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identifies 15 susceptibility loci in older men and
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Low muscle strength is an important heritable indicator of poor health linked to morbidity and

mortality in older people. In a genome-wide association study meta-analysis of 256,523

Europeans aged 60 years and over from 22 cohorts we identify 15 loci associated with muscle

weakness (European Working Group on Sarcopenia in Older People definition: n= 48,596

cases, 18.9% of total), including 12 loci not implicated in previous analyses of continuous

measures of grip strength. Loci include genes reportedly involved in autoimmune disease

(HLA-DQA1 p= 4 × 10−17), arthritis (GDF5 p= 4 × 10−13), cell cycle control and cancer pro-

tection, regulation of transcription, and others involved in the development and maintenance

of the musculoskeletal system. Using Mendelian randomization we report possible over-

lapping causal pathways, including diabetes susceptibility, haematological parameters, and the

immune system. We conclude that muscle weakness in older adults has distinct mechanisms

from continuous strength, including several pathways considered to be hallmarks of ageing.
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Age-associated loss of muscle strength (termed dynapenia)1

is one of the characteristic changes occurring with
advancing age, and muscle weakness is considered a

fundamental component of frailty and sarcopenia2. Individuals
over 70 years old typically demonstrate up to 20% lost muscle
mass compared with individual in their twenties3. Although
definitions of reduced muscle function in older people have
focused on loss of muscle mass (sarcopenia) evidence now shows
that muscle weakness itself is often more predictive of negative
health outcomes4. Muscle weakness causes difficulties in daily
functioning (i.e., disability) and low muscle strength (measured as
hand grip strength, considered a biomarker of general dynapenia)
is predictive of future morbidity and mortality3 over the long
term5. Despite intensive research, causes of and contributors to
muscle weakness in later life remain to be fully elucidated6.
Importantly, muscle strength is heritable (48–55% in 1757 male
twin pairs aged 45–96)7, and can thus be used for genetic
investigations.

Previously a genome-wide association study (GWAS) by the
CHARGE (Cohorts for Heart and Aging Research in Genomic
Epidemiology) consortium identified two loci associated with
maximum hand grip strength (as a quantitative trait) in 27,581
Europeans aged 65 and over8. Another study on maximum hand
grip strength (divided by weight) in mostly middle-aged UK
Biobank participants (334,925 people aged 40–70, mean aged 56)
identified and replicated 64 loci, many of which are known to
have a role in determining anthropometric measures of body
size9,10. These previous studies that considered grip strength as a
continuous phenotype across young and old individuals may not
provide insights into the age related loss of muscle strength that
leads to a magnitude of weakness sufficient to call it a disease.
Given the limited data on genetic contributions to a clinically
meaningful level of muscle weakness in older adults, we aimed to
determine the genetic variants and investigate causal pathways
associated with low measured grip strength.

In this work, we report a GWAS of weakness in 256,523 older
adults (aged 60+ years) of European ancestries from the
CHARGE consortium. The primary analysis was based on the
established 2010 European Working Group on Sarcopenia in
Older People (EWGSOP) definition of low grip strength, and
results were compared to an analysis of the alternative Founda-
tions of the National Institutes of Health (FNIH) definition based
on its association with functional outcomes, with additional
analyses stratified by sex. The associated loci and subsequent
pathway and Mendelian randomization analysis reveal causal
pathways to weakness at older ages distinct from overall strength
during the life course, highlighting specific diseases (such as
osteoarthritis) and link to hallmark aging mechanisms such as cell
cycle control.

Results
Study description. The meta-analysis comprised 256,523 indi-
viduals of European descent aged 60 years or older at assessment
from 22 independent cohorts with maximum hand grip strength
recorded—including the UK Biobank, the US Health and
Retirement Study, the Framingham Heart Study, and others. In
total, 46,596 (18.9%) of all participants had muscle weakness
(dynapenia) based on hand grip strength (EWGSOP definition:
grip strength <30 kg Male; <20 kg Female). Individual study
characteristics are described in the Supplementary Information
and in Supplementary Table 1.

Our primary analysis of EWGSOP definition low grip strength
will be described first, with subsequent additional analyses
described in later sections: these include analysis of males and

females separately and use of the alternative low grip strength
criteria provided by the FNIH data.

GWAS of low muscle strength identifies 15 loci. We found 15
genomic risk loci to be associated (p < 5 × 10−8; 8 loci p < 5 × 10−9)
with EWGSOP definition low hand grip strength in our GWAS
meta-analysis of 22 cohorts (n= 256,523, n= 48,596 cases),
adjusted for age, sex, and technical covariates (Fig. 1, Table 1;
Supplementary Data 1). The strongest associations were with
variants close to HLA-DQA1 (rs34415150, beta/log-OR per G
allele= 0.0833, p= 4.4 × 10−17), GDF5 (rs143384, beta per A
allele=0.0545, p= 4.5 × 10−13) and DYM (rs62102286, beta per T
allele=0.0487, p= 5.5 × 10−11). Twelve of the fifteen lead SNPs
from the GWAS have not previously been identified in studies of
grip strength analyzed on a continuous scale across all ages
(Supplementary Data 2 & 3) and only 3 of the 64 loci associated
with overall muscle strength11 are significant in our analysis of low
strength (Supplementary Data 4). This included the three most
strongly associated variants near HLA-DQA1 (previously impli-
cated in rheumatoid arthritis: see Supplementary Data 2), GDF5
(‘Growth differentiation factor 5’: previously implicated in height,
waist hip ratio, muscle mass, and osteoarthritis) and DYM
(‘Dymeclin’: implicated in in height). Six other variants were pre-
viously linked to height and four to osteoarthritis. None were
significantly (p < 5 × 10−8) associated with lean muscle mass,
although rs10952289 near AOC1 is nominally associated with
appendicular lean muscle mass (p= 6 × 10−4)12. The test of cohort
heterogeneity in METAL for all 15 lead SNPs was not statistically
significant (nominal het p > 0.05). Full summary statistics for the
meta-analysis are available for download (visit the Musculoskeletal
Knowledge Portal http://www.mskkp.org/ or the GWAS catalogue
https://www.ebi.ac.uk/gwas/).

Overall, two of the fifteen identified lead variants (or proxies)
have not previously been implicated in anthropometric or
musculoskeletal phenotypes in the GWAS catalogue (see
Supplementary Data 2). This included ALDH1A2 (‘Aldehyde
Dehydrogenase 1 Family Member A2’: involved in the synthesis
of retinoic acid), and a variant near FTO (‘FTO Alpha-
Ketoglutarate Dependent Dioxygenase’: involved in the oxidative
demethylation of different forms of RNA). Although the lead
ALDH1A2 SNP itself has not been identified in previous GWAS,
other independent variants (R2 < 0.6) at the same locus (e.g.,
rs3204689) have been found to be associated with osteoarthritis
(Supplementary Data 2).

The Lambda GC (genomic control, λGC) value was high (1.13;
see Supplementary Fig. 1 for QQ plot), however the intercept
from Linkage Disequilibrium Score Regression (LDSC) analysis
was close to 1 (0.97, SE 0.007), indicating that the inflation in test
statistics is primarily due to polygenicity (many variants with
small effects on low grip strength), rather than bias due to
population stratification13. An intercept below 1 is not unusual
for analyses adjusted with genomic control. The single nucleotide
polymorphism (SNP) based heritability (h2) of low grip strength
was 0.044 (SE 0.0027), i.e., 4.4%, by LD Score Regression.

In sex-stratified analysis there were eight significant genomic
risk loci associated with EWGSOP low grip strength in females
only (total n= 132,443 with n= 33,548 cases, 25.3%; see
Supplementary Table 2). Seven of the eight loci were either
present in the main analysis or were correlated with correspond-
ing variants, however rs7185040 (chr16: 2145787), mapped to
gene PKD1, was only significant in the analysis of females,
although the association is borderline in the analysis of males and
females together (females p= 3 × 10−8; combined analysis p=
5.5 × 10−8).
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The analysis of males only (total N= 118,371 with 13,327
cases, 11.3%) identified three genomic loci associated with the
EWGSOP low grip strength definition. Two of these variants
appeared to be distinct signals from the overall analysis and were
not associated with low grip in females (see Supplementary
Table 3 for details): rs774787160 mapped to gene DSCAM (males
p= 1 × 10−8; females p= 0.9) and rs145933237 mapped to mir-
466, which was only nominally associated in females (males p=
2 × 10−8; females p= 0.01).

In the analysis of 116 mitochondrial genetic variants (MAF
>0.01) available in the UK Biobank directly genotyped microarray
data, no variants reached “genome-wide” significance (p > 5 × 10−8).
Two were associated with EWGSOP-defined low hand grip strength
at nominal significance (p < 0.00043, i.e., Bonferroni-adjustment for

mitochondrial variants). rs41518645 is a missense variant
(p.Asp171Asn) in MT-CYB, identified in Plink logistic regression
analysis (p= 0.0003). rs201950015 is intronic, located between
genes CO1 and ATP6/8 (p= 0.00042). These findings need further
scrutiny in studies assessing the influence of mitochondrial
dysfunction on muscle function and metabolism. See Supplemen-
tary Data 5.

GWAS of low grip strength based on FNIH criteria. In sec-
ondary analysis we performed GWAS using the low grip strength
definition published by the FNIH14. This criterion uses lower grip
strength cut-offs (<26 kg for males and <16 kg for females) than the
EWGSOP definition15, resulting in fewer cases (n= 19,345, 7.6% of
total). Five loci were significant in the analysis (p < 5 × 10−8), only
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Fig. 1 Manhattan plot of low grip strength genome-wide association study -log10 p values. The p values are from a fixed-effects meta-analysis of
256,523 Europeans aged 60 or older from 22 cohorts. The outcome was low hand grip strength grip strength cutoff (males <30 Kg, females <20 Kg). The
x-axis is the chromosomal location, and the y-axis is the –log10 p value for each genetic variant. The horizontal red line is the threshold for genome-wide
significance (p < 5 × 10−8). Fifteen genomic loci cross the threshold, and the lead variant (most significantly associated with low strength) is described in
Table 1. The nearest gene is displayed for each locus.

Table 1 Fifteen genomic risk loci associated with low grip strength in 256,523 older men and women.

RSID Chr BP (b37) EA OA EAF OR p value Nearest gene GTEx increased GTEx decreased

rs34415150 6 32560477 G A 0.18 1.087 4.4 × 10−17 HLA-DRB1 HLA-DQA2; HLA-DRB6; HLA-
DQB2; HLA-DOB

HLA-DQA1; HLA-DRB1; HLA-
DQB1; HLA-DQB1-AS1

rs143384 20 34025756 A G 0.59 1.056 4.5 × 10−13 GDF5 UQCC1; FAM83C; CPNE1 GDF5; RPL36P4
rs62102286 18 46592408 T G 0.56 1.050 5.5 × 10−11 DYM DYM
rs3118903 13 51099577 A G 0.22 1.059 6.7 × 10−11 DLEU1 RNASEH2B-AS1
rs13107325 4 103188709 T C 0.07 1.094 7.4 × 10−11 SLC39A8 UBE2D3
rs11236213 11 74394369 G A 0.69 1.052 3.0 × 10−10 RN7SKP297 KCNE3; POLD3 RP11-864N7.4; CHRDL2
rs34464763 12 15032860 A T 0.39 1.056 3.2 × 10−10 C12orf60 RP11-233G1.4 ERP27; SMCO3; C12orf60; MGP
rs143459567 16 24600412 T C 0.04 1.126 3.4 × 10−10 RBBP6
rs2899611 15 58327347 G T 0.50 1.044 6.0 × 10−9 ALDH1A2 ALDH1A2
rs958685 2 70703847 C A 0.49 1.044 6.5 × 10−9 TGFA TGFA (Ts)a TGFA (Bcor, Bcau, Bhyp, Bacc)a

rs7624084 3 141093285 T C 0.56 1.044 8.5 × 10−9 ZBTB38 ZBTB38 (Skse, Esom, Snse)a ZBTB38 (Wb, Thy, Adips, Ts)a

rs79723785 19 55818225 C T 0.02 1.182 1.2 × 10−8 BRSK1 HSPBP1*
rs10952289 7 150524681 T C 0.66 1.044 2.1 × 10−8 AOC1 AOC1 (Haa, Hlv, Liv);

TMEM176B (Haa)a
AOC1 (Esom, Adipv, Thy, Esog)a

rs8061064 16 53912364 A T 0.46 1.042 3.6 × 10−8 FTO
rs12140813 1 227776827 T C 0.19 1.052 4.8 × 10−8 ZNF678 JMJD4 SNAP47

p value= fixed-effects meta-analysis p value; Nearest gene= on GRCh37, gene names italicized; GTEx increased/decreased= Top four genes with known expression associations with the lead SNP in
GTEx v8, ordered by p value. Rows in bold are those not found in previously published GWAS (see Supplementary Data 2 and 3).
Chr chromosome, BP base pair position, genome build 37, EA effect allele, OA other allele, EAF effect allele frequency, OR odds ratio of having low grip strength (EWGSOP criteria) per allele.
aGTEx v8 differential expression by tissue – Ts = Testis; Bcor = Brain – Cortex; Bcau = Brain - Caudate (basal ganglia); Bhyp = Brain – Hypothalamus; Bacc = Brain – Anterior cingulate cortex; Asub =
Adipose – subcutaneous; Wb = Whole blood; Esom = Esophagus – mucosa; Skse = Skin sun exposed lower leg; Snse = Skin non-sun exposed lower leg; Thy = Thyroid; Adips = Adipose –
Subcutaneous; Adipv = Adipose - Visceral (Omentum); Esog = Esophagus - Gastroesophageal Junction; Haa = Heart - Atrial Appendage; Hlv = Heart - Left Ventricle; Liv = Liver. See Supplementary
Data 1 for METAL output, and Supplementary Data 6 for GTEx
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one of which was not identified in the EWGSOP low grip strength
analysis described previously (see Supplementary Table 4, either
the same SNP or in high LD with the EWGSOP lead SNP at that
loci, for example rs3771501 and rs958685 R2= 0.90). This single
base-pair deletion (rs1403785912–chr9:4284961:T:-) mapped to
GLIS3 (“GLIS family zinc finger 3”—a repressor and activator of
transcription), and may be specifically associated with more strict
definitions of weakness (EWGSOP p value= 1.2 × 10−3).

Gene expression and pathways. We used data from the
Genotype-Tissue Expression project (GTEx) v8 to identify whe-
ther the variants associated with low grip strength affect expres-
sion of genes (Table 1; Supplementary Data 6). Of the top 15
EWGSOP-associated variants 12 are eQTLs for at least one gene.
For 8 of these, the nearest gene to the variant by chromosomal
location is known to have altered expression, but other genes in
the locus may also be affected. This is consistent with a recent
study showing that the “nearest gene” is often a good candidate
for being a causal pathway16. For the top two loci (HLA-DQA1
and GDF5) the variants are eQTLs for these nearest genes,
however for the SLC39A8 locus the lead SNP (rs13107325) is not
an eQTL for SLC39A8, but is an eQTL for UBE2D3 (‘Ubiquitin
Conjugating Enzyme E2 D3’) in the aorta.

In MAGMA analysis we found 80 GO processes enriched in
low grip strength-associated genes (see Supplementary Data 7 for
details), mainly involved in the immune system and antigen
presentation.

Using MetaXcan17 we identified 24 genes with expression in
skeletal muscle significantly enriched in the low grip strength
GWAS, after Benjamini-Hochberg adjustment for multiple testing
(Supplementary Data 8). We used the International Mouse
Phenotyping Consortium database (www.mousephenotype.org)

to investigate the possible phenotypes associated with the genes
highlighted by MetaXcan, with many having clear effects on
relevant phenotypes such as “growth”, “lean mass”, “body weight”,
“angiogenesis”, “thymus involution”, and “lipid metabolism”
(Supplementary Data 9).

We used LDSC-SEG to determine tissue-specific gene expres-
sion and chromatin modification enrichment in the low grip
strength GWAS results18. We found no significant enrichment
for the genetic determinants of low grip strength in expression
profiles and epigenetic changes after adjustment for multiple
testing (Benjamini-Hochberg-adjusted false discovery rate >0.05).
See Supplementary Data 10 for details.

Genetic correlations and Mendelian randomization. We
assessed ten common age-related diseases for their genetic cor-
relation with low grip strength (Fig. 2) using published genome-
wide summary statistics and LDSC13. The largest genetic overlap
was with osteoarthritis (29.7% genetic correlation, SE 6.3%), but
also strong positive correlations with coronary artery disease
(19.5%, SE 3.0%), type-2 diabetes (15.8%, SE 3.1%) and rheu-
matoid arthritis (12.7%, SE 7.9%). We observed no significant
genetic correlation after multiple-testing correction with the
remaining diseases examined (osteoporotic fracture risk, Alzhei-
mer’s disease, stroke, chronic kidney disease, breast cancer and
colorectal cancer). We also determined genetic correlations with
five anthropometric traits (Fig. 2), and found significant positive
correlations with waist:hip ratio (13.0%, SE 2.7%) and BMI (9.1%,
SE 2.5%), i.e. greater adiposity correlated with weakness in 60+
year olds. Significant negative correlations were observed with
lean muscle mass (whole body: −30.9%, SE 6.1%; and appendi-
cular: −26.5%, SE 5.8%) and with height (−37.4%, SE 2.3%). See
Supplementary Table 5 for details.

We examined 83 traits in Mendelian randomization analysis to
find evidence for shared causal pathways with weakness (low grip
EWGSOP) at older ages: primary results presented are betas from
inverse variance-weighted regression using the “TwoSampleMR”
R package19 (Fig. 3; Supplementary Data 11). We found
significantly increased likelihood of weakness (multiple testing-
adjusted p values < 0.05) with genetically predicted rheumatoid
arthritis (Odds ratio= 1.03, Benjamini-Hochberg adjusted
p value= 5.3 × 10−4), presence of type-2 diabetes (OR= 1.05,
BH p= 2.5 × 10−3), or asthma and allergic disease (OR= 1.07,
BH p= 9.4 × 10-3) (Supplementary Data 11). Genetic predisposi-
tion to greater age of menarche (OR= 0.92, BH p= 5.3 × 10-4),
birth weight (OR= 0.80, BH p= 5.3 × 10−4) and waist-hip ratio
(WHR) adjusted for BMI in women only (OR= 0.85, BH p=
5.3 × 10−4) were protective of low grip strength as defined by the
EWGSOP definition in both sexes (after adjustment for multiple
testing). For each significant analysis we also examined the results
from the weighted-median and MR-Egger tests to check
consistency and for horizontal pleiotropy. Only birth weight
had an MR-Egger beta that was inconsistent with the main effect
(−0.03 compared to −0.2), although the intercept did not
significantly deviate from 0 (p= 0.1) and the MR-Egger
confidence intervals overlap the IVW effect (95% CIs −0.33 to
0.27). In addition, the WHR association should be interpreted
with caution, as the analysis of WHR variants associated with
both sexes were not statistically significant (nominal IVW p=
0.01).

The analysis of females only also identified depression (OR=
1.21, BH p= 2.75 × 10−2), and colorectal cancer (OR= 1.06, BH
p= 2.75 × 10−2) (Supplementary Data 12). Although the MR-
Egger intercept for depression was not statistically different from
0, there is potential for horizontal pleiotropy confounding this
result (seen on Supplementary Fig. 3).

Fig. 2 Low grip strength genetic correlations with ten common diseases
and five anthropometric traits. Genome-wide genetic correlations
between low muscle strength and published summary statistics for
common age-related diseases and low muscle strength risk factors.
N=meta-analysis of 256,523 Europeans (biologically independent
samples) aged 60 or older from 22 cohorts. Data presented are genetic
correlation (rG) ± 95% Confidence Intervals from LD-Score Regression
analysis of 1.2 million SNPs. Full results available in Supplementary Table 5.
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In the males, type-2 diabetes significantly increased odds of
EWGSOP low grip (OR= 1.08, BH p= 3.0 × 10−3) whereas
greater plateletcrit (the volume occupied by platelets in the blood
as a percentage) (OR= 0.91, p= 3.0 × 10−3) and other haema-
tological parameters appear to be protective (Supplementary
Data 13).

To explore the effect of genetic predisposition to low grip
strength at older ages we created an unweighted genetic risk score
(GRS) in the UK Biobank European sample by summing the
number of low grip strength-associated alleles (15 genetic variants
so 30 alleles, mean number of alleles = 12.6, SD= 2.3). We opted
to use an unweighted score as use of weights from analyses
including the discovery sample can bias associations and lead to
overestimated effects (so-called “winner’s curse”)20. We first
confirmed the association with low grip strength in UK Biobank
participants (OR per allele 1.036: 95% CIs 1.030 to 1.041, p= 6 ×
10−40). The low grip GRS was also associated with increased
Frailty Index21 (increase in points per allele = 0.013: 0.006 to
0.021, p= 4 × 10−4).

Low grip strength loci independence from musculoskeletal
traits and diseases. To determine whether the genetic variants
associated with low grip strength identified in the GWAS were
independent of anthropometric traits or prevalent musculoske-
letal comorbidities we performed regression analyses in the UK
Biobank cohort with adjustment for the following covariates:
height, weight, skeletal muscle mass (determined using bioim-
pedance analysis), osteoarthritis, Rheumatoid arthritis, osteo-
porosis, Dupuytren’s contracture (one or more fingers
permanently bent), and rhizarthrosis (arthritis of the thumb).
Disease diagnoses were either self-reported, hospital diagnosed,

or inferred from relevant surgical procedures (for example Pal-
mar Fasciectomy to treat Dupuytren’s contracture), and hip or
knee replacements resulting from osteoarthritis: UK Biobank
hospital episode statistics diagnosis and operations data available
up to March 2017. See Supplementary Table 6 for diagnostic and
surgical codes used.

The association between 8 of the 15 EWGSOP loci and
low grip strength was attenuated after adjusting for height,
including rs143384 (initial UKB p= 3.7 × 10−11; adjusted UKB
p= 3.8 × 10−2) and rs7624084 (initial UKB p= 9.3 × 10−7;
adjusted UKB p= 4.9 × 10−1). Adjustment for weight or BMI
did not substantially attenuate any of the associations. Overall,
the associations were not attenuated by adjustment for osteoar-
thritis, Rheumatoid arthritis, osteoporosis, Dupuytren’s, or
rhizarthrosis. See Supplementary Data 14 for detailed results.

Discussion
In this study of 256,523 Europeans aged 60 years and over we
found that 15 genetic loci were associated with the EWGSOP
definition of low grip strength (dynapenia), plus two additional
loci for the FNIH definition that used a more strict definition for
muscle weakness. Only three of these are known to be associated
with continuous strength measures in GWAS, and only 3 of the
64 known overall strength loci are associated with clinically low
grip strength used in our study. These suggest that the genetic
causes of clinically meaningful weakness at older ages are partly
distinct. Two of the low grip strength-associated genetic signals
identified have not been reported by GWAS prior to the time of
analysis (March 2020), further demonstrating that low strength in
older people may have distinct genetic underpinnings. We did
also find prominent overlaps with osteoarthritis and Rheumatoid

Fig. 3 Traits sharing causal pathways with low grip strength at older ages identified in Mendelian Randomization analysis. In Mendelian randomization
analyses we estimated whether 83 exposures may share causal pathways with low grip strength in people aged 60 and older. Those identified as significant
(multiple testing-adjusted p < 0.05) in at least one analysis (all participants, or males or females separately) are included in the figure. *WHR (adj. BMI in
Women) = Waist-Hip Ratio SNPs identified in GWAS analysis of females only, adjusted for Body Mass Index. N=meta-analysis of 256,523 Europeans
(biologically independent samples) aged 60 or older from 22 cohorts. Data presented as Odds Ratios+ /− 95% Confidence Intervals. Unadjusted p value
(two-sided) from IVW regression analysis of exposure SNPs effect on low grip strength (EWGSOP definition). Full results of Mendelian randomization
available in Supplementary Data 11, 12 and 13.
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arthritis, and also with cardiovascular disease and type-2 diabetes.
Additional links to asthma and allergy were also found. The
pathways implicated appear to include hallmark mechanisms of
ageing22, for example cell cycle control related to the cancer
control retinoblastoma pathway. However other ageing pathways
such as telomere length23, and many lifespan-associated loci
including APOE24, were not associated.

The strongest association found was rs34415150, near the
HLA-DQA1 gene. Genetic variants at this locus have been
implicated in a wide range of conditions, including autoimmune
diseases such as Rheumatoid arthritis25, and continuous grip
strength9. HLA haplotypes HLA-DQA1*03:01 and HLA-
DRB1*04:01, have been previously linked to sarcopenia in older
UK Biobank participants26. HLA-DQA1 is associated with
chronic inflammation in muscle of untreated children with
juvenile dermatomyositis (inflammatory myopathies in children,
which one of the characteristics is muscle weakness)27. In addi-
tion, in a multi-trait analysis of age-related diseases HLA-DQA1
was identified and it may therefore contribute to underlying
ageing mechanisms as a “geroscience locus”28.

Overall 6 of the 15 genomic risk loci for EWGSOP low grip
strength have been previously associated (or are in LD) with
osteoarthritis (rs143384 – GDF5, rs13107325 – SLC39A8,
rs34464763 – C12orf60, rs2899611 - ALDH1A2, rs958685 – TGFA
and rs79723785 - BRSK1), of which two are also linked to adip-
osity, a known risk factor for osteoarthritis29. We found that
rs143384 in the 5’ untranslated region of growth/differentiation
factor 5 (GDF5) was the second most strongly associated variant
with low grip strength. GDF5 is a protein in the transforming
growth factor beta (TGF-β) family, with key roles in bone and
joint development30,31. It was the first locus identified for
osteoarthritis32, with a reported odds ratio of 1.79, as well as one
of the first identified for height33. GDF5 is known to reduce
expression of cartilage extracellular matrix-degrading enzymes in
human primary chondrocytes34, thereby may be an potential
intervention target for avoiding weakness at older ages, although
work is needed to determine when intervention would be most
effective. In follow-up analyses we found that the association
between rs143384 and low grip strength was independent of
prevalent osteoarthritis in UK Biobank participants, although we
cannot rule out an effect of sub-clinical osteoarthritis. However,
the association was completely attenuated after adjustment for
standing height, suggesting the effect of the variant is mediated by
developmental traits such as bone length. Mice with loss of Gdf5
function exhibited severely impaired knee development, and the
regulatory region pinpointed to mediate this effect in humans
includes osteoarthritis-associated genetic variants35. Although the
observed association between variants mapping to GDF5 and low
strength might be mediated by hand osteoarthritis pain com-
promising grip strength, there is evidence of a direct effect of
GDF5 on muscle36.

The locus on Chr 18 was near to the DYM gene. Loss of
function mutations in this gene are associated with Dyggve-
Melchior-Clausen syndrome and Smith-McCort dysplasia
respectively. Mice lacking this gene present with chon-
drodysplasia resulting from impaired endochondral bone for-
mation and abnormalities of the growth plate that begin to
manifest shortly birth37. In homozygous mutant mice, and in
patients with loss of function mutations in this gene, both the
axial and the appendicular skeleton are affected. As is noted in
Supplementary Data 2, this gene is also associated with height in
the GWAS catalogue. Interestingly, this gene is highly expressed
in skeletal muscle in humans38, however its function in muscle is
not completely understood.

SLC39A8 encodes for the metal ion transporter ZIP8 which has
been shown to be upregulated in chondrocytes present in

osteoarthritic cartilage39. The lead SNP rs13107325 is a missense
variant within SLC39A8 which has been previously associated
with osteoarthritis40.

On chromosome 12 genetic variants known to affect expres-
sion of MGP (Matrix Gla Protein) in the tibial nerve (among
other tissues) are associated with osteoarthritis of the hand but
not of the hip or knee41. MGP is an inhibitor of arterial and soft
tissue calcifications, with links to atherosclerosis42. Consistent
with this, older women with severe abdominal aortic calcification
have greater decline in grip strength over 5 years43. More recently
a study suggested MGP may also regulate muscle development
and atrophy44.

We also identified variants known to affect Transforming
Growth Factor Alpha (TGFA) expression (increased in the testis,
decreased in the brain), which is implicated in cell proliferation,
differentiation and development. This locus has previously been
identified for overall strength10, and suggestive evidence from a
study of 1,323 participants linked rs2862851, a variant in linkage
disequilibrium with the lead SNP rs958685 (R2= 0.90, D’= 1.0),
with increased risk of osteoarthritis in the knee (OR= 1.4, p=
3.1 × 10−4)45.

The low grip strength locus on chromosome 15 is near
ALDH1A2, which has a key role in the pathogenesis of osteoar-
thritis46. Low grip strength-associated variants at this locus have
previously been identified for severe osteoarthritis of the hand,
and may explain why this locus is associated with low grip
strength measured by hand dynamometer46. Knocking out this
gene in mice is perinatally lethal, however at embryonic day 18.5
mice lacking this gene do present with numerous cartilage gene
defects47. We also identified variants that affect expression of
CHRDL2 (Chordin Like 2) in the thyroid, known to interact with
mouse Gdf5, which is upregulated in human osteoarthritic joint
cartilage cell line48. In addition, down-regulation of CHRDL2
expression has been linked to the progression of severe osteoar-
thritis in the knee joint49, suggesting a role for CHRDL2 in
cartilage repair.

Two of the identified loci (RBBP6 ‘RB Binding Protein 6,
Ubiquitin Ligase’ and ZBTB38 ‘Zinc Finger And BTB Domain
Containing 38’) form an axis involved in DNA replication and
chromosomal stability50. RBBP6 ubiquitinates the transcriptional
repressor ZBTB38, destabilizing it and reducing its action on the
replication factor MCM10. In mice, Zbtb38 is highly expressed in
skeletal muscle, loss of this methyl-CpG-binding protein (which
is also known as Cibz), promotes myogenic differentiation.
Conversely, expression of Zbtb38 is decreased in satellite cells
during muscle regeneration51, suggesting that like other members
of this gene family, this gene is involved in cellular differentiation.
Variants associated with low grip strength in our analysis are
known to decrease ZBTB38 expression in whole blood and ske-
letal muscle (among others) and increase expression in the skin.

Mitochondrial dysfunction is a hallmark of aging, yet we found
no variants associated with low strength at genome-wide sig-
nificance levels in a sub-analysis of UK Biobank only. Variants in
MT-CYB were nominally significant (p= 0.0003): MT-CYB
(mitochondrial cytochrome b) is part of the mitochondrial
respiratory chain, and essential for Complex III formation.
Monogenic diseases associated with MT-CYB include exercise
intolerance and “Additional features include lactic acidosis,
muscle weakness and/or myoglobinuria” (https://www.uniprot.
org/uniprot/P00156). Recent work by Cohen et al. have high-
lighted the importance of mitochondrial peptides such as
humanin in many age-related diseases52, however we found no
variants in these genes associated with low grip strength passing
multiple testing correction.

In comparison to a previous study that analysed grip strength
as a continuous measure in the UK Biobank cohort9 that included
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all aged (40–70 years), we found that only three of the 64 iden-
tified variants were significantly (p < 5 × 10−8) associated with
EWGSOP low grip strength (Supplementary Data 2).
The top association was rs13107325 (SLC39A8 linear grip p=
4.4 × 10−23, low grip strength meta-analysis p= 7.4 × 10−11),
then rs2430740 (C12orf60 linear grip p= 6 × 10−12, low grip
strength meta-analysis p= 2.6 × 10−9) and finally rs11236203
(POLD3, linear grip p= 8.4 × 10−10, low grip strength meta-
analysis p= 2.8 × 10−8). Two less-significant associations
(<1 × 10−6) were seen with rs3821269 (TGFA linear grip p=
3.5E × 10−15, low grip strength meta-analysis p= 8.0 × 10−8) and
rs1556659 (ENSG00000232985 linear grip p= 1.1 × 10−11, low
grip strength meta-analysis p= 3.5 × 10−7). A previous GWAS by
the CHARGE consortium identified two loci associated with
maximum hand grip strength recorded in 27,581 Europeans aged
65 or older8. We found that neither locus was associated with low
grip strength in our analysis (rs752045 EWGSOP p= 0.67,
rs3121278 EWGSOP p= 0.15).

We observed minimal overlap between loci associated with low
grip strength and general anthropometric traits such as height
and continuous measures of strength. The SNP-based heritability
estimate for EWGSOP low grip strength in older adults was 4.4%
(SE 0.3%). This was somewhat lower than the 13% (SE 0.4%)
SNP-based heritability for continuous grip strength reported in
UK Biobank participants aged 40–709. This may be partly
explained by our study using a binary cut-off for low grip com-
pared to the quantitative analysis of grip strength. These results
emphasize that the genetics of muscle weakness and overall
strength are distinct. The SNP-based heritability estimates
observed here are lower than those from studies of twins, for
example a study of 1,757 male twin pairs aged 45–96 found the
heritability of continuous strength to be 48–55%7, however other
studies have shown that heritability declines significantly as age
advances as environmental factors explain more of the variance3,
though still up to 22% has been reported for muscle strength. In
contrast to the twin studies our estimates of heritability are
restricted to common SNPs with MAF ≥ 1%, and thus represent a
lower bound of the overall genetic variance of low strength in
older people.

Despite seeing little overlap at the individual locus level
between low grip strength at older ages and other diseases we did
observe significant genetic correlations, especially with osteoar-
thritis (30% overlap). However in Mendelian Randomization
analysis we did not observe a causal relationship between
osteoarthritis and low grip strength: taken together, this suggests
that osteoarthritis shares causal risk factors and biological path-
ways with low grip strength at older ages, such as obesity, but may
not cause it. In addition, osteoarthritis has diverse loci associated
with different joints, for instance osteoarthritis in the hand
appears to have a distinct genetic signal: the low grip strength
locus associated with MGP expression has been previously linked
to osteoarthritis in the fingers and hand, but not the hip or
knee41. Although our results were robust to adjustment for
osteoarthritis (including rhizarthrosis—arthritis of the thumb)
this may suggest that arthritis in the hand needs to be accounted
for in measures of muscle weakness, as hand grip strength may
not always reflect muscle strength elsewhere, e.g., lower-extremity
strength.

Our Mendelian Randomization analyses highlighted specific
traits and diseases which may share causal pathways with weak-
ness at older ages. This included growth and development traits
such as birth weight, waist:hip ratio, and pubertal timing (age at
menarche) in women (highly genetically correlated – 75% – with
age at voice breaking in men53), where greater values were pro-
tective. Although puberty timing is highly polygenic, it is strongly
genetically correlated with BMI (−35%)53, with complex

interactions: i.e., being thinner in childhood is associated with
delayed menarche54, but later menarche results in taller adult
height55. These results are consistent with the observation that
growth and development traits are associated with strength tra-
jectories in later life56. We chose to not adjust for body size in our
primary analysis in case interesting or novel effects were masked,
but in follow-up analysis determined that all except two of the
loci identified were predominantly independent of participant
height and weight.

Raised red blood cell parameters - especially plateletcrit, the
proportion of blood occupied by platelets - appear to be protec-
tive in males but associations were attenuated or nonsignificant in
females. A number of studies have recently reported a link
between raised platelet counts, inflammation, and sarcopenia
cross-sectionally57. However our results suggest that plateletcrit
across the lifecourse (rather than after sarcopenia onset) may be
different. Lastly, only four of the conditions we investigated
(which included coronary artery disease, and some common
cancers) appear to causally increase risk of weakness in older
people: depression, asthma/allergic diseases, Rheumatoid arthri-
tis, and type-2 diabetes. These are diverse conditions and further
underlines the multifactorial causes of weakness in older people.

There are a number of limitations to our analyses. The data
included are predominantly from subjects at the younger end of
the age 60 plus demographic, and is not enriched for frail indi-
viduals. The sample size for sex-specific analyses is limited,
especially for men, likely contributing to the fewer significant
associations observed. The results from sex-stratified analyses
need to be interpreted with caution, as a recent pre-print on
bioRxiv has shown that some variants are spuriously associated
with sex in cohorts such as the UK Biobank, likely due to their
effect on differential participation58. Our analysis was limited to
relatively common variants (prevalence >1%) in subjects with
European ancestries only. The analyses of the FNIH strength
cutpoints also have limited power, given the low prevalence of the
phenotype, although studying the extremes of a continuous trait
can provide increased power if stronger associations are uncov-
ered. We did not include additional analysis of the revised
EWGSOP2 low grip cut-points6 as these are almost identical to
the FNIH criteria, which many cohorts had already analyzed;
future analyses should include this. Analysis of rare and structural
variants, and analyses in other ancestral groups will give a more
complete picture of the genetic landscape for low grip strength or
dynapenia. Some Mendelian Randomization analyses have lim-
ited power due to the lack of strong instruments, and therefore
null results for these analyses should be interpreted with caution.

To conclude, genetic variation in 15 loci are related to muscle
weakness in people aged 60 plus, of European descent, with
limited overlap with loci associated with the full range of muscle
strength in 40–70 year olds. The loci implicated may be involved
in hallmark pathways of ageing including cell cycle control and
inflammation, along with loci implicated in arthritis and path-
ways involved in the development and maintenance of the
musculoskeletal system.

Methods
GWAS of low grip strength in older people. We conducted a GWAS meta-
analysis of low grip strength in participants aged 60 years or older of European
ancestry from 22 studies yielding a combined sample of 254,894 individuals.
Individual studies used different genotyping platforms and imputation was pre-
dominantly performed using the Haplotype reference consortium (HRC) v1.1
panel. See Supplementary Information for details on individual study methods.

Two definitions of low muscle hand grip strength were utilized at the time of
analysis. The primary analysis was of the 2010 EWGSOP criteria for sarcopenic
grip strength (Grip strength <30 kg Male; <20 kg Female). In secondary analysis
we considered a more data-driven definition with more strict thresholds by the
FNIH sarcopenia project 2014 (Grip strength <26 kg Male; <16 kg Female) for
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comparison. Given the known differences in strength between males and females
(on average) we also performed sex stratified analyses.

GWAS was performed by each cohort individually (see Supplementary
Methods) using regression models, adjusted for age, sex (except in sex-specific
models), and population substructure, accounting for relatedness and technical
covariates as required by the individual study. No adjustment for anthropometric
measures was made in the primary analysis, but the effects were explored in
sensitivity analyses (see below). Fixed-effects inverse variance weighted meta-
analysis was performed using METAL59 using the GWAS summary statistics
generated by each cohort, with genomic control for population structure
(see Supplementary Methods for details). The following quality control filters were
applied: minor allele frequency (MAF) > 0.01, imputation info score of > 0.4, and
the variant present in at least two studies (UK Biobank – the largest included
cohort—plus at least one other). The final analysis therefore included 9,678,524
genetic variants. Associations that achieved a p < 5 × 10−8 were considered
statistically significant, with those reaching the more stringent threshold of p < 5 ×
10−9 highlighted.

Distinct loci were initially defined as two significant variants separated by
>500 kb. To identify independent signals at each locus we used FUMA (Functional
Mapping and Annotation of Genome-Wide Association Studies)60, which uses
Linkage Disequilibrium (LD) information to determine independence (r2 threshold
= 0.1 for independent significant SNP). We used Linkage Disequilibrium Score
Regression (LDSC, v1.0.0) to estimate the level of bias (i.e., from population
stratification and cryptic relatedness) in the GWAS, and the SNP-based heritability
of low grip strength13.

Locus overlap with diseases and anthropometric traits. The GWAS catalogue of
published loci-trait associations11 was searched to identify whether low grip
strength-associated loci determined from our meta-analysis are known to influence
other traits or diseases. In addition, we performed sensitivity analyses in the UK
Biobank sample to determine whether associations between variants and low grip
strength identified in the meta-analysis were robust to adjustment for the following
traits or diseases: height, weight, body mass index, osteoarthritis, rheumatoid
arthritis, and osteoporosis (prevalent diseases were from the self-reported data at
baseline or in the Hospital Episode Statistics). Analyses were performed in STATA
(v 15) using logistic regression models adjusted for age, sex, principal components
1 to 10, assessment centre, and genotyping array (the UK Biobank using two
different Affymetrix microarrays that shared >95% of sites – see Supplementary
Methods).

Gene ontology pathways, tissue enrichment, and eQTL analyses. We utilized
FUMA to perform functional interpretation of the GWAS results60. In particular,
FUMA performs gene-set analysis (using Multi-marker Analysis of GenoMic
Annotation (MAGMA)61) to identify pathways enriched amongst the significant
genes (weighted by the SNP-associations in proximity to them), in addition to
searching eQTL databases to identify SNPs that significantly alter the expression of
genes in various tissues.

We used MetaXcan to determine whether gene-level transcriptomic
associations in GTEx v7 skeletal muscle data were enriched in the GWAS summary
statistics for low grip strength17. The analysis included 7512 genes with measured
expression in the dataset; we applied Benjamini-Hochberg multiple-testing
correction, with adjusted p values < 0.05 deemed to be significant.

LD Score Regression applied to specifically expressed genes (LDSC-SEG) allows
the identification of enriched tissue activity associated with GWAS results18. We
applied LDSC-SEG (v1.0.0) to the GWAS summary statistics using the datasets
‘Multi_tissue_gene_expr‘ and ‘Multi_tissue_chromatin‘ provided by the authors.
We applied Benjamini-Hochberg multiple-testing correction for the 703 tests (n
gene expression = 205, n chromatin = 498), with adjusted p values < 0.05 deemed
to be significant.

Genetic correlations and Mendelian randomization. We investigated the genetic
correlation between the low grip strength trait and 10 diseases - chosen because they
are common, chronic diseases of aging - using LDSC (v1.0.0)13 and published
GWAS summary statistics for the following diseases: Alzheimer’s disease62, breast
cancer63, chronic kidney disease64, coronary artery disease65, osteoporotic fracture
risk66, osteoarthritis67, prostate cancer68, rheumatoid arthritis69, stroke70, and
type-2 diabetes71. We also calculated genetic correlations with the following
anthropometric traits: height72, body mass index (BMI)72, waist:hip ratio (WHR)73,
whole-body lean mass12, and appendicular lean mass12.

We also undertook a phenotype-wide Mendelian randomization (MR)
association study to examine the causal effect of 83 traits on low hand grip
strength. We used the “TwoSampleMR” (v0.4.23) package in R19 to perform the
analysis of genetic instruments from the 83 traits, which including those traits with
clear biological rationale (for example, adiposity) and others that are more
exploratory for hypothesis generation (for example, puberty timing). Follow up
sensitivity analysis of the identified traits was by the MR-Egger and using weighted
median estimation methods provided in the package.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The GWAS summary statistics and supporting information on low grip strength in older
people are available on the Musculoskeletal Knowledge Portal (www.mskkp.org) and the
GWAS catalogue (www.ebi.ac.uk/gwas accession numbers GCST90007526,
GCST90007527, GCST90007528, GCST90007529, GCST90007530 and GCST90007531).
The International Mouse Phenotyping Consortium database is located (https://www.
mousephenotype.org/). eQTL data is available from (https://gtexportal.org/). Catalogue
of GWAS associations is available (https://www.ebi.ac.uk/gwas/). All relevant additional
data is available on request from the authors. Information on the 22 individual cohorts is
included in the Supplementary Information file.

Code availability
See our associated GitHub repository for example scripts used for the main analyses
(https://github.com/pasted/gw_meta_analysis_low_muscle_strength). All relevant
additional code is available on request from the authors.
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