and regulatory an-
notations were visualised using the UCSC Genome Browser on GRCh37/hg19.[24] For 
each variant, it was also determined if the alternative allele would disrupt a protein 
binding motif; this was done using the HaploReg V3 tool.[21]

RNA sequencing data

Post-RNA isolation (Qiagen RNeasy Mini Kit, RIN >7) of 40 knee (15 paired preserved 
(P) and OA lesioned (OAL), 7 P only  and 3 OAL only) and 28 hip (six paired P and
OAL, 14 P only and 2 OAL only) cartilage samples (online supplementary table S2),
paired-end 2×100 bp RNA library sequencing (Illumina TruSeq RNA-Library Prep Kit,
Illumina HiSeq2000) resulted in an average of 10 million fragments per sample. Reads
were aligned using GSNAP against GRCh37/hg19, in which SNPs from the Genome of
the Netherlands consortium with a minor allele frequency (MAF) >1% were masked
to prevent alignment bias. Number of fragments per gene were used to assess quan-
tile-adjusted conditional maximum likelihood (edgeR, R-package). Subsequently, differ-
ential gene expression analysis was performed pairwise between P and OAL samples
for which we had RNA of both (n=21). Allele-specific expression (ASE) was assessed
using SNVMix2 [25] with default settings(min coverage=25, 10 reads per allele). The
extent of ASE was defined as the fraction of risk allele among all counts at the respective
location. Meta-analysis was done only across P samples or OAL when no P counterpart
sample was present. p Values were calculated using canonical binominal test (metagen
R-package).

TaqMan assay

Conventional TaqMan genotyping was performed on both genomic  DNA (gDNA), ar-
ticular cartilage and subchondral bone cDNA. An allele-specific custom TaqMan assay 
for rs1800801 (Thermo Fisher Scientific) was used to quantify the allele ratio in cDNA 
samples and were normalised against the gDNA ratio, which was used as an 1:1 allele 
ratio reference. Each sample has been measured in four (cartilage) or eight (subchon-
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dral bone) times, while calculations and statistics were performed as described previ-
ously.[19,26] Cartilage samples that yielded fewer than four measurements (n=2) were 
discarded prior to further analyses. All subchondral bone samples were assessed by 
eight technical replicates.
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Abstract

The gut microbiota has been shown to play diverse roles in human health and disease 
although the underlying mechanisms have not yet been fully elucidated. Large cohort 
studies can provide further understanding into inter-individual differences, with more 
precise characterization of the pathways by which the gut microbiota influences human 
physiology and disease processes. Here, we aimed to profile the stool microbiome of 
children and adults from two population-based cohort studies, comprising 2,111 chil-
dren in the age-range of 9 to 12 years (the Generation R Study) and 1,427 adult individ-
uals in the range of 46 to 88 years of age (the Rotterdam Study). For the two cohorts, 
16S rRNA gene profile datasets derived from the Dutch population were generated. The 
comparison of the two cohorts showed that children had significantly lower gut micro-
biome diversity. Furthermore, we observed higher relative abundances of genus Bacte-
roides in children and higher relative abundances of genus Blautia in adults. Predicted 
functional metagenome analysis showed an overrepresentation of the glycan degrada-
tion pathways, riboflavin (vitamin B2), pyridoxine (vitamin B6) and folate (vitamin B9) 
biosynthesis pathways in children. In contrast, the gut microbiome of adults showed 
higher abundances of carbohydrate metabolism pathways, beta-lactam resistance, thi-
amine (vitamin B1) and pantothenic (vitamin B5) biosynthesis pathways. A predom-
inance of catabolic pathways in children (valine, leucine and isoleucine degradation) 
as compared to biosynthetic pathways in adults (valine, leucine and isoleucine biosyn-
thesis) suggests a functional microbiome switch to the latter in adult individuals. Over-
all, we identified compositional and functional differences in gut microbiome between 
children and adults in a population-based setting. These microbiome profiles can serve 
as reference for future studies on specific human disease susceptibility in childhood, 
adulthood and specific diseased populations.
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Introduction

The human gut microbiome is dynamic, shaped by multiple factors and has been shown 
to play an important role in human health. Several studies have reported an association 
between alterations in the composition of the gut microbiome and various gastrointes-
tinal (GI)[1-9] and non-GI[10-15] disease conditions in both children and adults. These 
changes in composition of the microbiome (known as dysbiosis) and their associations 
with health and disease have led to an increased interest in the complex microbial com-
munity of the gut[16,17]. However, our understanding of the relationship between the 
gut microbiome and health and disease still remains superficial at best. A fundamental 
issue hampering progress in this respect is that our lack of knowledge on the compo-
sition and variation of the gut microbiome across the human lifespan remains limit-
ed. So far, most microbiome studies have been relatively small in terms of sample size 
and have usually focused on specific diseases and phenotypes, with most publications 
having used a case-control study design, what makes the analyses more vulnerable to 
methodological challenges. A better understanding of the variation in microbiome com-
position (from stool or other sources) and its role in the aetiology of chronic diseases 
can be achieved through the study of large and well-characterized population-based 
cohorts, which generate rich information on many different physiological parameters, 
disease status, medication use, dietary intake, and other layers of “omics” data from 
individual participants.

Up to now, microbiome studies have focused mainly on adult populations, 
whereas it has been shown that the intestinal microbiome undergoes dynamic chang-
es in diversity and composition during the human lifespan and particularly during 
development; with the most substantial changes believed to occur throughout child-
hood[18-20]. Interestingly, emerging data suggest that early alterations in the gut mi-
crobiome are associated with an increased risk of developing diseases later in child-
hood and adulthood e.g., asthma[21,22] and Crohn’s disease[23]. These studies were, 
however, limited by low sample sizes. If the field of microbiota dynamics is to move for-
ward, it requires studies in well-characterized general population cohorts of different 
ages, including studies investigating paediatric cohorts. So far, a complete description 
of diversity, compositional and functional differences between children and adults in a 
large, homogeneous and population-based cohorts have not been reported.

The above-mentioned considerations prompted us to profile the stool microbi-
ome composition of children and adults within two large, independent and extensively 
characterized population-based cohorts: the Generation R Study (GenR, visit at 9 years) 
and the Rotterdam Study (RS, sub-cohort RSIII-2). In this publication, we report our 
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findings on the differences in gut microbiota between 2,111 children aged 9-12 years 
and 1,427 adults >40 years of age living in the same city with similar urban surround-
ings.

Methods

Study populations and sample collection

The Generation R Study (GenR) is a population-based prospective multi-ethnic preg-
nancy cohort study from foetal life until young adulthood conducted in the city of 
Rotterdam[24]. The study was designed to identify early environmental and genetic 
factors and causal pathways underlying normal and abnormal growth during devel-
opment during childhood. GenR recruited 9,749 children undergoing several rounds 
of follow-up after birth. Stool sample collection started in 2012 at a mean age of 9.8 
years (SD: 0.32). Ethics approval was obtained from the Medical Ethical Committee of 
Erasmus MC (MEC-2012-165) and written informed consent was obtained from all par-
ticipants’ parents. All methods were performed in accordance with the Declaration of 
Helsinki.

The Rotterdam Study (RS) is a prospective population-based cohort study estab-
lished in 1990 to study determinants of disease and disability in Dutch adult individu-
als. The original design and updates of this study have been described in detail[25]. RS 
consists of four sub-cohorts and comprises approximately 18,000 inhabitants of the 
Ommoord suburb in Rotterdam (which is predominantly populated by individuals of 
European ethnicity (about 96%)), aged ≥40 years. The collection of fecal samples start-
ed in 2012 among the RS-III sub-cohort comprising 3,932 participants. This study was 
approved by the Medical Ethical Committee of Erasmus MC (MEC-02-1015) and by the 
Ministry of Health, Welfare and Sport of the Netherlands. All subjects provided written 
consent prior to participation in the study. All methods were performed in accordance 
with the Declaration of Helsinki.

Stool samples were collected at home by the participants using a Commode Spec-
imen Collection System (Covidien, Mansfield, MA). An aliquot of approximately 1 g was 
transferred to a 25 × 76 mm feces collection tube (Minigrip Nederland, Lelystad, The 
Netherlands) without preserving agent included and sent through regular mail to the 
Erasmus MC. A short questionnaire addressing date and time of defecation, current or 
recent antibiotics use (past year), recent probiotics use (past 3 days), and recent travel 
activities (past month), was filled out by the participants and included in the package. 
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Upon arrival at Erasmus MC, samples were recorded and stored at −20 °C. The only 
modification in the collection protocol for the GenR cohort (as compared to RS) was 
that, in case of delay, the samples were stored by participants at 4 °C (home fridge) be-
fore mailing to Erasmus MC. This modification allowed to better preserve samples that 
were produced in the evening or during the weekend.

DNA isolation

Stool samples from the two cohorts were randomly taken from the −20 °C freezer and 
allowed to thaw for 10 minutes at room temperature prior to DNA isolation. Samples 
with inconsistent or lack of information on sample production and samples in which 
mold growth was observed were excluded (Supplementary Figure 1). An aliquot of 
approximately 300 mg was homogenized in stool stabilizing buffer according to the 
manufacturer’s protocol (Arrow Stool DNA; Isogen Life Science, De Meern, The Neth-
erlands). Homogenized samples were bead beated in Lysing Matrix B tubes contain-
ing 0.1 mm silica beads (MP Biomedicals, LLC, Bio Connect Life Sciences BV, Huissen, 
The Netherlands) using the MagNA Lyser instrument (Roche Diagnostics, Almere, The 
Netherlands) at 7,000 rpm for 45 seconds. Samples were then centrifuged at 6,000 × g 
for 5 min and 0.5 ml of supernatant was subjected to automated DNA isolation (Arrow; 
DiaSorin S.P.A., Saluggia, Italy) according to the manufacturer’s protocol using setting 
‘Stool DNA 2.0’ in batches of 12 samples per run. DNA concentration was measured us-
ing Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific, Waltham, MA) and 
DNA was stored at −20 °C.

16S rRNA gene sequencing

The V3 and V4 variable regions of the 16 S rRNA gene were amplified using the 
309F-806R primer pair and dual indexing (12 base pairs (bp) each on the forward and 
reverse primers) as previously described[26]. Amplicons were normalized using the 
SequalPrep Normalization Plate kit (Thermo Fischer Scientific) and pooled. The pools 
were purified prior to sequencing using Agencourt AMPure XP (Beckman Coulter Life 
Science, Indianapolis, IN) and the amplicon size and quantity of the pools were assessed 
on the LabChip GX (PerkinElmer Inc., Groningen, The Netherlands). PhiX Control v3 
library (Illumina Inc., San Diego, CA) was spiked into (~10%) the pooled amplicon li-
braries and each pool was sequenced on an Illumina MiSeq sequencer (MiSeq Reagent 
Kit v3, 2 × 300 bp) at an average depth of 50,000 read-pairs per sample.
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Data pre-processing, OTU picking and quality control

Phylogenetic multi-sample profiling was performed using an in-house developed anal-
ysis pipeline (microRapTor) based on QIIME (version 1.9.0)[27] and UPARSE (version 
8.1)[28] software packages. Briefly, index sequences (12 bp) were removed from each 
read and concatenated to generate a unique index of 24 bp for each read-pair. Spac-
er and primer sequences were removed using TAGCleaner (version 0.16)[29]. Paired 
reads were merged using PEAR (version 0.9.6)[30] with the following settings: mini-
mum overlap of 10 bp (default) and an average read quality phred-score of 20 over a 
30 bp sliding window. Merged reads shorter than 200 bp were discarded. Reads were 
de-multiplexed using QIIME including extra quality filtering steps: merged reads were 
truncated before three consecutive low-quality bases, ambiguous bases were not al-
lowed. Chimeric reads were removed using UCHIME (version 8.1)[28]. Duplicate sam-
ples, samples with less than 10,000 reads, and samples from participants that have used 
antibiotics (self-reported) in one year prior to sample production were excluded (Sup-
plementary Figure 1). The 16 S sequence reads of the remaining samples (2,214 for 
GenR and 1,544 for RS) were randomly subsampled at 10,000 reads per sample (after 
rarefaction analysis). Combined reads of all samples, in each cohort separately, were 
clustered into operational taxonomic units (OTUs) using UPARSE at a minimum cluster 
identity of 97%. The representative read from each OTU was then mapped to the SILVA 
rRNA database version 128[31] using RDP Naïve Bayesian Classifier version 2.12[32]. 
OTUs containing less than 40 reads were removed as described by Benson et al[33]. 
This threshold was established based on the correlation analysis of OTU tables of 5 
pairs of technical replicates, of which DNA was amplified, sequenced and profiled twice 
(Supplementary Figure 2). The sequence data was then analyzed for α-diversity met-
rics (Shannon diversity Index, species richness and Inverse Simpson Index). Final OTU 
filtering was performed by removing OTUs with a total read count less than 0.005% 
of all reads and OTUs observed in less than 1% of the total number of samples of each 
cohort as described previously[34]. The final OTU table was divided into 5 sub-tables 
at different taxonomic levels (in QIIME environment): phylum, class, order, family, and 
genus.

Statistical analyses

All statistical analyses were performed in R[35] using vegan[36], phyloseq[37] and 
MaAsLin[38] packages. As MaAsLin performs paralleled multiple analyses, q-val-
ue < 0.05 (false discovery rate (FDR) multiple testing corrected) was used as signifi-
cance threshold. All MaAsLin models were adjusted for technical covariates and other 
confounders as described in the sections below.
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Technical covariates in the initial stool 16S datasets of the two cohorts

After generating the initial 16S datasets of both the RS and GenR cohorts, the effects of 
collection time (time in mail; TIM) and the yield of DNA isolation runs (Batch; Supple-
mentary Figure 3) on the 16S profiles were assessed. To identify the impact of these 
technical covariates on the α-diversity and overall profiles, Shannon α-diversity and 
Bray-Curtis dissimilarity metrics were calculated in each cohort using ‘diversity’ and 
‘vegdist’ functions in vegan, respectively. The effects of the covariates on α-diversity 
were assessed by linear regression ‘lm’ function in package stats. The basic model was 
adjusted for age and sex. Each of the two technical covariates were stepwise added in 
order to identify its contribution to the model. Then, likelihood ratio test was used to 
compare these nested models. Additionally, in GenR self-reported ethnicity was added 
to the model to inspect and compare the effect of this covariate. Subsequently, permu-
tation analysis of variance (PERMANOVA) was performed to inspect the global effects 
of these technical covariates on the overall profiles using the ‘adonis’ function in vegan. 
Furthermore, for TIM, additive general linear regression analyses of single genus-level 
OTUs were performed in MaAsLin. For this, we used sub-sampled datasets that included 
only samples up to a certain TIM (up to 7 days). Regression analyses in MaAsLin were 
performed after arcsine square root transformation of the relative abundance data and 
were adjusted for age, sex and BMI to assess the effect of TIM exclusively.

Validation of the final stool 16S datasets of GenR and RS

Final datasets were constructed by excluding samples that had been in the mail for 
3 (in RS) or 5 (for GenR) days (see Results section). Average relative abundances of 
the six major phyla were compared to those of other large cohorts. GenR profiles were 
compared to those reported by the Copenhagen Prospective Study on Asthma in Child-
hood (COPSAC) cohort (Copenhagen, Denmark; n = 156; age range = 4–6 years[39]), 
and RS profiles were compared to those reported by the Dutch LifeLines-DEEP (LLD) 
cohort (Groningen, the Netherlands; n = 1,135; age range = 20–90 years[40,41]) and 
the Belgian Flemish Gut Flora Project (FGFP) cohort (Leuven, Belgium; n = 1,106; age 
range = 20–80 years[42]). In addition, we performed association analyses of BMI with 
Shannon α-diversity and single OTUs at genus level to confirm this well-established as-
sociation11,13,[40] in our cohorts, and by comparing associated OTUs observed in our 
cohorts to those reported by the above-mentioned cohorts.

The LifeLines DEEP (LLD) study was approved by the ethics committee of the Uni-
versity Medical Centre Groningen, document number METC UMCG LLD: M12.113965 
and all methods were performed in accordance with the Declaration of Helsinki. All 
participants signed an informed consent form prior to study enrolment.
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Flemish Gut Flora Project (FGFP) procedures were approved by the medical 
ethics committee of the University of Brussels/Brussels University Hospital (approval 
143201215505, 5/12/2012) and all methods were performed in accordance with the 
Declaration of Helsinki. A declaration concerning the FGFP privacy policy was submit-
ted to the Belgian Commission for the Protection of Privacy. Participants were recruit-
ed through repeated announcements in print, audiovisual, and social media as well as 
through the FGFP website, where volunteers could enroll from January 2013 onwards 

The Copenhagen Prospective Study on Asthma in Childhood (COPSAC) was ap-
proved by all relevant authorities including the Danish Ethical Committee (H-B-2008-
093), and the Danish Data Protection Agency (2015-41-3696) and all methods were 
performed in accordance with the Declaration of Helsinki. Both parents provided in-
formed consent prior to participation.

Comparing the gut microbiome profiles and functions between children and 
adults

To compare gut microbiome profiles between children and adults, we selected sam-
ples from European participants. Ethnic background of GenR participants was assessed 
based on self-reported country of birth of four grandparents as described elsewhere[43]. 
Ethnic background of RS participants was assessed based on self-reported ethnic back-
grounds of the four grandparents. We selected European participants by combining all 
European countries together with Americans, Oceanics and North Africans as evaluated 
elsewhere[44]. In short, the participant was deemed to be of non-Dutch origin if one 
parent was born abroad. If both parents were born abroad, the country of birth of the 
participant’s mother defined the ethnic background. Ethnicities of the parents were de-
rived from the grandparents using the same protocol. The different ethnicities based on 
the parents country of birth or ethnic background were narrowed to three main ances-
try groups: Europeans, including all European countries, together with Americans, Oce-
anics, and North Africans (with parents from Algeria, Egypt, Libya, Morocco, Sudan, Tu-
nisia, and Western Sahara); Africans, including Sub‐Saharan Africans, Dutch Antilleans, 
and Surinamese Creoles; and Asians, including all Asian countries and Surinamese Hin-
dustanis. Reads were subsampled at 10,000 reads per sample and pooled. Classification 
was performed (as described above) in one combined run. Shannon α-diversities were 
calculated and tested for significant differences between the two cohorts using Wilcox-
on signed-rank test (1000 permutations). Between-sample Bray-Curtis dissimilarities 
were calculated and principal coordinate analysis (PCoA) was performed and tested for 
significant differences between the two cohorts using PERMANOVA. During the beta 
diversity analysis we adjusted for DNA isolation batch and time in mail since these were 
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the technical covariates. Linear regression models intending to determine significantly 
different genera between both cohorts were performed in MaAsLin. During analysis we 
adjusted for BMI, sex, technical covariates (TIM and Batch), and multiple testing by FDR 
(q-value < 0.05).

To compare the functional metagenome of gut bacteria between children and 
adults, we used the PICRUSt (v.1.1.0) tool[45] to obtain predicted bacterial functions. 
HUMAnN2 (v0.99) was used to identify the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways[46]. For the identification of the specific pathway biomarkers distin-
guishing the gut microbiome of the children from those of adults, we performed a linear 
discriminant effect size (LEfSe) analysis[47] with the default settings: α (ANOVA) = 0.05 
and logarithmic LDA (linear discriminant analysis) score = 2.0.

Results

Stool microbiota 16S rRNA data generation in the GenR and RS cohorts

Selection of subjects

For GenR 4,959, and for RS 2,440 participants were invited to provide a stool sample. 
In total, 2,921 (response rate = 59%) and 1,691 (response rate = 69%) were received at 
Erasmus MC for GenR and RS stool samples, respectively (Supplementary Figure 1). 
Excluding antibiotic users resulted in exclusion of 196 samples from GenR and 7 sam-
ples from RS. In GenR, individuals who used antibiotics in the last year had a significant-
ly lower microbiome diversity and altered microbiome composition (Supplementary 
Table 1). For probiotic use and recent travelling activity outside the Netherlands we 
could not detect significant effects on diversity or composition in the two cohorts (Sup-
plementary Table 1). After quality control (Supplementary Figure 1), 16S rRNA data 
of 2,214 subjects in the initial dataset of GenR and 1,544 subjects in the initial dataset 
of RS were included.

Assessing the influence of technical co-variates and sample exclusion

Since stool samples were collected at ambient temperature via regular mail, we as-
sessed the effects of time in the mail (TIM) on the microbiome profiles. Furthermore, 
since DNA-yields varied across different DNA isolation batches (Supplementary Fig-
ure 3), we assessed its effect on the microbiome profiles as well. Upon longer periods of 
TIM (except for day 7 in GenR), an increase in the relative abundance of phylum Proteo-
bacteria was observed in the average profiles of both cohorts (Supplementary Figure 
4). For RS only, an increase in phylum Bacteroidetes was observed between days 6 and 
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7. In contrast, we did not observe any substantial changes in phylum-level profiles with
respect to the DNA-Batch variable (Supplementary Figure 4). Moreover, TIM had a
small but significant negative effect on α-diversity in GenR and RS (beta = −0.02 alpha
units/day, p-value = 9.3x10-03 and beta = −0.03, p -value= 4.6x10-03, respectively). Again,
we did not observe an effect of Batch on α-diversity. Correlations of TIM and Batch with
overall composition (β-diversity) in both cohorts were small but significant (R2 = 0.004,
p-value = 0.001 and R2 = 0.002, p-value = 0.005 for TIM and R2 = 0.01, p-value = 0.001 and
R2 = 0.005, p-value = 0.001 for Batch in GenR and RS, respectively). In taxonomy-based
analyses (MaAsLin) at genus-level of both datasets for TIM, we observed increased
abundances of genus Escherichia/Shigella upon prolonged times in the mail (Figure 1).
However, these differences were only significant after 3 days in the RS cohort and after
5 days in the GenR cohort (Figure 1). Furthermore, we observed smaller decreases
in the abundances of a number of genera, including Roseburia and Coprococcus, upon
prolonged TIM.

In order to further evaluate the importance of TIM and Batch effects, we added 
them to linear models for the analysis of well-established association of α-diversity with 
BMI[11,13,40] in both GenR and RS. Although, the estimates (betas) o f the exposure 
(i.e., BMI) remained similar after various levels of adjustment, the model including sex, 
age and TIM (model 3) as co-variates provided a better fit to the data than the model 
including only sex and age (model 2; likelihood ratio test: p-value = 5.8x10-03 and p -val-
ue= 5.5x10-03 for GenR and RS, respectively). Including Batch, within model 1 (model 2), 
resulted in a better fit to the data in RS only (Table 1; p-value = 1.9x10-04).

Table 2: association of BMI with Shannon diversity in the 16S datasets of GenR and RS cohorts.

Model Linear model: α-diversity ~BMI + 
covar.

R2 Estimate P-value R2 Estimate P-value

0 BMI 0.008 -0.031 9.6x10-06 0.015 -0.021 9.9x10-07

1 BMI + sex 0.008 -0.031 7.3x10-06 0.014 -0.021 1.0x10-06

2 BMI + sex + age 0.008 -0.032 7.0x10-06 0.015 -0.021 7.8x10-07

3 BMI + sex + age + TIM 0.011 -0.032 1.0x10-05 0.019 -0.021 9.2x10-07

4 BMI + sex + age + TIM + Batch 0.011 -0.032 1.0x10-05 0.027 -0.020 1.6x10-06

5 BMI + sex + age + TIM + Batch + 
ethnicity

0.38 -0.021 3.2x10-03

Stepwise linear model used for each covariates in the analysis of association of microbial diversity with 
BMI (TIM: time in mail).
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  5.1▲Figure 1: Effect of ambient temperature on individual OTUs. Regression analysis of individual OTUs 
with time in mail (TIM) for samples in GenR (A) and RS (B). At each TIM. the initial OTU table was sub-
sampled to contain only samples up to that TIM. Red bars indicate bacteria that decreased in abun-
dance and green bars bacteria that increased upon increasing TIM. Q-values are indicated; only signifi-
cantly abundant OTUs are presented.

Description and validation of final 16S rRNA datasets of the GenR and RS co-
horts

After quality control and sample exclusion, the final 16 S datasets comprised 2,111 in-
dividuals in GenR and 1,427 subjects in RS. The average age of GenR children was 10 
(range = 9 to 12) years and included participants from 13 self-reported ethnicities with 
Dutch being the most frequent one (62%; Table 2 and Supplementary Figure 5). The 
average age of RS participants in the final 16S dataset was 57 years (range = 46 to 88) 
and 82% were Dutch based on self-reported ethnicity (Table 2 and Supplementary 
Figure 5).

A total number of 661 OTUs were identified in the GenR cohort and 777 OTUs in 
the RS cohort (Figure 2). Of these, 656 OTUs overlapped between the two cohorts, leav-
ing 5 OTUs specific for GenR and 42 OTUs specific for RS. For both datasets, variations 
in overall microbiome profiles were driven by the relative abundances of the four ma-
jor phyla Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria (Supplementary 
Figure 6). We observed higher Shannon α-diversities in RS (mean 4.02; SD = 0.50) than 
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▲Figure 2: Characteristics of the final datasets of the two cohorts. GenR (A) and RS (B). Number of 
observed taxa at each taxonomy level Top: indicates the number of unique OTUs identified in each 
tax-onomic clade, top A: RS cohort, top B: GenR cohort. Bottom: Donut plots indicate the average 
relative abundances of the top major phyla in each cohort. Donut plots of the COPSAC cohort 
(children aged 6 years) and doughnut plots of FGFP and LLD cohorts (adults) are plotted for 
comparison with the abun-dance in GenR and RS.

in the GenR cohort (mean 3.81; SD = 0.57; Figure 2). Furthermore, we observed the 
absence of kingdom Archaea and a lower abundance of phylum Firmicutes in the GenR 
cohort as compared to RS (Figure 2). 

To validate our datasets, we compared the averaged phylum level profiles of our 
cohorts with those of other cohorts of similar characteristics (i.e., age range, ethnic 
background). In addition, we tested the well-established association between BMI and 
alpha diversity[11,13,40], and we determined the association between single OTUs and 
BMI and compared these results with other cohorts.

To compare GenR and RS 16S datasets with other populations, we used the 16S 
datasets of the COPSAC39, LLD[40,41] and FGFP[42] cohorts. The average phylum-level 
profiles of GenR were similar to those of COPSAC, and the average phylum-level pro-
files of RS were similar to those of LLD and FGFP (Figure 2). The lower abundance of 
phylum Firmicutes in the GenR cohort was also observed in the COPSAC cohort[39]. 
Further, in order to validate our microbiome datasets, we investigated the association of 
gut microbiome with BMI. We excluded subjects of non-Northern European origin from 
both GenR and RS, which resulted in a dataset of 1,712 GenR samples and a dataset of 
1,371 RS samples. 
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α-diversity was negatively associated with BMI after adjusting for age, sex and 
technical covariates in both cohorts (beta = −0.019, SE = 2.3x10-03, p-value = 1.1*10-03 for 
GenR and beta = −0.015, SE = 2.8x10-03, p-value = 1.8x10-06 for RS). We compared this as-
sociation with observations reported in similar  cohorts of Northern European origin 
(LLD and FGFP). The negative correlation of α-diversity with BMI was in line with find-
ings reported previously[40]. At genus-level, we identified 27 BMI-associated genera in 
GenR and 33 BMI-associated genera in RS (Table 3, Supplementary Table 2), of which 
14 genera overlapped across both cohorts. In the RS cohort, we confirmed 6 genera 
found to be associated with BMI in the LLD and FGFP cohorts (Table 3). In GenR we 
only confirmed two genera (Alistipes and Barnesiella) to be associated with BMI in RS, 
LLD and FGFP cohorts. As previously reported40,48 we also observed the association 
between increased abundance of genus Akkermansia and lower BMI.

Comparison of RS and GenR stool microbiome diversities, compositions and 
functions

To analyze differences in gut microbiome compositions between children and adults, 
both datasets were combined after exclusion of the non-Northern European samples. 
The combined dataset included 3,082 samples: 1,371 from RS and 1,712 from GenR 
and the final OTU table contained 173 genera. Although Shannon α-diversity was not 
associated with age in each cohort separately (linear model; GenR: beta = −0.003, p-val-
ue = 0.91; RS: beta = 0.001, p-value = 0.63), Shannon α-diversity was significantly higher 
in the RS cohort than in the GenR cohort in the combined dataset  (p-value < 2.2x10-16, 
mean = 5.9, sd = 0.74 for RS and mean = 5.58, sd = 0.82 for GenR). Also, the overall compo-
sitions (Bray Curtis distances) differed significantly between both groups (Figure 3B; 
PERMANOVA; R2 = 0.06; p-value = 0.001). We observed a 2 to 3 times lower abundance 
of phylum Firmicutes in the GenR cohort as compared with RS (p-value < 2.2x10-16). 
Furthermore, we observed higher abundances of the gram-negative classes (Bacteroid-
ia, Negativicutes and some classes from phylum Proteobacteria) in children. Regres-
sion analysis, in MaAsLin, on the relative abundances of the individual genera showed 
higher relative abundances of 59 genera in RS compared to GenR and higher relative 
abundances of 20 genera in GenR compared to the RS cohort (q-value < 0.05; Supple-
mentary Table 3). The largest differences were observed for genera from family Lach-
nospiraceae including Blautia, Lachnospiraceae, Anaerostipes, Dorea, Fusicatenibacter, 
Coprococcus, Roseburia, Ruminoclosteridium, Butyricicoccus and Lachnoclostridium that 
were more abundant in RS, and genera from families Ruminococcaceae and Bacteroi-
daceae including Bateroides, Faecalibacterium, Alistipes, Barnesiella, Parabacteroides, 
Bifidobacterium and Odoribacter that were more abundant in GenR (Figure 3C). The 
most abundant genera were Bacteroides in GenR (children) cohort and Blautia in the 
RS (adults) cohort (Figure 3D). 
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Table 3: Single OTU associations with BMI in the GenR and RS cohorts and further replication in FGFP 
and LLD

Genus GenR
(n=1,712)

RS
(n=1,371)

FGFP
(n=1,106)

LLD
(n=1,135)

CoE q-value CoE q-value CoE q-value CoE q-Value
Christensenellaceae
R7 group

−0.0044 8.3x10-04 −0.0034 6.5x-08

Alistipes −0.0024 8.1x10-03 −0.0015 4.2x10-04 −0.1326 9.7x10-06 −0.0026 4.3x10-05

Ruminococcus 1 −0.0014 2.5x10-03

Coprococcus 2 −0.0014 1.7x10-02

Ruminiclostridium 6 −0.0019 3.4x10-04 −0.0012 1.1x10-03

Anaerotruncus −0.0008 1.0x10-03 −0.0016 8.5x10-02

Barnesiella −0.0016 9.2x10-03 −0.0007 2.9x10-03 −0.0761 1.1x10-02 −0.0030 5.3x10-02

Akkermansia −0.0006 3.8x10-02

Ruminiclostridium9 −0.0005 6.4x10-03 −0.0004 4.3x10-03

Odoribacter −0.0010 1.6x10-03 −0.0004 1.1x10-02 −0.0019 8.1x10-02

Oscillospira −0.0004 2.4x10-03 −0.0933 1.9x10-03

Butyricicoccus 0.0006 1.2x10-02

Lactobacillus 0.0006 8.5x10-04

Lachnoclostridium 0.0006 4.5x10-02

Coprococcus 3 0.0008 3.3x10-02

Dorea 0.0014 2.3x10-03 0.1408 2.6x10-06

Blautia 0.0021 4.6x10-02

Streptococcus 0.0026 1.1x10-05

Parabacteroides −0.0015 2.6x10-02

Oscillibacter −0.0005 3.1x10-02

Terrisporobacter 0.0005 4.2x10-02

Intestinibacter 0.0014 9.7x10-04

Romboutsia 0.0020 2.6x10-03

Bifidobacterium 0.0046 3.2x10-04

Bacterial associations with BMI in the RS, GenR and other cohort studies. The +/− sign of the coefficient 
values indicate the direction of the correlation of the genus with BMI. q-value = FDR corrected P-value. 
Only known bacteria are presented.

To assess functional differences in the gut microbiome between children and 
adults, we predicted the functional content based on the 16S rRNA data using PICRUSt. 
Analyses of the differences in the predicted functional metagenomics data between chil-
dren and adults showed significant overrepresentation of 25 pathways in children and 
25 pathways in adults (Figure 4, Supplementary Table 4). A remarkable difference 
between GenR and RS was the predominance of catabolic pathways in GenR (Val, Leu-
cine, iso-Leucine degradation; ko00280) and its opposite in RS (Val, Leucine, iso-Leu-
cine biosynthesis; ko00290). Putative colonization-related pathways like biofilm for-
mation (ko05111), flagellar assembly (ko02040) and LPS biosynthesis (ko00540) were 
only enriched in GenR cohort.
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▲Figure 3: Comparison of the gut microbiome diversity and composition between adults (RS) and 
children (GenR). (A) boxplots of the Shannon diversity Index. (B) ordination plot of the gut microbiome 
composition in the two cohorts based on Bray-Curtis dissimilarities. The centroid and dispersion of 
each cohort is represented by the cohort name and ellipses, respectively. Clustering of RS and GenR 
was tested for significance using PERMANOVA. (C) Circular representation of the taxonomic tree of 
the microbiome compositions of the two cohorts. Each node represents one taxon at different 
taxonomic level. Orange nodes are the taxa that were observed with higher abundance in the GenR 
cohort and green nodes represent the taxa that were higher abundant in the RS cohort. (D) The 
genera represented the most in each cohort. On the x-axis the arcsine squared root transformed 
coefficients of the most significantly abundant genera in each cohort are shown. Orange bars 
represent GenR and green bars represent RS. Minus signs in the x-axis are used only for visualization.
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▲Figure 4: Predicted functional composition of metagenomes based on 16S rRNA gene sequencing 
data from GenR and RS cohorts. LEfSe based on the PICRUSt dataset revealed differentially enriched 
metabolic pathways associated with GenR (orange) or RS (green).

Discussion

In this publication we report on the 16S stool microbiota profiles of 3,538 subjects from 
two large, deeply phenotyped and well-characterized population-based cohorts: the 
Generation R (GenR) Study and the Rotterdam Study (RS). The 16S microbiome datasets 
originated from both children (GenR: n = 2,111) and adults (RS: n = 1,427) populations. 
In general, the stool microbiota within RS had similar profiles as profiles in the 
previously published LLD and FGFP cohorts[40-42]. Similarly, our GenR stool microbiota 
possessed similar profiles as those observed in the COPSAC cohort[39]. Further, both of 
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our cohorts replicated the previously reported negative association between α-diversity 
and BMI[40]. Additionally, BMI was also associated with community composition (Bray-
Curtis) in both RS and GenR cohorts, as reported for the LLD and FGFP cohorts. Also, 
Alistipes and Barnesiella were reported as negatively associated with BMI in all four of 
these cohorts. Interestingly, the lower Firmicutes abundance observed in the GenR and 
COPSAC children cohorts compared to RS, LLD and FGFP adult cohorts suggests an age-
specific phenomenon is responsible for this difference. However, understanding these 
differences merit further investigation. Thus, as both our RS and GenR datasets contain 
many characteristics that are similar to previously published large cohort studies, we 
conclude that our datasets allow valid investigations into the composition and variation 
of the gut microbiota across child and adult subjects. Comparing the gut microbiome 
composition between children and adults in a combined dataset of 3,083 children 
and adults showed significant clustering of the cohorts based on overall composition 
(PCoA beta diversity) and significant different α-diversities. The lower diversity in GenR 
suggested a lack of ‘maturation’ of the gut microbiome in children. However, we did not 
observe a significant age-related change in alpha diversity within each cohort separately. 
This might be due to the narrow age-range in both cohorts (9.8 ± 0.32 in GenR, 56.8 ± 5.9 
in RS, Table 2). At genus level, the relative abundances of genus Bacteroides were higher 
in GenR than in RS. Members of the genus Bacteroides are specialized at utilizing both 
plant and host-derived polysaccharides[49-52]. 

As compared to other genera, Bacteroides have a large number of genes special-
ized to metabolize various glycans. They also have environmental sensors that control 
their expression upon exposure to glycans. The predicted metagenomics data showed 
indeed higher abundances of glycan degradation pathways in children’s gut microbi-
ome than in adults. In contrast, the relative abundances of the genus Blautia were high-
er in RS than in GenR. Blautia digest complex carbohydrates like whole-grains[53] and 
its abundance has been shown to be reduced in patients with colorectal cancer[54] and 
in children with type 1 diabetes[55]. Its abundance has also been reported to be in-
versely related to bone mineral density in human[56]. In fact, the relative abundance of 
Blautia and Bacteroides, has been implicated as a determinant of the so-called ‘healthy 
microbiome’ due to differences in the metabolic functions of these genera[54,55,57,58].

With respect to metabolic functions, we identified many predicted carbohydrate 
pathways that were significantly enriched in adult versus child metagenome datasets, 
with many of these carbohydrate pathways involving the metabolism of simple sug-
ars such as fructose and mannose. However, whether these differences in microbiota 
profiles can be explained by possible differences in energy demand and metabolic pro-
gramming between adults and children remains to be proven. Other interesting differ-
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ences in the predicted functional pathways between children and adults, were observed 
in antibiotics synthesis pathways. The vancomycin biosynthesis pathways were signifi-
cantly higher in the gut microbiome of children as compared to adults. Vancomycin is a 
glycopeptide with activity against gram-positive bacteria, while gram-negative bacteria 
are resistant to this drug because of their distinct cell-wall[59,60]. On the other hand, 
biosynthesis of ansamycin was higher in adults than in children. Ansamycin is anoth-
er antibiotic with activity against gram-positive, as well as gram-negative bacteria[61]. 
These findings indicate potential differential anti-bacterial activities between the mi-
crobiota of children as compared to adults, which appears to be in line with our obser-
vation of higher relative abundances of gram-negative bacteria in the gut microbiota of 
children. However, the exact role of antibiotic production in modulating the microbiota 
profiles of children and adults remains to be shown.

Another difference identified by predictive functional pathway analysis was 
the differential biosynthesis of vitamin B classes by the gut microbiota of children and 
adults. Children’s gut microbiomes are associated with pathways related to increased 
biosynthesis of vitamins B2, B6, and B9 (folate), while in adults vitamin B1 and B5 bio-
synthesis pathways appear to be increased. This predictive finding could be linked to 
age-dependent differences in, for example, the requirement for folate, which is particu-
larly important for cell division and growth during pregnancy and childhood.

In children, the enrichment of putative colonization-related pathways involving 
biofilm formation, flagella assembly and LPS biosynthesis, may provide insights into 
the development of intra-microbiome and host-microbiome interactions, and also be 
linked to our observation of higher relative abundances of gram-negative bacteria in 
children - LPS is a major constituent of the cell wall of gram-negative bacteria. Finally, 
observing photosynthesis pathway (ko00195) in the functional data could be explained 
by the presence of Cyanobacteria in our datasets, as Cyanobacteria are photosynthet-
ic bacteria. Likely, the photosynthesis pathways detected in the PICRUSt analysis were 
derived from these Cyanobacteria. The presence of Cyanobacteria in the gut may have 
a dietary origin[62].

As with all studies, the current study was not free of limitations. One of the main 
discussion points involves the fact that stool samples were not directly frozen and im-
mediately stored at −80 °C. For logistical reasons relating to the large scale cohorts re-
cruited, we depended on postal delivery of home-collected stool samples to the research 
laboratory. Several studies have addressed the effects on microbiota composition when 
sample collection is performed at room temperature[63-68], and observed that longer 
periods of storage at ambient temperature may affect microbiota profile composition 
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and decrease diversity in the samples. We, therefore, analyzed the effects of stool sam-
ple collection at ambient temperature in both cohorts. Within our own initial datasets, 
we addressed this issue by using several approaches and observed increased abundanc-
es of Escherichia/Shigella when stool samples were mailed to the research laboratory 
and received after 3 days (RS) or after 5 days (GenR) in the post. Therefore, to avoid the 
influence of any delayed processing time, we excluded samples that had been in the mail 
for longer than 3 days in RS and 5 days in GenR cohorts.

Next to the increase in abundance of Escherichia/Shigella upon prolonged times 
in the mail, we observed several taxa that decreased over time (Coprococcus and Rose-
buria). These decreases were, however, relatively low and likely a consequence of the 
compositionality of the data: if one OTU increases, other OTUs decrease. We decided 
to adjust for these technical artifacts in further analyses by including time in mail as a 
technical cofactor. The actual explanation for the difference in microbiota composition 
stability over time between RS and GenR cohorts is likely due to the fact that GenR 
participants were asked to keep their samples in their home fridge at 4 °C (for post-
ing on Monday) if they were produced at the weekend, allowing better preservation of 
samples compared to RS participants who mailed their samples over the weekend. As 
well as the exclusion of 3 day and 5 day samples, we also included TIM as a technical 
covariate in all analyses.

Next to excluding samples that had been in the mail for too long, we also excluded 
recent antibiotic users from our datasets (196 samples from GenR and 7 samples from 
RS). Antibiotic use had a significant effect on alpha diversity and overall composition 
in GenR (Supplementary Table 1), whereas in RS the number of users was too small 
to have a detectable effect. Probiotic use and travel abroad were also recorded, but we 
could not detect significant effects on alpha diversity and composition in both cohorts. 
Given the small effect size of probiotic use, this study might be underpowered to con-
clude a lack of effect.

Recent studies indicate that the method of DNA isolation is the main source of 
technical variance in microbiome studies[69-71]. We, therefore, analyzed the effect of 
DNA isolation throughout the 391 runs (134 runs for RS and 257 runs for GenR) that 
were performed in this study and observed a batch effect causing a reduction in aver-
age DNA yield per sample in a proportion of the hundreds of runs performed. As we 
could not trace any clear cause for this technical artifact we introduced a “Batch” vari-
able that allowed us to discriminate between low yield and the high yield runs. This 
“Batch” variable was significantly associated with overall profiles in the GenR and RS 
cohorts and was included as technical covariate in all analyses. Another, more general 
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limitation when comparing different cohort datasets, is the accuracy of replication of 
16S profiles, since sample collection, sample storage, DNA isolation, PCR amplification, 
amplified 16S rRNA variable region, the sequencing technique used and downstream 
bioinformatics may differ between different cohorts. For example, out of 33 associated 
OTUs with BMI, we could only replicate 6 in LLD and FGFP. In addition, geographical dif-
ferences and lack of repetition may limit the accuracy of replicating microbiota profiles 
from different countries. In addition, although (besides using harmonized sample col-
lection and dataset generation) we adjusted for the potential confounders in the anal-
yses comparing children and adults, we should be aware that we cannot totally discard 
the presence of residual stratification as a consequence of the fact that both populations 
were derived from different cohorts.

To conclude, in this study we performed microbiota profiling on the stools of 
2,111 children in the age-range of 9 to 12 years and 1,427 adult individuals in the range 
of 46 to 88 years of age. We observed a clear distinction between the gut microbiomes 
of children as compared to adults, including differences in microbiota diversity and Fir-
micutes and Bacteroidetes abundances. These changes were associated with predicted 
shifts in functional properties, including in energy metabolism, antibiotic production 
and the production of essential B-vitamins. These observations are likely due to the 
development of human-gut microbiome interactions with age. As both GenR and the RS 
cohort have been deeply characterized[24,25]. We here presented two valuable data-
sets for studying the possible association of the human stool microbiome and, life style, 
environmental factors, and health and disease outcomes. In addition, as the participants 
of both cohorts have been genotypes, also association between host genetics and host 
microbiome could be investigated.
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Abstract

Macrophage-mediated inflammation is thought to have a causal role in osteoarthri-
tis-related pain and severity, and has been suggested to be triggered by endotoxins 
produced by the gastrointestinal microbiome. Here we investigate the relationship 
between joint pain and the gastrointestinal microbiome composition, and osteoarthri-
tis-related knee pain in the Rotterdam Study; a large population based cohort study. We 
show that abundance of Streptococcus species is associated with increased knee pain, 
which we validate by absolute quantification of Streptococcus species. In addition, we 
replicate these results in 867 Caucasian adults of the Lifelines-DEEP study. Finally we 
show evidence that this association is driven by local inflammation in the knee joint. 
Our results indicate the microbiome is a possible therapeutic target for osteoarthri-
tis-related knee pain.
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Introduction

Osteoarthritis (OA) is a degenerative joint disease and the most common form of arthri-
tis: an estimated 22% of the adult population has at least one joint affected by osteoar-
thritis and this prevalence increases to 49% in individuals over 65 years of age[1]. The 
hallmark clinical symptom of OA is pain, which is one of the leading causes of disability 
in OA[2]. Pathological changes in OA affect all joint tissues: degradation of cartilage and 
bone, abnormal bone formation (osteophytes), and inflammation of the synovial mem-
brane, (synovitis). Although OA is often described as predominantly caused by mechan-
ical factors and genetic predisposition, the existence of inflammation in OA, locally or 
systemic, is widespread[3-5]. In addition, it has become apparent that, by promoting 
or exacerbating OA symptoms, predominantly OA joint pain[4-7] this local or systemic 
inflammation has a causal role in OA pathology[3-5].

Obesity, a well-known risk factor for OA, is thought to increase OA risk through 
increased mechanical loading on weight-bearing joints. However, obesity also increases 
the risk for OA in non-weight-bearing joints[5,8]. The increased risk of OA in non-weight-
bearing joints seen in obese individuals might be directed through low-grade systemic 
inflammation[9,10]. The gastrointestinal microbiome has emerged as one of the factors 
triggering obesity associated low-grade systemic inflammation[10-13]. Obesity is 
associated with changes in gastrointestinal-microbiome composition, which can lead 
to an increased intestinal absorption of immunogenic bacterial products[12,14,15]. 
Gastrointestinal bacteria produce a wide range of biologically active molecules, such 
as metabolites, short-chain fatty acids, proteins and enzymes, of which some are 
secreted in, outer membrane or membrane vesicles (OMVs/MVs). All gram-negative 
bacteria, archaea, fungi and several gram-positive bacteria can constitutively produce 
these vesicles[16-18]. These vesicles are insensitive to proteases, suggesting they can 
transport their content over long distances from their sites of origin. The content of 
these vesicles can be delivered to different organs in a concentrated manner[19]. Also, 
some of these biologically active molecules can affect intestinal mucosal permeability 
(short-chain fatty acids) or activate the immune system (lipopolysaccharide)[20]. 
Specifically, these molecules can affect macrophage activation and Toll-like-receptor 
(TLR) pathways[16,21], which have recently been shown to be the predominant 
inflammatory responses seen in OA[4]. Indeed, elevated levels of the bacterial endotoxin 
LPS (lipopolysaccharide), in the blood or in the synovium of OA patients, is associated 
with more severe knee OA, knee pain and inflammation[22]. This and other studies 
link gut-microbiome composition to low-grade systemic and local inflammation seen 
in OA[23-25].
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▲Figure 1: Schematic representation of the gut-microbiome taxonomic abundance in the Rotter-
dam Study cohort. A) overview of the number unique taxonomies detected at each level, unknown and
unclassified bacteria were excluded. A) Above, as an example, the taxonomic classification for Strepto-
coccus is shown. B) Donut plot of the relative abundancy in percentage (%) of the different unique phyla
present in the entire dataset (n = 1427) unknown and unclassified bacteria were excluded

In the present study we examine stool microbiome as a proxy for the 
gastrointestinal-microbiome composition in relation to knee OA severity, OA-related 
knee pain, measured by the WOMAC-pain score, and obesity, in a large population-
based cohort. We report a significant association between Streptococcus species (spp.) 
abundance in stool microbiome samples, knee WOMAC pain, knee inflammation, and 
replicate this finding in an independent cohort. Our results suggest a true relationship 
between the gastrointestinal microbiome, low-grade inflammation in the knee, and 
knee OA pain, independent of obesity.
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Results

Rotterdam Study Microbiome cohort profile

For 1,427 participants from the Rotterdam Study (RSIII) we determined the gastroin-
testinal-microbiome composition by taking the stool microbiome as a proxy for the in-
testinal microbiome. In the Rotterdam Study Microbiome cohort, we sequenced two 
hypervariable regions of the bacterial 16S rRNA gene, hypervariable regions V3 and V4. 
After quality control, the 16S reads were directly mapped against the Silva 16S sequence 
database (v128) using RDP classifier for taxonomic classification. Classification predic-
tion was done on multiple taxonomic levels: domain, phylum, class, order, family and 
genus. Gastrointestinal-microbiome composition of the 1,427 participants in the Rot-
terdam Study Microbiome cohort is schematically presented Figure 1. In total, there are 
596 single taxonomies in our cohort, with unknown and unclassified bacteria excluded, 
as these could not be identified for clinical therapeutic relevance. At phylum level, the 
dominant phyla are Firmicutes (77.8%) and Bacteriodites (12.5%), followed by Proteo-
bacteria (4.9%) and Actinobacteria (4.1%, Figure. 1). This is in concordance with other 
large-scale population-cohorts of Caucasian adults[26,27]. General characteristics of 
the Rotterdam Study Microbiome cohort are presented in Table 1. The study popu-
lation (n = 1,427) consisted of 57.5% women (n = 821) and was slightly obese, with an 
average body mass index (BMI) of 27.5. A total of 124 individuals had radiographic knee 
OA, while 285 participants reported knee OA pain (WOMAC pain score > 0). The major-
ity of participants reporting knee pain was female (n = 206). The average WOMAC pain 
score was also significantly higher in females compared to males (p-value = 1.1×10−07, 
Student’s T-test, Table 1).

Streptococcus abundance is associated with OA knee pain

First, we examined whether the overall microbiome composition was different across 
knee WOMAC pain scores and OA severity (Kellgren-Lawrence radiographic OA sever-
ity scores). We found that knee WOMAC pain significantly contributes to the intestinal 
microbiome β-diversity as evaluated at genus level (Aitchison distance, r2 = 0.0014, 
p-value = 0.005, PERMANOVA, Supplementary Figure 1). This association was attenu-
ated when BMI was added to the model and significance was lost (r2 = 0.00088, p-val-
ue = 0.143, PERMANOVA). The intra-individual gastrointestinal-microbiome diversity
(α-diversity, Shannon index and inverse Simpson) was not associated with knee WOM-
AC pain. For knee OA severity (KLsum, n = 941), we did not identify an association with
gastrointestinal microbiome α- and β-diversity (Supplementary Table 1).
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Table 1: General characteristics of the Rotterdam Study Microbiome cohort

Rotterdam Study  
Microbiome Females Males Total

Cohort participants 821 606 1.427

Age (years) 56.8 (5.9) 56.9 (5.9) 56.9 (5.9)

BMI (kg/m2) 27.4 (4.9) 27.6 (4.0) 27.5 (4.5)

Alcohol (g/day) 1.3 (2.7) 1.3 (2.3) 1.3 (2.6)

Smoking (y/n) 98 smokers/721 non 
smokers

97 smokers/507 non 
smokers

195 current smokers

PPI (y/n) 182 users/638 non-users 114 users/492 non-users 296 current PPI users

NSAIDs (y/n) 127 users/693 non-users 51 users/555 non-users 178 current NSAID users

Knee phenotypes

Knee OA (y/n) 84 cases/456 controls 40 cases/361 controls 124 cases/817 controls

KLSum score 1.0 (1.4) 0.7 (1.2) 0.8 (1.3)

WOMAC-Pain score 1.2 (2.6) 0.6 (1.9) 0.9 (2.3)

WOMAC-Pain score > 0 206 79 285

α-diversity metrics

Shannon Index 4.0 (4.1) 4.0 (4.0) 4.0 (0.5)

Inverse Simpson Index 26.0 (12.1) 25.5 (12.2) 25.8 (12.2)

Depicted are the mean and the SD (standard deviation) in parenthesis	 
PPI oral use of proton pump inhibitors, NSAIDs oral use of non-steroidal anti-inflammatory drugs, OA 
osteoarthritis, WOMAC Western Ontario and McMaster Osteoarthritis Index

To gain more insight into which gut-microbiome taxonomies drive the associ-
ation with knee WOMAC pain, we performed multivariate association analysis on the 
256 taxonomies remaining after additional QC. After adjusting for age, sex and tech-
nical covariates, we found four microbiome abundances significantly (FDR < 0.05) as-
sociated with knee WOMAC-pain severity (Table 2). These were all in the same clade; 
from class, order, family leading to the bacterial genus of Streptococcus (genus: coef-
ficient = 5.0×10−03, FDR p-value = 1.2×10−05, MaAsLin, Table 2; See Supplementary 
Data 1 for the full summary statistics). After additional correction for possible con-
founders (smoking and alcohol consumption)[28], Streptococcus spp. abundance re-
mained significantly associated with knee WOMAC pain (coefficient = 4.8×10−03, FDR 
P-value = 3.8×10−05, MaAsLin, Supplementary Table 2). This association is largely in-
dependent of BMI (coefficient = 4.1×10−03, FDR p-value = 2.1×10−03, MaAsLin, Supple-
mentary Table 2). Ethnicity has recently been put forward as a possible confounder
for gastrointestinal-microbiome composition26. However, after exclusion of individuals
with non-European ancestry (n = 163) from our analysis, Streptococcus spp. remained
associated with knee WOMAC pain (coefficient = 5.0×10−03, FDR p-value = 5.8×10−05,
MaAsLin, Supplementary Table 3), also, after adjustment for confounders (coeffi-
cient = 4.3×10−03, FDR p-value = 1.9×10−03, MaAsLin). Altogether, we found that the gut
microbiome, and in particular a greater relative abundance of Streptococcus spp., is sig-
nificantly associated with higher knee WOMAC pain independent of smoking, alcohol
consumption and BMI.



Microbiome Composition, Joint Pain and Inflammation | 235

  5.2

Streptococcus association not driven by oral medication use

Proton Pump Inhibitors (PPI) are among the most widely used over-the-counter drugs 
in the world. They are used to treat gastro-esophageal reflux and prevent gastric-ulcers. 
Recent research has shown that the gastrointestinal-microbiome composition of PPI us-
ers is profoundly different from non-PPI users, mainly due to a strong increase in Lacto-
bacilli abundance, driven by Streptococcus spp.[29]. Another potential over-the-counter 
medication frequently taken by patients with joint complaints are non-steroidal anti-in-
flammatory drugs (NSAIDs), which also affect the gastrointestinal microbiome[29]. To 
investigate, whether the association between Streptococcus spp. abundance and knee 
WOMAC pain is mediated by use of these drugs, we included PPI and NSAID use as co-
variates in our model (in addition to age, sex, technical covariates, smoking, alcohol con-
sumption, and BMI). After adjustment for these covariates, the coefficient was attenu-
ated, but the association remains significant (coefficient = 3.4×10−03, p-value = 2.4×10−04, 
MaAsLin, Supplementary Table 4). In line with these results, excluding all current PPI 
users (n = 265) from the analysis, greater Streptococcus spp. abundance was signifi-
cantly associated with higher knee WOMAC pain (n = 1104, coefficient = 2.4×10−03, p-val-
ue = 4.0×10−03, MaAsLin). Thus, the association between, Streptococcus spp. and knee 
WOMAC pain was not due to the confounding effect of PPI use. Since knee WOMAC-pain 
scores were not normally distributed (left-skewed with an overabundance of zeros), 
we also assessed the association using a Poisson-regression model, which can account 
for the non-normal distribution. Here as well, a significant association with Streptococ-
cus spp. abundance was observed (beta = 1.85, p-value = 1.4×10−04, Poisson-regression). 
Further sensitivity analysis excluding individuals who did not report pain (n = 1,142) 
or whose knee WOMAC-pain scores were deemed as outliers (WOMAC-pain score >10, 
> 4 SD, n = 56) resulted in slight changes in the association coefficients. The association,
however, remained significant (Supplementary Table 5). Altogether, these analyses
show that the association between relative abundance of Streptococcus spp. and knee
WOMAC pain is robust.

To adjust for possible spurious collinearity between microbe abundancies[31], 
we have used the isometric log-ratio transformation (ILR). Using ILR, we have compared 
the relative Streptococcus spp. abundancy against the geometric mean of the abundancy 
of all other genera. Results show that the ILR transformed Streptococcus spp. abundancy 
is associated with knee WOMAC pain (p-value = 9.9×10−06, MaAsLin, Supplementary 
Table 6). The association remained significant after adjusting for smoking, alcohol con-
sumption and BMI (p-value = 8.4×10−04, MaAsLin, Supplementary Table 6), and NSAID 
and PPI use (p-value = 8.5×10−03, MaAslin, Supplementary Table 6). The qPCR results 
and ILR transformation demonstrate that the association between Streptococcus spp. 
abundance and knee WOMAC pain is not an artefact of the 16S rRNA sequencing.
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Table 2: Results of multivariate linear regression analysis of gut microbiome relative abundancies and 
knee WOMAC-pain scores, in the Rotterdam Study, LifeLines-DEEP

Rotterdam Study (RS)

Taxonomy % N CoE SE p-value FDR

Class     Bacilli 27.3% 1,419 6.1 x10-03 1.0 x10-03 9.1 x10-09 1.0 x10-06

Order   Lactobacillales 100% 1,417 6.1 x10-03 1.1 x10-03 7.6 x10-09 1.0 x10-06

Family  Streptococcaceae 79.6% 1,402 4.9 x10-03 9.3 x10-04 1.5 x10-07 8.7 x10-06

Genus  Streptococcus 98.7% 1,396 5.0 x10-03 9.3 x10-04 7.3 x10-08 5.6 x10-06

Life Lines Deep (LLD) Meta- Ana;ysis  
(RS + LLD)

% N CoE SE p-value N p-value

Class     Bacilli 27.3% 867 5.4 x10-03 1.3 x10-03 3.6 x10-05 2,286 1.1x10-12

Order   Lactobacillales 100% 864 4.9 x10-03 1.3 x10-03 2.4 x10-04 2,281 8.3x10-12

Family  Streptococcaceae 79.6% 863 2.9 x10-03 1.3 x10-03 2.3 x10-02 2,265 2.1x10-08

Genus  Streptococcus 98.7% 860 3.3 x10-03 1.6 x10-03 3.7 x10-02 2,256 1.3x10-08

Adjusted for age, sex and, technical covariates: DNA isolation batch and TimeInMail. RS: Rotterdam 
Study (n = 1427) P-value, CoE and SE from MaAsLin, LLD: LifeLines-DEEP (n = 867) P-value, CoE and SE 
from MaAsLin analysis, Meta: Rotterdam Study and LifeLines Deep meta-analyzed together, sample size 
weighted inverse-variance meta-analysis in METAL. Taxonomy% = percentage of taxonomy is from one 
taxonomy level higher, ex. 23.7% of all Firmicutes are Bacilli. N = number of individuals in cohort where 
microbial abundancy is not zero for that taxonomy. FDR: P-value adjusted for multiple testing, Benja-
min-Hochberg false discovery rate. CoE coefficient, SE standard error

Quantitative determination of Streptococcus spp

As 16S rRNA-sequencing derived relative microbiome data cannot provide information 
about the extent or directionality of changes in microbiome taxa abundance[30], we de-
termined the absolute amount of Streptococcus spp. in the individuals of our study pop-
ulation. For each sample in our cohort (n = 1,427), we quantified the number of Strepto-
coccus spp. using genus specific qPCR and the total microbial load using 16S rRNA qPCR. 
We calculated the absolute quantity of Streptococcus spp. and normalized for the total 
bacterial load in each samples as measured by 16S rRNA qPCR. The 16S rRNA-sequenc-
ing results and qPCR Streptococcus spp. quantity yielded similar results (Spearman 
correlation, r = 0.80, p-value = 2.2×10−16, Supplementary Figure 2). Using the absolute 
abundance of Streptococcus measured by qPCR instead of the relative abundance de-
rived from the 16S rRNA-sequencing profiles, we again found a significant association 
between higher knee WOMAC pain and greater absolute Streptococcus spp. abundance 
(beta = 0.10, p-value = 7.4×10−03, Poisson regression), also after adjustment for smoking, 
alcohol consumption, and BMI (beta = 0.074, p-value = 4.5×10−02, Poisson regression).
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Table 3: Results of the association analysis of Streptococcus and knee joint effusion

Taxonomy N Model 1 CoE Model 1 P-value Model 2 CoE Model 2 P-value

Class     Bacilli 314 9.4 x10-03 3.4 x10-02 2.7 x10-03 3.5 x10-01

Order   Lactobacillales 314 9.8 x10-03 2.7 x10-02 2.7 x10-03 3.6 x10-01

Family  Streptococcaceae 310 9.6 x10-03 1.7 x10-02 3.0 x10-03 2.6 x10-01

Genus  Streptococcus 308 1.0 x10-02 1.3 x10-02 3.3 x10-03 2.1 x10-01

Knee joint inflammation was measured as severity of effusion as measured on knee MRI. Knee MRI’s 
were only available for an all-female obese subgroup of the Rotterdam Study Microbiome dataset 
(n = 373). First model assessed the association of Knee effusion with the microbiome, adjusted for age, 
sex, DNA isolation batch and TimeInMail (technical covariates). Second model was WOMAC-pain score 
adjusted for age, sex, technical covariates and, effusion severity. P-values were determined by MaAsLin 
analysis. N = number of individuals in cohort where microbial abundancy is not zero for that taxonomy. 
CoE coefficient

Independent replication of Streptococcus association

We sought replication for all four associations with WOMAC pain, i.e., class, order, 
family and, the bacterial genus of Streptococcus, in an independent Dutch cohort, Life-
Lines-DEEP (LLD) (Supplementary Table 7). LLD has a lower sample size (n = 867), 
younger age (mean age = 45.6) and fewer individuals with OA-related knee pain (WOM-
AC pain > 0, n = 197), however, the average knee WOMAC pain was very similar compared 
with the Rotterdam Study cohort (RS = 0.9 and LLD = 0.9, Table 1 and Supplementary 
Table 7). Despite lower power in the replication cohort we observed a significant as-
sociation (p-value < 0.05) between knee WOMAC-pain scores and all four taxonomies 
to the genus of Streptococcus (coefficientreplication = 3.3×10−03, p-valuereplication = 3.7×10−02,
MaAsLin, Table 2). Also, in the meta-analysis of RS and LLD, greater Streptococcus 
spp. abundance was significantly associated with higher knee WOMAC pain (p-value-

meta = 1.3x10−08, MaAsLin, n = 2256, Table 2). After adjusting for BMI, we found signifi-
cant replication on class, order and the family level of Streptococcacea (coefficientrep-

lication = 2.7×10−03, p-valuereplication = 3.5×10−02, MaAsLin, Supplementary Table 8). In the
replication study, additional adjustment for BMI slightly attenuated the association, a 
9.1% decrease in coefficient, for the genus of Streptococcus (Supplementary Table 8). 
This was in concordance with the 14.5% decrease in coefficient for streptococcus, seen 
in the discovery cohort after BMI adjustment (Supplementary Table 2). In the BMI 
adjusted meta-analysis for RS and LLD, the association between knee WOMAC pain and 
Streptococcus spp. was highly significant (p-valuemeta = 1.1×10−06, METAL, n = 2,256, Sup-
plementary Table 8).
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Streptococcus association with knee joint inflammation

If Streptococcus spp. abundance is causally related to higher knee WOMAC pain, a pos-
sible mechanism might be through local priming of macrophages in the synovial lining 
resulting in inflammation[22]. For a random subset of the Rotterdam Study Microbiome 
cohort, knee magnetic resonance images (MRI) were available (n = 373, all females)[32] 
at the time of microbiome measurements. Knee joint inflammation was assessed by 
scoring the amount of effusion in the tibiofemoral joint and in the patellofemoral joint 
for both knees. We found that higher WOMAC-pain scores were significantly correlated 
with more knee effusion (Spearman correlation r = 0.14, p-value = 9.0×10−03). In addi-
tion, we observed that greater Streptococcus spp. abundance was significantly associ-
ated with more effusion in the knee joints (coefficient = 1.0×10−02, p-value = 1.3×10−02, 
MaAsLin, Table 3). When WOMAC pain was added to the model, the association of 
knee effusion with Streptococcus spp. disappears (coefficient = 3.3×10−03, p-value = 0.21, 
MaAsLin), indicating that the association of Streptococcus spp. with knee pain severity 
is driven by knee inflammation severity.

Discussion

Using a large, deeply phenotyped population-based cohort, we identified a significant 
association between greater relative and absolute Streptococcus spp. abundance and 
higher OA-related knee pain. These results were validated by replication in an indepen-
dent cohort and by meta-analysis. Finally, we presented evidence that this association 
was driven by local inflammation in the joint.

We observed that the intestinal microbiome β-diversity was significantly asso-
ciated with knee WOMAC scores. After testing 256 taxonomies individually, we found 
a microbiome-wide association with knee WOMAC pain and Streptococcus spp., where 
greater Streptococcus spp. relative abundance is associated with higher knee WOMAC 
pain. We found this association to be robust, not be caused by outlier observations, 
or due to the confounding effects of smoking, alcohol intake, oral medication usage 
or BMI[28,29]. Neither was the association an artefact of the microbiome profiles as 
relative fractions of the 16S rRNA sequencing, or due to possible co-linearity in the 
data[30,33].

Although, the results of the sensitivity analyses were in line with a true associ-
ation between Streptococcus spp. and knee WOMAC pain in our cohort, validation in 
an independent cohort is essential. Replication of microbiome abundance, however, is 
difficult, because data might not be similar between studies if sample preparation and 
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data analysis are not done in the exact same way[34]. We sought replication in the LLD 
cohort, which has a different study population and data preparation method than our 
cohort does[27]. Despite these differences, we could replicate our association in LLD for 
all taxonomic levels, class, order, family and for the genus of Streptococcus. Also, in the 
meta-analysis of RS and LLD, Streptococcus spp. was significantly associated with knee 
WOMAC pain.

Obesity-mediated gastrointestinal-microbiome changes are postulated to affect 
low-grade systemic and local inflammation in OA[23-25]. Nevertheless, in our study 
the effect of Streptococcus spp. on knee WOMAC pain is not fully driven by BMI. This 
suggests a direct role for the gastrointestinal microbiome in OA-related knee pain and 
inflammation. We postulate that greater Streptococcus spp. abundance leads to higher 
knee WOMAC pain through local joint inflammation. This is in line with our observation 
that Streptococcus spp. abundance was significantly associated with effusion severity in 
the knee joints. This leads to believe that Streptococcus spp. might also be involved in 
other inflammatory joint pain disorders. This is not unlikely since several Streptococcus 
spp. have been linked to osteomyelitis[35,36], rheumatic fever[37,38] and, post-strep-
tococcal reactive arthritis[39,40]. The last two are disorders in which due to molecular 
mimicry with group A Streptococcus, cross-reactive antibodies are produced against 
joint tissues, leading to rheumatic joint inflammation and damage[38]. However, these 
disorders involve mainly pathogenic species, such as S. pyogenes. Yet, most Streptococcus 
spp. are commensal species and have been found throughout the human oral-gastro-in-
testinal microbiome[41-43], still, these can produce immunogenic bacterial products. 
Several Streptococcus spp. have been shown to constitutively produce MVs[18]. These 
MVs may present Streptococcus spp. epitopes and/or may contain immunogenic prod-
ucts[17,24]. Such bacterial products can trigger macrophage activation through TLR 
pathways. This type of macrophage activation is predominantly seen in OA-related joint 
inflammation[16,21] and is thought to be related to pain[3-7]. We therefore propose 
that greater Streptococcus spp. abundance may lead to an increase of bacterial products 
in the circulation through increased production of metabolites that pass the gut-blood 
barrier or through immunogenic products that prime local or systemic macrophages. 
We have summarized this hypothetical model in Figure 2.

Our results show a difference in microbiome β-diversity in individuals with 
higher knee WOMAC-pain scores, which is driven by greater abundancy of Streptococ-
cus spp. This association is highly robust. Moreover, we replicated our findings in an 
independent cohort. However, our study has some limitations. First, a cross-sectional 
study design was used and cannot unequivocally establish causality. For this, longitudi-
nal studies are required. Second, other follow-up studies are needed to better elucidate 
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the molecular pathway connecting Streptococcus spp., knee inflammation and WOMAC 
pain, to validate or reject our postulated hypothesis (Figure. 2). 

Blood and joint tissue could be examined for the presence of Streptococcus MVs, 
metabolites, and their possible association to knee inflammation and WOMAC pain se-
verity. Third, to examine whether the association found in this study is unique for knee 
OA pain, other quantitative pain measurements should be examined, as well as meas-
urements of pain at other joints. In, addition, other inflammatory joint disorders could 
also be examined. Forth, due to the limited resolution of 16S rRNA-sequencing method-
ology, we were unable to identify whether a specific Streptococcus species or strain was 
driving the association. Last, we find no association between knee OA severity (KLsum) 
and gastrointestinal-microbiome composition. Knee OA severity, however, was meas-
ured by radiographic OA severity, and this does not include the clinical symptom of 
joint pain. Although considering our proposed mechanism, an effect on knee OA sever-
ity could be expected, as inflammation can lead to joint damage. It is possible that our 
study currently lacks the power to detect such an association, or requires a longitudinal 
design to detect such effects on OA severity or disease progression.

In sum, we demonstrate an association between greater abundance of Strepto-
coccus spp. and higher osteoarthritis-related knee pain, but the causality of this asso-
ciation needs to be established. A possible explanation for the found association is the 
induction or exacerbating of local joint inflammation by Streptococcus spp. The pre-
cise mechanisms by which Streptococcus spp. may trigger joint inflammation, are not 
known. We hypothesized that it may involve metabolites or MVs produced by Strep-
tococcus spp. in the gastrointestinal tract. As joint pain is one of the most impacting 
clinical OA symptoms and pain in OA has a high socioeconomic burden, it is of crucial 
importance to identify novel treatments that reduce clinical symptoms, in particular 
pain, and decrease the socioeconomic burden. Our results point to the microbiome as 
a therapeutic target for OA-related joint pain and possibly for other inflammatory joint 
pain disorders. The gastrointestinal microbiome is a promising therapeutic target, be-
cause it is sensitive to change through (diet) interventions. This could offer an easily ac-
cessible and safe treatment options for OA associated joint pain. Therefore, it is pivotal 
to explore the causal mechanism and possible translation of the present findings into 
clinical practice.
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▲Figure 2: Proposed hypothetical me pathophysiological mechanism explaining the association
between the gut microbiome (Streptococcus spp.), knee WOMAC pain and knee effusion. No
causality has been established between Streptococcus spp. abundance and OA-related knee pain,
however, if such causality exists, we propose the following model: Members of the Streptococcus spp.
are known to produce metabolites and membrane vesicles, which both may interact with host cells.
These bacterial products can pass the gut-blood barrier, and possibly either a target the knee joint
through activation of macrophages in the synovial lining, leading to joint inflammation and damage, or
b enter the circulation, activate macrophages to pro-inflammatory macrophages, which may trigger a
low-grade systemic inflammatory state, invoking or exacerbate joint inflammation and damage, leading
to increased knee pain
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Methods

Rotterdam study cohort

The Rotterdam study (RS) is a large population-based prospective study population 
(14,926 participants) ongoing since 1990 to study determinants of chronic disabling 
diseases. The first cohort RS-I, started in 1990 and includes individuals of 55 years and 
older living in the Ommoord district of Rotterdam in the Netherlands. In 2000, a second 
cohort was started RS-II with individuals who had become 55 years of age or moved 
into the study district since the start of the study. In 2006, the third cohort was initiat-
ed, RSIII, of individuals aged > 45, living in the Ommoord district. The cohorts are pre-
dominantly Caucasian and a further detailed description of the design and rationale of 
the Rotterdam Study has been published elsewhere[44]. The Rotterdam Study has been 
approved by the Medical Ethical Committee of the Erasmus MC, University Medical Cen-
ter Rotterdam, the Netherlands (MEC 02.1015). All subjects provided written consent 
prior to participation in the Rotterdam Study. Stool sample collection started in 2012 
during the second visit of the Rotterdam Study III population (RSIII-2). A random group 
of 2440 participants was invited to provide a stool sample. In total 1691 (response 
rate = 69%) stool samples were received via mail at the Erasmus MC for analysis of stool 
microbiome composition as a marker for gastrointestinal-microbiome composition. Af-
ter quality control 1,427 samples remained for further analysis.

Taxonomic profiling of gastrointestinal microbiota in RS

Sample collection: Stool samples were collected at home by the participant using a 
Commode Specimen Collection System (Covidien, Mansfield, MA) and ~1 g aliquot was 
transferred to a 25 × 76 mm feces collection tube, which was sent via the regular mail to 
the Erasmus MC. Participants also filled out a short questionnaire addressing date and 
time of defecation, current or recent antibiotics use, current probiotics use, and recent 
travel activities. Upon arrival samples were stored (−20 °C), samples taking longer than 
3 days to arrive at the Erasmus MC were excluded from further analysis, for the remain-
ing samples TimeInMail (in days) was registered as a technical covariate. DNA isolation: 
For each participant, frozen stool samples were allowed to thaw for 10 min at room 
temperature prior to DNA isolation. An Aliquot of ~300 mg of stool was homogenized 
using 0.1 mm silica beads (MP Biomedicals, LLC, Bio Connect Life Sciences BV, Huissen, 
The Netherlands) and DNA was isolated from the samples using the Arrow stool DNA 
kit according to the manufacturers’ protocol (Arrow Stool DNA; Isogen Life Science, de 
Meern, The Netherlands). 16S rRNA gene sequencing: The V3 and V4 hypervariable 
regions of the 16S rRNA gene were amplified using the 319F (ACTCCTACGGGAGGCAG-
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CAG) −806R (GGACTACHVGGGTWTCTAAT) primer pair and dual indexing[45], a full list 
of all primers used can be found in Supplementary Table 9. Amplicons were normalized 
using the SequalPrep Normalization Plate kit (Thermo Fischer Scientific) and pooled. 
Amplicon pools were purified prior to sequencing (Agencourt AMPure XP, Beckman 
Coulter Life Science, Indianapolis, IN) and size and quantity was assessed (LabChip GX, 
PerkinElmer Inc., Groningen, The Netherlands). A Control library was added to ~10% 
of each amplicon pool as a positive control (PhiX Control v3 library, Illumina Inc., San 
Diego, CA). The hypervariable V3 and V4 regions of the 16S rRNA gene were sequenced 
in paired-end mode (2 × 300 bp) using the MiSeq platform (Illumina Inc., San Diego, CA) 
with an average depth of 50,000 paired reads per sample. Data processing and quali-
ty control: Sequence read quality control and taxonomic classification, was done using 
an in-house pipeline (µRAPtor) based on QIIME version 1.9.0[46] and UPARSE version 
8.1[47]. Low-quality, merged, and chimeric reads were excluded. Duplicate samples, 
samples with <10,000 reads, and samples from participants that have used antibiotics 
(self-reported) in the 6 months prior to sample production were excluded. The remain-
der of the reads (~93%) were normalized using random 10,000 read subsampling (rar-
efication). To reconstruct taxonomic composition a direct classification of 16S sequenc-
ing reads using RDP classifier (2.12) and the SILVA 16S rRNA database (relase.128)[48]. 
This was done for each taxonomic level available: domain, phylum, class, order, family, 
and genus, with binning posterior probability cut-off of 0.8. The microbial Shannon di-
versity index was calculated on the taxonomic level of genera, using vegan package in R. 
Relative abundancies were calculated for each taxonomic level prior to any additional 
QC (domain, phylum, class, order, family and genus). Unknown or unassigned classifi-
cations were excluded from the final dataset (n = 69), as these currently cannot be used 
for clinical or therapeutic applications. In total, we were left with gut-microbiome tax-
onomies for 1427 individuals and 596 taxonomic classifications for analysis (Figure 1).

Phenotype descriptions

Osteoarthritic knee joint pain was determined by the WOMAC questionnaire, which is a 
disease specific questionnaire to assess the severity of hip and knee OA, consisting of 24 
items covering three domains: pain, stiffness, and function[49]. The WOMAC includes 
five items that measure OA joint specific pain, scored on a 5-point Likert scale, 0–4. 
The five knee specific WOMAC-pain scores were summed to create the knee WOMAC 
pain score, ranging from 0 to 20, where higher scores represent worse OA-related knee 
joint pain. Knee OA severity was determined by the radiographic Kellgren and Law-
rence score (KL-score)[50]. Using radiographs of both knee joints, left and right, the 
KL-score was determined for each joint. Scores were subsequently summed for the left 
and right knee to form the Knee KLsum score. Knee joint effusion could be determined, 
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for an all-female random subset of the Rotterdam Study III cohort (RSIII), by knee MRIs 
using a 1.5T MRI scanner (General Electric Healthcare, Milwaukee, Wisconsin, USA). For 
further detail of our used MRI protocol see ref. [51]. All MRI images were scored by a 
trained reader (blinded for clinical, radiographic and genetic data). Joint effusion was 
determined in the tibiofemoral joint (TFJ) and in the patellofemoral joint (PFJ) togeth-
er (grade 0–3: 0 = no joint effusion, 1 = small joint effusion, 2 = moderate joint effusion, 
and 3 = severe joint effusion). The scores of the left and the right knee were summed, 
resulting in a score from 0 to 6, where higher scores represent more severe knee joint 
effusion. For all phenotypes, if data on either the left or right knee joint was missing, 
individuals were excluded. Oral medication usage such as, proton pump inhibitors 
(PPIs) and non-steroidal anti-inflammatory drugs (NSAIDs), were determined by ques-
tionnaire at the same time point as WOMAC scores, knee X-rays, knee MRIs, and stool 
sample collection.

Lifelines-DEEP replication cohort

The LifeLines-DEEP (LLD) cohort is a subcohort of the LifeLines cohort (167,729 partic-
ipants) that employs a broad range of investigative procedures to assess the biomedical, 
socio-demographic, behavioral, physical and psychological factors that contribute to 
health and disease in the general Dutch population[52]. A subset of approximately 1500 
participants was included in LLD subcohort. For these participants, additional biologi-
cal materials were collected, including analysis of the gut-microbiome composition. The 
collection, phenotyping, and processing of LLD have been described in detail[27,53]. 
Briefly, microbiome data was generated for 1179 LLD samples. Fecal samples were col-
lected at home within two weeks of blood sample collection and stored immediately 
at 20 °C. After transport on dry ice, fecal samples were stored at −80 °C. Aliquots were 
made and DNA was isolated with the AllPrep DNA/RNA Mini Kit (Qiagen; cat. #80204). 
The 16S rRNA gene of the isolated DNA was sequenced at the Broad Institute, Boston, 
using Illumina MiSeq pair-ends. Hypervariable region V4 was selected using forward 
primer 515F (GTGCCAGCMGCCGCGGTAA) and reverse primer 806 R (GGACTACHVGG-
GTWTCTAAT) (Supplementary Table 9)[54]. Closed-reference OUT picking has been 
done with 97% similarity cutoff using UCLUST[55] program and GreenGenes 13.5 
reference database[56] from QIIME[46] software. Overall, for 878 samples, both WO-
MAC scores and microbiome information was available. The library size of microbial 
sequencing was rarefied to 10,000 read-depth using the rarefy function in R package 
vegan (version 2.5–2). At this depth, 11 subjects were excluded. After the exclusion step, 
we had 867 samples (362 men and 505 women) remained for the final analysis. Their 
characteristics are summarized in Supplementary Table 7. The LifeLines-DEEP study 
has been approved by the medical ethical committee of the University Medical Center 
Groningen, The Netherlands.
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qPCR replication of 16S rRNA-sequencing results

To validate the 16S rRNA-sequencing results we determined the absolute quantitative 
amount of Streptococcus spp. using qPCR. We determined the amount of Streptococcus 
spp. for each fecal DNA sample using the BactoReal qPCR assay (Ingenetix GmbH, Vien-
na, Austria) based on the Streptococcus 23S rRNA gene. A standard curve of a Plasmid 
standard containing the 23S rRNA gene (Ingenetix GmbH, Vienna, Austria) was includ-
ed in each plate to calculate the amount of Streptococcus spp. present in each sample. 
Each sample was run in duplo in a 384-wells PCR plate containing 40 ng fecal DNA, 1x 
primers and probes (Ingenetix GmbH, Vienna, Austria), 1x TaqMan Gene Expression 
Master Mix (Life technologies) in a total volume of 5 µl. The qPCR was performed in 
a QuantStudio 7 Flex (ThermoFisher) with an initial denaturation at 95 °C for 10 min, 
followed by 40 cycles of 95 °C for 15 s and 60 °C for 60 s. To normalize the amount of 
Streptococcus spp. for the total amount of bacteria in each sample, a 16 S qPCR was 
performed (U16SRT-F: ACTCCTACGGGAGGCAGCAGT and U16SRT-R: TATTACCGCGGCT-
GCTGGC, Supplementary Table 9)[57]. A standard curve of a Bacterial DNA Standard 
(Zymo Research) sample was included in each PCR plate to calculate the total amount of 
bacteria. Each sample was run in duplo in a 384-well plate containing 200 pg fecal DNA, 
200 pmol forward and reverse primers, 1x SYBR Fast ABI PrismTM Mastermix (Kapa-
Biosystems) in a total volume of 5 μl. The qPCR was performed in a QuantStudio 7 Flex 
(ThermoFisher) with an initial denaturation at 95 °C for 3 min, followed by 40 cycles of 
95 °C for 5 s and 60 °C for 20 s. Absolute abundancies were calculated from the standard 
curves. We adjusted the total absolute abundancy of bacteria for the average number 
of 16S copies (4.2 copies per bacteria[58]). We adjusted the absolute abundance of 
Streptococcus spp. for the average number of 23S rRNA gene copies in Streptococcus 
spp. (3.36 copies per Streptococcus spp., based on S. pneumoniae, S. thermophiles, S. 
pyogens, S. parasanguinis, S. dysgalactiae, S. salivarius, S. suis, S. mutans, and S. agalac-
tiae). We normalized the absolute abundance of Streptococcus spp. by calculating the 
log transformed value of the number of Streptococcus spp. per 1000 bacteria in each 
sample: log(Streptococcusabsoluteabundancetotalabundanceofbacteria/1000)

Statistical analysis

Statistical analyses were performed in R: A Language and Environment for Statistical 
Computing[59]. Inter-individual microbial composition (β-diversity) was calculated 
using the Aitchison distance calculated from the CLR (centered log-ratio) normalized 
data. CLR normalization was calculated on the counts of the directly taxonomic classi-
fied reads. The full dataset, including unknown and unclassified taxonomies was used 
for the CLR. To all read counts 1 was added to cope with the overabundance of zero’s 
in the data, for CLR[33]. Subsequent statistical analysis was done through permutation 
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analysis of variance (PERMANOVA) to inspect the global effect of WOMAC-pain score 
and KLsum score on the overall microbiome profiles, using the adonis PERMANOVA 
function in VEGAN. PERMANOVA models included age, sex, TimeInMail, DNA isolation 
batch, BMI and WOMAC-pain score or KLsum, in that order. Results were visualized 
using a PCA plot. CLR method and PCA plot were based on Gloor et al.[33]. Intra-indi-
vidual microbial composition metrics (α-diversity) used are the Shannon Index and In-
verse Simpson Index. Association of α-diversity with WOMAC pain score was examined 
by Poisson-regression model adjusted for age, sex, batch and TimeInMail. To identify 
associated microbiological taxa with the investigated phenotypes, we have used the 
multivariate statistical linear regression analysis, R package: MaAsLin[60]. MaAsLin is 
a specialized statistical R package for the analysis of microbial community abundance 
data and clinical/phenotypic metadata. All unknown and unclassified taxonomies were 
excluded from this analysis (n = 63). In MaAsLin, we have used adjusted default settings, 
i.e., Linear model based, quality control (QC) and exclusion of outliers based on the
Grubbs test on the microbiome data only, and arcsine-square-root transformation of
the single taxonomies relative abundance table to normalize the microbiome profiles.
After MaAsLin QC we were left with 256 taxonomies for analysis (2 domains, 12 phyla,
18 classes, 25 orders, 41 families, and 158 genera). Missing values were not imputed,
nor was automatic QC of the metadata, WOMAC pain score and covariates, or boost-
ing by excluding metadata from the association analyses performed. For each analy-
sis we forced the following cofactors: age (years), sex (0/1), technical covariates: DNA
isolation batch (0/1) and TimeInMail (days). Depending on the model we additionally
forced the following cofactors: BMI (body mass Index), smoking (current smoker, y/n),
daily alcohol consumption (glass/day), PPI use (y/n), and NSAID use (y/n). Statistical
significance was determined by multiple testing correction, Benjamini-Hochberg False
discovery rate (FDR) < 0.05. Removal of possible collinearity in the microbiome data
was done by ILR (isometric log-ratio transformation) on the counts of the directly taxo-
nomic classified reads. The full dataset including unknown and unclassified taxonomies
was used. Multivariate linear regression model adjusted for age, sex, and cohort-specific
technical covariates was performed on the ILR transformed data. Replication analysis
in LifeLines-DEEP (LLD), used MaAsLin using similar settings, with the exception of the
automatic QC in MaAsLin. In LLD the QC of the metadata was done manually. All analysis
were also adjusted for age, sex, and cohort-specific technical covariates. Meta-analy-
sis of RS and Lifelines was performed using inverse-variance weighting by METAL[61].
Correlation between 16S sequencing Streptococcus spp. abundancy and qPCR Strep-
tococcus spp. abundance was done by Spearman correlation in R. Association of knee
WOMAC pain and qPCR data were done by Poisson-regression models adjusted for age,
sex, and qPCR technical covariates (plate number). All figures and graphs were made in
R and adapted in Adobe Illustrator.



Microbiome Composition, Joint Pain and Inflammation | 247

  5.2

Supplementary Material 

Additional material, as well as a funding statement, is published online only, to view 
please visit the paper online at the journal website: 

https://www.nature.com/articles/s41467-019-12873-4#MOESM1



Microbiome Composition, Joint Pain and Inflammation | 249 248 | Chapter 5.2

References
1. Centers for Disease Control and Prevention (CDC). Prevalence of doctor-diagnosed arthritis and ar-

thritis-attributable activity limitation–United States, 2010–2012. Mmwr. Morb. Mortal. Wkly. Rep.
62, 869–873 (2013).

2. Centers for Disease Control and Prevention (CDC). Prevalence and most common causes of dis-
ability among adults–United States, 2005. Mmwr. Morb. Mortal. Wkly. Rep. 58, 421–426 (2009).

3. Ayral, X., Pickering, E. H., Woodworth, T. G., Mackillop, N. & Dougados, M. Synovitis: a potential
predictive factor of structural progression of medial tibiofemoral knee osteoarthritis–results of a 1
year longitudinal arthroscopic study in 422 patients. Osteoarthr. Cartil. 13, 361–367 (2005).

4. Kraus, V. B. et al. Direct in vivo evidence of activated macrophages in human osteoarthritis. Osteo-
arthr. Cartil. 24, 1613–1621 (2016).

5. Dahaghin, S., Bierma-Zeinstra, S. M. A., Koes, B. W., Hazes, J. M. W. & Pols, H. A. P. Do metabolic
factors add to the effect of overweight on hand osteoarthritis? The Rotterdam Study. Ann. Rheum.
Dis. 66, 916–920 (2007).

6. Saberi Hosnijeh, F. et al. Association between biomarkers of tissue inflammation and progression
of osteoarthritis: evidence from the Rotterdam study cohort. Arthritis Res. Ther. 18, 81 (2016).

7. Utomo, L., Bastiaansen-Jenniskens, Y. M., Verhaar, J. A. N. & van Osch, G. J. V. M. Cartilage inflam-
mation and degeneration is enhanced by pro-inflammatory (M1) macrophages in vitro, but not in-
hibited directly by anti-inflammatory (M2) macrophages. Osteoarthr. Cartil. 24, 2162–2170 (2016).

8. Reyes, C. et al. Association between overweight and obesity and risk of clinically diagnosed knee,
hip, and hand osteoarthritis: a population-based cohort study. Arthritis Rheumatol. 68, 1869–1875
(2016).

9. Berenbaum, F., Griffin, T. M. & Liu-Bryan, R. Review: metabolic regulation of inflammation in oste-
oarthritis. Arthritis Rheumatol. 69, 9–21 (2017).

10. Winer, D. A., Luck, H., Tsai, S. & Winer, S. The intestinal immune system in obesity and insulin re-
sistance. Cell Metab. 23, 413–426 (2016).

11. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation
in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

12. Cani, P. D. et al. Changes in gut microbiota control inflammation in obese mice through a mecha-
nism involving GLP-2-driven improvement of gut permeability. Gut 58, 1091–1103 (2009).

13. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).
14. Brun, P. et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of

nonalcoholic steatohepatitis. Am. J. Physiol. Liver Physiol. 292, G518–G525 (2007).
15. Luck, H. et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents.

Cell Metab. 21, 527–542 (2015).
16. Kaparakis-Liaskos, M. & Ferrero, R. L. Immune modulation by bacterial outer membrane vesicles.

Nat. Rev. Immunol. 15, 375–387 (2015).
17. Bonnington, K. E. & Kuehn, M. J. Protein selection and export via outer membrane vesicles. Bio-

chim. Biophys. Acta 1843, 1612–1619 (2014).
18. Brown, L., Wolf, J. M., Prados-Rosales, R. & Casadevall, A. Through the wall: extracellular vesicles in

Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 13, 620–630 (2015).
19. Bomberger, J. M. et al. Long-distance delivery of bacterial virulence factors by Pseudomonas

aeruginosa outer membrane vesicles. PLoS Pathog. 5, e1000382 (2009).
20. Levy, M., Blacher, E. & Elinav, E. Microbiome, metabolites and host immunity. Curr. Opin. Microbiol.

35, 8–15 (2017).
21. Ohto, U., Fukase, K., Miyake, K. & Shimizu, T. Structural basis of species-specific endotoxin sensing

by innate immune receptor TLR4/MD-2. Proc. Natl Acad. Sci. USA 109, 7421–7426 (2012).
22. Huang, Z. Y., Stabler, T., Pei, F. X. & Kraus, V. B. Both systemic and local lipopolysaccharide (LPS)

burden are associated with knee OA severity and inflammation. Osteoarthr. Cartil. 24, 1769–1775



Microbiome Composition, Joint Pain and Inflammation | 249

  5.2

(2016).
23. Huang, Z. & Kraus, V. B. Does lipopolysaccharide-mediated inflammation have a role in OA? Nat.

Rev. Rheumatol. 12, 123–129 (2015).
24. Metcalfe, D. et al. Does endotoxaemia contribute to osteoarthritis in obese patients? Clin. Sci.

(Lond.). 123, 627–634 (2012).
25. Schott, E. M. et al. Targeting the gut microbiome to treat the osteoarthritis of obesity. JCI Insight

3 (2018).
26. Deschasaux, M. et al. Depicting the composition of gut microbiota in a population with varied

ethnic origins but shared geography. Nat. Med. 24, 1526–1531 (2018).
27. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome

composition and diversity. Science 352, 565–569 (2016).
28. Capurso, G. & Lahner, E. The interaction between smoking, alcohol and the gut microbiome. Best.

Pract. Res. Clin. Gastroenterol. 31, 579–588 (2017).
29. Imhann, F. et al. Proton pump inhibitors affect the gut microbiome. Gut 65, 740–748 (2016).
30. Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial

load. Nature 551, 507–511 (2017).
31. Gloor, G. B., Wu, J. R., Pawlowsky-Glahn, V. & Egozcue, J. J. It’s all relative: analyzing microbiome

data as compositions. Ann. Epidemiol. 26, 1–8 (2016).
32. Schiphof, D. et al. Sensitivity and associations with pain and body weight of an MRI definition

of knee osteoarthritis compared with radiographic Kellgren and Lawrence criteria: a popula-
tion-based study in middle-aged females. Osteoarthr. Cartil. 22, 440–446 (2014).

33. Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are com-
positional: and this is not optional. Front. Microbiol. 8, 2224 (2017).

34. Sinha, R., Abnet, C. C., White, O., Knight, R. & Huttenhower, C. The microbiome quality control
project: baseline study design and future directions. Genome Biol. 16, 276 (2015).

35. McGuire, T., Gerjarusak, P., Hinthorn, D. R. & Liu, C. Osteomyelitis caused by beta-hemolytic strep-
tococcus group B. JAMA 238, 2054–2055 (1977).

36. Murillo, O. et al. Streptococcal vertebral osteomyelitis: multiple faces of the same disease. Clin.
Microbiol. Infect. 20, O33–O38 (2014).

37. Cunningham, M. W. Rheumatic fever, autoimmunity, and molecular mimicry: the streptococcal
connection. Int. Rev. Immunol. 33, 314–329 (2014).

38. Tandon, R. et al. Revisiting the pathogenesis of rheumatic fever and carditis. Nat. Rev. Cardiol. 10,
171–177 (2013).

39. Mackie, S. L. & Keat, A. Poststreptococcal reactive arthritis: what is it and how do we know? Rheu-
matology 43, 949–954 (2004).

40. Barash, J. Rheumatic fever and post-group A streptococcal arthritis in children. Curr. Infect. Dis.
Rep. 15, 263–268 (2013).

41. Dewhirst, F. E. et al. The human oral microbiome. J. Bacteriol. 192, 5002–5017 (2010).
42. Pei, Z. et al. Bacterial biota in the human distal esophagus. Proc. Natl Acad. Sci. USA 101, 4250–

4255 (2004).
43. Bik, E. M. et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl

Acad. Sci. USA 103, 732–737 (2006).
44. Ikram, M. A. et al. The Rotterdam Study: 2018 update on objectives, design and main results. Eur.

J. Epidemiol. 32, 807–850 (2017).
45. Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequenc-

ing on the Illumina MiSeq platform. Microbiome 2, 6 (2014).
46. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat.

Methods 7, 335–336 (2010).



Microbiome Composition, Joint Pain and Inflammation | 251 250 | Chapter 5.2

47. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods
10, 996–998 (2013).

48. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and
web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

49. Bellamy, N. & Buchanan, W. W. A preliminary evaluation of the dimensionality and clinical im-
portance of pain and disability in osteoarthritis of the hip and knee. Clin. Rheumatol. 5, 231–241
(1986).

50. Kellgren, J. H. & Lawrence, J. S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 16,
494–502 (1957).

51. Peters, M. J. et al. Associations between joint effusion in the knee and gene expression levels in the
circulation: a meta-analysis. F1000Research 5, 109 (2016).

52. Scholtens, S. et al. Cohort Profile: LifeLines, a three-generation cohort study and biobank. Int. J.
Epidemiol. 44, 1172–1180 (2015).

53. Tigchelaar, E. F. et al. Cohort profile: LifeLines DEEP, a prospective, general population cohort study
in the northern Netherlands: study design and baseline characteristics. BMJ Open 5, e006772
(2015).

54. Fu, J. et al. The gut microbiome contributes to a substantial proportion of the variation in blood
lipids. Circ. Res. 117, 817–824 (2015).

55. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–
2461 (2010).

56. DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench
compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

57. Clifford, R. J. et al. Detection of bacterial 16S rRNA and identification of four clinically important
bacteria by real-time PCR. PLoS ONE 7, e48558 (2012).

58. Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its conse-
quences for bacterial community analyses. PLoS ONE 8, e57923 (2013).

59. Team, R. R: A Language and Environment for Statistical Computing. (2013).
60. Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and

treatment. Genome Biol. 13, R79 (2012).
61. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide associa-

tion scans. Bioinformatics 26, 2190–2191 (2010).



Microbiome Composition, Joint Pain and Inflammation | 251

  5.2





Chapter 6

General Discussion



General Discussion | 255 254 | Chapter 6



General Discussion | 255

  6

The overall objective of this thesis was to gain greater insight into the pathology of os-
teoarthritis, with the hope to bring possible preventive or curative treatments closer for 
one of the world’s oldest diseases. In the previous chapters we have presented novel ge-
netic loci, genes, biological pathways and risk factors for osteoarthritis. There the main 
findings, limitations and implications of each study were discussed. In this chapter, all 
findings presented in this thesis are brought together, considerations are addressed and 
suggestions for future osteoarthritis research are given.   

Osteoarthritis associated genetic variation

In this thesis, genome-wide association studies (GWASs) were used to identify novel ge-
netic loci associated with osteoarthritis, in order to identify novel genes and biological 
pathways involved in osteoarthritis pathology. Prior to the start of this thesis the num-
ber of identified osteoarthritis associated loci was severely limited, only 17 loci were 
known[1], a far cry of the hundreds predicted to be involved. Currently 148 osteoarthri-
tis associated loci have been reported. In Figure 1 all currently reported genome-wide 
osteoarthritis associated SNVs are listed, those mentioned in this thesis are highlighted.

GWAS size matters and more is needed

The success of GWASs to robustly identify associated genetic loci, is dependent on sever-
al factors; (i) the phenotype studied must have a genetic component, (ii) the quality and 
number of genetic variants that are used in the GWAS, (iii) the sample size (power) of the 
GWAS, (iv) and the heterogeneity of the studied phenotype[2]. Especially  sample size is 
one of the most limiting factors for statistical power in GWAS[2]. This is demonstrated 
in Chapter 4. Before this thesis, the largest osteoarthritis GWAS consisted of ~7,000 
osteoarthritis cases (~42,000 controls) and identified five loci[1]. Now the largest oste-
oarthritis GWAS effort, the Genetics of Osteoarthritis (GO) consortium, (~180.000 cas-
es and ~600.000 controls) identified 100 osteoarthritis associated loci (Chapter 4). It 
is this increase in sample size, driven by the availability of large scale biobanks, such 
as the UKbiobank, and increased (inter)national collaboration efforts[9-11], that has 
caused the increase in associated osteoarthritis loci. Yet, despite these advances and 
progress made by the GO consortium, the proportion of genetic heritability explained 
by the found SNVs for osteoarthritis is still relatively low, ranging between 6% for hand 
osteoarthritis to 21% for hip osteoarthritis and total hip replacement (Table 1). Indi-
cating that still much of the osteoarthritis genetics, remains undiscovered. 
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Table 1: Osteoarthritis heritability and variance explained in the Genetics of Osteoarthritis Consortium

Phenotype Genetic
heritability* (H2)

GWAS SNV  
heritability† (h2)

Total genetic
heritability explained‡

Hip OA 58% (29%-87%) [3] 12% 21% (14%-43%)
THR 73% (66%-78%)[4] 15% 21% (19%-23%)

Knee OA 44% (31%-56%)[5] 5% 11% (8%-15%)

TKR 53% (31%-75%)[6] 5% 10% (7%-18%)
Spine OA 75% (30%-100%) [7] 10% 13% (10%-14%)
Hand OA 56% (34%-76%) [7] 4% 6% (5%-11%)

Finger OA 42% (26%-58%) [8] 5% 12% (9%-20%)
Thumb OA 53% (37%-69%)[8] 4% 8% (6%-11%)

*Osteoarthritis genetic heritability as determined by twin studies.
† Predicted proportion of the SNV caused genetic heritability explained by the genome-wide signifi-
cant SNVs in the GO Consortium
‡Percentage of the total genetic heritability explained by the genome-wide significant SNVs of the
GO Consortium and the 95% Confidence Interval(CI)(H2/h2).
OA: osteoarthritis, SNV: Single Nucleotide Polymorphism, THR: Total Hip Replacement, TKR: total Knee
Replacement

The genetic architecture of osteoarthritis may explain the current lack of ex-
plained genetic heritability. Osteoarthritis genetic architecture can be described by the 
polygenic model. Under the assumption of polygenic genetic architecture many genetic 
variants collectively contribute to disease risk[12]. Rare and/or uncommon variations 
with very large effect sizes cause more severe and/or early-onset diagnoses, in line with 
the monogenetic(early-onset) forms of osteoarthritis. Meaning that the effect sizes for 
common and rare variants linked with the non-monogenetic forms of osteoarthritis are 
likely to be small to very small[12]. This also means that on an individual level osteoar-
thritis genetic risk is caused by a (near) unique combination of many rare and common 
risk variations, each contributing a small effect to the over genetic risk for osteoarthri-
tis. Thus, in order to identify these many rare and common variants with small effect 
sizes, massive and population specific sample sizes are needed to sufficiently increase 
GWAS power to identify all of them and to fully explain all of the osteoarthritis genetic 
risk.  

Phenotyping is essential for GWAS 

However, increasing sample sizes for GWAS is a double edged sword: it generates more 
power through larger sample sizes but also more noise due to heterogeneity in the di-
verse cohorts[13]. Increasing sample sizes in GWAS also increases the burden and costs 
of phenotyping. For very large studies (e.g., UK biobank, 23andMe) extensive phenotyp-
ing is not feasible, thus more easily and cost effective phenotypes are collected (hospital 
records, self-reported diagnosis and complaints). Such “minimal phenotyping”[14] has 
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several advantages: such as minimizing phenotyping costs and reducing phenotypes to 
single or few data points, allowing for easy large scale data collection. However, min-
imal phenotypes can introduce significant bias in the phenotype and reduce GWAS 
power[14]. For example individuals with the same hospital diagnosis of osteoarthritis 
(cases) may not have the same symptoms, pathology or underlying causal pathways, as 
osteoarthritis is a highly heterogenous disease [15, 16]. This heterogeneity also occurs 
for self-reported osteoarthritis, with an additional bias of uncertainty if the self-report-
ed diagnosis is an accurate one.  

In Chapter 4, not only different osteoarthritis case definitions were used in the 
different cohorts, with the majority being the minimal phenotype of self-reported/
hospital diagnosed osteoarthritis. This heterogeneity between phenotype definitions 
and bias from the minimal phenotypes significantly introduces noise into the GWAS 
results[17]. Specifically, some of the identified loci could be nonspecific for osteoarthri-
tis[14], i.e., misdiagnosis in self-reported osteoarthritis, which would have significant 
implications for follow-up molecular characterization and pathway identification. Ad-
ditionally, osteoarthritis was defined  as a dichotomous phenotype: present or absent. 
However, this black and white presentation of osteoarthritis completely ignores the un-
derlying genetic, biological and pathological complexity of this disease[13, 18, 19]. Thus 
these biases may explain the low genetic osteoarthritis heritability found in Chapter 4. 
Also, they illustrate the need for phenotypic heterogeneity reduction methods and the 
use of phenotypes that do account for the genetic, biological and pathological complex-
ity of osteoarthritis.

Phenotyping: Quantitative phenotypes

One way to increase GWAS power and use phenotypes  that can more accurately rep-
resent the range of  osteoarthritis disease severity, is to use quantitative phenotypes 
[17]. In Chapter 2.2 and 3.1, the radiographic summarized osteoarthritis phenotype 
of KLsum was used. The advantage of this phenotype is that it measures osteoarthritis 
severity across multiple joints at the same time. Creating a semi-quantitative measure, 
more accurately representing the severity of osteoarthritis in these joints than a dichot-
omous trait could do. Thus improving GWAS power, as is evident by the thumb KLsum 
and osteoarthritis associated SNV rs10916199 in the WNT9A locus. This SNV was found 
to be genome-wide associated (p-value=2.*10-12) with thumb KLsum in a modest total 
sample size of ~8,700 (Chapter 3.2), however this variant was only found to be ge-
nome-wide significant associated (3.5*10-10) with thumb OA in the GO consortium with 
a sample size of 10,536 cases and 236,919 controls (Chapter 4). Similar results were 
found for the osteoarthritis of the finger and hand KLsum associated SNV, rs4764133 
located near MGP (Chapter 3 and Chapter 4) 
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▲Figure 2: All known osteoarthritis stratified and endophenotype associated loci. In bold are
the variants mentioned in this thesis. Only genome-wide significant associated (p-value≤5*10-08) are
included, for variants in high LD(r2≥0.6, D’≥0.6) only one variant is depicted. KLsum: sum of Kellgren-
Lawrence OA severity score, mJSW: minimum joint space width, DDH: developmental dysplasia of the
hip,  bone area as measured by DXA scan, shape: shape of the joint measured on radiographs.

Phenotyping: Endophenotypes

Another method to increase GWAS power and interpretation is the use of endopheno-
types, phenotypes more closely related to the underlying genetics and/or pathology 
than to the end-stage disease itself. In Chapter 2.1 cartilage thickness in the hip joint, 
measured by minimum joint space with (mJSW), was used as an endophenotype for 
osteoarthritis. Using mJSW over the dichotomous definition of hip osteoarthritis has as 
main advantage that mJSW  focuses on a single part of the joint, the joint space width, as 
a measure of cartilage thickness. The mJSW can be measured in all individuals, whether 
or not they have osteoarthritis creating a quantitative measure with greater power than 
that of the dichotomous trait[17].

Additionally, as GWAS interpretation is dependent on phenotype definition[13, 
14, 19], endophenotypes, by their focus on a single underlying characteristic or tissue 
linked to the disease, helps with interpretation of the observed association with the 
minimal phenotypes. Also, for known disease variants, endophenotypes can help to elu-
cidate their biological role: in which pathway or pathology these variants may play a 
role. However, this also means that possibly not all SNVs identified with an endopheno-
type are automatically associated with end-stage clinical disease. Still, endophenotypes 
are a very successful method to increase GWAS power, to identify underlying mecha-
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nisms, pathways and pathology of osteoarthritis[20-23]. Another strategy to decrease 
phenotype heterogeneity, and thus increase power,  is the use of stratified osteoarthritis 
phenotypes. For example, grouping individuals based on specific osteoarthritis symp-
toms (pain vs. no pain, the amount of pain), based on pathological characteristics (os-
teophytes and joint space narrowing) or joint function (range of motion, disability) or 
using osteoarthritis endophenotypes: cartilage thickness or the  shape of the joint or 
bone. An overview of all osteoarthritis associated stratified and endophenotype SNVs is 
given in Figure 2, and variants mentioned in this thesis are highlighted.

From (osteoarthritis) GWAS to (osteoarthritis) Gene

Finding novel osteoarthritis, or osteoarthritis stratified/endophenotype associated 
loci, is not the sole purpose of a GWAS. The ultimate goal of performing osteoarthritis  
GWAS is: to identify associated genetic variation to (i) elucidate genes and biological 
pathways involved in osteoarthritis pathology. Clearly indicating further steps after 
GWAS analysis; to identify genes and pathways associated with osteoarthritis, arguably 
more important that just identifying osteoarthrosis associated genetic variation. How-
ever, due to the fundamental design of a GWAS, only an associated genomic locus can be 
identified directly, never directly a disease associated gene or pathway, without addi-
tional evidence. This path from GWAS associated SNV to disease gene is, unfortunately, 
neither simple nor straightforward. It is a time and effort consuming endeavour, requir-
ing extensive post-GWAS analysis, interdisciplinary knowledge and collaborations. In 
Figure 3 an overview of the possible steps that need to be taken to get from osteoar-
thritis GWAS to novel disease insight, is presented. All, or several, of these steps were 
performed for each osteoarthritis GWAS in this thesis (Chapters 2- 4).

Elucidating GWAS: Causal variant(s)

In order to find an answer to the main GWAS question: how does the GWAS associated 
variant effects the target gene and how does this contribute to disease risk? First three 
major difficulties in GWAS interpretation need to be addressed: (i)what is/are the caus-
al variants(s), (ii) what is the target gene (causal gene) and (iii) in which cell type or cell 
state does the causal variant exert its effect on the causal gene?

First, due to the design of GWAS studies, not a single SNV is associated, but a 
whole linkage block of SNVs in high LD (r2≥0.8), which can span a region over 100kb 
containing hundreds of linked SNVs. Any one or combination of these may exert the 
disease causing risk[24]. Although, it is not easy to identify a causal variant (or always 
necessary), identification of the causal variant can lead to identification of the causal 
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▲Figure 3: The possible roads for osteoarthritis GWAS translation. first a phenotype needs to be
defined, this could also include an endophenotype or a stratified phenotype. GWAS, finds an associated
lead variant and it’s linked linkage disequilibrium block. Annotation provides the link between GWAS
results and biological interpretation: translational research a) this side presents a schematic overview
for the possible steps taken to identify possible causal variants and their effects. b) this side presents
the possible steps taken to identify possible causal genes. For both the identification of a causal variant
and gene all data needs to be examined in the context of the phenotype associated target cell types.
All steps taken provide a line of evidence for or against possible causal variant(s) and gene(s). They
provide a basis for further experimental validation to prove causality. Identification of causal variants,
may also lead to the identification of causal genes, and identification of causal genes can be used for
the identification of pathways involved.
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gene. If the causal SNV is located in a coding region of a gene and affects protein transla-
tion, folding or function it is likely that that gene would also be the causal gene. However, 
many of these variants are located in the non-coding regions of the genome. It is vastly 
more difficult to predict the possible biological consequences of these non-coding vari-
ants than it is for coding variants, where much more is known about the consequences 
of sequence variation[25]. Yet, even non-coding causal SNVs can help identification of 
the causal gene.

Elucidating GWAS: Causal Gene(s)

GWAS associated SNVs are more likely to reside in gene regulatory regions, and thus are 
thought to exert their disease risk via affecting gene expression[26]. However, identify-
ing which gene or genes might be targeted is not straightforward. It is a critical mistake 
to assume that noncoding variations, located intronic in a gene sequence will exert their 
function on that same gene, since only 14% of SNVs in non-coding regions target nearest 
genes[27]. Causal SNVs can be located as far as 2MB away from their target gene[28], 
due to the 3D structure of DNA, which connects DNA elements that are apparently far 
away from each other. Even larger distances between regulatory region and gene are 
possible as even larger topologically associated domains (TADs), have been observed 
[29]. These are large (megabase scale) genomic regions of interconnectivity, in which 
enhancers usually contact to genes also located within the TAD, but not to genes outside 
of the TAD. Fortunately, public databases exist of the 3D chromatin structure of multiple 
cell types and tissues to help identify such gene regulatory region - gene DNA loops.  In 
chapter 3.1 and 3.2 evidence for such long-range interactions of ~200-700 kb between 
regulatory regions and target gene has been presented: rs10948155 with RUNX2 (~700 
Kb distance) and rs10916199 with WNT9A (~200 Kb distance).

Elucidating GWAS: Causal Cell Type, Fate or State

 Finally, all annotation and functional genomic data should be examined in the context of 
cell types or cell states associated with the GWAS phenotype. Here, endophenotypes or 
stratified phenotypes can directly indicate the target cell type. For example, for mJSW, 
cartilage cells (chondrocytes) are the target cell type in which to examine the GWAS 
findings (Chapter 2.1). In addition,, the GWAS associated SNVs, can indicate which cell 
types to examine. GWAS SNVs  tend to be particularly enriched in enhancers that are ac-
tive in the target cell types [26, 30]. By examining this enrichment for the osteoarthritis 
associated SNVs in the GO consortium, we identified osteoarthritis target tissues (Chap-
ter 4). These tissues included the known target tissues (cartilage and bone), but also in-
dicated possible roles for muscle, endocrine and neurological tissues. Which in turn can 
be used to define novel osteoarthritis endophenotypes or stratified phenotypes, based 
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on properties or pathological features of these tissues. Although interpretation of GWAS 
findings is time consuming, laborious, and requires additional experimental validation, 
it is essential if we want to use GWAS to learn more about osteoarthritis aetiology and 
eventually identify novel therapeutic targets.

From osteoarthritis GWAS to Clinic

For drug development, treatments based on human genetic evidence of disease associa-
tion are twice as likely to become approved[31]. When for a GWAS association the caus-
al gene is clearly defined, the approval for drug development increases to four-fold[32]. 
Therefore, the steps given in the previous paragraph are absolutely essential if we wish 
to advance our understanding of osteoarthritis pathology and hope to translate this into 
knowledge or treatments beneficial for patients. Chapter 3, represents the path from 
GWAS finding to identification of a causal gene and pathways, to clinical implication and 
possible therapeutic intervention. 

MGP, Vitamin K, anticoagulants and Osteoarthritis

Using a summarized quantitative osteoarthritis phenotype, SNVs in the Matrix Gla-Pro-
tein(MGP) gene were genome-wide associated with hand KLsum (Chapter 3.1). Trans-
lational research indicated MGP as the causal gene, where the GWAS associated SNVs 
reduce MGP expression in cartilage and bone. MGP, is an essential inhibitor of calcifi-
cation in soft tissues such as the cartilage, it binds to Ca2+ preventing the formation of 
calcium crystals (basic calcium phosphate crystals)[33] (Figure 4). MGP is dependent 
on γ -carboxylation by vitamin K for its function, validating low vitamin K level as risk 
factors of osteoarthritis[34-36]. Linking a modifiable risk factor, vitamin K levels, with 
a genetic risk factor for osteoarthritis. In Chapter 3.2 , the interaction between vitamin 
K and MGP risk variants was investigated. Vitamin K antagonists anticoagulants (VKAs) 
inhibit the functioning of the VKORC1 protein in the vitamin K cycle, thereby inhibi-
tion the γ –carboxylation and thus functioning of MGP (Figure 4). There was a two-
fold increased risk for osteoarthritis incidence and progression in VKA users, compared 
to non-users. When the underlying genetics were taken into account, MGP risk allele 
carrier and VKORC1 B-haplotype carrier, VKA users had a three-fold increased risk of 
osteoarthritis progression (Chapter 3.2).  

MGP, VKORC1 genetics and Osteoarthritis

In the populations of European ancestry, 48% are carriers of the MGP risk allele and the 
VKORC1 B-haplotype, exposing half of the VKA users to very high risk of osteoarthritis 
incidence and progression. Additionally, VKAs are most commonly prescribed to the 
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◄Figure 4: The biological role of MGP and Vitamin K. A graphical summary of the functions of MGP,
vitamin K in calcification,  the effect underlying genetic variation and Vitamin K antagonist anticoagulant
(VKA) use. Inactive MGP or uncarboxylized MGP, is γ –carboxylized by vitamin K into active of carboxylized
MGP (cMGP), which is transported to the extracellular matrix to bin Ca2+, to prevent the formation of
calcium crystals.  Variants in MGP result is less expression of MGP and are associated with higher risk
of osteoarthritis. VKORC1 B haplotype causes increased expression of VKORC1, compared to VKORC1
A-haplotype. VKORC1 B-haplotype  associated with hight maintenance dosages of VKAs, conversely
VKOC1 A-haplotype is associated with decreases VKA dosages. VKAs inhibit VKORC1 function, and
thereby also γ –carboxylation of MGP, increasing osteoarthritis risk.

elderly[37], a group already at higher risk of osteoarthritis, and VKA users are advised 
to limited their dietary vitamin K intake, resulting in additional risk for low vitamin K 
status and therefore, possibly osteoarthritis. Interestingly, the MGP risk variant poses 
a large risk for osteoarthritis with environmental interaction (VKA use), while in the 
GWAS, the effect size was small (Chapter 4).

This Indicates that GWAS effect size does not predict the clinical or therapeutic 
impact of the associated SNV[2]. It also underlines the necessity to understand the bio-
logical mechanism behind the genetic association, in order to fully recognize its clinical 
impact. In addition, although first only found to be associated with hand and finger os-
teoarthritis and later nominal significant with knee osteoarthritis (Chapter 4), the MGP 
risk variants pose risk for hip and knee osteoarthritis in VKA users. Indicating non joint 
specific role for MGP and vitamin K in osteoarthritis, further increasing the therapeutic 
potential importance of the vitamin K-cycle. 

Osteoarthritis clinical implications of MGP

These genome-wide hand osteoarthritis associated variants in MGP have illustrated 
the a possible novel pathway associated with osteoarthritis, i.e., chondrocalcinosis. 
In addition, they have elucidated underlying fundamental biological mechanisms and 
confirmed prior epidemiological observations on vitamin K and osteoarthritis[34, 35, 
38, 39]. More importantly, these variants and subsequent follow-up characterization 
of these variants have identified vitamin K as possible target for pharmacotherapy and 
pharmacogenetic clinical trials. This was the result of only a single osteoarthritis associ-
ated locus and only a handful of other osteoarthritis loci have been deeply translational 
investigated[11, 40-42]. Tus the potential impact of deep translation research on those 
many remaining variants, for example the 52 novel reported in the GO-consortium, 
could be significant on osteoarthritis understanding and therapeutic research.  
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Novel risk factors for osteoarthritis: the Microbiome

As a complex disease, osteoarthritis risk is determined by a combination of genetic and 
environmental risk factors. Each of these risk factors, however does not exist alone in 
a vacuum, all are interconnected, forming complex layers of interactions (Figure 5). 
A “novel” layer in this complex system is the microbiome. Chapter 5 investigated the 
gastrointestinal microbiome composition as a possible risk factor for osteoarthritis. 
Changes in composition and function of the gastrointestinal microbiome are affected by 
a large number of host and environmental factors and have been  associated with  many 
common diseases and health deficits[43, 44]. Osteoarthritis is no exception to this, and 
in Chapter 5.1 increased abundance of Streptococcus spp. in the gastrointestinal mi-
crobiome was associated with increased inflammation and osteoarthritis related pain 
and inflammation in the knee joint. If the association is causal, it would be a significant 
finding for possible therapeutic intervention, as pain is the main disabling symptom in 
osteoarthritis[45]. Both for symptomatic relief, as pain elevation, as well as long-term 
disease modification (reduced inflammation damage). Some preliminary studies have 
shown that antibiotic use could reduce chronic low back pain, postulated to be caused 
by a low grade inflammation caused by the gastrointestinal microbiome[46, 47]. Other 
possible methods exist and/or are under development to alter the composition of the 
gastrointestinal microbiome (faecal transplant and probiotics, diet intervention) and 
thus may also be investigated as therapeutic strategies for osteoarthritis.

What does the future hold for osteoarthritis?

It has been more than a decade ago that the first osteoarthritis GWAS was performed 
and since this first effort our knowledge of osteoarthritis genetics has significantly ex-
panded, as has been presented in this thesis. Despite the increase in associated genetic 
loci, pathways and risk factors, much remains unknown on osteoarthritis pathology. 
The following recommendations can be implemented to aid the elucidation of the ge-
netic architecture of osteoarthritis and disease pathology: (i) expansion of osteoarthri-
tis GWASs, (ii) Re-defining osteoarthritis  , (iii) Microbiomics: It’s all in the gut and (vi) 
Post GWAS era: move to the clinic . All four are interconnected, and will be needed to 
bring preventive or curative treatments closer for one of the world’s oldest diseases

Expansion of osteoarthritis GWAS:  method, size, population, and phenotype

In the last few years we have seen an effective sevenfold increase of reported osteoar-
thritis associated loci, predominantly driven by large scale osteoarthritis GWAS. For 
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▲Figure 5: the multiple omics layers and interactions leading to osteoarthritis. Schematically several
omics- layers are represented. The exposome (environment) influences/interacts with all omics, except
for the genome. The genome does underly the epigenome/transcriptome and proteome directly, but
only indirect the other omics. Black dots and lines represent possible pathological pathways and inter-
actions within and between omics-layers resulting in osteoarthritis pathology.

other complex diseases similar success of ever larger GWAS have been reported, with 
some reaching sample sizes of over 1 million[48, 49]. With the formation and ongoing 
efforts of the Genetics of Osteoarthritis (GO) consortium, such large sample sizes are 
also becoming possible for osteoarthritis GWAS. Although the first success has been 
made by the GO consortium, several issues need to be addressed. Much of the herit-
ability (~94-79%) of osteoarthritis remains unexplained, although the low predicted 
heritability (8%-22%) seen in the GO consortium could be large explained by bias/
heterogeneity of the used osteoarthritis phenotypes. In general (Table 1) this “miss-
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ing heritability” is thought to be partly explained by rare SNVs (minor allele frequency 
<0.01) as the vast majority of human genetic variation is rare. In addition, other types 
of genetic variations besides SNVs exist, such as structural variation, which may ex-
plain a portion of the “missing heritability”. As GWAS predominantly evaluates common 
SNVs (minor allele frequency >0.01), a proportion of the heritability will remain undis-
covered. In addition, rare genetic variation is population specific, and the majority of 
(~80%) GWASs were performed in individuals of European descent[50]. Differences in 
disease incidence, prevalence and severity between populations can in part be attribut-
ed to underlying genetic variation and environmental interaction[51]. It is therefore not 
surprising that the results of European ancestry based GWAS are not directly transfera-
ble to other populations, as the underlying causal variants and effect sizes differ across 
populations[51]. Thus more globally inclusive data containing more genetic variation 
are needed, for example by whole genome sequencing globally inclusive populations. 

	 Although whole genome-sequencing data is the golden standard for identify-
ing all possible genetic variations, it is considerably more expensive and computation-
al intensive than genotyping arrays. The newest generation arrays, such as the Global 
Screening Array(GSA) or the PMDA (Thermofisher), are not only cheap, but they also 
increasingly cover more of the genome for different ethnic populations, including clin-
ically valuable rare variants[52]. Moreover, new imputation panels (TOPMED) and im-
putation methods are improving the calling of rare and population specific variants[53]. 
However, there still is a lack of true population specific reference panels i.e., for the Rot-
terdam Study this means a “Dutch ancestry” whole genome sequencing reference pan-
el, rather than a whole genome sequencing reference panel of “European Ancestry US 
Citizens”. Considering that many existing cohorts already have genotyping data avail-
able and could improve quality simply by re-imputing data, genotyping arrays remain 
highly cost effective for GWASs. Regardless of the method, for successful GWAS very 
large sample sizes are needed to study rare genetic variation. The costs saved by using 
array-based genotyping instead of whole-genome-sequencing could thus be better used 
to increase the sample size. 

However, is larger always better? Large scale GWASs have undoubtedly been suc-
cessful and sample size is usually the key limiting factor in GWAS discovery. Howev-
er, small scale GWAS using “smart phenotyping” such as stratified or endophenotype 
strategies have also been very successful, and have as extra benefit that they reduce 
heterogeneity and improve GWAS interpretation. Although, such smaller scale studies 
would be even more successful with larger sample sizes. The identification of a single 
robust GWAS finding could already lead to significant therapeutic impact. Thus also in 
GWAS: quality (robust and well validated association) rules over quantity (hundreds of 
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non-robust signals), especially for therapeutic development. Therefore, investment in 
deep and accurate phenotyping over ever increasing sample sizes, may be more thera-
peutically beneficial in the long run. 

Thus, if we want to fully understand the genetic architecture and pathology of os-
teoarthritis, future studies will need to invest in large scale genotyping and deep pheno-
typing in globally diverse populations. Together with creating globally inclusive whole 
genome sequencing reference panels for increased imputation quality. Such invest-
ments will be needed if we want to develop novel treatment strategies against osteoar-
thritis from which the whole global population could benefit. The first steps toward this 
goal have already been taken within the GO consortium. The consortium is ever increas-
ing in size and including more and more diverse global populations. Fortunately, it also 
include cohorts with deep phenotyping information. Allowing for the development and 
use of phenotypes more accurately representing the deep complexity of osteoarthritis. 

Re-definition of osteoarthritis

As stated above and throughout this thesis, the phenotyping of osteoarthritis is criti-
cal for future osteoarthritis GWAS and research success. Especially if we want to move 
“from bench to bedside”. How we define osteoarthritis as a disease strongly determines 
the interpretation and power of a GWAS. Current and past osteoarthritis GWAS have pre-
dominantly used “minimal phenotype” definitions, i.e. hospital diagnosed and self-re-
ported osteoarthritis, possibly only identifying the “low-hanging fruit” of osteoarthritis 
GWAS[13, 17]. Exploring a wider range of biological/clinical relevant disease pheno-
types, i.e., stratified and endophenotypes, will most likely lead to novel discoveries and/
or a more complete understanding of osteoarthritis genetics. Future osteoarthritis defi-
nition and phenotypes need to embrace the heterogeneity in osteoarthritis. Although, 
this heterogeneity is well recognized[54], osteoarthritis is still described as a singular 
disease. Osteoarthritis should be referred to as a syndrome; multiple causes, pathways, 
tissues and pathologies all leading to the same clinical outcome: osteoarthritis[54]. The 
re-definition of osteoarthritis as syndrome can also be incorporated in GWAS pheno-
type definitions: stratifying osteoarthritis symptoms (pain, stiffness, swelling, disabili-
ty), main affected tissue (cartilage, bone, muscle etc.), or by  underlying  cause (traumat-
ic, obesity) or predominant molecular pathway (vitamin K pathway). 

In addition, future phenotypes should also acknowledge the impact of other large 
osteoarthritis risk factors. The largest risk factor of osteoarthritis, is age, if the controls 
consist of young individuals (<50 years) they may still develop osteoarthritis at a later 
age. For GWAS research this might mean some genetic loci may be missed. However, age 
could also be incorporated into the osteoarthritis phenotype in GWAS for example by 
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using age of osteoarthritis onset as phenotype rather than osteoarthritis status. Other 
examples of (environmental) risk factor incorporation into osteoarthritis phenotypes 
might be to examine disease progression over time, changes of osteoarthritis risk with 
changes in environmental risk factors, such as diet (gut microbiome) and drug use, over 
time.

Acknowledging osteoarthritis as a syndrome will emphasize phenotype defini-
tion as the key importance in osteoarthritis research. Accurate identification of osteo-
arthritis phenotypes, will increase GWAS power by reducing heterogeneity. Follow-up 
research can then link underlying mechanisms to the specific phenotypes, possibly 
leading to the identification of specific clinical subsets of osteoarthritis patients. Possi-
bly improving patient care by providing the possibility of future targeted/personalized 
therapeutic interventions based on the clinical subset of osteoarthritis. Thus by re-de-
fining osteoarthritis as a syndrome, we can improve osteoarthritis research, improve 
patient care by possibly future development of targeted treatments. 

Microbiomics: It’s all in the gut

The human microbiome, specifically the human gastrointestinal microbiome, has been 
shown to play an important role in health and disease[43, 44], possibly including oste-
oarthritis (Chapter 5). Although, the microbiome is an easy and attractive therapeutic 
target for osteoarthritis, no conclusive evidence of causality is established. Partially, this 
can be attributed to the novelty of large scale microbiomics data: the limited availability 
of data, lack of standardization in data processing, methodology and analysis. Moreover, 
much is unknown on the exact molecular mechanisms or pathways by which the human 
microbiome functions in health and disease. This also means that for most microbiome 
and disease associations causality is not known. However, for future research it is abso-
lutely essential that the causality and the directionality (does Streptococcus spp. cause 
pain or does pain lead to Streptococcus spp. colonialization) is established. 

There are several possible research methods by which causality of Streptococcus 
spp. on osteoarthritis could be investigated. These would include longitudinal analysis 
of gastrointestinal composition and osteoarthritis related pain, in order to examine if 
an increase in Streptococcus spp. is followed by an increase in joint inflammation and 
pain. The detection of Streptococcus (or bacterial) metabolites and excreted membrane 
vesicles in the blood and joint tissue (e.g. synovium) and if these can trigger joint in-
flammation and/or pain, would also be evidence of a causal relationship. In addition, to 
establishing causality, identifying the exact species or strain of Streptococcus bacteria is 
of therapeutic importance. If the association is causal and decrease of streptococcus spp. 
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could prevent or decrease joint pain and inflammation, possible therapeutic strategies 
include antibiotics, diet intervention, faecal transplants or even microbial metabolites 
[55, 56]. However, these therapies also affect the rest of the gastrointestinal microbi-
ome. If the exact Streptococcus species or strain is known specific antibiotics, probiotics 
or introduction of competitor species could be used, without affecting the entire micro-
biome composition.   Thus, still quite some research is needed before the microbiome is 
truly part of the osteoarthritis risk factors and possible therapeutic targets.   

Post GWAS era: move to the clinic 

The increase in osteoarthritis genetic loci over the last decade has not only increased 
the understanding of osteoarthritis genetics, but also understanding of osteoarthritis 
pathology. Especially, translational research into GWAS results has demonstrated novel 
genes, pathways and mechanisms to be involved in osteoarthritis pathology. Some are 
now considered or in the development process for novel treatment strategies: MGP(os-
teoarthritis in any joint, Vitamin K)(Chapter 3)[21, 36], TGFB1 (knee osteoarthritis, IN-
VOSSA)[57], CSTK (extracellular matrix turnover/inflammation inhibitor, CSTK inhibitor)
[58] and FGF18(cartilage regeneration for knee osteoarthritis, Sprifermin)[59]. However,
a true move from GWAS to clinical treatment has not (yet) been made for osteoarthri-
tis, for this to happen considerable more functional follow-up and translational studies
are needed. Particularly, bioinformatic investigation of omics, multi-omics and inte-
grative omics is needed (Figure 5). Although for osteoarthritis, some omics resources
exist (cartilage and bone gene expression, methylation, histone markers , ATAC-seq),
the data is scarce and is measured in few individuals or only in specific states (healthy
or diseased). What is needed, is a large scale integrative multi-omics data resource:
measuring multiple osteoarthritis relevant tissues, tissue states and omics-layers in one 
large group of individuals. Several biobanks and groups are working towards such a
goal (UK-biobank, ROADMAP, ENCODE), albeit not specifically for osteoarthritis or os-
teoarthritis relevant tissue. Imagine the possibilities of such an osteoarthritis specific
resource, considering the immense value and insight the current limited osteoarthritis
specific omics data have provided so far. Such a data resource will be invaluable for
the identification of novel osteoarthritis associated genes, pathways and therapeutic
development.

 	 Osteoarthritis associated SNVs could potentially also directly be used in a clin-
ical setting. These SNVs could be used to create an individual level genetic risk score or 
polygenic risk score (PRS) for osteoarthritis. These scores reflect an individual’s genetic 
risk for developing a certain disease[60]. For osteoarthritis, currently 148 genomic loci 
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have been reported. Although, these only explain 6-21% of the genetic heritably for os-
teoarthritis, they may explain sufficient genetic risk to be successfully used in a PRS, for 
example hip osteoarthritis where 21% of the genetic heritability is explained. We might 
be able to identify individuals at high risk of developing hip osteoarthritis, preferably 
at an early age before osteoarthritis onset, and take preventative measures[60]. These 
would include the prevention of environmental osteoarthritis risk factors, such as obe-
sity. No treatment strategies exist (for now) for osteoarthritis, thus such preventative 
measure could be extremely valuable, especially in individuals with a high genetic risk 
of osteoarthritis. By lowering environmental risk factors such individuals could either 
prevent osteoarthritis or extend the age of onset of osteoarthritis. 

In addition, PRS could also be used in osteoarthritis patients to identify which 
underlying pathological pathway are driving their osteoarthritis. Using the translation-
al knowledge of , i.e., of which genes and pathways, of the SNVs included in the PRS, the 
pathological pathways involved can be identified. Allowing for a “personalized medi-
cine” approach for identifying subgroups of osteoarthritis patients and adjusting ther-
apeutic strategies accordingly Here, it becomes evident why GWAS needs to be done on 
globally diverse populations. If we do not take into consideration differences between 
populations, the possibility exists that the developed PRS is only effective in one specific 
population. Possibly of widening existing disparities and excluding minority popula-
tions of valuable osteoarthritis clinical care. 

Although seemingly much needs to be done to move from “bench to bedside”, 
the current SNV array prices have reached a record low (~€30,- per sample). Combined 
with the rapid increase in understanding of osteoarthritis genetics, clinical implications 
might reach the “bedside”  soon. Hopefully the research presented here and suggestions 
for future research will contribute to help lower the burden of osteoarthritis, which has 
been plaguing synovial joints for hundreds of millions years. 
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Summary

Osteoarthritis is the most common chronic degenerative joint disease worldwide, and 
has been present throughout history, evidenced by fossilized findings of osteoarthrit-
ic joints. Making Osteoarthritis one of the world’s oldest diseases, and yet no curative 
treatments are available. The aim of this thesis is to identify novel genes involved in 
osteoarthritis, in order to gain greater insight into the pathology of osteoarthritis and 
bring possible preventive or curative treatments closer for one of the world’s oldest 
disease.

Chapter 1 gave an introduction of osteoarthritis and it’s long history. Also, key concepts 
in genetics, genetic epidemiology research and epigenetics were covered. Chapter 1.2, 
delved deeper into the role that epigenetics play in osteoarthritis research and pathol-
ogy.   

In Chapter 2 results of two genome-wide association studies using two different types 
of osteoarthritis phenotypes were presented. Although, these studies had a relatively 
small sample size (n≤10,000) both studies robustly identify novel osteoarthritis associ-
ated loci. Using follow-up translational research, novel candidate genes for osteoarthri-
tis therapeutic development were identified. Demonstrating and confirming the poten-
tial for novel insight into the genetic architecture of osteoarthritis by using biologically 
meaningful phenotypes (stratified or endophenotypes).  

Chapter 2.1 showed the use of minimal joint space width (mJSW) as an en-
dophenotype for hip cartilage thickness. Using this osteoarthritis endophenotype four 
novel genetic loci associated with cartilage thickness and hip osteoarthritis were identi-
fied. In addition, two known osteoarthritis associated loci were replicated, 
(rs2864419) DOT1L and (rs109481947) SUPT3H-RUNX2. Systematic prioritization 
using diverse lines of evidence pointed to likely causal genes for the identified loci: 
RUNX2, TGFα, PIK3R1, SLBP/FGFR3, DOT1L/GADD45B and TREH/DDX6. Of these 
TGFα, PIK3R1 and FGFR3 were differentially expressed between osteoarthritis 
lesioned and non-lesioned cartilage. 

 In Chapter 2.2 three hand osteoarthritis phenotypes were created based on the 
pattern and severity of radiographic osteoarthritis in the hand joints: thumb osteoar-
thritis severity (klsum), finger osteoarthritis severity (KLsum) and hand osteoarthritis 
severity (KLsum). Two known hand osteoarthritis associated loci were replicated and 
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two novel thumb osteoarthritis loci were identified. One of the thumb osteoarthritis 
severity osteoarthritis loci (rs10916199) was also associated with clinical thumb os-
teoarthritis. Using multiple approaches that leverage different levels of information and 
functional data, the underlying biological mechanism and candidate gene for this lo-
cus (rs10916199) was investigated. WNT9A was identified as possible novel gene 
involved in osteoarthritis pathogenesis, with rs1158850 as potential causal variant in 
this locus. In addition, several previously identified genetic loci for osteoarthritis were 
shown to also confer risk for osteoarthritis across multiple joints: TGFα, RUNX2, CO-
L27A1. ASTN2. IL11 and the GDF5-loci. 

Chapter 3 continued the use of this hand osteoarthritis severity phenotype to identify 
the second hand osteoarthritis associated loci. Again, using follow-up translational re-
search a novel osteoarthritis associated gene was discovered. However, in the second 
part of this chapter, the implications of this novel osteoarthritis gene association are 
put to the test and revealed some serious clinical implications. Demonstrating the im-
portance of in depth follow-up research and value of genetic studies for osteoarthritis 
research.    

In Chapter 3.1 an osteoarthritis phenotype, which quantified the severity of ra-
diographic osteoarthritis, was used to identify the second genetic loci associated with 
hand osteoarthritis. A coding variant in the MGP gene was associated with increased 
risk of hand osteoarthritis. This variant showed allele specific gene expression in car-
tilage tissue, the risk variant significantly reduced MGP gene expression. MGP is an es-
sential inhibitor of cartilage calcification, thus reduced MGP expression could lead to 
increase cartilage calcification and higher risk of osteoarthritis. In addition, MGP can 
only inhibit cartilage calcification if γ-carbolized by vitamin K. Demonstrating the link 
between low vitamin K status and high risk of osteoarthritis. 

Using this new knowledge, Chapter 3.2 investigated the possible role of vitamin 
K antagonist anticoagulants in osteoarthritis risk and progression. Vitamin K mediated 
γ-carboxylation is also essential for several blood coagulation factors, thus most an-
ticoagulant medication inhibits this process. The vitamin K antagonist anticoagulants 
inhibit the function of VKORC1, an essential protein in the Vitamin K mediated γ-car-
boxylation pathway. Individuals taking the vitamin K antagonist anticoagulant aceno-
coumarol, were found to have a twofold greater risk of incidence and progression of 
knee and/or hip osteoarthritis then those not using acenocoumarol. Next, 
individuals whom were carrier of the MGP osteoarthritis risk allele and the VKORC1 B-
haplotype, associated with a higher dose of acenocoumarol, had a more than  
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threefold increased risk of osteoarthritis when using acenocoumarol, compared to 
non-users. In a popu-lation with European ancestry ~50% of the population is 
carrier of both these alleles, thus potentially exposing half of the acenocoumarol users 
in that population to a signif-icant increased risk of osteoarthritis. Thus, if the clinical 
indication allows, individuals in need of anticoagulation might be prescribed non-
vitamin K inhibiting anticoagulants. In addition, the results of this chapter, validated 
the importance of MGP and vitamin K in osteoarthritis pathology, opening up the 
possibility to investigate vitamin K as thera-peutic target for osteoarthritis. 

In genome-wide association studies, the most important factors for success are phe-
notype definition and sample size. Chapters 2 to 3, examined the effect of phenotype 
definition, in Chapter 4 sample size is examined. This was done by collaborating in 
the to date largest osteoarthritis genetics consortium: Genetics of Osteoarthritis (GO) 
consortium.  The GO-consortium consists of over 20 different population studies from 
across the world, although predominantly of European ancestry, and contained in total 
177,517  osteoarthritis cases  and 649,173 controls. 

 Chapter 4.1 presents the first results of the 11 osteoarthritis genome-wide 
association studies performed in the GO-consortium. In total 100 genetic loci associ-
ated with osteoarthritis were discovered, of which 52 were novel and 48 were known 
osteoarthritis loci. Among these loci are, rare variants with large effects,  variants with 
opposite direction of effects between phenotypes, characterise differences between 
weight-bearing and non-weight bearing joints and loci associated with all osteoarthri-
tis phenotypes. Novel possible osteoarthritis target tissues could be identified as well 
as, genetic correlation of osteoarthritis with neuronal pathways and pain. Functional 
genomics data from primary patient tissues identified possible causal gene(s) for each 
locus and revealed possible shared underlying molecular mechanisms for comorbid 
cardiovascular diseases and osteoarthritis. All providing a new wealth of insight in to 
osteoarthritis pathology and highlight attractive targets for drug discovery and devel-
opment. 

Osteoarthritis is a complex disease, and thus environmental factors also play a major 
role in the pathology. A novel environmental factor associated with disease is the human 
microbiome. The gut microbiota has been shown to play diverse roles in human health 
and disease although the underlying mechanisms have not yet been fully elucidated. 
Thus Chapter 5 investigated the possible role that the trillions of bacteria living inside 
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our digestive tract may play in osteoarthritis. Recent studies had shown an important 
role for the microbiome in obesity, and demonstrated that the microbiome changes 
with age. As, obesity and age are most well characterized risk factors for osteoarthritis. 

Chapter 5.1 we presented two novel large scale population bases microbiome 
data sets to be used for microbiome research: Generation R (n=2,111) and Rotterdam 
Study microbiome (n=1,427) datasets. Using these datasets we identified composition-
al and functional differences in gut microbiome between children and adults.  Moreover, 
we confirm that these microbiome profiles can serve as reference for future studies 
on specific human disease susceptibility in childhood, adulthood and specific diseased 
populations. 

Using the Rotterdam Study microbiome dataset as presented in the previous 
chapter, in Chapter 5.2, the possible relationship between osteoarthritis, joint pain and 
gastrointestinal microbiome was investigated.  Previous research had suggested that 
osteoarthritis-related joint pain and inflammation may be triggered or exacerbated by 
endotoxins produced by the gastrointestinal microbiome.  Using the stool microbiome 
data set of the Rotterdam Study (n=1,427), an association between relative abundance 
of Streptococcus spp. and osteoarthritis-related knee pain was identified. These results 
were replicated in an independent cohort (Life-Lines Deep, n=867). Increased abun-
dance of Streptococcus spp. in the gastro-intestinal microbiome was associated with 
increased knee joint pain, validated by absolute quantification of Streptococcus species. 
In addition, evidence was presented that this association is driven by local inflamma-
tion in the knee joint. Indicating the microbiome as a possible therapeutic target for 
osteoarthritis-related knee pain.

Last, in Chapter 6, all the findings in this thesis are combined and put into a broader 
perspective. Finally, recommendations are given the next steps that need to be taken in 
order find preventive or curative treatments for one of the world’s oldest diseases. 

Despite the many advances in osteoarthritis genetics in the recent years, ~148 
reported associated loci, much remains to be discovered. Many hundreds gene and 
thousands of genetics variants are probably involved in genetic osteoarthritis risk. 
Next, much of the interaction between genetics and the environment remains unknown 
in osteoarthritis pathology and risk, e.g., gut microbiome, osteoarthritis and genetics. 
In sum, much remains unknown about osteoarthritis pathology and risk. However, de-
spite these missing pieces, many hopeful discoveries have been made, which in the fu-
ture may lead to novel therapeutic and preventative strategies. This includes the novel 
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osteoarthritis associated genes, the microbiome and vitamin K, with further research 
these discoveries may one day end up in clinical applicates  for one of the world’s oldest 
disease, osteoarthritis.    
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“De meest fundamentele ideeën van de wetenschap zijn in wezen eenvoudig en kunnen in de 
regel worden uitgedrukt in een taal die voor iedereen begrijpelijk is.”

~ Albert Einstein, The Evolution of Physics (1938)

“laten we een voorbeeld nemen aan Annie M.G. Schmidt met Jip en Janneke”
~ Bas Eenhoorn pleit voor “Jip-en-Janneke Taal” in de Tweede Kamer (2002)

“Een beetje onnauwkeurigheid scheelt soms heel veel uitleg”
~ H. H. Munro, Clovis On The Alleged Romance Of Business (1924)

Het doel van de wetenschap is eigenlijk samen te vatten tot twee punten: i) het sys-
tematisch verweven van kennis en ii) deze kennis overdragen. Nu gaat dat eerste punt vrij 
aardig in de huidige academische wetenschap, maar het probleem zit hem in het tweede 
punt, die kennis overdracht. Tussen wetenschappers (en andere vakidioten) is er een 
heel specialistisch systeem van publicaties, posters, orals (presentaties), peer review en 
congressen om kennis over te dragen. Waar deze methoden (over het algemeen) goed 
werken tussen wetenschappers, is het compleet alien voor de buitenstaander, ”It’s not life 
as we know or understand it”~Lt.Com. Spock. De drempel is (te) hoog voor buitenstaanders 
om mee te kunnen doen aan dit systeem van kennis overdracht. De wetenschap en de 
kennis die daarbij verworven wordt, moet toegankelijk zijn voor iedereen. Wetenschappers 
hebben de morele en ethische plicht om hun kennis ook effectief over te dragen aan niet-
wetenschappers. Dit is geen gemakkelijke opgave, maar dat is kennisoverdracht nooit. Dus 
zie hier mijn poging om meer dan 7 jaar artrose onderzoek in “Jip-en-Janneke taal” samen 
te vatten.
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Nederlandse Samenvatting

Osteoartritis (artrose), is de meest voorkomende chronische gewrichtsaandoening 
wereldwijd. In Nederland alleen al zijn er ongeveer 1 miljoen mensen met artrose in één 
of meerdere gewrichten. Niet alleen komt artrose veel voor, het is ook één van de oudste 
aandoeningen ter wereld; er zijn meerdere gefossiliseerde dinosaurus gewrichten met 
artrose gevonden. Toch bestaan er momenteel geen genezende behandelingen voor 
artrose. Dus het wordt hoog tijd dat daar verandering in gaat komen! Het doel van 
dit proefschrift was dan ook om beter inzicht te krijgen in het ontstaan en de verloop 
(pathologie) van artrose. Dit proefschrift was met name gericht om genen te ontdekken 
die betrokken zijn bij de pathologie van artrose, om hopelijk voorkomende en genezende 
behandelingen te kunnen ontwikkelen.

In Hoofdstuk 1 werd een inleiding gegeven van artrose en de lange geschiedenis van 
deze ziekte, van de eerste beschrijvingen van de symptomen door Hippocrates (460-
375 B.C.E.) tot de start van dit proefschrift. De wetenschappelijke naam voor artrose, 
osteoartritis, komt van het oude Grieks ὀστέον (ostéon): “bot” en artritis van de com-
binatie artr- ἄρθρον (árthron): “gewricht” en -itis ῖτις (îtis): “met betrekking tot” ofwel
“bot met betrekking tot het gewricht”. Ondanks deze naam, tast artrose niet alleen het 
bot in het gewricht aan, maar het hele gewricht en alle weefsels daarin. Kenmerkend 
voor artrose zijn de (onomkeerbare) afbraak van het gewrichtskraakbeen en de vorm-
ing van benige (bot) uitgroeisels aan de rand van het gewricht (osteofyten). Artrose is 
een complexe ziekte, in de wetenschappelijke betekenis van complex: artrose wordt 
veroorzaakt door een samenwerking tussen omgevingsfactoren en genetica. Hierbij 
wordt de betrokkenheid van genetica voor artrose geschat op ~39% - 65%, afhankelijk 
van het gewricht (hand, knie of heup). Dus een groot gedeelte van het risico voor het 
krijgen van artrose wordt bepaald door de genetica. Hoe en welke genetische variatie 
en genen betrokken zijn bij artrose was het hoofddoel van dit proefschrift. 

Het DNA (Desoxyribonucleïnezuur) is een groot en ingewikkeld molecuul dat alle 
genetische informatie bevat: de “blauwdruk” voor de ontwikkeling, functioneren en on-
derhoud van een organisme. Het DNA bestaat uit twee om elkaar gewikkelde strengen 
(dubbele-helix) van tegenover elkaar liggende nucleotiden (baseparen): adenine (A) 
met thymine (T) en cytosine (C) met guanine (G). Deze streng van baseparen (sequen-
tie), is in mensen ~3.2 miljard baseparen lang en verdeeld over 24 chromosomen. Deze 
sequentie codeert voor allerlei erfelijke informatie, bijvoorbeeld, haar en oog kleur, 
maar ook mindere zichtbare zaken als hoe het immuunsysteem reageert. De humane 
DNA sequentie is nagenoeg identiek en toch ook uniek voor ieder mens op aarde. Gem-
iddeld genomen komt het DNA tussen twee willekeurige mensen voor ~99.5% overeen. 
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De ~0.5% variatie bepaald o.a. de verschillen: blauwe of bruine ogen? Krullend of stijl 
haar? Maar ook een individu’s risico voor bepaalde ziekten, als artrose. Verreweg de 
meeste genetische variaties zijn “Single Nucelotide Variations/ Polymorphisms (SNVs 
of SNPs)”, of wel variaties van één enkele nucleotide.

 Dit proefschrift gebruikte voornamelijk genoomwijde associatie studies 
(GWAS) om te ontdekken welke genetische variaties (SNVs of SNPs, spreek uit als 
“snip”) gelinkt (ge-associeerd) zijn aan het hebben of krijgen van artrose. Bij een 
GWAS wordt er gekeken of er genetische variaties zijn die statistisch gezien, vaker 
voorkomen bij mensen met de onderzochte eigenschap dan bij mensen die die 
eigenschap niet hebben. Bijvoor-beeld: welke genetische variatie(s) komen vaker 
voor bij mensen met artrose dan bij de mensen die geen artrose hebben? Voor GWAS 
zijn er dus DNA en uiterlijke, wel of geen artrose(fenotypen), gegevens nodig. Van de 
resultaten van de vele GWAS studies die er gedaan zijn sinds de allereerste GWAS (in 
2002) weten we dat de gevonden varianten vaak maar een klein beetje bijdragen aan 
de onderzochte eigenschap. Dit betekend dat er gegevens van heel veel mensen 
nodig zijn voor een succesvolle GWAS studie, denk aan enkele duizenden voor een 
“kleine” studie en tienduizenden tot honderdduizen-den mensen voor “gemiddelde” 
tot “grote” studies. Gelukkig kon voor dit proefschrift gebruik gemaakt worden van 
data van de “Rotterdam Study (RS)” ofwel het “Erasmus Rotterdam Gezondheid 
Onderzoek, ERGO”. 

De Rotterdam Study is een langlopend bevolkingsonderzoek gericht op 
gezond-heidsproblemen die zich vooral voordoen op oudere leeftijd. Dit 
bevolkingsonderzoek was gestart in 1990 en bestaat inmiddels uit bijna 20.000 
mensen van 40 jaar en ouder uit de Rotterdamse wijk Ommoord. De deelnemers 
worden iedere 3 tot 4 jaar uitgen-odigd in het ERGO onderzoekscentrum voor een 
uitgebreid en uitvoerig gezondheid-sonderzoek; waaronder DNA gegevens, 
röntgenfoto’s, MRI, medicijn gebruik, vragen-lijsten etc. Door deze grootschaligheid 
en uitgebreide opzet is de Rotterdam Study een zeer wel bekend begrip in de 
medisch-wetenschappelijke wereld. 

In hoofdstuk 2 werd gebruikt gemaakt van verschillende soorten artrose 
kenmerken (fenotypen) om via genoomwijde associatie studies nieuwe genetische 
associaties te vinden met artrose. Door gebruik te maken van deze artrose fenotypen 
laat dit hoofd-stuk zien dat je zelfs met een kleine studie (voor genetisch onderzoek 
“kleine” studies) toch genetische varianten kan ontdekken die gelinkt zijn aan artrose. 

In hoofdstuk 2.1, is de minimale afstand tussen de heup gewrichtsdelen (mini-mum 
joint space width, mJSW) gebruikt als maat voor de ernst van de kraakbeen afname 
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in het heup gewricht. Kraakbeen afname is één van de kenmerken van artrose, maar 
kraakbeen afname alleen betekend niet dat er artrose in het gewricht is. Deze maat 
meet dus niet direct de ernst van de (mogelijke) artrose in het gewricht, maar meet een 
“tussenliggend” (intermediair) kenmerk (fenotype) voor artrose. Zulke intermediaire 
fenotypen, worden ook wel endofenotypen genoemd. Dit zijn kenmerken (fenotypen) 
die dichter gerelateerd zijn met de onderliggende erfelijkheid (groei van kraakbeen) 
dan de ziekte zelf (artrose). Omdat een endofenotype dichter bij de genetica ligt kan 
ook onze “kleine” (< 10.000 mensen) genetische studie meerdere genetische variaties 
identificeren die gelinkt waren aan kraakbeen dikte: vier nieuwe associaties en twee 
bekende associaties werden gevonden. Met behulp van verschillende biologische data; 
kraakbeen gen expressie (welke genen “aan” en “uit” staan in kraakbeen), kraakbeen 
eQTL data (of een genetische variant een gen “aan” of “uit” kan zetten) en literatuur 
data (wat is er al bekend over de genetische variant en de genen); werden er genen 
gevonden die mogelijk betrokken zijn bij het ziekte proces  van artrose: RUNX2, TGFα, 
PIK3R1, SLBP/FGFR3, DOT1L/GADD45B en TREH/DDX6. Van deze lijst van genen (in 
hun afkortingsnamen) waren er twee, TGFα en FGFR3, die hoger tot expressie kwamen 
(meer “aan” stonden) in kraakbeen aangetast door artrose dan in kraakbeen niet aang-
etast door artrose. 

	 In hoofdstuk 2.2, zijn er drie hand-artrose fenotypen gemaakt gebaseerd op 
de ernst en het patroon van de artrose in de hand. Eén hand (vingers en duim) bevat 
maar liefst 16 gewrichten, en al deze gewrichten kunnen aangetast worden door ar-
trose. Dit maakt het lastig om de hand te onderzoeken: om één studie te doen naar ieder 
hand gewricht apart voor beiden handen (32 gewrichten), is wel erg veel werk. Maar, 
bij hand artrose is er vaak niet één gewricht aangedaan maar meerdere. Door te onder-
zoeken welke gewrichten vaak samen of tegelijk zijn aangedaan door artrose, werd de 
hand opgedeeld in: alleen de vinger gewrichten, de duim gewrichten en heel de hand 
(alle gewrichten samen). De ernst van de artrose in alle hand gewrichten werd gemeten 
via de Kellgren en Lawrence (KL) schaal. Deze meet op röntgen foto’s o.a. de mate van 
de gewrichtsspleet vernauwing en aantal osteofyten. Door de KL-schaal (van 0 tot 4) op 
te tellen voor ieder gewricht werd er een “KL-som score” gemaakt die de ernst van de 
artrose weer geeft: duim artrose ernst, vinger artrose ernst en hand artrose ernst. 

	 Wederom, door gebruik te maken van specifieke artrose fenotypen, werd in 
een “kleine” (< 10.000 mensen) genetische studie nieuwe varianten gelinkt aan artrose 
gevonden. Twee nieuwe genetische links met duim artrose en twee bekende hand/
vinger artrose werden gevonden. Eén van deze genetische variaties met duim KLsom 
(ernst van de duim artrose) werd ook gelinkt aan het hebben van klinisch aangetoonde 
duim artrose. Dit is belangrijk, want het geeft aan dat deze genetische variatie ook echt 
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te maken heeft met artrose en niet alleen met het “intermediair” artrose fenotype. Voor 
deze genetische variant, rs10916199 (het SNV identificatie nummer) werd onderzocht 
hoe deze genetische variant kan leiden tot een groter risico op duim artrose. Dit werd 
gedaan door middel van meerdere benaderingen die gebruikmaken van verschillende 
biologische data. Uit de onderzochte data blijkt dat de genetische variant mogelijk in 
een “regel knop gebied” (regulatory region) voor het WNT9A gen ligt en op die manier 
zorgt dat dit gen “te veel” of op het verkeerde moment “aan” staat. Daarnaast vonden we 
ook, dat veel van de bekende genetische variaties gelinkt aan knie of heup artrose ook 
risico kunnen geven voor hand artrose.

Hoofdstuk 3 ging verder met het gebruik van het hand KLsom fenotype. Er werd één 
nieuwe genetische associatie gevonden, ook weer in een “kleine” (< 10.000 mensen) 
genetische studie. Wederom werd met behulp van vervolg onderzoek een nieuw artrose 
gelinkt  gen ontdekt. In het tweede deel van dit hoofdstuk worden de implicaties van 
dit nieuwe artrose gen onderzocht en de mogelijke consequenties hiervan voor artrose 
preventie en behandeling. Deze hoofdstukken laten de waarde zien van genetische 
studies naar artrose en het belang van diepgaand vervolg onderzoek hierbij. 

In hoofdstuk 3.1 werd ook gebruikt gemaakt van hand KLsom (de ernst van de 
artrose op röntgen foto’s) om de tweede genetische associatie te ontdekken voor hand 
artrose. Een genetische variant in het MGP gen werd gelinkt aan een hoger risico voor 
hand artrose. Deze genetische variant zorgde voor minder MGP expressie in kraakbeen, 
het MGP gen stond minder “aan”. MGP zorgt ervoor dat o.a. het kraakbeen niet verkalkt, 
en kraakbeen verkalking gebeurt ook bij artrose gewrichten. Dus verminderde expres-
sie van MGP kan leiden tot een verhoogde verkalking van het kraakbeen en daarmee 
een hoger risico op artrose. Bovendien kan MGP alleen de verkalking van kraakbeen 
remmen als het wordt “geactiveerd “ (γ-carboxylatie) door vitamine K. Dit kan de verk-
laring zijn voor het verband tussen lage vitamine K bloed waarden en een hoog risico 
op artrose.

Met behulp van deze nieuwe kennis werd in hoofdstuk 3.2 de mogelijke rol van 
vitamine K remmende bloedverdunners in artrose ontwikkeling onderzocht. Verschil-
lende bloedstollingsfactoren, stofjes (eiwitten) die betrokken zijn bij het helpen stol-
len van het bloed, hebben ook de vitamine K “activering”( γ-carboxylatie) nodig om 
te functioneren. Daarom remmen de meeste, en meest gebruikte, bloedverdunners dit 
activeringsproces van vitamine K, met als gevolg dat de activering van MGP ook ger-
emd wordt. Op zijn beurt, lijdt een verminderde MGP activiteit weer naar een verhoogd 
risico op artrose. Mensen die dus deze bloedverdunners (acenocoumarol) gebruikten, 
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bleken een tweemaal groter risico te hebben op het krijgen van of het verergeren van 
knie en heup artrose, dan de mensen die geen bloedverdunners gebruikten. Daarbij 
hadden mensen die drager waren van de genetische MGP variatie gelinkt aan artrose, 
en een genetische variatie (VKORC1) gelinkt aan een hogere dosis bloedverdunners, een 
meer dan viervoud verhoogd risico op artrose bij gebruikt van bloedverdunners. In een 
populatie bestaande uit mensen van Europese afkomst is ~30% van de populatie drag-
er van beide genetische variaties. Wat dus inhoudt dat een derde van alle gebruikers 
van deze bloedverdunners (acenocoumarol) word blootgesteld aan een zeer verhoogd 
risico op het krijgen of verergeren van artrose. Er bestaan bloedverdunners die niet de 
vitamine K activatie remmen, dus als de klinische indicatie het toestaat zouden deze 
bloedverdunners voorgeschreven kunnen worden. Bovendien bevestigde de resultaten 
van dit hoofdstuk het belang van MGP en vitamine K in het ziekte proces van artrose, 
waardoor vitamine K verder onderzocht moet worden als mogelijk doelwit voor artrose 
behandelingen. 

In genoomwijde associatie studies (GWAS) zijn de belangrijkste succesfactoren: het 
fenotype dat gebruikt wordt en grootte van de studie. In de hoofdstukken 2 tot en met 
3 is het effect van fenotype onderzocht, in hoofdstuk 4 werd de grootte van de studie 
onderzocht. Dit werd gedaan door samen te werken in het tot nu toe grootste consor-
tium (samenwerking) voor artrose-genetica: Genetics of Osteoarthritis (GO) consor-
tium. Het GO-consortium bestaat uit meer dan 20 verschillende bevolkingsonderzoek-
en van over de hele wereld, voornamelijk Europese bevolkingen, en bevatte in totaal 
177.517 gevallen van artrose en 649.173 controles.

Hoofdstuk 4.1 presenteerde de eerste resultaten van de 11 osteoartritis ge-
noom-wijde associatie studies (GWAS) uitgevoerd in het GO-consortium. In totaal 
werden 100 genetische varianten ontdekt die gelinkt zijn aan artrose, waarvan 52 
nieuw waren en 48 bekende. Hiervan zijn er heel veel gelinkt aan zowel gewicht-dra-
gende(heup, knie, rug) als niet gewicht-dragende gewrichten (hand, vinger, duim). 
Daarbij werd ook de eerste genetische link gevonden voor ruggenwervel artrose. Door 
ook in deze studie gebruikt te maken van vervolg onderzoek en biologische gegevens 
konden er niet alleen nieuwe artrose genen worden gevonden maar ook mogelijke ge-
netische links met (gewrichts-)pijn, ontsteking en zenuwstelsel ontwikkeling. Al deze 
data en resultaten geven een schat weer aan mogelijke nieuwe inzichten in artrose, en 
bieden nieuwe mogelijkheden aan voor het ontdekken en ontwikkelen van geneesmid-
delen voor artrose.
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Artrose is een complexe ziekte en dus niet alleen de genetica speelt een rol in 
het krijgen van artrose maar ook vele andere factoren. Een nieuw ontdekte mogelijke 
factor voor artrose is de darmflora: de bacteriën en micro-organismen in leven in het 
spijsverteringskanaal. In hoofdstuk 5 werd er gekeken naar de mogelijke relatie tussen 
de biljoenen bacteriën in ons spijsverteringskanaal leven en artrose. 

In Hoofdstuk 5.1 wordt de eerste data over de darmflora van o.a. de Rotterdam Study 
gepresenteerd. Deze dataset bevat informatie over de compositie (welke bacterie 
soorten en hoeveel) van de darmflora van maar liefst 1427 mensen uit de Rotterdam 
Study. Daarnaast werd ook de darmflora data van de Generation R studie gepresenteerd, 
dit is ook een populatie studie. Maar anders dan de Rotterdam study richt Generation 
R zich op kinderen en de Rotterdam Study op ouderen (45-plussers).  Door gebruikt te 
maken van deze twee datasets tonen we aan dat er verschillen bestaan in de compos-
itie van de darmflora tussen kinderen en volwassenen. Volwassenen hebben een veel 
diverser darmflora dan kinderen.  

In hoofdstuk 5.2 werd de mogelijke relatie tussen artrose, gewrichtspijn en de 
darmflora onderzocht. Eerder onderzoek had gesuggereerd dat artrose-gerelateerde 
gewrichtspijn en -ontsteking kan worden veroorzaakt of verergerd door stofjes (endo-
toxinen) die worden geproduceerd door de darmflora. Dit werd onderzocht met behulp 
van gegevens over de samenstelling van de darmflora van 1.427 mensen uit de Rot-
terdam Studie. Een verband werd gevonden tussen het relatieve aantal Streptococcus 
spp. bacteriën in de darmflora en artrose gerelateerde knie pijn. Deze bevinding werd 
ook gerepliceerd in een onafhankelijke studie (Life-Lines Deep, n = 867) en bevestigd 
door absolute kwantificatie (meten van de absolute aantallen bacteriën) van Strepto-
coccus spp. in de Rotterdam Studie. Een verhoogd aantal Streptococcus spp. bacteriën in 
de darmflora werd geassocieerd met verhoogd kniegewrichtspijn. Daarnaast werd ver-
hoogde aantallen Streptococcus spp. geassocieerd met ernstigere lokale ontsteking in 
het kniegewricht. Mogelijk produceren Streptococcus spp. endotoxines, die ontsteking-
sopwekkend zijn en zo ontsteking, schade en pijn in het knie gewricht veroorzaken. 
Omdat de darmflora beïnvloedbaar is (v.b.: antibiotica, dieet etc.) zou dit een nieuwe 
mogelijkheid vormen voor het ontwikkelen van mogelijke artrose behandel methoden. 

Ten slotte worden in hoofdstuk 6 alle bevindingen in dit proefschrift gecombineerd 
en in een breder perspectief geplaatst en aanbevelingen gegeven voor de toekomst van 
artrose onderzoek. Ondanks dat er in de afgelopen jaren ontzettend veel nieuwe kennis 
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is opgedaan over artrose, met name over de genetica achter artrose (er zijn nu ~148 
genetische varianten bekend) is dit nog maar het topje van de ijsberg. Vele honderden 
genen en nog veel meer genetische variaties zijn mogelijk betrokken bij artrose. Daar-
naast is ook nog niet altijd even duidelijk hoe de omgevingsfactoren en genetische fac-
toren samen leiden tot artrose, of is er nog te weinig kennis over hoe bepaalde factoren 
(v.b. de darmflora) bijdragen aan het risico op artrose. Er is en blijft nog veel onbekend 
over artrose,  ondanks de incomplete informatie over artrose zijn er wel al hoopvol-
le ontdekkingen en ontwikkelingen die kunnen leiden tot behandelingen of preventie 
van artrose (v.b. Vitamine K en bloedverdunners). Hopelijk is de wetenschap met dit 
proefschrift weer enkele stappen dichterbij een oplossing gekomen voor het behandel-
en van een van ‘s werelds oudste ziekten.
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