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or many species, predators and prey alike, sound localization is important for survival. 

In contrast to a visual stimulus, localizing a sound is often a difficult task. The auditory 

system uses subtle spectral cues to determine the vertical location of a sound. To 

localize a sound in the horizontal plane (azimuth), it can use small differences in the arrival 

times or the intensity of sounds across the two ears. The main focus of this thesis is the 

circuitry involved in low-frequency sound localization in azimuth. We begin this introduction 

with a review of the anatomy of the cochlea and the neural circuitry involved in sound 

localization. These sections will be followed by a more detailed description of sound 

localization mechanisms and research questions addressed in this thesis. 

 

Sound localization: periphery 

 

 

Figure 1. Sound source azimuthal location creates interaural time differences.  

A schematic depiction of the relation between sound source and ITDs. If the sound source 

(blue circle) is in front of the listener (I), the sound will reach left (brown dashed line) and 

right (orange dashed line) ears at the same time. If the sound source is off-center with respect 

to the listener (II), the sound will reach one ear before the other (in this case the sound will 

reach the right ear earlier). The extra time it takes for the sound to reach the other ear (red 

solid line) is called the interaural time difference (ITD) and is dependent on the sound source 

location and the head size. In the extreme case when the sound comes from one side (III), the 

ITD is the largest possible for the given head size; ITD3 > ITD2 > ITD1 = 0 (ms). For a human 

head the distance between both ears is about 24 cm. The speed of sound in air is about 340 

ms, yielding a maximal ITD of 0.7 ms. In contrast, in a small rodent such as the gerbil, the head 

size yields a maximal ITD of not more than 0.13 ms.  

 

F 
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The mammalian hearing system can be subdivided into a peripheral and a central part. The 

peripheral auditory system consists of the outer, middle and inner ear, while the neural 

pathways that conduct and process sound-related information represent the central auditory 

system.  

The perception of sound begins with the outer ear collecting incoming sound waves. The 

pinna plays a large role in determining the sound source elevation (Middlebrooks and Green 

1991). Sounds coming from different elevations undergo different changes in sound spectrum 

due to reflections in the pinna and ear canal. These spectral changes are cues that play a 

major role in monaural sound localization in the vertical plane. 

Sound localization in azimuth depends on the sound source position relative to both ears and 

the dimension of the listener’s head. For high-frequency (> 3 kHz) sound waves, the head 

creates an acoustic shadow for the ear that is further from the sound source. As a result, the 

sound arriving at the ear that is closer to the source has a larger amplitude than the ear that 

is further from the source – the origin of the interaural level difference (ILD) cue. This cue, 

however, is less useful for low-frequency sound waves because the attenuation from the head 

shadow is smaller for low frequencies.  

Azimuthal sound localization for low frequencies (< 3 kHz) makes use of differences in travel 

time of sound to both ears (Figure 1). When a sound source in the horizontal plane is directly 

in front of (or directly behind) the listener, sound waves reach both ears at the same time. In 

any other case the sound will reach one ear later than the other. This time delay is called an 

interaural time difference (ITD). 

Sound waves are guided through the ear canal towards the tympanic membrane, or the 

eardrum, where the transformation from the pressure wave to mechanical vibrations occurs. 

These mechanical vibrations are conducted via three ossicles – malleus, incus and stapes, of 

which the latter is attached to the oval window membrane. This is where the inner ear begins. 

The mechanical vibrations arriving at the oval window initiate travelling waves in the fluid-

filled cochlea. The basilar membrane (BM) is the main structure in the cochlea involved in the 

frequency analysis of incoming sounds. Different sound frequencies lead to maximal BM 

displacements at different locations along the cochlea. Higher frequencies preferentially 

displace the BM closer to the cochlear base, whereas lower frequencies mainly cause 
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displacements in the apical part. The organ of Corti, which rests on the BM, contains the inner 

hair cells, which convert the vibrations of the BM into electrical signals. The inner hair cells 

are innervated by spiral ganglion neurons, which form the auditory nerve (AN) that conducts 

the auditory information in the form of action potentials (AP) to the cochlear nucleus in the 

brainstem.  

 

Duplex theory of azimuthal sound localization 

Thompson (1882) and Rayleigh (1907) were the first to recognize that two dominant cues – 

interaural level differences and interaural time differences can be used to localize sound in 

azimuth.  A lot of experimental support for this so-called duplex theory of sound localization 

of pure tones has been obtained, but for complex sounds, ITD cues are also used for the 

localization of high-frequency sound. It is now known that both cues are processed in parallel 

neural pathways, which involve to some extent different auditory nuclei in the auditory 

brainstem. Which of these two cues can be used depends on the frequency composition of 

incoming sounds. Higher frequency tones tend to be obstructed by the head shape more than 

low-frequency tones; the head creates an acoustic shadow for these short wavelength waves. 

This results in an ILD cue, a difference in sound intensity between the two ears. On the other 

hand, the difference in the arrival time of low frequency tones creates a meaningful phase 

difference (ITD cue). It is worth noting that due to phase locking (see below) ITD cue is not 

present for high-frequency tones, but is relevant for high frequency complex sounds. At the 

extremes of the frequency spectrum (either very low or very high frequencies), one of the 

two cues dominates the sound localization mechanism, while at the mid-frequency range 

neither of the cues is strong. Thus, the boundary between the utilization of either ITDs or ILDs 

is not a steep jump between the two, but rather a gradual transition and depends on the 

dimension of the head. For humans, the frequency demarcation separating the low and high 

frequencies is between 2 and 3 kHz. 

For pure tones, duplex theory has been supported by a large set of psychophysical 

experiments, which showed a) reduced acuity in azimuthal sound localization for mid-

frequency sounds (Casseday and Neff 1975; Mills 1958; Stevens and Newman 1936), and b) 

that in humans, ITD detection in the ongoing fine structure of high frequency pure tones is 
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obscured (Licklider et al. 1950; Mills 1960). One important thing to note is that broadband 

high-frequency sounds can be localized based on their low-frequency envelopes (Klumpp and 

Eady 1956; Leakey et al. 1958). For a recent review of binaural processing of temporal 

information, see Joris and van der Heijden (2019). 

 

Sound localization: neural circuitry 

 

Circuitry in mammals 

Throughout this thesis the Mongolian gerbil (Meriones unguiculatus) will be used as a model 

species for low-frequency sound localization in mammals. Gerbils are well known for their 

low-frequency sensitivity and sound localization capabilities (Ryan 1976) and are widely used 

in auditory research. Figure 2 shows a schematic view of the gerbil brainstem to illustrate the 

auditory nuclei involved in low-frequency sound localization. Auditory nerve fibers terminate 

in the anteroventral cochlear nucleus (AVCN; CN – cochlear nucleus in Figure 2). Spherical 

bushy cells (SBC) in AVCN provide excitatory glutamatergic inputs to the ipsilateral and 

contralateral medial superior olive (MSO) (Clark 1969a; b; Kil et al. 1995) and the ipsilateral 

lateral nucleus of the trapezoid body (LNTB) (Spirou and Berrebi 1997).Globular bushy cells 

(GBC) in AVCN form excitatory glutamatergic connections with the contralateral medial 

nucleus of the trapezoid body (MNTB) (Kuwabara et al. 1991). Additionally, the MSO receives 

two glycinergic inhibitory inputs – one from the ipsilateral LNTB (Cant and Hyson 1992; 

Kuwabara and Zook 1992; Roberts et al. 2014) and one from the ipsilateral MNTB (Clark 

1969a; b; Kuwabara and Zook 1992).  

To summarize - a typical MSO neuron receives two excitatory inputs – one from the ipsilateral 

and one from the contralateral AVCN – onto its dendrites and two somatic inhibitory inputs, 

one from the ipsilateral LNTB and one from the ipsilateral MNTB (Clark 1969a; b). This 

arrangement of two dominant excitatory inputs converging from both ears is also referred to 

as an EE type. The primary projections of MSO are the ipsilateral dorsal nucleus of the lateral 

lemniscus (DNLL) and the ipsilateral inferior colliculus (IC) (Adams 1979; Roth et al. 1978). 
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Figure 2. MSO input scheme.  

A schematic view of a cross section of the gerbil brainstem showing the principal nuclei 

involved in low-frequency sound localization in azimuth in mammals. The MSO receives two 

excitatory inputs (blue arrows) – one from ipsilateral and one from the contralateral cochlear 

nucleus. Additionally, the MSO receives an inhibitory input from the ipsilateral lateral nucleus 

of the trapezoid body (LNTB) and an inhibitory input from the ipsilateral medial nucleus of the 

trapezoid body (MNTB). Dashed line indicates midline.  

 

Figure 3. NL input scheme.  

A schematic view of a transverse section of the barn owl brainstem showing the principal 

nuclei involved in low-frequency sound localization in azimuth in avians. Nucleus angularis 

(NA) and nucleus magnocellularis (NM) both receive direct excitatory inputs from the auditory 

nerve. NM sends bilateral excitatory projections to nucleus laminaris (analog of MSO in 

mammals). Dashed line indicates midline. 
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Circuitry in avians 

Avians are well known for their precise sound localization capabilities; an excellent example 

is the barn owl (Tyto alba). Figure 3 shows a schematic view of a transverse brainstem section 

from the barn owl, depicting three nuclei that play a key role in sound localization. In birds, 

the auditory nerve fibers form endbulb terminals on the neurons in the nucleus 

magnocellularis (NM) and bouton-like terminals on the neurons of the nucleus angularis (NA). 

These projections to NA and NM have a tonotopical organization (Rubel and Parks 1975). In 

the barn owl, nucleus magnocellularis preserves information about the timing of sound 

source and nucleus angularis (in a parallel pathway to NM) encodes sound level-related 

information. NA inherits its tonotopic organization from the auditory nerve; high best 

frequencies are mapped dorsolaterally, low best frequencies aventromedially. Nucleus 

laminaris receives bilateral inputs from NM and is responsible for detecting interaural time 

differences (Carr and Konishi 1990; Overholt et al. 1992). Inputs from NM to NL are 

tonotopically arranged; ipsilateral NM projects onto dorsal dendrites of NL, contralateral NM 

projects onto ventral dendrites of NL. All the aforementioned connections in avians employ 

glutamate as the neurotransmitter. 

 

Phase locking 

The basilar membrane of the cochlea exhibits tonotopy: waves of different frequencies 

preferentially produce vibrations at different locations. These vibrations result in the 

movements of the stereocilia of the inner hair cells (IHC). If the hair bundle moves towards 

the longest stereocilium the membrane potential of the inner hair cell will depolarize, 

whereas the bundle motion in the opposite direction produces a hyperpolarization. For a low-

frequency wave, this translates to an increased probability of generating an action potential 

in the auditory nerve when the sinusoidal wave is moving in one direction and decreased 

probability in the opposite direction. This is the origin of phase-locking in auditory nerve 

fibers, which is the property that these fibers preferentially fire during a specific phase of a 

tone (Rose et al. 1967; Tasaki 1954). An AN fiber typically innervates only a single IHC, 

meaning that the phase-locking observed in auditory nerve is related to the membrane 

potential changes in single inner hair cells. The ability to show phase-locking is inherited by 

many nuclei within the auditory system. It is limited to lower frequencies owing to the limited 
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temporal acuity of hair cells and auditory neurons. In mammals, the ability to phase-lock 

starts to decline at 1 kHz and is no longer present at 3-4 kHz, i.e. at higher frequencies there 

is no correlation between action potentials in AN and stimulus phase.  

Phase-locking is quantified by calculating the “vector strength” (VS), a metric that was first 

employed by Goldberg and Brown (1969). Its magnitude ranges from 0 (not synchronized) to 

1 (perfectly synchronized). Note that phase-locking does not imply that an AP is fired at each 

cycle of the stimulus. In fact, the degree of phase locking is independent of the fraction of 

“skipped” stimulus cycles.  

 

AVCN projections 

Auditory nerve fibers innervate neurons in the cochlear nucleus. The anterior aspect of the 

anterior ventral cochlear nucleus contains spherical bushy cells, which receive input from the 

AN in the form of 1-2 large endbulbs of Held (Brawer and Morest 1975; Cant and Morest 

1984). Globular bushy cells in the posterior aspect of the AVCN receive up to 20 smaller 

somatic terminals from AN – called modified endbulbs of Held (Liberman 1991). Phase-locking 

improves in the bushy cells compared to AN (Joris et al. 1994a; Smith et al. 1991; Smith et al. 

1993). This enhancement in synchronization is seen for both low and high characteristic 

frequency cells when stimulated with low-frequency tones (Joris et al. 1994a; Joris et al. 

1994b). However, as the stimulation frequency goes above 2 kHz, phase locking drops rapidly 

and becomes better in AN than in bushy cells; above 4 kHz it disappears. 

The primary target of globular bushy cells is the contralateral MNTB, where the GBC axons 

form a synaptic connection in the form of a calyx of Held. In most cases this calyceal 

connection is between one GBC and one MNTB neuron (Guinan and Li 1990; Kuwabara et al. 

1991; Spirou et al. 1990). GBC axons cross the midline through the ventral aspect of the 

trapezoid body. 

Spherical bushy cells primarily target the ipsilateral lateral superior olive (LSO) and bilaterally 

project to the MSO. Smith et al. (1993) identified several smaller SBC projections to the 

contralateral ventral nucleus of the trapezoid body (VNTB), contralateral lateral nucleus of 
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the trapezoid body, contralateral ventral nucleus of lateral lemniscus (VNLL) and ipsilateral 

LNTB. 

 

MSO specialization for sound localization 

MSO and NL nuclei are the first binaural nuclei in mammals and birds, respectively. Their 

physiological and anatomical properties make them exceptionally suitable for the comparison 

of timed inputs originating from ipsilateral and contralateral ears. 

 

Anatomical arrangement 

In mammals, the MSO is a part of the superior olivary complex, which is located in the ventral 

brainstem. Guinan et al. (1972) showed that the MSO has a tonotopic organization; low-

frequency sensitive neurons are located dorsally and high-frequencies are represented in the 

ventral portion of the nucleus. An anatomical study by Kiss and Majorossy (1983) found three 

types of neurons in the MSO: apart from the most frequently observed principal cells the MSO 

also contains multipolar and marginal cells. Principal cells have a striking bipolar shape, with 

two major dendrites extending medially and laterally, which receive inputs from the ipsi- and 

contralateral AVCN, respectively (Figure 4). It has been shown in gerbil that MSO receives 

additional, inhibitory inputs from LNTB and MNTB (Cant and Hyson 1992).  

Principal MSO cells are densely packed in a narrow (<100 µm thickness) sheet (Rautenberg et 

al. 2009). The combination of good phase locking and the tight MSO arrangement and 

alignment of dendrites to both sides gives rise to very large field potentials (Galambos et al. 

1959; Goldberg and Brown 1968; Mc Laughlin et al. 2010). Since inputs to MSO are segregated 

from both ears, monaural stimulation generates an open field response which changes as the 

electrode traverses MSO somatic layer. For a single MSO neuron monaural stimulation 

generates synaptic current into one dendrite forming a current sink while soma and the other 

dendrite compensate this sink with a current efflux creating a current source. A local 

population of MSO neurons responsive to the same stimulus will respond in unison creating 

local field potentials of opposing polarities across the somata layer forming a dipole-like field. 

A recent study showed that the experimentally observed field potential features can be 
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modelled by coupling the intracellular and extracellular domains of MSO effectively 

simplifying three-dimensional volume conductor model into a one-dimensional problem 

(Goldwyn et al. 2014). Further modelling and data showed that the typical dipole-like 

responses around MSO somata are restricted to frequencies above 1 kHz; frequencies below 

1 kHz evoked monopole-like neurophonic responses (Goldwyn et al. 2017). These monopole-

like fields seem to be caused by low-frequency driven somatic inhibition interacting with 

dendritic excitation. For additional details on field potential in MSO see studies by Biedenbach 

and Freeman (1964) and Clark and Dunlop (1968).  

Changes in monaurally-evoked field potentials can conveniently be used for MSO somatic 

layer identification due to dipole-like field features. Advancing electrode dorsally and 

presenting monaural pure tone stimulus (~1 kHz) one can observe the reversal of local field 

potential as electrode crosses MSO somatic layer. The depth at which this reversal occurs 

indicates that the electrode is in the somatic layer of MSO. 

Figure 4. MSO principal cells.  

Four principal MSO neurons, stained with Golgi 

method, show a striking bipolar organization. 

Each principal MSO neuron is spindle shaped and 

has two major dendrites at the opposite ends of 

the soma – one dendrite receives inputs from the 

ipsilateral AVCN and the other from the 

contralateral AVCN. A putative axon emerging 

from soma and dendrite junction can be seen in 

the upper, most dorsal neuron (red arrow).  

 

 

Physiological properties 

Principal MSO neurons exhibit unique intrinsic features that allow them to act as coincidence 

detectors with submillisecond precision. An in vitro study of gerbil MSO by Scott et al. (2005) 

showed that MSO principal neurons undergo large electrophysiological changes in the period 

from hearing onset (P14) to adult phase (P30-P36). MSO neurons in mature gerbils have a 

very low input resistance (~7 MΩ), short membrane time constant (~0.3 ms) and narrow EPSP 

width (<0.5 ms). The low input resistance and fast membrane time constant appear to be 
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mediated by low-voltage-activated potassium channels (KLVA) with Kv1.1 subunits (Mathews 

et al. 2010; Scott et al. 2005) in combination with the hyperpolarization-activated cation 

current Ih, which is carried by HCN channels (Baumann et al. 2013; Khurana et al. 2012).  

The importance of KLVA for coincidence detection in MSO was first proposed by Svirskis et al. 

(2002) and detailed by subsequent studies. Ih and KLVA currents show a strong developmental 

increase following hearing onset. During the first week of hearing both currents increase up 

to 13-fold and fourfold, respectively, in magnitude, and obtain progressively faster activation 

kinetics (Khurana et al. 2012; Scott et al. 2005). In adult gerbils a considerable fraction of both 

channels will be open at rest. Khurana et al. (2011) showed that Ih and KLVA together help to 

maintain uniform EPSP amplitudes during long sound stimulation. Since the activation of the 

HCN channels in the MSO is at relatively positive membrane potentials, its resting 

conductance is very large at resting potential (around -58 mV), reducing membrane time 

constant and coincidence detection window by ~300%. Ih effectively results in a more positive 

resting membrane potential, which increases the recruitment of KLVA channels. Together 

these channels sharpen the coincidence detection window. Synaptic depolarization will open 

additional KLVA channels, causing rapid repolarization, truncating the duration of the response 

and imparting high temporal precision for converging inputs to reach the response threshold 

and elicit an action potential. Mathews et al. (2010) showed that KLVA channel expression is 

biased towards soma and proximal dendritic regions, thus compensating for dendritic filtering 

that would broaden excitatory post-synaptic potentials (EPSPs). This way MSO neurons can 

preserve submilisecond time resolution of EPSPs, which is essential for high temporal fidelity 

in the summation of EPSPs from either ear. This is the primary mechanism of MSO 

specialization for high temporal precision detection. 

KLVA are not the only potassium channels present in the MSO. Recent work by Nabel et al. 

(2019) shows the presence of functional high-voltage-activated potassium channels (KHVA) as 

well. Furthermore, both types of channels have a distinct distribution pattern.  KLVA are more 

biased towards the soma and co-localize with glycinergic inputs, whereas KHVA are also found 

in distal dendrites and co-localize with HCN1 channels.  

Voltage-gated sodium channels are restricted mainly to perisomatic and axonal 

compartments. Interestingly, ~92% of VGSCs in MSO soma are inactivated at the resting 

potential, but the remaining non-inactivated VGSCs can amplify subthreshold EPSPs near AP 
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threshold, counterbalancing KLVA current. This was shown by Scott et al. (2010) by comparing 

subthreshold EPSP amplitude dependence on injected current size (EPSC) in control and with 

application of the sodium channel blocker tetrodotoxin (TTX). In the presence of TTX the 

current needed to reach the AP threshold was almost twice as large as that for control. Thus, 

due to their fast activation and inactivation kinetics, VGSCs are thought to perform fast 

amplification of depolarizing synaptic inputs. The same study provides evidence that voltage-

gated sodium channels can counterbalance inhibitory synaptic potentials (see Zhou et al. 

(2005)).  

APs in the MSO are initiated in or near the axon initial segment and get highly attenuated in 

the soma and dendrites during backpropagation. In mature gerbil MSO neurons, somatic 

action potentials are only 5-10 mV. MSO neurons have a submilisecond absolute refractory 

period for AP initiation and propagation in the axon (Scott et al. 2007). Unlike in avians (Kuba 

et al. 2006; Kuba et al. 2005; Parameshwaran et al. 2001), action potential characteristics 

don’t seem to depend on tonotopic positioning of MSO neurons. However, a recent study by 

Baumann et al. (2013) shows that in mature gerbil, Ih properties differ significantly between 

ventral (Ih largest) and dorsal (Ih lowest) part of the MSO. 

 

Responses to auditory stimuli 

 

Monaural responses 

MSO neurons play a key role in sound localization by integrating the inputs from both ears. 

MSO principal neurons receive excitatory inputs exclusively from spherical bushy cells. As a 

result, their auditory response properties are comparable to that of AVCN. When stimulated 

monaurally, MSO neurons exhibit selectivity to a specific frequency range. The frequency to 

which a neuron responds the most is called best frequency (BF). Monaural BFs can change 

with changing stimulus intensity (sound pressure level or SPL). Best frequency at the lowest 

SPL to which neuron still responds is called characteristic frequency (CF). It has been shown 

that a single MSO neuron can have different CFs for ipsilateral and contralateral ears (Day and 

Semple (2011); this thesis). Similarly to spherical bushy cells (Kuenzel et al. 2011), MSO 
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frequency selectivity broadens as SPL increases with BFs becoming lower. As SPL increases, 

the MSO firing rate saturates. Goldberg and Brown (1969) were amongst the first to show 

that MSO neurons show phase locking, i.e. they preferentially fire during a particular phase 

of the monaurally presented pure tone stimulus (at BF) (also see Moushegian et al. (1964a)). 

They also showed that the preferred phases for the same BF or CF can be different for 

contralateral and ipsilateral inputs. 

 

Binaural responses 

Early studies have shown that these neurons typically respond poorly to monaural 

stimulation, but their firing rate surpasses the sum of the monaural responses during binaural 

stimulation at a specific time delay between monaural inputs (Goldberg and Brown 1969; Yin 

and Chan 1990). The interpretation for this finding has been that MSO neurons act as 

coincidence detectors: at the favorable time delay, the EPSPs evoked by the inputs from both 

ears are thought to sum at the soma and trigger an action potential, thus making MSO very 

sensitive to interaural time disparities (Batra et al. 1997a; Crow et al. 1978; Moushegian et al. 

1964a; b; Moushegian et al. 1975; Spitzer and Semple 1995; Yin and Chan 1990). 

The response of MSO neurons to a varied delay between monaural stimulation of both ears 

yields a rate-ITD function (rITDf) – during favorable delays MSO firing rate is the highest; it 

falls off as delays start deviating from the ‘best’  ITD and during the ‘worst’  ITD MSO response 

may be even lower than its response to monaural stimulation (Figure 5C). The time delay 

between the stimuli, presented to both ears, to which MSO responds the best is referred to 

as the best ITD (BITD). Similarly, the worst ITD is the time delay to which MSO responds the 

least. BITD and worst ITD are represented as a peak and a trough in rITDf, respectively. Many 

experimental and modelling observations led to the conclusion that MSO cells act as 

coincidence detectors of their monaural inputs. 

The difference in preferred monaural phases at BF was shown to correspond to the preferred 

ITD of that MSO neuron (Figure 5) (Goldberg and Brown 1969). This idea was fleshed out in a 

later study by Yin and Chan (1990), where best ITD could be well predicted from monaural 

phase mismatches and further supported by our findings (this thesis). 
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Internal delays and coincidence detection 

Seventy-three years ago, Jeffress (1948) presented a model on how binaural EE type neurons 

could operate as ITD detectors. This visionary theory set the theoretical foundation for most 

subsequent coincidence detection studies in the avian and mammalian auditory system. 

Jeffress’ model of binaural cell operation has three major properties. First, both inputs to the 

binaural cell should carry accurate timing information about the stimulus. Second, binaural 

cells act as coincidence detectors – well-timed converging inputs result in a maximal response 

with high sensitivity to input arrival time disparities. Finally, the afferents projecting onto 

binaural cells form opposing delay lines, an arrangement which results in a spatial map of best 

ITDs. The different best ITDs between MSO neurons originate from differences in internal 

delay. The internal delay compensates for the difference in the arrival time at both ears at the 

best ITD. In the Jeffress’ model, the internal delay was an axonal delay. The source of this 

internal delay is still a matter of debate. Several prominent theories for the origin of internal 

delays, next to Jeffress’ axonal delay model, will be presented in later sections.  

MSO neurons often have positive BITDs, i.e. ITDs that are biased towards contralateral ear 

leading stimulation (Batra et al. 1997a; Spitzer and Semple 1995; Yin and Chan 1990). 

Moreover, BITDs are often larger than physiologically-relevant (‘ecological’) time delays 

(which depend on head size of the species), especially for neurons with low CF (Brand et al. 

2002; Galambos et al. 1959; Moushegian et al. 1964a; Moushegian et al. 1975; Pecka et al. 

2008). 

 

Binaural responses to different auditory stimuli 

Rose et al. (1966) were the first to test the relation between BITD and sound frequency. They 

showed that in the inferior colliculus (IC) rate ITD functions for different frequencies either 

had a common peak or a common trough at a fixed ITD. Yin and Kuwada (1983) showed that 

those cells that had a common peak at one ITD for all relevant frequencies should have a 

strictly linear relationship (i.e. proportionality) between interaural phase at those 

frequencies. This strict linearity of the phase-frequency plot is described by its slope, which 

equals the common best delay (BITD) of the tones of different frequencies. Yin and Kuwada, 

however, also reported IC neurons whose phase-frequency curves deviated from this simple 
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proportionality, approximating straight lines having a nonzero intercept. This represents a 

combination of a constant (frequency-independent) time delay and a constant phase shift. 

The time delay corresponds to the slope of the phase-frequency curve and is traditionally 

named the characteristic delay (CD). The intercept is called the characteristic phase (CP). 

 

Figure 5. Phase locking in MSO.  

(A) Upper: period histograms of responses to monaural ipsi- or contralateral pure tone 

stimulation at 444 Hz of an MSO neuron. Red arrow indicates the mean preferred phase for 

contralateral ear stimulation, blue arrow indicates the mean preferred phase for ipsilateral 

ear stimulation. Lower: corresponding mean preferred phases are shown on the stimulus 

waveform. (B) Upper: period histogram of MSO response to binaural stimulation when 

contralateral stimulus was delayed by 1600 µs with respect to ipsilateral stimulus. Lower: at 

this ITD, the stimulus arrives at both ears at preferred phases (same as on the left but contra 

waveform is shifted). (C) Rate ITD function of the same MSO neuron as in A and B. The neuron 

fires maximally when stimulus to the contralateral ear is delayed by 1546 µs. During the worst 

ITD, MSO response can be below monaural responses (C – contra, I – ipsi). NS – spontaneous 

activity. Data adapted from Goldberg and Brown (1969). 
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The name “characteristic delay” for the slope was motivated by Yin and Kuwada’s incorrect 

statement that the CD is representative of the range of best ITDs of the frequencies that best 

excite the neuron. In reality, the numerical simulation in their own Fig. 1C shows that is not 

the case: it has a CD of 200 us, whereas the best ITD ranges from 300-400 us. The correct 

relation between CD, CP and best ITD is 

BIDT = CD + CP*T, 

where T is the period of the tone. For fig. 1C of Yin and Kuwada (1983) the 300-400 us range 

of BITD immediately follows from the CP = 0.2 cycle and the frequency range of 1-2 kHz. 

Characteristic phase represents a constant phase difference between phase-locked inputs 

from both ears. If two monaural inputs with the same phase locking but different internal 

delays are presented, MSO would respond the most when an appropriate interaural delay is 

introduced to compensate for internal delays. If these delays are independent of frequency, 

then ITD will be the same as CD (the slope of phase vs frequency). In this case, the inputs to 

the MSO at the interaural delay corresponding to the CD are exactly in-phase, resulting in CP 

= 0. If one input is inhibitory then the two inputs are out of phase, yielding CP = 0.5 (Joris and 

Yin 1995). In this case, it is the troughs of the rITDf (“worst ITDs”) rather than their peaks that 

are aligned across frequency. Any CP value between 0 and 0.5 indicates that a constant phase 

difference is somewhere between peak and trough of rITDf. Several studies have shown that 

the CP for MSO clusters around 0 (Batra et al. 1997a; Spitzer and Semple 1995; Yin and Chan 

1990), while other studies have reported a bias toward small positive values (Bremen and 

Joris 2013; Pecka et al. 2008). Independent of the population distribution, all of these studies 

report individual MSO neurons having clear nonzero CP values, that is, neurons whose 

binaural sensitivity cannot be described by a constant, frequency-independent interaural 

delay. 

Natural sounds commonly consist of many frequency components, which raises the question 

– how does MSO localize sounds other than pure tones? Yin and Chan (1990) compared MSO 

responses to wideband stimuli with a composite of rITDfs recorded at individual frequency 

components and found that the two rITDfs are very alike. This finding suggests that MSO cells 

sum the spectral components of wideband stimulus approximately linearly. The same study 

also showed that when both ears are presented with uncorrelated wideband stimuli, the MSO 
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shows no ITD sensitivity. This suggests that MSO cells perform computation comparable to 

cross-correlation of the inputs. The mechanisms behind MSO as a coincidence detector is 

another topic of this thesis and these questions will be looked at in more detail in further 

chapters. 

 

Role of LSO in sound localization 

High-frequency ( >3 kHz) sound localization in azimuth is governed by another major nucleus 

of the superior olivary complex – the lateral superior olive (LSO). LSO neurons are Inhibited 

by stimulation of the contralateral ear and Excited by stimulation of ipsilateral ear; this 

arrangement is denoted as IE type. The LSO exhibits a distinct S-shaped structure with the 

tonotopic axis running along the curved axis of the S; high frequencies are represented 

medially and low frequencies laterally (Guinan et al. 1972; Tsuchitani 1977). Two dominating 

inputs to the LSO come from the AVCN and MNTB respectively (Cant and Casseday 1986; 

Glendenning et al. 1985; Glendenning et al. 1991; Spangler et al. 1985). The ipsilateral, 

excitatory AVCN inputs originate primarily from SBC axons (Glendenning et al. 1985). The 

inhibitory MNTB inputs are relayed from the contralateral GBCs. Efferents of the LSO project 

bilaterally to the IC and the DNLL (Glendenning and Masterton 1983; Roth et al. 1978). 

The LSO is considered to be responsible for the initial stage of ILD encoding. Monaural 

stimulation of the ipsilateral ear typically shows a monotonic increase and eventual saturation 

in LSO firing rate with increasing sound intensity. An ILD function of an LSO neuron is typically 

obtained by measuring the spike rate dependence when the ipsilateral stimulus is presented 

at a fixed chosen SPL and the contralateral stimulus SPL is varied. A typical ILD function of an 

LSO neuron exhibits a sigmoidal shape – increasing sound level in the contralateral ear 

progressively inhibits the ipsilaterally driven responses until eventually the LSO neuron stops 

firing altogether. 

Although ILD appears to be the most important cue for LSO neurons, temporal information 

about amplitude modulation (AM) is available to LSO from the three afferents that can phase 

lock to AM stimuli: SBCs, GBCs and MNTB (Joris and Yin 1998). Phase-locking to AM stimuli 

makes the LSO neurons sensitive to ITDs. In the case of no interaural phase difference the 

inhibitory signal will reach LSO at approximately the same time as the excitation in many cells, 
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yielding a minimal LSO response. On the other hand, when both signals reach LSO out of phase 

(IPD = 0.5), the excitatory response receives no suppression, which results in the strongest 

LSO response close to that of monaural ipsilateral stimulus. This ITD-based sound localization 

in LSO is limited by the inability to follow modulation frequencies higher than 300 Hz (Joris 

1996), which may be caused by the relatively long duration of the IPSPs evoked by the MNTB 

afferents. Low-frequency LSO neurons also show ITD sensitivity.  

 

Juxtacellular recordings 

In vivo recordings from the MSO have proven to be notoriously difficult due to their location 

in the ventral aspect of the brainstem, the thin somatic layer of the MSO, and the small size 

of somatic action potentials. For this reason, most MSO data are based on extracellular 

recordings, however these usually suffer from high local field potential (‘neurophonic’) 

contamination. Whole-cell MSO recordings are technically difficult to establish owing to the 

high density of principal neurons and spindle-shaped somata. In my thesis, I have, therefore, 

mostly employed the juxtacellular (also known as loose-patch) configuration.  

Juxtacellular recordings are established by advancing a patch clamp pipette until it makes 

contact. The electrode is further pushed down for a few micrometers into the cell. During the 

approach typically minimal positive pressure is maintained. When a contact between the 

electrode and the cell is made, electrode resistance increases, and the positive pressure is 

released. Recordings are typically performed in current clamp mode. 

By performing simultaneous whole-cell recordings from MNTB cells, Lorteije et al. (2009) 

showed that the waveforms recorded in loose-patch configuration closely resembled sum of 

scaled versions of the membrane potential and its first time derivative. This suggests that 

juxtacellular potentials correspond to the local membrane currents, which are the sum of 

resistive and capacitive currents. In Chapter 2 of this thesis the relationship between whole-

cell and juxtacellular recordings in MSO will be investigated. 
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Models of MSO operation 

The previously introduced Jeffress’ ITD detection model relies on two assumptions for EE type 

binaural neurons: they should operate as coincidence detectors and the internal delay source 

is axonal delay lines. Chapter 3 of this thesis will show that a linear cross-correlation of the 

inputs forms an adequate description of the action of the MSO neurons. The origin of the 

internal delay in the mammalian auditory system is still a matter of great debate. It has been 

shown that some avian species have clear axonal delay lines, as predicted by Jeffress. 

However, anatomical studies in mammals have not found evidence for the necessary afferent 

axonal arrangement to support this proposal (Karino et al. 2011). Together with the unknown 

role of somatic inhibition, these findings gave rise to several other theories trying to explain 

the source of internal delays in mammalian MSO. Two prominent alternatives are a) well-

timed inhibition onto MSO modifies ITD tuning and b) cochlear delay (stereausis) model, 

where times to reach CF-sensitive zones in the cochlea differ for both ears. Several other 

models have been proposed as well and they will be briefly discussed here too. 

  

Jeffress’ axonal delay model 

The model proposed by Jeffress (1948) explains internal delay to originate from the difference 

in the length of excitatory paths from the ipsilateral and contralateral sides. These excitatory 

paths are composed of axons from bushy cells that terminate on the dendrites of MSO cells. 

For that reason, this model is also referred to as ‘axonal delay’ model. This model is 

represented by an axonal line layout with opposing input length gradients from contralateral 

and ipsilateral sides constituting a place code (Figure 6A). 

Studies in avians showed that such an arrangement of axonal delay lines indeed exists and 

that it is the most likely source of the internal delay. In avians, the nucleus magnocellularis 

projects bilaterally to the ipsilateral dorsal aspect of the nucleus laminaris (MSO homologue) 

and to the ventral aspect of the contralateral NL. It has been shown that in the barn owl the 

ITD representation comes from a place code layout (Wagner et al. 2007). Seidl et al. (2010) 

showed that in the chick the difference in axonal lengths between contralateral and ipsilateral 

inputs alone cannot be responsible for the internal delay, since the contralateral axon from 

NM to NL is on average > 1600 µm longer than the ipsilateral axon. However, this axonal 



Introduction 

Page | 26 

 

length offset is compensated by systematic differences in axon diameter and internode 

distance, resulting in a gradual change in conduction velocity. The same was found in the barn 

owl (Carr et al. 2015). 

Unlike in avians, studies in mammalian MSO circuitry met with difficulties in trying to confirm 

the presence of a place code. Anatomical evidence for delay lines has been investigated by 

Smith et al. (1993), Beckius et al. (1999) and Karino et al. (2011).  

While Smith et al. (1993) did not find evidence for systematic opposing gradient delay lines 

between the two sides, which were postulated by Jeffress (1948), they did find evidence for 

a rostral to caudal neural delay of the contralateral but not the ipsilateral innervation of the 

MSO by the SBCs. In contrast to the first study, Beckius et al. (1999) showed that the 

contralateral and ipsilateral MSO innervations can exhibit delay lines of opposing gradients. 

On the ipsilateral side, rostrocaudal gradient slopes for both experimental subjects were 

similar, but those on contralateral side were very different. Additionally, there was a 

discrepancy between lengths of axons terminating at a similar rostrocaudal location. The two 

latter observations cast doubts on whether axonal delay lines can be the dominant 

mechanism responsible for the ITD sensitivity. 

Karino et al. (2011) performed a more detailed re-examination of the data by (Smith et al. 

1993), but found that ipsilateral projections can also form a caudally directed delay line 

pattern. Moreover, the distribution of estimated axonal delays did not match the distribution 

of best delays obtained from physiological measurements. 

In sum, there is evidence of Jeffress’ proposed axonal configurations contralaterally, but this 

is overall less clear for ipsilateral projections in the cat. Three major points arguing against 

pure axonal delay lines were raised: a) there was no evidence for a relationship between ITD 

and CF; b) collaterals did not span across the full rostrocaudal extent of the MSO, complicating 

the formation of a systematic gradient along this axis; c) combined contralateral and 

ipsilateral delay values, while relatively small, could account for the observed best delays, but 

to span the full range of them an additional delay mechanism is needed. Neither of the three 

studies in the cat found significant differences in axonal diameters of afferents from both 

sides. These findings point to the absence of an anatomical axonal delay line arrangement 
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from both ears to MSO, but do not reject the possibility of systematic conduction velocity 

changes across rostro-caudal dimension as seen in avians. 

A very important finding in avian sound localization circuitry was that differences in 

conduction velocities due to differences in internode lengths and axon diameters can 

compensate for differences in axon length (Fischer and Seidl 2014; Seidl et al. 2014; Seidl et 

al. 2010). This has recently been investigated in Mongolian gerbil as well (Seidl and Rubel 

2016). In gerbils with mature hearing capability (P20), internode length was 1.85 times longer 

in the contralateral axon than in the ipsilateral. Contralateral axons also featured larger 

diameter than their counterparts. This implies a differential velocity regulation in collaterals 

from contralateral and ipsilateral AVCN. Fiber trajectory measurements gave estimated 

average difference between contralateral and ipsilateral AVCN-MSO pathway length of 2138 

± 102 µm. A uniform conduction velocity would result in 267 – 1069 µs difference between 

binaural inputs to MSO. It is very likely that increased diameter and internode length on the 

contralateral fibers compensate for longer travel distance (Brill et al. 1977). In avians a 1.95-

fold difference in internode length resulted in a 2.39-fold increase in conduction velocity 

(Seidl et al. 2014). A similar mechanism might minimize differences in conduction time 

between ipsi- and contralateral inputs to the mammalian MSO. 

 

Well-timed inhibition model 

The presence of two glycinergic inhibitory inputs, one from the ipsilateral ear (through 

ipsilateral LNTB) and one from the contralateral ear (through ipsilateral MNTB), raises the 

question what the physiological function of inhibition is in the operation of the MSO. 

Recordings from the MSO in brain slices showed the presence of IPSPs when stimulating 

afferent pathways to the MSO (Grothe 2000; Grothe and Sanes 1993; 1994; Roberts et al. 

2013; Smith 1995). Furthermore, inhibitory inputs from the contralateral ear show tight 

phase-locking (Smith et al. 1998; Tollin and Yin 2005). 

Pharmacological blocking of these glycinergic inhibitory inputs by iontophoretic application 

of strychnine led to a shift of the BITD towards 0 ms (Brand et al. 2002; Pecka et al. 2008). A 

model was proposed to explain this shift, which featured a brief contralaterally-driven IPSP 

preceding the EPSP and causing a delay in reaching action potential threshold (Figure 6B). The 
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possible role of inhibition role in the operation of the MSO will be addressed in more detail 

throughout further chapters of this thesis. 

 

Cochlear delay model 

Basilar membrane maps different frequencies to different locations along its axis, with high 

frequencies activating the BM at its basal end and low frequencies at its apical end. The 

travelling wave for two different CF sounds will travel different distances, resulting in different 

times needed to reach their respective activation zones in BM. Asymmetric innervation from 

two cochleae as a source of internal delays is the foundation of the cochlear delay model, 

which is also referred to as the stereausis model due to its similarity to stereopsis in visual 

processing (Bonham and Lewis 1999; Schroeder 1977; Shamma et al. 1989) (Figure 6C).  It has 

been shown that small interaural differences in CF could account for differences in internal 

delay (Bonham and Lewis 1999; Joris et al. 2006). An obvious requirement for this model to 

work in MSO is an asymmetric CF for the inputs from both ears. Some evidence has been 

presented in favor of this model (Day and Semple 2011). Chapter 4 of this thesis will address 

stereausis model in more detail. 

 

Other internal delay models 

The three models discussed above outline possible internal delay sources stemming from 

different MSO circuitry elements. Some models, however, try explaining internal delays 

through differences in inputs that are converging onto the MSO. 

The first model is based on differences in the rising slopes between ipsi- and contralateral 

EPSPs (Jercog et al. 2010). This model is based on experimental evidence obtained in slice 

experiments showing that the rise times of ipsilateral EPSPs are on average 500 µs faster than 

those of contralateral EPSPs. Faster rise times of ipsilateral potentials can ‘outrun’ low-

threshold potassium channels more easily, causing interaural disparity. 

The second model, proposed by Zhou et al. (2005), relies on interaural asymmetry in the delay 

between bilateral EPSPs and the triggering of action potentials. Under the assumption that 

the axon originates from the dendrite that receives ipsilateral inputs, contralateral excitation 
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will be more sensitive to synaptic inhibition and to the action of somatic voltage-dependent 

ion conductances than the ipsilateral excitation, providing a physiologically relevant internal 

delay. These two models suggest that part of the internal delay may be created at the level 

of the MSO neuron. Both models will be briefly addressed in the following chapter. 

 

Figure 6. Three internal delay models for MSO. 

(A) Jeffress’ axonal delay model. Excitatory inputs from ipsilateral and contralateral ears take 

different times to converge onto different MSO neurons due to variation in the lengths of 

afferents. (B) Well-timed inhibition model. (I) Schematic depiction of two EPSPs from 

contralateral and ipsilateral ears (yellow and blue, respectively) and one contralateral IPSP 

(red) converging onto an MSO neuron. (II) Net contralateral PSP (black) is the sum of the 

contralateral EPSP (yellow) and the contralateral IPSP (red). Gray area represents the effective 

excitation part from the contralateral side. (III) Binaural interaction of ipsilateral EPSP (blue) 

and contralateral PSP (black) shown as a linear sum (green) at two different ITDs. Grey line 

indicates action potential threshold. (C) Cochlear mismatch (stereausis) model. MSO neurons 

receive inputs from two ears at places on the basilar membrane, corresponding to different 

CFs. As a result, the travelling wave in the cochlea where the CF is lower will take more time 

to activate the input towards the MSO than in the other ear, effectively creating an internal 

delay. 
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Models of input integration 

While it is commonly agreed that MSO acts as a coincidence detector, the mechanisms of 

input integration are still debated. Agmon-Snir et al. (1998) proposed a nonlinear input 

integration mechanism in which the non-stimulated dendrite acts as a current sink, reducing 

the ability of inputs coming from the stimulated dendrite to trigger action potentials. This 

would explain why binaural stimulation triggers action potentials more efficiently than 

monaural stimulation. Alternatively, Colburn et al. (1990) proposed that the two bilateral 

inputs sum linearly, but that the relationship between the number of simultaneous inputs and 

the threshold for AP initiation is non-linear. A simple linear input integration can be achieved 

by linear cross-correlation, a mechanism shown to be applicable in avians (Fischer et al. 2008; 

Fischer et al. 2011), but thought to be less appropriate in mammals (Batra et al. 1997b; Batra 

and Yin 2004; Franken et al. 2015). Chapter 3 of this thesis will address the suitability of cross-

correlation to describe binaural integration in the mammalian MSO. 

 

Scope of this thesis 

Due to its ventral position in the brainstem, the anatomical approach towards MSO is very 

hard. Another major hurdle is its strong local field potentials, which contaminate extracellular 

recordings in this nucleus. Furthermore, the spindle-shaped MSO soma hinders the whole-

cell patch clamp approach. These obstacles are the underlying cause for the scarcity of in vivo 

MSO data in the field. The majority of studies have had to rely either on an in vitro approach 

or on modelling of existing experimental data.  

A ventral surgical approach combined with the use of the neurophonic for localization and 

juxtacellular recordings allowed us to gather a large dataset of MSO responses to various 

auditory stimuli. This dataset enabled us to tackle several controversial questions about MSO 

operation: what mechanism is the most plausible source of internal delays and how are the 

ipsi- and contralateral inputs integrated? 

Chapter two of this thesis focuses on subthreshold responses recorded in the gerbil MSO. We 

establish the validity of juxtacellular recordings by comparing them to their whole-cell 

counterparts; we compare ipsi- and contralateral subthreshold events and address the action 



Chapter 1 

 

Page | 31 
 

potential generation mechanism. The observed linear interaction between the inputs and 

nonlinear input-output relationship allowed us to put forward a relatively simple model for 

MSO operation and reject less plausible ones.  

The third chapter tackles to what extent input summation can be described by cross-

correlation. Here we compare recorded binaural responses and predictions from monaural 

responses for wideband auditory stimuli. Using a fitting function for recorded data and 

predictions based on cross-correlation, we find a striking similarity between the two, 

confirming the MSO acting as a linear cross-correlator.  

Finally, chapter four aims at the stereausis theory as a potential internal delay source. 

Juxtacellular recordings were accompanied by electrical round window stimulation, allowing 

us to compare BITDs with and without cochlear delay being introduced. Together with the 

absence of correlation between CF mismatches and BITDs, these findings showed no evidence 

supporting cochlear-delay model. Findings in these chapters lead us to conclude that from 

the three prominent internal delay theories, Jeffress’ axonal delay model seems to be the 

most plausible, similar to the avian MSO homologue operation. 
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Abstract 

 

Neurons in the medial superior olive (MSO) enable sound localization by their remarkable 

sensitivity to submillisecond interaural time differences (ITDs). Each MSO neuron has its own 

“best ITD” to which it responds optimally. A difference in physical path length of the excitatory 

inputs from both ears cannot fully account for the ITD tuning of MSO neurons. As a result, it 

is still debated how these inputs interact and whether the segregation of inputs to opposite 

dendrites, well-timed synaptic inhibition, or asymmetries in synaptic potentials or cellular 

morphology further optimize coincidence detection or ITD tuning. Using in vivo whole-cell 

and juxtacellular recordings, we show here that ITD tuning of MSO neurons is determined by 

the timing of their excitatory inputs. The inputs from both ears sum linearly, whereas spike 

probability depends nonlinearly on the size of synaptic inputs. This simple coincidence 

detection scheme thus makes accurate sound localization possible. 
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Introduction 

 

ixty-five years ago, Jeffress proposed a cellular model to explain how ITDs are used to 

localize sounds (Jeffress 1948). He postulated neurons that fired when inputs from 

both ears arrived at the same time. He further postulated delay lines introducing 

different travel times of inputs from either ear which would allow these coincidence detectors 

to be specifically tuned to certain ITDs. Experimental work showed that principal neurons of 

the MSO fulfil many of the predictions of his model, including tuning for certain ITDs 

(Goldberg and Brown 1969; Spitzer and Semple 1995; Yin and Chan 1990). Because these cells 

are such good coincidence detectors, they have even been compared to logical AND gates 

(Herz et al. 2006).  

It has been very difficult to record the synaptic inputs of MSO neurons in vivo because of their 

location in the ventral brainstem, the large field responses (Biedenbach and Freeman 1964; 

Galambos et al. 1959; Mc Laughlin et al. 2010), unusually low input resistance, fast  time 

course of synaptic potentials (Mathews et al. 2010), and the small size of the somatic action 

potentials (Scott et al. 2007; Scott et al. 2005), which altogether make it harder to distinguish 

between synaptic potentials and action potentials during in vivo extracellular recordings from 

the somatic region. Consequently, two aspects of Jeffress’ theory are still disputed (reviewed 

in (Ashida and Carr 2011; Grothe et al. 2010). The first involves the anatomical arrangement 

of the inputs from both ears, which are segregated to opposite dendrites (Grothe et al. 2010). 

It has been proposed that this arrangement favours binaural inputs over monaural inputs, 

since it would be difficult for monaural inputs to reach threshold owing to the current sink of 

the non-stimulated dendrite (Agmon-Snir et al. 1998). This would explain how MSO neurons 

can be such efficient coincidence detectors, being driven much more effectively by optimal 

binaural stimuli than by monaural sounds (Goldberg and Brown 1969; Langford 1984; Spitzer 

and Semple 1995; Yin and Chan 1990). In an alternative model, inputs from both ears sum 

linearly, but the efficient coincidence detection results from a non-linear relation between 

the number of simultaneous inputs and spike probability (Colburn et al. 1990). The other area 

of debate involves the mechanisms causing most MSO neurons to be preferentially activated 

by contralaterally leading sounds. Difficulties in matching the observed path lengths with the 

S 
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distribution of “best delays” (Beckius et al. 1999; Karino et al. 2011; Seidl et al. 2010), have 

inspired alternative models to the anatomical delay lines of Jeffress’ theory. A subject for 

debate is whether the arrival of the excitatory inputs determines ITD tuning, as Jeffress 

(Jeffress 1948) originally proposed. In addition to the excitatory inputs originating from the 

spherical bushy cells of ipsi- and contralateral cochlear nuclei, the MSO neurons also receive 

prominent glycinergic inhibitory inputs on soma and proximal dendrites arising mainly from 

the medial nucleus of the trapezoid body (MNTB; contralateral ear), but also from the lateral 

nucleus of the trapezoid body (LNTB; ipsilateral ear; reviewed in (Grothe et al. 2010). 

Pharmacologically blocking the inhibitory inputs to the MSO neurons can shift the best ITD 

from contralaterally leading towards 0 µs (Brand et al. 2002; Pecka et al. 2008). To explain 

this observation, a model has been proposed in which brief IPSPs activated by contralateral 

sounds immediately precede the EPSPs, thus delaying the triggering of the action potential 

(Brand et al. 2002; Pecka et al. 2008). This well-timed inhibition model predicts a significant 

phase-dependent interaction between the postsynaptic potentials of both ears for in vivo 

recordings. A second model which also proposes a central role for the MSO neurons in shaping 

the internal delays is based on an interaural disparity in EPSP slopes, the contralateral inputs 

being less effective in triggering spikes because their slower risetime leads to larger activation 

of low-threshold potassium channels. The interaural disparity in risetimes would then favor 

instances in which the more effective ipsilateral inputs arrive first (Jercog et al. 2010). This 

model predicts a difference in slope between postsynaptic potentials of both ears for in vivo 

recordings. A third model assumes an interaural asymmetry in the delay between ipsi- and 

contralateral EPSPs and generation of action potentials (Zhou et al. 2005). This model predicts 

during in vivo recordings a difference in the delay between ipsi- and contralateral EPSPs and 

the respective APs they trigger. A test of these different models therefore requires direct 

recording of the inputs of MSO neurons in vivo. To investigate how signals from both ears 

interact in MSO neurons, we made juxtacellular (loose-patch) and whole-cell recordings from 

principal neurons of the low-frequency area of the MSO in gerbils, which, like humans, use 

ITDs for sound localization (Heffner and Heffner 1988; Maier and Klump 2006). 
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Results 

 

Juxtacellular recordings can resolve inputs to MSO neurons 

We used a ventral approach to make juxtacellular (loose-patch) recordings from principal 

neurons of the low-frequency area of the somatic layer of the gerbil MSO (Figures 1 and S1). 

We studied binaural interactions using “binaural beat” stimuli (Yin and Chan 1990), for which 

the tone frequencies always differed by 4 Hz between the ears. The 4-Hz beat causes the 

interaural phase difference (IPD) to change continuously over the 250-ms beat period. In all 

MSO cells, binaural beats triggered complex responses (Figure 1A, B). Remarkably, rapid, 

positive fluctuations were also observed in the absence of sound stimulation (Figure 1D). 

These spontaneous fluctuations were smaller than the tone-evoked fluctuations. They 

depended critically on pipette position, since they disappeared upon withdrawal of the 

pipette. The estimated half width of these spontaneous events was 415 ± 73 s (mean ± 

standard deviation; n = 19 cells), similar to EPSPs measured in slice recordings (Scott et al. 

2005). We therefore interpret these randomly timed events as the postsynaptic response to 

the spontaneous activity of spherical bushy cells (SBCs), the main excitatory inputs to MSO. 

The extracellularly recorded EPSPs (eEPSPs) could not be well delineated owing to their high 

rate. Lower bound estimates of spontaneous input rates were obtained by peak counting. In 

most (14/19) cells, peak rate exceeded 500/s.  

During tone stimulation, the size of the events increased (Figure 1B). Half width of tone-

evoked events was 438 ± 73 s. The largest events triggered extracellularly recorded action 

potentials (eAPs). These events had an amplitude of 1.0 ± 0.5 mV and a maximum rate of rise 

of 6.4 ± 3.1 V/s. eAPs were generally small, sometimes even smaller than the eEPSPs that 

triggered them, in agreement with the small size of somatic APs in whole-cell slice recordings 

(Scott et al. 2005), which is caused by restricted invasion of the somatodendritic compartment 

by the backpropagating axonal AP (Scott et al. 2007). Nevertheless, eAPs could be readily 

identified by their steep downward slope immediately following the peak (Figure 1C, E). The 

latency between eEPSPs and eAPs was inversely related to eEPSP size (Figure 1F, G); on 

average it was 168 ± 20 s (n = 19 cells), with an average coefficient of variation of 0.24. 

Spontaneous rates ranged from 0 sp/s (5/19 cells) to 12.5 sp/s, (median value 0.4 sp/s), 
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comparable to estimates from extracellular recordings (Goldberg and Brown 1969; Yin and 

Chan 1990). 

 

Figure 1. Juxtacellular recordings in MSO.  

(A) Juxtacellular recording from a neuron in the somatic layer of the MSO, which was 

identified based on field potentials (Figure S1), showing the response to a 4-Hz binaural beat 

(700/704 Hz tone; 50 dB SPL). Stimulus presentation is marked by the blue bar. (B) Short 

segment of the recording of (A). Two action potentials are marked with red dots. (C) Time 

derivative of segment shown in (B) illustrating that action potentials can be identified based 

on their steep downward slopes. (D) Segment of spontaneous activity of the same cell. (E) 

Bimodal distribution of downward slopes, enabling the distinction of subthreshold events 

(blue) and action potentials (red). Green line indicates threshold criterion. (F) Action 

potentials time-aligned on the preceding EPSPs. Smaller EPSPs result in larger EPSP-AP 

latencies. (G) Scatter plot of EPSP-AP latency versus EPSP magnitude. Characteristic frequency 

(CF): 680 Hz. 

 

Relation between juxtacellular and whole-cell recordings 

The highly unusual properties of the principal neurons were also observed in whole-cell 

recordings in vivo. A total of 3 neurons were recorded for a sufficiently long period to allow 

binaural beat stimulation (Figure 2A-C). Membrane potential was -60  3 mV (n = 3). 

Spontaneous fluctuations were observed with half widths that were somewhat larger than 
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Figure 2. Whole-cell recordings in MSO.  

(A-D) shows an in-vivo whole cell recording; (E-G) illustrates the relation between a 

juxtacellular and a whole-cell recording obtained from a paired recording in brainstem slices. 

(A) Response to a 700/704-Hz, 40-dB-SPL binaural beat from an MSO neuron with a CF of 790 

Hz. Resting membrane potential was -60 mV. (B) Short segment of the trace shown in (A). 

Two action potentials are marked by red dots. (C) Time derivative of the trace shown in (B), 

illustrating the faster repolarization phase of action potentials. (D) Segment of spontaneous 

activity of the same cell. (E) Simultaneous whole-cell and juxtacellular recordings of principal 

neuron in MSO slice showing EPSPs evoked from ipsilateral afferent stimulation, which in 

some cases triggered APs. (F) Relation between juxtacellular and intracellular peak EPSP 

amplitudes. Solid line shows line fit (r = 0.994). (G) The juxtacellularly recorded EPSP (black 

trace) can be well approximated by the sum (red trace) of a scaled version of the membrane 

potential (blue trace; resistive coupling constant 298 mV/V) and a scaled version of the time 

derivative of the membrane potential (green trace; capacitive coupling constant 8.2 µV/V/s). 

 

juxtacellularly recorded spontaneous fluctuations (Figure 2D). The smallest events could not 

be identified unambiguously, but using a minimum amplitude criterion of 0.5 mV, we 

estimated average rates of about 900 events / s. These events had half widths of 608  142 

µs. During binaural beat stimulation, the size of the EPSPs increased and they showed good 

phase locking (Figure 2A, B). Tone-evoked EPSPs had a half width of 601  122 µs. The largest 

EPSPs evoked APs. APs had an average amplitude of only 8.5  1.3 mV (n = 3), but could be 

reliably identified based on their faster rate of repolarization (Figure 2C). Suprathreshold 
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EPSPs had an estimated average amplitude of 4.6  1 mV and a maximum rate of rise of 20.2 

 3.7 V/s. The estimated delay between EPSPs and APs was 216  34 µs. Juxtacellular 

recordings provide a measure for the local membrane currents, which consists of a resistive 

component, which is proportional to the intracellular membrane potential and a capacitive 

component, which is proportional to the first derivative of the membrane potential (Freygang 

and Frank 1959; Lorteije et al. 2009). A comparison of juxtacellular and whole-cell recordings 

indeed suggests that the shape of EPSPs and APs in juxtacellular recordings (Figure 1B) was 

intermediate between membrane potentials (Figure 2B) and their first derivative (Figure 2C).  

To test whether juxtacellular potentials can be used in a quantitative manner, we made 

simultaneous juxtacellular and whole-cell current-clamp recordings from MSO principal 

neurons in electrophysiologically mature gerbil slices (Scott et al. 2007). Spontaneous inputs 

as shown in Figure 1C and 2D were not observed, in agreement with previous slice recordings. 

Comparison of the shape of EPSPs evoked by afferent stimulation in juxtacellular (eEPSP) and 

whole-cell recordings (iEPSP) showed that the juxtacellular recordings could be approximated 

by a mixture of a scaled-down version of the intracellular membrane potential and its time 

derivative. The relative contribution of both components varied between cells. An example 

with a relatively large resistive component is shown in Figure 2E. In 9 cells in which EPSPs 

were afferently evoked, the resistive coupling constant was 127  96 mV/V and the capacitive 

coupling constant was 5.6  5.1 µV/V/s. The relation between the amplitude of iEPSPs and 

eEPSPs was linear (Figure 2F); average correlation was r = 0.945  0.036 (n = 9). Linearity was 

also excellent for IPSPs, which were evoked by conductance clamp (r = 0.991  0.015; n = 5; 

Figure S2 A,B). To further evaluate the linearity of the relation between intracellular and 

extracellular amplitudes, we injected intracellular depolarizing and hyperpolarizing currents, 

which showed that peak amplitudes were linearly related in the voltage range between -50 

and -70 mV (r = 0.989  0.010; n = 6), but that outside this range, the relation changed, 

probably because of a voltage-dependent change in the resistive component of the 

juxtacellular membrane currents (Figure S2C, D). Because of the limited voltage range over 

which the membrane potentials operated in vivo (Figure 2A, B), we conclude that in vivo 

juxtacellular recordings can be used to quantify subthreshold activity in the MSO. 
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Figure 3. ITD tuning of MSO cells and their subthreshold input.  

(A) Relation between number of triggered spikes and ITD for the recording shown in Figure 

1A. Arrow indicates the best ITD at +200 µs. Green line, peak of subthreshold potential against 

ITD (see text). (B) Histogram of best ITD values. The histogram was compiled from the 285 

binaural-beat recordings (from 19 cells, CFs ranging from 300 Hz to 930 Hz, median 560 Hz) 

that showed significant (Rayleigh test, p < 0.001) phase locking to the 4-Hz beat frequency. 

Vertical green lines mark the ±130 s physiological range of ITDs. (C) Phase-locked averaging 

of recordings. After removal of the action potentials, the same binaural beat response was 

divided in snippets having either the 700-Hz period of the ipsilateral stimulus (left) or the 704-

Hz contralateral period (right), yielding the ipsi- and contralateral cycle-averages shown in the 

bottom traces. (D) Two-dimensional representation of subthreshold input (colored contours; 

0.2-mV spacing) as a function of both monaural phases, obtained by averaging over repeated 

instants during the stimulation with the same combination of ipsi- and contralateral phase. 

White dots: eAPs from the same recording. (E) Scatter plot of measured best IPDs against 

predictions derived from subthreshold input. 

 

ITD tuning of MSO neurons can be predicted from their inputs 

In Figure 3A (black circles), the number of triggered spikes of the recording of Figure 1A is 

plotted against ITD, showing a “best ITD” of 200 µs, a “worst ITD” of about −500 µs, and a 

vector strength (a measure for phase locking to the binaural beat) of 0.78. The best ITD of 

single MSO cells was not constant, but often varied considerably with frequency (Figure S4), 

providing evidence against the explanation of best ITDs solely by delay lines (Day and Semple 

2011). Population data of best ITD showed a bias for contralateral lead (91  282 s; n = 285; 
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Figure 3B), and 43% of the best ITDs were outside the physiologically relevant ITD range of 

the gerbil of ~130 µs (Brand et al. 2002; Day and Semple 2011; Pecka et al. 2008; Spitzer and 

Semple 1995).  

 

Figure 4. MSO neurons show complex ITD tuning.  

(A) Cycle-averaged subthreshold input (as in Figure 3C), multiple frequencies tested. Lowest 

frequencies show multiple, interaurally matched, preferred latencies in the inputs from both 

ears. (B) Binaural tuning and its prediction from subthreshold inputs (as in Figure 3A), multiple 

frequencies tested. Spike count curves (black symbols) were normalized to the peak 

subthreshold potential (green lines) to facilitate comparing of their binaural tuning. (C-E) 

Binaural receptive fields for three MSO neurons (CF = 420, 680, 790 Hz). The peak 

subthreshold input is shown as a function of both IPD and stimulus frequency, thus combining 

IPD tuning and frequency tuning of the subthreshold input. Spacing of contours is 0.05 mV. 

(F) Simple ITD tuning of a hypothetical MSO cell tuned at 500 Hz having a constant, frequency-

independent best ITD of 250 s. The constant best ITD corresponds to a best IPD that is 

proportional to the stimulus frequency. 

 

Such tuning beyond the physiological range is consistent with the idea that ITDs follow a 

“slope” code (Grothe et al. 2010). To resolve whether ITD tuning can be predicted from the 

inputs (Jeffress 1948), we determined the cycle-averaged subthreshold response for both 

ears. We removed the eAPs and separately averaged the recording across the cycles of the 
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respective frequencies presented to each ear (Figure 3C). The latency between the peaks of 

the two averages thus obtained was 190 µs, close to the observed best ITD of 200 µs.  

During its 250-ms cycle, the 4-Hz binaural beat stimulus traverses all possible combinations 

of ipsi- and contralateral phase, allowing a two-dimensional representation of the 

subthreshold input as a function of both monaural phases (Figure 3D). The horizontal and 

vertical ridges in this graph reveal the phase locking of the binaural subthreshold response to 

the ipsi- and contralateral tone, respectively. The crossing point of these ridges combines the 

favored phases of both ears, and the peak created by this combination of monaural phases is 

where one expects the eAPs. The actual timing of eAPs (white dots in Figure 3D) was slightly 

offset relative to the peak. The direction and magnitude of this offset represents an average 

latency of 158 s between peak subthreshold input and APs, consistent with the average 

EPSP-AP latency of this recording of 173 s. Thus, Figure 3D shows that subthreshold 

responses predicted ITD tuning well.  

 

ITD tuning of MSO neurons is complex  

Binaural tuning of the subthreshold input was further analyzed by determining, for each value 

of IPD, the peak potential of the portions of the recording corresponding to that IPD, (i.e., the 

maximum across diagonal sections of Figure 3D). The IPD-dependence of this peak potential 

is shown in Figure 3A (green line) along with the cycle histogram of eAPs. Again, the binaural 

tuning of the spikes matches the binaural tuning of the subthreshold input quite well. Figure 

3E compares measured best ITDs with predictions from the subthreshold input (as 

exemplified by the peak of the green curve in Figure 3A) for all our recordings having 

significant (Rayleigh test, p < 0.001; 22 cells, including 3 cells recorded in whole-cell mode) 

binaural tuning. The correlation r = 0.84 confirms the predictability of binaural tuning from 

the monaural inputs.  

The shape of the cycle-averaged subthreshold inputs varied with stimulus frequency (Figures 

4A and S5), higher frequencies yielding sinusoidal shapes similar to the intracellularly 

recorded subthreshold waveforms in nucleus laminaris cells of the barn owl (Funabiki et al. 

2011). Responses to low-frequency (<500 Hz) stimuli often showed multiple peaks per tone 

cycle (e.g., Figure 4A, 200/204-Hz responses). Analysis of SBC recordings previously recorded 
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in our lab suggested that multiple peaks could already be present in individual inputs to the 

MSO neurons (Figure S6). Interestingly, the multiple peaks were often matched between the 

inputs of both ears (Figures 4A and S3). We also expanded the analysis of binaural tuning of 

the subthreshold input (green curve in Figure 3A) to multiple frequencies (Figure 4B). When 

 

Figure 5. Inputs from both ears sum linearly.  

(A) 2D representation of the subthreshold inputs (left), with eAPs indicated as white dots. 

Right panel is the prediction of a purely linear interaction obtained by adding the cycle 

averages of the two ears as shown in Figure 3D. Stimulus: 300/304-Hz, 70 dB-SPL binaural 

beat. Contour spacing 0.1 mV. CF: 680 Hz. (B) Histogram of variance explained by the linear 

prediction. Population data from 19 MSO cells. (C) Cycle-averaged input waveforms obtained 

with binaural stimulation (top row) and consecutive monaural presentation of the same tones 

(bottom row). (D) Prediction of the subthreshold input of panel A obtained by simply summing 

the waveforms obtained under monaural stimulation shown in panel C, bottom row. (E) 

Across-beat-cycle variance corresponding to the across-beat-cycle mean shown in panel A. 

Contour spacing 0.018 mV2. The thick white contour line demarcates the variance of 

spontaneous activity. Most of the time (64 %) during binaural-beat stimulation, the variance 

is below the spontaneous variance. (F) Across-tone-cycle variance obtained from monaural 

responses to 70-dB-SPL, 300/304 Hz, normalized to the spontaneous value. For both ears, the 

variance is periodically reduced to ~50% of the spontaneous value. 

 

displayed as contour plots (Figure 4C-E), these data yield a binaural receptive field, in which 

the effects of stimulus frequency and interaural phase are combined. If a constant, frequency-

independent time difference between the inputs existed, the binaural receptive field would 
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show a single, elongated ridge having a skewed orientation (Figure 4F), because a fixed delay 

causes a phase shift that is proportional to frequency. The actual binaural receptive fields 

(Figure 4C-E) do not have this simple form, revealing the complex, frequency-dependent, 

binaural tuning of the subthreshold inputs.  

 

Linear summation of inputs from both ears 

The ability to measure the inputs to the MSO neurons in vivo allowed us to test how inputs 

from both ears sum. To this end, we compared the measured averaged response during the 

beat cycle with the prediction from a purely linear interaction of the monaural contributions 

obtained by averaging across the respective ipsi- and contralateral tones (Figure 5A, Movie 

S1). The observed responses closely followed the linear prediction, which accounted for 97.9 

% of the variance. The success of the linear prediction was a general finding, and was observed 

for both juxtacellular and whole-cell recordings (Figures 5B, S8). Careful inspection of the raw 

traces did not reveal fast, downward going events that specifically preceded the positive 

events, both in whole-cell and in juxtacellular recordings (Figures 2B, S3). Simultaneous juxta- 

and whole-cell slice recordings indicated that the resolution of the juxtacellular recordings 

allows detecting IPSPs with an amplitude <1 mV (Figure S2). We therefore did not find 

evidence for well-timed inhibition, nor for a substantial effect of the current sink presented 

by the non-stimulated dendrite. To further test this linearity, we compared the binaural beat 

response with the responses to monaural stimulation using the same tones as in the binaural 

beat stimuli (Figure 5C). Summing the monaural responses provided an excellent prediction 

of the binaural responses (Figure 5D), accounting for 95.5% of the variance. The small 

deviations are analyzed in Figure S7. 

 

Lack of excitatory inputs contributes to low firing rates at “worst ITD” 

Previous, extracellular recordings from MSO have shown that firing rate at the “worst ITD” is 

generally lower than the rates obtained by monaural stimulation of either ear, and can even 

drop below the spontaneous rate (Goldberg and Brown 1969; Spitzer and Semple 1995; Yin 

and Chan 1990). We observed that subthreshold responses were highly stereotyped, 

repeating themselves each beat cycle. We therefore determined not only the mean 
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subthreshold potential (Figure 5A), but also the variance across beat cycles (Figure 5E). The 

across-cycle variance varied systematically during the cycle. It was clearly larger when 

responses were large, but in between, during 64% of the beat cycle, it systematically dropped 

below the spontaneous level. At its absolute minimum, it amounted to only 5% of the 

spontaneous level. Especially since the inhibitory inputs are large and few (Couchman et al. 

2010), the deep trough of the across-beat-cycle variance appears to signify an absence of 

excitatory inputs rather than the presence of well-timed inhibition. More examples are shown 

in Figure 6. The periodic reduction of the variance below the spontaneous value was observed 

in all 22 ITD-sensitive cells. Considering the excellent phase locking of SBCs (Joris and Smith 

2008), the most likely interpretation of this phase-locked variance trough is the periodic 

absence of SBC inputs at those instants where the silent intervals from both ears coincide. 

This hypothesis is supported by the observation that the periodic reduction of the variance 

(Figures 5E and 6E-H) became less pronounced for higher stimulus frequencies (Figure S9A), 

as expected from a decline of SBC phase locking. We also determined the variance across 

stimulus cycles during monaural stimulation. For both ipsi- and contralateral stimulation, the 

minimum variance during the cycle was ~50% of the spontaneous level (Figure 5F), consistent 

with the periodic absence of synaptic inputs from the stimulated ear. Apparently, in this cell 

the input from each ear contributed ~50% of the total variance of the spontaneous activity. 

The periodic reduction of variance below spontaneous levels upon monaural stimulation of 

either ear was a general finding (546/559 recordings; all 18 cells monaurally tested, including 

two cells recorded in whole-cell mode). Again, the reduction of activity during the unfavorable 

part of the stimulus cycle became less pronounced with increasing frequency (Figure S9B). 

We conclude that, most likely, the low firing rate at worst ITD is primarily due to the absence 

of spontaneous excitatory inputs, whose random timing leads to “accidental coincidences” 

under monaural stimulation (Colburn et al. 1990).  

 

Inputs from both ears have similar risetimes and EPSP-AP delays 

We next tested the predictions of two other models suggesting that ITD tuning is not primarily 

determined by the timing of the excitatory inputs. Firstly, we did not find evidence for an 

asymmetry in the risetimes of ipsi- and contralateral responses (Figure 7A; a similar lack of 

asymmetry was observed for the whole-cell data), in contrast to a slice study, which found 
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that the slopes of EPSPs evoked by ipsi- or contralateral stimulation differed substantially 

(Jercog et al. 2010). Secondly, we did not find evidence for an interaural asymmetry in the 

delay between EPSPs and action potentials (Figure 7B), which could shift ITD tuning (Zhou et 

al. 2005). 

 

 

Figure 6. Variance in the response to binaural beats during the beat cycle.  

In each column the upper and lower graphs show the mean subthreshold input and its 

variance, respectively. (A-D) Mean subthreshold input as a function of both monaural phases 

of the binaural beat stimulus in 4 different MSO neurons (cf. Figure 3D). CFs: 680, 430, 300, 

480 Hz. (E-H) Associated variance (cf. Figure 5E). (A, E) 200/204-Hz, 80 dB SPL. (B, F) 200/204-

Hz, 50 dB SPL. (C, G) 300/304-Hz, 60 dB SPL. (D, H) 500/504-Hz, 50 dB SPL. The fraction of time 

that the variance shown in panels E-H was below the spontaneous value was 71%, 71%, 78%, 

and 72%, respectively. The minimum values of the variance over the beat cycle were 5%, 16%, 

6%, and 6% of their respective spontaneous values.  

 

Nonlinear input-output relation helps in coincidence detection  

The remarkably linear interaction between the inputs from both ears raises the question how 

the output of these cells can have such good sensitivity to ITD. Figure 8A illustrates how 

subthreshold monaural inputs can interact to trigger a spike. Binaural stimulation at best ITD 

evoked on average more than 3 times as many spikes as the sum of monaurally evoked spike 
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counts (Figure 8B; (Goldberg and Brown 1969; Spitzer and Semple 1995; Yin and Chan 1990). 

The subthreshold responses in our binaural recordings allowed us to study the relation 

between the averaged subthreshold potential and the instantaneous firing rate. This relation 

followed a power relation (Figure 8C), indicating that the nonlinear spike triggering 

mechanism helps the MSO neurons to be coincidence detectors.  

 

 

Figure 7. Interaural symmetry of recorded waveforms. 

(A) Cycle-averaged ipsilaterally and contralaterally evoked EPSPs have similar risetimes. For 

each binaural beat response, the steepest slopes of the cycle-averaged subthreshold input 

(cf. Figures 3B, C; 5C, F) were determined, using either the ipsilateral or the contralateral 

stimulus frequency. Peak-to-peak values of both cycle-averaged subthreshold responses had 

to exceed twice the RMS of the spontaneous activity in order to be included, yielding n = 89 

recordings, 19 cells (juxtacellular recordings). The ipsi/contra pairs of steepest slopes are 

shown as a scatter plot, each cell indicated by a different symbol. The mean pair-wise 

difference (ipsi minus contra) was 0.05  0.45 V/s (p > 0.43, Student’s T-test). (B) EPSP-AP 

latencies in monaural responses. For the 14 cells for which monaural responses to both ears 

were available (1 whole-cell, 13 juxtacellular recordings), we compared the latency between 

EPSPs and APs (cf. Figure 1E, F) and compared them between ipsilateral and contralateral 

tones. Each symbol represents the average of all monaurally evoked APs of one cell. The mean 

difference (ipsi minus contra) across cells was 5 ± 16 s. A Student’s T-test revealed no 

significant difference between ipsi- and contralaterally evoked EPSP-AP latencies (p > 0.47; n 

= 14 cells). 

 

 



Chapter 2 

Page | 49 
 

 

Figure 8. Coincidence detection is realized by a nonlinear input-output relation.  

(A) Comparison of monaural responses (upper two traces) and binaural responses (lower 

trace). Frequencies were 500 Hz (ipsilateral) and 504 Hz (contralateral). All traces show a 

periodic (~2-ms) depolarization. The larger binaural responses are closer to the firing 

threshold and trigger an AP (arrow). CF: 680 Hz. (B) Histogram of the ratio of number of spikes 

evoked by binaural stimulation at best ITD to the sum of monaurally evoked spikes (n = 18 

cells). The mean value of 3.8 indicates a sizeable binaural facilitation. (C) Instantaneous firing 

rate as a function of the averaged subthreshold potential derived separately for monaural 

and binaural stimulation, showing an expansive (“power-law”) relation. 

 

Discussion 

 

The ability to measure the synaptic inputs to the MSO neurons allowed us to study how these 

neurons integrate information from both ears. We show here that ITD tuning of these neurons 

is determined by the timing of their excitatory inputs, that these fast excitatory inputs from 

both ears sum linearly, and that spike probability depends nonlinearly on the size of synaptic 

inputs.  

 

Subthreshold events in the MSO 

We used a juxtacellular approach to record from MSO neurons in vivo. In contrast to earlier 

studies in gerbil (Brand et al. 2002; Day and Semple 2011; Pecka et al. 2008; Spitzer and 

Semple 1995), we used a ventral approach, which made it easier to map where the MSO cell 

layer was located. The use of field potentials (Galambos et al. 1959; Mc Laughlin et al. 2010) 
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was critical for determining the cell layer. Within the somatic layer, all cells were excited by 

both ears, whereas several previous studies found that many cells were inhibited by one ear 

(Barrett 1976; Caird and Klinke 1983; Goldberg and Brown 1968; 1969; Hall 1965; Moushegian 

et al. 1964a). Even though our sample size was limited, and there may be species differences, 

this suggests that some of the reported heterogeneities in the properties of MSO neurons are 

caused by differences in response properties between MSO neurons within and outside of 

the somatic layer (Guinan et al. 1972; Langford 1984; Tsuchitani 1977). 

The recordings from the MSO neurons were characterized by the presence of clear 

subthreshold responses, even in the absence of sounds, and by the presence of low-

amplitude spikes. The observation that the spontaneous events could be picked up even in 

the juxtacellular recordings is partly due to their low membrane resistance, which is caused 

by the presence of Ih and low-threshold K+ channels already open at rest (Khurana et al. 2012; 

Khurana et al. 2011; Mathews et al. 2010; Scott et al. 2005). In agreement with this, the 

resistive coupling measured in simultaneous juxtacellular and whole-cell recordings was 

much larger than in principal neurons of the MNTB, whereas the capacitive coupling was 

similar (Lorteije et al. 2009). The small size of the somatic action potential is in agreement 

with slice recordings (Scott et al. 2005), and is caused by the restricted backpropagation of 

the axonal action potential to the soma (Scott et al. 2007). The high spontaneous event rates 

of at least 500 events/s were in agreement with average spontaneous firing rates of SBCs of 

~56 sp/s (Kuenzel et al. 2011) and the estimate of minimally 4-8 SBCs innervating each gerbil 

MSO neuron (Couchman et al. 2010). The EPSP kinetics largely matched results obtained with 

slice recordings. Half widths of EPSPs in juxtacellular recordings were somewhat smaller than 

in adult slice recordings (~0.55 ms; (Scott et al. 2005), to which the capacitive component in 

the juxtacellular recordings may contribute, whereas the intracellularly recorded EPSPs had a 

half width that was somewhat larger than of EPSPs in slice recordings, to which both 

dispersion in sound-evoked events and the relatively large series resistances may have 

contributed. 
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Variability of EPSP-AP delays 

The EPSP-AP delay was remarkably variable and was on average about 200 µs, which is larger 

than the physiological ITD range of the gerbil. Similar delays have been observed in a slice 

study (Scott et al. 2007). This delay consists of the travel time of EPSP to initial segment, spike 

initiation and the backpropagation of the AP to the soma, which is physiologically less 

relevant. The EPSP-AP delay depended systematically on EPSP amplitude (Scott et al. 2007); 

larger EPSPs resulted in smaller EPSP-AP delays, in agreement with the idea that the EPSP-AP 

delay of EPSPs that are barely suprathreshold contribute considerably to jitter, as was also 

found in the SBCs, which form the excitatory inputs to the MSO neurons (Kuenzel et al. 2011).  

 

Linear summation of inputs from both ears 

The ability to measure the inputs to the MSO neurons in vivo allowed us to test how inputs 

from both ears sum. We found that the interaction between the inputs from both ears was 

remarkably linear. The ipsilateral EPSP did not depend on the phase of the contralateral EPSP 

(and vice versa).  

Our data are in good agreement with experiments in neocortical and hippocampal slices, in 

which a general finding was that distant inputs sum linearly, whereas inputs on the same 

dendritic branch interact nonlinearly (Cash and Yuste 1999; Gasparini and Magee 2006; Polsky 

et al. 2004; Tamás et al. 2002). Linear summation was also observed in an in vivo study in 

visual cortex (Jagadeesh et al. 1993). Apparently, in our in vivo experiments the somatic 

depolarization by the inputs of either ear was not large enough to create a substantial loss of 

driving force for the inputs from the other ear. The exact cellular mechanisms underlying the 

remarkable linear behavior of the MSO neurons remain to be investigated, but slice studies 

have suggested that the interplay of the different voltage-dependent ion channels in the MSO 

neurons can actively linearize the interaction between binaural inputs (Khurana et al. 2011; 

Scott et al. 2010).  
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Implications of linear summation 

In a simulation study (Agmon-Snir et al. 1998), it has been proposed that the segregation of 

the inputs from both ears to opposite dendrites favors binaural inputs over monaural inputs 

by two different mechanisms. Firstly, inputs from the same ear would tend to sum 

nonlinearly, because the local depolarization will reduce driving force. Secondly, it would be 

more difficult for monaural inputs to reach threshold owing to the current sink of the non-

stimulated dendrite. The activation of potassium channels might contribute to this non-linear 

interaction as well (Grau-Serrat et al. 2003; Mathews et al. 2010). The linearity of the 

summation argues against a prominent role of these mechanisms. Our results do not allow us 

to infer to what extent inputs sum sublinearly at a single dendrite. However, our results do 

suggest that the current sink imposed by the non-stimulated dendrite is not very large, since 

the size of the EPSP from one ear did not depend measurably on the phase of the stimulation 

to the other ear, and thus on the membrane potential of the other dendrite.  

A similar argument can be put forward against the theory that well-timed (phase locked), 

contralateral, inhibition originating from the MNTB delays the time point at which the action 

potential threshold is reached (Brand et al. 2002; Pecka et al. 2008). This theory provides an 

elegant explanation for the observation that best ITDs typically show a bias for contralateral 

lead, which we also observed in the present study. This theory also predicts a significant 

phase-dependent influence of the sound from one ear on the response to the sound 

presented to the other ear, since well-timed inhibition should interact with excitation even if 

it is entirely of the shunting type. In contrast to these predictions, we found that the timing 

of the input from either ear is unaffected by the phase of the input from the other ear. Our 

results therefore suggest that the timing of the inhibitory input from either ear is not 

sufficiently precise to allow it to shift the ITD tuning (Joris and Yin 2007; Zhou et al. 2005). This 

argument still holds true in the presence of inhibition from both ears. We cannot entirely 

exclude that the use of anesthetics may have influenced the timing precision of the inhibition. 

Effects of ketamine/xylazine on subcortical auditory processing are typically mild (Smith and 

Mills 1989; Ter-Mikaelian et al. 2007), and both bushy cells (Kuenzel et al., 2011) and primary 

neurons of the MNTB (Hermann et al. 2007) in gerbil show considerable spontaneous activity 

even under ketamine/xylazine anesthesia. Decreased inhibition has been reported in the 

dorsal cochlear nucleus (Navawongse and Voigt 2009). However, the original evidence 
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favoring well-timed inhibition was also obtained under ketamine/xylazine anesthesia (Brand 

et al. 2002; Pecka et al. 2008). Another possible confounder is that most of the inhibition is 

somatic, and may have been disrupted when we made recordings. However, somatic 

inhibitory responses in the MSO are not disrupted by positive pressures at least ten fold 

higher than what we used during approach of cells for juxtacellular recordings (Couchman et 

al. 2012). 

 

Possible role of inhibition in MSO 

The presence in the MSO of strong glycinergic inhibitory inputs originating from both the ipsi- 

(LNTB) and contralateral ear (MNTB) is well established, but its function has been debated 

(reviewed in (Grothe et al. 2010). Because of the linearity of the interaction between both 

ears, a role of well-timed inhibition in shifting the best ITD (Brand et al. 2002; Pecka et al. 

2008) seems unlikely. The low variance at the worst ITD suggests that it is the periodic absence 

of excitatory input rather than phase-locked inhibition that sets the firing rate during the 

worst ITD. A possible role for inhibition is that it may improve the dynamic range of the MSO 

neurons, similar to its proposed role in the nucleus laminaris (Yamada et al. 2013), the avian 

equivalent of the MSO, and in the SBCs (Kuenzel et al. 2011). This role is in agreement with 

the strong increase in spontaneous activity, clear broadening of ITD tuning and strongly 

reduced effect of ITD on spike rate observed upon application of the glycine receptor 

antagonist strychnine (Brand et al. 2002; Pecka et al. 2008) and the relatively slow kinetics of 

glycinergic synaptic potentials compared to the glutamatergic synaptic potentials 

(Magnusson et al. 2005).  

 

Lack of contribution of MSO neurons to internal delays 

Apart from the lack of evidence for a role of well-timed inhibition, we also did not find support 

for the two other models that propose that MSO neurons contribute to the creation of 

internal delays. The suggestions that interaural asymmetries in synaptic potentials (Jercog et 

al. 2010) or cellular morphology (Zhou et al. 2005) may contribute to ITD tuning of MSO cells 

are contradicted by our observation that the slopes of subthreshold inputs were similar for 
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both ears (Figure 7A), in agreement with a recent slice study (Fischl et al. 2012), and we 

obtained a similar result for the EPSP-AP latencies (Figure 7B). The interaural symmetry of 

EPSP-AP latencies agrees with the observation that in the gerbil MSO axons typically emerge 

directly from the soma (Scott et al. 2005). Our data therefore indicate that ITD tuning depends 

critically on the exact timing of the excitatory inputs to the MSO neurons, and that the MSO 

neuron itself does not make a large contribution to the internal delay.  

 

ITD tuning 

ITD tuning was complex. Two features were remarkable. Firstly, at low sound frequencies we 

observed multiple preferred latencies in the responses for both ears. Most likely, this is 

inherited from the SBCs. Spike timing dependent plasticity has been suggested as a possible 

mechanism for the coincidence of these inputs (Gerstner et al. 1996), and our results suggest 

that, if it is, it can work for multiple preferred latencies, indicating a hitherto unknown 

complexity to the tuning of the MSO neurons. It should be noted that these multiple latencies 

were typically obtained at low frequencies and high intensities, so their contribution to 

natural stimuli remains to be established. Behaviorally, localization is poorer for pure tones 

than for more “natural”, wideband sounds. Future work using wideband stimulation is 

required to test how our findings generalize to a wider range of stimuli. 

A second property that added to the complexity of the tuning was that a comparison of the 

inputs from both ears indicated that ITD tuning was frequency-dependent. This observation 

by itself argues against the original Jeffress model (Jeffress 1948), in which a delay line was 

the only source for ITD tuning. Since we did not observe any evidence for a contribution of 

the MSO neurons themselves to the delay line, this is compatible with the idea that cochlear 

tuning disparities contribute to the creation of internal delays (Day and Semple 2011; Joris et 

al. 2006).  

 

Coincidence detection 

The backbone of the Jeffress hypothesis is the presence of coincidence detectors, neurons 

that fire when inputs from both ears arrive at the same time (Jeffress 1948). Experimental 
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evidence for this hypothesis was obtained from recordings in which the ITD was systematically 

varied (Goldberg and Brown, 1969). A key finding was that the best ITD could be predicted 

from the preferred latencies of the monaural responses. Our data extend these findings in 

three ways. Firstly, we show that the best ITD can be well predicted from the timing of the 

monaural subthreshold responses. Secondly, we provide a simple explanation for the low 

firing rate during the worst ITD. The observation that during worst ITD the firing rates become 

lower than during the response to monaural stimulation in many cells was basically 

unexplained. Three possibilities have been put forward: a role for well-timed inhibition (Yin 

and Chan 1990), a role for low-threshold potassium conductance which is activated during 

depolarizations (Grau-Serrat et al. 2003; Mathews et al. 2010) or the absence of active 

excitatory inputs because of good phase locking (Colburn et al. 1990). A variance analysis 

provided evidence favoring the latter possibility, although a specific role of inhibition, low-

threshold potassium channels or a combination of the two in the very low firing rates during 

the worst ITD cannot be excluded. Thirdly, to function as good coincidence detectors, MSO 

neurons must have a clearly higher spike rate at the best ITD for binaural stimulation than the 

sum of the spike rates during monaural stimulation of the left and the right ear. We observed 

a supralinear relation between firing rate and the averaged subthreshold potential (Figure 

8C), which is in agreement with the power-law relation between spike probability and 

membrane potential in other neurons (Silver 2010). This non-linear relation has the effect to 

greatly increase the probability that a spike is triggered when EPSPs from both ears arrive at 

the same time. Together, our results indicate that binaural facilitation in MSO neurons results 

from the nonlinear increase in spiking probability brought about by the linear sum of the 

inputs from the two ears. 
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Experimental Procedures 

 

Animal procedures  

All experiments were conducted in accordance with the European Communities Council 

Directive (86/609/EEC) and approved by the institutional animal ethics committee. After brief 

exposure to isoflurane, a total of 11 young-adult Mongolian gerbils (84 ± 7 days postnatal; 50-

70 g) were injected intraperitoneally with a ketamine-xylazine mixture (65/10 mg/kg). 

Anaesthesia was monitored with the hind limb withdrawal reflex and additional ketamine-

xylazine was given to maintain anaesthesia. Rectal temperature was maintained between 

36.5 and 37.5 °C with a homeothermic blanket system (Stoelting Co., Wood Dale, Ill.). Both 

pinnae were surgically removed. We used a ventral approach to reach the MSO. Animals were 

supine-positioned, with their heads immobilized by a metal pedestal glued to the dorsal skull. 

Skin and soft tissue overlaying the trachea were removed and the trachea was intubated. 

Animals continued breathing independently. The right bulla was opened fully using a forceps; 

a hole was made in the left bulla to prevent pressure buildup in the left middle ear. Based on 

cranial landmarks, a ~1 mm diameter craniotomy was created by carefully scraping the bone 

between the bulla and the brainstem with a small handheld drill, exposing the brain surface 

slightly laterally from the MSO. Dura, arachnoids and pia mater were removed locally.  

 

Histology 

In some experiments, recording locations were marked with biocytin (0.5%) which was added 

to the pipette solution, or with post-recording injection of saturated Alcian Blue at the 

recording position (Figure S1). In these experiments, animals were sacrificed with a lethal 

dose of Nembutal and subsequently perfused intracardially with saline, followed by a 4% 

paraformaldehyde solution. Brains were further processed as described in (Horikawa and 

Armstrong 1988) with minor modifications. Histology confirmed MSO as the recording 

location in 6 of 6 animals.  
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In vivo electrophysiology  

Thick-walled borosilicate glass micropipettes with filament had a resistance of 3.5–6 MΩ 

when filled with recording solution. Pipettes were filled with Ringer solution for juxtacellular 

recordings, which contained NaCl 135, KCl 5.4, MgCl2 1, CaCl2 1.8, HEPES 5 mM; for whole-cell 

recordings the pipette contained (in mM): 138 K-gluconate, 8 KCl, 0.5 EGTA, 10 HEPES, 10 

Na2Phosphocreatine, 4 MgATP, 0.3 NaGTP (pH 7.2 with KOH).  Electrodes were typically 

inserted laterally (and ventrally) from the cell layer and advanced in dorsomedial direction at 

an angle of 20-30 degrees with the vertical. The thin somatic layer (Rautenberg et al. 2009) 

was identified based on the polarity reversal of the local field potential response 

(‘neurophonics’) during alternating monaural click stimuli to the left and right ear (Figure S1; 

(Biedenbach and Freeman 1964; Clark and Dunlop 1968; Galambos et al. 1959).  

Pipettes had a high positive pressure (>300 mbar) when crossing the brain surface, which was 

lowered to 10-30 mbar when approaching the cell layer (located at 400-1000 µm from the 

surface). Juxtacellular (loose-patch) or whole-cell recordings were made by slowly advancing 

the pipette while monitoring both its resistance and the presence of EPSP or spike activity. 

For juxtacellular recordings, pressure was released if a neuron was approached, and slight 

negative pressure was briefly applied while moving the electrode another 2 to 10 µm towards 

the cell until pipette resistance increased to a value of typically 30 MΩ. Because physical 

contact with a cell is essential for the large size of the juxtacellular potentials (Lorteije et al. 

2009), we consider it very unlikely that another, nearby cell contributed significantly to the 

measured potentials. A further argument supporting good unit isolation was that the shortest 

eAP interval that we observed in any of the juxtacellular recordings was >1 ms, as expected 

from recordings from single neurons obeying the refractory period. Details of the whole-cell 

in vivo recordings are described in Supplemental Experimental Procedures. 

Data were acquired with a MultiClamp 700B patch-clamp amplifier and pCLAMP 8 software 

(Axon Instruments). Further details are described in Supplemental Experimental Procedures. 

 

  



Binaural interactions in the MSO 

Page | 58 

 

Slice electrophysiology 

Dual somatic whole cell and juxtacellular recordings were made at 37 °C from MSO neurons 

in 200 µm horizontal slices prepared from P29-46 gerbils as described previously (Scott et al. 

2005). Slices were bathed in ACSF containing (in mM): 125 NaCl, 25 glucose, 25 NaHCO3, 2.5 

KCl, 1.25 NaH2PO4, 1.5 CaCl2, 1.5 MgSO4. Whole cell recording electrodes were filled with (in 

mM): 115 K-gluconate, 4.42 KCl, 0.5 EGTA, 10 HEPES, 10 Na2Phosphocreatine, 4 MgATP, 0.3 

NaGTP. Juxtacellular recording electrodes were filled with the same solution used for in vivo 

juxtacellular recordings. Juxtacellular seal resistance averaged 24 ± 7 MΩ. EPSPs were evoked 

by local stimulation of excitatory afferents in the presence of 1 µm strychnine. IPSPs were 

generated via conductance clamp (Toro-8 digital signal processing board, Cambridge 

Conductance software) simulation of an inhibitory conductance with a double exponential 

waveform (time constants = 0.28 ms rise, 1.85 ms decay) and reversal potential of -85 mV. 

Current steps were delivered through the whole cell electrode. Data were acquired using a 

MultiClamp 700B amplifier and custom algorithms in IGOR Pro. EPSP data were analyzed by 

binning both whole cell and juxtacellular responses according to the peak EPSP amplitude 

measured in the whole cell recording (0.2-0.6 mV bins), then averaging the responses in each 

bin. Similarly, IPSP data were averaged according to the simulated conductance, and current 

step data were averaged according to the amplitude of the current step. Comparisons 

between whole cell and juxtacellular recordings were made using these average responses. 

Capacitive and resistive coupling constants were estimated as described previously (Lorteije 

et al. 2009). 

 

Auditory stimulation 

Auditory stimuli were generated using custom MATLAB software. Stimuli were generated 

using a TDT2 system (PD1, Tucker Davis Technologies) and presented in a close-field 

configuration to the animal with Shure speakers (frequency range 22 Hz to 17.5 kHz) attached 

to the ear canal via a small tube. The correct stimulus levels and phases were attained by 

calibrating the drivers in situ at the level of the tympanic membrane using the microphone 

housed in the probe. The transfer characteristics of the probe were taken into account. All 

stimuli were generated at a rate of 48.8 kHz.  
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Binaural beat stimuli consisted of a pair of pure tones, one presented to each ear. The 

frequencies presented to the ipsilateral ear varied between 100 Hz and 1600 Hz in 100-Hz 

steps; in two experiments the step size was reduced to 50 Hz. The frequencies presented to 

the contralateral ear were always 4 Hz above that of the ipsilateral tone. The tones were 

presented simultaneously to the two ears, lasted 6 or 9 s, including 3-ms cos2 onset and offset 

ramps, and were separated by 1500-ms silent intervals. The initial stimulus level was 60 or 70 

dB SPL. If time permitted, additional recordings were performed using additional intensities 

between 10 and 80 dB SPL in 10 dB steps, and monaural responses were obtained by setting 

the amplitude of the tone presented to either ear to zero. 

 

Detailed analysis of in vivo recordings 

Acceptance criteria, windowing and conditioning of the responses, detection of APs and 

EPSPs, periodicity analysis (Figures 3C, D; 4A; 5A, C, D, F) and extraction of metrics (vectors 

strength, CF, instantaneous firing rate) are detailed in Supplemental Experimental Procedures. 
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Supplemental Information 

 

Supplemental Data  

 

Figure S1 (related to Figure 1). Identification of the somatic layer in the gerbil MSO using a 

ventral approach.  

Section of the ventral brainstem with the electrode track marked in blue by pressure ejection 

of Alcian Blue. Red traces show the local field potential response (‘neurophonics’) during 

alternating monaural click stimuli to the left and right ear (Biedenbach and Freeman 1964; 

Clark and Dunlop 1968; Galambos et al. 1959). Numbers indicate penetration depth from 

surface. The somatic layer (‘MSO’) lies between the point where the response to contralateral 

tones reverses (~650 µm) and the point where the ipsilateral click response reverses (~850 

µm). 
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Figure S2 (related to Figure 2). Relation between juxtacellular and whole-cell potentials is 

linear for IPSPs and for current steps within the physiological membrane potential range. 

(A) Sample whole cell and juxtacellular responses to IPSPs generated by conductance clamp 

simulation of an IPSG over a range of 20 conductance levels. Data are averages of 20 trials. 

(B) Linear correlation between peak IPSP amplitudes measured with juxtacellular and whole 

cell recordings from the cell shown in (A) (r = 0.994). (C) Sample whole cell and juxtacellular 

responses to current steps ranging from -5000 to 5000 pA in 200 pA increments. Data are 

averages of 6 trials. (D) Over the physiologically important voltage range (-70 to -50 mV), peak 

responses to currents steps were linearly correlated between juxtacellular and whole cell 

recordings from the cell in (C) (r = 0.989). 
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Figure S3 (related to Figure 2). Absence of downward-going phase preceding EPSPs.  

Subthreshold events were extracted from the MSO recordings based on their steep upward 

slopes. Each panel shows the 70 largest events (colored thin lines) and the median value (thick 

black line) obtained from a different MSO neuron. The events are aligned on their steepest 

rising phase (time zero). (A) Juxtacellular recording; CF = 300 Hz ; (B) Whole-cell recording; CF 

= 780 Hz. 
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Figure S4 (related to Figure 3). Variation of ITD with stimulus frequency.  

The best ITD of many MSO neurons varied considerably with stimulus frequency. Best ITD was 

evaluated from the peak of the AP cycle histogram derived from responses to 60-dB-SPL, 4-Hz 

binaural beat stimuli. The four panels show data from four different MSO neurons. Horizontal 

green lines mark the ±130 s physiological range of ITDs determined by the head size of the 

gerbil. CFs: 680, 760, 560, 330 Hz.  
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Figure S5 (related to Figure 4). Frequency-dependent monaural and binaural tuning.  

(A) and (C) show the monaural cycle-averaged waveforms (a subset of which is shown in 

Figure 4A) in the form of contour plots (0.2-mV spacing) as a function of both stimulus 

frequency and the monaural phase relative to the stimulus onset. Monaural phases were 

compensated for a 5.5-ms overall stimulus-response latency delay estimated from the onset 

latency of the recording. The subthreshold is phase-locked over the entire range of 

frequencies, reflected by systematic vertical “ridges.” The steep transition of the monaural 

phase pattern between 300 Hz and 400 Hz produces a complex phase-frequency relation, 

which, however, is matched across the two ears. (B) shows the reduction of these monaural 

phase data to the IPD axis (cf. the green line in Figures 3A and 4B). The resulting “binaural 

receptive field” shows the tuning of the subthreshold input as a function of frequency and 

IPD. Contour spacing, 0.1 mV. The interaural matching of the monaural transition causes the 

binaural receptive field to be more regular than the monaural phase-frequency plots in A and 

C. The binaural tuning is still complex, and cannot be captured by a single, frequency-

independent delay, because that would cause the ridge to be on a straight line through the 

origin (zero IPD and zero frequency) See also (Day and Semple 2011). CF: 680 Hz. 
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Figure S6 (related to Figure 4). Multiple peaks in cycle histograms of spherical bushy cells 

(SBCs) of the gerbil.  

Unpublished data from unit RG0981/1u1 of (Kuenzel et al. 2011). Cycle histograms of APs in 

response to 50-ms, 80-dB-SPL single tones, analyzed as described in (Kuenzel et al. 2011). 

Such “peak splitting”, was a common observation in the SBC responses to low-frequency 

(<500 Hz) tones at intensities of 50-80 dB SPL. Courtesy of Dr. Thomas Kuenzel, Aachen.  
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Figure S7 (related to Figure 5). Linear summation of monaural inputs. 

(A) Scatter plot comparing linear prediction of the subthreshold input obtained from summing 

monaural recordings (Figure 5D) with the actual binaural response (Figure 5A). CF: 680 Hz. 

The black line indicates unity. The linear prediction accounted for 95.5% of the variance in the 

data. (B) Histogram of the deviations, i.e. data minus prediction. (C) Contour plot of the 

deviations. Blue patches correspond to data points below the predictions. Contour spacing 

0.05 mV. The trend of the predictions to overestimate the highest values (A) the skewness of 

-0.32 of the distribution (B), and the concentration of negative deviations (blue patches in C) 

on the peaks of the subthreshold response (compare to Figure 4A) are all consistent with a 

contribution of a small bias toward smaller EPSPs in the binaural recording caused by the 

removal of those events that actually triggered APs. The removed segments added up to 

0.076% of the total duration of the waveform analyzed. (D) 2-D representation of 

subthreshold input as in Fig. 2, but now for an in vivo whole cell recording. Stimulus was a 6-

s, 700/704-Hz binaural beat at 40 dB SPL. White dots indicate action potentials. (E) The 

prediction from linear summation of the monaural contributions. (F) The linear prediction 

plotted against the recorded subthreshold response, with the correlation coefficient r 

indicated in the graph.  
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Figure S8 (related to Figure 6). Effect of frequency on the periodic reduction of 

subthreshold input.  

(A) In response to 70-dB-SPL binaural beats having increasing monaural frequencies 

(abscissa), the dips in the variance of the subthreshold input became less pronounced, as 

reflected by the increasingly smaller fraction of the beat cycle during which the variance lies 

below the spontaneous value (ordinate). (B) A similar reduction of the fraction of below-

spontaneous values of the variance was observed in the response to 70-dB-SPL monaural 

stimulation. The frequency dependence is in agreement with the assumption that the dips in 

the subthreshold potential are caused by the periodic absence of spikes from the monaural 

inputs; silent intervals will become less prominent for high stimulus frequencies, for which 

the phase-locking of the monaural inputs is known to degrade. CF: 680 Hz. 

 

Movie S1 (related to Figure 5). Linear summation of monaural contributions predicts 

binaural subthreshold input.  

The monaural contributions to the 400-Hz binaural beat stimulus were extracted by averaging 

over the respective stimulus periods of the two ears (cf. Figure 3C). The lower trace of the 

movie shows the ongoing ipsilateral (blue) and contralateral (red) inputs resulting from 

concatenating these single-cycle segments. The 4-Hz interaural frequency difference causes 

a running phase disparity between the inputs from the two ears. The upper trace shows the 

prediction (green) of the binaural subthreshold input obtained by the linear summation of the 

monaural waveforms. Its waxing and waning reflects the “beating” of the monaural inputs 

due to their slightly different periodicities. Along with the prediction the actual binaural 

subthreshold input, averaged over the 250-ms beat cycle, is shown (grey). The good match 

between the linear prediction and the measured response reveals that the response to the 

binaural beat can be well described as a beating between monaural inputs. The movie, which 

is best played in loop mode, provides a dynamic alternative to the static, two-dimensional 

mode of display of Figure 5A. 
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Supplemental Experimental Procedures 

Data acquisition 

Data were sampled at an interval of 10 µs with a 16-bit A/D converter (Digidata 1322A). 

Potentials were filtered at 10 kHz low-pass (four-pole Bessel filter). In 2 recordings data were 

additionally high-pass filtered at 1 Hz (one-pole Bessel filter). To enable online analysis during 

recordings, the recorded potentials were filtered (0.1 Hz to 30 kHz) and amplified (gain 10x) 

with a PARC 113 pre-amp. Spike and very large EPSPs were sorted based on amplitude of 

either a positive or negative peak with a discrimination system controller (BAK electronics). 

Online analysis was done in parallel with the MultiClamp recordings and revealed auditory 

tuning of cells to which the experiments could be specified. 

 

Whole cell in vivo recordings 

For whole-cell recordings, pipettes were advanced with positive pressure up to 10 µm until 

resistance approximately doubled, after which pressure was released, and suction was 

applied to obtain the cell-attached configuration. The whole-cell configuration was 

established by suction pulses. Whole-cell recordings were compensated for an estimated 

junction potential of -15 mV. Based on the fact that we only recorded from the somatic layer, 

as judged from the field potentials, most likely almost all juxtacellular and whole-cell 

recordings were somatic, although we cannot exclude that some recordings were made from 

proximal dendrites. 

 

Analysis of in vivo recordings 

The recordings were divided into 6500-ms or 9500-ms responses to single binaural-beat (or 

monaural tone) stimuli, each including a 500-ms spontaneous baseline immediately 

preceding stimulus onset. In order for a recorded response to be accepted for analysis, the 

RMS value of the 500-ms spontaneous portion had to exceed 0.1 mV and vary by no more 

than 25% across the individual responses by the same neuron. Recorded waveforms were 

filtered by a notch filter (50-Hz centre frequency; Q = 40, MATLAB function iirnotch) to remove 

any interference from AC power lines. Low-frequency artifacts caused by breathing and heart 
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beat were attenuated by subtracting a low-pass filtered version of the waveform, which was 

obtained by downsampling to a sample interval of 250 ms, followed by upsampling to the 

original sample rate. This method of high-pass filtering ensures that frequency components 

at 4 Hz (the binaural beat frequency) and above are unaffected. Any effects on the cycle 

averages used in the subsequent analysis are thus excluded, while still reducing the spurious 

low-frequency variance. To avoid transient effects, the first 500 ms following stimulus onset 

(i.e., the first two beat cycles) were excluded from analysis. 

The eAPs were identified based on the steep (~10 V/s) downward slopes following their peak. 

The time derivative of the recorded waveform was computed by convolution with a 50-s-

wide Hann window followed by subtracting adjacent samples. The local minima (within a 

moving 750-s-long time window) were determined, and the resulting histograms (Figure 1D) 

were visually inspected. Only those recording showing a clear bimodal distribution of local 

slope minima were accepted for further analysis (19 out of 25 cells). Spike arrival times were 

obtained by determining the temporal position of the peaks immediately preceding the steep 

downward slope. The timing of the EPSPs was obtained by either determining the time of the 

peak immediately preceding the eAP peak, or, when no such peak was present in the 500 s 

preceding the eAP, by finding the local minimum of the second time derivative (“inflection 

point”) in that interval (Lorteije et al. 2009). 

Cycle-averages (Figures 3C, D; 4A; 5A, C, D, F) were obtained by dividing the waveform into 

1/f-long segments (f is the stimulus frequency tested, i.e., the ipsilateral or contralateral 

stimulus frequency or their 4-Hz difference) and computing the average across the 

corresponding time points of the segments. Any samples lying within 750 s from an eAPs 

peak (typically comprising a small percentage of the total analysis window: median 0.15; inter-

quartile range 0.9%) were excluded from this averaging process. Across-cycle variance (Figure 

5E) was determined by the same procedure. 

Vector strength of eAPs was determined as described in (Goldberg and Brown 1969); its 

significance was evaluated with the Rayleigh test (Mardia and Jupp 2000); p < 0.001). All 

reported correlations are Pearson’s linear correlation values. 

Characteristic frequency (CF) was estimated by determining peak spike rate in the responses 

to the binaural beats when varying carrier frequency, using the lowest SPL tested that gave a 



Binaural interactions in the MSO 

Page | 70 

 

significant response (30 dB SPL, n = 4; 40 dB SPL, n = 3; 50 dB SPL, n = 6; 60 dB SPL, n = 4; 70 

dB SPL, n = 2). The location of the peak on the rate-frequency graph was estimated by fitting 

a parabola to the five data points nearest to the peak value. Low tail responses to high-CF 

neurons can be immediately excluded for all cells (17 of 19) that responded to 500 Hz tones 

at 60 dB SPL or less (Figure 5 of (Ohlemiller and Echteler 1990). 

Instantaneous firing rate (Figure 7C) was computed as follows. The beat-cycle average VB (t) 

subthreshold input potential was determined as described above, with t the time from the 

start of the 250-ms beat cycle. A histogram H0 (VB) of all VB (t) values was compiled using 15 

equally spaced bins. The spike arrival times k from the same recording were determined as 

described above, and the values of the cycle-averaged subthreshold potential at the 

corresponding times within the beat cycle , VB (k), were used to compile a histogram HAP (VB), 

using the same binning. The conditional instantaneous firing rate p (V) was computed by  

 

p (V)dt = HAP (V)/H0 (V), 

 

with dt the sample period of VB (t). The same relation was used to predict monaural spike 

rates from binaural instantaneous firing rates, this time combining the p (V) derived from the 

binaural recording with the amplitude statistics H0 (V) derived from the monaural recording. 

In addition to the general acceptance criteria for analysis given above, the compilation of 

population statistics demanded specific criteria determined by the availability of recordings 

suited for a particular analysis. The two cases are listed below. 

1. Binaural tuning required. The criterion for this set of recordings was a Rayleigh test 

significance (p < 0.001) of APs to the 4-Hz beat frequency, yielding n = 296 beat responses, 22 

cells, 3 of which were recorded in whole-cell configuration.  

2. Monaural recordings from both ears required. This criterion yielded n = 550 binaural beat 

responses, 18 cells, 2 of which were recorded in whole-cell configuration.  

Results are reported as mean ± standard deviation.
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Abstract 

 

Accurate sound source localization of low-frequency sounds in the horizontal plane depends 

critically on the comparison of arrival times at both ears. A specialized brainstem circuit 

containing the principal neurons of the medial superior olive (MSO) is dedicated to this 

comparison. MSO neurons are innervated by segregated inputs from both ears. The 

coincident arrival of excitatory inputs from both ears is thought to trigger action potentials, 

with differences in internal delays creating a unique sensitivity to interaural time differences 

(ITDs) for each cell. How the inputs from both ears are integrated by the MSO neurons is still 

debated. Using juxtacellular recordings, we tested to what extent MSO neurons from 

anesthetized Mongolian gerbils function as simple crosscorrelators of their bilateral inputs. 

From the measured subthreshold responses to monaural wideband stimuli we predicted the 

rate-ITD functions obtained from the same MSO neuron, which have a damped oscillatory 

shape. The rate of the oscillations and the position of the peaks and troughs were accurately 

predicted. The amplitude ratio between dominant and secondary peaks of the rate-ITD 

function, captured in the width of its envelope, was not always exactly reproduced. This minor 

imperfection pointed to the methodological limitation of using a linear representation of the 

monaural inputs, which disregards any temporal sharpening occurring in the cochlear 

nucleus. The successful prediction of the major aspects of rate-ITD curves support a simple 

scheme in which the ITD sensitivity of MSO neurons is realized by the coincidence detection 

of excitatory monaural inputs. 

New and Noteworthy 

 

We recorded from principal neurons of the gerbil Medial Superior Olive (MSO), measuring 

how firing rate varied with interaural correlation and Interaural Time Delay (ITD). We also 

recorded subthreshold monaural responses to wideband tone complexes. Wideband rate-ITD 

functions were predicted in considerable detail by cross-correlating the monaural responses, 

suggesting that to explain ITD sensitivity in MSO one need not postulate a major 

computational role of binaural interaction beyond a simple linear addition of monaural 

inputs. 
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Introduction 

 

ccurate sound source localization can be essential for survival. The sub-millisecond 

differences in arrival time between the ears, the interaural time differences (ITDs), 

are a dominant cue for localization in the horizontal plane, especially at low 

frequencies. The medial superior olive (MSO) plays a key role in this process (Brown and May 

2005). Two bilateral excitatory and two bilateral inhibitory inputs make up the core afferent 

circuitry of the MSO. The role of inhibitory inputs, one from the ipsilateral lateral nucleus of 

the trapezoid body, and the other from the contralateral medial nucleus of the trapezoid body 

neurons, is still debated (Franken et al. 2015; Myoga et al. 2014; Pecka et al. 2008; Roberts et 

al. 2013; van der Heijden et al. 2013). The excitatory inputs originate from spherical bushy 

cells in the anteroventral cochlear nuclei on both sides (Thompson and Schofield 2000) and 

their role in sound localization is understood in greater detail.  

It is commonly accepted that MSO neurons act as coincidence detectors of their monaural 

excitatory inputs (Goldberg and Brown 1969; Yin and Chan 1990). The internal delays of both 

excitatory inputs give each MSO cell its own "best ITD", the interaural delay in the stimulus 

leading to maximal excitation. Although the origin of internal delays is debated, the general 

features of ITD selectivity in the MSO are in agreement with coincidence detection as 

proposed by Jeffress (1948), reviewed in Vonderschen and Wagner (2014). The integration of 

the monaural inputs can be alternatively described by schemes of coincidence detection or 

crosscorrelation, or by linear summation combined with a nonlinear expansive excitability 

(Colburn et al. 1990; van der Heijden et al. 2013). Such schemes, which produce similar 

predictions of ITD selectivity, correctly predict the best ITD of MSO neurons from the timing 

of the excitatory inputs as assessed from the neuron's response to monaural stimuli (Goldberg 

and Brown 1969; van der Heijden et al. 2013; Yin and Chan 1990). Several studies, however, 

suggest that such crosscorrelation schemes may fail to reproduce other aspects of binaural 

responses (Batra et al. 1997a; Batra and Yin 2004; Franken et al. 2015). All of these earlier 

tests were performed using tonal stimuli, and although they may provide insight into the 

underlying mechanisms of ITD tuning, the relevance of tonal responses to everyday sound 

localization is limited.  

A 
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In this study we explore whether the prediction of binaural MSO responses from their 

monaural inputs can be generalized beyond predicting best ITDs for tones. The idea is as 

follows. If a simple crosscorrelation between monaural inputs suffices to accurately predict 

binaural responses of a more general and common type, there is little need to postulate a 

major computational role for somatic integration in MSO cells beyond the linear summation 

of ipsi- and contralateral inputs found by van der Heijden et al. (2013). Such a major 

computational role has been suggested in previous studies (Agmon-Snir et al. 1998; Brand et 

al. 2002; Franken et al. 2015; Jercog et al. 2010; Pecka et al. 2008; van der Heijden et al. 2013; 

Zhou et al. 2005). If, on the other hand, systematic deviations between crosscorrelation 

predictions and actual ITD tuning are observed, these may point to the nature and relevance 

of possible nonlinear interactions between ipsi- and contralateral inputs. We characterized 

the ITD selectivity of MSO cells by measuring firing rate in response to wideband stimuli with 

varying ITD. The resulting wideband rate-ITD functions in MSO have a damped oscillatory 

shape (Yin and Chan 1990), a pattern resembling the autocorrelation function of bandlimited 

waveforms. Yin and Chan (1990) showed a reasonable similarity between an example 

wideband rate-ITD curve and the cross-correlogram of spike trains obtained with monaural 

stimulation, thus providing a first, basic test of the predictability of wideband ITD tuning from 

monaural data. Here we report a systematic and extensive test, based on subthreshold 

monaural responses, which allowed us to use moderate sound intensities and to overcome 

the limitations of using monaurally evoked action potentials as a proxy for monaural inputs 

(Batra and Yin 2004). Using the measured responses to monaural wideband stimuli as inputs 

to a crosscorrelation model, we predicted the wideband rate-ITD function, which we then 

compared to the wideband rate-ITD functions recorded from the same MSO neurons. 

 

Materials and Methods 

 

Animal Procedures 

All experiments were conducted in accordance with the European Communities Council 

Directive (86/609/EEC) and approved by the institutional animal ethics committee. Young-

adult female Mongolian gerbils (average body mass 60 g) were anesthetized intraperitoneally 
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with a ketamine-xylazine solution (114 and 17 mg/kg body weight, respectively). Reflexive 

state was monitored throughout the experiment by performing the hind-paw pinch-reflex 

test and was maintained by regular administration of ketamine-xylazine solution (one third of 

induction dose). Body temperature was maintained at 37 °C using an electrical heating pad.  

The head was fixed using a metal head plate that was glued to an exposed rostro-dorsal part 

of the skull. Both pinnae were removed, providing access to the ear canal for placing the tubes 

for delivering sound stimuli. The animal was fixed in a supine position. The skin, connective 

tissue, salivary glands and lymph nodes above the trachea were surgically removed, followed 

by a tracheotomy after which the animal kept breathing independently. Both bullae were 

exposed by removing the overlying muscles and making openings in the bone using a scalpel 

and forceps. The opening of both bullae equalizes the effect on low-frequency middle transfer 

(Ravicz et al. 1992). A 0.7 to 0.9 mm diameter craniotomy was made on the right side using a 

drill. The craniotomy was located approximately 2 mm rostrally from the stapedial artery and 

in the middle between the cochlea and medial wall of the skull. When needed the craniotomy 

was extended by drilling in the vicinity of the first craniotomy. The meninges were left intact. 

The angle of the electrode insertion point could be changed using a fixed-pivotal-point, 

custom-built positioning device on which the animal rested throughout the experiment.  

 

In Vivo Juxtacellular Recordings 

Recordings were made with thick-walled borosilicate glass microelectrodes having a 

resistance of 4 – 7 MΩ when filled with recording solution. Pipettes were filled with solution 

which contained K-gluconate 138, KCl 8, Na2-phosphocreatine 10, MgATP 4, Na2GTP 0.3, EGTA 

0.5, HEPES 10 mM (pH 7.2 with KOH). Less than 10% of the cells were recorded from using 

extracellular solution which contained NaCl 135, KCl 5.4, MgCl2 1, CaCl2 1.8, HEPES 5 mM (pH 

7.2 with NaOH). Some of the electrodes had biocytin (0.1%) added to the solution. No specific 

differences could be found between the responses of cells recorded with either solution, so 

we pooled them for the analysis.  

Pipettes had high positive pressure (~100 mbar) during brain surface penetration. 

Immediately after successful penetration of the brain surface, the pressure was lowered to 

20-30 mbar and we waited for a few minutes before making a recording to minimize the 
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impact of brain tissue movements relative to the electrode. The location of the MSO somatic 

layer was identified based on the local field potential (Biedenbach and Freeman 1964; Clark 

and Dunlop 1968; Galambos et al. 1959; Mc Laughlin et al. 2010), as described previously (van 

der Heijden et al. 2013). Field potentials were evoked using monaural click stimuli (2-ms 

duration) presented alternatingly to either ear. Once the somatic layer was reached, the 

pipette was advanced slowly and its resistance was monitored closely. Contacting a neuron 

resulted in a gradual increase in resistance, after which we released positive pressure. The 

electrode was then forwarded up to 10 µm to increase and stabilize seal resistance. Typically 

the resistance reached a value of 20-40 MΩ. All the recordings were done in current-clamp 

mode, while regularly monitoring the seal resistance. In case of evident changes in cell 

response the recordings were stopped.  

Data were acquired using a Multiclamp 700B (Molecular Devices, Foster City, CA) amplifier 

using custom software written in MATLAB (The MathWorks, Natick, MA, USA). 

 

Stimuli 

Auditory stimuli were generated using custom software written in MATLAB and realized 

through a 24-bit D/A-channel (RX6; Tucker Davis Technologies (TDT), Alachua, FL, USA; 111.6 

kHz), programmable attenuator (PA5; TDT) and an amplifier (SA1; TDT). Stimuli were 

delivered to the ear canals in a close-field fashion through Shure speakers (frequency range 

22 Hz to 17.5 kHz) and a pair of small (~11 cm length) tubes.  

Three types of stimuli were used for this study: irregular tone complexes presented 

monaurally, irregular tone complexes presented binaurally (noise delay stimulus) and 

broadband, Gaussian noise with varied interaural correlation. The frequency range of all 

stimulus types was 50-3000 Hz; the tone complexes consisted of 30 components. The sound 

pressure level (SPL) range for monaural and ITD delay stimuli was 20–40 dB above hearing 

threshold. The total SPL of the noise was 15 dB higher than the SPL per tone of the tone 

complex stimuli in order to achieve the same effective SPL level. Hearing threshold was 

defined as the lowest SPL of monaural click stimulus to which neurophonics could be evoked. 

Monaurally presented stimuli were frozen within recordings from one cell; their 22-s duration 

and 2950-Hz bandwidth ensure that the waveforms were representative of the statistical 
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ensemble of these wideband stimuli. The waveforms for all the other stimuli were 

recomputed for a different instance of their presentation, but were kept the same within one 

instance for all different stimulus conditions and repetitions.   

 

Monaural stimulation 

Monaural responses were evoked using ‘zwuis’, an irregular tone complex stimulus (van der 

Heijden and Joris 2003; 2006) with the following properties. Thirty distinct pure tone 

components with an irregular spacing in the frequency range of 50-3000 Hz were chosen in 

such a way that no second-order or third-order distortion products present in the response 

could have a frequency of any of the stimulus components. Duration of presentation was ~22 

seconds (including 1 s each for pre- and post-stimulus baselines). All stimulus components 

had the same amplitude and a random phase (van der Heijden and Joris 2006; Versteegh and 

van der Heijden 2012). 

 

Delay functions 

Rate-ITD functions were obtained by presenting the zwuis stimulus binaurally with a 

systematically varying time delay between the ears. ITD was varied over a range chosen after 

evaluation of the frequency response of the neuron: for neurons preferring lower frequencies 

wider ranges were applied than for the higher frequency ones. Stimuli were delayed in equal 

steps in a random order with 20 repetitions for each condition. Positive ITDs corresponded to 

the signal leading at the contralateral ear. The duration of a single presentation was 300 ms, 

followed by a 100 ms silence period, resulting in a total stimulus duration of 170 s. 

For a large subset of cells an inverted rate-ITD function was obtained by inverting the polarity 

of the stimulus in the contralateral ear. To distinguish between the responses to the two 

stimuli we call the former “normal rate-ITD function” and the latter, “inverted rate-ITD 

function”. 
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Difcor 

To emphasize the fine structure component of the neuron’s ITD sensitivity we plotted difcor 

function (Joris 2003; Joris et al. 2006) when possible. This was achieved by subtracting 

responses of inverted rate-ITD function from normal rate-ITD function.  

 

Rate vs interaural correlation functions 

Rate vs interaural correlation functions were obtained from a binaurally presented broadband 

Gaussian noise (50 – 3000 Hz bandwidth, 300 ms burst for each condition, 20 different 

correlation values (conditions) and 20 repetitions, total duration of stimulus - 162 s). For a 

detailed explanation of the method see Louage et al. (2006). Briefly, a single noise token is 

generated by mixing two independently drawn Gaussian broadband tokens. The same 

stimulus is always presented at the contralateral side. For the ipsilateral ear for every new 

condition a new noise token is generated by mixing the same two independent tokens, but 

with varying weighting coefficients. The difference between the coefficients of contralateral 

and ipsilateral presentation composites determines the normalized correlation between the 

stimuli and covers the full correlation range from ρ = -1 (anti-correlated) to ρ = 1 (correlated). 

The correlation stimulus was presented at the best ITD.  

 

Admission/selection criteria for the data 

 

Criteria for a successful MSO juxtacellular recording 

Field-potential reversal is an established method for detecting the MSO somatic layer 

(Biedenbach and Freeman 1964; Galambos et al. 1959; Mc Laughlin et al. 2010). In all our 

experiments MSO was approached from the ventrolateral to the dorsomedial direction. 

During this approach the polarities of the field potentials indicated the location of electrode 

as follows: 1) the ipsilateral potential was negative, indicating a local sink, and the 

contralateral potential was positive before reaching the somatic layer; 2) the ipsilateral 

potential reversed as the electrode entered the somatic layer; 3) while in the somatic layer 

the field potentials had the same polarity; 4) leaving the somatic layer resulted in the reversal 

of the contralateral field potential. We considered a cell an MSO cell if the field potentials 
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were of the same polarity just before the electrode made contact with the cell. In the same 

animal it was always verified that further penetration led to a second reversal. For thirty-three 

experiments, the electrode penetration track was marked using either biocytin, Alcian blue 

or DiI at the end of the experiment. All sixteen penetrations that could be recovered 

histologically indicated that electrodes penetrated the somatic layer of the MSO.  

Juxtacellular recordings have been shown to be suitable for resolving both sub- and 

suprathreshold activity of a single MSO unit (van der Heijden et al. 2013). The resistance 

between the electrode and the cell varied across different cells. Only those recordings for 

which the initial seal resistance was between 20 and 70 MΩ were accepted as valid 

juxtacellular recordings. 

  

Baseline-based criteria for recording stability 

All the stimuli included either one- or two-second duration pre- and post-stimulus baselines. 

We used these baseline periods to evaluate the stability of the recordings over time (Fig. 1). 

Stable recordings are indispensable when attempting to predict one set of responses from 

another. A power spectrum was generated for each baseline period of all the recordings. Most 

neural events are in the millisecond range, resulting in a peak of the power spectrum at 

around 1 kHz (Fig. 1BI). For all the recordings from a cell we determined the baseline power 

spectra amplitudes at 1 kHz and then plotted them sequentially (from the first recording till 

the last one). This allowed us to observe whether there were any changes in the recorded 

spontaneous activity of the cell which in turn represents the recording stability (Fig. 1C). 

Recordings were considered stable if during the time course the power spectra amplitudes 

did not deviate more than 5 dB from an arbitrary threshold, which was different for each cell. 

The threshold was chosen in such a way that the 5 dB window would include the largest 

number of sequential recordings from a cell. These recordings were used for further analysis. 

Field recordings, unsuccessful juxtacellular configuration with a cell and unknown objects that 

increased electrode resistance, but showed no signs of electrophysiological activity, exhibited 

no peaks in their baseline power spectra (Fig. 1BII, 1BIII). These cases were excluded from 

further analysis. 
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Criteria for data quality 

To confirm that recordings were made from ITD-sensitive cells we performed a single-sided 

ANOVA test (function anova1 in MATLAB) for the rate-ITD functions. P < 0.01 was considered 

statistically significant. Those cells for which the responses had significant differences in their 

means of different conditions (time delays), were considered binaural and the data were used 

for further analysis. These criteria were applied only to difcor data (see below). 

To eliminate possible stimulus-independent changes in a cell’s response to noise delay stimuli 

we set an additional criterion for the difcor functions. After fitting a difcor with a Gabor 

function (see below) we estimated the ratio between the offset and the amplitude of the 

envelope and set the threshold for this ratio at 0.2. This binaural consistency criterion selects 

against cases in which the cell response changed between direct and inverted noise delay 

stimuli presentations. Some of the cells showed highly reduced ITD sensitivity or changes in 

the spontaneous firing rates, which will affect difcor. Only difcors for which these ratios were 

<0.2 were used for further analysis.  

For rate vs interaural correlation functions we used a ‘dynamic range’ criterion. The dynamic 

range of a correlation function was defined as the difference between the average spike rates 

at the three highest stimulus correlation values and the average spike rate for the five 

correlation values centered around ρ equal to zero. The rationale behind this criterion was to 

discern the cells with poor response to the stimulus and exclude them from predictions that 

were based on the rate vs interaural correlation functions without excluding the cells which 

could be envelope-sensitive. After comparing the variances accounted for by the power 

function fit on the data, we determined a reasonable dynamic range threshold to be five 

spikes/s. Rate vs interaural correlation functions with a dynamic range below five spikes/s 

were considered unreliable for prediction modelling and were not considered further. 
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Figure 1. Evaluating recording stability using pre-stimulus baselines.  

(A) Three examples of recorded pre-stimulus baselines illustrating the juxtacellular 

configuration (I),  reduced contact  (II) and lack of direct contact (field recording) (III). (B) 

Power spectra of the waveforms shown in A. Spontaneous MSO activity comes about as a 

peak at around 0.5 kHz on the power spectrum (BI). This peak is not present when either the 

contact with the cell is poor (BII) or the electrode is not in contact with a cell (BIII). Grey line 

shows the fit on the power spectrum between 0.1 and 2 kHz. (C) Changes in the power 

spectrum value at 1 kHz in the time course of recordings from one MSO cell. The total duration 

of the electrode contact with the cell was 155 minutes. Horizontal dashed lines indicate a 5 

dB window used as a criteria of recording selection. Arrows with numbers indicate which 

baselines from the time course are shown in AI and AII. The measured resistances for 

configurations I, II and III were 36, 21 and 7 MΩ respectively. 
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Data analysis 

 

Event detection 

Action potential detection was done offline based on the statistics of the negative peak values 

in the derivative of recorded waveforms (van der Heijden et al. 2013). Only if the histogram 

of local minima exhibited a clear bimodality, the separation between the modes defined a 

threshold derivative which could be used to identify the action potentials; if the distribution 

did not show a clear bimodality, the recording was rejected from further analysis. The 

characterization of the monaural inputs (which were used to make the binaural predictions) 

is based on the long-term spectra of subthreshold responses. We therefore also restricted the 

analysis of binaural responses to the sustained part of the responses, cutting out the first 10 

ms of the waveforms obtained with binaural stimulus presentations. 

 

Fitting functions 

Binaural data were fitted using two functions as described below. Such fits allowed us to 

compare measured data with predictions. Every fit was optimized using the least squares 

method (function lsqcurvefit in MATLAB) and the variance accounted for was estimated for 

each instance. A one-dimensional Gabor function (here simply referred to as Gabor function) 

has been used in fitting binaural models (Leibold and van Hemmen 2005) and data (Franken 

et al. 2014) before.  

 

Linear representation of monaural inputs  

Response amplitude and phase were determined by Fourier analysis of the recorded 

responses to monaural zwuis tone complexes, leading to a representation of the effective 

monaural input to the neuron that is a linearly filtered version of the stimulus. Statistical 

significance of each spectral component was tested by a Rayleigh test (p < 0.001) applied to 

the phase values obtained by segmenting the response waveform into 10 equally long, non-

overlapping segments (Versteegh and van der Heijden 2012). The significant frequency 

components were plotted as a relative signal gain over the stimulation intensity. The phases 
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of significant components were presented versus the respective stimulus components. 

Normalized cross-correlation functions were obtained from these monaural transfer 

functions by computing the normalized cross-spectrum and converting it to the time domain 

by a Fourier transform. More information about stimulus generation, analysis and 

interpretation of results is provided in van der Heijden and Joris (2006); Versteegh and van 

der Heijden (2012). In order to check the effects of monaurally evoked action potentials on 

the predictions we compared predictions from monaural responses with truncated action 

potentials with predictions from responses with action potentials included. The presence of 

the relatively small numbers of monaurally evoked action potentials, which contributed on 

average at most 0.5 % of the whole response duration, did not affect the cross-spectrum and 

predictions. The predictions presented in this study were therefore based on the waveforms 

with the spikes present. 

 

Gabor fit 

Difcor functions were fitted with a Gabor function 
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and p is the additional parameter, the power of the modifying function. This modification 

results in an asymmetric envelope of the fit, which more faithfully represents the measured 

rate-ITD functions with their “rectified” appearance. 

 

Power function fit 

Rate vs interaural correlation functions were fitted using a generalized version of the power 

function (Shackleton et al. 2005), where the new addition is the ‘parabola’ component with 

its weighting factor C. This function can also be used to fit non-monotonic rate vs interaural 

correlation functions that have an envelope or "polarity-tolerant" component (Joris 2003). 

  ( ) 21
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with A, B, C, and p corresponding to the offset, amplitude, weighting parabola coefficient and 

power parameters, respectively. 

 

Results 

We presented multitone stimuli to juxtacellularly recorded MSO cells in anesthetized 

Mongolian gerbils to test to what extent binaural responses could be predicted from 

monaural responses. The stimuli were presented at 20-40 dB SPL above hearing threshold to 

ensure that MSO neurons were most sensitive to frequencies close to their characteristic 

frequency (CF). Best frequencies (BFs) were on average 0.95 ± 0.32 kHz (mean ± standard 

deviation; range 0.27 - 1.35 kHz; N = 60). All MSO neurons in this study are therefore ‘low-

frequency’ neurons. The low intensity of stimuli resulted in subthreshold-dominated 

monaural responses and varying response types upon binaural stimulation. Binaural 

responses of the neurons were evaluated only on the basis of action potentials. We looked 

into the extent to which an MSO neuron functions as a cross-correlator of its monaural inputs 

by cross-correlating its monaural responses and comparing predicted with measured binaural 

responses. As further detailed in the Methods, we used two different methods, difcor and 

rate-ITD (rITD) functions, to predict binaural ITD sensitivity from monaural responses, 

depending on the available data. Difcor predictions look at the neuron’s sensitivity to the fine 
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structure of the stimulus. Rate-ITD functions show a neuron’s general ITD sensitivity 

regardless of which frequencies the neuron responds to. First we present the method of difcor 

prediction and its comparison with the data and after that the data and predictions of rITD 

functions.  

 

Linearized rate-ITD curves 

Wideband rITD functions of binaural neurons generally show a mix of sensitivity to stimulus 

fine structure and envelope, and the two contributions can be largely separated by 

subtracting and summing the curves obtained with different interaural polarities (Joris 2003). 

Denoting the regular and polarity inverted versions of the rITD curve by rITD+ and rITD−, 

respectively, their difference rITDDIFF isolates the fine structure component of ITD sensitivity. 

It is a linearized version of the rITD function in that it asymptotes to zero for large positive 

and negative ITD values and has a more symmetrical envelope than the raw rITD+ and rITD− 

(Joris 2003; Joris et al. 2006). In correlograms of monaural responses, the difference 

correlogram ("difcor") closely resembles the cross-correlation function of the effective 

(filtered) waveforms to the two ears (Mc Laughlin et al. 2014), and this resemblance 

motivated the current approach. We derived the transfer characteristics of the monaural 

inputs to each MSO neuron from its subthreshold response to monaural tone complexes, 

computed the cross-correlation function and compared it to the measured rITDDIFF data (see 

Methods). 

From a total of 87 cells, both normal and inverted rITD functions were obtained, allowing an 

analysis of the fine-structure, oscillatory component of wideband ITD tuning using rITDDIFF 

curves. Out of these 87 cells, 62 passed the statistical criteria for binaurality (ANOVA; p < 

0.01). Application of the binaural consistency criterion (See Methods, Criteria for data quality) 

led to a collection of 47 cells from 31 animals. 
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Figure 2. Predicting difcor of 

an MSO neuron.  

(A) Power spectrum of 

irregular tone complex 

stimulus (‘zwuis’). The 30 

components have equal 

magnitudes and span 3 kHz 

bandwidth in irregular 

intervals. (B) An excerpt of the 

zwuis stimulus waveform - the 

result of mixing the 30 

frequency components shown 

in A. (C) A typical MSO neuron 

response, recorded 

juxtacellularly, to a noise 

delay stimulus. Stimulus starts 

at 0 ms time point (with a 3 ms 

ramp) and lasts for 300 ms 

(grey bar). The highlighted 

segment is shown separately 

in D. (D) A segment from a juxta-cellular recording of an MSO neuron, shown in C. The two 

largest events are action potentials (arrows) that were identified offline by thresholding the 

derivative of the response. (E) MSO neuron’s frequency response to monaural zwuis (tone 

complex) stimulation. Blue and red colors represent ipsi- and contralateral ear responses, 

respectively. The circles are data points, the lines interpolated values. Best frequencies (BF) 

of contralateral (0.54 kHz) and ipsilateral ear (0.51 kHz) are indicated with an arrow. The 

response magnitudes are estimated with respect to the magnitude of the stimulus SPL (30 dB 

for this cell) and normalized to the dominating monaural response. Black line represents the 

cross spectrum of monaural responses (see Results). (F) Phases to which the neuron ‘locks’ 

monaurally for each frequency component. Color coding is the same as in E. The circles are 

data points, the lines interpolated values. Black line shows the phase difference (contra minus 

ipsi). (G) Cross-correlation function (“crosscorr”) of the neuron, showing how ipsilateral and 

contralateral ear transfer functions correlate linearly. The cyan bar indicates the peak of the 

function – the expected best ITD (0.13 ms). (H) Rate-ITD functions. The stimuli presented to 

both ears had either the same (‘normal’, dark blue line) or opposite polarity (‘inverted’, dark 

yellow line). (I) Comparison of measured and predicted difcor functions. The circles represent 

a difcor function which is obtained by subtracting the inverted rate-ITD function from the 

normal rate-ITD function. The prediction (solid black line) is estimated by scaling the crosscorr 

in ordinate direction (indirect conversion from cross-correlation to spike rates) to fit the difcor 

points by least squares. Note that such scaling does not alter the extrema locations of the 

prediction. Cyan bar indicates the expected best ITD (0.13 ms). The best ITD of the difcor was 

0.12 ms. The data variance explained by the model was 91%. All data are from the same cell. 
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Responses to monaural stimulation can be used to predict fine structure 

sensitivity to ITDs 

The basis of our model is the responses of MSO cells to monaurally presented tone complexes 

(zwuis stimulus) presented at either 20, 30 or 40 dB SPL per tone. Fourier analysis of the raw 

waveforms, which were dominated by subthreshold EPSPs, yielded a representation of the 

monaural response characteristics of each ear in terms of linear transfer functions (see 

Methods, Linear representation of monaural inputs). 

Figure 2A shows the power spectrum of the zwuis stimulus with 30 equal amplitude 

components spaced irregularly within a 3 kHz bandwidth. A segment of the zwuis waveform 

is shown in Figure 2B. An example of the response of a juxtacellularly recorded MSO neuron 

to a noise delay stimulus is depicted in Figure 2C. In this example the stimulus started at 0 ms 

time point with a 3 ms ramp and lasted for 300 ms (grey bar), which was followed by a 100 

ms silent period. The highlighted segment of the recording is expanded and shown in Figure 

2D. During stimulus presentation the neuron responded with action potentials (Fig. 2D, 

arrows). Figure 2E (circles) shows the frequency responses obtained from contralateral (red) 

and ipsilateral (blue) stimulation for a typical MSO cell. These responses provide a measure 

for the phase-locked response of the neuron to the 30 stimulus components. The peak 

response is the BF. For the neuron presented in Figure 2 the BF of the contralateral ear was 

0.51 kHz and that of the ipsilateral ear 0.53 kHz. The depicted frequency responses can be 

seen as linear transfer functions from the ear canal to the subthreshold responses of the 

neuron. 

The corresponding phase curves are shown in Figure 2F. The phase difference (contralateral 

minus ipsilateral) is plotted as a black solid line. For each monaural response a complex 

transfer function was calculated. A cross spectrum was then produced by multiplying the 

contralateral ear transfer function with a complex conjugate of the ipsilateral ear transfer 

function (Fig. 2E, solid black line). The inverse Fourier transform of the cross spectrum yielded 

the cross-correlation function or “crosscorr” (Fig. 2G). Such a function represents the 

normalized correlation between the two linearized monaural responses. The peak of the 

crosscorr is indicated by the cyan line (0.13 ms). 

Normal and inverted rITD functions (Fig. 2H) were measured by varying the ITD of a wideband 

multitone stimulus. The stimulus of the normal rITD function was identical in the two ears 
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(apart from the ITD); the stimulus for the inverted rITD function was obtained by inverting the 

stimulus polarity in one ear. Subtraction of the inverted rITD function from the normal one 

resulted in a difcor function (Fig. 2I, circles). The difcor function reflects the dependence of 

ITD sensitivity on the fine structure, and has a tendency to linearize the dependence on 

interaural correlation (Joris 2003). Binaural responses were determined using only action 

potentials. Since there is no direct way to convert cross-correlation values into spike rate 

differences, we scaled the cross-correlation function by a single factor for optimal overlap 

with the measured difcor function in the least-squares sense (Fig. 2I, black line). Note that 

such rescaling does not affect the shape of the function or the location of its extrema. The 

cyan bar in Figure 2I indicates a close match to the best ITD of Figure 2G and to the measured 

best ITD of this cell, which was 0.12 ms.  

Figure 3 shows monaural and binaural responses with the predictions for six additional MSO 

neurons (1-6). The color scheme and the methods are the same as in Figure 2. Monaural 

response magnitudes (A) and their phases (B) were used to produce a difcor prediction (D, 

solid line) as described above. The predictions were compared with the measured difcor (D, 

circles) by estimating the variance of the data accounted for by the model (percentages in D). 

For these six cells the variances accounted for ranged from 72% to 96%. Figure 3C shows the 

phase difference dependence on the frequency. The irregular shapes of many of these curves 

shows that the relation between the two inputs is not a simple delay, which would yield a 

straight line through the origin. Similar irregularities were previously found in the MSO of the 

gerbil (Fig. 10 of (Day and Semple 2011); Figs. S4 and S5 of (Day and Semple 2011); van der 

Heijden et al. (2013)) and in the MSO of the cat (Fig. 10C of Yin and Chan (1990); Figs. 1-4 of 

(Batra et al. 1997a). Some of the pairs of magnitude-frequency curves in Fig. 2A show an 

interaural difference in frequency tuning, again showing that a simple delay is not sufficient 

to describe the interaural disparity of the inputs. A detailed analysis of asymmetric frequency 

tuning is beyond the scope of the present study. 

For a more exhaustive comparison between predictions and data we fitted both to a standard 

Gabor function (Fig. 4A, solid black line) using least squares (see Methods). The Gabor 

function is a sinusoid multiplied by a Gaussian envelope. The binaurally relevant parameters 

of the Gabor function are the starting phase and oscillation frequency, and the temporal 
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position of the envelope peak and its width. The best ITD can be derived from these four 

parameters.  

 

Figure 3. Examples of difcor predictions for six MSO cells.  

Magnitudes (A) and phases (B) of responses to monaural stimulation together with phase 

differences (C) and measured difcors (circles, D) and their predictions (solid line, D) for six 

MSO neurons (1-6). Color coding and methods are the same as in Figure 2. For cells 2-6 the 

axes scaling is the same as for cell 1. The percentage values in D indicate the variance 

explained by the model on the measured data. Best frequencies for contralateral and 

ipsilateral ear and best ITDs for each cell respectively are as follows: Cell 1 – 0.54 and 0.61 

kHz, 0.47 ms; Cell 2 – 0.56 and 0.54 kHz, 0.14 ms; Cell 3 – 0.65 and 0.53 kHz, 0.18 ms; Cell 4 - 

0.80 and 0.84 kHz, 0.21 ms; Cell 5 – 0.62 and 0.89 kHz, 0.28 ms; Cell 6 – 0.29 and 0.24 kHz, 

0.28 ms.  

 

Figure 4B-F shows correlations between the parameters of fits on data and on predictions: 

best ITD (Fig. 4B), frequency (Fig. 4C), phase (Fig. 4D), envelope peak time (Fig. 4E) and 

envelope width (Fig. 4F). DC offset and envelope size are not informative for comparisons 
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between data and model and are thus not included in this study. Pearson’s correlation 

coefficient is indicated in the top left of each plot. Grey lines are the identity lines. Note that 

the model is systematically predicting a somewhat wider envelope of the response than seen 

in the data (Fig. 4F). Apparently the central peak of a difcor is higher (relative to the secondary 

peaks) than what a cross-correlation of monaural inputs would produce (see Fig. 3D, 1-4). The 

other parameters show no obvious biases. 

 

Figure 4. Comparing model and difcor fit parameters on a population level.  

(A) Data and models were fit with a Gabor function (black line) which is defined by a phase 

offset, oscillation frequency, full width at half maximum of the envelope (black arrows) and 

envelope peak time (black dot). Best ITD is determined by the starting phase and oscillation 

frequency. Two additional parameters – offset and amplitude (distance between envelope 

peak and trough) are not indicated in the picture as they are not considered in this study. (B-

F), Scatter plots of Gabor fit parameters (B – best ITD; C –frequency; D – starting phase; E – 

envelope peak time; F – full width at half maximum of the envelope) for difcors and their 

predictions of the MSO neurons for which difcor predictions were available (N = 47). Grey 

lines indicate identity. Values in each plot show the Pearson’s correlation coefficient.  
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Rate-ITD function predictions 

From a total of 84 cells for which responses to noise with varied interaural correlation were 

recorded, 32 (from 24 animals) passed the dynamic range criterion for rate vs interaural 

correlation (rIC) functions (see Methods, Criteria for data quality). Most cases that did not 

pass the criterion had low overall spike rates at the moderate intensities used, which did not 

allow a sufficiently accurate characterization of the rIC functions.  

 

Responses to monaural stimulation can also be used to predict neuron’s 

rate-ITD function 

When possible, we recorded the response of MSO neurons to changing interaural correlation 

using a noise-mixing technique (see Methods). The resulting rIC function allowed us to predict 

the rITD function. An example is shown in Figure 5. The waveforms presented to the ipsi- and 

contralateral ear for this stimulus are illustrated in Figure 5A. The stimulus is anti-correlated 

when the polarities are opposing (left), uncorrelated when the polarities are unrelated in any 

systematic way (middle), and correlated when the polarities are identical (right). The small 

shift between waveforms in the correlated case was imposed intentionally for illustrational 

purposes to demonstrate that both stimuli are identical. Figure 5B-D show the same 

information as described for Figure 2, namely the monaural frequency (Fig. 5B) and phase 

(Fig. 5C) responses and the resulting cross-correlation function (Fig. 5D). Figure 5E depicts the 

measured relationship between the output rate of the neuron and the correlation between 

left and right ear stimuli; solid line is a power function fit (see Methods). For all the cells the 

increase in correlation from uncorrelated (ρ = 0) to perfectly correlated (ρ = 1) resulted in an 

increase in firing rate while 7 out of 32 cells showed higher output rates for anti-correlated 

stimuli (ρ = -1) than for uncorrelated ones (ρ = 0). Such non-monotonic behavior indicates a 

"polarity-tolerant" or envelope component in the response. An example of a “polarity-

tolerant” cell is shown in Figure 6C4. For 28 rIC functions the power fit p parameter values 

were 3.1 ± 1.4 (mean ± standard deviation; range 1.3 - 6.9).  

Using the relation between the interaural correlation and output rate (Fig. 5E), we translated 

the crosscorr function into a predicted (expected) rITD function (Fig. 5F, solid line) and 

compared it with the measured one (Fig. 5F, circles). For conversion from interaural 
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correlation responses we used the power fit function. The expected best ITD for the cell was 

0.15 ms, while the noise delay function peaked at 0.14 ms.  

Four additional examples of rate-ITD function predictions are shown in Figure 6. The color 

scheme is the same as for Figure 5. For each cell (1-4), magnitudes (Fig. 6A) and phases (Fig. 

6B) of monaural responses are plotted together with rIC functions (Fig. 6C). Figure 6D shows 

the measured (circles) and predicted (solid line) rate-ITD functions. Values indicate the 

percentage of the variance of the data accounted for by the prediction, ranging from 46% to 

94%. For the assessment of the accuracy of the prediction we used a modified Gabor function 

as a fit. Since rITD functions, unlike difcors, do not have comparable sizes of peaks and troughs 

owing to the spike rates being only positive, we modified the Gabor function by adding a 

power parameter p, analogous to the power value in the functions used for fitting the rIC 

function data. A value p = 1 correspond to an "undistorted" Gabor function; increasingly 

higher values of p corresponds to an increasing degree of "rectification" by enhancing the 

peaks and reducing the troughs. We fitted both the data and predictions with this modified 

Gabor function. Some of the rITD functions had only one peak (or trough) across the 

measured ITD range, and fitting such data with the modified Gabor fit was over-determined 

because no envelope could be meaningfully determined. For that reason we excluded 9 cells 

from the Gabor parameter comparison, but we did include them in the best ITD comparison. 

Figure 7 compares the parameters of the fits for the data and predictions: the best ITD (Fig. 

7A), frequency (Fig. 7B), phase (Fig. 7C), power value (Fig. 7D), envelope peak (Fig. 7E) and 

envelope width (Fig. 7F). Phases and frequencies once again showed the strongest 

correlations, while the envelope width, the worst. That is most likely due to the Gabor fit 

having difficulties in finding the most suitable envelope for rITD functions since they show 

less oscillatory behavior than difcors; note that the biggest discrepancies arise for the values 

of the largest envelope widths on the data fits. The largest outlier in Figure 7D and two largest 

outliers in 7E and 7F come from the same pair of cells. The underlying cause of the parameter 

mismatch for these cells is the discrepancies between locations of secondary peaks in 

measured and predicted rITD functions. These discrepancies gave rise to Gabor fits with very 

different envelopes which resulted in envelope-related parameter mismatch (power, 

envelope peak and envelope width). The Pearson’s correlation coefficient (r = 0.61) in Figure 

7D is reported with the outlier being excluded. We found that the underestimation of the 
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envelope width (Fig. 7F), rightmost points) happened only for the cells with very low average 

best frequency (the mean of BFs for contralateral and ipsilateral ears); mean BF for those cells 

was below 600 Hz.  

Figures 4B and 7A show the relationships between the measured and predicted best ITDs 

from difcor (Fig. 4B, N = 43) and rITD functions (Fig.7A, N = 31). For difcor best-ITDs, the 

Pearson’s correlation coefficient was 0.92, the same as for rITD functions. We estimated 

absolute mismatches between the predicted and measured best ITDs; on average they were 

43 ± 35 (standard deviation, s.d.) µs and 50 ± 37 µs for difcor and rITD function predictions, 

respectively. 

Discussion 

 

Summary of findings 

We recorded sub- and suprathreshold responses of MSO neurons to wideband stimuli at 

moderate levels. The cross-correlation functions of monaural, subthreshold-dominated 

responses were used to directly predict the binaural rITDDIFF data (Fig. 2) and the rITD function 

data by incorporating the nonlinear relation between interaural correlation and firing rate, 

measured with a mixed-noise technique (Fig. 5). Predicted ITD sensitivity was compared with 

the measured responses through a standard fitting function. We found that cross-correlation 

accurately accounted for binaural temporal parameters (phase and frequency), but did less 

well reproducing the exact envelope of measured ITD sensitivity functions. 

 

Predicting ITD tuning by the cross-correlation of monaural inputs 

Best ITDs were accurately predicted from cross-correlating subthreshold monaural inputs 

(Fig. 4B and Fig. 7A), in agreement with previous work based on monaurally evoked action 

potentials (Goldberg and Brown 1969; Moushegian et al. 1975; Spitzer and Semple 1995; Yin 

and Chan 1990) and subthreshold responses (van der Heijden et al. 2013). Mismatches 

between predicted and measured best ITDs were not systematic and generally smaller than 

50 µs. Based on physiologically-relevant ITD range measurements (Maki and Furukawa 2005),  
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Figure 5. Predicting binaural responses of an MSO neuron.  

(A) Excerpts of stimulus waveforms with varied interaural correlation when the presentations 

between ipsilateral and contralateral ears are anti-correlated (left), uncorrelated (middle) and 

correlated (right). The slight mismatch between waveforms in the example of correlated 

stimuli was imposed only for illustrational purposes. (B) Frequency response of an MSO 

neuron to monaural zwuis stimulation. Blue and red circles represent ipsilateral and 

contralateral ear responses, respectively. Best frequencies of the contralateral and ipsilateral 

ears were 1.23 kHz and 1.33 kHz, respectively. The response magnitudes are estimated with 

respect to the magnitude of the stimulus SPL (20 dB for this cell) and normalized to the 

maximum of the dominating monaural response. Black line represents the cross spectrum of 

monaural responses (see Results). (C) Phases to which the neuron ‘locks’ monaurally for each 

frequency component. Color coding is the same as in A. Black line shows the phase difference 

(contra minus ipsi). (D) A cross-correlation function (“crosscorr”) of the neuron. A crosscorr 

shows how ipsilateral and contralateral ear transfer functions correlate linearly. The cyan bar 

indicates the peak of the function (0.15 ms). (E) Neuron’s response to noise with varying 

interaural correlation (see Methods). Data points are indicated as yellow circles and the solid 

line is a power fit. (F) Comparison between the measured and the predicted ITD rate functions 

of the neuron. Using the spike rate values for each interaural correlation (E) the cross-

correlation function (D) was converted into a rate-ITD function prediction (black solid line). 

The circles represent measured data; best ITD of the neuron was 0.14 ms. Cyan bar indicates 

the expected best ITD (0.15 ms). All data is from the same cell. 
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Figure 6. Examples of rate-ITD function predictions for four MSO cells. 

For four cells (1-4), magnitudes (A) and phases (B) of monaural responses together with 

interaural correlation sensitivity (C) are used to predict the rate-ITD function (D, solid line) 

and compare it with the measured one (D, circles) (see Figure 5 and Results for more details). 

The solid line in C is a power fit function. Color coding is the same as in Figure 5. The 

percentage values in D indicate the variance of the measured data explained by the model. 

Best frequencies for contralateral and ipsilateral ears, best ITD and power value of power fit 

(p, see Methods) for each cell respectively are as follows: Cell 1 – 0.54 and 0.61 kHz/0.47 

ms/4.38; Cell 2 – 0.49 and 0.47 kHz/0.3 ms/3.25; Cell 3 – 0.33 and 0.36 kHz/0.2 ms/3.12; Cell 

4 – 1.23 and 1.31 kHz/0.08 ms/0.68. Cell 1 is also shown in Figure 3 as Cell 1. Cell 4 is an 

example of an MSO neuron which is prominently sensitive to the envelope component of the 

stimulus.  

 

a 50-µs delay at low frequencies translates into sound source angles of 20°-30°, comparable 

with the minimum resolvable angle in gerbils, which is at least 25° (Carney et al. 2011). Thus 
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our overall prediction accuracy is comparable with the gerbil's behavioral acuity in sound 

localization. 

 

Figure 7. Comparing model and rate-ITD function fit parameters on a population level.  

(A-F) Scatter plots of power-modified Gabor fit parameters (A – best ITD; B – frequency; C – 

starting phase; D – power; E – envelope peak time; F - full width at half maximum of the 

envelope) for rate-ITD functions and their predictions of the MSO neurons for which the 

predictions and fits were available (N = 32 for A, N = 23 for B-F). Grey lines indicate identity. 

Values in each plot show the Pearson’s correlation coefficient r. Correlation coefficient in D is 

reported with the outlier excluded. 

 

Our rITDDIFF functions had a damped oscillatory shape that was well captured by Gabor 

functions and that resembled rITDDIFF functions obtained in the inferior colliculus of cats (Mc 

Laughlin et al. 2008). Oscillation rate, oscillation phase offset and envelope position of the 

rITDDIFF functions were well predicted (Fig. 4C-E). Envelope width was systematically 

overestimated (Fig. 4F), corresponding to a slight underestimation of the main peak height in 

individual cases (Fig. 3). The underestimation may reflect the failure of rITDDIFF functions to 

fully linearize the relation between stimulus correlation and spike rate. When this relation is 
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highly supralinear (power>>2), the subtraction of normal and polarity-inverted curves will 

flatten, but not fully straighten it. Such higher p values were regularly encountered in the 

present study (see Results), and the range of p values was similar to that found in the IC of 

the guinea pig (Shackleton et al. 2005) and cat (Mc Laughlin et al. 2014). Another, related 

factor that has likely contributed to the underestimation of the central peak is the sharpening 

of phase locking in the cochlear nucleus compared to the auditory nerve (AN). Cross-

correlation functions of the effective stimuli produce accurate predictions of linearized 

correlograms (difcors) in the AN, but are often too symmetric to match well the difcors from 

bushy cells with their sharp central peak (Joris et al. 2006; Louage et al. 2005). Figure 9C of 

Louage et al. (2005) shows the sharpness of the central peaks that cannot be matched by 

Gabor functions (compare our Figure 3). Thus, the mismatches in Figure 3D, rather than 

undermining the adequacy of coincidence detection to characterize MSO responses, reveal 

the limitations of modeling monaural inputs by a linearly filtered version of the acoustic 

stimulus. Overcoming this limitation would require an event-based analysis in which the 

cross-correlation functions are replaced by correlograms, but this is beyond the scope of the 

current study. 

The raw wideband rITD functions (Fig. 5 and Fig. 6) had a damped oscillatory shape similar to 

the rITDDIFF functions, but in addition showed a substantial degree of "rectification": a 

selective enhancement of peaks and flattening of troughs. They strongly resemble wideband 

rITD functions in cat MSO (Yin and Chan 1990). Comparison of modified Gabor fits with a 

power parameter that captured the amount of nonlinearity (Fig. 7) revealed that the 

monaural predictions accounted well for the starting phase and oscillation rate (Fig. 7B-C), 

but did less well predicting the envelope characteristics (Fig. 7D-F) The poorer match of the 

envelope parameters may originate in part from using more fit parameters and the risk of 

"over-fitting" the data; in particular, envelope width (Fig. 7F) and power value (Fig. 7D) likely 

interact, as they both control peakedness. This tradeoff may account for the spread in Fig. 7D-

F. Interestingly, the systematic underestimation in peakedness in the rITDDIFF predictions (Fig. 

3C and Fig. 4F) did not reoccur in the predictions of the raw rITD functions, indicating that our 

use of rIC functions (Fig. 6C) adequately captured the nonlinearities that had limited the 

rITDDIFF predictions. This finding is the physiological counterpart of the successful use of 
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interaural correlation in modeling a large body of psychophysical data (Colburn 1996; Sayers 

and Cherry 1957). 

 

Lack of evidence for asymmetries in processing binaural inputs 

The main aim of our study was to test to what extent binaural responses could be predicted 

from monaural responses. The monaural responses are dominated by fast fluctuations, which 

are the excitatory EPSPs, but additionally, IPSPs are present as well (Franken et al. 2015; 

Grothe and Sanes 1994; Roberts et al. 2013; 2014). These monaural synaptic inputs are 

modified as they interact with voltage-dependent ion channels (Franken et al. 2015; Khurana 

et al. 2011; Mathews et al. 2010; Scott et al. 2010). Even though our somatic recordings do 

not allow us to further dissect the monaural signals, the possibility to control the ipsi- and 

contralateral inputs separately, in combination with the anatomical segregation of the 

excitatory inputs provides a unique opportunity to study the somatic integration of these 

monaural inputs.  Brand et al. (2002) observed a broadening of the window for ITD detection 

and a shift of best ITDs towards 0 µsec in the presence of the glycine receptor antagonist 

strychnine. They proposed a model in which contralateral IPSPs affected the early phase of 

ipsilateral EPSPs more than their late phase. Subsequent modeling and experimental studies 

showed that to create the differential impact on early and late phases of the EPSP, fast 

kinetics and/or high conductance were needed for the glycinergic inputs, and it is still debated 

to what extent these requirements match the physiological characteristics of these inputs 

(Leibold 2010; Myoga et al. 2014; Roberts et al. 2014; Zhou et al. 2005). Recently, Franken et 

al. (2015) presented evidence suggesting that the strychnine-induced shift originally observed 

by Brand et al. (2002) and Pecka et al. (2008) was caused by an off-target effect on Ih channels. 

The experiments presented here also do not support this well-timed inhibition theory, since 

we did not find evidence for the predicted differential filtering of ipsi- and contralateral inputs 

during their interaction. Our ability to predict binaural responses from monaural responses 

argues against strong shifts resulting from nonlinear interactions between ipsi- and 

contralateral inputs. The successful prediction of entire rITD functions confirms and 

strengthens previous evidence in favor of coincidence detection as the basic mechanism of 

ITD tuning (Goldberg and Brown 1969; Yin and Chan 1990), as originally proposed by Jeffress 

(1948), even though this apparently simple scheme may involve complex interactions 
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between Ih, Kv1, Na channels and both excitatory and inhibitory conductances (Khurana et al. 

2011; Roberts et al. 2014; Scott et al. 2010), and we cannot exclude that some of the small 

deviations we found in our predictions are caused by these interactions (Franken et al. 2015). 

Similarly, in vivo recordings did not yield evidence for asymmetries in the rising phase of EPSPs 

from either side (Franken et al. 2015; van der Heijden et al. 2013). Asymmetries in the origin 

of the axon, as proposed by Zhou et al. (2005), seem not to be borne out by the typically 

somatic axonal origin in most MSO neurons (Kuwabara and Zook 1999; Rautenberg et al. 

2009; Scott et al. 2007; Scott et al. 2005). Franken et al. (2015) found evidence for systematic 

shifts in ITD in some gerbil MSO neurons when cross-correlating monaural EPSP period 

histograms, showing that their ITD tuning often deviated from instantaneous coincidence 

detection. A direct comparison with their results is not easy, since they used high-intensity 

binaural beats at frequencies typically much below CF, whereas we used broadband stimuli 

at intensities not far above the absolute hearing threshold. 

 

Comparison to avian ITD tuning 

In overall methodology the present study resembles that of (Fischer et al. 2008; Fischer et al. 

2011) in the nucleus laminaris of the barn owl. Both studies used juxtacellular recordings to 

obtain a linear representation of monaural inputs, which in turn led to predictions of ITD 

tuning. The major common finding between the avian studies and our study is the successful 

prediction of ITD tuning from cross-correlating the monaural responses, indicating that 

nonlinear binaural interactions are unlikely to make a strong contribution to their ITD tuning. 

The major difference is the adequacy of a linear representation of the monaural inputs. The 

avian rITD functions are symmetric and lack the strong rectification and dominance of a 

central peak that characterizes the mammalian rITD functions. The comparatively linear 

character of the avian system may reflect both physiological and anatomical aspects (Macleod 

and Carr 2011). The high CFs of the avian AN fibers in the barn owl (up to 8 kHz) tend to 

linearize the neural representation of the acoustic of individual inputs, resulting in cycle 

histograms of high-CF avian AN fibers that are sinusoidal, i.e., faithfully reflect the stimulus 

waveform (Köppl 1997), and a similar faithfulness is preserved in the nucleus laminaris 

(Funabiki et al. 2011). In contrast, the lower-CF mammalian cycle histograms are strongly 

peaked in the AN and become further sharpened at the level of the cochlear nucleus (Joris et 
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al. 1994a). The sharpening and rectification is clearly visible in the periodograms of monaural 

MSO responses in van der Heijden et al. (2013). In the avian system the large number of 

monaural inputs to each nucleus laminaris neuron is likely to further linearize the neural 

representation of the monaural waveforms, in particular if the timing differs somewhat 

among individual inputs (Macleod and Carr 2011). In contrast, mammalian MSO neurons have 

a comparatively small number of monaural inputs (Couchman et al. 2010). 

 

Conclusion 

In sum, not only the best ITDs but the entire ITD tuning of MSO neurons in response to 

wideband sounds is well predicted by a straightforward cross-correlation of monaural 

responses. This supports Jeffress (1948) hypothesis that ITD sensitivity is realized by a simple 

coincidence detection of monaural inputs. The imperfections in the predictions most likely 

mainly originate from modeling the monaural inputs by the bandpass-filtered acoustic 

waveform: unlike the avian system, where the inputs carry a faithful representation of the 

(bandpass-filtered) acoustic waveform, monaural inputs to MSO show strong nonlinear 

distortion in the form of rectification and temporal sharpening. We conclude that an 

improved understanding of the major aspects of ITD tuning (temporal acuity, range of best 

ITDs, etc.) should not primarily be sought in the details of processing by MSO neurons 

themselves, but in a better characterization of the monaural inputs and their convergence 

onto MSO. 
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Abstract 

The relative arrival times of sounds at both ears constitute an important cue for localization 

of low-frequency sounds in the horizontal plane. The binaural neurons of the medial superior 

olive (MSO) act as coincidence detectors that fire when inputs from both ears arrive near 

simultaneously. Each principal neuron in the MSO is tuned to its own best interaural time 

difference (ITD), indicating the presence of an internal delay, a difference in the travel times 

from either ear to the MSO. According to the stereausis hypothesis, differences in wave 

propagation along the cochlea could provide the delays necessary for coincidence detection 

if the ipsi- and contralateral inputs originated from different cochlear positions, with different 

frequency tuning. We therefore investigated the relation between interaural mismatches in 

frequency tuning and ITD tuning during in vivo loose-patch (juxtacellular) recordings from 

principal neurons of the MSO of anesthetized female gerbils. Cochlear delays can be bypassed 

by directly stimulating the auditory nerve; in agreement with the stereausis hypothesis, 

tuning for timing differences during bilateral electrical stimulation of the round windows 

differed markedly from ITD tuning in the same cells. Moreover, some neurons showed a 

frequency tuning mismatch that was sufficiently large to have a potential impact on ITD 

tuning. However, we did not find a correlation between frequency tuning mismatches and 

best ITDs. Our data thus suggest that axonal delays dominate ITD tuning.  

 

Significance Statement 

Neurons in the medial superior olive (MSO) play a unique role in sound localization owing to 

their ability to compare the relative arrival time of low frequency sounds at both ears. They 

fire maximally when the difference in sound arrival time exactly compensates for the internal 

delay: the difference in travel time from either ear to the MSO neuron. We tested whether 

differences in cochlear delay systematically contribute to the total travel time by comparing 

for individual MSO neurons the best difference in arrival times, as predicted from the 

frequency tuning for either ear, and the actual best difference. No systematic relation was 

observed, emphasizing the dominant contribution of axonal delays to the internal delay.   
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Introduction 

 

ound sources that are not straight ahead or behind travel different distances to both 

ears. As a result, interaural time differences (ITDs) are created. These ITDs are an 

important cue to calculate the location of a sound in azimuth, and in humans ITD cues 

are more important than differences in intensity (Wightman and Kistler 1992). These 

computations are performed within the CNS, by a specialized system in the brainstem. A 

central role in these computations is played by the principal neurons of the medial superior 

olive (MSO), which are excited by inputs from spherical bushy cells (SBCs) of the cochlear 

nucleus from both the ipsi- and the contralateral side (Thompson and Schofield 2000). MSO 

neurons have a bipolar dendritic orientation, and the ipsi- and contralateral inputs are 

segregated to the two main branches of these neurons (Smith et al. 1993; Stotler 1953). They 

function as coincidence detectors; their firing probability depends on the relative arrival time 

of the inputs from both ears; when the inputs arrive coincidentally, the firing probability of 

the MSO neurons reaches its maximum (Goldberg and Brown 1969; Moushegian et al. 1975; 

Spitzer and Semple 1995; van der Heijden et al. 2013; Yin and Chan 1990). Importantly, this 

so-called best ITD (BITD) varies between cells, and is typically different from 0 µsec, indicating 

that the travel time for the signals from both ears to the MSO neurons must be different, with 

for most neurons a shorter travel time for ipsilateral than for contralateral signals (Crow et al. 

1978; Goldberg and Brown 1969; Moushegian et al. 1975; Pecka et al. 2008; Spitzer and 

Semple 1995).  

In a classical model by Jeffress, the internal delay was postulated to be entirely due to 

differences in axonal travel time (Jeffress 1948). Efforts to test this hypothesis have met with 

mixed success. In birds, there is good evidence that a difference in axonal delay can explain 

to a large part the distribution of BITDs (Carr et al. 2015; Seidl et al. 2014; Seidl et al. 2010). 

In mammals, evidence is more equivocal (Beckius et al. 1999; Karino et al. 2011; Smith et al. 

1993). An alternative to the Jeffress’ hypothesis is the so-called stereausis hypothesis, which 

proposes that differences in wave propagation time along the basilar membrane due to 

asymmetric innervation can provide the necessary delays (Bonham and Lewis 1999; 

Schroeder 1977; Shamma et al. 1989). This alternative is based on the finite speed of the 

S 
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traveling wave in the cochlea, which travels from the base to the apex. For low frequency 

waves in the apex, travel time differences between neighboring locations are large compared 

to typically measured BITDs. Hence, small interaural differences in characteristic frequency 

(CF), the frequency for which auditory thresholds are lowest, suffice to create substantial 

differences in internal delay (Bonham and Lewis 1999; Joris et al. 2006). Reports of frequency 

tuning for individual MSO neurons have shown anecdotal evidence for disparities in best 

frequency (van der Heijden et al. 2013). There is some evidence for frequency-dependent 

internal delays (Day and Semple 2011). However, because of the difficulties in recording from 

MSO neurons, in combination with the often sparse firing induced by monaural sound 

stimulation, a direct, comprehensive test of the stereausis hypothesis has not yet been 

performed in mammals.  

We recently showed that loose-patch (juxtacellular) recordings can be used to record synaptic 

inputs to the gerbil MSO neurons in vivo (van der Heijden et al. 2013). Gerbils have unusually 

good low-frequency hearing, and, in contrast to rats and mice, a well-developed MSO (Irving 

and Harrison 1967; Rautenberg et al. 2009). This opens up the possibility for a direct test of 

the stereausis theory. Here, we therefore compared mismatches in frequency tuning with 

binaural tuning in the same MSO neuron; in a subset of experiments we also compared 

auditory and electrical binaural tuning, thus testing key predictions of the stereausis theory. 

 

Materials and Methods 

 

Animal Procedures 

All experiments were conducted in accordance with the European Communities Council 

Directive (86/609/EEC), and were approved by the institutional animal ethics committee. 

Young-adult female Mongolian gerbils with an average body mass of 60 g were anesthetized 

intraperitoneally with a ketamine-xylazine solution (114 and 17 mg/kg body weight, 

respectively). Anesthesia was maintained by administrating one third of the induction volume 

at regular time intervals; the animal remained in areflexic state throughout the experiment. 

Rectal temperature was maintained at 37 °C using an electrical heating pad.  
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The surgical approach to the MSO has been described in detail previously (Kuwada et al. 1984; 

Plauška et al. 2016). Briefly, the head was fixed with a metal head-plate and the animal was 

positioned in supine position. Both pinnae were removed to expose the middle ear cavities 

and speakers were attached to both ears using a thin tube. The skin, connective tissue, 

salivary glands, lymph nodes and muscles covering both bullae were surgically removed. The 

animal was intubated and kept breathing independently. The right bulla was opened as wide 

as possible. A hole was also made in the left bulla to maintain the same pressure conditions 

in both middle ears. A ~1 mm diameter craniotomy was made to expose the brainstem on the 

right side. The meninges were left intact. The electrode insertion angle with respect to the 

craniotomy could be changed using a fixed-pivotal-point, custom-built, positioning device on 

which the animal was laying during the experiment.  

For electrical round window stimulation experiments, both facial nerves were cut to prevent 

facial muscle activation by the electrical stimulation, and a silver-ball electrode was placed in 

contact with each round window through a lateral opening in the bulla. Electrodes were fixed 

to the skull with Histoacryl (Braun; Ann Harbor, MI, USA) and wax (Sticky Wax; Kerr, Bioggio, 

Switzerland). Local ground electrodes were placed close to the bony part of the external 

acoustic meatus.  

 

In Vivo Loose-patch Recordings 

Thick-walled borosilicate glass microelectrodes (4 – 7 MΩ resistance; 1 – 1.5 µm tip diameter) 

were used for loose-patch (juxtacellular) recordings. Most of the recordings were done using 

pipettes filled with intracellular solution containing (in mM): K-gluconate 138, KCl 8, Na2-

phosphocreatine 10, MgATP 4, Na2GTP 0.3, EGTA 0.5, HEPES 10 mM (pH adjusted to 7.2 with 

NaOH). Less than 12% of the cells reported here were recorded using normal rat Ringer’s 

solution containing (in mM): NaCl 135, KCl 5.4, MgCl2 1, CaCl2 1.8, HEPES 5 mM (pH adjusted 

to 7.2 with NaOH). No clear differences could be found between the responses of cells 

recorded with either solution so the recordings were pooled. 

High positive pressure (70 – 100 mbar) was applied to the pipette during brain surface 

penetration. After successful penetration the pressure was lowered to 20 – 30 mbar, and we 
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waited for a few minutes before further advancing the electrode to minimize the impact of 

brain tissue movements relative to the electrode during recordings. 

The somatic layer of the MSO was identified by monitoring local field potentials 

(“neurophonics”; (Biedenbach and Freeman 1964; Clark and Dunlop 1968; Galambos et al. 

1959; Mc Laughlin et al. 2010), which were evoked by 2 ms alternating clicks to both ears 

(Kuwada et al. 1984). Upon reaching the somatic layer, the electrode was advanced in small 

steps and its resistance was closely monitored. A gradual increase in resistance together with 

the appearance of electrophysiological activity indicated contact with a neuron. Subsequently 

the positive pressure on the electrode was released and the electrode was advanced up to 10 

µm to establish the loose-patch recording configuration. Recordings were done in current 

clamp mode. In case of changes in cell response, the recordings were stopped. Data were 

acquired using a Multiclamp 700B (Molecular Devices, Foster City, CA) amplifier using custom 

software written in MATLAB (7.6.0; The MathWorks, Natick, MA, USA). 

 

Auditory Stimulation 

Auditory stimuli were generated using custom software written in MATLAB and realized 

through a 24-bit D/A-channel (RX6; Tucker Davis Technologies, TDT, Alachua, FL, USA; 111.6 

kHz), programmable attenuator (PA5; TDT) and an amplifier (SA1; TDT). Stimuli were 

delivered to the ear canals in a close-field fashion through Shure speakers (frequency range 

22 Hz to 17.5 kHz) and a pair of small (~11 cm length) tubes. The lowest SPL at which click 

stimuli evoked neurophonics was considered to be the animal’s hearing threshold. Three 

types of auditory stimuli were used in this study: monaurally and binaurally presented 

irregular tone complexes and binaurally presented pure tones.  

The type of multitone stimulus used in this study (‘zwuis’) has been described in detail 

elsewhere (van der Heijden and Joris 2003; 2006). In short, zwuis stimuli are produced by 

summating multiple irregularly spaced frequency components with the same amplitude and 

a random phase, choosing the frequencies in such a way that neither second-order nor third-

order distortion products in the response match any of the components themselves. The 

stimuli in this study contain 30 components spanning a frequency range of 50-3000 Hz. 
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For monaural stimulation, the zwuis stimulus was presented in 300 ms bursts; its intensity 

ranged from -10 to 50 dB SPL per component in 10 dB steps; twenty repetitions were 

presented for each condition; each zwuis stimulus was followed by 100 ms silence; total 

duration was 58 s. Binaural zwuis, which was presented at the same burst intervals as the 

monaural stimulus, had systematic time delays between the ears (‘noise delay stimulus’). 

Each condition was presented twenty times. Pure tone stimuli were presented binaurally with 

different ITDs and frequencies. The frequency range for each pure tone stimulus was centered 

on the estimated best frequency (BF) of that neuron, and was presented in 100 Hz steps. Each 

presentation started with a 20 ms silent period, followed by a 70 ms burst and another 50 ms 

silent period. All conditions were presented ten times. For both binaural zwuis and pure tone 

stimuli, ITD ranges depended on the frequency sensitivity of the neuron; stimuli intensity 

levels were between 20 – 70 dB SPL. Sound intensity levels for binaural stimuli were chosen 

to be 20 – 30 dB above hearing threshold. Stimuli waveforms were recomputed for a different 

instance of their presentation, but were kept the same within one instance for all different 

stimulus conditions and repetitions.  

To observe secondary peaks in rITD functions of low-frequency (< 700 Hz) neurons, we 

increased the ITD range of the stimuli. Consequentially, to conserve the recording duration, 

we increased the stimulus step size; 8 out of 68 neurons were stimulated binaurally with ITD 

steps >0.2 ms up to a maximum of 0.4 ms.  

 

Electrical Stimulation 

Electrical pulses for round window stimulation were generated using a homemade bipolar 

current stimulator. Pulses were 100 µs in duration. Current intensities at both ears were 

varied between 0.2 – 0.8 mA with the aim of finding levels at which a subthreshold response 

was evoked by stimulating at either ear, but suprathreshold responses when stimulating at 

both ears. Binaural electrical stimulation was presented with time delays ranging from -2 to 

2 ms in 0.2 ms steps. For all electrical stimulation recordings, the stimulation window was 100 

ms, preceded and followed by a 50 ms period without stimulation. Stimulus frequencies 

ranged from 20– 120 pulses/s. No obvious differences in binaural stimulation were obtained 

at the different frequencies, and responses were therefore pooled within a cell.  
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MSO cell admission 

Our previous study showed that loose-patch (juxtacellular) recordings are suitable to resolve 

synaptic events in MSO neurons (van der Heijden et al. 2013). We observed that the best 

quality loose-patch recordings were made when the seal resistance was between 20 and 70 

MΩ; at lower resistances the contribution of field potentials became too high, higher 

resistances caused strong waveform filtering. In this study only recordings with seal 

resistances between 20 and 70 MΩ were accepted as valid loose-patch recordings. 

Each new stimulus block was preceded by a silent period of 1 or 5 s. These baseline periods 

were used to judge recording stability. Details of the method are presented in Plauška et al. 

(2016). Briefly, a power spectrum of pre-stimulus baselines was estimated for all recordings 

from a cell. Its value at 1 kHz, which predominantly reflected the spontaneous activity of the 

neuron, had to remain within a 5 dB window for the stimulus block to be included in the 

analysis.  

Action potentials were detected offline based on a threshold criterion for the maximum 

repolarization rate of individual events (van der Heijden et al. 2013). Only cells for which 

histograms of negative peak sizes showed clear bimodality were accepted for further analysis. 

For rITD functions, the first 10 ms of the response to each stimulus presentation were 

excluded from analysis to avoid onset effects.  

Responses evoked by electrical round window stimulation were more difficult to analyze 

because of the presence of larger contamination by field potentials, presumably due to the 

hypersynchronous excitation. The analysis window was restricted to latencies of 2.5-8 ms 

from the contralateral electrode. At shorter latencies unambiguous AP identification was 

typically not possible.  

 

Experimental Design and Statistical Analysis 

To test the stereausis hypothesis we investigated whether BITD and characteristic frequency 

(CF) mismatches were systematically correlated. Apart from the criteria given in the previous 

section, to be included in this comparison cells had to exhibit significant differences in the 

means of responses to different time delays in their rate ITD (rITD) functions, which was 

assessed with a single-sided ANOVA test (function anova1 in MATLAB) with the threshold for 
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binaural sensitivity at p < 0.01. For composite rITD functions, a dynamic range criterion was 

defined as half of the difference between the sums of the two highest and the two lowest 

spike counts in the response. Based on visual inspection of all composite rITD functions, only 

composite rITD functions with a minimum dynamic range of 10 action potentials were 

accepted. To obtain BITDs, rITD functions were fit with a modified Gabor function: 
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= , τ is time (ms), A – offset (spikes/s), B – amplitude (spikes/s), τ0 - 

peak time of the envelope (ms), w – width of the envelope (ms), f – frequency (kHz), ϕ0 - start 

phase of cosine (cycle), the power parameter p modifies the envelope of the Gabor function 

to account for the typically asymmetric peak and trough relationship. BITD was defined as the 

ITD of the dominating peak in the case of wideband rITD functions, and the ITD of the central 

peak for composite rITD functions (Yin and Chan 1990). If fits of the wideband rITD functions 

with the modified Gabor function could account for <80% of the variance in the data, typically 

owing to low numbers of spikes, the wideband rITD functions were not included in further 

ITD-related analysis.  

To obtain CF, responses to monaural zwuis stimuli were processed using Fourier spectral 

analysis. From the power spectrum, the baseline spectrum, obtained from the 1 s period 

preceding and following the stimulus, and an additional 5 dB were subtracted. The 

subtraction of the baseline spectrum serves to compensate for the spectral coloring caused 

by the finite bandwidth of individual elementary events responsible for the neural activity. If 

the events themselves were randomly timed, i.e., originated from a generating process having 

a flat spectrum, the spectrum of the resulting waveform equals that of the elementary event. 

More generally, the resultant waveform is a convolution of the waveforms of the point 

process and that of the elementary event, and their long term power spectra multiply (Ashida 

et al. 2013; Campbell 1909; Fesce 1990). The information about CF is contained in the former 

(the timing of the events, not their shape), which is retrieved by dividing out the baseline 

spectrum, i.e., subtracting it in the log domain. Monaural receptive fields were built by 

interpolating intermediate values (MATLAB function contourf). Responses to monaural 
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stimulation were fit with a weighted 6th order polynomial. Only responses with >10 (one third 

of total) signal components above the noise floor (i.e. signal-to-noise ratio > 1), were used. 

The noise floor was obtained from the spectral analysis of the recordings in the absence of 

sound stimuli. Best frequencies (BF) were defined as the fit peak; CF as the BF at the lowest 

sound intensity. The contour plots, polynomial fits and thresholding are illustrated in Figure 

5. 

Estimates for the standard deviation of the CF mismatch or of the BITD were obtained using 

bootstrap methods. The 20 responses to identical stimulus presentations were randomly 

divided in two groups of 10; BITDs for both groups were computed as described above, and 

the difference D between these two BITD estimates was computed. This procedure was 

repeated N=25 times using independent random divisions, resulting in N values for D . The 

reported standard deviation STD for the BITD estimates based on the complete set of 20 

responses equals 

2

1

1

2

N

k

k

STD D
N =

=  ,    (Eq. 2) 

 which is based on applying the same procedure to sets of 20 independent numbers drawn 

from a normal distribution having unity variance. Standard deviations for CF mismatches were 

obtained by the same method, but now simultaneously subdividing the responses to repeated 

contra- and ipsilateral stimulation. 

We used a t-statistic to test whether Pearson’s r differed significantly from zero (function 

corrcoef in MATLAB). 

CF mismatches were converted to predicted BITDs as described in the next section, and the 

correlation between BITDs and predicted BITDs was assessed using a bootstrap analysis as 

described in the Results and the legend to Figure 9. 

 

Conversion of CF mismatches to predicted BITDs 

Ipsi- and contralateral CF estimates were first converted to cochlear location (distance from 

the base) using the tonotopic map for the gerbil cochlea (Müller 1996). A given interaural 

mismatch DX (in m) in cochlear location corresponds to a travel time difference DT equal to  
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( )

DX
DT

c CF
= ,     (Eq. 3) 

where c(CF) is the phase velocity of the traveling wave of frequency CF at its best site, which 

is related to wavelength  at CF by 

   ( )
( )

c CF
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Values of either c(CF) or (CF) in the apex were obtained from studies reporting large 

populations of auditory nerve responses to identical stimuli in chinchilla (Figure 3 of (Temchin 

et al. 2012), cat (Figure 9B of (van der Heijden and Joris 2006), and guinea pig (Figure 5B at 50 

dB SPL of (Palmer and Shackleton 2009). The wavelength dependence on CF was found to be 

similar across species (Figure 1A), supporting the application to the gerbil, for which no data 

are available, and showed an approximately linear relation between  and log(CF). We 

therefore pooled the data from the three studies and used linear regression to characterize 

this dependence. Application of equations 3-4 produced the predicted BITD from the 

measured CF mismatches. Note that the steepness of this dependency is greater for lower 

CFs (Figure 1B).  

 

Figure 1. Cochlear time delays.  

(A) Travelling wave wavelength dependence on the characteristic frequency in the cochlea 

for three different species: chinchilla (Temchin et al. 2012), cat (van der Heijden and Joris 

2006) and guinea pig (Palmer and Shackleton 2009); circles, squares and triangles, 

respectively). Solid line shows the linear fit for all three species. (B) Theoretical cochlear time 

delay dependence on frequency mismatch between the ears for six different characteristic 

frequencies. Relationships were derived from linear fit in A. 
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Results 

 

The stereausis theory makes several clear predictions. First, there should be distinct 

mismatches in frequency tuning for ipsi- and contralateral inputs, where the expectation 

would be a general bias for contralateral tuning to be to lower frequencies than ipsilateral 

tuning, thus creating an extra cochlear delay for contralateral sounds. A second prediction is 

that the central internal delay obtained by direct electrical stimulation of both cochleae at 

varying latencies can be different from the total internal delay for acoustic stimuli as reflected 

by the BITD for the same neuron. A third prediction is a systematic correlation between ITD 

tuning and frequency tuning mismatches for individual cells. We used a tailored, multitone 

stimulus to investigate the distribution of mismatches in frequency tuning in MSO neurons 

using loose-patch recordings, and to compare in individual neurons these mismatches with 

binaural tuning; in a subset of experiments we also compared auditory and electrical binaural 

tuning. 

 

ITD tuning 

We compared frequency and ITD tuning of principal neurons in the MSO of anesthetized 

gerbils using loose-patch recordings with the aim of testing whether there exists a systematic 

relation between the two, as predicted by the stereausis model. We will first present an 

overview of the ITD tuning, which was studied using binaural stimulation with irregularly 

spaced multi-tone (‘zwuis’) stimuli or with simple tone stimuli. Figure 2A shows an example 

of the response of an MSO neuron to binaural zwuis stimulation, illustrating prominent 

subthreshold activity and action potentials (asterisks). Figure 2B shows action potential rates 

at different ITDs for a low frequency MSO neuron. This rate ITD function (rITDf) was obtained 

by systematically varying the time delay between the zwuis stimuli to both ears. Spike rates 

during these measurements were 25 ± 27 sp/s (mean ± SEM; range 0.3-129 sp/s; N = 68). The 

rITDf was fit with a modified Gabor function (see Methods) from which we extracted the BITD 

as the ITD at which the fit function had its maximum. The vertical bar in Figure 2B indicates 

the BITD of the neuron, which was 0.17 ms. On average, BITDs were 0.12 ± 0.12 ms (Figure 

2C; N = 68), indicating a bias for contralateral ear leading, as observed previously for both 
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gerbils (Brand et al. 2002; Pecka et al. 2008; Spitzer and Semple 1995) and other species (Crow 

et al. 1978; Goldberg and Brown 1969; Moushegian et al. 1975). The grey area in Figure 2C 

demarcates the ecological ITD range of gerbils, which is about ±0.13 ms (Maki and Furukawa 

2005). More than half (57%) of the BITDs fell within the ecological ITD range.  

To obtain an alternative estimate for the BITD, we also presented binaural pure tone stimuli 

at frequencies around the BF. In the example shown in Figure 3A, the different frequencies 

ranged from 0.4 – 0.9 kHz, each of which was presented in 0.2 ms steps between -2 and 2 ms 

at a stimulus intensity of 40 dB SPL. Different traces in Figure 3A correspond to spike count 

ITD functions in response to different frequencies. This neuron was most sensitive to 0.7 and 

0.8 kHz tone stimuli, as expected from its BF, which was 0.78 kHz. We summed all the spike 

count ITD functions to produce a composite ITD function (Figure 3B; (Yin and Chan 1990). The 

BITD was obtained as the most central peak (vertical bar, 0.11 ms) of the Gabor fit (black line). 

A comparison of BITDs obtained with zwuis and pure tone stimuli showed good agreement 

for most cells (N = 26; Figure 3C; r = 0.85; p < 0.0001).  

 

 

Figure 2. Determining BITDs of MSO neurons.  

(A) Loose-patch (juxtacellular) recording of an MSO neuron during binaural stimulation with 

300 ms ‘zwuis’ stimulus (grey bar) at 30 dB SPL. The grey portion of the waveform is shown at 

higher time resolution below, revealing subthreshold events and action potentials (*) during 

stimulation. (B) Example of a rate-ITD function (rITDf), showing firing rate as a function of ITD 

(positive ITD values: contralateral leading). Circles indicate measured spike rates; grey line is 

a cubic spline through the data points. BITD was 0.17 ms (vertical line). Same cell as A. (C) 

Cumulative histogram plots of BITDs. The grey area indicates the physiological ITD range for 

a gerbil (± 0.13 ms). In 60 of 68 cells, BITDs were biased towards contralateral ear leading. 
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Binaural MSO sensitivity to electrical round window stimulation 

One prediction of the stereausis hypothesis is that ITD tuning may be different for auditory 

stimuli and when the cochlea is bypassed by electrical stimuli. To test this prediction, we 

recorded MSO responses to round window electrical stimulation, and compared the 

responses to those obtained by auditory stimulation within the same cell (Figure 4A). 

Electrical stimuli were presented both monaurally and binaurally. We kept increasing current 

intensity for each cochlea individually until we reliably started seeing subthreshold responses 

upon monaural stimulation and action potentials during binaural electrical stimulation. In 

some cells we also varied stimulation rate, however, this did not obviously affect BITD 

estimates and responses obtained at the same set of current intensities were pooled (see 

Methods). Current stimulation typically evoked a complex response consisting of a series of 

peaks and troughs with latencies ranging from <3 ms to >8 ms. The short-latency peaks varied 

little between trials and generally did not seem to evoke action potentials, suggesting that 

they were field potentials originating from more proximally located areas. Figure 4B shows 

an example of the MSO response to electrical round window stimulation. Blue and red traces 

correspond to ipsilateral and contralateral ear responses, respectively. Grey traces show 

responses to binaural stimulation at the electrical BITD for this recording. Black traces show 

averages of 10 repetitions under the same condition. The comparison of monaural and 

binaural stimulation illustrates that summation of electrically-evoked synaptic potentials at a 

latency of ~5.6 ms evoked the most action potentials for this cell during binaural stimulation. 

Because of the large size of the field potentials and electrically induced movements at high 

stimulus intensities it was possible in only three out of a total of 18 MSO cells to compare an 

electrical BITD with the auditory BITD (Figure 4C). For these three cells CFs were not available. 

The minimum sound-evoked latencies (7-9 ms) were clearly longer than the electrical 

latencies (3.5-6 ms) in the same experiments. For all three cells there was a mismatch 

between auditory and current-evoked BITD: -0.12 vs -0.32 ms; cell 2, -0.01 vs 0.21 ms; cell 3, 

0.38 vs 0.12 ms. These data therefore suggest that a difference in ipsi- and contralateral 

cochlear delay can make a substantial contribution to ITD tuning, as predicted by the 

stereausis hypothesis.  
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Figure 3. Composite ITD curves from tonal data.  

(A) Superimposed tonal ITD curves at six different frequencies. Average BF of the neuron at 

40 dB SPL was 0.78 kHz. Line thickness indicates tone frequency, varying in 100-Hz steps from 

400 Hz (thickest line) to 900 Hz. (B) Composite ITD curve (circles) was obtained by adding the 

six tone responses shown in A. Solid line is fit with a Gabor function. Vertical line indicates the 

BITD (0.11 ms). (C) Wideband ITD curve (circles) and fitted Gabor function (solid line) for the 

same cell as shown in panel B. Vertical line indicates BITD (0.04 ms). (D) Comparison of BITDs 

from wideband rITDfs and from tonal stimulation composite ITD curves (N = 26; r = 0.85; p < 

0.0001). Grey line indicates identity; only BITDs with estimated standard deviation <0.25 ms 

were used. Highlighted symbol corresponds to the cell shown in panels B, C. 
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Figure 4. Binaural MSO sensitivity to electrical round window stimulation.  

(A) Schematic representation of the two stimulation methods. Blue and red trapezoids 

symbolize ipsilateral and contralateral cochleae, respectively. Speaker icons indicate sound 

stimulation at the base of cochlea; bolt icons indicate electrical stimulation which bypasses 

the traveling wave. Two arrows pointing towards MSO cell represent neural pathways 

converging onto MSO. (B) Monaural and binaural MSO responses to electrical round window 

stimulation. Red, blue and grey traces show responses to contralateral-only, ipsilateral-only 

and both ear stimulation, respectively. Each set of traces shows 5 instances of individual 

responses and the black trace is an average of a total 10 repetitions. Large vertical defections 

on the left are the stimuli artefacts. The three groups of traces were displaced with respect 

to each other in the vertical direction for visual clarity. The asterisk on the bottom trace 

indicates the location of two evoked action potentials. Arrows indicate the beginning of 

stimulus; stimulus artifacts were cut out for demonstrational purposes. (C) Comparison of 

rITD functions from wideband auditory and electrical round window stimulation data. Circles 

indicate data points, lines are interpolated values. The y-axis on the left is applicable for 

current stimulation rITD function and shows how many spikes on average were evoked by a 

single stimulus. The y-axis on the right is that of auditory stimulation rITD function and tells 

the spike rates evoked by the stimulus. BITDs for the three cells from left to right (auditory vs 

electrical): -0.12 vs -0.32 ms, -0.01 vs 0.21 ms, 0.38 vs 0.12 ms. 
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Figure 5. Determining the characteristic frequency of an MSO neuron.  

(A) Individual monaural responses to zwuis stimuli presented at different sound intensity 

levels. Responses to different SPLs are represented by different colors; the numbers indicate 

SPL per tone component. Symbols show the measured data points, solid lines – the fits. Left 

and right plots show responses for contralateral and ipsilateral ear, respectively. Grey area 

demarcates the threshold where the response cannot be distinguished from the noise floor 

(see Methods). Red vertical lines indicate the characteristic frequencies, determined at 10 dB 

SPL stimulus intensity; CFs for contra- and ipsilateral ears were 0.78 and 0.74 kHz, 

respectively. (B) Monaural receptive fields of the MSO neuron determined using zwuis 

stimulus presented at different sound intensities (in 10-dB steps). Left and right plots show 

receptive fields for contralateral and ipsilateral ear, respectively.  

 

Frequency tuning 

Stereausis critically depends on a difference in frequency tuning for ipsi- and contralateral 

sound stimulation. We therefore compared frequency tuning for both ears using zwuis 

stimuli, presented at intensities ranging from -10 to 50 dB SPL per component. Figure 5A 

shows spectral amplitude components at the different frequency components of the 

monaural zwuis stimulus for an MSO neuron; solid lines show the fits with a polynomial 
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function. From these responses, the ipsi- and contralateral receptive fields of this cell were 

constructed (Figure 5B). Characteristic frequency (CF) was defined as the peak of the fit to the 

response function at the lowest stimulus intensity at which both ipsi- and contralateral ears 

responded with at least 10 significant components above a signal-to-noise ratio of 1. For this 

cell, this intensity was 10 dB SPL, yielding CFs for ipsi- and contralateral stimuli of 0.74 and 

0.78 kHz, respectively (vertical lines in Figure 5A). Frequency tuning generally resembled the 

frequency tuning of SBCs (Caspary et al. 1994; Kopp-Scheinpflug et al. 2002; Kuenzel et al. 

2011). Mean CF was typically lower for deeper cells (results not shown), in agreement with 

the tonotopic organization of the MSO (Day and Semple 2011; Franken et al. 2015; Goldberg 

and Brown 1968; Guinan et al. 1972; Karino et al. 2011). The observed distribution of CFs was 

similar to frequency tuning based on binaural stimuli in some earlier studies (Brand et al. 

2002; Day and Semple 2011), whereas in other studies in the gerbil MSO cells that were tuned 

to much higher frequencies were observed (Franken et al. 2015; Pecka et al. 2008). Recordings 

in the present study were typically made at a penetration depth of at least 300 µm; we did 

not record from very superficial neurons, which constitute the neurons tuned to frequencies 

>2 kHz in the gerbil (Franken et al. 2015), since in superficial layers it was more difficult to 

ascertain that we recorded from the somatic layer using field potential recordings.  

To estimate the difference in frequency tuning for responses to sound stimuli presented to 

either ear, we cross-correlated magnitude spectra of ipsi- and contralateral responses at the 

same intensity at which CF was determined (Figure 6A, B). The vertical bar in Figure 6B 

indicates the peak of the cross-correlation function; it was at 40 Hz, indicating that 

contralateral frequency tuning was to slightly higher frequencies than ipsilateral. This cross-

correlation peak generally corresponded well with the difference in CFs between both ears, 

but we consider the former a more robust estimate of frequency tuning mismatch than the 

difference in CFs, since it takes the entire frequency curve into account. We thus estimated 

CF mismatches for 83 cells by cross-correlation (Figure 6C). Mismatches up to 400 Hz were 

observed, but most mismatches were much smaller. Even though the frequency mismatches 

were not very large, they were larger than the frequency tuning mismatches that were 

observed in the nucleus laminaris of the barn owl (Fischer and Peña 2009; Peña et al. 2001) 

or alligator (Carr et al. 2009). Average mismatch was -8 ± 115 Hz, suggesting that there was 

no overall preferred mismatch direction. Figure 6D shows the absence of a significant corre- 
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Figure 6. Frequency mismatch estimation. 

(A) MSO neuron’s frequency responses to contralateral (filled circles) and ipsilateral (open 

squares) stimulation at 10 dB SPL, estimated from the Fourier spectrum of the response 

waveform (cf. Figure 5A). Grey area indicates the noise floor. (B) Normalized cross-correlation 

function of the two frequency responses shown in A. The grey vertical bar indicates the peak 

of the curve, revealing that the contralateral ear has an estimated 56-Hz higher CF. The data 

for A and B were taken from the same cell as in Figure 5. (C) Histogram of characteristic 

frequency mismatches between ipsi- and contralateral stimulation (N = 78). (D) Relation 

between interaural CF mismatches and mean CF of both ears for all MSO cells (N = 78; r = -

0.17; p = 0.13). (E) Distribution of cochlear time delays calculated from measured frequency 

mismatches (N = 78). (F) Relation between basilar membrane mismatches, calculated using 

Müller (1996), and CF (N = 78; r = -0.10; p = 0.35). 
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Figure 7. Correlation between monaural frequency tuning within and across MSO cells.  

(A) Relation between contra- and ipsilateral BFs of MSO neurons at a stimulus intensity of 30 

dB SPL (N = 69; r = 0.94; p < 0.0001). Seventeen neurons were not included as they were not 

sensitive to the 30 dB SPL stimulus. Grey line indicates identity. (B) Cumulative histogram 

plots of the normalized correlation coefficients between monaural receptive fields. Thick 

black line: contra- and ipsilateral receptive fields from the same MSO neuron (‘C/I, same cell’, 

N = 84). Grey line: contra- and ipsilateral fields from all pairs of MSO cells (‘C/I, across cells’). 

Broken line: contralateral receptive fields between all pairs of MSO cells (‘C/C, across cells’).  

 

Figure 8. Inverse relation between BITD and mean CF.  

(A) Cells tuned to low CFs tend to have more positive BITDs; black line shows linear regression 

(N = 40; r = -0.57; p = 0.0004). (B) Comparison of BITD and mean CF correlation in Mongolian 

gerbils for four studies (and their stimulus): Day and Semple (2011) (binaural beat tone stimuli 

at BF), Brand et al. (2002)(FM tones at BF), Pecka et al. (2008)(tones at BF) and this study (the 

same data as in A). Dashed lines indicate gerbil’s physiological ITD range.  
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lation between CF mismatch (in octaves) and average CF for the same neurons (r = -0.07; p = 

0.53). Similar results were obtained when frequency mismatches were translated into 

differences in basilar membrane location (Figure 6E, F; r = -0.10; p = 0.35; (Müller 1996). 

BFs from ipsi- and contralateral inputs were well correlated (r = 0.95; Figure 7A). On average, 

a high correlation was also observed when the entire ipsi- and contralateral receptive fields 

were correlated for each neuron, yielding an average r of 0.81 ± 0.13 (‘native CI’, Figure 7B). 

For comparison we also correlated random pairs of ipsi- and contralateral ears (‘random CI’) 

and random pairs of contralateral ears (‘random CC’), which yielded on average a much lower 

correlation of r = 0.48 ± 0.30 and r = 0.51 ± 0.29, respectively (Figure 7B). We thus conclude 

that ipsi- and contralateral receptive fields are generally similar within MSO neurons, which 

is in general agreement with earlier reports measuring CF or BF (Goldberg and Brown 1969; 

Guinan et al. 1972; Moushegian et al. 1964a) and with our earlier work in which we used 

mostly intense tones in a small number of cells (van der Heijden et al. 2013). 

 

Figure 9. Relation between BITDs and frequency tuning mismatches of MSO neurons. 

CF mismatches were determined using cross-correlation of responses to zwuis stimuli (Figure 

6). (A) Relation between BITD and CF mismatch (N = 40). Bars indicate standard deviations. 

(B) Relation between BITD and predicted BITD. Predicted BITD was obtained from the relation 

between the travelling wavelength and CF (Figure 1A). Bars indicate combined standard 

deviation in BITD and predicted BITD. Line shows linear regression (slope -0.22 ms/ms; r = -

0.012; N = 40). (C) Results of bootstrap analysis of the slope of the regression line of the 

relation between BITD and predicted BITD. Grey line (‘random’) shows distribution of slopes 

when BITD values were scrambled; black line (‘data fit’) shows fit slopes when data points 

were drawn from a distribution with the same mean as the measured BITD and its combined 

error; red line (‘stereausis’) shows distribution of fit slopes when data points were drawn from 

a distribution with the same mean as the predicted BITD and the combined error. 
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Relation between frequency and ITD tuning 

We next compared ITD tuning and frequency tuning in the same cells. BITD and mean CF were 

inversely correlated (Figure 8A), in agreement with earlier work (Figure 8B). The estimates for 

the mismatch in monaural frequency tuning allowed us to test a key prediction of the 

stereausis theory, which is to investigate whether the frequency mismatch can predict ITD 

tuning. For binaural tuning we used BITDs obtained from wideband rITDfs in order to have 

zwuis stimuli for both estimates. CF mismatches were converted into octave differences. No 

obvious correlation was observed (N = 40; Figure 9A). We next converted the CF mismatches 

to predicted BITDs based on the frequency-place map of the gerbil cochlea (Müller 1996) and 

estimates of propagation speed and wavelength of the traveling wave in the apex of the 

cochlea for several species (Figure 1; see Methods). Note that the predicted BITDs have no 

bias to either ipsi- or contralateral leading values (Figure 6E), in agreement with the lack of 

asymmetry in the distribution of CF mismatches (Figure 6C). No obvious correlation was 

observed between the observed and predicted BITDs (r = -0.012; slope = -0.22 ms/ms; N = 

40); to avoid the nonlinearities associated with fitting bivariate regression when both 

variables have errors (Buonaccorsi 2010), the error estimates for both BITD and predicted 

BITD were combined into a single value. To get an estimate for the reliability of this conclusion 

that takes into account the number of cells and the precision of the individual measurements, 

we did a bootstrap analysis. To get an error for the estimate of the slope of the line fit, the 

individual BITD values were drawn from a distribution with the same mean and combined 

error as the original measurement; the resulting slope was -0.22 ± 0.17 ms/ms; if the 

association between the BITD and the predicted BITD was randomized, the average slope of 

the line fit became 0 ± 0.28 ms/ms; if individual values were drawn from a distribution with 

mean identical to the predicted BITD, conform the stereausis prediction, with combined error 

obtained from the measurement, the slope became 1.0 ± 0.17 (Figure 9C). From this we 

conclude that the measured slope was well inside the range of slopes that could be expected 

if the association between BITD and frequency mismatch were random, and well outside the 

range of slopes that could be expected if the stereausis prediction was accurate. Similar 

results were obtained when BITDs were first detrended for the inverse relation between BITD 

and mean CF illustrated in Figure 8A (results not shown). 
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Discussion 

 

We tested three predictions of the stereausis theory. First, as predicted by the stereausis 

theory, we found evidence that tuning for bilateral electrical stimulation, in which the cochlea 

is presumably bypassed, was different from ITD tuning for auditory stimuli. Second, we found 

that even though frequency tuning for ipsi- and contralateral sounds were generally similar, 

the interaural differences were large enough to create substantial cochlear disparities in 

many cells. Most importantly, however, we did not find evidence for a direct correlation 

between BITDs and CF mismatches, even though the accuracy of our methods was sufficient 

to detect such a correlation in a scenario in which the mismatches were the dominant source 

of internal delays. We therefore failed to obtain critical support for the stereausis theory, 

suggesting that axonal delays are more important for determining internal delay than 

cochlear disparities.  

 

Spatial tuning 

A majority of neurons had a positive bias (contralateral leading) in BITDs, in agreement with 

previous results (Figure 8B). We observed that more than half of neurons had a BITD within 

the ecological range, similar to earlier work in gerbil and in cat (Day and Semple 2011; Yin and 

Chan 1990). In contrast, the observed distribution of BITDs was quite different from two other 

earlier studies in gerbil, where only about 20% of BITDs fell within the ecological range (Figure 

8B; (Brand et al. 2002; Pecka et al. 2008). One possible cause for the difference between our 

results and some of the earlier results is that we used wideband stimuli at relatively low 

intensity. ITD tuning for tones can be quite complex in the gerbil MSO (Day and Semple 2011; 

van der Heijden et al. 2013), and especially at frequencies away from CF, or at very high 

intensities, preferred ITDs to tone stimuli can be quite variable. Most physiological sounds, 

however, are wideband, and sound intensities above 60 dB SPL are uncommon in nature.  

The wideband methods we employed did not allow to take onset responses into account. 

However, for humans, ongoing ITDs of low frequencies are the main source of information to 

detect the sound source location in the horizontal plane (Wightman and Kistler 1992). 
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We did not target a specific area within the MSO, but since BITDs do not vary systematically 

along the rostrocaudal axis in the gerbil (Franken et al. 2015), it seems unlikely that our 

conclusions would depend on the exact rostrocaudal location within the MSO.  

 

Electrical stimulation 

To separate the delay caused by the traveling wave in the cochlea from the retrocochlear 

delay, we successfully obtained in three cells an estimate for BITD based on electrical 

stimulation at the round window in addition to the sound-evoked BITD. In each case we 

observed a difference of about 0.2 ms for both estimates. This illustrates that cochlear delays 

can contribute to the overall internal delay, as predicted by the stereausis hypothesis, but 

that electrical BITD does not predict sound-evoked BITD well, in agreement with the lack of a 

correlation of the sound-evoked BITD with the predicted BITD based on frequency tuning 

mismatch. 

Our approach of electrically stimulating the round window had the advantage that it 

preserved hearing, thus allowing a comparison between sound-evoked ITD tuning and 

electrical ITD tuning. In larger animals such as guinea pigs or cats it has been shown that 

sound-evoked responses can be largely preserved following cochlear implant insertion into 

the basal cochlea (McAnally et al. 1997; Miller et al. 2006; Sato et al. 2016; van den Honert 

and Stypulkowski 1984), but this is a delicate procedure that would still not allow us to directly 

stimulate the apical cochlea, which supplies the low-frequency afferents involved in ITD 

tuning. In contrast, monopolar stimulation near the round window can excite the whole 

cochlea and thresholds are essentially independent of CF (Hartmann et al. 1984; Moxon 1971; 

van den Honert and Stypulkowski 1984; 1987). Our experiments thus complement earlier 

studies in slices showing that it is possible to measure an electrically evoked BITD in MSO 

neurons (Jercog et al. 2010; Roberts et al. 2013). 

In all experiments peaks at different latencies were observed at the higher stimulation 

intensities. The underlying mechanism remains uncertain in our experiments, but is unlikely 

to involve a traveling wave, since this would be expected to induce ringing, and periodic 

responses with an interval determined by CF, similar to the response to a click stimulus 

(Goblick and Pfeiffer 1969; Moxon 1971; Recio and Rhode 2000; van den Honert and 
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Stypulkowski 1984; 1987). In addition, the minimum sound-evoked latencies were clearly 

longer than the electrical latencies in the same experiments. We therefore consider it likely 

that the traveling wave was bypassed by the electrical stimulation. Our observation that in 

each of the three cells there was a clear difference in the BITD for electrical and auditory 

stimulation is thus compatible with a contribution of cochlear delays to the overall internal 

delay, as predicted by the stereausis hypothesis.  

 

Stereausis hypothesis 

The ability to measure both ITD tuning and monaural frequency tuning in a large number of 

cells allowed us to test some of the predictions of the stereausis hypothesis. We used 

differences in CF to estimate differences in cochlear delay. Since we used wide-band stimuli 

at moderate sound levels, a substantial change in cochlear disparities compared to the 

threshold measurements seems unlikely to occur during our BITD measurements. For the 

positive bias (contralateral leading) in BITDs to originate from a difference in tuning, it would 

be needed that, on average, contralateral input would be tuned to lower frequencies than 

ipsilateral input, thus creating a larger cochlear delay for contralateral sounds. This is not what 

was observed. Neither did we observe evidence for the opposite, i.e. lower BFs in response 

to ipsi- than contralateral stimulation, as was observed in gerbil IC (Semple and Kitzes 1985).  

To convert CF mismatches to predicted delays (Figure 1) we used data from the literature. 

Probably the biggest source of error in the conversion is the smaller cochlear length of the 

gerbil compared to cat, chinchilla and guinea pig (Greenwood 1990; Liberman 1982; Müller 

1996). Note, however, that if we had scaled down the apical wavelength for the gerbil 

accordingly, the predicted BITDs would be 50-100% larger, making the expected size of the 

stereausis effects correspondingly larger. Previous assessments of stereausis (Day and Semple 

2011; Shamma et al. 1989) were based on cochlear models (Holmes and Cole 1984; Tan and 

Carney 2003) rather than data, predicting an even larger contribution of CF mismatches to 

ITD tuning. Another possible source of error in the BITD predictions are the individual 

differences in cochlear length (standard deviation/mean ~5%; (Müller 1996; Plassmann et al. 

1987), whereas length differences between left and right cochlea are small (Bohne and Carr 

1979). 
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Predicted and measured delays were not significantly correlated. Our data thus agree with 

earlier tests in low frequency units of the nucleus laminaris of the barn owl (Fischer and Peña 

2009; Peña et al. 2001) and alligator (Carr et al. 2009) and in the inferior colliculus of the barn 

owl (Singheiser et al. 2010). We conclude that for individual MSO cells, frequency mismatches 

are expected to make a substantial contribution to their internal delay, but that they are not 

the dominant determinant of BITD on a population level. 

 

The origin of internal delays (Jeffress revisited) 

Since our data do not support a role for a systematic contribution of frequency mismatches, 

the most likely remaining mechanism to create an internal delay is the presence of differences 

in the time it takes signals to travel from the cochlear nucleus to the MSO neurons. As SBCs 

typically innervate both ipsi- and contralateral MSO neurons (Thompson and Schofield 2000), 

it is hard to see how a systematic internal delay could be created in the time it takes to travel 

from cochlea to cochlear nucleus in the absence of a systematic shift in frequency tuning. In 

recent years several alternative theories to the classical Jeffress’ model (Jeffress 1948) have 

been put forward that focus on delays created within the MSO itself, including a role for well-

timed inhibition (Brand et al. 2002; Myoga et al. 2014; Pecka et al. 2008) or for asymmetric 

EPSPs (Jercog et al. 2010), but in recent studies these alternatives have not received much 

support (Day and Semple 2011; Franken et al. 2015; Roberts et al. 2013; van der Heijden et 

al. 2013; Zhou et al. 2005). We cannot exclude a role for intrinsic conductances in creating 

delays within the MSO, even though the reported effects might be smaller for wideband, low 

intensity stimuli as used here, than for high-intensity, low frequency tones that were used in 

Franken et al. (2015). 

This leaves as the most likely possibility –by exclusion– the option that axonal delay lines are 

responsible for the internal delay, as originally proposed by Jeffress (1948). A direct test of 

the branching patterns of the axons of SBCs indicated that they cannot account for the 

frequency-dependent distribution of best delays in the cat (Karino et al. 2011). However, in 

addition to axonal length, differences in axonal conduction velocities can also contribute to 

the internal delay, as shown for birds (Seidl et al. 2014; Seidl et al. 2010). Some evidence for 

differences in conduction velocities for mammalian auditory brainstem axons has indeed 
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been found recently (Ford et al. 2015; Seidl and Rubel 2016). A combination of anatomical 

and physiological studies would thus allow to further test the Jeffress hypothesis.  
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Revisiting Jeffress 

 

ne of the most impactful theoretical models in auditory neuroscience was proposed 

by Lloyd A. Jeffress in 1948 (Jeffress 1948). In his publication Jeffress proposed a 

simple neuronal network that could perform sound localization. This network is 

composed of two groups of inputs converging from the opposing sides onto binaural neurons, 

which are sensitive to the timing of the input signal arrival. His theory consists of three core 

concepts: 

Pillar 1: the computational units (i.e. the neurons) act as coincidence detectors with regard 

to the inputs originating from both ears. 

Pillar 2: the network can convey timing information about the inputs. 

Pillar 3: inputs converging onto the computational units from opposite sides are arranged in 

such a way that the responses of the computational units form a spatial gradient.  

Below, I will discuss these three pillars of the Jeffress model in the context of recent 

theoretical and experimental work, including the work described in this thesis. 

 

 

Pillar 1: Coincidence detection 

From models to experiments 

Goldberg and Brown (1969) showed experimentally that the MSO neurons do act as 

coincidence detectors. They found that each neuron fired preferentially at a certain ITD, the 

‘best’ ITD (BITD), and that this BITD can be predicted from the firing response to monaural 

tones. They often observed binaural facilitation: at the BITD the binaural rates were often 

higher than the sum of the monaural rates. The output rate during unfavorable delays could 

drop below monaural stimulation firing rates. These findings were confirmed in later 

experiments (Batra et al. 1997b; Crow et al. 1978; Moushegian et al. 1975; Spitzer and Semple 

1995; Yin and Chan 1990), thus strongly supporting the first pillar of the Jeffress’ hypothesis, 

coincidence detection.  An early modeling paper already showed that these findings could be 

successfully reproduced by a remarkably simple coincidence model, in which the binaural 

O 
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neurons lacked dendrites and inhibitory inputs (Colburn et al. 1990). In this model monaural 

coincidences were limited by setting the action potential threshold higher than the maximal 

monaural input. The high threshold in combination with an exponential relaxation of the 

membrane potential allowed for coincidence detection between inputs originating from both 

ears. The model was, thus, largely implemented as an AND gate, without a possibility for 

monaural coincidences.  Despite its simplicity, the model could reproduce key aspects of the 

Goldberg and Brown (1969) data remarkably well, including the finding that firing rates at the 

worst ITD were typically lower than during monaural stimulation. The model thus showed 

that synaptic inhibition was not necessary for the low rates observed during the worst ITD 

and a follow-up point-neuron model by Han and Colburn (1993) found no difference in MSO 

performance when comparing excitatory-only and excitatory and inhibitory input cases. 

Instead, the absence of input from the other, out-of-phase ear,  was sufficient to explain the 

low firing rates at the worst ITD (Colburn et al. 1990). In Chapter 2, experimental evidence 

supporting this idea was obtained:  the response variance to binaural beat stimuli tended to 

drop below the variance of spontaneous activity at the worst ITD.  

In later simulations, it was shown that with passive dendrites, segregation of inputs from 

different ears to different dendrites limits local input saturation due to a reduction of driving 

force, thus favoring binaural (interdendritic) summation over monaural (intradendritic) 

summation (Agmon-Snir et al. 1998; Dasika et al. 2007). The reduction of driving force is 

especially apparent for thin dendrites, with high local input resistance.  These simulations also 

showed the need for relatively compact dendrites in order to preserve timing information. A 

corollary of the results of Agmon-Snir et al. (1998) was that a non-stimulated dendrite can act 

as a sink for the other dendrite. As we observed a lack of impact of the activity in one ear on 

the size of the responses to the other ear using stimulation with binaural beats (Chapter 2), 

and we could predict the binaural responses from the monaural responses (Chapter 3), we 

concluded that this sink effect cannot be very strong. However, for a full test of the relative 

efficacy of monaural vs. binaural input summation, a much better control over inputs would 

be needed, or the ability to directly measure dendritic potentials, as recently done in slice 

recordings (Winters et al. 2017). Experimentally, we found that the nonlinear relation 

between EPSP size and AP probability provided a good explanation for the observed binaural 

facilitation. This nonlinear relationship is a general feature of neurons (Silver 2010), and in 
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combination with the linear summation of the EPSPs provided a very simple scheme allowing 

the MSO neurons to act as a coincidence detector (Chapters 2 and 3).  

 

Cross-correlation 

An additional test for coincidence detection of MSO neurons comes from experiments in 

which the monaural inputs were cross-correlated to test to what extent this matches the 

binaural responses. The first experimental test for cross-correlation in MSO was done by Yin 

and Chan (1990) (Figure 12) who showed that the ITD sensitivity of MSO in the cat was indeed 

comparable to the predicted ITD response obtained by cross-correlating monaural spike 

trains generated by frozen noise sound stimuli. However, while the measured and predicted 

BITD agreed well, the overall spike rates and secondary peak locations only partially matched 

the predictions. Batra et al. (1997b) performed a comparable test of linearity in rabbit 

superior olivary complex, and found that binaural vector strength matched the product of 

monaural VSs, as predicted for a cross-correlation operation.  

Deviations from the predictions of a simple cross-correlation mechanism were first found by 

Batra and Yin (2004) in their modelling study. Using data from Yin and Chan (1990) and Batra 

et al. (1997a; 1997b) and the simple model of Colburn et al. (1990) discussed earlier, they 

found that monaural VSs derived from binaural-beat stimuli predicted the interaural-phase 

VS better than those from monaural stimuli. During monaural stimulus presentation, the 

other ear contributes only spontaneous synaptic inputs. During the binaural beat stimulus 

that same side will contribute a higher input rate (albeit phase-locked to a different stimulus 

frequency than the other side). Based on their model, they conclude that the VS measured 

during monaural stimulation includes APs generated by monaural coincidences, whereas their 

impact will be smaller during binaural stimulation. These findings led to the conclusion that 

MSO output produces a degraded version of monaural input cross-correlation. It is worth 

noting that the studies above used action potentials from MSO for monaural inputs and not 

subthreshold events, as well as that the stimuli were tones and binaural beats, but not 

wideband stimuli. 

Another study that found deviations from a simple cross-correlation scheme was done by 

Franken et al. (2015). They employed two rITDf prediction methods: a) responses to monaural 
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stimuli were corrected for membrane potential, summed and thresholded to predict the 

elicitation of action potentials; b) monaural response EPSP period histograms were cross-

correlated to estimate the predicted rITDf. Both methods yielded the same result – predicted 

and measured rITD functions were offset by more than 100 µs in half of their datasets. Upon 

closer examination of membrane potential (Vm) during summation they found that ITD tuning 

was affected by ITD-dependent Vm changes preceding the coincidence. That is, the history of 

MSO membrane potential shapes ITD tuning and cross-correlation cannot capture this effect.  

Experimental evidence that the linear sum of monaural responses is very close to the binaural 

response to the same stimuli (Chapter 2) points to a simple linear somatic summation of 

dendritic inputs within MSO cells, an operation which is compatible with a cross-correlation. 

Indeed, our findings reveal that cross-correlation can successfully account for the MSO 

operation as a coincidence detector. We utilized wideband stimuli at maximum 40 dB SPL 

above the hearing threshold. In contrast, Franken et al. (2015) evoked responses with binaural 

beats presented at 70 dB SPL at frequencies that were typically far from CF. Under these 

conditions, peak splitting becomes important (Chapter 2), and this may account to some 

extent for their results. We performed cross-correlation of monaural responses to wideband 

stimuli and compared the predicted rITDf with AP-based rITDf from binaural wideband 

stimulation. The similarity of prediction and data was measured through a comparison of 

parameters of the Gabor function which was used to fit both prediction and data. The 

temporal parameters – phase and frequency – of the two functions matched accurately, while 

this was less the case for the envelope features. Predicted and measured BITDs were offset 

by at most 50 µs, which for the gerbil falls within its minimum resolvable angle of 25°. 

In summary, it is clear that there are many factors that can influence MSO operation in 

coincidence detection: dendritic segregation, somatic inhibition, complex interactions 

between various ionic currents and somatic input integration. However, experimental 

evidence suggests that MSO seems to process these inputs in a linear fashion, as the key 

features of rITDf – BITD, oscillation frequency and phase – can be predicted from cross-

correlation of monaural subthreshold inputs evoked with moderate sound levels without the 

need to include inhibition as a prominent player. We cannot exclude that interaction between 

excitatory and inhibitory conductances or the recent history of membrane potential 

contribute to the coincidence detection mechanism. In fact, these might contribute to the 
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discrepancies we saw in envelope features of rITDfs. However, the overall MSO task, 

sensitivity to interaural differences, does seem to rely on linear processes. 

 

Pillar 2: Internal delay 

The second important component of the Jeffress’ hypothesis is that the neuronal network 

that decodes information about sound localization has to be able to encode differences in 

arrival time at both ears. As discussed in the previous section, the neurons are known to be 

coincidence detectors, i.e. these cells are driven most effectively when inputs from both ears 

summate at the soma. This means that unless BITD is 0 µs, there must be a difference in the 

travel time for signals from both ears to the place where they effectively come together to 

compensate for the difference in the arrival time at either ear. The anatomical location for 

this so-called internal delay has been debated. In the original paper by Jeffress (1948), the 

known “slow rate of conduction” of the axons inspired a mechanism involving different path 

lengths corresponding to different travel times. We investigated two alternatives, one 

postulates a difference in travel time within the cochlea (‘stereausis’), the other within the 

MSO. For the latter, the most prominent invocation was based on the inhibitory inputs of the 

MSO neurons. I will start by discussing some of the implications of the Jeffress model for ITD 

tuning, then I will discuss the evidence favoring Jeffress’ axonal delay model, followed by the 

well-timed inhibition model and, finally, the stereausis model. 

 

Axonal delay model  

The original proposal by Jeffress was that this delay arises from different axonal-dendritic 

innervation length across the dorso-ventral axis of the MSO. There is ample experimental 

evidence showing that avian ITD detection is well described by Jeffress’ model (Carr and 

Konishi 1990; Köppl and Carr 2008; Overholt et al. 1992; Seidl et al. 2010; Young and Rubel 

1983), and that axonal delay lines are responsible for internal delays. Two predictions arise 

from a pure axonal delay line mechanism: a) the range of measured BITDs should be 

compatible with axonal anatomy. b) BITDs should be frequency-independent. Anatomical 

studies (Beckius et al. 1999; Karino et al. 2011; Seidl and Rubel 2016; Smith et al. 1993) have 

been discussed in detail in the General Introduction. The main conclusion from these papers 

is that even though there are aspects of the axonal innervation that are in line with the 
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Jeffress’ hypothesis, the overall axonal organization cannot account for the full range of 

observed best delays. However, there is evidence that contralateral and ipsilateral collaterals 

differ in their conduction velocity, which might help to account for best delays. 

 

Interaural phase  

Day and Semple (2011) found that within a large group of MSO neurons, BITD depended on 

stimulus frequency, which we observed in our experiments as well (Figure 4, Chapter 2). An 

anatomical correlate for this observation is lacking at present since Karino et al. (2011) found 

no evidence for a difference in axonal branching patterns for low and high CF fibers.  

Since the inputs to the MSO show phase-locking (see Introduction) interaural time differences 

can also be translated to interaural phase differences (IPDs) for tonal stimuli. If the BITD of an 

MSO neuron is frequency-independent, then for all stimulus frequencies rITD functions will 

share a common BITD, also known as the characteristic delay (CD; Rose et al. 1966). On the 

other hand, if there is frequency-dependency in ITD sensitivity, rITD functions will have a 

common point (CD), which is not at the peak (BITD). This common point is the result of a 

constant phase delay – characteristic phase (CP) – being present for all the relevant 

frequencies. We can write the IPD dependence on stimulus frequency (f) as: 

IPD(f) = CP+CD*f; 

derivatively,  

BITD(f) = CD + CP/f. 

In theory, internal delay can arise due to both time and phase delays in the inputs of the MSO. 

However, axonal delays (Jeffress’ prediction) imply a pure time delay mechanism, since the 

speed at which an AP travels within an axon is in principle independent of how it was evoked. 

This results in CP = 0 for all frequencies. In this case IPD(f) = CD*f; the relationship between 

interaural phase and frequency is linear, with intercept (CP) zero and slope equal to CD, BITD 

does not depend on stimulus frequency. On the other extreme, for pure phase delays CD = 0 

and IPD = CP for all frequencies; BITD and frequency relationship is hyperbolic. See 

Vonderschen and Wagner (2014) for more detailed discussions of this topic. 
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Several studies found that MSO exhibits a mixture of both types of delays, showing the 

presence of non-zero CP (Batra et al. (1997a); Day and Semple (2011); Pecka et al. (2008); Yin 

and Chan (1990); this thesis, Chapter 3). Importantly, pure time delays, as proposed by 

Jeffress (1948), cannot account for this phenomenon. Furthermore, the phase-frequency 

relationship in some neurons deviates from a linear relationship (Day and Semple (2011); this 

thesis, Chapter 3). These deviations from the Jeffress’ model have led to proposals for 

alternative mechanisms to create internal delay. Two prominent alternatives for axonal delay 

lines are the well-timed inhibition and the stereausis model. 

 

Well-timed inhibition as a source for internal delay 

One of the most hotly disputed topics of MSO operation is the role of glycinergic inhibition in 

coincidence detection. Two bilateral somatic inhibitory inputs originating from the ipsilateral 

MNTB and LNTB have been anatomically identified and described in detail (Adams and 

Mugnaini 1990; Clark 1969a; b; Grothe and Sanes 1993; 1994; Perkins 1973). The studies on 

their physiological role, however, have not been conclusive. As discussed in the previous 

section, several key aspects of MSO function could be accounted for with high accuracy using 

models that lacked inhibition.  

The first physiological evidence for the role of inhibition in mammalian MSO was presented 

by Grothe and Sanes (1993; 1994). Using electrical stimulation of MSO afferents in slice 

recordings they showed that at high stimulus intensities and short time delay, responses to 

one ‘ear’ (unilateral) stimulation were suppressed by the stimulation of the other side; this 

effect could be explained by glycinergic inhibition, originating from either MSO or LNTB. It 

disappeared when the inhibition was suppressed by strychnine application. These studies 

were followed by in vivo experiments (Brand et al. 2002; Pecka et al. 2008). Application of 

strychnine (blocking inhibition) through iontophoresis onto MSO cells resulted in an increased 

MSO firing rate and BITD shift towards zero, an effect from which MSO cells recovered after 

several minutes. Similar results were observed when enhancing inhibition by tonic glycine 

application. The authors proposed a model featuring well-timed inhibition delaying spike 

timing, to shift the BITD to more positive (contra leading) values, analogous to an earlier 

model by  Batra et al. (1997a). In support of this mechanism, there were models which 

incorporated well-timed inhibition to explain genesis of internal delay (Leibold 2010; Leibold 
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and van Hemmen 2005; Svirskis et al. 2003). However, an attempt by Franken et al. (2015) to 

replicate the in vivo experiment showed that iontophoretic application of strychnine not only 

shifted BITD towards zero, but also continued reducing firing rate of the MSO until ITD was 

insignificant (in less than 15 minutes). This was possibly due to iontophoresis causing high 

concentrations of strychnine in the nucleus. When strychnine was pressure-applied (to limit 

its buildup) no significant BITD shift was observed, while the increase in firing rate was still 

observed. Slice studies showed that at high concentrations, strychnine blocks Ih (Franken et 

al. 2015), further suggesting that the observed BITD shift was a non-specific effect. Other 

evidence against this model comes from the work presented in Chapter 2. Both Franken et al. 

(2015) and we (Chapter 2) did not observe the IPSP preceding the EPSPs proposed in the well-

timed inhibition. Moreover, the lack of an effect of stimulation of one ear on the amplitude 

of the responses to the other ear (Chapter 2) is also not in agreement with a strong effect of 

inhibition, as the inhibitory inputs are localized at the soma, so their activation should affect 

both ears. Additional evidence against the well-timed inhibition model comes from modeling 

studies. Zhou et al. (2005) pointed out that the model by Brand et al. (2002) needed very fast 

inhibitory events (~0.1 ms), while Smith et al. (2000) showed that decay times of IPSCs in MSO 

were at least ~3.9 ms. Conductance clamp slice studies provided experimental evidence for 

the need for a nonphysiologically fast IPSP time course for the model to work (Roberts et al. 

2013). Incorporating fast inhibition in their model, Day and Semple (2011) were unable to 

account for nonlinearities in the phase-frequency relationship that they saw in their own data. 

A slice conductance clamp study by Myoga et al. (2014), despite being generally supportive 

of timed inhibition effects, found that contralateral inhibition alone could account for only a 

~50 µs BITD shift, and only together with ipsilateral inhibition the shift could reach ~150 µs. 

In conclusion, previously observed BITD shifts due to inhibition being blocked were most likely 

caused by nonspecific effects of strychnine at high concentrations and not the removal of 

inhibition. Even though it is likely that synaptic inhibition plays a substantial role within the 

MSO, it is unlikely to shift ITD tuning substantially, as proposed in the well-timed inhibition 

model.  

Cochlear delay model 

The cochlear delay model, also referred to as ‘stereausis’ model, was first proposed by 

Schroeder (1977) and detailed in a computational model by Shamma et al. (1989). It proposes 
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that ipsi- and contralateral afferents to MSO neurons originate from different locations in the 

cochlea; the resulting difference in travel times within the cochlea is proposed to make a 

significant, systematic contribution to the internal delay. Its main prediction is that there is a 

systematic relation between ipsi- and contralateral frequency tuning mismatches and BITD. 

The first experimental evidence for cochlear mismatches has been shown by Yin and Kuwada 

(1983) in the IC of the cat, followed by indirect observation of the phenomena in the MSO by 

Yin and Chan (1990) and SOC (Batra et al. 1997a; Spitzer and Semple 1995). Modelling studies 

have also confirmed that the stereausis model could account for BITD distribution in 

mammalian MSO (Bonham and Lewis 1999; Joris et al. 2006). A recent publication by Day and 

Semple (2011) found that modeled coincidence detection with cochlear delays could 

successfully reproduce their experimentally observed frequency-dependent delays due to 

small CF mismatch giving rise to large interaural cochlear delays. 

We tested the stereausis hypothesis experimentally in vivo (Chapter 4) utilizing auditory and 

electrical stimulation. To bypass frequency dependent cochlear disparities, in some 

experiments we electrically stimulated the round windows of both cochleae. Electrically-

evoked and acoustically-evoked rITD functions were not similar and showed a BITD mismatch 

of ~0.2 ms in either direction. This observation supported possible cochlear delay role in ITD 

tuning. From the responses to auditory monaural low SPL wideband stimuli, we showed that 

there is no systematic frequency mismatch bias towards either ear. As BITDs are biased 

towards the contralateral ear, the stereausis model predicts that the contralateral ear should 

be tuned to lower frequencies than the ipsilateral ear. Most importantly, there was no 

significant correlation between BITDs and CF mismatches in our data (Figure 9, Chapter 4), 

leading to the conclusion that while cochlear mismatches can substantially contribute to 

internal delay generation, they are not the dominant mechanism behind it. 
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Pillar 3: Map of BITDs 

The third pillar of Jeffress’ model implies the presence of anatomical BD map due to 

systematic delay line organization. Early work, based on a limited number of observations in 

the cat MSO, did hint towards a relation between rostrocaudal location and BITD (Yin and 

Chan 1990). A more extensive test of the presence of a spatial map for BITD was done in the 

gerbil MSO by Franken et al. (2015) (Figure 2e), who did not find evidence for a relation 

between rostrocaudal location of the MSO and BITD. Since the MSO is small in the medio-

lateral direction and since the dorsoventral axis is devoted to frequency (Guinan et al. (1972), 

Chapter 2), this suggests that the mammalian MSO does not contain a spatial map of BITDs. 

 

Jeffress Revisited 

The evidence presented above shows that >70 years after its publication, the elegant Jeffress 

proposal continues to be an inspiration for experimental and modeling work into the sound 

localization circuitry. Of its three pillars, only coincidence detection has been well 

documented. My own work on the interaction between subthreshold events from both ears 

provides further evidence for this, and the nonlinear relationship between EPSP size and AP 

generation may provide an explanation for some of the uncertainties that have surrounded 

tests of coincidence detection in the past.  

A specific set of ion channels – most importantly AMPA-type GluR channels, HCN, LVAPC and 

VGSC – enable MSO neurons to act as timing specialists. The interplay of these channels 

allows interactions of subthreshold events at the soma to be remarkably linear; however, we 

found that MSO firing rate depends supralinearly on subthreshold potential. In MSO neurons 

action potential backpropagation is quite limited (Scott et al. 2007), limiting the interaction 

of APs and EPSPs within dendrites. Two prominent somatic inhibitory inputs, relayed through 

fast synaptic pathways, have been proposed to delay AP initiation, but apart from slice and 

modelling studies, little convincing evidence has been shown to support this mechanism. 

Most of the evidence points to MSO acting as a cross-correlator, summing the converging 

(possibly modified but not dramatically reshaped by inhibition) inputs in a linear fashion. 

While some deviations from this linearity are possible, they do not seem to affect the key 

computational task of this nucleus – ITD sensitivity. We and Franken et al. (2015) also 
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addressed other mechanisms that might regulate ITD tuning at the level of the MSO itself, but 

did not find supporting evidence for them.  

A recent proposal by van der Heijden (2018) suggests that inner hair cells could also account 

for internal phase shifts, but this hypothesis has not yet been experimentally tested.  

Cochlear mismatches, as proposed in the stereausis model, could also feasibly contribute to 

the internal delay, yet it does not seem to be the dominant source of it. 

This leaves, at present, the axonal delay lines envisioned by Jeffress. Despite some anatomical 

evidence being present in favor of these delay lines, the observation that MSO ITD tuning 

depends on stimulus frequency remains an observation that is not compatible with a pure 

axonal delay line mechanism. 
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Future directions  

 
The biggest hurdle in MSO experiments arguably comes from its location deep in the 

brainstem. Because of the high degree of myelination and the unfavorable location, optical 

imaging techniques for MSO in vivo activity measurements do not yet seem feasible, neither 

from ventral nor from dorsal side, leaving the need for electrophysiological techniques. 

Experiments in Chapters 2-4 allowed us to record sub- and suprathreshold events from 

isolated MSO units under wideband auditory stimulation, providing a chance to investigate 

the operation of the MSO in higher detail than in previous in vivo studies. However, monaural 

subthreshold responses had to be inferred from the somatic recordings and we had to rely on 

juxtacellular configuration as the whole cell-patching success rate was very low. Though we 

showed that juxtacellular recordings can successfully capture subthreshold events, for very 

precise quantification of synaptic events in the MSO, a larger dataset of whole cell in vivo 

recordings is needed, ideally obtained at high recording bandwidth.  

Early MSO studies used relatively simple, ‘unnatural’, auditory stimuli – clicks, pure tones or 

frozen noise. Though providing insight in basic operational features of MSO, they were limited 

in the questions they could tackle. We used a wideband stimulus, a mixture of 30 frequencies, 

in our experiments, and confirmed that input summation linearity works remarkably well. The 

most convincing approach would be to engage the early binaural apparatus using segments 

of natural environmental sounds as stimuli. In our experiments we presented the stimulus 

close to hearing threshold to study responses at the characteristic frequency of each neuron. 

However, naturally occurring sound cues vary in their sound intensities and spectral contents. 

Our unpublished results indicate that ITD tuning is robust against sound intensity variations, 

even though increasing sound levels recruit more input fibers as well as shift the frequency 

preferences for both ears. The question how MSO retains input matching under these 

conditions is a very important but as of yet largely unaddressed question, which merits further 

studies. 

The role of inhibition in the MSO, though extensively studied, is still debated. Although 

Franken et al. (2015) showed that pharmacological blockage of inhibition does not affect ITD 

tuning, this approach could be used to investigate changes in subthreshold event integration. 
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In Chapter 3, we showed that some features of ITD functions could not be predicted by cross-

correlation, possibly some aspects of ITD modulation are mediated by inhibitory events. Other 

than MNTB, LNTB as well is thought to provide inhibitory inputs to the MSO, though recently 

its role in MSO inhibition has been challenged by Franken et al. (2016) albeit with a small 

sample size.  The functional roles of inputs from MNTB and LNTB are yet to be definitively 

investigated, and require larger sample anatomical as well as pharmacological studies. 

The lack of anatomical evidence for axonal delay lines gave rise to alternative theories to 

explain internal delays. However, recent studies, as well as our findings, did not find strong 

evidence to support these alternatives, inviting a revision of the original Jeffress’ postulate. 

As recently found by Seidl and Rubel (2016), conduction velocity regulation differs between 

inputs from both ears in gerbil and, despite no clear anatomical arrangement, the cochlear-

to-MSO travelling time differences between the ears can be the long sought internal delay 

mechanism. These anatomical findings are yet to be correlated with physiological features. 

One way to test this hypothesis is using rabies virus tracing (Callaway and Luo 2015; Ghanem 

and Conzelmann 2015). After determining physiological features of an MSO neuron through 

juxtacellular configuration, the cell would have to be electrophoretically transfected with DNA 

encoding a receptor for the rabies virus and a fluorescent protein (Kim et al. 2016; Reardon 

et al. 2016). After an incubation period, and infection with rabies virus, retrogradely labeled 

inputs to the MSO can be morphologically recovered and quantified. Conduction velocity 

difference between ipsi- and contralateral projections could be retrieved by recording from 

SBCs while electrically stimulating both MSO nuclei. After successfully filling the cell with a 

dye, its morphological features can be recovered through histology. When coupled, the two 

experiments can relate measured BITDs to conduction velocities and answer the question 

whether the excitatory inputs to MSO are the underlying source of internal delays. These 

experiments would, thus, hopefully resolve the remaining controversial pillar of the Jeffress’ 

hypothesis.  

Electrophysiological properties of MSO neurons have been described for gerbil before and 

after hearing onset and their comparison revealed striking developmental changes during this 

critical period. Virtually no studies so far have focused on functional changes in the gerbil 

MSO during development in vivo. Questions and methods suggested above would yield the 

most answers when applied on animals of various ages, particularly around the critical hearing 
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period. Do developmental changes in MSO inputs contribute to input matching and at what 

time point does the matching occur? Is inhibition onto MSO more prominent before hearing 

onset and what role does it play during development? 

A possible goal of binaural hearing research is not only to explain how sound localization is 

computed in the brain, but can also be to improve the quality of life for the many people that 

hear poorly. Bilateral cochlear implant (CI) users can to some extent utilize ILD cues for sound 

localization, whereas ITD cues are more ambiguous and less accessible (for review on the 

topic see Laback et al. (2015). ITD sensitivity is important for auditory perceptiveness in many 

aspects and is much poorer in CI users than in normal hearing people. Recent study on 

bilateral CIs in unanesthetized animals showed that ITD sensitivity in IC largely depends on 

carrier pulse rates used in CI processors (Chung et al. 2016). The primary center of binaural 

convergence, however, is not the IC but MSO. For our cochlear mismatch experiments we 

made a preparation which allowed us to record from MSO while electrically stimulating round 

windows on both cochleae. An improved method (Wiegner et al. 2016) could elucidate MSO 

ITD tuning differences between deafened and normal hearing animals and search for optimal 

stimulation parameters to recover ITD sensitivity.
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Summary 

 

The ability to locate sound sources is essential for both predatory and prey species, especially 

for tetrapods. Different species of this class employ varying neural mechanisms for sound 

localization. For some species in order to locate sound sources, the ability to detect subtle 

differences between sounds arriving at both ears constitutes a major evolutionary advantage. 

For mammals with good low-frequency hearing (including humans) the first sound localization 

step happens in the brainstem – this is where the inputs from both ears meet for the first 

time. The auditory brainstem consists of several nuclei that contribute to different aspects of 

sound processing. One of those nuclei – the medial superior olive (MSO) - is well known to 

play key role in horizontal sound localization, especially for low-frequency sounds. An 

important feature of MSO neurons is their response sensitivity to time delays (or ITD) 

between the ears. 

With virtually no experimental evidence back in 1948, Lloyd Jeffress envisioned a neural 

mechanism through which a hypothetical nucleus could operate as a sound localizer. He 

described gradually shorter or longer inputs innervating different neurons from both ears. 

This gradient of inputs – delay lines – would be responsible for different location sound 

sources preferentially activating different cells, which in turn would convey this sound 

location information towards higher-level brain areas. Since then experimental studies have 

shown that this mechanism is present in birds, however, discrepancies with this theory were 

found for mammals. To explain these discrepancies several alternative theories have been 

proposed, the two most prominent ones being a) local inhibition adjusting internal delays 

(Brand et al. 2002; Pecka et al. 2008) b) time mismatches between ears stem from sound 

perception on different physical locations in each cochlea (stereausis) (Day and Semple 2011; 

Shamma et al. 1989).  

The main goal of our studies was to elucidate which of these different proposed mechanisms 

could account for sound localization in the mammalian brainstem. The experimental data so 

far was mostly gathered from recordings done from individual MSO cells, but no subthreshold 

information could be recorded. We performed not only cell-attached recordings but also 

whole-cell recordings in vivo while presenting novel sound stimuli. These experiments were 
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the first of its kind and allowed us to capture the inputs from both ears – subthreshold 

responses – and have a better insight in the way in which MSO neurons integrate dendritic 

inputs at their soma.  

In Chapter 2 we showed that juxtacellular recordings can be used to describe inputs to MSO 

in a quantitative manner. This was done by comparing in vivo whole-cell, juxtacellular and in 

vitro recordings. First of all, we observed that the measured best delay of the MSO neuron 

could be estimated from the timing of monaural subthreshold responses. Furthermore, linear 

summation of the two inputs predicted binaural features of the MSO remarkably well.  We 

found no significant differences between left and right subthreshold input characteristics, 

suggesting that MSO itself does not contribute to internal delay generation. Absence of 

responses during unfavorable time delays seemed to come from the lack of timed inputs from 

both ears rather than inhibitory effects. Finally, we found that MSO neurons respond in a 

supralinear fashion when inputs from both ears arrive within a very short time window, 

making them very sensitive coincidence detectors.  

Further on, we looked into the linear summation importance for the MSO function. In Chapter 

3 we used a multiple-frequency (wideband) stimulus to evoke monaural and binaural 

responses in the MSO. Monaural responses were cross-correlated (linear summation) and the 

final result yielded an expected ITD sensitivity of that neuron. Binaural stimulation allowed us 

to record the true ITD sensitivity of the same neuron. We then compared the two ITD curves 

by fitting them with standard fitting function and comparing their parameter values. Best ITDs 

were predicted quite accurately, just as in Chapter 2. Additionally, we found a high correlation 

between measured and predicted ITD curve phases and frequencies – the temporal 

parameters. Overall, linear input summation reproduced the measured ITD responsiveness 

(not only best ITD) quite accurately. We did not observe any differential filtering of inputs 

during their interaction, thus, together with the results of Chapter 2, we could not find 

evidence supporting a major role for well-timed inhibition in ITD regulation. 

Finally, we aimed to test the stereausis hypothesis in Chapter 4. The idea behind this 

hypothesis is that internal delay is arising due to sounds activating different locations on 

different cochleae. Three important implications arise from this theory: a) MSO neurons 

should be sensitive to different sound frequencies for both ears, b) electrical stimulation of 

the cochlea should circumvent this time delay mechanism and c) positive best delays should 
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correspond to lower frequencies on the contralateral side and vice versa. In agreement with 

other studies we found that MSO neurons are sensitive to slightly different frequencies for 

both ears; though the difference was small, it was enough to generate relevant time delays. 

By implanting electrodes close to each ear, we measured electrically evoked ITD responses. 

They indeed did not match those evoked by sound. Despite this, we did not find a correlation 

between frequency mismatches between the ears and best delay of MSO neurons, making 

stereausis unlikely to be a dominant mechanism underlying sound localization in the MSO. 

In short, being able to record subthreshold responses in the MSO, we could investigate its 

function in greater detail. MSO cells sum their inputs from both ears in a linear manner and 

produce supralinear outputs when these inputs arrive within a short time window. Linear 

input summation is enough to reproduce the neuronal ITD sensitivity, without a need for 

inhibitory or local modulation effects. Despite the fact that MSO neurons receive two 

inhibitory inputs and two excitatory inputs from both ears, often tuned to different 

frequencies, we found no evidence for local, well-timed inhibition or stereausis to affect ITD 

sensitivity in the MSO. This leaves, by exclusion, Jeffress’ model as the most plausible internal 

delay source. However, some of the predictions of a pure delay line model were not borne 

out by the data. Recent studies found evidence for differential axonal conductance velocities 

between inputs from both ears; more detailed experiments are needed for conclusive results. 

The role of inhibition at the MSO is still largely undetermined and hopefully can be 

understood by a pharmacological approach or by performing developmental MSO research. 

A further understanding of the cellular mechanisms of sound localization may help in 

improving cochlear implant performance.
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Samenvatting 

 

Weten waar geluiden vandaan komen is belangrijk voor zowel roof- als prooidieren, met 

name viervoeters (tetrapoden). Viervoeters gebruiken verschillende neurale mechanismen 

om geluiden te lokaliseren. Hierbij biedt het vermogen om subtiele verschillen in de 

aankomsttijden van geluiden tussen beide oren te detecteren een belangrijk evolutionair 

voordeel. Voor zoogdieren met een goed laagfrequent gehoor (waaronder mensen) vindt de 

eerste geluidslokalisatiestap plaats in de hersenstam, waar de input van beide oren voor het 

eerst samenkomt. De auditieve hersenstam bestaat uit verschillende kernen die bijdragen aan 

verschillende aspecten van geluidsverwerking. Eén van die kernen - de mediale bovenste 

olijfkern (Medial Superior Olive, MSO) - speelt een sleutelrol bij geluidslokalisatie in het 

horizontale vlak, met name voor laagfrequente geluiden. Een belangrijk kenmerk van MSO 

neuronen is hun gevoeligheid voor de relatieve aankomsttijd van geluiden bij beide oren 

(Interaural Time Difference, ITD). 

Lloyd Jeffress stelde in 1948 een neuraal mechanisme voor geluidslokalisatie voor. Hij 

beschreef een hersenkern die geïnnerveerd werd door inputs vanuit beide oren waarvan de 

lengte systematisch varieerde. Omdat de tijd die een signaal erover doet afhangt van de 

lengte van een axon, zou voor elke cel een ander verschil in reistijd (‘internal delay’) gelden 

voor de signalen uit beide oren. Jeffress postuleerde verder dat deze cellen alleen actief 

zouden worden als de inputs uit beide oren tegelijk zouden aankomen, met andere woorden 

als het verschil in reistijd juist het verschil in aankomsttijd van het geluid bij beide oren 

compenseert (‘best delay’). Deze gradiënt van vertragingslijnen zou zó verantwoordelijk zijn 

voor een systematische map van geluidsbronnen binnen deze hersenkern. Sindsdien hebben 

experimentele studies aangetoond dat dit mechanisme aanwezig is bij vogels, maar er 

werden discrepanties met deze theorie gevonden voor zoogdieren. Om deze discrepanties te 

verklaren zijn verschillende alternatieve theorieën voorgesteld. De twee meest prominente 

zijn: a) lokale synaptische inhibitie, die zorgt voor een verandering van de effectieve reistijd 

(Brand et al. 2002; Pecka et al. 2008) en b) cellen in de MSO worden geïnnerveerd vanuit 

verschillende plekken binnen het slakkenhuis, waardoor verschillen in reistijd binnen het 
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slakkenhuis bijdragen aan de reistijdverschillen (‘stereausis’) (Day and Semple 2011; Shamma 

et al. 1989). 

Het belangrijkste doel van dit proefschrift was om op te helderen welke van deze 

verschillende voorgestelde mechanismen het meest toepasbaar is bij zoogdieren. De 

experimentele gegevens tot dusver waren weliswaar grotendeels afkomstig van opnames van 

individuele MSO cellen, maar er waren geen metingen van hun inputs in vivo gemaakt. Wij 

hebben zowel juxtacellulaire als zgn. whole-cell afleidingen in vivo in gerbils gemaakt terwijl 

we (verschillende) geluiden bij beide oren afspeelden. Hiermee konden we een beter inzicht 

te krijgen in de manier waarop MSO-neuronen dendritische inputs in hun cellichaam 

integreren. 

In Hoofdstuk 2 hebben we laten zien dat juxtacellulaire opnames gebruikt kunnen worden 

om inputs in een MSO neuron op een kwantitatieve manier te meten. Dit werd aangetoond 

door in vivo whole-cell en juxtacellulaire opnames te vergelijken met opnames in 

hersenplakjes. We hebben dit type metingen gebruikt om te laten zien dat de gemeten ‘best 

delay’ van het MSO neuron kon worden voorspeld op basis van de timing van synaptische 

potentialen in antwoord op stimulatie van één oor. Verder vonden we dat een simpele 

optelling (1+1=2) van de responsen op stimulatie van het linker- en het rechteroor de 

synaptische potentialen in respons op stimulatie van beide oren opmerkelijk goed. We 

vonden geen significante verschillen tussen de temporele eigenschappen van de linker en 

rechter synaptische potentialen, wat suggereert dat de MSO zelf niet bijdraagt aan het 

genereren van de internal delay. We vonden verder aanwijzingen dat de afwezigheid van 

activiteit tijdens stimulatie bij de ‘worst delay’ eerder leek te komen door afwezigheid van 

input dan door synaptische inhibitie. Ten slotte ontdekten we dat de kans op een 

actiepotentiaal in MSO-neuronen een supralineaire functie is van de grootte van de inputs, 

wat een verklaring biedt voor hun functie als coïncidentiedetectoren. 

In Hoofdstuk 3 hebben we een stimulus met meerdere toonfrequenties (breedband stimulus) 

gebruikt om monaurale en binaurale reacties op te wekken in de MSO. Door kruiscorrelatie 

van de monaurale responsen kon de ITD gevoeligheid van het neuron adequaat voorspeld 

worden, niet alleen de waarde van de ‘best ITD’, maar ook het gedrag van de cel daarbuiten. 

Net als in hoofdstuk 2 vormde lineaire sommatie van de synaptische inputs een goede 

verklaring voor de metingen. Ten slotte wilden we de stereausis hypothese testen in 
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hoofdstuk 4. Het idee achter deze hypothese is dat geluiden voor het linker en het rechteroor 

verschillende locaties op de cochleae activeren, waardoor de looptijd van die signalen 

verschillend wordt voor de inputs in de MSO vanuit beide oren. Deze theorie doet drie 

voorspellingen: a) MSO neuronen moeten gevoelig zijn voor verschillende geluidsfrequenties 

voor beide oren, b) elektrische stimulatie van de auditieve zenuw moet dit 

tijdsvertragingsmechanisme omzeilen en c) positieve ‘best delays’ moeten overeenkomen 

met lagere frequenties op de contralaterale kant en vice versa. In overeenstemming met 

andere studies vonden we dat MSO-neuronen gevoelig zijn voor verschillende frequenties 

voor beide oren; hoewel het verschil klein was, was het voldoende om relevante 

tijdsvertragingen te genereren. Door elektroden dicht bij elk oor te implanteren konden we 

elektrisch opgewekte best ITDs meten. Deze kwamen inderdaad niet overeen met de 

auditieve ‘best ITD’ in hetzelfde neuron. Desondanks hebben we geen correlatie gevonden 

tussen frequentie verschillen tussen de oren en de best delay van MSO neuronen, waardoor 

het onwaarschijnlijk is dat stereausis een dominant mechanisme kan zijn, wat een belangrijke 

rol speelt bij geluidslokalisatie in de MSO. 

Kortom, doordat we de inputs in MSO neuronen in vivo konden meten, konden we hun functie 

onderzoeken. MSO cellen tellen hun inputs van beide oren op een lineaire manier op en 

produceren supralineaire output wanneer deze inputs binnen een kort tijdsbestek arriveren. 

Sommatie van lineaire inputs is voldoende om de neuronale ITD-gevoeligheid te 

reproduceren, zonder dat er remmende of lokale modulatie-effecten nodig zijn. Ondanks het 

feit dat MSO-neuronen twee remmende inputs en twee exciterende inputs vanuit beide oren 

ontvangen, vaak gevoelig voor verschillende geluidsfrequenties, vonden we geen bewijs voor 

lokale, goed getimede synaptische inhibitie dan wel stereausis om de ITD-gevoeligheid in de 

MSO te verklaren. Hierdoor blijven de axonale vertragingen uit het model van Jeffress als de 

meest plausibele bron voor ‘internal delay’ over. Sommige voorspellingen van een strikt 

vertragingslijnmodel werden echter niet bevestigd door de metingen. Recente studies 

hebben bewijs gevonden voor differentiële axonale geleidingssnelheden tussen inputs van 

beide oren; meer gedetailleerde experimenten zijn echter nodig. De rol van synaptische 

inhibitie binnen de MSO is nog grotendeels onbekend en kan hopelijk worden begrepen door 

een farmacologische benadering of door het bestuderen van de ontwikkeling van de MSO. 
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Een verder begrip van de cellulaire mechanismen van geluidslokalisatie kan helpen bij het 

verbeteren van de prestaties van cochleaire implantaten.  
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