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Abstract

Purpose

Functional neuroimaging is a powerful and versatile tool to investigate central lower urinary

tract (LUT) control. Despite the increasing body of literature there is a lack of comprehensive

overviews on LUT control. Thus, we aimed to execute a coordinate based meta-analysis of

all PET and fMRI evidence on descending central LUT control, i.e. pelvic floor muscle con-

traction (PFMC) and micturition.

Materials and methods

A systematic literature search of all relevant libraries was performed in August 2020. Coordi-

nates of activity were extracted from eligible studies to perform an activation likelihood esti-

mation (ALE) using a threshold of uncorrected p <0.001.

Results

20 of 6858 identified studies, published between 1997 and 2020, were included. Twelve

studies investigated PFMC (1xPET, 11xfMRI) and eight micturition (3xPET, 5xfMRI). The

PFMC ALE analysis (n = 181, 133 foci) showed clusters in the primary motor cortex, supple-

mentary motor cortex, cingulate gyrus, frontal gyrus, thalamus, supramarginal gyrus, and

cerebellum. The micturition ALE analysis (n = 107, 98 foci) showed active clusters in the dor-

sal pons, including the pontine micturition center, the periaqueductal gray, cingulate gyrus,

frontal gyrus, insula and ventral pons. Overlap of PFMC and micturition was found in the cin-

gulate gyrus and thalamus.

Conclusions

For the first time the involved core brain areas of LUT motor control were determined using

ALE. Furthermore, the involved brain areas for PFMC and micturition are partially distinct.
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Further neuroimaging studies are required to extend this ALE analysis and determine the

differences between a healthy and a dysfunctional LUT. This requires standardization of

protocols and task-execution.

Introduction

The neuronal control of the lower urinary tract is based on multilevel circuits, i.e. peripheral

nerves, autonomic ganglia, spinal cord pathways, and supraspinal centers [1]. The latter allow

for the voluntary control and proper coordination of LUT function including synergic mictu-

rition (that is, bladder neck and external urethral sphincter relaxation during detrusor contrac-

tion) [2–5].

Functional neuroimaging is a powerful and versatile tool to investigate the neural structures

and processes involved in central lower urinary tract (LUT) control. The LUT motor control is

usually only perceived as storage and micturition (detrusor control as autonomous activity),

but the descending LUT control also includes voluntary, conscious pelvic floor muscle con-

tractions (PFMC). Voluntary PFMC are a proxy for, but not the same as, the involuntary tonic

contraction employed during the storage phase. Especially since PFMC tends to be a voluntary

“backup” mechanism which is employed during very strong urge to void or defecate. Despite

the increasing body of literature, publications are scattered among various medical disciplines

and there is a lack of comprehensive overview on the descending central LUT control [2–12].

Hence, it would be of great interest to get a structured overview on this topic and determine

the most relevant brain areas involved in LUT motor control. This is of importance for a better

understanding of the composition of supraspinal LUT control networks and to be able to dis-

tinguish between networks involved in healthy control as opposed to LUT dysfunction. This

would contribute to elucidate the pathophysiology of some highly prevalent diseases within

functional urology, like overactive and underactive bladder (OAB/UAB), bladder pain syn-

drome (BPS) and dysfunctional voiding.

A well-established approach to conduct a coordinate-based meta-analysis (CBMA) of the

existing neuroimaging data in order to achieve a comprehensive overview of the relevant brain

regions involved in functional tasks of interest is Activation Likelihood Estimation (ALE) anal-

ysis [13]. ALE analyses determine the statistical probability of brain regions being consistently

activated during a specific task.

The aim of the present systematic review is to summarize the existing evidence on the

supraspinal motor control of the LUT in humans, i.e. micturition and PFMC, and to deter-

mine in an exploratory fashion the core brain areas involved in these functions using ALE.

Materials and methods

Study registration

This systematic review was conducted according to the Preferred Reporting Items for System-

atic Reviews and Meta-Analysis (PRISMA) statement. The study protocol was registered on

PROSPERO (CRD42016047488 https://www.crd.york.ac.uk/PROSPERO/).

Literature search

A systematic search of all relevant publications was conducted in PubMed, EMBASE, Medline,

Scopus, Web of Science, and the Cochrane library. A search was conducted including all publi-

cations until August 2020, S1 File contains the used search terms. Manual reference checks of
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accepted papers in recent reviews and included papers were performed as supplement to the

electronic search.

Eligibility criteria

All original publications on neuroimaging of lower urinary tract control in humans were eligi-

ble for full-text retrieval.

The use of a comprehensive search strategy resulted in a highly heterogeneous body of data

which included a variety of neuroimaging techniques, populations, settings and protocols. In

order to optimally utilize this extensive literature search, it was decided to split the extracted

studies into smaller components addressing more concise research questions to get more pre-

cise answers. The current review focused on the assessment of LUT motor control using PET

and fMRI. Therefore literature concerning PFMC or micturition using other neuroimaging

techniques like diffusion MRI (tractography), DTI, NIRS, SPECT was excluded.

Hence, inclusion criteria were studies using fMRI or PET when performing micturition or

pelvic floor muscle contractions that described the coordinates (in stereotactic space i.e. Talar-

aich (TAL) or MNI) of active clusters found during the performed task. Duplicates, abstracts

only, conference proceedings, non-English text publications, non-human research and reviews

were excluded.

Selection of studies

Titles and abstracts were screened in Endnote (EndNote X9; Thomson Reuters, Philadelphia,

PA, USA) by U.M. and B.B. and discrepancies were resolved by I.G. The selected articles were

full text screened for eligibility by J.G. and I.G. using a standardized screening form, and dis-

crepancies were discussed and resolved by a third reviewer (B.B.).

Data extraction

The data were independently extracted from the included full-text publications by two review-

ers (J.G. and I.G.) using a standardized form. Any discrepancies were discussed and resolved

by the third reviewer (B.B.). Data extracted were: general descriptive information of the stud-

ies, sample sizes, study population, characteristics describing the scanning protocol, applied

analysis and the reported coordinates of supraspinal activity (raw data).

Raw data

The extracted raw data were the coordinates of the activated clusters described by the included

studies. The coordinates are shown in the orientation in which they were originally described,

i.e. MNI or TAL. Most included studies focusing on micturition, separately reported the coor-

dinates of the patients with successful micturition and unsuccessful micturition. The current

study only extracted the coordinates of the subjects with successful micturition if the data was

reported separately. In two studies the distinction between successful and unsuccessful mictu-

rition was not made.

Primary outcome: Activation Likelihood Estimation (ALE)

Coordinate-based meta-analyses of neuroimaging results were performed using GingerALE

software (version 2.3.6) available on the BrainMap website (http://brainmap.org/software.

html). ALE analysis uses all the reported foci from the included studies as a spatial probability

distribution centered at the given coordinates. The analysis accommodates the spatial uncer-

tainty of neuroimaging findings and uses a spatial variance model. Finally, the convergence of
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foci is tested against the null-hypothesis of random distribution of foci, creating the ALE score

for each cluster. The TAL coordinates were converted to MNI space using the icbm2tal trans-

form within the GingerALE software [14]. A lenient threshold was used, taking the amount of

data subjects into account (uncorrected p<0.001, minimal Volume of 100 mm3). Results were

presented on an MNI template using Mango, multi-image viewing software (http://ric.uthscsa.

edu/mango/).

Risk of bias assessment

The Cochrane Risk of Bias Assessment tool together with an assessment of the main confound-

ers following recommendations of the Cochrane handbook for nonrandomized comparative

studies [15,16] were used to perform a risk of bias analysis for included nonrandomized com-

parative studies. Firstly, a manual was developed for scoring the added confounders. Secondly,

the main and added confounders were independently scored by two authors (J.G. and I.G.)

and discrepancies were discussed. Table 1 shows the used confounders and how they were

scored.

Results

The PRISMA flow diagram in Fig 1 shows the results of the literature search and the study

selection. The initially conducted search resulted in 6858 articles. After removing duplicates

and title and abstract screening, 167 articles remained for full-text selection and in total 20

studies were included in this systematic review.

Study characteristics

Tables 2 and 3 show the study characteristics of the included studies using fMRI and PET,

respectively. The following information was included in Tables 2 and 3: number of subjects,

Table 1. Scoring manual for the confounders in the risk of bias assessment.

Confounders If yes: low risk

If doubtful: unclear risk

If not: high risk

In case of multiple items in 1 confounder:

1 missing: unclear risk

>1 missing: high risk

A priori protocol Did the authors use and describe a clear protocol?

Age Did the authors report the age of patients? Is there were different groups to

compare, were they age matched?

Gender Did the authors report the gender of patients? If there were different groups to

compare, were they gender matched?

Patient selection Did the authors clearly state in- and exclusion criteria?

Which LUT symptoms and/or dysfunctions had included patients?

Were handedness and concomitant medications reported?

Task and scan paradigm Did the authors report on the task they investigated and how this task was

applied (mode of bladder filling, repetition of task, control task, scanning

sequence)?

Recording details and scan

parameters/settings

Did the authors report all parameters/settings used for the recordings of

supraspinal signals? (fMRI: TR, TE, FoV, ST) (PET: camera position, GBq, start

time after injection, repeat injection, voxel size)

Data analysis Did the authors report on data analysis (software, version, analysis steps,

smoothing)?

Results Did the authors report on all result details (coordinated in MNI or Talairach,

cluster size of supraspinal areas, z-score, significance lever, error correction)?

https://doi.org/10.1371/journal.pone.0246042.t001
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age, gender, performed task, concomitant/control task, task repetition, bladder status, way of

bladder filling, scan details and analysis details (smoothing, MNI/TAL, threshold).

Raw data

Pelvic floor muscle contraction. Twelve studies investigated active brain areas during

PFMC. One of them [3] did this using PET, the others all used fMRI.

Of these 12 studies, 9 found active clusters in the primary motor cortex (M1), either in the

right or left hemicortex, or both. Seven studies found activation in the supplementary motor

area (SMA). Some studies reported activation in the frontal lobe, with coordinates widespread

through the frontal lobe. The putamen showed active clusters in 4 studies, the thalamus and

the insula both showed active clusters in 6 studies. Active clusters in the cerebellum were

described in 9 studies. S1 Table shows the coordinates of all brain areas that have been consis-

tently found in at least 3 of the included studies. If, in a single study, more than one cluster was

identified in the same brain area, the cluster with the highest T- or Z-value is displayed in S1

Table. All active clusters described in individual studies only, are summarized in S2 Table.

Micturition. Eight studies investigated brain areas involved in micturition, of which 5

used fMRI and 3 used PET. The study of Kuhtz-Buschbeck et al. 2009 [4], investigated initia-

tion of voiding only, i.e. participants prevented voiding by contracting the pelvic floor when

micturition was about to start, all other studies investigated real micturition. Only in the study

of Khavari et al. data of patients with successful micturition (n = 7) and unsuccessful micturi-

tion (n = 9) were not reported separately. In four studies, patients could sign (hand or vocally)

when they were about to start micturition [26–29]. Two studies used a flow/urine detector to

detect the start of micturition [5,6] and in two studies patients were instructed when to start

Fig 1. The PRISMA flow diagram.

https://doi.org/10.1371/journal.pone.0246042.g001
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micturition [2,4]. Six studies found activation in the periaqueductal gray (PAG) and 5 in the

dorsal pons, including pontine micturition center (PMC). Cingulate gyrus was active in 6 stud-

ies. The insula, the thalamus, the mid frontal gyrus and the cerebellum were activated in 4

studies. The inferior frontal gyrus (Brodmann area 11, 44–47) was found active in all studies.

S3 Table shows peak coordinates of brain areas that were reported to be active in at least 3 of

the included studies. If, in a single study, more than one cluster was found in the same brain

area, the cluster with the highest T- or Z-value is displayed in S3 Table. All other active clusters

described in individual studies only, are summarized in S4 Table.

Primary outcome: Activation likelihood estimation

Pelvic floor muscle contraction. The ALE analysis of 133 peak coordinates derived from

12 different studies with a total number of 181 subjects of which 74 men and 95 women (all

cluster/peak coordinates summarized in S1 and S2 Tables) yielded 10 active clusters using a

statistical threshold of p = 0.001 uncorrected with a minimal cluster size of 100 mm3 (Table 4).

Fig 2 displays several of the ALE clusters: primary motor cortex, SMA, cingulate gyrus, insula,

thalamus, substantia nigra/red nucleus and the cerebellum.

Micturition. The ALE analyses of 98 peak coordinates derived from 8 different studies

with a total number of 107 subjects of which 48 men and 59 women (all peak coordinates sum-

marized in S3 and S4 Tables) yielded 7 active peak activations/clusters using a statistical

threshold of p = 0.001 uncorrected with a minimal cluster size of 100 mm3 (Table 4). Fig 3 dis-

plays exemplarily several of the ALE clusters: PMC, PAG, thalamus, cingulate gyrus, frontal

gyrus and insula. Cluster 1 is a merged cluster, showing multiple peak activations in the thala-

mus, PMC and PAG.

Overlap. When the results of the ALE analysis of both PFMC and micturition are dis-

played on the same MNI brain, two clusters show overlap: the cluster in the mid cingulate

gyrus (in both figures cluster #2) and the cluster in the left thalamus (in Fig 2 PFMC cluster #3

and in Fig 3 micturition cluster #1a/d). S1 Fig demonstrates the overlap of clusters.

Risk of bias assessment

The results of the risk of bias assessment by the Cochrane Risk of Bias Assessment Tool with

confounding factors are shown in Fig 4.

Discussion

This systematic review and meta-analysis provide a unique overview on the supraspinal areas

involved in LUT motor control (pelvic floor muscle contraction and micturition), showing

raw data of the acquired PET and fMRI evidence of the past three decades. Furthermore, ALE-

analysis enabled us to extract from all raw data across studies the most commonly and repro-

ducibly activated supraspinal areas involved in LUT motor control.

Pelvic floor muscle contraction

S1 Table shows that most studies found active clusters in some obvious brain areas involved in

pelvic floor motor control, e.g. M1 and SMA. Unexpectedly, three of the studies did not find acti-

vation in the M1 [10,21,25] and 5 studies did not find activation in the SMA [3,19,22,23], but all

studies found activation in either M1 or SMA. Schrum et al. did not find activation in M1. They

used a cytoarchitectonic map [31] to detect that more than 80% of the active cluster found in the

medial wall belonged to the SMA. The authors argued that activation in the M1 would have been

detected using a more liberal threshold [21]. Several human and non-human primate studies have
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Table 4. ALE results of PFMC and micturition tasks.

Cluster Cluster

size

Number of

contributing

studies

Peaks

within

cluster

peak

coordinates

ALE max.

value at

peak

Hemisphere

R/L

Label

x y z

1a 9552 11 [3,7,10,21–

28]

1 6 -26 66 0.0240 R Primary motor

cortex (BA 4)

1b 2 2 4 50 0.0213 Mid cingulate gyrus

(BA 6)

1a 3 -6 -26 66 0.0188 L Primary motor

cortex (Ba 4)

1c 4 4 -16 58 0.0182 R Supplementary

motor area (BA 6)

1c 5 -2 -14 66 0.0162 L Supplementary

motor area (BA 6)

1c 6 0 -8 66 0.0159 L Supplementary

motor area (BA 6)

1c 7 -8 -10 74 0.0141 L Supplementary

motor area (BA 6)

1c 8 0 14 46 0.0098 L Supplementary

motor area (BA 6)

2 1264 5 [21,24,26–28] 1 -10 -16 4 0.0197 L Thalamus [BA 50)

3 1024 4 [7,23,26,28] 1 60 -34 22 0.0222 R Supramarginal gyrus

(BA 40)

4 640 3 [7,25,28] 1 58 12 0 0.0151 R Inferior frontal

gyrus, pars

opercularis (BA44)

4 2 52 12 -8 0.0105 R Posterior superior

temproral gyrus

(BA22)

5 560 3 [24,27,28] 1 -8 -20 -14 0.0151 L Brainstem, Substania

Nigra

6 536 3 [24,27,28] 1 8 -20 -14 0.0140 R Brainstem, Red

Nucleus

7 432 4 [21,24,27,28] 1 12 -18 0 0.0108 R Thalamus (BA 50)

8 264 2 [21,24] 1 -14 -50 -14 0.0124 L Cerebellum,

Anterior Lobe

9 232 2 [27,28] 1 -56 -30 24 0.0121 L Supramarginal gyrus

(BA 40)

10 128 1 [7] 1 -56 6 2 0.0105 L Inferior frontal

gyrus, pars

opercularis (BA44)

1a 3336 7 [2,4–

6,17,19,20]

1 -6 -24 2 0.0146 L Thalamus (BA 50)

1b 2 8 -32 -22 0.0136 Pontine micturition

center

1c 3 -2 -30 -8 0.0129 Periaquatuctal grey

1d 4 -6 -14 -4 0.0110 L Thalamus (BA 50)

2 496 2 [4,17] 1 -2 4 44 0.0117 Cingulate Gyrus (BA

6)

3 480 3 [5,17,20] 1 -30 32 36 0.0097 L Middle Frontal

Gyrus (BA 9)

3 2 -30 42 38 0.0093 L Middle Frontal

Gyrus (BA 9)

4 424 2 [17,20] 1 38 34 6 0.0134 R Insula (BA 13)

(Continued)
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revealed a somatotopic organization of the SMA [32–34], and showed that the activated areas of

the face, the upper limb, and the lower limb were located from anterior to posterior, respectively.

This would indicate that activation in the SMA during PFMC might lie in the posterior part of the

SMA, which is close to the somatotopic location of activation in the primary motor cortex during

PFMC. Furthermore, Di Gangi Herms et al. showed that, after a training interval of 12 weeks reg-

ular PFMCs, the number of activated voxels on the SMA decreased significantly compared to

before PFMCs training [24]. This demonstrated that the SMA plays an important role in uncondi-

tioned motor tasks, like PFMC. Thus, PFMC being an unconditioned task might induce the

appearance of large clusters on SMA, and together with its orientation in the posterior SMA,

these clusters might be indistinguishable from activation in M1. This could be an explanation for

the incongruent findings of the different studies on M1 or SMA.

To our knowledge, our study is the first to confirm the involved brain areas in pelvic floor

motor control using an ALE-analysis (Fig 2), namely the: M1, SMA, prefrontal cortex (BA 6 &

9), cingulate gyrus, thalamus, supramarginal gyrus and the anterior lobe of the cerebellum.

Putamen activation however, was found in 4 of the included studies [10,17,21,23], but not in

our ALE analysis. A possible explanation might be that the coordinates of the peak activations

are spread across the putamen and that this did not result in the formation of a cluster in the

ALE analysis. The role of the putamen in LUT control has been confirmed earlier, as this struc-

ture plays an important role in the corticostriatal pathway which participates in motor action

selection and coordination [35].

The ALE analysis revealed two clusters (# 7 and #8) covering the substantia nigra and the

red nucleus: parts of the basal ganglia involved in motor tasks [36]. Two studies contributed to

the formation of these clusters in the ALE analysis [21,22].

Micturition

Micturition is a complex process, involving both voluntary and involuntary control regulated

by a supraspinal network [11,12]. Until 1996, all available evidence for supraspinal micturition

Table 4. (Continued)

Cluster Cluster

size

Number of

contributing

studies

Peaks

within

cluster

peak

coordinates

ALE max.

value at

peak

Hemisphere

R/L

Label

x y z

5 352 2 [4,20] 1 4 24 48 0.0114 Superior Frontal

Gyrus (BA 8)

6 184 2 [17,20] 1 0 -14 -24 0.0096 Ventral pons

7 104 1 [4] 1 -58 6 4 0.0091 L Inferior frontal

gyrus, pars

opercularis (BA 44)

Numbers of clusters correspond with numbers in Figs 2 and 3. All p-values < 0.001. Chosen minimal cluster size: 100

mm3.

The ALE analysis delineates where in the brain the convergence across all included imaging studies is higher than it

would be expected if results were independently distributed [13]. ALE scores quantify the convergence of foci given

the associated spatial uncertainty, while the according p-values quantify, how likely such convergence is under the

null-hypothesis of random spatial association [30]. The ALE scores largely depend on the amount of data in the

investigated dataset and the applied threshold in each study of the dataset [30]. Since the currently available data are

still scarce (PFMC: 12 studies, 181 subjects in total; micturition: 8 studies, 107 subjects in total; recommended: 17

studies with at least 8 subjects in each study) and often represents results with low statistical thresholds (uncorrected

p <0.001; recommended: FEW <0.05), the meta-analysis has to be regarded with caution.

https://doi.org/10.1371/journal.pone.0246042.t004
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control was obtained from animal studies in cats [37] or from case reports of humans with

lesions in the prefrontal cortex [38]. Blok et al. were the first to show brain activation in

humans during micturition using PET [2,6]. However, the evidence in humans is still limited,

possibly due to the fact that this LUT motor task is complicated to study. This is caused by sev-

eral reasons; 1) In case of BOLD fMRI, repeated captures of the event-related data are neces-

sary to obtain a higher signal-to-noise ratio, which is hard to establish considering the

complex (autonomic and somatic) control of micturition, 2) Involved brain areas lie relatively

closely to each other in the brainstem (PMC/PAG/thalamus); distinguishing these areas

requires high resolution imaging, 3) A significant number of subjects are not able to void in

the scanner, possibly due to the involvement of the prefrontal cortex involved in decision mak-

ing in social context [1]. The current study describes all PET and fMRI evidence for suprasp-

inal micturition control and included 8 studies with a total of 107 subjects. S3 Table shows all

raw data obtained in the last three decades. Using ALE analysis, this study evaluated all evi-

dence and confirmed the involvement of these key brain areas during micturition: the PMC,

the PAG, thalamus, cingulate gyrus, prefrontal cortex, the insula and the cerebellum. Cluster 1

is a merged cluster covering the thalamus, PAG, PMC and the cerebellum. It has three obvious

peak activations in the thalamus, PAG and PMC as shown in Fig 3. The dorsal pons includes

the PMC and the ventral pons includes the pontine continence or storage center [2,6]. These

current findings are in line with previous working models on the supraspinal networks sup-

posed to be involved in micturition [1].

S3 and S4 Tables show that all studies found multiple active clusters diffuse across the pre-

frontal cortex. Peak activations were found in all Brodmann areas within the prefrontal cortex,

most of which were located in Brodmann areas 9 and 44. Both areas (the medial prefrontal cor-

tex and the inferior frontal cortex) have been described previously to be involved in micturi-

tion [39,40]. The variability of the exact activity location within these areas may result from the

variety of different protocols applied in the included studies. The prefrontal cortex has strong

connections with other limbic structures–the hypothalamus, amygdala, insula and cingulate

gyrus and is known to be involved in the planning of complex cognitive behavior and appro-

priate social behavior [41]. The voluntary decision when to void is generated in the prefrontal

cortex in turn sending efferent signals via the cingulate to the PAG and PMC [1]. The ALE

analysis did not show an active cluster in the hypothalamus. However, two of the included

studies did find such a cluster as shown in S4 Table [2,6]. As the hypothalamus is part of the

limbic system, its role in micturition has been described before [42]. The size of the area is

rather small, making detection of active clusters challenging.

Micturition vs PFMC

This systematic review studies the motor control of the LUT, consisting of one voluntary con-

trolled task (PFMC) and one semi-voluntary controlled task (micturition). Although PFMC

and micturition are both motor tasks of the LUT, they have completely different goals. Mictu-

rition is a complex coordinated process between the urinary bladder and the external urethral

sphincter that aims to empty the bladder periodically, whereas PFMC is a more confined

motor task. The latter attribute makes PMFC less complicated to study which may attract

more attention and explain the larger number of PFMC studies compared to micturition stud-

ies despite it is only a part of the micturition cycle. PFMC concerns the voluntary (M1)

Fig 2. Results of the ALE analysis pelvic floor muscle contraction (p = 0.001 uncorrected with a minimal cluster size of

100m3). 1a: Primary motor cortex, 1b: Mid cingulate gyrus, 1c: Supplementary motor area, 2: Thalamus left, 3: Supramarginal

gyrus right, 5: Substantia Nigra, 6: Red nucleus, 7: Thalamus right, 8: Cerebellum left, 9: SUpramarginal gyrus left.

https://doi.org/10.1371/journal.pone.0246042.g002
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contraction on top of the involuntary tonic contraction of the urethral sphincter, which is

responsible for urinary continence. The minimal overlap of activated brain areas was therefore

expected and demonstrates this distinct working mechanism of the supraspinal organization

of both tasks. Comparison of the results shows that only two clusters overlap: midcingulate

gyrus (MCG) and the left thalamus. The important role of the MCG in reward-based decision

making has been described before [43], and involvement of this area was expected in both

LUT motor tasks. The involvement of the basal ganglia was also expected in both tasks. The

thalamocortical pathway is important in execution of motor tasks [44]. But, the thalamus is

also involved in interoceptive networks, and is therefore important in initiation of micturition

[5].

PFMC can be studied during different bladder states (empty vs full), sometimes used to

interrupt micturition or suppress the urge to void. In the PFMC ALE, 5 studies investigated

PFMC with a full bladder [10,22,23,25,45]. Among those, Zhang et al, compared activation

between PFMC with empty vs full bladder and demonstrated differences in SMA, basal ganglia

and cerebellum. This might be of great interest towards the clinical applicability of fMRI in

patient populations. To better understand the influence of bladder status on pelvic floor con-

trol, further studies comparing results at different bladder states are necessary.

Although the current meta-analysis did not specifically focus on sex related differences,

data of both men and women were included. Tables 2 and 3 demonstrate that only three stud-

ies (2 PFMC and 1 micturition) in this review studied both men and women [4,7,45]. The

amount of data in the current systematic review was not sufficient to repeat the ALE analysis

separately for men and women to study differences. The studies that included both men and

women did compare the results between men and women. Moreover, the study of Seseke et al.

focused specifically on this topic in relation to micturition comparing their male results with

previous female results [22]. In PFMC, no sex related differences were found [7], however, in

another study about external anal sphincter contraction, greater activity was found in men

[46]. Various arguments for this difference are described, like a more forceful contraction in

men, the obvious anatomical differences between the genitourinary system or a general inter-

hemispheric asymmetry of the human motor cortex related to sexes [7,46,47]. In micturition,

stronger task related activity in the right thalamus and other right-hemispherical regions was

found in women compared to men [4]. Still, results on this topic are scarce and very heteroge-

neous. Other studies speculate that women have a stronger brain activity during visceral stim-

ulation than men [48,49].

Clinical implications & reliability

Compared to the pre-neuroimaging-era, when knowledge of LUT control was mainly based

on animal studies which provided a relevant basis to understand particularly spinal and brain

stem structures and circuits involved in LUT control [50–52], cortical and subcortical pro-

cesses in human LUT control were largely unknown. Advances in neuroimaging allowed us to

progressively explore this field and to learn which brain areas are involved in human LUT con-

trol and how they may be connected. This is of specific value considering that certain LUT dis-

eases such as OAB occur in humans only. In addition, chronic LUT dysfunction may lead to

alterations in suprapinal processing of LUT afferent and efferent signaling that itself contribute

to or maintain the LUT dysfunction. Therefore, such alterations should be known and

Fig 3. Results of the ALE analysis micturition (p = 0.001 uncorrected with a minimal cluster size of 100m3). 1a/d: Thalamus,

1b: Pontine micturition center, 1c: Periaqueductal gray, 2: Cingulate gyrus, 3: Middle frontal gyrus, 4: Insula, 5: Superior frontal

gyrus, 6: Ventral pons, 7: Inferior frontal gyrus.

https://doi.org/10.1371/journal.pone.0246042.g003
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Fig 4. The results of the risk of bias assessment.

https://doi.org/10.1371/journal.pone.0246042.g004
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understood to improve treatment strategies and to advance the evaluation of treatments target-

ing suprapinal signal processing such as neuromodulative therapies. This current review and

meta-analysis for the first time describes the key brain areas of all previous investigations on

LUT motor control, i.e. PFMC and micturition. Knowing the key brain areas and their

involvement in different tasks, i.e. PFMC vs micturition, it is important to address new and

more specific research questions, to plan according neuroimaging studies, and to address tar-

gets for neurofeedback therapy [53]. Specifically interesting in this regard is that our findings

clearly demonstrate that the voluntary motor control of PFMC involves typical cortical motor

control areas such as M1 and SMA whereas the autonomic detrusor motor control involves

brain stem activity, i.e. PAG and PMC, instead. One of the brain areas that is involved in both

motor tasks is the cerebellum which seems to play a more relevant role in LUT motor control

than previously expected.

Since our knowledge about the physiology of the innervation of the LUT has grown, lately

more research is focusing on the results of neuroimaging in patients with LUT disorders, like

chronic pelvic pain syndrome [19], stress urinary incontinence (SUI) [24], urge urinary incon-

tinence [54,55] or multiple sclerosis (MS) [26,56]. Khavari et al [56], studied differences in acti-

vation after onabotulinumA injections in patients with UUI and MS compared to healthy

controls. It was demonstrated that during full urge, patients with UUI and MS show more

deactivations compared to healthy controls in cortical and subcortical structures. After onabo-

tulinumA injections, the brain responses were more in agreement with those of healthy con-

trols. Furthermore, a study of Griffiths et al [55]. clearly demonstrated an increased activation

in patients with full bladder and UUI compared to healthy controls, particularly in the cingu-

late gyrus, SMA and prefrontal cortex. What these studies suggest, is that when patients react

to therapy, activation patterns had more similarities with those of healthy controls, which is a

very usable finding in future implication of fMRI [10,24,26,55–57]. In the current ALE analy-

sis, two studies were included with a patient population instead of healthy controls. One mic-

turition related study included patients with MS [26] and one PFMC related study included

patients with SUI [24]. Both ALE analyses (PFMC and micturition) were repeated without

inclusion of the patient data to assess the influence on the outcome. Only the amount of clus-

ters changed (the ones with the lowest ALE values disappeared), however, most probably due

to the lower number of included subjects in the ALE analysis which is critical for the validity of

such analysis and hampers a reasonable interpretation of these differences from a statistical

point of view. As visible in the raw data in the supplements, both studies including patient data

do not show remarkable outliers, or other distinguishing results compared to the studies

including healthy volunteers.

Studying differences in supraspinal activation patterns between healthy controls and

patients is important for future clinical implications of neuroimaging and the search towards

finding the pathophysiology of diseases within functional urology. The SMA, cingulate gyrus

and prefrontal cortex have been independently described as areas of interest when evaluating

differences between patients and healthy controls, full or empty bladder and effect of therapies

[10,24,26,55–57].

Despite that ALE values cannot be directly compared between different datasets due to the

given heterogeneity of the original studies included in the datasets, they still provide a good

estimate which brain areas may be more relevant for specific LUT tasks or more consistently

activated in states of LUT dysfunction. To allow a meaningful ALE meta-analysis on the differ-

ences between healthy controls and patients we would need more original studies that statisti-

cally compare both groups, i.e. patients and healthy controls, and provide data (e.g.

coordinates) on the group differences that can be included into the meta-analysis. Alterna-

tively, using a rather new approach which aims to compare separate ALE maps of different
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data sets from healthy controls and patients [58], we would need a larger number of studies

investigating healthy controls and patients with a similar total amount of subjects and using

same or similar task and imaging protocols. Currently, there are only few functional neuroim-

aging studies on patients with LUT dysfunction and those studies comparing results to healthy

controls do this descriptively only.

The ability of the ALE meta-analysis to elicit relevant brain areas involved in the execution

of specific tasks as demonstrated for micturition and PFMT is particularly valuable in the cur-

rent stage of neuroimaging research in functional urology where mainly whole brain analyses

are performed which provide a good overview but may also generate a lot of noise and less rel-

evant secondary activity, specifically when applying lower statistical thresholds (e.g. uncor-

rected thresholds or voxel-level FDR) to detect any LUT related activity. Here, ALE meta-

analysis can help to keep the focus by determining the more consistently involved areas and

subsequently also to better specify study hypotheses and designs of future neuroimaging

experiments.

Certainly, functional neuroimaging studies on bladder-brain control are a big challenge in

many aspects and current study designs and imaging parameters may still be not optimal

which may be at least partly reflected by a rather poor reliability [59,60]. Nevertheless, to

advance evidence in this field and since validity of ALE analysis depends on the data amount

and quality [13,30] more effort is needed to provide such data.

Two aspects appear relevant for this endeavor: a) validation of task and imaging parameters

to better understand and control for measurement related bias and to be able to apply higher

statistical thresholds. b) correlation of neuroimaging findings to clinical outcomes to better

understand the relation between supraspinal activity patterns and dysfunction or symptoms.

To better compare between or pool studies, harmonization of protocols (including measures

for prevention of movement artefacts, specifically eye movements) and terminology would be

of great advantage [61].

Limitations

The current systematic review and ALE analysis makes all raw data available and creates a

clear overview of fMRI and PET imaging of the supraspinal control of the LUT. Our liberal

search strategy additionally allowed a very comprehensive review. Nevertheless, there are limi-

tations. This systematic review only included studies using the neuroimaging techniques fMRI

or PET, since these techniques yield reliable coordinated-based results, usable for the ALE

analysis. Data of other neuroimaging techniques apart from fMRI and PET was therefore not

included. Furthermore, to perform a valid ALE analysis and reach sufficient power, the

amount of included data is important, which is a criticizable point in the current ALE analysis

[30]. However, within the urological field the amount of neuroimaging data is still limited

making the use of a liberal threshold inevitable when performing a coordinate based meta-

analysis. Altogether, the results of the current systematic review have to be interpreted with the

limited amount of data and the risk of bias in mind. Future perspectives are that the prelimi-

nary results of the current study encourage to generate more data on this topic, thus allowing

for ALE meta-analyses with more significant value. This might enable us to better specify the

typical activation patterns (ALE results) in response to certain LUT tasks and to understand if

and how pattern may differ between healthy controls and patients with LUT dysfunction.

Another limitation is that this review does not focus on deactivations. As most included

studies only report activations, it was decided to focus on activation and not on deactivation.

Comparing the overlap of the PFMC and micturition task can therefore be partly biased (see

S1 Fig). For example, a cluster that activated during PFMC but deactivated during micturition
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should be counted as an overlapping cluster, but is not found in the current analysis. Despite

both tasks are motor tasks of the LUT, they may be used in opposite direction since the pelvic

floor should not be contracted during micturition.

The risk of bias analysis was performed using the Cochrane risk of bias guidelines [16]. As

this tool is not specifically designed for neuroimaging studies, the risk of bias might be under-

estimated [62]. It revealed an unclear risk of bias, which is at least partly related to the great

variability of study designs, scan protocols, analysis pathways, and the lack of standardization

of reporting methods and outcome measures.

Conclusions

This systematic review and ALE analysis define all fMRI and PET evidence for the motoric

innervation of the LUT. The key brain areas involved in PFMC are M1, SMA, cingulate gyrus,

putamen, thalamus, prefrontal cortex, supramarginal gyrus, insula and the cerebellum. The

key brain areas involved in micturition are the PAG, PMC, cingulate gyrus, insula, thalamus,

prefrontal cortex and the cerebellum. Considering the presented activations, both, PFMC and

micturition appear distinct which is in line with their different contextual execution. However,

deactivations which are underreported and less well understood could not be systematically

considered and may show more overlap than currently presented. Despite that the evidence

for neuroimaging of the LUT is still scarce and the affective involvement in performing these

tasks makes it challenging to study LUT motor tasks, the involved brain areas in healthy con-

trols seem to be defined, so the step towards defining pathology in a patient population with

functional bladder disorders can be made. However, this requires standardization of protocols

and task execution.
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