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General Introduction

Introduction

Type 2 diabetes

Type 2 diabetes, a metabolic disorder characterized by elevated serum glucose levels 

and reduced sensitivity to insulin, has become a worldwide public health concern. 

The prevalence of this disease has risen sharply during the last decades. In 2014, it 

was estimated that approximately 8.5% of adults suffer from type 2 diabetes globally.1,2 

Aside from symptoms directly related to disturbances in glucose metabolism, type 2 

diabetes can cause severe long-term cardiovascular complications if not carefully man-

aged.1 These potential complications include myocardial infarction, stroke, peripheral 

arterial disease and blindness.2 Due to its high prevalence and serious complications, 

type 2 diabetes accounts for a substantial economic and healthcare burden world-

wide.3 The healthcare costs related to type 2 diabetes are projected to have risen even 

further by the year 2030, in parallel with an ever increasing prevalence of the disorder 

in the coming decades if the present trend continues.4,5

Diet

The marked increase in the prevalence of type 2 diabetes is, amongst other factors, 

attributed to increasing rates of obesity, decreased time spent in physical activity in 

favor of sedentary time and the consumption of increasingly unhealthy diets.2 The 

relationship between aspects of the diet and risk of type 2 diabetes appears to be 

especially complex. Diet may affect risk of type 2 diabetes through its effects on body 

weight, but dietary factors may also affect risk of the disease independently of body 

weight.6 Several different approaches have been used to study the relation between 

diet and type 2 diabetes. For instance, at the level of individual nutrients, it has been 

suggested that higher intake of magnesium, vitamin C and carotenoids provide a 

lower risk of type 2 diabetes.7–9 With regards to food groups, it appears that lower 

consumption of vegetables, fruits and whole grains and higher consumption of red 

meat and suger-sweetened beverages increase type 2 diabetes risk.6,10 Considering 

dietary patterns as a whole, a Mediterranean-type diet, which is characterized by a 

high consumption of fruits, vegetables and legumes as well as moderate intake of 

fish and abundant use of olive oil, is associated with lower long-term risk of type 2 

diabetes.11–13 The many different approaches that have been used in studying diet as 

a determinant of type 2 diabetes highlight that this is a complicated field of research 

in which many questions remain unanswered. Notably, the mechanisms of action 

through which aspects of the diet may affect type 2 diabetes risk are subject to debate 

and may include effects on body composition and chronic low-grade inflammation.



Chapter 1

14

Body composition

Given that obesity is one of the most firmly established risk factors for type 2 diabetes 

and its complications, one of the primary pathways through which diet may play a role 

in diabetes prevention is through inducing weight loss or preventing weight gain.6,14 

Although body weight is an important and frequently used parameter in this regard, 

more recent research has demonstrated that body weight and its simple derivatives 

such as body mass index (BMI) provide an incomplete picture of an individual’s body 

composition due to the fact that BMI fails to differentiate between fat mass (adipose 

tissue) and lean mass (non-adipose tissues).15,16 It has been shown that whereas higher 

fat mass is associated with increased risk of all-cause mortality, increases in lean 

mass generally confer a lower mortality risk.17 Similarly, whereas higher lean mass is 

associated with lower risk of metabolic syndrome, higher fat mass is positively associ-

ated with metabolic syndrome.18,19 The notion that body composition provides more 

information with regards metabolic disturbances than BMI is underlined by the obser-

vation that increased visceral fat mass is associated with increased insulin resistance, 

whereas increased subcutaneous fat mass may decrease insulin resistance.20 Thus, not 

only the absolute quantity of fat mass but also its physical location has important 

metabolic implications, and BMI alone fails to capture this distinction. These differ-

ential effects of visceral and subcutaneous fat mass may be explained by differing 

inflammatory responses to excess adipose tissue in different locations.21 Therefore, 

while the relation between obesity and type 2 diabetes may appear straightforward 

at first glance, much more is at play on a metabolic level. In line with this, diet may 

not only affect body weight but also body composition through effects on specific fat 

depots.22

Inflammation

Another pathway through which aspects of the diet may affect risk of type 2 dia-

betes is through systemic low-grade inflammation. Inflammation is a physiological 

process characterized by the release of mediators such as cytokines and chemokines 

in response to stressors, and is a critical feature of the immune system which helps 

maintain or reinstate homeostasis in the presence of tissue damage.23 However, a 

persisting inflammatory response without an apparent trigger can also occur and is 

often regarded as detrimental to metabolic functioning.23,24 Such an extended period 

of low-grade inflammation can be caused by the consumption of specific nutrients or 

a state of metabolic surplus as occurs in case of obesity.25 With regards to metabolic 

surplus, the notion that inflammatory mediators are more abundantly expressed in 

obese individuals as opposed to lean individuals is commonly accepted.26 A wide range 

of nutrients may have pro-inflammatory effects, although untangling the many pleio-

tropic effects these individual nutrients may have on inflammation in vivo has proven 



15

General Introduction

challenging.27 On a macro level, adherence to a Western-type dietary pattern (charac-

terized by high intake of processed meat, refined grains and high-fat dairy, amongst 

other factors) is associated with elevated markers of inflammation.28,29 Regardless 

of the exact source of the inflammatory process, inflammatory mediators such as 

tumor necrosis factor (TNF) may increase risk of type 2 diabetes through interfering 

with insulin signaling.30 Interestingly, experimental evidence has indicated that this 

disruption of insulin signaling due to inflammation also takes place in the absence 

of overt obesity.25 The prominent role of inflammation in the pathogenesis of obesity 

and insulin resistance has given rise to the idea that type 2 diabetes is, at its core, 

an inflammatory condition.31 The importance of the concept of inflammation with 

regards to disease onset, as well as the notion that diet may be an important instigator 

of inflammation, emphasizes the importance of research linking diet to inflammatory 

processes.

Figure 1.1.1. Proposed relation between determinants of type 2 diabetes and its eventual com-
plications.

Thesis outline

Given that diet, body composition and inflammation are closely interwoven, disen-

tangling how these factors interact with each other in the context of the pathogenesis 

of type 2 diabetes has proven no small feat. A framework for conceptualizing how 

they are related is displayed as Figure 1.1.1. With this thesis, I aim to further clarify 

how these factors are interrelated and affect risk of type 2 diabetes. The majority of 

the work contained in this thesis was performed within the Rotterdam Study, a large 

population-based cohort of approximately 15,000 participants. A number of the studies 

in this thesis were also performed within the United Kingdom (UK) Biobank, an open 

access cohort study of over half a million participants. As such, I approach the topics 

from an epidemiological perspective. The second chapter of this thesis is focused on 

dietary factors in relation to type 2 diabetes. In chapter 2.1, we investigate the relation 
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between total dietary antioxidant capacity and insulin resistance as well as risk of 

type 2 diabetes. In chapter 2.2, we examine the association between a plant-based diet 

and insulin resistance as well as incidence of prediabetes and type 2 diabetes. In the 

third chapter we discuss markers of inflammation and their relation to prediabetes 

and type 2 diabetes. In chapter 3.1, we examine uric acid in relation to risk of these 

outcomes. Following up on this, in chapter 3.2, uric acid is investigated in relation 

to risk of fatal and non-fatal cardiovascular events. In chapter 3.3, we study the role 

of C-reactive protein as a mediator in the association between coffee consumption 

and risk of type 2 diabetes. In the fourth chapter we address body composition and 

investigate its dietary determinants. In chapter 4.1, total dietary antioxidant capacity 

is investigated in relation to longitudinal patterns of body composition. Finally, in 

chapter 4.2, we explore the association between consumption of dietary advanced 

glycation end-products and body composition. In chapter 5, I provide an overview of 

the major findings from this thesis, discuss relevant methodological considerations 

and reflect on the implications of our work as well as potential directions for future 

research.



17

General Introduction

References

	 1.	 Frantizides CT. Laparoscopic and Thoracoscopic Surgery. St. Louis, Missouri: Mosby; 1995.

	 2.	 Graber IN, Schultz LS, Pietrofitta JJ, Hickok DF. Laparoscopic Abdominal Surgery. Chicago: McGraw-

Hill; 1993.

	 3.	 Schollmeyer T, Soyinka AS, Schollmeyer M, Meinhold-Heerlein I. Georg Kelling (1866–1945): 

the root of modern day minimal invasive surgery. A forgotten legend? Archives of Gynecology and 

Obstetrics. 2007;276(5):505-509.

	 4.	 Jacobaeus HC. Über Laparo- und Thorakoskopie. Beiträge zur Klinik der Tuberkulose. 1912;25(2):I-

354.

	 5.	 Berci G, Davids J. Endoscopy and television. Br Med J. 1962;1(5292):1610-1613.

	 6.	 Nezhat’s History of Endoscopy. Let There Be Light: A Historical Analysis of Endoscopy’s Ascen-

sion Since Antiquity.  http://laparoscopy.blogs.com/endoscopyhistory/.

	 7.	 Nezhat C, Crowgey SR, Garrison CP. Surgical treatment of endometriosis via laser laparoscopy. 

Fertil Steril. 1986;45(6):778-783.

	 8.	 Litynski GS. Kurt Semm and the fight against skepticism: endoscopic hemostasis, laparoscopic 

appendectomy, and Semm’s impact on the “laparoscopic revolution”. JSLS : Journal of the Society of 

Laparoendoscopic Surgeons. 1998;2(3):309-313.

	 9.	 Litynski GS. Erich Mühe and the rejection of laparoscopic cholecystectomy (1985): a surgeon 

ahead of his time. JSLS : Journal of the Society of Laparoendoscopic Surgeons. 1998;2(4):341-346.

	 10.	 Mouret P. How I developed laparoscopic cholecystectomy. Ann Acad Med Singapore. 1996;25(5):744-

747.

	 11.	 Miller DC, Wei JT, Dunn RL, Hollenbeck BK. Trends in the diffusion of laparoscopic nephrec-

tomy. JAMA. 2006;295(21):2476-2482.

	 12.	 Reynolds W. The First Laparoscopic Cholecystectomy. JSLS : Journal of the Society of Laparoendoscopic 

Surgeons. 2001;5(1):89-94.

	 13.	 S. Litynski G. Mouret, Dubois, and Perissat: The Laparoscopic Breakthrough in Europe (1987-1988). Vol 

31999.

	 14.	 The Southern Surgeons C, Moore MJ, Bennett CL. The learning curve for laparoscopic cholecys-

tectomy. The American Journal of Surgery. 1995;170(1):55-59.

	 15.	 A prospective analysis of 1518 laparoscopic cholecystectomies. The Southern Surgeons Club. 

The New England journal of medicine. 1991;324(16):1073-1078.

	 16.	 Caputo L, Aitken DR, Mackett MC, Robles AE. Iatrogenic bile duct injuries. The real incidence 

and contributing factors--implications for laparoscopic cholecystectomy. The American surgeon. 

1992;58(12):766-771.

	 17.	 Fletcher DR, Hobbs MS, Tan P, et al. Complications of cholecystectomy: risks of the laparoscopic 

approach and protective effects of operative cholangiography: a population-based study. Annals 

of surgery. 1999;229(4):449-457.

	 18.	 Huang X, Feng Y, Huang Z. Complications of laparoscopic cholecystectomy in China: an analysis 

of 39,238 cases. Chinese medical journal. 1997;110(9):704-706.

	 19.	 Morgenstern L, McGrath MF, Carroll BJ, Paz-Partlow M, Berci G. Continuing hazards of the learn-

ing curve in laparoscopic cholecystectomy. The American surgeon. 1995;61(10):914-918.

	 20.	 Mercado MA, Chan C, Orozco H, Tielve M, Hinojosa CA. Acute bile duct injury. The need for a 

high repair. Surg Endosc. 2003;17(9):1351-1355.

	 21.	 A Prospective Analysis of 1518 Laparoscopic Cholecystectomies. New England Journal of Medicine. 

1991;324(16):1073-1078.



Chapter 1

18

	 22.	 Flum DR, Koepsell T, Heagerty P, Sinanan M, Dellinger EP. Common bile duct injury during 

laparoscopic cholecystectomy and the use of intraoperative cholangiography: Adverse outcome 

or preventable error? Arch Surg. 2001;136(11):1287-1292.

	 23.	 Archer SB, Brown DW, Smith CD, Branum GD, Hunter JG. Bile Duct Injury During Laparoscopic 

Cholecystectomy: Results of a National Survey. Annals of surgery. 2001;234(4):549-559.

	 24.	 Way LW, Stewart L, Gantert W, et al. Causes and Prevention of Laparoscopic Bile Duct Injuries: 

Analysis of 252 Cases From a Human Factors and Cognitive Psychology Perspective. Annals of 

surgery. 2003;237(4):460-469.

	 25.	 Strasberg SM, Eagon CJ, Drebin JA. The “hidden cystic duct” syndrome and the infundibular 

technique of laparoscopic cholecystectomy--the danger of the false infundibulum. J Am Coll Surg. 

2000;191(6):661-667.

	 26.	 Strasberg SM, Hertl M, Soper NJ. An analysis of the problem of biliary injury during laparoscopic 

cholecystectomy. J Am Coll Surg. 1995;180(1):101-125.

	 27.	 Strasberg SM, Brunt LM. Rationale and Use of the Critical View of Safety in Laparoscopic Chole-

cystectomy. Journal of the American College of Surgeons.211(1):132-138.

	 28.	 Evidence based guideline: Diagnosis and treatment of cholelithiasis. Association of Surgeons of 

the Netherlands (NVvH); 2016.

	 29.	 Sanford DE, Strasberg SM. A simple effective method for generation of a permanent record of 

the Critical View of Safety during laparoscopic cholecystectomy by intraoperative “doublet” 

photography. J Am Coll Surg. 2014;218(2):170-178.

	 30.	 Plaisier PW, Pauwels MM, Lange JF. Quality control in laparoscopic cholecystectomy: operation 

notes, video or photo print? HPB (Oxford). 2001;3(3):197-199.

	 31.	 Emous M, Westerterp M, Wind J, Eerenberg JP, van Geloven AAW. Registering the critical view 

of safety: photo or video? Surgical Endoscopy. 2010;24(10):2527-2530.

	 32.	 Wauben LS, van Grevenstein WM, Goossens RH, van der Meulen FH, Lange JF. Operative notes do 

not reflect reality in laparoscopic cholecystectomy. The British journal of surgery. 2011;98(10):1431-

1436.

	 33.	 Birkmeyer JD, Finks JF, O’Reilly A, et al. Surgical skill and complication rates after bariatric 

surgery. The New England journal of medicine. 2013;369(15):1434-1442.

	 34.	 Bonrath EM, Gordon LE, Grantcharov TP. Characterising ‘near miss’ events in complex laparo-

scopic surgery through video analysis. BMJ Quality & Safety. 2015;24(8):516-521.







Chapter 2

Dietary determinants of type 2 
diabetes





Chapter 2.1

Dietary Antioxidant Capacity and 
Risk of Type 2 Diabetes Mellitus, 

Prediabetes and Insulin Resistance: 
The Rotterdam Study

N. van der Schaft, J.D. Schoufour, J. Nano, J.C. Kiefte – de Jong, T. Muka, 
E.J.G. Sijbrands, M.A. Ikram, O.H. Franco, T. Voortman

European Journal of Epidemiology, 2018



Chapter 2.1

24

Abstract

Background

Intake of individual antioxidants has been related to a lower risk of type 2 diabetes. 

However, the diet may contain many antioxidants with additive or synergistic effects. 

Therefore, we aimed to determine associations between total dietary antioxidant 

capacity and risk of type 2 diabetes, prediabetes and insulin resistance.

Methods

We estimated the dietary antioxidant capacity of 5,796 participants of the Rotterdam 

Study using a ferric reducing ability of plasma (FRAP) score. Of these participants, 

4,957 had normoglycemia and 839 had prediabetes at baseline. We used covariate-

adjusted proportional hazards models to estimate associations between FRAP and risk 

of type 2 diabetes, risk of type 2 diabetes among participants with prediabetes, and 

risk of prediabetes. We used linear regression models to determine the association 

between FRAP score and insulin resistance (HOMA-IR).

Results

We observed 532 cases of incident type 2 diabetes, of which 259 among participants 

with prediabetes, and 794 cases of incident prediabetes during up to 15 years of 

follow-up. A higher FRAP score was associated with a lower risk of type 2 diabetes 

among the total population (HR per SD FRAP 0.84, 95% CI 0.75; 0.95) and among par-

ticipants with prediabetes (HR 0.85, 95% CI 0.73; 0.99), but was not associated with risk 

of prediabetes. Dietary FRAP was inversely associated with HOMA-IR (b -0.04, 95% CI 

-0.06; -0.03). Effect estimates were generally similar between sexes.

Conclusions

The findings of our population-based study emphasize the beneficial effects of dietary 

antioxidant capacity on insulin resistance and risk of type 2 diabetes.
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Introduction

Oxidative stress is commonly regarded as an important contributing factor in the 

pathogenesis of type 2 diabetes mellitus.1 Generally, oxidative stress is the result of an 

excess of reactive oxygen species (ROS), which are partially reduced forms of oxygen.2 

While ROS are considered essential for normal physiological function, an excess 

of ROS can lead to structural damage to important biomolecules and impairment 

of their function.2,3 A biological defense mechanism against excess ROS is formed 

by antioxidants. These bioactive compounds may prevent the generation of ROS or 

scavenge free radicals.1,2 Antioxidants can be endogenous, i.e. naturally occurring 

in the human body, such as uric acid and glutathione; or exogenous, in which case 

they are mainly derived from the diet.2 Exogenous antioxidants, such as vitamin E 

and carotenoids, form an indispensable complementary component of the natural 

antioxidant defense system.4

A high dietary intake of antioxidants may lower oxidative stress and thereby lower 

the risk of diseases related to oxidative stress, such as type 2 diabetes. In line with this, 

a higher intake of certain nutrients with antioxidative properties has been associated 

with a lower risk of type 2 diabetes mellitus.5,6 In addition, serum levels of certain 

antioxidants have been shown to be inversely related to plasma glucose levels and 

measures of insulin resistance.7,8 However, the majority of previous studies on this 

topic have investigated individual antioxidant components only, as opposed to using 

a comprehensive measure of total dietary antioxidant capacity. The diet can contain 

many components with antioxidative properties which may have additive or syner-

gistic effects, and intake of individual antioxidants may therefore not reflect the total 

antioxidant capacity of the diet.9 The concept of total dietary antioxidant capacity 

aims to capture overall effects of antioxidants from dietary compounds and thereby 

facilitates studying the effects of antioxidants in the context of complex diets.10 Major 

contributors to the overall antioxidant capacity of the diet are coffee, tea, red wine 

and various types of fruits (blueberries, grapes, oranges) and vegetables (cabbage spe-

cies, spinach, broccoli).11,12

To our knowledge, only one previous study, among women only, examined the overall 

dietary antioxidant capacity in relation to type 2 diabetes.13 Furthermore, dietary anti-

oxidants have not been studied in relation to intermediate stages in the development 

of type 2 diabetes, such as insulin resistance or prediabetes. Therefore, we aimed to 

determine the association between dietary antioxidant capacity and risk of type 2 

diabetes, risk of prediabetes and insulin resistance in a large population-based cohort 

with up to 15 years of follow-up.
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Methods

Study design and population

The general design and objectives of the Rotterdam Study have been described in 

detail elsewhere.14 In brief, the Rotterdam Study (RS) is a population-based cohort 

which started in 1990 with the inclusion of 7,893 inhabitants of the Ommoord district 

in the city of Rotterdam, the Netherlands, aged 55 years or older (sub-cohort RS-I). In 

2000, the cohort was extended with a second sub-cohort (sub-cohort RS-II) consisting 

of 3,011 participants who had moved into the Ommoord district or had become 55 

years of age since the inception of the first sub-cohort. A further extension of the total 

cohort was initiated in 2006, when 3,932 residents of the Ommoord district aged 45-54 

years were included in a third sub-cohort (sub-cohort RS-III). These participants were 

interviewed at home and received extensive physical examinations at the Rotterdam 

Study research facility at baseline, which are repeated every 3-4 years. The Rotterdam 

Study has received approval from the Medical Ethics Committee of Erasmus University 

Medical Center and from the review board of the Dutch Ministry of Health, Welfare 

and Sports. All participants have provided written informed consent.14

Population for analysis

Of the 14,926 participants in the Rotterdam Study, valid dietary data were available 

at the baseline examination round for each cohort for a total of 9,701 participants.15 

Among the 5,225 participants without valid dietary data, 5,141 individuals had no 

dietary data available, and 84 were judged to have invalid dietary data because their 

daily energy intake did not exceed 500 kcal or was greater than 5,000 kcal. Of the 

9,701 participants with valid dietary data, 1,126 were excluded because they had 

prevalent cardiovascular disease (defined as a history of stroke, heart failure, myocar-

dial infarction or revascularization procedure) and 415 were excluded because they 

had prevalent cancer. Of the remaining 8,160 participants, 1,682 had no information 

on glucose status available and 682 had prevalent type 2 diabetes. Thus, our popula-

tion for analysis consisted of 5,796 individuals. Information on fasting serum glucose 

and insulin, used to calculate homeostatic model assessment of insulin resistance 

(HOMA-IR), was available for 5,422 of these individuals.

Dietary assessment

Dietary data were collected by means of a semi-quantitative food frequency question-

naire (FFQ), administered by a trained interviewer, during the baseline examination 

of the participants. For sub-cohorts RS-II and RS-I, a two-step approach was used in 

assessing dietary data. First, participants completed a self-administered checklist on 

which foods were consumed at least twice a month during the preceding year. The 
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completed checklist was used as a basis for the structured FFQ interview, performed 

by a trained dietician, about consumption frequencies and amounts at the Rotterdam 

Study research facility. The FFQ used in these sub-cohorts consisted of 170 items and 

was developed for and validated among the elderly.16 For sub-cohort RS-III-I, collection 

of dietary data was performed by means of a single self-administered, 389-item, semi-

quantitative FFQ which was based on an existing validated FFQ developed for Dutch 

adults.17,18 Portion sizes in grams per day were estimated using standard household 

measures. Food intake data were subsequently converted into daily energy and nu-

trient intake using the Dutch Food Composition Tables of 1993 for RS-I-1, 2001 for 

RS-II-1, and 2006 for RS-III-1.

Assessment of total dietary antioxidant capacity

In order to estimate the total dietary antioxidant capacity, we used the Antioxidant 

Food Table published by Carlsen and colleagues, who determined the antioxidant 

content of over 3,100 types of food and beverages using a ferric reducing ability of 

plasma (FRAP) assay.10 The FRAP assay measures the reduction of ferric ion (Fe3+) to 

ferrous ion (Fe2+) and has been used extensively in nutrition science.2,19 The FRAP value 

of each type of food extracted from the Antioxidant Food Table (mmol/100 grams) was 

multiplied by its consumption frequency for every participant, and we then summed 

these values across all dietary sources of antioxidants to calculate a FRAP score for 

every participant representing the total dietary antioxidant capacity. Nutrition scien-

tists from Wageningen University, the Netherlands, were consulted to determine the 

closest Dutch food equivalent for products that had different FRAP measurements 

listed for different manufacturers in the Antioxidant Food Table. No detailed data 

were available on the consumption of food supplements in our study, so we did not 

include food supplements in the calculation of the total dietary antioxidant capacity.

Ascertainment of normoglycemia, insulin resistance, prediabetes and 
type 2 diabetes mellitus

Fasting blood samples were obtained from participants during their visit to the Rot-

terdam Study research facility by means of venipuncture. The samples were stored at 

-80° Celsius in 5mL aliquots. Glucose levels were measured using the glucose hexoki-

nase method within one week of sampling.20 In 2008, insulin levels were measured in 

these samples by means of electrochemiluminescence immunoassay technology us-

ing a Roche Modular Analytics E170 analyzer (Roche Diagnostics GmbH, Mannheim, 

Germany). We calculated HOMA-IR as the product of fasting serum glucose (mmol/L) 

and fasting serum insulin (mU/L) levels divided by 22.5. All measurements were per-

formed at the clinical chemistry laboratory of Erasmus University Medical Center. We 

obtained data on the use of glucose-lowering medication through structured home 
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interviews as well as pharmacy dispensing records. In accordance with WHO guide-

lines and the Rotterdam Study protocol, we defined type 2 diabetes as a fasting plasma 

glucose level ≥ 7 mmol/L, a non-fasting plasma glucose level ≥ 11.1 mmol/L or the use 

of blood glucose lowering medication. We defined prediabetes as a fasting plasma 

glucose level > 6.0 mmol/L and < 7 mmol/L, or a non-fasting plasma glucose level > 7.7 

mmol/L and < 11.1 mmol/L. We defined normoglycemia as a fasting plasma glucose 

level ≤ 6 mmol/L.21 At baseline and throughout follow-up, we ascertained prediabetes 

and type 2 diabetes cases using records from general practitioners, hospital discharge 

letters and the glucose measurements performed as part of the Rotterdam Study.22 

Two physicians independently assessed all potential prediabetes and type 2 diabetes 

cases and consulted an endocrinologist in case of disagreement.22 Serum glucose lev-

els and incident cases of type 2 diabetes and prediabetes were recorded from the third 

examination round of the first cohort (RS-I-3) and the baseline examination rounds 

from the second and third cohort (RS-II-1 and RS-III-1) onwards. Hence, these rounds 

were used as the baseline for follow-up in our analyses.

Covariates

We considered the following potentially confounding variables our analyses, based 

on theory and previous literature: age, sex, body mass index (BMI), hypertension, 

dyslipidemia, highest attained level of education, degree of physical activity, smok-

ing status, total daily energy intake, daily alcohol intake and degree of adherence to 

guidelines for a healthy diet. Anthropomorphic characteristics were recorded during 

participants’ visits to the Rotterdam Study research facility. We calculated BMI as 

weight in kilograms divided by squared height in meters. We defined hypertension as 

the use of antihypertensive medication, having a systolic blood pressure ≥ 140 mmHg 

or having a diastolic blood pressure ≥ 90 mmHg. Blood pressure was recorded as the 

mean value of two blood pressure readings at the right upper arm in sitting position, 

separated by two minutes, using a random-zero sphygmomanometer. We defined 

dyslipidemia as a serum total cholesterol level > 6.5 mmol/L or use of lipid-lowering 

medication. Serum total cholesterol was determined in fasting blood samples using 

the CHOD-PAP method (Monotest Cholesterol kit, Boehringer Mannheim Diagnostica, 

Germany).23 We determined the use of antihypertensive and lipid-lowering drugs 

through home interviews and consulting pharmacy dispensing records. Smoking 

status and the highest attained level of education were also ascertained during 

home interviews. We categorized participants as never smokers, former smokers or 

current smokers. Education level was split into four categories: primary education, 

lower or intermediate general education or lower vocational education, intermediate 

vocational education or higher general education and higher vocational education 

or university education. We calculated total daily energy intake (kcal/day) and daily 
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alcohol intake (grams/day) from data obtained from the FFQs. The overall dietary pat-

tern was taken into account using a diet quality score reflecting adherence to dietary 

guidelines. This dietary pattern index, described by Voortman et al.15, reflected intake 

of 14 food groups, including fruits and vegetables, whole grains and whole grain prod-

ucts, legumes, nuts, dairy, fish, tea, unsaturated fats and oils, red and processed meat, 

sugar-containing beverages and salt. The final index was a score ranging from 0 to 14 

with a higher score reflecting a higher diet quality. The degree of physical activity was 

assessed by means of the LASA Physical Activity Questionnaire and a modified version 

of the Zutphen Study Physical Activity Questionnaire, and was expressed as metabolic 

equivalent of task (MET) hours per week based on time spent in light, moderate and 

vigorous activity.24 To account for the use of two different questionnaires, we divided 

participants into quartiles of physical activity based on questionnaire-specific stan-

dard deviation scores.

Statistical analysis

Cox proportional hazards regression was performed with total dietary antioxidant 

capacity as the primary independent variable and incident prediabetes or incident 

type 2 diabetes as the response variable. The time scale in these models is follow-up 

time in years to either clinical endpoint, death, loss-to-follow-up or January 1st 2012 – 

whichever came first. As main analysis, we first investigated associations of FRAP score 

with incident type 2 diabetes. Subsequently, we analyzed this trajectory in more detail 

by investigating incident prediabetes among normoglycemic individuals and incident 

type 2 diabetes among individuals with prediabetes. We used multivariable linear re-

gression models to assess the association between FRAP score and HOMA-IR. In these 

linear regression models, HOMA-IR was transformed using the natural logarithm to 

better approximate a normal distribution. For all outcomes, we constructed models 

adjusted only for age, sex and cohort (model 1), models adjusted additionally for BMI, 

hypertension, dyslipidemia, highest level of education attained, physical activity and 

smoking status (model 2), and models further adjusted for degree of adherence to 

dietary guidelines, total daily energy intake and daily alcohol intake (model 3). We 

accounted for potential non-linear relations between the independent and dependent 

variables by including three-knot natural cubic splines in our regression models when 

their use resulted in a significantly better model fit. Potential effect modification 

by age, sex or smoking status was investigated by introducing the product of these 

variables and the total dietary antioxidant capacity to our regression models. We ran 

separate models if the interaction terms were statistically significant at the p < 0.10 

level. As a sensitivity analysis, we repeated our analyses with a modified FRAP score 

calculated without the contribution of coffee because some discussion remains on 

the bioavailability of the antioxidants found in coffee, and we also performed our 
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analyses excluding the first year of follow-up.13 Five-fold multiple imputation using 

predictive mean matching was performed to account for missing values of covariates 

(ranging from 0% to 4.3%). Our results are presented as pooled hazard ratios (HRs) with 

95% confidence intervals (95% CIs) obtained after multiple imputation for a standard 

deviation increment in total dietary antioxidant capacity. Statistical analyses were 

performed using R version 3.4.1 (The R Foundation for Statistical Computing, Vienna, 

Austria).

Results

The baseline characteristics of the total study population (n = 5,796) and the subgroups 

of men (n = 2,266) and women (n = 3,530) are displayed in Table 2.1.1. The major 

contributors to FRAP in our study were intake of coffee, fruit, vegetables, tea and 

chocolate. A comparison between participants who were and were not included in 

the analysis of this study based on missing data is presented in Supplementary Table 

2.1.1. Because we observed statistical interactions between FRAP score and sex on risk 

of prediabetes (p-value for interaction 0.06) and on HOMA-IR (p-value for interaction 

0.01), we stratified all our analyses by sex. The mean (SD) FRAP score was 24.0 (9.0) for 

the total population, 25.1 (9.8) for men and 23.2 (8.4) for women.

Of all 5,796 individuals eligible for analysis, 532 developed type 2 diabetes over a 

mean follow-up duration of 8.1 years (incidence rate 11.4 per 1,000 person-years). 

We observed an association between a higher FRAP score and a lower risk of type 2 

diabetes, which remained statistically significant after adjusting for metabolic and 

socio-economic factors in model 2 (HR 0.85, 95% CI 0.76; 0.95) and further adjustment 

for dietary factors in model 3 (HR 0.84, 95% CI 0.75; 0.95). For incident type 2 diabetes 

there was no statistical interaction between dietary antioxidant capacity and sex, and 

indeed we observed similar effect estimates among men (HR 0.84, 95% CI 0.71; 1.00) 

and women (HR 0.83, 95% CI 0.70; 0.99) after adjustment for all covariates. (Table 

2.1.2).

Of the 839 individuals with prediabetes at baseline, 259 developed type 2 diabetes 

over a mean follow-up duration of 7.4 years (incidence rate 41.5 per 1,000 person-

years). We also found a significant association between FRAP score and incident type 

2 diabetes in this subgroup (model 3; HR 0.85, 95% CI 0.73; 0.99), with similar effect 

estimates among men and women (p-value for interaction 0.90) (Table 2.1.2).
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Table 2.1.1. Baseline characteristics of the study population.

Overall
(n = 5,796)

Men
(n = 2,266)

Women
(n = 3,530)

Age (years) 64.2 (9.2) 63.4 (8.7) 64.6 (9.5)

Body Mass Index (kg/m2) 26.9 (4.1) 26.6 (3.3) 27.1 (4.5)

Dyslipidemia

No 3,818 (65.9%) 1,640 (72.4%) 2,178 (61.7%)

Yes 1,978 (34.1%) 626 (27.6%) 1,352 (38.3%)

Hypertension

No 2,394 (41.3%) 940 (41.5%) 1,454 (41.2%)

Yes 3,402 (58.7%) 1,326 (58.5%) 2,076 (58.8%)

Physical Activity (metabolic 
Equivalents of Task- hours/week)1

-RS-I / RS-II (LASA questionnaire) 81.8 (57.5) 70.6 (56.2) 88.5 (57.2)

-RS-III (Zutphen Questionnaire) 45.0 (64.7) 38.7 (55.8) 52.4 (69.1)

-Total 71.2 (63.8) 59.8 (58.9) 77.8 (62.5)

Education

Primary 650 (11.2%) 183 (8.1%) 467 (13.2%)

Lower 2,398 (41.4%) 625 (27.6%) 1,773 (50.2%)

Intermediate 1,660 (28.6%) 827 (36.5%) 833 (23.6%)

Higher 1,088 (18.8%) 631 (27.8%) 457 (12.9%)

Smoking

Never 1,932 (33.3%) 397 (17.5%) 1,535 (43.5%)

Former 2,527 (43.6%) 1,242 (54.8%) 1,285 (36.4%)

Current 1,337 (23.1%) 627 (27.7%) 710 (20.1%)

Dietary Guideline Score 6.8 (1.9) 6.3 (1.8) 7.1 (1.9)

Alcohol consumption (g/day)1 6.6 (18.1) 13.0 (23.4) 3.44 (12.3)

Daily energy intake (kcal/day) 2,143.8 (622.4) 2,436.3 (633.3) 1,955.9 (537.1)

FRAP score 24.0 (9.0) 25.1 (9.8) 23.2 (8.4)

Variables are presented as mean (SD) unless otherwise indicated. 1Variable is presented as me-
dian (interquartile range) because it did not follow a normal distribution. The statistics reported 
above represent the dataset after multiple imputation.

Over a mean follow-up duration of 7.7 years, 794 of the 4,957 individuals with nor-

moglycemia at baseline developed prediabetes (incidence rate 20.9 per 1,000 person-

years). FRAP score was not significantly associated with incident prediabetes (model 3; 

HR 0.93, 95% CI 0.84; 1.02). However, after stratification by sex (p-value for interaction 

0.06), we observed a significant inverse association among men (model 3; HR 0.84, 

95% CI 0.72; 0.98) whereas among women, we observed no association (HR 0.99, 95% 

CI 0.87; 1.12) (Table 2.1.2).
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Table 2.1.2. Associations between total dietary antioxidant capacity, risk of type 2 diabetes, risk 
of type 2 diabetes among prediabetics and risk of prediabetes.

Incident Type 2 Diabetes

Total population
(n = 5,796,

n cases = 532)

P-value Men
(n = 2,266,

n cases = 218)

P-value Women
(n = 3,530,

n cases = 314)

P-value

Model 11 0.86 (0.76; 0.96) 0.01 0.85 (0.72; 1.00) 0.05 0.87 (0.74; 1.02) 0.09

Model 22 0.85 (0.76; 0.95) 0.004 0.82 (0.70; 0.97) 0.02 0.86 (0.73; 1.01) 0.07

Model 33 0.84 (0.75; 0.95) 0.01 0.84 (0.71; 1.00) 0.06 0.83 (0.70; 0.99) 0.03

Incident Type 2 Diabetes among Participants with Prediabetes

Total population
(n = 839,

n cases = 259)

P-value Men
(n = 398,

n cases = 114)

P-value Women
(n = 441,

n cases = 145)

P-value

Model 11 0.84 (0.73; 0.97) 0.02 0.85 (0.70; 1.04) 0.11 0.82 (0.66; 1.04) 0.10

Model 22 0.85 (0.73; 0.98) 0.03 0.83 (0.69; 1.01) 0.06 0.85 (0.68; 1.07) 0.18

Model 33 0.85 (0.73; 0.99) 0.03 0.86 (0.70; 1.05) 0.13 0.81 (0.63; 1.04) 0.10

Incident Prediabetes

Total population
(n = 4,957,

n cases = 794)

P-value Men
(n = 1,868,

n cases = 297)

P-value Women
(n = 3,089,

n cases = 497)

P-value

Model 11 0.94 (0.86; 1.03) 0.17 0.85 (0.74; 0.98) 0.02 1.01 (0.90; 1.14) 0.85

Model 22 0.92 (0.84; 1.01) 0.09 0.83 (0.72; 0.95) 0.01 1.00 (0.89; 1.13) 0.99

Model 33 0.93 (0.84; 1.02) 0.13 0.84 (0.72; 0.98) 0.02 0.99 (0.87; 1.12) 0.87

Results are presented as hazard ratio (95% confidence interval) for a standard deviation incre-
ment in FPAP score. 1Model 1: adjusted for age, sex and Rotterdam Study cohort. 2Model 2: model 
1 + body mass index, hypertension, dyslipidaemia, highest level of education attained, physical 
activity and smoking status. 3Model 3: model 2 + degree of adherence to dietary guidelines, total 
daily energy intake and daily alcohol intake.

Finally, in the multivariable linear regression models, we observed that FRAP score 

was significantly inversely associated with HOMA-IR after adjustment for age, sex and 

cohort (model 1; regression coefficient (b) -0.04, 95% CI -0.06; -0.03). This association 

remained significant after adjusting for all covariates (model 3; b -0.04, 95% CI -0.06; 

-0.03). In the analysis stratified for sex (p-value for interaction 0.01), the association 

between FRAP score and HOMA-IR was significant among both men (b -0.03, 95% CI 

-0.06; -0.01) and women (b -0.05, 95% CI -0.07; -0.03), although slightly stronger among 

women (Table 2.1.3).

In sensitivity analyses, we observed that upon exclusion of participants with less than 

one year of follow-up, the associations between dietary antioxidant capacity and inci-

dent type 2 diabetes remained significant (HR 0.86, 95% CI 0.76; 0.98) (Supplementary 

Table 2.1.2). However, among individuals with prediabetes, the association was no 
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longer significant (HR 0.90, 95% CI 0.76; 1.05). Exclusion of participants with less than 

one year of follow-up did not change our conclusion with regards to incident predia-

betes, which remained significantly associated with dietary antioxidant capacity only 

among men (HR 0.82, 95% CI 0.70; 0.97). After excluding coffee from the calculation 

of the FRAP score, the associations observed previously attenuated and FRAP score 

was no longer significantly associated with any of the outcomes (Supplementary 

Tables 2.1.3-2.1.4). Finally, in stage-specific analyses of HOMA-IR, we observed similar 

associations of dietary antioxidant capacity with HOMA-IR among participants with 

normoglycemia (b -0.04, 95% CI -0.05; -0.02) and participants with prediabetes (b -0.03, 

95% CI -0.07; 0.002) (Supplementary Table 2.1.5).

Table 2.1.3. Associations between total dietary antioxidant capacity and homeostatic model as-
sessment of insulin resistance (HOMA-IR).

Total population
(n = 5,422)

P-value
Men

(n = 2,135)
P-value

Women
(n = 3,287)

P-value

Model 11 -0.04
(-0.06; -0.03)

< 0.001
-0.03

(-0.06; -0.01)
0.005

-0.06
(-0.08; -0.03)

< 0.001

Model 22 -0.04
(-0.05; -0.03)

< 0.001
-0.03

(-0.05; -0.01)
0.001

-0.05
(-0.07; -0.03)

< 0.001

Model 33 -0.04
(-0.06; -0.03)

< 0.001
-0.03

(-0.06; -0.01)
0.002

-0.05
(-0.07; -0.03)

< 0.001

Results are presented as regression coefficient (95% confidence interval) for a standard deviation 
increment in FPAP score. 1Model 1: adjusted for age, sex and Rotterdam Study cohort. 2Model 2: 
model 1 + body mass index, hypertension, dyslipidaemia, highest level of education attained, 
physical activity and smoking status. 3Model 3: model 2 + degree of adherence to dietary guide-
lines, total daily energy intake and daily alcohol intake.

Discussion

In this population-based cohort, we observed that a higher total dietary antioxidant 

capacity is associated with a lower risk of type 2 diabetes, both in the total population 

and among those with prevalent prediabetes. In further stage-specific analyses, we 

found that a higher total dietary antioxidant capacity is also associated with lower 

risk of incident prediabetes among men, but not among women, and with a lower 

HOMA-IR among both men and women.

Our results are in line with the findings of previous studies which have investigated 

individual antioxidant components in relation to type 2 diabetes.5,6,25 Montonen and 

colleagues demonstrated that various types of tocopherols were associated with a 

reduced risk of type 2 diabetes over 23 years of follow-up.5 Similarly, Salonen and col-

leagues observed that low vitamin E levels predispose individuals to developing type 
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2 diabetes.25 Sluijs and colleagues found that carotenoid intake was inversely related 

to risk of type 2 diabetes.6 Furthermore, our findings confirm previous studies which 

have found associations between dietary antioxidant capacity and measures of insulin 

resistance.7,8 Only one previous study has examined the total dietary antioxidant 

capacity in relation to type 2 diabetes.13 In line with our findings, this study observed 

a strongly significant inverse association, but was performed among women only and 

did not investigate dietary antioxidant capacity in relation to stage-specific transitions 

from normoglycemia to type 2 diabetes. Thus, our study is the first that investigated 

total dietary antioxidant capacity among both men and women in relation to incident 

type 2 diabetes, including intermediate endpoints such as prediabetes and insulin 

resistance to capture the full trajectory from normoglycemia to type 2 diabetes.

Dietary antioxidants may directly affect glucose homeostasis in multiple ways. It 

has been hypothesized that oxidative stress activates the NF-kB pathway and various 

protein kinase pathways.26 Activation of these pathways may inhibit signaling be-

tween insulin receptors and the glucose transport system, which contributes to the 

development of insulin resistance.26,27 Through suppressing the formation of ROS, and 

thereby lowering oxidative stress, dietary antioxidants may improve insulin sensitiv-

ity. Furthermore, it has been demonstrated in animal models that antioxidants can 

suppress apoptosis of pancreatic b-cells induced by oxidative stress.28 Therefore, di-

etary antioxidants may also help in sustaining b-cell function and preventing damage 

to these cells.

We found that dietary antioxidant capacity was not significantly associated with risk 

of prediabetes in the total study population. However, we did find significant associa-

tions between dietary antioxidant capacity and incident type 2 diabetes and HOMA-IR 

among both participants with normoglycemia and those with prediabetes. Because 

the relative contribution of pancreatic b-cell dysfunction to the pathogenesis of type 2 

diabetes increases as hyperglycemia worsens, dietary antioxidants may more strongly 

affect risk of type 2 diabetes among individuals with prediabetes trough preserving 

b-cell function rather than attenuating insulin resistance.29 These findings also sug-

gest that a diet with a high antioxidant capacity will exert its protective effects against 

type 2 diabetes regardless of whether or not prediabetes is already present. It could 

therefore be hypothesized that the mechanisms underlying the protective effects of 

dietary antioxidants are related to both early-phase phenomena in the pathogenesis 

of type 2 diabetes (such as insulin resistance) and later-phase phenomena (such as b-

cell dysfunction). However, the exact nature of these mechanisms is currently unclear, 

and further research is necessary to confirm our findings.



35

Dietary Antioxidant Capacity and Type 2 Diabetes

We observed significant modification of our effect estimates by sex for some of the 

analyses. However, sex differences were not consistent among outcomes: the associa-

tion between total dietary antioxidant capacity and incident prediabetes was signifi-

cant among men, but not among women, whereas associations with insulin resistance 

were slightly stronger among women compared to men. The latter observation is in 

line with findings reported by Okubo and colleagues.8 Potential sex differences in 

associations of dietary antioxidant capacity with earlier stages in the development of 

type 2 diabetes could be caused by differences in visceral fat mass between men and 

women, because visceral fat mass is positively associated with the degree of oxidative 

stress and differs according to sex.30,31 However, further research into the nature of 

potential sex differences is warranted, especially because we report for the first time 

that these appear to be stage-specific.

Our effect estimates decreased in magnitude when the contribution of coffee was 

excluded from the total dietary antioxidant capacity, suggesting that part of the 

association is explained by coffee intake. Coffee is commonly regarded as a major 

constituent of the total dietary antioxidant capacity. A recent study found that coffee 

intake captured 54% of the variation in total antioxidant intake among Norwegian 

women.12 Likewise, in our study population, coffee constituted on average 49% of the 

total dietary antioxidant capacity. The fact that coffee forms an integral component of 

the total dietary antioxidant capacity probably accounts for the significant attenuation 

we observed in our effect estimates when coffee intake was excluded from the FRAP 

score. In relation to this, coffee intake has also been shown to be inversely related to 

risk of type 2 diabetes.32–34 Disregarding coffee, the most important contributors to 

total dietary antioxidant capacity in our study were fruit and vegetables. Indeed, it has 

been demonstrated that increased fruit and vegetable consumption is associated with 

a lower risk of type 2 diabetes.35 The findings of our study therefore further underline 

the putative beneficial health effects of coffee, fruit and vegetable consumption. With 

regards to tea and chocolate consumption, both of these food groups have also been 

associated with lower risk of type 2 diabetes.36,37

The main strengths of our study include its prospective design, the large sample size 

and the long-duration of follow-up. This enabled us to study the association between 

total dietary antioxidant capacity and various endpoints in the pathway from normo-

glycemia to type 2 diabetes with a large pool of validated cases. We were also able 

to adjust for an extensive set of socio-economic, metabolic and dietary confounders, 

including a measure of overall diet quality, to minimize the chance of residual con-

founding influencing our results. However, approximately 95% of our study popula-

tion was of Caucasian ethnicity, and all participants were aged 45 years and older. 



Chapter 2.1

36

Therefore, caution should be taken in generalizing our results to other populations. 

Furthermore, we calculated the total dietary antioxidant capacity based on an antioxi-

dant food database developed in Norway. We cannot rule out the possibility that dif-

ferences between Norway and the Netherlands with regards to the geographical origin 

of food may have introduced error in our estimates of the true antioxidant capacity. 

In addition, we had no information on the cooking methods that participants used, 

which may also affect the antioxidant content of food. It is also conceivable that the 

use of different FFQ’s and different food composition tables in our study caused differ-

ences between participants in the assessment of their FRAP score. However, regarding 

the use of different FFQ’s, since the use of these different questionnaires coincided 

with the start of a new study cohort, and “cohort” was included in our analyses as a 

confounder, our analyses should to a large degree be adjusted for this effect. Finally, 

we were unable to account for the use of food supplements in our study, which may 

have led us to underestimate the actual total dietary antioxidant capacity.

In conclusion, total dietary antioxidant capacity was related to a lower risk of type 

2 diabetes, but not risk of prediabetes, and was inversely associated with insulin 

resistance in this population-based cohort of individuals aged 45 years and older. Our 

findings emphasize the beneficial health effects of a diet rich in antioxidants with 

regards to the prevention of type 2 diabetes. Further studies could contribute to a 

better understanding of the stage-specific associations we have observed and unravel 

potential underlying mechanisms.
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Supplementary Table 2.1.1. Baseline characteristics of the study population, stratified by 
whether or not participants were included in the analysis of this study.

Included participants
(n = 5,796)

Excluded participants
(n = 9,130)

Age (years) 64.2 (9.2) 66.7 (10.8)

Body Mass Index (kg/m2) 26.9 (4.1) 27.7 (4.5)

Dyslipidemia

No 3,656 (63.1%) 2,713 (79.7%)

Yes 1,922 (33.2%) 1,832 (20.1%)

Hypertension

No 2,328 (40.2%) 1,535 (16.8%)

Yes 3,370 (58.1%) 5,690 (62.3%)

Physical Activity (metabolic Equivalents of Task- hours/week)1

-RS-I/RS-II (Zutphen Questionnaire) 82.0 (57.4) 67.3 (57.4)

-RS-III (LASA Questionnaire) 42.9 (63.2) 36.0 (61.6)

-Total 71.7 (63.8) 63.5 (60.4)

Education

Primary 645 (11.1%) 2,072 (22.7%)

Lower 2,386 (41.2%) 3,384 (37.1%)

Intermediate 1,645 (28.4%) 2,233 (24.5%)

Higher 1,084 (18.7%) 1,055 (11.6%)

Smoking

Never 1,925 (33.2%) 2,894 (31.7%)

Former 2,514 (43.4%) 3,659 (40.1%)

Current 1,329 (22.9%) 2,192 (24.0%)

Alcohol consumption (g/day)1 6.6 (18.1) 3.2 (15.6)

Variables are presented as mean (SD) unless otherwise indicated. 1Variable is presented as me-
dian (interquartile range) because it did not follow a normal distribution. Differences between 
men and women were assessed using Student’s T-tests in the case of normally distributed con-
tinuous variables, c2-tests in the case of categorical variables and Mann-Whitney U tests in the 
case of non-normally distributed continuous variables. Included participants are those who had 
valid dietary data available, did not have cancer or a history of cardiovascular disease and had 
information on glucose status available at baseline. The statistics presented above stem from an 
unimputed dataset.
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Supplementary Table 2.1.2. Associations between total dietary antioxidant capacity and risk of 
type 2 diabetes, type 2 diabetes among participants with prediabetes and prediabetes, excluding 
participants with less than one year of follow-up.

Incident Type 2 Diabetes

Total population
(n = 5,738,

n cases = 505)

P-value Men
(n = 2,236,

n cases = 203)

P-value Women
(n = 3,502,

n cases = 302)

P-value

Model 11 0.88 (0.78; 1.00) 0.04 0.89 (0.75; 1.05) 0.17 0.89 (0.75; 1.04) 0.15

Model 22 0.87 (0.78; 0.98) 0.03 0.86 (0.72; 1.02) 0.08 0.88 (0.74; 1.04) 0.13

Model 33 0.86 (0.76; 0.98) 0.02 0.87 (0.72; 1.04) 0.12 0.85 (0.71; 1.01) 0.06

Incident Type 2 Diabetes among Participants with Prediabetes

Total population
(n = 821,

n cases = 244)

P-value Men
(n = 389,

n cases = 106)

P-value Women
(n = 432,

n cases = 138)

P-value

Model 11 0.89 (0.77; 1.04) 0.15 0.94 (0.77; 1.15) 0.54 0.85 (0.67; 1.07) 0.17

Model 22 0.92 (0.75; 1.16) 0.53 0.91 (0.75; 1.12) 0.38 0.88 (0.69; 1.12) 0.29

Model 33 0.90 (0.76; 1.05) 0.18 0.93 (0.75; 1.15) 0.52 0.83 (0.64; 1.08) 0.17

Incident Prediabetes

Total population
(n = 4,888,

n cases = 753)

P-value Men
(n = 1,837,

n cases = 280)

P-value Women
(n = 3,051,

n cases = 473)

P-value

Model 11 0.93 (0.85; 1.02) 0.13 0.83 (0.72; 0.97) 0.02 1.01 (0.89; 1.14) 0.92

Model 22 0.91 (0.83; 1.00) 0.06 0.81 (0.70; 0.94) 0.01 0.99 (0.88; 1.12) 0.89

Model 33 0.91 (0.83; 1.01) 0.08 0.82 (0.70; 0.97) 0.02 0.97 (0.85; 1.11) 0.68

Results are presented as hazard ratio (95% confidence interval) for a standard deviation incre-
ment in FPAP score. 1Model 1: adjusted for age, sex and Rotterdam Study cohort. 2Model 2: model 
1 + body mass index, hypertension, dyslipidaemia, highest level of education attained, physical 
activity and smoking status. 3Model 3: model 2 + degree of adherence to dietary guidelines, total 
daily energy intake and daily alcohol intake.
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Supplementary Table 2.1.3. Associations between total dietary antioxidant capacity and risk of 
type 2 diabetes, type 2 diabetes among participants with prediabetes and prediabetes, excluding 
the contribution of coffee.

Incident Type 2 Diabetes

Total population
(n = 5,796,

n cases = 532)

P-value Men
(n = 2,266,

n cases = 218)

P-value Women
(n = 3,530,

n cases = 314)

P-value

Model 11 0.89 (0.80; 0.99) 0.03 0.88 (0.74; 1.04) 0.13 0.90 (0.79; 1.03) 0.12

Model 22 0.97 (0.87; 1.07) 0.52 0.82 (0.70; 0.97) 0.02 0.99 (0.87; 1.13) 0.91

Model 33 0.96 (0.85; 1.09) 0.54 0.95 (0.79; 1.15) 0.61 0.96 (0.82; 1.12) 0.57

Incident Type 2 Diabetes among Participants with Prediabetes

Total population
(n = 839,

n cases = 259)

P-value Men
(n = 398,

n cases = 114)

P-value Women
(n = 441,

n cases = 145)

P-value

Model 11 1.00 (0.87; 1.14) 0.98 0.99 (0.81; 1.22) 0.96 1.01 (0.84; 1.20) 0.96

Model 22 1.04 (0.91; 1.18) 0.60 0.99 (0.81; 1.21 0.91 1.06 (0.88; 1.28) 0.52

Model 33 1.07 (0.92; 1.25) 0.38 1.04 (0.84; 1.29) 0.71 1.07 (0.85; 1.34) 0.57

Incident Prediabetes

Total population
(n = 4,957,

n cases = 794)

P-value Men
(n = 1,868,

n cases = 297)

P-value Women
(n = 3,089,

n cases = 497)

P-value

Model 11 0.89 (0.82; 0.97) 0.01 0.90 (0.78; 1.04) 0.17 0.89 (0.80; 0.99) 0.03

Model 22 0.96 (0.88; 1.04) 0.32 0.96 (0.83; 1.11) 0.60 0.96 (0.86; 1.07) 0.46

Model 33 0.96 (0.87; 1.06) 0.44 1.00 (0.85; 1.17) 0.99 0.94 (0.83; 1.06) 0.30

Results are presented as hazard ratio (95% confidence interval) for a standard deviation incre-
ment in FPAP score. 1Model 1: adjusted for age, sex and Rotterdam Study cohort. 2Model 2: model 
1 + body mass index, hypertension, dyslipidaemia, highest level of education attained, physical 
activity and smoking status. 3Model 3: model 2 + degree of adherence to dietary guidelines, total 
daily energy intake and daily alcohol intake.

Supplementary Table 2.1.4. Associations between total dietary antioxidant capacity and HOMA-
IR, excluding the contribution of coffee.

Total population
(n = 5,422)

P-value
Men

(n = 2,135)
P-value

Women
(n = 3,287)

P-value

Model 11 -0.04
(-0.06; -0.03)

< 0.001
-0.05

(-0.85; -0.023)
< 0.001

-0.03
(-0.05; -0.01)

0.001

Model 22 -0.02
(-0.03; -0.002)

0.03
-0.03

(-0.05; -0.01)
0.004

-0.01
(-0.02; 0.01)

0.57

Model 33 -0.01
(-0.03; 0.01)

0.21
-0.03

(-0.06; -0.01)
0.02

0.003
(-0.02; 0.02)

0.74

Results are presented as regression coefficient (95% confidence interval) for a standard deviation 
increment in FPAP score. 1Model 1: adjusted for age, sex and Rotterdam Study cohort. 2Model 2: 
model 1 + body mass index, hypertension, dyslipidaemia, highest level of education attained, 
physical activity and smoking status. 3Model 3: model 2 + degree of adherence to dietary guide-
lines, total daily energy intake and daily alcohol intake.
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Supplementary Table 2.1.5. Associations between total dietary antioxidant capacity and HOMA-
IR among participants with normoglycaemia and prediabetes.

Participants with normoglycaemia

Total population
(n = 4,614)

P-value
Men

(n = 1,752)
P-value

Women
(n = 2,862)

P-value

Model 1*
-0.04

(-0.05; -0.02)
< 0.001

-0.03
(-0.05; -0.004)

0.02
-0.05

(-0.07; -0.03)
< 0.001

Model 2†
-0.04

(-0.05; -0.02)
< 0.001

-0.03
(-0.05; -0.01)

0.01
-0.05

(-0.06; -0.03)
< 0.001

Model 3‡
-0.04

(-0.05; -0.02)
< 0.001

-0.03
(-0.05; -0.01)

0.01
-0.04

(-0.06; -0.02)
< 0.001

Participants with prediabetes

Total population
(n = 808)

P-value
Men

(n = 383)
P-value

Women
(n = 425)

P-value

Model 1*
-0.03

(-0.07; 0.004)
0.08

-0.03
(-0.07; 0.02)

0.30
-0.06

(-0.12; -0.001)
0.05

Model 2†
-0.03

(-0.06; 0.01)
0.10

-0.03
(-0.07; 0.01)

0.15
-0.04

(-0.01; 0.01)
0.13

Model 3‡
-0.03

(-0.07; 0.002)
0.06

-0.03
(-0.08; 0.01)

0.18
-0.05

(-0.11; 0.004)
0.07

Results are presented as regression coefficient (95% confidence interval) for a standard deviation 
increment in FPAP score. *Model 1: adjusted for age, sex and Rotterdam Study cohort. †Model 
2: model 1 + body mass index, hypertension, dyslipidaemia, highest level of education attained, 
physical activity and smoking status. ‡Model 3: model 2 + degree of adherence to dietary guide-
lines, total daily energy intake and daily alcohol intake.
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Abstract

Background

Vegan or vegetarian diets have been suggested to reduce risk of type 2 diabetes (T2D). 

However, not much is known on whether variation in the degree of having a plant-

based versus animal-based diet may be beneficial for the prevention of T2D. We aimed 

to investigate whether level of adherence to a diet high in plant-based foods and low 

in animal-based foods is associated with insulin resistance, prediabetes, and T2D.

Methods

Our analysis included 6,798 participants (mean age 62.7 years, SD 7.8) from the Rotter-

dam Study, a prospective population-based cohort in the Netherlands. Dietary intake 

data were collected with food-frequency questionnaires at baseline of three Rotter-

dam Study sub-cohorts (RS-I-1: 1989-1993, RS-II-1: 2000-2001, RS-III-1: 2006-2008). We 

constructed a continuous plant-based dietary index (range 0-92) expressing adherence 

to a plant-based versus animal-based diet. Insulin resistance at baseline and follow-up 

was assessed using homeostatic model assessment of insulin resistance (HOMA-IR). In-

formation on prediabetes and T2D were collected from general practitioners’ records, 

pharmacies’ databases, and follow-up examinations in our research center up to 2012. 

We used multivariable linear mixed models to examine associations of the index with 

longitudinal HOMA-IR and multivariable proportional hazards regression models to 

examine associations of the index with risk of prediabetes and T2D.

Results

We documented 928 cases of prediabetes and 642 cases of T2D, during a mean duration 

of follow-up of 5.7 and 7.3 years, respectively. After adjusting for sociodemographic 

and lifestyle factors, a higher score on the plant-based dietary index was associated 

with lower insulin resistance (per 10 units higher score: β -0.09, 95% CI -0.10; -0.08), 

lower prediabetes risk (HR 0.89, 95% CI 0.81; 0.98), and lower T2D risk (HR 0.82, 95% CI 

0.73; 0.92). After additional adjustment for BMI, associations attenuated and remained 

statistically significant for longitudinal insulin resistance (β -0.05, 95% CI -0.06; -0.04) 

and T2D risk (HR 0.87, 95% CI 0.79; 0.99), but no longer for prediabetes risk (HR 0.93, 

95% CI 0.85; 1.03).

Conclusions

A more plant-based and less animal-based diet may lower risk of insulin resistance, 

prediabetes and T2D. These findings strengthen recent dietary recommendations to 

adopt a more plant-based diet.
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Introduction

Diet is an important modifiable lifestyle determinant in the development of type 

2 diabetes (T2D).1 Among dietary components, consumption of several plant-based 

foods such as root vegetables, green leafy vegetables, whole grains, nuts and peanut 

butter has been associated with a lower risk of T2D.2–5 In contrast, consumption of 

several animal-based foods, including red meat, processed meat and eggs, has been 

associated with an increased risk of T2D.4,6,7

Although multiple food groups seem to influence the risk of T2D, humans generally 

do not consume single food items or food groups, and the role of diet in health may 

be better described by overall dietary patterns.8 Previous studies have observed that 

vegan or vegetarian diets are associated with improved glycemic control and lower 

T2D risk.9,10 However, these previous studies dichotomously classified participants, 

and only defined diets as vegetarian or vegan versus non-vegetarian diets. A dichoto-

mous classification of vegans or vegetarians versus their non-vegetarian counterparts 

might not be an optimal approach in understanding the effect of a plant-based diet in 

Western countries, because it does not reflect dietary patterns of a large proportion of 

the population. From a public health perspective, it is interesting to know whether a 

more plant-based and less animal-based diet may also influence insulin resistance and 

risk of prediabetes and T2D beyond strict adherence to a vegetarian or vegan diet. To 

our knowledge, only one previous study, a large prospective cohort study in the US, 

examined associations between variations in the degree of adherence to plant-based 

versus animal-based diets with T2D risk and observed that a more plant-based diet 

was associated with a lower T2D risk.11 Studies on the associations of such plant-based 

dietary patterns with T2D risk in other populations are needed. In addition, the as-

sociation of such plant-based dietary patterns with intermediate risk factors for T2D, 

such as insulin resistance and prediabetes remain unknown.

Therefore, we aimed to investigate whether adherence to a more plant-based, and less 

animal-based diet is associated with insulin resistance, and risk of prediabetes and 

T2D in a Dutch middle-aged and older general population.

Methods

Study population

This study was performed within three sub-cohorts of the Rotterdam Study, a pro-

spective cohort study of adult aged 45 years and older living in the well-defined 
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district of Ommoord in Rotterdam, the Netherlands. A detailed description of the 

Rotterdam Study methodology has been provided elsewhere.12 Briefly, recruitment of 

participants for the first sub-cohort (RS-I) started in the period of 1989-1993 among 

inhabitants aged ≥ 55 years (n = 7,983). In 2000-2001, the study was extended with a 

second sub-cohort (RS-II) of new individuals (n = 3,011) who had become 55 years of 

age or moved into the study area after 1990. In 2006-2008, a third sub-cohort (RS-III) 

was recruited with new individuals aged 45 years and older (n = 3,932). By the end 

of 2008, the overall study population contained 14,926 participants. Upon entering 

the study, participants underwent home interviews and a series of examinations in 

our research center every 3-5 years. The Rotterdam Study has been approved by the 

institutional review board (Medical Ethics Committee) of Erasmus Medical Center and 

by the review board of The Netherlands Ministry of Health, Welfare and Sports. The 

approval has been renewed every 5 years. All participants gave informed consent.

Population for current analyses

For the current study, we used data from all three sub-cohorts. Of the 14,926 par-

ticipants, we excluded 5,225 participants without valid dietary data (no dietary data, 

unreliable dietary intake according to a trained nutritionist or an estimated energy 

intake of < 500 or > 5000 kcal/day13) at baseline (RS-I-1: starting 1989, RS-II-1: start-

ing 2000, RS-III-1: starting 2006), and 2,903 participants without information on T2D 

status or with prevalent T2D at baseline, leaving 6,798 participants included as main 

population for analysis.

From this group of 6,798 participants, 6,514 participants had data on HOMA-IR before 

onset of T2D and were included in the longitudinal HOMA-IR analyses. For the analy-

ses on prediabetes risk, we excluded those with prevalent prediabetes at baseline (n 

= 1,005) or without follow-up for prediabetes (n = 25), leaving 5,768 participants. In 

the analyses assessing risk of T2D, we excluded participants without follow-up of T2D 

(n = 28), leaving 6,770 participants. The flow-diagram of the included participants is 

presented in Figure 2.2.1.

Dietary assessment

Dietary intake was assessed at baseline in all three sub-cohorts using semi-quantitative 

food-frequency questionnaires (FFQ) as described in more detail elsewhere.13 We used 

an FFQ with 170 food items to assess dietary intake at baseline of RS-I and RS-II; at 

baseline of RS-III, we used an FFQ with 389 food items.14,15 The 170-item FFQ was vali-

dated in a subsample of the Rotterdam Study (n = 80) against fifteen 24-h food records 

and four 24h urinary urea excretion samples,14 and the 389-item FFQ was previously 

validated in other Dutch population against measurement of biomarkers, against a 
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9-day dietary record, and against a 4 week dietary history.16 In general, the validation 

studies demonstrated that the FFQs were able to adequately rank participants accord-

ing to their intake.13 Food intake data were converted to energy and nutrient intake 

based on Dutch Food Composition tables (NEVO).

Figure 2.2.1. Selection of the study population.

Plant-based dietary index

We constructed an overall plant-based dietary index, which was a modified version 

of two previously created indices.11,17 More specifically, our index is similar to the 

provegetarian food pattern of Martínez-Gonzáles et al.17 and to the overall plant-based 

diet index of Satija et al.,11 but was adapted to include slightly different types and 

numbers of food categories. First, the food items as measured by the FFQs were di-

vided into 23 food categories (Supplemental Table 2.2.1), on the basis of the main food 

groups in the Dutch diet and the Dutch food-based dietary guidelines.18,19 Twelve of 

the categories were plant-based and eleven were animal-based. Food items that were 

not clearly animal-based or plant-based, such as pizza, as well as dietary supplements, 

were not included in the food categories for the index. Dietary intake for each of the 

23 food categories was calculated for each participant in grams per day. Subsequently, 

for each category, the intake was divided into cohort-specific quintiles. Each quintile 
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was assigned a value between 0 and 4. For the twelve plant-based food categories, con-

sumption within the highest quintile was scored a 4, consumption within the second 

highest quintile was scored a 3, and so on, ending with consumption within the lowest 

quintile receiving a score of 0. The eleven animal-based food categories were scored 

in reverse: consumption within the highest quintile was scored a 0, consumption 

within the second highest quintile was scored a 1, ending with consumption within 

the lowest quintile receiving a score of 4. Furthermore, we ensured that all partici-

pants with null consumption were given the score belonging to the lowest quintile by 

re-scoring when necessary. Finally, these category quintile-scores were added up per 

participant to create their overall score on the plant-based dietary index. The resulting 

index yielded a score for each participant that measures adherence to a plant-based 

versus animal-based diet on a continuous scale, with a lowest possible score of 0 (low 

adherence to a plant-based diet) and a highest possible score of 92 (high adherence 

to a plant-based diet). Information on intake of each food category across quintiles of 

scores on the plant-based dietary index is shown in Supplemental Table 2.2.2.

Assessment of insulin resistance

Information on prediabetes and T2D was collected from general practitioners’ 

records, pharmacies’ databases, and follow-up examinations in our research center. 

Data on prediabetes and T2D in our analyses were collected until January 1, 2012. 

Prediabetes and T2D were identified according to WHO criteria: prediabetes was 

defined as a fasting blood glucose concentration of > 6.0 and < 7.0 mmol/L, or a non-

fasting blood glucose concentration of > 7.7 mmol/L and < 11.1 mmol/L; T2D was 

defined as a fasting blood glucose concentration of ≥ 7.0 mmol/L, a non-fasting blood 

glucose concentration of ≥ 11.1 mmol/L (when fasting samples were unavailable), 

the use of blood glucose-lowering medication or dietary treatment, or registration 

of the diagnosis T2D. All possible cases of prediabetes and T2D were formally judged 

by two independently working study physicians or, in case of disagreement, by an 

endocrinologist.20

Assessment of covariates

Information on age, sex, smoking status, educational level, medication use, food 

supplement use and family history of diabetes was obtained from questionnaires at 

baseline. Information on physical activity was obtained using the adapted version of 

the Zutphen Physical Activity Questionnaire at RS-I-3 and RS-II-1 and using the LASA 

Physical Activity Questionnaire at RS-III-1. Physical activities were weighted accord-

ing to intensity with Metabolic Equivalents of Task (MET), from the Compendium of 

Physical Activities version 2011. To account for differences between the two question-

naires, questionnaire-specific z-scores of MET-hours per week were calculated. At our 
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research center at baseline, body weight was measured using a digital scale and body 

height was measured using a stadiometer, while participants wore light clothing and 

no shoes, and BMI was calculated (kg/m2). Information on hypertension, hypercho-

lesterolemia, coronary heart disease (CHD), cancers, and stroke was obtained from 

general practitioners, pharmacies’ databases, Nationwide Medical Register, or follow-

up examinations in our research center.

Data analysis

To obtain a normal distribution for HOMA-IR, we applied a natural-log transforma-

tion. Non-linearity of associations of score on the plant-based dietary index with all 

outcomes were explored using three-knot natural cubic splines. As no indication 

for non-linear associations was found in the main model, all primary analyses were 

performed using models assuming linearity. We examined the association between 

score on the plant-based dietary index with longitudinal HOMA-IR using linear mixed 

models, with a random-effects structure including a random intercept and slope (for 

time of repeated measurements of HOMA-IR). We examined the association between 

score on the plant-based dietary index and risk of prediabetes and risk of T2D using 

proportional hazards regression. Hazard ratios (HRs) and regression coefficients (βs) 

are presented per 10 units higher score on the plant-based dietary index, along with 

the corresponding 95% confidence intervals (CIs). All analyses were performed in par-

ticipants of the three sub-cohorts combined and in the three sub-cohorts separately.

All analyses were adjusted for energy intake, age, sex and RS sub-cohort in model. 

For the analyses of longitudinal HOMA-IR we additionally adjusted for the time of re-

peated measurements of HOMA-IR. In model 2, we additionally adjusted for smoking 

status, educational level, physical activity, food supplement use, and family history of 

diabetes. Baseline BMI was added in model 3 to examine its potential mediating effect. 

We examined effect modification by including interactions of the plant-based index 

with age, sex, or BMI for all outcomes in model 2.

Several sensitivity analyses were performed based on model 2. First, to check whether 

the associations were driven by any specific component of the plant-based dietary 

index, we repeated our main analyses by excluding each one of the 23 components 

from the plant-based dietary index one by one at a time, and additionally adjusting 

for the excluded component. Second, to check if the associations were mainly driven 

by plant-based beverages combined, we examined the associations by excluding all 

plant-based beverages combined (the categories coffee and tea, alcoholic beverages, 

and sugary beverages) from the plant-based dietary index at a time, and additionally 

adjusting for them. Third, we examined the associations by excluding less healthy 
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plant-based foods combined (the categories sweets, sugary beverages, potatoes and 

refined grains) from the plant-based dietary index at a time, and additionally adjust-

ing for them. To further examine whether these less healthy plant foods contributed 

to the association of the plant-based dietary index, we created a less healthy plant 

foods score in which positive scores were given to these four types of less healthy 

plant-based food groups. In calculating this score, reverse scores were given to healthy 

plant food groups and animal food groups.21 Fourth, to examine if potential asso-

ciations of the plant-based dietary score with outcomes were independent of overall 

quality of the diet based on adherence to dietary guidelines, we examined the correla-

tion between the plant-based dietary score and the dietary guidelines score, and we 

repeated analyses with additional adjustment for dietary guidelines score. Fifth, we 

additionally adjusted for hypertension and hypercholesterolemia. Sixth, we excluded 

the participants with chronic diseases at baseline, such as participants with coronary 

heart disease, cancers, or stroke, to exclude the possibility of a significant change 

of diet and lifestyle at follow-up. Last, we excluded the participants who developed 

prediabetes and T2D in the first 2 years of follow-up in the analyses for risk of predia-

betes and T2D, respectively. Missing values in covariates (ranging from 0.3% to 3.9%) 

were accounted for using ten-fold multiple imputation. We used SPSS version 21 (IBM 

Corp., Armonk, NY, USA) and R version 3.1.2 (R Foundation for Statistical Computing, 

Vienna, Austria) to perform these analyses.

Results

Baseline characteristics of the study population are shown in Table 2.2.1. In our popu-

lation of 6,798 participants, baseline scores on the plant-based dietary index (with 

a theoretical range from 0 to 92) ranged from 24 to 75, with a mean ± SD score of 

49.3 ± 7.1. Mean age of the study population was 62.0 ± 7.8 years and 41.3% of the 

participants were male. Mean BMI was 26.6 ± 3.9 kg/m2. Characteristics were similar 

before and after multiple imputation (Supplemental Table 2.2.3). Supplemental Table 

2.2.4 shows baseline characteristics of the participants not included in our analyses.

After adjustment for confounders in model 2, a higher score on the plant-based dietary 

index was associated with lower longitudinal HOMA-IR (per 10 units higher score on 

the index: β -0.09, 95% CI -0.10; -0.08) (Table 2.2.2). Additional adjustment for BMI in 

model 3 attenuated the association, but it remained statistically significant (β -0.05, 

95% CI -0.06; -0.04).
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Table 2.2.1. Baseline characteristics of study participants (n = 6,798)

Characteristic Mean (SD), median (IQR), or %

Age (years) 62.0 (7.8)

Sex (% male) 41.3 %

BMI (kg/m2) 26.6 (3.9)

Smoking (%)

Never 32.2 %

Ever 45.1 %

Current 22.7 %

Physical activity1 (MET-hours/week)

RS-I and RS-II (Zutphen Questionnaire, n = 4,393) 86.7 (44.7)

RS-III (LASA Questionnaire, n = 2,194) 58.4 (55.8)

Hypertension (%) 42.3 %

Hypercholesterolemia (%) 45.4 %

Family history of diabetes (%) 10.8 %

Highest level of education (%)

Primary 11.8 %

Lower 40.9 %

Intermediate 29.0 %

Higher 18.3 %

Current food supplement use (%) 16.5 %

Total energy intake (kcal/day) 2,134 (615)

Plant-based food category intake (grams/day)2

Fruit 212.2 (115.5, 332.3)

Vegetables 209.1 (147.9, 286.87)

Whole grains 105.7 (61.3, 152.5)

Nuts 3.9 (0.0, 12.0)

Legumes 4.1 (0.0, 19.4)

Potatoes 99.7 (61.4, 148.2)

Vegetable oils 19.7 (9.2, 30.0)

Tea and coffee 758.9 (580.4, 1000)

Sugary beverages 46.3 (0.0, 139.6)

Refined grains 50.7 (23.9, 102.1)

Sweets 63.8 (37.1, 97.4)

Alcoholic beverages 56.4 (4.9, 159.8)

Animal-based food category intake (grams/day)2

Low-fat milk 82.3 (0.0, 232.3)

Full-fat milk 0.0 (0.0, 0.0)

Low-fat yoghurt 56.1 (0.0, 164.6)

Full-fat yoghurt 0.0 (0.0, 4.9)
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During 43,773 person-years of follow-up among 5,768 participants (median follow-up 

5.7 years), 928 participants developed prediabetes. After adjustment for confounders 

in model 2, a higher score on the plant-based dietary index was associated with a 

lower incidence of prediabetes (per 10 units higher score on the index: HR 0.89, 95% CI 

0.81; 0.98). After additional adjustment for BMI in model 3 the association attenuated 

and was no longer statistically significant (HR 0.93, 95% CI 0.85; 1.03).

Table 2.2.1. Baseline characteristics of study participants (n = 6,798) (continued)

Characteristic Mean (SD), median (IQR), or %

Cheese 30.8 (20.0, 47.1)

Unprocessed lean meat 10.7 (4.3, 18.1)

Fish 15.9 (3.9, 30.7)

Eggs 14.3 (7.1, 19.6)

Animal fat 0.0 (0.0, 0.9)

Desserts/dairy with sugars 14.1 (0.0, 54.6)

Processed meat/red meat 86.8 (60.4, 118.9)

Plant-based dietary index (score) 49.3 (7.1)

Plant-based dietary index: a higher score indicates a higher adherence to a plant-based diet (theo-
retical range from 0 to 92). Values shown are based on pooled results of imputed data. 1Values 
shown for MET-hours are un-imputed; imputation was performed on z-scores of physical activ-
ity. 2Variable expressed as median (IQR). Abbreviations: MET, metabolic equivalent of task; SD, 
standard deviation.

Table 2.2.2. Associations of the plant-based dietary index with longitudinal insulin resistance 
(HOMA-IR), risk of prediabetes, and risk of type 2 diabetes

HOMA-IR Prediabetes Type 2 diabetes

(n = 6,514) (n = 5,768) (n = 6,770)

β (95% CI) HR (95% CI) HR (95% CI)

Model 1 -0.09 (-0.10; -0.08)*** 0.88 (0.80; 0.97)** 0.82 (0.73; 0.92)***

Model 2 -0.09 (-0.10; -0.08)*** 0.89 (0.81; 0.98)* 0.82 (0.73; 0.92)**

Model 3 -0.05 (-0.06; -0.04)*** 0.93 (0.85; 1.03) 0.87 (0.79; 0.99)*

Effect estimates are regression coefficients (β) for ln HOMA-IR or hazard ratios (HRs) for incidence 
of prediabetes or type 2 diabetes with their 95%-confidence intervals (95% CIs), per 10 units high-
er score on the plant-based dietary index. Estimates are based on pooled results of imputed data. 
Model 1 is adjusted for energy intake, sex, age and RS sub-cohort (RS-I, RS-II, or RS-III); and only 
for the HOMA analyses additionally for the time measurements of longitudinal HOMA. Model 2 
is additionally adjusted for education, smoking status, family history of diabetes, physical activ-
ity and food supplement use. Model 3 is additionally adjusted for BMI. *p < 0.05; ** p < 0.01; ***p 
< 0.001. Abbreviations: BMI, body mass index; CI, confidence interval; HR, hazard ratio; MET, 
metabolic equivalent of task; RS, Rotterdam Study.
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During 54,024 person-years of follow-up amongst 6,770 participants (median follow-

up 7.3 years), 642 participants developed T2D. In model 2, a higher score on the 

plant-based dietary index was associated with a lower incidence of T2D (per 10 units 

higher score on the index: HR 0.82, 95% CI 0.73; 0.92). Additional adjustment for BMI 

in model 3 attenuated this association, but it remained statistically significant (HR 

0.87, 95% CI 0.79; 0.99). The associations between the plant-based dietary index with 

longitudinal insulin resistance and risk of prediabetes and T2D were similar in three 

sub-cohorts (Supplemental Tables 2.2.5-2.2.7). Associations did not differ by age, sex or 

baseline BMI (p-values for all interaction terms were > 0.05).

Exclusion of each one of 23 foods from the index one by one at a time did not sub-

stantially change the estimates (Supplemental Table 2.2.8). Excluding all plant-based 

beverages combined at a time (coffee and tea, alcoholic beverages and sugary bever-

ages) did not substantially change the estimates for insulin resistance (per 10 units 

higher score on the index: β -0.06, 95% CI -0.10; -0.03), risk of prediabetes (HR 0.93, 95% 

CI 0.84; 1.02) or risk of T2D (HR 0.85, 95% CI 0.80; 0.96). The estimates also remained 

similar after excluding these less healthy plant-based foods (sweets, sugary beverages, 

potatoes, and refined grains) combined at a time (per 10 units higher score on the 

index: insulin resistance: β -0.09, 95% CI -0.10; -0.07, prediabetes risk: HR 0.90, 95% CI 

0.84; 0.98, T2D risk: HR 0.83, 95% CI 0.74; 0.94), but the less healthy plant foods score 

was not associated with insulin resistance, risk of prediabetes or type 2 diabetes. The 

Pearson’s correlation coefficient between the plant-based dietary score with the di-

etary guidelines score was 0.16 (p < 0.05), and additionally controlling for the dietary 

guidelines score did not substantially affect the estimates. Additional adjustment for 

hypertension and hypercholesterolemia did not change effect estimates substantially. 

Estimates also remained similar after excluding participants with chronic diseases at 

baseline. Finally, excluding participants who developed T2D or prediabetes in the first 

2 years of follow-up modestly attenuated the associations for risk of prediabetes (per 

10 units higher score on the index, HR 0.91, 95% CI 0.83; 1.01) and risk of T2D (HR 

0.82, 95% CI 0.73; 0.92).

Discussion

In this large population-based cohort, we observed that a diet higher in plant-based 

foods and lower in animal-based foods was associated with lower insulin resistance 

as well as a lower risk of prediabetes and T2D, suggesting a protective role of a more 

plant-based as opposed to a more animal-based diet in the development to T2D, be-

yond strict adherence to a vegetarian or vegan diet.
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The inverse association between plant-based diets and T2D risk is in agreement with 

previous research showing lower T2D risk for vegans or vegetarians compared to non-

vegetarians.10 Moreover, the associations we observed confirmed previous observa-

tions by Satija and colleagues in a US sample, which is the only other prospective study 

examining adherence to plant-based diets in a continuous graduation with risk of 

T2D11. We extend upon these previous findings by also showing associations between 

plant-based diets and earlier stages in the development of T2D (insulin resistance and 

prediabetes) in a European population.

Our results imply a beneficial effect of adherence to a diet higher in plant-based foods 

and lower in animal-based foods on the development of T2D, irrespective of general 

healthiness of the specific plant-based and animal-based foods. With these results, we 

provide a different view on what a healthy diet may entail. However, we acknowledge 

that our plant-based diet included positive scoring for some components that are not 

necessarily healthy choices for prevention of T2D, or a healthy diet in general. Sugary 

beverages, for example, have been associated with adverse effects for T2D in other 

studies.22,23 To further clarify whether these less healthy plant foods contributed to 

the observed associations, we examined the associations between a less healthy plant-

based diet score with insulin resistance and risks of prediabetes and T2D in sensitiv-

ity analyses, and observed null associations; suggesting beneficial associations were 

mainly driven by higher intake of healthy plant-based food groups and lower intake 

of animal-based food groups. This emphasizes that it is important to also consider the 

quality of plant-based foods consumed, which has important public health implica-

tions. Furthermore, the estimates for the plant-based dietary index remained similar 

after excluding these plant-based beverages combined, or after excluding the less 

healthy plant-based foods combined, meaning that our results were stable in diverse 

versions of plant-based diets and thus increasing our confidence in the validity of the 

findings. We also observed that excluding each one of 23 components one by one at a 

time resulted in similar associations as observed for the total plant-based index, indi-

cating that the associations were not mainly explained by any one specific food group, 

which supports the importance of recognizing overall plant-based diet. Finally, we 

extended our analyses to examine if adherence to a plant-based diet was independent 

of adherence to current Dutch dietary guidelines. In line with results from the large 

prospective cohort study in the US which examined if adherence to a plant-based 

diet was independent of general healthy dietary patterns that have been linked to 

prevention of T2D, such as the Mediterranean diet, the alternative Healthy Eating 

Index (aHEI), and the Dietary approaches to stop hypertension (DASH) diet,24–26 we 

observed that associations of the plant-based dietary index with outcomes remained 
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similar after additional adjustment for adherence to current Dutch dietary guidelines. 

This lends support to the novelty of the plant-based dietary index.

Taken together, a more plant-based, less animal-based diet may help prevent the 

development of T2D. Still more important, a more plant-based diet does not require 

a radical change in diet in terms of total elimination of meat or animal products but 

instead can be achieved in various ways, increasing the potential for population-wide 

health recommendations. For example, if a participant in our cohort would increase 

fruits intake from 95 grams per day to 200 grams per day, increase vegetables intake 

from 100 grams to 260 grams, and at the same time decrease red meat intake from 

129 grams per day to 55 grams per day, this would improve the plant-based dietary 

index by 10 units, which may decrease risk of T2D by 13%, assuming other covariates 

remain stable.

Several mechanisms may underlie the observed associations. On the one hand, a 

plant-based diet usually contains more fiber, chlorogenic acids, certain types of amino 

acids, unsaturated fatty acids and antioxidants. For example, vegetables and fruits are 

the main sources of fiber, antioxidants, and chlorogenic acids; nuts are rich in poly-

unsaturated fatty acids; soy and beans are main sources of plant protein; whole grains 

are rich in fiber and plant protein; and coffee and tea are rich in antioxidants and 

chlorogenic acid. These beneficial components may influence the development of T2D 

through affecting intermediate conditions in the pathogenesis of this disorder, such 

as obesity and inflammation. Fiber is known to lower gastric emptying and thereby 

glycemic responsiveness and might also have beneficial effects on inflammation 

and obesity.27–30 Chlorogenic acids can improve inflammation, glucose tolerance and 

glucose levels, and improve increasing insulin secretion.31 Soy protein contains high 

amounts of the amino acids arginine and glycine, which have been associated with a 

decrease in cholesterol levels.32 High intake of unsaturated fatty acids has also been 

associated to lower inflammation and less obesity.28,33 Phenol chlorogenic acid was 

reported to reduce insulin resistance.34 On the other hand, a plant-based diet usually 

has less animal protein, saturated fatty acids, and heme iron. Animal protein is rich 

in branched-chain amino acids and aromatic amino acids and may impair glucose 

metabolism and increase T2D risk;35–38 animal protein is also rich in heme iron, which 

has been suggested to increase risk of cardiometabolic disease.39–41 Higher saturated 

fatty acids have been suggested to be associated with higher inflammation as well 

as higher risk of obesity and T2D.33,42,43 Furthermore, other nutrients contained in 

processed red meat, such as sodium and nitrites, may also increase risk of cardio-

metabolic disease.41 More research is needed to explore whether the mechanisms 

underlying the observed associations also involve an effect of plant-based foods on gut 
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microbiome. Finally, these different mechanisms may influence each other because of 

interrelations between different food components. This also highlights the relevance 

of examining overall diets in addition to isolated food items, as this enables capturing 

the combined effects of the suggested pathways.

This study has several strengths. First, to our knowledge, we are the first to investi-

gate the associations between plant-based diets and longitudinal insulin resistance 

and prediabetes, for which we had longitudinal data available with a long period of 

follow-up. Studying these early risk stages helps to minimize reverse causation in 

understanding how a plant-based diet influences the development of T2D. Second, we 

observed that the potential beneficial effect of a more plant-based diet was indepen-

dent of less healthy plant-based foods, such as sweets, sugary beverages and refined 

grains, emphasizing the importance of considering the quality of plant-based foods 

consumed. We also observed associations of the plant-based dietary score independent 

of overall adherence to dietary guidelines, indicating that the plant-based diet score 

may reflect more than only a healthy dietary pattern as reflected by current dietary 

guidelines. Other strengths also included the population-based nature of the study, 

the detailed and thorough data collected on the outcomes and the assessment of the 

extent to which diets were plant-based and animal based, based upon overall dietary 

intake patterns of the general population.

Nevertheless, there are several limitations we should consider. First, the assessment of 

a plant-based diet with this index has its limitations as several, sometimes arbitrary, 

decisions had to be made. One such decision was, for example, to add up food items 

within categories based on the intake in grams per day. As a result, products that 

were high in water-content will have contributed less energy or nutrients compared 

to products containing less water in the same category. However, using grams per day 

reflects intake of foods as they are consumed and recommended.19 Also, decisions had 

to be made for the categorization of foods and the number of categories. We chose 

categories reflecting those used in the Dutch dietary guidelines, which are based on 

similarities of the food items in (botanical) origin, nutrient composition, and nutrient 

density;18 thereby reducing nutritional differences between food items within one 

category. Furthermore, in our main analyses, we treated all plant-based foods equally 

by giving all plant-based foods positive scores, and all animal-based foods equally by 

giving all animal-based foods reverse scores, irrespective of their nutrient-density 

or previous evidence for a role in T2D prevention and general health. For example, 

less healthy plant-based foods, such as sugary beverages and refined grains, were 

included as positive scores, although sugary beverages,23 and refined grains44 have 

been linked to higher T2D risk; by contrast, healthy animal-based foods, such as dairy 
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and fish, were included as reverse scores, although dairy45 and fish46 have been linked 

to lower T2D risk or mortality risk. This is because our study aimed to emphasize an 

overall plant-based diet accounting for the possibilities of increased plant-based foods 

consumption as well as decreased animal-based foods consumption, which could 

increase the potential for population-wide recommendation. However, in our sensi-

tivity analyses, excluding any one of alcoholic beverages, sugary beverages, sweets, 

potatoes, refined grains, fish, and dairy did not substantially change our estimates. In 

addition to the choices we had to make in the construction of the index, this study 

has some other limitations. First, dietary data were derived from self-reported diet 

measured with FFQs, making measurement error likely. However, because we used 

relative scores (quintiles) of intake and the FFQs were shown in several validation 

studies to adequately rank subjects according to intake,13–16 we do not expect this 

measurement error to have affected our results to a large extent. Second, we did not 

have dietary data for many of the participants of the original cohort, which might 

have resulted in sampling bias if associations of plant-based diets with T2D risk dif-

fered in those included and those not included in our current analyses. Third, we 

assumed that diets remained stable over time. However, the estimates were similar 

after excluding the participants who were likely to change their diet during follow-up, 

such as participants with CHD, stroke, or cancer at baseline. Lastly, our results may be 

generalizable only to people of similar age and ethnicity.

In conclusion, in this large population-based cohort, higher adherence to an overall 

plant-based diet is associated with lower longitudinal insulin resistance, and lower risk 

of prediabetes and T2D, indicating a protective role of diets high in plant-based foods 

and low in animal-based foods in the development to T2D beyond strict adherence to 

a vegetarian or vegan diet. These promising findings call for further exploration of 

overall plant-based dietary recommendations aimed at T2D prevention.
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Supplemental Table 2.2.1. Food categories used for the plant-based diet index and examples of 
food items included in each of the food categories

Plant-based food categories

Fruits Apple, banana, pear, orange, strawberry, grapes, other fruits

Vegetables Cauliflower, broccoli, spinach, carrots, onion, lettuce, tomato, cabbage, 
cooked vegetables

Whole grains Whole grain bread, dark bread, rye bread, whole grain breakfast oats, 
whole grain pasta, brown rice

Nuts Peanuts, walnuts, other nuts, peanut butter

Legumes Legumes, tofu, soybeans, other soy products

Potatoes Potatoes, fries

Vegetable oils Olive oil, vegetable oils used for cooking, and all margarines

Tea and coffee Black tea, green tea, herbal tea, coffee

Sugary beverages Carbonated beverages with sugar, non-carbonated beverages with sugar, 
orange juice, fruit juice

Refined grains Cornflakes, white bread, croissants, raisin bread, white pasta, white rice

Sweets Sugar, cookies, cake, chocolate, candy-bars, honey, sweets, chocolate 
toppings, other sweet toppings

Alcoholic beverages Red wine, white wine, beer, liquor, Dutch-eggnog

Animal-based food categories

Low-fat Yoghurt Skimmed yoghurt, semi-skimmed yoghurt, skimmed quark, buttermilk

Full-fat Yoghurt Full-fat yoghurt, semi-skimmed quark, full quark

Low-fat milk Skimmed milk, semi-skimmed milk, skimmed coffee creamer, semi-
skimmed coffee creamer

Full-fat milk Full-fat milk, cream, coffee-cream

Cheese Full fat cheese, low fat cheese, cheese fondue, other cheese

Fish Salmon, tuna, trout, herring, mussels, other fish

Eggs Boiled eggs, fried eggs

Animal fat Butter on bread, butter used for cooking, lard

Desserts and sugary dairy Custard, cream, ice cream, mousse, cream, chocolate milk, fruit yoghurt, 
yoghurt drinks

Unprocessed lean meat Chicken

Processed and red meat Beef, pork, meatballs, sate, bacon, liver, processed meats
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Supplemental Table 2.2.3. Baseline characteristics of participants in original and multiple im-
puted dataset.

Characteristics
Original data

(mean (SD) or %)
After imputation
(mean (SD) or %)

Age (years) 62.0 (7.8) NI

Missing (%) - -

Gender (% male) 41.3 % NI

Missing (%) - -

BMI (kg/m2) 26.6 (3.9) 26.6 (3.9)

Missing (%) 1.3% -

Smoking (%)

Never 32.2% 32.2%

Ever 45.1% 45.1%

Current 22.7% 22.7%

Missing (%) 0.5% -

Physical activity1 (MET-hours/week)

RS-I / RS-II (Zutphen Questionnaire, n = 4,393) 86.7 (44.7) 86.7 (44.7)

RS-III (LASA Questionnaire, n = 2,194) 58.4 (55.8) 58.4 (55.8)

Missing (%) 3.9% -

Hypertension (%) 42.3 % 42.3 %

Missing (%) 0.9 % -

Hypercholesterolemia (%) 45.6 % 45.4 %

Missing (%) 1.6% -

Family history of type 2 diabetes (%) 10.8 % NI

Missing (%) - -

Education level (%)

Primary 11.8% 11.8%

Lower 40.9% 40.9%

Intermediate 29.0% 29.0%

Higher 18.3% 18.3%

Missing (%) 0.6% -

Current food supplement use (%) 16.5 % 16.5 %

Missing (%) 0.3% -

Total energy intake (kcal/day) 2134 (615) NI

Missing (%) - -

Food category intake2 (grams/day)

Fruits 212.2 (115.5, 332.3) NI

Vegetables 209.1 (147.9, 286.9) NI

Whole Grains 105.7 (61.3, 152.5) NI

Nuts 3.9 (0.0, 12.0) NI

Legumes 4.1 (0.0, 19.4) NI
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Supplemental Table 2.2.3. Baseline characteristics of participants in original and multiple im-
puted dataset. (continued)

Characteristics
Original data

(mean (SD) or %)
After imputation
(mean (SD) or %)

Potatoes 99.7 (61.4, 148.2) NI

Vegetable oils 19.7 (9.2, 30.0) NI

Tea and coffee 758.9 (580.4, 1000) NI

Sugary beverages 46.3 (0.0, 139.6) NI

Refined grains 50.7 (23.9, 102.1) NI

Sweets 63.8 (37.1, 97.4) NI

Alcoholic beverages 56.4 (4.9, 159.8) NI

Low-fat milk 82.3 (0.0, 232.3) NI

Full-fat milk 0.0 (0.0, 0.0) NI

Low-fat yoghurt 56.1 (0.0, 164.6) NI

Full-fat yoghurt 0.0 (0.0, 4.9) NI

Cheese 30.8 (20, 47.1) NI

Unprocessed lean meat 10.7 (4.3, 18.1) NI

Fish 15.9 (3.9, 30.7) NI

Eggs 14.3 (7.1, 19.6) NI

Animal fat 0.0 (0.0, 0.9) NI

Desserts / sugary diary 14.1 (0.0, 54.6) NI

Processed / red meat 86.8 (60.4, 118.9) NI

Plant-based dietary index (score) 49.3 (7.1) NI

Plant-based dietary index: a higher score indicates a higher adherence to a plant-based diet (theo-
retical range from 0 to 92). 1Values shown are un-imputed; imputation was performed on z-scores 
of physical activity. 2Variables expressed as median (IQR) because of their skewed distributions. 
Abbreviations: MET, metabolic equivalent of task; NI, not imputed.
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Supplemental Table 2.2.4. Non-response analyses.

Participants without 
valid dietary data (n 

= 5,225)

Participants with 
valid dietary data 

(n = 9,701)
P value

Mean (SD) or % Mean (SD) or % T-test or χ2 test

Age (years) 64.9 (12.7) 62.0 (7.8) P < 0.05

Sex (%)

Female 59.0% 41.8% P < 0.05

Male 38.8% 58.0%

BMI (kg/m2) 27.0 (4.4) 26.6 (3.9) P < 0.05

Physical activity (MET-hours/week)

RS-I and RS-II (Zutphen 
Questionnaire)

72.4 (42.5) 83.5 (44.6) P < 0.05

RS-III (LASA Questionnaire) 65.3 (43.5) 59.3

Education level (%)

Primary 25.0% 11.8% P > 0.05

Lower 37.2% 40.9%

Intermediate 24.4% 29.0%

Higher 13.3% 18.4%

Smoking status (%)

Never 35.0% 32.2% P > 0.05

Ever 39.0% 45.1%

Current 25.6% 22.7%

Current food supplement use (%)

Yes 16.9% 16.5% P > 0.05

No 83.1% 83.2%

Family history of diabetes (%)

Yes 9.0% 10.8% P > 0.05

No 39.8% 45.8%

Unknown 51.3% 43.4%
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Supplemental Table 2.2.4. Non-response analyses. (continued)

Participants not 
included in analyses 

(n = 8,128)

Included 
participants in 
analyses (n = 

6,798)

P value

Mean (SD) or % Mean (SD) or % T-test or χ2 test

Age (years) 69.3 (11.4) 62.0 (7.8) P < 0.05

Sex (%)

Female 59.5% 57.0% P > 0.05

Male 40.1% 41.3%

BMI (kg/m2) 27.1 (4.3) 26.6 (3.9) P < 0.05

Physical activity (MET-hours/week)

RS-I and RS-II (Zutphen 
Questionnaire)

72.1 (42.5) 86.7 (44.7) P < 0.05

RS-III (LASA Questionnaire) 61.6 (79.9) 58.4 (55.8)

Education level (%)

Primary 23.6% 11.8% P > 0.05

Lower 37.0% 40.9%

Intermediate 23.6% 29.0%

Higher 11.1% 18.3%

Smoking status (%)

Never 32.5% 32.2% P > 0.05

Ever 38.4% 45.1%

Current 24.3% 22.7%

Current food supplement use (%)

Yes 14.6% 16.5% P < 0.05

No 84.6% 83.5%

Family history of diabetes (%)

Yes 13.9% 45.8% P > 0.05

No 49.1% 10.8%

Unknown 36.9% 43.4%

T-tests were performed for continuous variables, and χ2 tests were performed for categorical 
variables.
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Supplemental Table 2.2.5. Associations of the plant-based dietary index with longitudinal insu-
lin resistance (HOMA-IR) for the three sub-cohorts separately.

β for HOMA-IR (95% CI)

RS-I (n = 2,892) RS-II (n = 1,389) RS-III (n = 2,233)

Model 1 -0.09 (-0.10; -0.08)*** -0.07 (-0.11; -0.03)*** -0.11 (-0.14; -0.07)***

Model 2 -0.09 (-0.10; -0.08)*** -0.06 (-0.10; -0.02)** -0.10 (-0.13; -0.07)***

Model 3 -0.05 (-0.07; -0.03)* -0.01 (-0.05; 0.02) -0.06 (-0.09; -0.03)***

Effect estimates are βs for ln-transformed HOMA-IR per 10 units higher score on the plant-based 
dietary index and are based on pooled results of the imputed dataset. Model 1 is adjusted for 
energy intake, sex, age and time of repeated measurements of longitudinal insulin resistance. 
Model 2 is additionally adjusted for education, smoking status, family history of diabetes, physi-
cal activity and food supplement use. Model 3 is additionally adjusted for BMI (kg/m2). *p < 0.05; 
**p < 0.01; ***p < 0.001. Abbreviations: CI, confidence interval; HOMA-IR, homeostasis model as-
sessment for insulin resistance; MET, metabolic equivalent of task; RS, Rotterdam-Study.

Supplemental Table 2.2.6. Associations of the plant-based dietary index with incidence of pre-
diabetes for the three sub-cohorts separately.

HR (95% CI) for prediabetes

RS-I (n = 2,492) RS-II (n = 1,151) RS-III (n = 2,125)

Model 1 0.93 (0.82; 1.05) 0.94 (0.78; 1.14) 0.65 (0.51; 0.84)***

Model 2 0.94 (0.83; 1.06) 0.94 (0.78; 1.14) 0.66 (0.52; 0.85)**

Model 3 0.96 (0.85; 1.09) 1.00 (0.83; 1.21) 0.70 (0.54; 0.90)**

Effect estimates are HRs (95% CIs) for incidence of prediabetes per 10 units higher score on the 
plant-based dietary index and are based on pooled results of the imputed dataset. Model 1 is 
adjusted for energy intake, sex and age. Model 2 is additionally adjusted for education, smok-
ing status, family history of diabetes, physical activity and food supplement use. Model 3 is ad-
ditionally adjusted for BMI (kg/m2). *p < 0.05; **p < 0.01; ***p < 0.001. Abbreviations: BMI, body 
mass index; CI, confidence interval; HR, hazard ratio; MET, metabolic equivalent of task; RS, 
Rotterdam-Study.

Supplemental Table 2.2.7. Associations of the plant-based dietary index with incidence of type 
2 diabetes for the three sub-cohorts separately.

HR (95% CI) for type 2 diabetes

RS-I (n = 2,975) RS-II (n = 1,411) RS-III (n = 2,384)

Model 1 0.85 (0.73; 0.98)* 0.82 (0.65; 1.02) 0.74 (0.54; 1.02)

Model 2 0.86 (0.74; 1.00)* 0.86 (0.69; 1.07) 0.75 (0.54; 1.04)

Model 3 0.91 (0.78; 1.05) 0.93 (0.74; 1.16) 0.80 (0.58; 1.12)

Effect estimates are HRs (95% CIs) for incidence of type 2 diabetes per 10 units higher score on 
the plant-based dietary index and are based on pooled results of the imputed dataset. Model 1 
is adjusted for energy intake, sex and age. Model 2 is additionally adjusted for education, smok-
ing status, family history of diabetes, physical activity (z-score of MET-hours/week); and food 
supplement use (yes or no). Model 3 is additionally adjusted for BMI (kg/m2). *p<0.05; **p<0.01; 
***p<0.001. Abbreviations: BMI, body mass index; CI, confidence interval; HR, hazard ratio; MET, 
metabolic equivalent of task; RS, Rotterdam-Study.
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Supplemental Table 2.2.8. Associations of the plant-based dietary index with longitudinal insu-
lin resistance (HOMA-IR), risk of prediabetes and type 2 diabetes (T2D) after excluding each one 
of 23 components one by one at a time, and additionally adjusting for the excluded one.

Plant-based dietary index with 
22 components instead of 23 
components

β (95% CI) for
HOMA-IR

HR (95% CI) for
prediabetes risk

HR (95% CI) for
T2D risk

n = 6,514 n = 5,768 n = 6,770

Excluding fruits -0.08 (-0.10; -0.07) *** 0.89 (0.81; 0.98) * 0.82 (0.73; 0.92) **

Excluding vegetables -0.09 (-0.10; -0.09) *** 0.89 (0.81; 0.98) * 0.81 (0.72; 0.92) **

Excluding whole grains -0.09 (-0.10; -0.09) *** 0.89 (0.81; 0.98) * 0.81 (0.73; 0.92) **

Excluding nuts -0.07 (-0.09; -0.06) *** 0.91 (0.81; 1.00) 0.84 (0.76; 0.95) **

Excluding legumes -0.08 (-0.10; -0.07) *** 0.90 (0.82; 0.99) * 0.83 (0.74; 0.92) **

Excluding vegetable oils -0.08 (-0.10; -0.07) *** 0.90 (0.82; 0.99) * 0.82 (0.73; 0.92) **

Excluding tea and coffee -0.07 (-0.09; -0.06) *** 0.91 (0.83; 0.99) * 0.84 (0.75; 0.95) **

Excluding potatoes -0.09 (-0.10; -0.09) *** 0.89 (0.81; 0.98) * 0.82 (0.73; 0.92) **

Excluding sugary beverages -0.09 (-0.10; -0.08) *** 0.89 (0.81; 0.98) * 0.82 (0.72; 0.92) **

Excluding refined grains -0.09 (-0.10; -0.08) *** 0.89 (0.81; 0.98) * 0.82 (0.73; 0.92) **

Excluding sweets -0.08 (-0.10; -0.08) *** 0.90 (0.82; 0.99) * 0.81 (0.73; 0.92) **

Excluding alcoholic beverages -0.08 (-0.10; -0.06) *** 0.89 (0.82; 0.98) * 0.83 (0.71; 0.95) **

Excluding red and processed meat -0.07 (-0.08; -0.07) *** 0.93 (0.84; 0.99) * 0.84 (0.76; 0.95) **

Excluding unprocessed lean meat -0.07(-0.08; -0.07) *** 0.90 (0.82; 0.99) * 0.84 (0.76; 0.95) **

Excluding fish -0.08 (-0.10; -0.07) *** 0.90 (0.81; 0.99) * 0.84 (0.74; 0.94) **

Excluding eggs -0.09 (-0.10; -0.08) *** 0.89 (0.80; 0.98) * 0.82 (0.73; 0.92) **

Excluding animal fat -0.08 (-0.10; -0.08) *** 0.89 (0.79; 0.99) * 0.83 (0.70; 0.95) **

Excluding cheese -0.08 (-0.10; -0.07) *** 0.91 (0.82; 0.99) * 0.84 (0.75; 0.94) **

Excluding low-fat milk -0.08 (-0.10; -0.06) *** 0.86 (0.79; 0.95) * 0.81 (0.72; 0.92) **

Excluding full-fat milk -0.08 (-0.10; -0.07) *** 0.90 (0.82; 0.99) * 0.83 (0.72; 0.93) **

Excluding low-fat yoghurt -0.08 (-0.10; -0.07) *** 0.89 (0.81; 0.98) * 0.82 (0.74; 0.92) **

Excluding full-fat yoghurt -0.09 (-0.10; -0.09) *** 0.86 (0.78; 0.94) * 0.80 (0.70; 0.90) **

Excluding desserts/dairy with sugars -0.08 (-0.10; -0.08) *** 0.90 (0.81; 0.99) * 0.83 (0.71; 0.94) **

Effect estimates are regression coefficients (β) for ln HOMA-IR or hazard ratios (HRs) for incidence 
of prediabetes or type 2 diabetes with their 95%-confidence intervals (95%CIs), per 10 units higher 
score on the plant-based dietary index by excluding one of 23 foods at a time and additionally 
adjusting for the excluded food group. Estimates are adjusted for total energy, age, sex, RS sub-
cohort, education, smoking status, family history diabetes, physical activity, and food supple-
ment use (only for the HOMA analyses additionally for the time measurements of longitudinal 
HOMA), based on pooled results of imputed data. *p < 0.05; ** p < 0.01; ***p < 0.001
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Abstract

Background

Limited evidence is available about the association between serum uric acid and 

sub-stages of the spectrum from normoglycemia to type 2 diabetes. We aimed to 

investigate the association between serum uric acid and risk of prediabetes and type 

2 diabetes.

Methods

Eligible participants of the Rotterdam Study (n = 8,367) were classified into mutu-

ally exclusive subgroups of normoglycemia (n = 7,030) and prediabetes (n = 1,337) at 

baseline. These subgroups were followed up for incident prediabetes (n = 1,071) and 

incident type 2 diabetes (n = 407), respectively. We used Cox proportional hazard mod-

els to determine hazard ratios (HRs) for incident prediabetes among individuals with 

normoglycemia and incident type 2 diabetes among individuals with prediabetes.

Results

The mean duration of follow-up was 7.5 years for incident prediabetes and 7.2 years 

for incident type 2 diabetes. A standard deviation increment in serum uric acid was 

significantly associated with incident prediabetes among individuals with normogly-

cemia (HR 1.10, 95% confidence interval (CI) 1.01; 1.18), but not with incident type 2 

diabetes among individuals with prediabetes (HR 1.07, 95% CI 0.94; 1.21). Exclusion of 

individuals who used diuretics or individuals with hypertension did not change our 

results. Serum uric acid was significantly associated with incident prediabetes among 

normoglycemic women (HR 1.13, 95% CI 1.02; 1.25) but not among normoglycemic 

men (HR 1.08, 95% CI 0.96; 1.21). In contrast, serum uric acid was significantly associ-

ated with incident type 2 diabetes among prediabetic men (HR 1.23, 95% CI 1.01; 1.48) 

but not among prediabetic women (HR 1.00, 95% CI 0.84; 1.19).

Conclusions

Our findings agree with the notion that serum uric acid is more closely related to 

early-phase mechanisms in the development of type 2 diabetes than late-phase 

mechanisms.
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Introduction

Uric acid is generated during nucleotide and adenosine triphosphate (ATP) metabolism 

and comprises the end product of human purine metabolism.1 We have previously 

demonstrated in a large population-based cohort study that elevated serum levels of 

uric acid are associated with increased risk of type 2 diabetes independently of other 

risk factors.2 This association has since then been replicated in many other prospec-

tive studies and subsequent meta-analyses.3–6 In addition, serum uric acid has been 

associated with various cardiovascular and metabolic conditions such as hyperten-

sion, obesity, heart failure and atrial fibrillation in large population-based studies. 7

Prediabetes is a disorder of glucose homeostasis characterized by impaired glucose 

tolerance or impaired fasting glucose. These are both reversible stages of interme-

diate hyperglycemia that provide an increased risk of type 2 diabetes.8 Prediabetes 

can therefore be regarded as an important reversible stage that could lead to type 2 

diabetes, and early identification of prediabetes might contribute to the prevention 

of type 2 diabetes. Despite its established association with incident type 2 diabetes, 

serum uric acid has not been studied extensively in relation to incident prediabetes 

in individuals with normoglycemia or incident type 2 diabetes in individuals with 

established prediabetes.

Therefore, the objective of the present study is to determine whether serum uric 

acid is associated with incident prediabetes among normoglycemic individuals and 

type 2 diabetes among prediabetic individuals. This study is performed within the 

framework of the Rotterdam Study, a large population-based prospective cohort study 

of participants aged 45 years and older.9

Materials and Methods

The Rotterdam Study

The methodology of the Rotterdam Study has been outlined extensively elsewhere.9 

Briefly, the study initially consisted of 7,983 residents of the Ommoord district aged 

55 years and over in the city of Rotterdam, the Netherlands (RS-I). Following exten-

sion of the cohort in 2000 (RS-II), when individuals who had become 55 years of age 

or moved into the district since the study start were added to the cohort, and 2006 

(RS-III), when individuals aged 45-54 years also became eligible for participation, the 

total number of subjects was 14,926 by the end of 2008.9 These participants undergo 

physical examinations at the Rotterdam Study research facility and home interviews 
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every 3-4 years. Data is collected on health status, risk factors for various diseases 

common in the elderly, anthropometric characteristics, incident disease and cause-

specific mortality.9 The Medical Ethics Committee of the Erasmus Medical Centre 

Rotterdam and the review board of the Dutch Ministry of Health, Welfare and Sport 

have approved this population-based cohort study, and all participants have provided 

written informed consent. For the purposes of this analysis, we combined data from 

cohorts RS-I (using the third visit in 1997-1999 as baseline), RS-II (baseline visit 2000-

2001) and RS-III (baseline visit 2006-2009) of the Rotterdam Study.

Definition of type 2 diabetes mellitus, prediabetes and normoglycemia

As per the Rotterdam Study protocol and WHO guidelines, type 2 diabetes was defined 

as having a fasting plasma glucose level ≥ 7.0 mmol/L, a non-fasting plasma glucose 

≥ 11.1 mmol/L, the use of oral anti-diabetic medication or insulin, treatment by diet 

with type 2 diabetes as an indication, or being registered with a general practitioner 

as having type 2 diabetes.10,11 Prediabetes was defined as a fasting plasma glucose level 

6.0-6.9 mmol/L or a non-fasting plasma glucose level 7.7-11.1 mmol/L, in addition to 

absence of all type 2 diabetes criteria. Normoglycemia was defined as a fasting plasma 

glucose level ≤ 6.0 mmol/L and absence of any of the above criteria for prediabetes and 

type 2 diabetes. Fasting blood samples were obtained by means of venipuncture at the 

Rotterdam Study research facility. The samples were stored at −80°C in 5 mL aliquots. 

Within one week of sampling, glucose levels were measured by means of the glucose 

hexokinase method.12 All measurements were performed at the clinical chemistry 

laboratory of Erasmus University Medical Center, Rotterdam.

Measurement of serum uric acid

Serum uric acid was determined in non-fasting blood samples, centrifuged for 10 

minutes at 3,000 RPM and then stored for one week at -20°C. Uric acid activity was 

determined using a Kone Diagnostica reagent kit and a Kone auto-analyzer. After 

every 10 samples, 3 control samples were included to check calibration. If the average 

values of the control samples were not within 2.5% of the true value in each run of 

100 samples, this run was repeated. Day-by-day variation had to be within 5% of this 

average value.

Covariates

In our study, the following covariates are considered: age, sex, body mass index (BMI), 

smoking status, daily alcohol intake, total serum cholesterol, serum HDL (high-density 

lipoprotein) cholesterol, systolic blood pressure, serum insulin, serum glucose, hyper-

tension (defined as having a systolic blood pressure > 140 mmHg, a diastolic blood pres-

sure > 100 mmHg or receiving blood-pressure lowering medication with hypertension 



79

Serum Uric Acid and Type 2 Diabetes

as an indication), physical activity, use of diuretics and estimated glomerular filtration 

rate (eGFR). Data on serum glucose, total serum cholesterol, serum HDL cholesterol, 

serum insulin, blood pressure and eGFR were obtained at baseline by means of ve-

nipuncture, performed during participants’ visits to the Rotterdam Study research 

facility. Anthropometric characteristics were also recorded at the Rotterdam Study 

research facility. eGFR was calculated using the Chronic Kidney Disease Epidemiology 

Collaboration (CKD-EPI) equation.13 The disease status with respect to type 2 diabetes 

and prediabetes was ascertained through follow-up using general practitioners’ re-

cords and hospital discharge letters, collected as part of the Rotterdam Study. Physical 

activity was assessed at baseline by means of a modified version of the Zutphen Study 

Physical Activity Questionnaire and the LASA Physical Activity Questionnaire.9 Meta-

bolic equivalents of task (MET) hours per week were calculated based on time spent in 

light, moderate and vigorous activity. Data concerning the use of medication, alcohol 

consumption and smoking at baseline was obtained through Rotterdam Study home 

interviews and, for medication, consulting pharmacy dispensing records.

Statistical analysis

To determine the association between serum uric acid and risk of incident prediabetes 

or incident type 2 diabetes, Cox proportional hazards regression was performed with 

serum uric acid as the primary independent variable and either incident prediabe-

tes or incident type 2 DM as the response variable. The timescale in these models 

is follow-up time in years from baseline to either of the clinical endpoints, death, 

loss-to-follow-up or January 1st, 2012. Models adjusted only for age, sex and cohort 

as well as multivariable-adjusted Cox models were designed. The confounders BMI, 

smoking status, daily alcohol intake, total serum cholesterol, serum HDL cholesterol, 

systolic blood pressure, serum insulin, serum glucose, hypertension status, physical 

activity, use of diuretics and eGFR, selected based on previous literature, were added 

to the models adjusted for age, sex and cohort incrementally. The covariates serum 

insulin level, serum glucose level, daily alcohol intake and physical activity were 

log-transformed in the analyses because they displayed non-normality. Non-linearity 

was accounted for by inclusion of polynomial terms in the regression models if 

they significantly improved model fit. Interaction of uric acid with age and sex was 

investigated by introducing the product of the variables age and sex with uric acid 

to the regression models. Five-fold multiple imputation was performed to account 

for missing values. The results of our analyses are presented as hazard ratios (HR) 

with corresponding 95% confidence intervals (95% CI). A p-value < 0.05 was considered 

statistically significant. Analyses were performed using SPSS Statistics version 21 (IBM 

Corp., Armonk, New York, USA) and R version 3.2.4 (The R foundation for Statistical 

Computing, Vienna, Austria).
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Results

The total study population eligible for analysis (n = 8,367) was divided into two mutu-

ally exclusive subgroups: a subgroup with normoglycemia at baseline (n = 7,030) and 

a subgroup with prevalent prediabetes at baseline (n = 1,337). The selection procedure 

of our study population and the subgroups is outlined in Figure 3.1.1. Baseline charac-

teristics of the study population are presented in Table 3.1.1.

Figure 3.1.1. Selection of the study population.
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Table 3.1.1. Baseline characteristics of the study population.

Normoglycaemia
at baseline
(n = 7,030)

Missing
data (%)

Prediabetes
at baseline
(n = 1,337)

Missing
data (%)

Age (years) 64.2 (9.7) 0.0% 66.6 (9.4) 0.0%

Sex 0.0% 0.0%

Male 2,890 (41.1%) 665 (49.7%)

Female 4,140 (58.9%) 672 (50.3%)

Body Mass Index 26.7 (3.9) 0.7% 28.5 (4.4) 0.6%

Serum Total Cholesterol (mmol/L) 5.8 (1.0) 0.0% 5.8 (1.0) 0.2%

Serum HDL (mmol/L) 1.4 (0.4) 0.6% 1.3 (0.4) 0.8%

Systolic Blood Pressure (mmHg) 137.2 (20.5) 0.5% 145.4 (20.8) 0.2%

Serum Insulin (pmol/L)1 66.0 (44.0) 0.2% 93.0 (67.0) 0.1%

Alcohol Consumption (g/day)1,2 10.1 (12.6) 30.6% 13.7 (17.7) 35.2%

Current 6,008 (85.2%) 0.7% 1,154 (86.3%) 0.5%

Former or never 975 (14.1%) 176 (13.2%)

Smoking 0.7% 0.4%

Current 1,236 (17.6%) 237 (17.7%)

Former or never 5,794 (82.4%) 1,100 (82.3%)

Hypertension3 1.3% 0.7%

Yes 3,981 (56.6%) 1,000 (74.8%)

No 3.049 (43.4%) 337 (25.2%)

Use of diuretics 2.9% 3.1%

Yes 581 (8.3%) 199 (14.9%)

Not 6,449 (91.7%) 1,138 (85.1%)

Serum Glucose (mmol/L)1 5.3 (0.6) 0.0% 6.3 (0.4) 0.2%

Estimated Glomerular Filtration Rate (mL/min) 79.9 (15.7) 1.2% 77.4 (16.1) 0.5%

Metabolic Equivalents of Task (hours/week)1 71.6 (64.5) 11.6% 68.7 (64.0) 10.2%

Serum Uric Acid (mmol/L) 0.31 (0.07) n/a 0.35 (0.08) n/a

Variables are presented as mean (standard deviation) unless otherwise indicated. 1Variable is 
presented as median (interquartile range). 2Median alcohol consumption applies only to active 
drinkers. 3Hypertension is defined as having a systolic blood pressure > 140 mmHg, a diastolic 
blood pressure > 100 mmHg or receiving blood-pressure lowering medication.

Over a mean follow-up time of 7.5 years, 1,071 individuals with normoglycemia at 

baseline developed prediabetes (incidence rate 20.2 per 1,000 person-years). In this 

analysis, the percentage of individuals who were lost to follow up was 0.6% (40 out of 

7,030 individuals). The results of our analysis of the association between serum uric 

acid and incident prediabetes are presented in Table 3.1.2. We found a significant 

association between serum uric acid and incident prediabetes within individuals who 

were normoglycemic at baseline in a model adjusted only for age, sex and cohort 
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(HR 1.31 per SD increment, 95% CI 1.23; 1.40). This association was attenuated but 

remained significant in the multivariable-adjusted model (HR 1.10, 95% CI 1.01; 1.18). 

Performing separate analyses for men and women, we found that the association 

between serum uric acid and incident prediabetes was present in both men (HR 1.28, 

95% CI 1.16; 1.41) and women (HR 1.34, 95% CI 1.23; 1.45) in models adjusted for age 

and cohort (Table 3.1.3). After multivariable adjustment, serum uric acid was signifi-

cantly associated with incident prediabetes among women (HR 1.13, 95% CI 1.02; 1.25) 

but not among men (HR 1.08, 95% CI 0.96; 1.21). Exclusion of individuals who use 

diuretics or individuals with hypertension did not substantially change our findings 

(Table 3.1.4). The association was no longer statistically significant upon exclusion of 

individuals with a BMI ≥ 25 (HR 1.14, 95% CI 0.98; 1.33). In the multivariable-adjusted 

model we also analyzed serum uric acid in quartiles, providing quartile-specific HRs 

relative to the first quartile (Figure 3.1.2).

Table 3.1.2. The association between serum uric acid and incidence of prediabetes and type 2 
diabetes mellitus.

Incident prediabetes in 
normoglycaemic individuals

P-value Incident type 2 DM in 
prediabetic individuals

P-value

Model 11 1.31 (1.23; 1.40) < 0.001 1.17 (1.06; 1.30) 0.002

Model 22 1.30 (1.21; 1.40) < 0.001 1.21 (1.08; 1.35) 0.001

Model 33 1.10 (1.01; 1.18) 0.022 1.07 (0.94; 1.21) 0.330

Results are presented as Hazard Ratio (95% confidence interval) for a standard deviation incre-
ment in serum uric acid. 1Model 1: adjusted for age, sex and Rotterdam Study cohort. 2Model 
2: model 1 + hypertension status, serum total cholesterol, eGFR, MET-hours per week, systolic 
blood pressure and use of diuretics. 3Model 3: model 2 + daily alcohol intake, serum HDL, smok-
ing status, BMI, serum glucose and serum insulin.

A total of 407 individuals with prediabetes at baseline developed type 2 DM over 

a mean follow-up time of 7.2 years (incidence rate 42.4 per 1,000 person-years). In 

this analysis, the percentage of individuals who were lost to follow up was 0.4% (6 

out of 1,337 individuals). Serum uric acid was significantly associated with incident 

type 2 diabetes in individuals with prediabetes in a model adjusting only for age, sex 

and cohort (HR 1.17, 95% CI 1.06; 1.30), but this association weakened and was not 

statistically significant in the multivariable-adjusted model (HR 1.07, 95% CI 0.94; 1.21) 

(Table 3.1.2). In sex-specific analyses, the association was significant among men (HR 

1.19, 95% CI 1.01; 1.40), and women (HR 1.18, 95% CI 1.03; 1.35) in models adjusted 

for age and cohort (Table 3.1.3). After multivariable adjustment, serum uric acid was 

significantly associated with incident type 2 diabetes among men (HR 1.23, 95% CI 

1.01; 1.48) but not among women (HR 1.00, 95% CI 0.84; 1.19). Exclusion of diuretic 

users, individuals with hypertension or individuals with a BMI ≥ 25 did not change 
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our findings (Table 3.1.4). No significant difference was observed in any serum uric 

acid quartile compared to the first quartile (Fig 2).

Table 3.1.3. The association between serum uric acid and incidence of prediabetes and type 2 
diabetes mellitus, stratified by gender.

Incident prediabetes 
in normoglycaemic 

individuals

P-value Incident type 2 
diabetes in prediabetic 

individuals

P-value

Men

Model 11 1.28 (1.16; 1.41) < 0.001 1.19 (1.01; 1.40) 0.038

Model 22 1.26 (1.13; 1.40) < 0.001 1.30 (1.09; 1.56) 0.004

Model 33 1.08 (0.96; 1.21) 0.216 1.23 (1.01; 1.48) 0.039

Women

Model 11 1.34 (1.23; 1.45) < 0.001 1.18 (1.03; 1.35) 0.015

Model 22 1.35 (1.23; 1.48) < 0.001 1.19 (1.02; 1.38) 0.027

Model 33 1.13 (1.02; 1.25) 0.024 1.00 (0.84; 1.19) 0.877

Results are presented as Hazard Ratio (95% confidence interval) for a standard deviation incre-
ment in serum uric acid. 1Model 1: adjusted for age, sex and Rotterdam Study cohort. 2Model 
2: model 1 + hypertension status, serum total cholesterol, eGFR, MET-hours per week, systolic 
blood pressure and use of diuretics. 3Model 3: model 2 + daily alcohol intake, serum HDL, smok-
ing status, BMI, serum glucose and serum insulin.

Table 3.1.4. Subgroup analyses for the association between serum uric acid and incident predia-
betes and incident type 2 diabetes mellitus.

Incident prediabetes 
in normoglycaemic 

individuals

P-value Incident type 2 
DM in prediabetic 

individuals

P-value

Exclusion of participants 
who use diuretics

1.11 (1.02; 1.21) 0.016 1.05 (0.92; 1.21) 0.497

Exclusion of participants 
with hypertension

1.16 (1.00; 1.34) 0.045 1.14 (0.84; 1.56) 0.412

Exclusion of participants 
with a BMI ≥ 25

1.14 (0.98; 1.33) 0.097 1.10 (0.75; 1.61) 0.647

Results are presented as multivariable-adjusted Hazard Ratios (95% confidence interval) for a 
standard deviation increment in serum uric acid, adjusted for age, sex, Rotterdam Study cohort, 
hypertension status, serum total cholesterol, eGFR, MET-hours per week, systolic blood pressure, 
use of diuretics, daily alcohol intake, serum HDL, smoking status, BMI, serum glucose and serum 
insulin.
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Figure 3.1.2. Quartile-specific hazard ratios for serum uric acid in association with incident pre-
diabetes and incident type 2 diabetes mellitus.

Discussion

We have found that higher serum uric acid levels are associated with an increased 

risk of incident prediabetes in individuals with normoglycemia aged 45 years or 

over, independently of confounders. No significant association was observed between 

serum uric acid and incident type 2 diabetes in individuals with prediabetes after 

multivariable adjustment.
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The result with relation to incident prediabetes is consistent with previous research 

on this subject using impaired fasting glucose as an endpoint.14–17 This could indicate 

that serum uric acid is more closely associated with early-phase rather than late-phase 

mechanisms that play a role in the development of type 2 diabetes. Typically, insulin 

resistance impairs pancreatic β-cell physiology and compensatory mechanisms, there-

by inducing β-cell dysfunction as a consequence.18 Insulin resistance could therefore 

be regarded as a reflection of early mechanisms that contribute to the development of 

type 2 diabetes, whereas β-cell dysfunction reflects the influence of late-stage mecha-

nisms.19 Currently, not much evidence is available concerning the relation between 

serum uric acid and pancreatic β-cell function. Tang and colleagues found an indepen-

dent positive association between serum uric acid levels and residual pancreatic β-cell 

function.20 In their cross-sectional analysis of 1,021 individuals with type 2 diabetes, 

they observed that patients with higher serum uric acid had greater insulin secretion 

ability in early disease stages, but their residual β-cell function decayed more quickly. 

The authors suggest that this increased insulin secretion might be a compensatory 

mechanism to overcome initial insulin resistance. In addition, Shimodaira and col-

leagues observed a significant negative association between serum uric acid and 

disposition index, a measure of pancreatic β-cell function, in a cross-sectional analysis 

among non-diabetic Japanese women after adjustment for age, BMI, systolic blood 

pressure, HbA1c, serum triglyceride level, serum HDL and use of antihypertensive or 

antilipidemic drugs.21 However, no definitive conclusions regarding the association 

between serum uric acid and pancreatic β-cell function can be drawn at this point. 

Further population-based, prospective studies investigating this association are war-

ranted. Although the association between serum uric acid and incident prediabetes 

was not significant among individuals with BMI < 25, this finding is most likely due to 

a lack of statistical power, because individuals with a BMI ≥ 25 constitute over half of 

our sample size in this subgroup.

Serum uric acid has been investigated in relation to incident type 2 diabetes in indi-

viduals with impaired fasting glucose by Kramer and colleagues, who found a signifi-

cant association (OR 1.75, 95% CI 1.1; 2.9) after adjusting for various confounders in 

study population with characteristics similar to ours.22 We were not able to replicate 

this finding in our analysis, in which we had a considerably larger sample available 

and were able to adjust for a more comprehensive set of confounding variables. It is 

possible that residual confounding in the previous study could account for this differ-

ence, because Kramer and colleagues were unable to adjust for smoking status and 

serum HDL. These covariates were particularly impactful in our multivariable-adjusted 

model. Excluding these covariates from the model yields an increase in the effect 

estimate (HR 1.13, 95% CI 1.00; 1.27) compared to the model which includes them (HR 
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1.07, 95% CI 0.94; 1.21). We also observe a steep decrease in the estimated hazard ratio 

for incident type 2 diabetes between model 2 and 3 in our analysis. The variable that 

is responsible for most of this decrease is serum HDL. It has been demonstrated that 

serum HDL is associated with plasma glucose levels and that it is strongly inversely 

associated with serum uric acid levels.23,24 Therefore, serum HDL can be regarded as a 

particularly strong confounder of this association.

Conflicting results have been reported in the literature about a possible sex-specific 

nature of the association between serum uric acid and impaired fasting glucose.16,17 

In our study, we observe that serum uric acid is significantly associated with incident 

prediabetes among normoglycemic women, but not among normoglycemic men. Sev-

eral studies report that the association between serum uric acid and glucose-related 

endpoints is especially pronounced among women.15,16,25,26 The difference between 

men and women with relation to incident prediabetes in our study can possibly be 

attributed to residual confounding. We also have fewer events among men (n = 439) 

than among women (n = 632) in this analysis, which might lead to more imprecision 

in our estimated hazard ratio for men.

In contrast to this finding relating to incident prediabetes, serum uric acid was sig-

nificantly associated with incident type 2 diabetes among men with prediabetes, but 

not among women with prediabetes in our study after multivariable adjustment. This 

observation was despite the fact that the number of events was higher among women 

(n = 222) than among men (n = 185) in this analysis. No other study has investigated 

the relation between serum uric acid and type 2 diabetes specifically among men 

with established glucose intolerance. Our result might suggest that serum uric acid 

affects women more strongly in the early stages of glucose intolerance development, 

whereas it affects men more strongly in more advanced stages. Potential biological 

mechanisms underlying this phenomenon have not yet been investigated in the 

literature, and further research is warranted.

Our findings build on the conclusion of a report by Kodama and colleagues, who 

performed a meta-analysis on the association between serum uric acid and incident 

type 2 diabetes in populations not stratified by glucose tolerance status (normoglyce-

mia or prediabetes) at baseline.27 They conclude that serum uric acid is significantly 

associated with incident type 2 diabetes across 11 cohort studies, and that their result 

should encourage other studies to identify sub-populations for which the association 

might be especially important. We report that serum uric acid appears to be most 

strongly associated with the early stages of the development of type 2 diabetes. A 

similar meta-analysis by Jia and colleagues also found a positive association between 
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serum uric acid and a combined endpoint of incident impaired fasting glucose and 

incident type 2 diabetes.5 Our results further characterize the association between 

serum uric acid and glucose intolerance by treating incident prediabetes and incident 

type 2 diabetes as separate endpoints.

The strengths of our study include its prospective nature, which minimizes the chance 

of reverse causation, its long follow-up time and our ability to adjust for a large set of 

confounders. We provide a comprehensive overview of the relation between serum 

uric acid and different sub-stages on the spectrum between normoglycemia and type 

2 diabetes. However, our study population consisted of mainly elderly individuals and 

roughly 95% of our participants were of Caucasian ethnicity. Therefore, our results 

cannot be generalized to populations with a different composition without further 

consideration. Finally, we cannot exclude the possibility of residual confounding, 

although the fact that we adjusted for many covariates should minimize the chance 

of this type of bias.

In conclusion, serum uric acid was independently and positively associated with 

incident prediabetes in individuals with normoglycemia but not with incident type 

2 diabetes in individuals with prediabetes in a large population-based cohort of in-

dividuals aged 45 years and over. Our results indicate that serum uric acid might be 

more closely associated with early-phase pathogenic mechanisms that contribute to 

the development of type 2 diabetes rather than late-phase mechanisms.

Acknowledgments

The dedication, commitment, and contribution of inhabitants, general practitioners, 

and pharmacists of the Ommoord district to the Rotterdam Study are gratefully 

acknowledged. We thank Symen Ligthart, Layal Chaker and Jolande Verkroost-van 

Heemst of Erasmus University Medical Center for their invaluable contribution to the 

collection and organization of the diabetes data.



Chapter 3.1

88

References

	 1	 Kanbay M, Segal M, Afsar B, Kang DH, Rodriguez-Iturbe B, Johnson RJ. The role of uric acid in 

the pathogenesis of human cardiovascular disease. Heart 2013; 99: 759–66.

	 2	 Dehghan A, van Hoek M, Sijbrands EJ, Hofman A, Witteman JC. High serum uric acid as a novel 

risk factor for type 2 diabetes. Diabetes Care 2008; 31: 361–2.

	 3	 Wang T, Bi Y, Xu M, Huang Y, Xu Y, Li X et al. Serum uric acid associates with the incidence of 

type 2 diabetes in a prospective cohort of middle-aged and elderly Chinese. Endocrine 2011; 40: 

109–16.

	 4	 Bhole V, Choi JW, Kim SW, de Vera M, Choi H. Serum uric acid levels and the risk of type 2 

diabetes: a prospective study. Am J Med 2010; 123: 957–61.

	 5	 Jia Z, Zhang X, Kang S, Wu Y. Serum uric acid levels and incidence of impaired fasting glucose 

and type 2 diabetes mellitus: a meta-analysis of cohort studies. Diabetes Res Clin Pr 2013; 101: 

88–96.

	 6	 Lv Q, Meng XF, He FF, Chen S, Su H, Xiong J et al. High serum uric acid and increased risk of type 

2 diabetes: a systemic review and meta-analysis of prospective cohort studies. PLoS One 2013; 8: 

e56864.

	 7	 Wu AH, Gladden JD, Ahmed M, Ahmed A, Filippatos G. Relation of serum uric acid to cardiovas-

cular disease. Int J Cardiol 2016; 213: 4–7.

	 8	 American Diabetes Association. Report of the Expert Committee on the Diagnosis and Clas-

sification of Diabetes Mellitus. Diabetes Care 1997; 20: 1183–97.

	 9	 Hofman A, Brusselle GGO, Darwish Murad S, van Duijn CM, Franco OH, Goedegebure A et al. The 

Rotterdam Study: 2016 objectives and design update. Eur J Epidemiol 2015; 30: 661–708.

	 10	 World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate 

Hyperglycemia: Report of a WHO/IDF Consultation. 2006; : 3.

	 11	 Ligthart S, van Herpt TTW, Leening MJG, Kavousi M, Hofman A, Stricker BHC et al. Lifetime risk 

of developing impaired glucose metabolism and eventual progression from prediabetes to type 

2 diabetes: a prospective cohort study. Lancet Diabetes Endocrinol 2016; 4: 44–51.

	 12	 Neeley WE. Simple Automated Determination of Serum or Plasma Glucose by a Hexokinase/

Glucose-6-Phosphate Dehydrogenase Method. Clin Chem 1972; 18: 509–515.

	 13	 Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI et al. A new equation to 

estimate glomerular filtration rate. Ann Intern Med 2009; 150: 604–612.

	 14	 Krishnan E, Pandya BJ, Chung L, Hariri A, Dabbous O. Hyperuricemia in young adults and risk 

of insulin resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol 2012; 

176: 108–16.

	 15	 Meisinger C, Doring A, Stockl D, Thorand B, Kowall B, Rathmann W. Uric acid is more strongly 

associated with impaired glucose regulation in women than in men from the general popula-

tion: the KORA F4-Study. PLoS One 2012; 7: e37180.

	 16	 Kawamoto R, Tabara Y, Kohara K, Kusunoki T, Abe M, Miki T. Serum uric acid is more strongly 

associated with impaired fasting glucose in women than in men from a community-dwelling 

population. PLoS One 2013; 8: e65886.

	 17	 Liu Y, Jin C, Xing A, Liu X, Chen S, Li D et al. Serum uric acid levels and the risk of impaired 

fasting glucose: a prospective study in adults of north China. PLoS One 2013; 8: e84712.

	 18	 Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol Lausanne 2013; 4: 37.



89

Serum Uric Acid and Type 2 Diabetes

	 19	 Martin BC, Warram JH, Krolewski AS, Bergman RN, Soeldner JS, Kahn CR. Role of glucose and 

insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up 

study. Lancet 1992; 340: 925–9.

	 20	 Tang W, Fu Q, Zhang Q, Sun M, Gao Y, Liu X et al. The association between serum uric acid and 

residual beta -cell function in type 2 diabetes. J Diabetes Res 2014; 2014: 709691.

	 21	 Shimodaira M, Niwa T, Nakajima K, Kobayashi M, Hanyu N, Nakayama T. The relationship 

between serum uric acid levels and beta-cell functions in nondiabetic subjects. Horm Metab Res 

2014; 46: 950–4.

	 22	 Kramer CK, von Muhlen D, Jassal SK, Barrett-Connor E. Serum uric acid levels improve pre-

diction of incident type 2 diabetes in individuals with impaired fasting glucose: the Rancho 

Bernardo Study. Diabetes Care 2009; 32: 1272–3.

	 23	 Drew BG, Duffy SJ, Formosa MF, Natoli AK, Henstridge DC, Penfold SA et al. High-Density Lipo-

protein Modulates Glucose Metabolism in Patients With Type 2 Diabetes Mellitus. Circulation 

2009; 119: 2103–2111.

	 24	 Peng T-C, Wang C-C, Kao T-W, Chan JY-H, Yang Y-H, Chang Y-W et al. Relationship between 

Hyperuricemia and Lipid Profiles in US Adults. BioMed Res Int 2015; 2015: e127596.

	 25	 Yamada T, Fukatsu M, Suzuki S, Wada T, Joh T. Elevated serum uric acid predicts impaired 

fasting glucose and type 2 diabetes only among Japanese women undergoing health checkups. 

Diabetes Metab 2011; 37: 252–8.

	 26	 Kivity S, Kopel E, Steinlauf S, Segev S, Sidi Y, Olchovsky D. The association between serum uric 

acid and diabetes mellitus is stronger in women. J Womens Health Larchmt 2013; 22: 782–9.

	 27	 Kodama S, Saito K, Yachi Y, Asumi M, Sugawara A, Totsuka K et al. Association between serum 

uric acid and development of type 2 diabetes. Diabetes Care 2009; 32: 1737–1742.







Chapter 4

Diet and body composition





Chapter 4.1

Total Dietary Antioxidant Capacity 
and Longitudinal Trajectories of Body 

Composition

N. van der Schaft, K. Trajanoska, F. Rivadeneira, M.A. Arfan Ikram, J.D. 
Schoufour, T. Voortman.

Antioxidants, 2020



Chapter 4.1

152

Abstract

Background

Although there is some evidence that total dietary antioxidant capacity (TDAC) is 

inversely associated with the presence of obesity, no longitudinal studies have been 

performed investigating the effect of TDAC on comprehensive measures of body 

composition over time.

Methods

In this study, we included 4,595 middle-aged and elderly participants from the Rotter-

dam Study, a population-based cohort. We estimated TDAC among these individuals 

by calculating a ferric reducing ability of plasma (FRAP) score based on data from 

food-frequency questionnaires. Body composition was assessed by means of dual X-

ray absorptiometry at baseline and every subsequent 3–5 years. From these data, we 

calculated fat mass index (FMI), fat-free mass index (FFMI), android-to-gynoid fat ratio 

(AGR), body fat percentage (BF%) and body mass index (BMI). We also assessed hand 

grip strength at two time points and prevalence of sarcopenia at one time point in a 

subset of participants. Data were analyzed using linear mixed models or multinomial 

logistic regression models with multivariable adjustment.

Results

We found that higher FRAP score was associated with higher FFMI (0.091 kg/m2 per 

standard deviation higher FRAP score, 95% CI 0.031; 0.150), lower AGR (−0.028, 95% CI 

−0.053; −0.003), higher BMI (0.115, 95% CI 0.020; 0.209) and lower BF% (−0.223, 95% CI 

−0.383; −0.064) across follow-up after multivariable adjustment. FRAP score was not 

associated with hand grip strength or prevalence of sarcopenia. Additional adjust-

ment for adherence to dietary guidelines and exclusion of individuals with comorbid 

disease at baseline did not change our results.

Conclusions

Dietary intake of antioxidants may positively affect the amount of lean mass and 

overall body composition among the middle-aged and elderly.
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Introduction

Dietary intake of antioxidants, a group of compounds that are capable of mitigating 

oxidative stress, has been shown to lower the risk of diseases such as type 2 diabetes, 

myocardial infarction and cancer.1–3 Examples of such dietary antioxidants include vi-

tamins C and E, polyphenols and carotenoids, and foods that are generally regarded as 

rich in antioxidants include fruits, vegetables, tea, coffee, spices and herbs.4,5 Because 

multiple antioxidants may have synergistic effects, it is important to study the total 

dietary antioxidant capacity (TDAC) comprehensively rather than considering the ef-

fects of individual compounds.6 Although the exact intermediate pathways through 

which the beneficial health effects of TDAC occur are not precisely known, there is 

some evidence that higher TDAC is inversely associated with the presence of obesity 

and age-related muscle loss.7–9

In recent years, advances in imaging technology have allowed for more thorough as-

sessment of body composition in population studies than was previously possible. In 

particular, the use of dual X-ray absorptiometry (DXA) allows for accurate estimation 

of body composition at low cost and negligible radiation exposure.10,11 DXA not only 

provides information about total body fat mass and fat-free mass, but also about fat 

distribution (i.e., android or gynoid type fat distribution) within a given individual. 

Investigating these detailed measures of body composition as opposed to more simple 

measures such as body mass index (BMI) is of importance because fat mass and fat-free 

mass differentially affect risk of several different health outcomes.12 Changes in body 

composition are especially relevant in elderly individuals, in whom loss of muscle 

mass and function is commonly observed.13 Such losses in muscle mass are associated 

with reduced functional outcomes over time.14

Most studies on antioxidants and body composition so far have been of cross-sectional 

design with relatively small sample sizes and have only investigated a small number 

of antioxidants. A systematic review reported that although a number of cross-

sectional studies found a significant inverse association between TDAC and waist 

circumference, issues relating to the design or statistical power of these studies 

made inference on this association difficult.15 No studies thus far have investigated 

a comprehensive measure of TDAC in relation to more detailed body composition 

measurements. For these reasons, we aimed to investigate the relationship between 

TDAC and longitudinal profiles of body composition derived by means of DXA, as well 

as muscle strength and sarcopenia, in the context of a large population-based cohort 

study among middle-aged and elderly individuals.
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Materials and Methods

The Rotterdam Study

The general design of the Rotterdam Study has been outlined extensively elsewhere.16 

In short, this prospective cohort study was initiated in 1990 in the district of Om-

moord, Rotterdam, the Netherlands. All inhabitants of this district aged 55 years or 

older (n = 10,215) were invited to participate, and 7,983 participants were included 

for a response rate of 78% (subcohort RS-I). In 2000, a second subcohort of participants 

who had moved into the study district or had become 55 years of age since the start 

of the Rotterdam Study was included in the study; 4,472 were invited and 3,011 par-

ticipated (response rate 67%) (subcohort RS-II). A third subcohort was added in 2006 

with the inclusion of 3,932 participants, out of 6,057 invited (response rate 65%), aged 

45–54 years (subcohort RS-III). Together, these subcohorts account for a total number 

of 14,926 participants at baseline. Participants underwent home interviews and an 

extensive set of physical examinations at baseline and every subsequent 3–4 years. 

The Medical Ethics Committee of Erasmus University Medical Center (registration 

number MEC 02.1015) and the review board of the Dutch Ministry of Health, Welfare 

and Sports (Population Screening Act WBO, license number 1071272-159521-PG) have 

approved the Rotterdam Study. The Rotterdam Study has been entered into the Neth-

erlands National Trial Register (NTR) and into the WHO International Clinical Trials 

Registry Platform (ICTRP) under shared catalogue number NTR6831. All participants 

have provided written informed consent to participate in the study and to have their 

information obtained from treating physicians17.

Assessment of total dietary antioxidant capacity

Assessment of dietary intake was performed at the fifth examination round for 

the first subcohort (RS-I-5; 2009–2011), the first examination round of the second 

subcohort (RS-II-1; 2000–2001), the third examination round of the second cohort 

(RS-II-3; 2011–2012) and the first examination round of the third subcohort (RS-III-1; 

2006–2008) (Supplementary Figure 4.1.1). Semi-quantitative food frequency question-

naires (FFQs) were used to assess dietary intake at baseline. We used two versions: a 

170-item FFQ for the measurements of RS-II-1 in 2000 and an updated 389-item FFQ 

for the later examination rounds, as described in detail elsewhere18. Food intake data 

from all cohorts was converted into daily nutrient and energy intake (in kcal) using 

Dutch Food Composition Tables corresponding to the years of dietary assessment. 

Both FFQs were developed to assess diet in a Dutch population and both FFQs have 

been validated against other assessment methods, which showed that the FFQs are 

able to adequately rank participants according to nutrient intakes. The 170-item FFQ 

was validated against fifteen twenty-four-hour food records and four twenty-four-hour 
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urea excretion samples among 80 participants of the Rotterdam Study. Pearson’s cor-

relations between the FFQ and the food records ranged between 0.44 and 0.85, and 

Spearman’s correlation for estimated protein intake with urea excretion samples was 

0.67.19 The 389-item FFQ was validated among two other Dutch populations using a 

9-day dietary record and a 4-week dietary history, with Pearson’s correlations ranging 

between 0.40 and 0.86.20,21

The TDAC was calculated for each participant using the Antioxidant Food Table pub-

lished by Carlsen et al., who used a ferric reducing ability of plasma (FRAP) assay to 

estimate the antioxidant content of over 3,100 types of food.22 This assay measures 

absorption changes that occur when ferric ion (Fe3+) is reduced to ferrous ion (Fe2+) 

in the presence of antioxidants from different food samples. The measured value is 

the antioxidant capacity for a given type of food expressed in mmol per 100 g. We 

multiplied these values by the consumption of the different types of food in our FFQs 

and then summed across all food types for every participant. The resulting value is 

a FRAP score that represents the total dietary antioxidant intake in mmol per day. 

Because the Antioxidant Food Table lists different antioxidant capacities for the same 

types of food produced by different manufacturers, we consulted nutrition scientists 

from Wageningen University, the Netherlands, to determine the closest Dutch food 

equivalent for food types with multiple listings. Due to lack of data, food supplements 

were not included in the calculation of TDAC.

Measurement of body composition

Body composition was measured by means of Dual X-ray Absorptiometry (DXA; Prodigy 

and iDXA devices, GE Healthcare, Chicago, United States). From these DXA data, we 

calculated fat mass index (FMI) as total fat mass in kilograms divided by height in 

meters squared, fat-free mass index (FFMI) as total lean mass (excluding bone mineral 

content) in kilograms divided by height in meters squared, android-to-gynoid fat ratio 

(AGR) as android fat mass in kilograms divided by gynoid fat mass in kg and total 

body fat percentage (BF%) by expressing total fat mass in kilograms as a percentage 

of total body weight in kilograms. Weight was recorded with a digital scale with the 

participant wearing light clothing and height was recorded with the participant in a 

standing position without shoes. BMI was calculated as total body weight in kilograms 

divided by height in meters squared.

Sarcopenia was defined according to the updated European Working Group on Sarco-

penia in Older People (EWGSOP2) criteria.23,24 According to these criteria, sarcopenia 

is defined as the combination of low muscle strength and low muscle quantity or 

quality with or without low physical performance, and probable sarcopenia is defined 
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as isolated low muscle strength. We defined low muscle strength as a peak hand grip 

strength < 27 kg (for men) or < 16 kg (for women) over three attempts as measured at 

the Rotterdam Study research center. Low muscle quantity was defined as appendicu-

lar skeletal muscle mass index (ASMI; appendicular skeletal muscle mass divided by 

height squared) < 7.0 kg/m2 (for men) or < 5.5 kg/m2 (for women). Appendicular skeletal 

muscle mass was assessed by DXA and was calculated as the sum of the muscle masses 

of all four limbs. Low physical performance was defined as a gait speed ≤ 0.8 m/s.

Population for analysis

Data availability in the different examination rounds is outlined in Supplementary 

Figure 4.1.1. Full-body DXA measurements were performed from 2009 (RS-I-5), 2004 

(RS-II-2) and 2006 (RS-III-1) onward, which constitute the baseline of our current study 

for a total of 8,547 participants. Dietary data were available for 5,791 of these 8,457 

individuals, of which 309 were excluded for having invalid dietary data (reported en-

ergy intake < 500 or > 5000 kcal per day). Of the remaining 5,663 participants, 4,971 

underwent DXA at least once. Another 375 individuals were excluded because their 

body mass index (BMI) was greater than 35 kg/m2. Such individuals typically exceed 

the surface area limitations of the DXA-scanner, which would compromise image 

accuracy and therefore produce biased estimations of body composition25. Thus, our 

final population for analysis consisted of 4,595 individuals, of whom 3,065 had more 

than one DXA measurement available.

Data on hand grip strength were available for 4,193 individuals from the total of 

4,595, measured from 2009 (RS-I-5), 2011 (RS-II-3) and 2006 (RS-III-1) onward. Sufficient 

data to assess the prevalence of sarcopenia was only available for the fifth visit round 

of the first cohort (RS-I-5) and the third visit round of the second cohort (RS-II-3) for 

a total of 2,001 participants. For the second cohort (RS-II), we used dietary data from 

the first examination round (RS-II-1) for the DXA outcomes and dietary data from the 

third examination round (RS-II-3) for the analyses pertaining to hand grip strength 

and prevalent sarcopenia, to minimize the time between assessment of FRAP score 

and the respective outcomes (Supplementary Figure 4.1.1).

Covariates

The following variables were considered as potential confounders in our analyses: 

age, sex, Rotterdam Study cohort, hypertension status, presence of dyslipidemia, daily 

alcohol consumption, daily physical activity, smoking status, highest attained level 

of education, total daily energy intake, overall diet quality and serum glucose level. 

Potential confounders were selected based on general knowledge of their association 

with exposure and outcomes or on the basis of previous literature. We used directed 
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acyclic graph (DAG) modeling to help theorize which variables would potentially be 

relevant to include in our analyses as confounders.26 Participant height and weight 

were recorded at every center visit. Participants were considered to have dyslipidemia 

if their total serum cholesterol was > 6.5 mmol/L or if they used lipid-lowering medi-

cation. Serum cholesterol was determined in blood samples taken at baseline using 

a CHOD-PAP method (Monotest Cholesterol kit, Boehringer Mannheim Diagnostica, 

Mannheim, Germany).27 Hypertension was defined as having a systolic blood pres-

sure ≥ 140 mmHg, a diastolic blood pressure ≥ 90 mmHg or using antihypertensive 

medication. We performed two blood pressure readings at the right upper arm using 

a random-zero sphygmomanometer. Information on use of lipid-lowering or antihy-

pertensive drugs was obtained during home interviews and by consulting pharmacy 

dispensing records. Smoking status (never, former or current user of tobacco prod-

ucts) and highest attained level of education were assessed during home interviews. 

Energy intake (kcal per day) and alcohol consumption (glasses per day) were derived 

from the FFQ data. To assess physical activity, we used the LASA physical activity 

questionnaire and a modified version of the Zutphen Study Physical Activity Question-

naire to estimate activity in metabolic equivalent of task (MET) hours.28,29 Because 

different questionnaires were used, we calculated cohort-specific standard deviation 

(SD) scores for physical activity. Finally, as a measure of overall healthiness of diet, we 

used a diet quality score which describes the degree of adherence to the Dutch Dietary 

Guidelines18. Data on comorbid disease (coronary heart disease, heart failure, stroke, 

type 2 diabetes and cancer) were collected by consulting general practitioners’ records 

and hospital discharge data and using measurements in our research center.30–33

Statistical analysis

In order to assess the association between baseline FRAP score and longitudinal 

changes in body composition measures and hand grip strength, we used a linear 

mixed model approach. We used the residual method to adjust FRAP score for energy 

intake.34 We did this in each of the cohorts separately to account for the use of dif-

ferent FFQs and we used the standardized residuals as exposure in our analyses. For 

every regression model, we investigated whether non-linear terms (polynomials or 

three-knot natural cubic splines) for the variables age and time significantly (p < 0.05) 

improved model fit by performing likelihood ratio tests with the models fitted under 

maximum likelihood. Using the same procedure, we tested whether interaction be-

tween FRAP score and time, age or sex significantly improved the model fit. If this was 

the case, the non-linear or interaction terms were kept in the model. For the random 

effects structure of these models, we specified random intercepts and random slopes 

(for time between repeated measurements). In order to investigate the association 

between FRAP score and prevalence of probable sarcopenia or sarcopenia, we fitted 
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multinomial logistic regression models. To provide insight into how the covariates 

influence the association between FRAP score and body composition parameters, 

these covariates were introduced into the models in a stepwise process. Model 1 was 

adjusted for age, sex, Rotterdam Study cohort and time difference between exposure 

and outcome measurement (where applicable) in years. Model 2 was additionally ad-

justed for hypertension, dyslipidemia, alcohol consumption (natural log-transformed), 

physical activity, smoking, education and serum glucose. In model 3, we also included 

diet quality. Missing values were accounted for by the use of ten-fold multiple imputa-

tion with chained equations. All statistical analyses were performed using R version 

3.6.1 (The R Foundation for Statistical Computing, Vienna, Austria), using the mice 

package (version 3.8.0) for multiple imputation and the nlme package (version 3.1-140) 

for designing the linear mixed models.35,36 As sensitivity analysis, we repeated our 

analyses excluding participants with comorbidities (as defined previously) at baseline.

Results

The characteristics of the study population are presented in Table 4.1.1. Overall, the 

mean FRAP score was 25.2 (SD 10.3) mmol/day. For the different measures of body com-

position, population averages at the first measurement were 9.3 (2.9) kg/m2 for FMI, 

17.5 (2.1) kg/m2 for FFMI, 0.6 (0.2) for AGR, 34.20 (7.79) % for BF% and 26.8 (3.4) kg/m2 

for BMI. The food groups that contributed most to FRAP in our study were coffee, fruit, 

vegetables and tea. For those participants with more than one DXA measurement (n = 

3,065), the average follow-up duration was 6.6 years (6.1 years for the 2,705 participants 

with two measurements and 10.9 years for the 360 participants with 3 measurements).

The results of our main analyses are displayed in Table 4.1.2. We observed an inverse 

association between FRAP score and FMI during follow-up in model 1, but this associa-

tion was explained by the metabolic and lifestyle factors in model 2 and by overall 

diet quality in model 3 (model 3: −0.018 kg/m2 per SD higher FRAP score, 95% CI 

−0.089; 0.053). Furthermore, we found a positive association between FRAP score and 

FFMI during follow-up in model 1, for which the effect estimates hardly changed and 

remained statistically significant after adjustment for covariates (model 3: 0.091, 95% 

CI 0.031; 0.150). We observed an inverse association of FRAP score with AGR, which 

was also persistent across models (model 3: −0.028, 95% CI −0.053; −0.003). FRAP score 

was not significantly associated with BMI during follow-up in the first model, but we 

did observe a positive association in model 3 (0.115, 95% CI 0.020; 0.209). Finally, we 

found that FRAP score was inversely associated with BF% during follow-up, with some 

attenuation after adjustment for covariates (model 3: −0.223, 95% CI −0.383; −0.064).
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Table 4.1.1. Baseline characteristics of the total study population (n = 4,595).

Characteristic Mean (SD) or n (%)

Age (Years) 65.1 (10.8)

Sex

Female 2581 (56.2%)

Male 2014 (43.8%)

Highest level of education (%)

Primary 372 (8.1%)

Lower/intermediate general or lower vocational 1782 (38.8%)

Intermediate vocational or higher general 1063 (23.1%)

Higher vocational or university 1063 (23.1%)

Hypertension (%)

No 1668 (36.3%)

Yes 2927 (63.7%)

Dyslipidemia (%)

No 2644 (57.5%)

Yes 1951 (42.5%)

Alcohol intake (glasses/day)1 0.9 [1.1]

Smoking (%)

Never smoker 1429 (31.1%)

Former smoker 2293 (49.9%)

Current smoker 873 (19.0%)

Physical activity (MET-hours/week)1 54.3 [67.7]

Energy intake (kcal/day) 2199 (676)

Dietary guideline score 6.8 (1.9)

Fasting serum glucose (mmol/L) 5.6 (1.2)

Height (cm)2 168.6 (9.3)

Weight (kg)2 76.4 (12.6)

Body mass index (kg/m2)2 26.8 (3.4)

Fat mass index (kg/m2)2 9.3 (2.9)

Fat-free mass index (kg/m2)2 17.5 (2.1)

Android-to-gynoid fat ratio2 0.6 (0.2)

Total body fat percentage (%)2 34.0 (7.9)

FRAP score (mmol/day) 25.2 (10.3)

1Median (interquartile range). The presented statistics represent the data after ten-fold multiple 
imputation. 2Variable is presented for the individuals who participated in the baseline DXA mea-
surement round (n = 3,770), i.e., RS-I-5, RS-II-2 or RS-III-1.
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The results for subsequent analyses on hand grip strength and sarcopenia are pre-

sented in Tables 4.1.3 and 4.1.4. FRAP score was not associated with hand grip strength 

across follow-up after multivariable adjustment (model 3: 0.177, 95% CI −0.135; 0.488) 

(Table 4.1.3). Within the subgroup of individuals with data on sarcopenia, we identi-

fied 314 cases of probable sarcopenia and 104 cases of sarcopenia. FRAP score was not 

associated with probable sarcopenia (model 3: OR 0.95, 95% CI 0.81; 1.12) (Table 4.1.4). 

Although higher FRAP score was associated with lower probability of sarcopenia in 

model 1 (OR 0.77; 95% CI 0.60; 0.99), after adjustment for covariates this association 

slightly attenuated and was no longer statistically significant (model 3: OR 0.81, 95% 

CI 0.62; 1.05).

Table 4.1.3. Longitudinal associations between Ferric Reducing Ability of Plasma (FRAP) score 
and hand grip strength.

Hand Grip Strength (kg) p-value

Model 11 0.232
(−0.078; 0.541)

0.142

Model 22 0.182
(−0.129; 0.493)

0.251

Model 33 0.177
(−0.135; 0.488)

0.267

Sample size for analysis of n = 4,193. Results are presented as regression coefficient (β) with 
corresponding 95% CI per 1 standard deviation increment in FRAP. 1Model 1: adjusted for time 
interval, age and sex. 2Model 2: additionally adjusted for hypertension status, presence of dys-
lipidemia, daily alcohol consumption, daily physical activity, smoking status, highest attained 
level of education and serum glucose. 3Model 3: additionally adjusted for adherence to dietary 
guideline score.

Table 4.1.4. Associations between Ferric Reducing Ability of Plasma (FRAP) score and prevalence 
of (probable) sarcopenia.

Probable Sarcopenia
(n cases = 314)

p-value
Sarcopenia

(n cases = 104)
p-value

Model 11 0.93
(0.79; 1.08)

0.342
0.77

(0.60; 0.99)
0.045

Model 22 0.95
(0.81; 1.11)

0.504
0.80

(0.62; 1.04)
0.098

Model 33 0.95
(0.81; 1.12)

0.564
0.81

(0.62; 1.05)
0.110

Sample size for analysis of n = 2,001. Results are presented as odds ratio (OR) with corresponding 
95% CI per 1 standard deviation increment in FRAP. 1Model 1: adjusted for age, sex and Rotter-
dam Study cohort. 2Model 2: additionally adjusted for hypertension status, presence of dyslipid-
emia, daily alcohol consumption, daily physical activity, smoking status, highest attained level of 
education and serum glucose. 3Model 3: additionally adjusted for adherence to dietary guideline 
score.



Chapter 4.1

162

Excluding participants with one or more comorbidities at baseline left 3,327 individu-

als for analysis. Repeating our analyses in this subgroup did not substantially change 

our conclusions with regard to the association between TDAC and body composition, 

although we did observe some attenuation of the association between FRAP score 

and AGR (Supplemental Tables 4.1.1 - 4.1.3). We observed no significant interaction 

between FRAP score and follow-up time for any of the body composition outcomes in 

our analyses, indicating that FRAP generally does not modify the rate at which body 

composition changes over time. We did observe significant interaction between FRAP 

score and time on hand grip strength (p for interaction 0.003), suggesting that FRAP 

modifies the rate at which hand grip strength changes over time. We found significant 

interaction between FRAP score and sex only on FFMI (p for interaction 0.043) and 

between FRAP score and age only on AGR (p for interaction 0.046). Considering these 

findings, we additionally stratified all our analyses by sex and median age at baseline 

(Supplemental Tables 4.1.4 – 4.1.9). We observed that FRAP score was more strongly 

associated with FFMI in women (0.189, 95% CI 0.135; 0.243) compared to men (0.070, 

95% CI 0.070; 0.133) after adjustment for all covariates, but these sex differences 

were generally not reflected in the other outcome parameters. Similarly, while FRAP 

score was more strongly associated with AGR in younger participants (−0.007, 95% CI 

−0.012; −0.001) compared to older participants (−0.0004, 95% CI −0.006; 0.006) after 

adjustment, this pattern was not reflected in the other outcome parameters.

Discussion

In this prospective cohort study, higher total dietary antioxidant capacity (TDAC) was 

associated with higher fat-free mass index (FFMI), higher body mass index (BMI), lower 

body fat percentage (BF%) and lower android-to-gynoid fat ratio (AGR) across follow-up. 

We found no association between TDAC and the presence of sarcopenia, probable sar-

copenia or hand grip strength. The observed associations were independent of degree 

of adherence to dietary guidelines. Overall, this combination of findings from our 

study indicates a positive association between TDAC and fat-free mass in particular. 

TDAC was positively associated with FFMI but was not associated with FMI. Hence, the 

decrease in body fat percentage we observe with higher TDAC is likely mainly due to 

higher fat-free mass rather than lower fat mass.

Several previous studies have examined the association between individual com-

pounds with antioxidative properties and indicators of body composition. For exam-

ple, a cross-sectional study of 3,182 participants found that serum levels of β-carotene 

and vitamin C, but not vitamin E, zinc or selenium, were lower in participants with 
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higher BMI.37 Another cross-sectional study on a similar scale found that serum levels 

of magnesium, a cofactor for a number of antioxidant enzymes, were associated with 

lower BMI and waist circumference.38 Several studies have also been performed that 

examined TDAC in relation to anthropometric measures. A systematic review re-

ported that TDAC was examined in relation to waist circumference in several studies, 

two of which found a significant (inverse) association.7,15,39 One of these two studies 

investigated TDAC in relation to abdominal obesity (defined as a waist circumference 

≥ 95 cm) measured 3 years after baseline among 1,983 young adults, and reported 

lower occurrence of abdominal obesity across quartiles of TDAC after multivariable 

adjustment.7 The other study reported lower waist circumference with higher trolox-

equivalent antioxidant capacity (TEAC) among 266 young adults in a cross-sectional 

analysis adjusted only for energy intake and sex.39 Another cross-sectional study found 

an association between measures of TDAC and obesity as measured by BMI, but not 

between TDAC and waist circumference.40 Differences between studies with regards 

to the observed associations could be accounted for by differences in sample size, as 

a number of previous studies had considerably fewer participants available than ours 

and other larger studies.7,8,39 Furthermore, a number of previous studies also did not 

adjust their analyses for cardiometabolic risk factors39, or had a population that was 

demographically and ethnically different from ours.7,8,40 Previous studies also differed 

with regards to the measure of TDAC that was investigated.39–41 Notably, no studies 

thus far have investigated TDAC in relation to more detailed measures of obesity 

derived from DXA data. This is important considering that BMI alone fails to fully 

capture inter-individual differences in fat and lean mass.42 Furthermore, when used as 

a measurement of adiposity, waist circumference may underestimate the association 

between adiposity and cardiometabolic risk factors when compared to DXA-derived 

measurements of adiposity.43 These limitations emphasize the importance of studying 

more comprehensive measures of body composition over simple anthropometrics.

The positive association between TDAC and fat-free mass we observed in our study 

could be mediated by the reduction in oxidative stress levels that is associated with 

antioxidant consumption.44 One of the major sources of oxidative stress is the pres-

ence of excess reactive oxygen species (ROS), which are chemically reactive molecules 

naturally produced in response to cellular stress and inflammatory processes.45 While 

ROS have certain physiological functions at low concentrations, excess ROS produc-

tion in response to stressors has adverse effects on cellular functioning.45 High levels 

of ROS may specifically affect skeletal muscle mass and strength through a number 

of pathways.46 For example, oxidative stress induces activation of proteolytic com-

pounds and mediates the release of pro-inflammatory cytokines, which may lead to 

protein degradation and atrophy or loss of muscle fibers.47 Previous studies have also 
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demonstrated that aging is associated with higher levels of ROS in skeletal muscle.48,49 

These adverse effects of ROS on muscle tissue, potentially exacerbated by increasing 

levels of ROS with aging, may in part be responsible for the commonly observed loss 

of muscle mass in the elderly.47,50 Given that antioxidants have the ability to lower 

oxidative stress levels, a high consumption of antioxidants might reduce the extent 

to which these deleterious processes take place.45 Increased consumption of dietary 

antioxidants may also help counteract the age-related deficiencies in the endogenous 

antioxidant defense system that have been reported in the elderly.51 In spite of our 

observation that higher TDAC was associated with higher FFMI, we did not observe an 

association between TDAC and hand grip strength. This indicates that the increased 

muscle mass that is associated with higher TDAC is not also paired with increased 

muscle strength (Table 4.1.3). This discrepancy between findings for muscle mass and 

muscle strength could be explained by the fact that despite the correlation between 

these parameters, muscle strength may also be determined by neural factors in addi-

tion to muscle mass alone.52 Furthermore, in a previous study, it was demonstrated 

that muscle mass accounted for only 13% of the variation in muscle strength among 

older adults.53 We observed no association between TDAC and probability of probable 

sarcopenia or sarcopenia after adjustment for covariates. Sarcopenia is a complex and 

heterogeneous condition that can be defined according to different combinations of 

criteria within the EWGSOP2 definition.23 Possibly, other factors than TDAC play a 

more prominent role in the pathogenesis of sarcopenia. We also had limited statistical 

power in this analysis due to the relatively low number of sarcopenia cases (n = 104) 

available. In addition, although we found that the association between TDAC and FFMI 

appeared to be somewhat stronger in women compared to men, previous literature has 

not provided consistent evidence of sex differences with relation to this association or 

the associations between individual antioxidants and anthropometrics.37,54 However, 

in the case of our study, these sex differences could also be explained by differences 

in statistical power between the groups considering that we had more women (n = 

2,581) than men (n = 2,014) available for analysis. The association between TDAC and 

android-to-gynoid fat ratio, and the variation of the strength of this association with 

age, has not been previously reported in the literature. Further research is needed in 

order to elucidate these findings.

The strengths of our study include its prospective design with repeated assessment 

of body composition over a period of, on average, more than six years. In addition, 

we had a large population available for analysis. We investigated a comprehensive 

measure of TDAC, which takes into account the potential synergistic effects of all 

antioxidants that are contained in the diet, rather than focusing on single antioxida-

tive compounds. In addition, we analyzed advanced measures of body composition in 
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our study as opposed to only anthropometrics, enabling us to study the association 

between TDAC and body composition in greater detail than was previously possible. 

Furthermore, we were also able to adjust for a large number of covariates related to 

lifestyle, cardiometabolic status and dietary habits. Although it is possible that high 

TDAC could reflect an overall healthy diet because healthy foods are generally rich in 

antioxidants, we were able to demonstrate that our results persisted after adjustment 

for adherence to guidelines for a healthy diet. Several limitations should be taken 

into account when interpreting our findings. First, we estimated TDAC based on a 

Norwegian database listing the antioxidant content of different types of food.22 It is 

possible that differences with regards to country of origin, growth conditions and 

processing of food have led to some error in the estimation of TDAC, although we did 

attempt to mitigate this by determining the closest Dutch food equivalent for prod-

ucts with multiple listings in the database. Second, we had no information available 

on the cooking methods used by participants. It has been demonstrated that cooking 

methods may also affect the antioxidant content of food.55 Third, we had no data 

available on the use of food supplements in our study, so these could not be taken into 

account in our estimation of the TDAC. Fourth, the FFQ we used in order to assess di-

etary habits may inherently provide some measurement error, although our FFQ were 

both validated and shown to be adequate in ranking according to nutrient intake.19,20 

Fifth, we had a relatively limited number of repeated measurements available per 

participant, which may in turn limit the accuracy of the estimated longitudinal body 

composition profiles.

In conclusion, higher total dietary antioxidant capacity was associated with higher 

fat-free mass index in this longitudinal population-based cohort study of over 4500 

middle-aged and elderly participants. Our findings indicate that increased consump-

tion of antioxidants may have favorable effects on body composition and may play a 

role in preserving lean mass over time.
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Supplemental Table 4.1.2. Longitudinal associations between Ferric Reducing Ability of Plasma 
(FRAP) score and hand grip strength; excluding participants with selected comorbidities at base-
line.

Probable sarcopenia
(n cases = 166)

p-value Sarcopenia
(n cases = 51)

p-value

Model 11 0.93
(0.75; 1.14)

0.477
0.95

(0.67; 1.35)
0.767

Model 22 0.95
(0.76; 1.18)

0.627
0.94

(0.65; 1.35)
0.736

Model 33 0.96
(0.77; 1.20)

0.720
0.92

(0.64; 1.34)
0.673

Total number of participants with one or more prevalent comorbidities was n = 1,123 (n = 323 
cases of cancer other than non-melanoma skin cancer, n = 458 cases of type 2 diabetes, n = 102 
cases of heart failure, n = 276 cases of coronary heart disease and n = 132 cases of a history of 
stroke), leaving n = 3,070 participants free of these comorbidities at baseline. Results are pre-
sented as regression coefficient (β) with corresponding 95% CI per 1 standard deviation incre-
ment in FRAP score. 1Model 1: adjusted for time interval, age, sex and Rotterdam Study cohort. 
2Model 2: additionally adjusted for hypertension status, presence of dyslipidemia, daily alcohol 
consumption, daily physical activity, smoking status, highest attained level of education and 
serum glucose. 3Model 3: additionally adjusted for adherence to dietary guideline score.

Supplemental Table 4.1.3. Associations between Ferric Reducing Ability of Plasma (FRAP) score 
and (probable) sarcopenia; excluding participants with selected comorbidities at baseline.

Hand grip strength (kg) p-value

Model 11 0.207
(-0.161; 0.574)

0.270

Model 22 0.180
(-0.190; 0.550)

0.341

Model 33 0.182
(-0.188; 0.553)

0.335

Sample size for analysis of n = 3,070. Total number of participants with one or more prevalent 
comorbidities was n = 782 (n = 227 cases of cancer other than non-melanoma skin cancer, n = 
301 cases of type 2 diabetes, n = 89 cases of heart failure, n = 198 cases of coronary heart disease 
and n = 95 cases of a history of stroke), leaving n = 1,219 participants free of these comorbidities 
at baseline. Results are presented as regression coefficient (β) with corresponding 95% CI per 1 
standard deviation increment in FRAP score. aModel 1: adjusted for time interval, age, sex and 
Rotterdam Study cohort. bModel 2: additionally adjusted for hypertension status, presence of dys-
lipidemia, daily alcohol consumption, daily physical activity, smoking status, highest attained 
level of education and serum glucose. cModel 3: additionally adjusted for adherence to dietary 
guideline score.
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Supplemental Table 4.1.5. Longitudinal associations between Ferric Reducing Ability of Plasma 
(FRAP) score and hand grip strength; stratified by sex.

Model 11 p-value Model 22 p-value Model 33 p-value

Hand grip 
strength
(kg)
P for interaction 
0.082

Men -0.229
(-0.654; 0.195)

0.290
-0.286

(-0.716; 0.144)
0.192

-0.289
(-0.723; -0.145)

0.192

Women 0.184
(-0.076; 0.445)

0.166
0.090

(-0.174; 0.353)
0.504

0.062
(-0.205; 0.329)

0.649

Sample size of n = 1,835 men and n = 2,358 women. Results are presented as regression coef-
ficient (β) with corresponding 95% CI per 1 standard deviation increment in FRAP. 1Model 1: 
adjusted for time interval, age and Rotterdam Study cohort. 2Model 2: additionally adjusted for 
hypertension status, presence of dyslipidemia, daily alcohol consumption, daily physical activity, 
smoking status, highest attained level of education and serum glucose. 3Model 3: additionally 
adjusted for adherence to dietary guideline score.

Supplemental Table 4.1.6. Longitudinal associations between Ferric Reducing Ability of Plasma 
(FRAP) score and (probable) sarcopenia; stratified by sex.

Model 11 p-value Model 22 p-value Model 33 p-value

Probable 
sarcopenia
(n cases = 314)
P for interaction 
0.546

Men
(n cases = 137)

0.98
(0.78; 1.24)

0.884 0.98
(0.77; 1.24)

0.872 0.99
(0.78; 1.25)

0.924

Women
(n cases = 177)

0.88
(0.71; 1.09)

0.233 0.93
(0.74; 1.15)

0.492 0.93
(0.74; 1.16)

0.506

Sarcopenia
(n cases = 104)
P for interaction 
0.931

Men
(n cases = 37)

0.87
(0.57; 1.33)

0.534 0.90
(0.58; 1.39)

0.630 0.90
(0.58; 1.39)

0.637

Women
(n cases = 67)

0.71
(0.52; 0.98)

0.040 0.74
(0.53; 1.03)

0.076 0.75
(0.54; 1.06)

0.101

Sample size of n = 909 men and n = 1,092 women. Results are presented as odds ratios (OR) with 
corresponding 95% CI per 1 standard deviation increment in FRAP. 1Model 1: adjusted for age 
and Rotterdam Study cohort. 2Model 2: additionally adjusted for hypertension status, presence 
of dyslipidemia, daily alcohol consumption, daily physical activity, smoking status, highest at-
tained level of education and serum glucose. 3Model 3: additionally adjusted for adherence to 
dietary guideline score.
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Supplemental Table 4.1.9. Associations between Ferric Reducing Ability of Plasma (FRAP) score 
and (probable) sarcopenia, stratified by age.

Model 11 p-value Model 22 p-value Model 33 p-value

Probable 
sarcopenia
(n cases = 314)
P for interaction 0.362

Age <= 75.7
(n cases = 78)

1.00
(0.76; 1.30)

0.981
1.03

(0.79; 1.35)
0.814

1.03
(0.78; 1.35)

0.836

Age > 75.7
(n cases = 236)

0.90
(0.74; 1.09)

0.289
0.93

(0.76; 1.13)
0.446

0.94
(0.77; 1.15)

0.544

Sarcopenia
(n cases = 104)
P for interaction 0.811

Age <= 75.7
(n cases = 34)

0.70
(0.46; 1.06)

0.090
0.69

(0.45; 1.07)
0.096

0.72
(0.47; 1.11)

0.141

Age > 75.7
(n cases = 70)

0.80
(0.58; 1.11)

0.191
0.87

(0.62; 1.22)
0.414

0.87
(0.61; 1.22)

0.414

Sample size of n = 1,001 participants aged <= 75.7 (sample median) years and n = 1,000 partici-
pants aged > 75.7 years. Results are presented as odds ratios (OR) with corresponding 95% CI per 
1 standard deviation increment in FRAP. 1Model 1: adjusted for sex, age and Rotterdam Study 
cohort. 2Model 2: additionally adjusted for hypertension status, presence of dyslipidemia, daily 
alcohol consumption, daily physical activity, smoking status, highest attained level of education 
and serum glucose. 3Model 3: additionally adjusted for adherence to dietary guideline score.

Supplemental Table 4.1.8. Associations between Ferric Reducing Ability of Plasma (FRAP) score 
and hand grip strength, stratified by age.

Model 11 p-value Model 22 p-value Model 33 p-value

Hand grip 
strength
(kg)
P for interaction 
0.546

Age
<= 65.9 
years

-0.167
(-0.601; 0.266)

0.449
-0.252

(-0.690; 0.186)
0.260

-0.247
(-0.687; 0.193)

0.271

Age
> 65.9 
years

0.675
(0.234; 1.116)

0.003
0.626

(0.185; 1.068)
0.005

0.584
(0.140; 1.029)

0.010

Sample size of n = 2,097 participants aged <= 65.9 (sample median) years and n = 2,096 partici-
pants aged > 65.9 years. Results are presented as regression coefficient (β) with corresponding 
95% CI per 1 standard deviation increment in FRAP. 1Model 1: adjusted for time interval, age, sex 
and Rotterdam Study cohort. 2Model 2: additionally adjusted for hypertension status, presence 
of dyslipidemia, daily alcohol consumption, daily physical activity, smoking status, highest at-
tained level of education and serum glucose. 3Model 3: additionally adjusted for adherence to 
dietary guideline score.
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Discussion

In this thesis, I aimed to examine the relation between aspects of the diet, inflamma-

tion, body composition and type 2 diabetes. With regards to dietary factors, special 

attention was directed to the putative effects of antioxidants and dietary advanced 

glycation end products, as well as coffee consumption and adherence to a plant-based 

diet, on body composition and risk of type 2 diabetes. I also studied the role of serum 

uric acid, a biomarker associated with inflammation, as a risk factor for type 2 dia-

betes and cardiovascular disease. Furthermore, I examined whether other markers 

of inflammation, among them C-reactive protein, mediate the association between 

coffee consumption and type 2 diabetes. Specific considerations about the individual 

studies have been addressed in the previous chapters. In this general discussion, I 

will first provide a brief summary of the main findings. Afterwards, I will reflect on 

methodological considerations and discuss the implications of the research contained 

in this thesis as well as potential future research directions.

Main findings

Dietary determinants of type 2 diabetes

In chapter 2, I examined aspects of the diet as well as specific dietary patterns in 

relation to type 2 diabetes. In chapter 2.1, I investigated antioxidant consumption, 

expressed as total dietary antioxidant capacity of the diet, in relation to risk of type 2 

diabetes, prediabetes and insulin resistance. I observed that among the 5,796 partici-

pants included in this study, higher dietary antioxidant consumption was associated 

with lower risk of type 2 diabetes. This observation applies to both the total popula-

tion and the subgroup of participants who already had prediabetes at baseline. Higher 

dietary antioxidant consumption was also associated with lower insulin resistance, 

measured cross-sectionally, but not with risk of prediabetes. These findings indicate 

that higher antioxidant consumption may have favorable effects on risk of type 2 

diabetes. In line with this, in chapter 2.2, I investigated whether a relatively more 

plant-based diet is associated with lower risk of type 2 diabetes and lower insulin 

resistance when compared to a relatively more animal-based diet. For this purpose, 

a plant-based diet index was constructed on which a higher score indicated a more 

plant-based diet. I observed that a higher plant-based diet score was associated with 

lower risk of type 2 diabetes, lower risk of prediabetes and lower insulin resistance, 

corroborating dietary guidelines that recommend preferential intake of plant-based 

foods compared to animal-based foods. This recommendation is also further supported 

by the observation that antioxidant intake is favorably associated with risk of type 2 

diabetes, given that many plant-based foods are also rich in antioxidants.1 Although 

the mechanisms through which the beneficial effects of a plant-based diet and higher 
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antioxidant consumption on risk of health outcomes occur are not precisely known, 

evidence suggests that diet may affect levels of subclinical inflammation.2,3 Thus, in 

the following chapter, I further explored inflammation in the context of diet and type 

2 diabetes.

Markers of inflammation and risk of type 2 diabetes

A large portion of the work in chapter 3 focuses on serum uric acid, the end product 

of purine metabolism in humans and a biomarker associated with inflammation.4–6 

High levels of serum uric acid are associated with risk of cardiometabolic disease, 

but the precise underlying pathways have remained largely undetermined thus far. 

In chapter 3.1, I further investigated serum uric acid as a risk indicator for type 2 

diabetes. I provide evidence that a higher serum uric acid level is associated with risk 

of prediabetes, specifically among women, but not with risk of type 2 diabetes among 

individuals with established prediabetes. This may indicate that the strength of the 

association between serum uric acid and risk of type 2 diabetes differs according to 

the degree of which disturbances of glucose metabolism are already present. In other 

words, high levels of serum uric acid may play a role in early-phase mechanisms rather 

than late-phase mechanisms in the development of insulin resistance and eventual 

type 2 diabetes. However, the role of serum uric acid in disease risk prediction may 

not only be limited to early disease. In chapter 3.2, I demonstrate that sex and type 2 

diabetes status modify the association between serum uric acid levels and both fatal 

and non-fatal cardiovascular events. In this study, serum uric acid was most strongly 

associated with all-cause mortality and cardiovascular events specifically among dia-

betic women, suggesting that different cardiovascular management strategies may be 

warranted among women and men, and individuals with and without type 2 diabetes, 

with regards to high serum uric acid levels. This study also highlights the potential of 

uric acid as a risk biomarker in advanced disease. In chapter 3.3, I further expanded 

upon the role of diet with regards to inflammation, and provide evidence on how 

inflammation may mediate the effect of coffee consumption on type 2 diabetes risk. 

First, I confirmed the findings of previous studies which have suggested an association 

between coffee consumption and type 2 diabetes risk by replicating this association 

among over 150,000 participants two large population-based cohorts, the Rotterdam 

Study and the United Kingdom (UK) Biobank. Subsequently, I provide evidence that 

this association is mediated by changes in C-reactive protein (CRP) levels induced by 

coffee. However, the proportion of the effect of coffee consumption on type 2 diabetes 

risk that was mediated by CRP levels was relatively small. This indicates that other fac-

tors than inflammation likely also play a prominent mediating role in the association 

between dietary factors and type 2 diabetes risk. One such factor, also closely related 

to inflammation, is adiposity.7 Therefore, I also explored determinants of adiposity as 
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well as more general measures of body composition in the context of diet, inflamma-

tion and type 2 diabetes.

Determinants of body composition

This chapter is centered around body composition, an anthropometric concept which 

refers to the relative amounts and distribution of fat and fat-free tissue in the human 

body and provides a more detailed picture of adiposity compared to that which can 

be obtained using traditional anthropometric methods such as body mass index (BMI) 

or waist-to-hip ratio. In chapter 4.1, I investigated dietary antioxidant consumption 

in relation to repeatedly measured body composition assessed using dual X-ray ab-

sorptiometry among 4,595 participants of the Rotterdam Study. I found that higher 

dietary antioxidant consumption was associated with higher fat-free mass index, 

lower android-to-gynoid fat ratio, and lower body fat percentage. Considering the ben-

eficial association with more fat-free mass, I additionally investigated whether dietary 

antioxidant consumption was associated with hand grip strength and prevalence of 

sarcopenia but found no association with relation to these outcomes. These findings 

suggest that dietary intake of antioxidants may have favorable effects on overall body 

composition among the middle-aged and elderly. They also underline the notion that 

higher antioxidant consumption potentially has diverse beneficial health effects, as 

I also demonstrated an inverse association between dietary antioxidant consump-

tion and risk of type 2 diabetes in chapter 2.1. Finally, in chapter 4.2, I report that 

consumption of dietary advanced glycation end-products, molecular compounds that 

may contribute to inflammation, could have detrimental effects on body composition: 

higher consumption of one such compound was associated with higher fat mass in-

dex, fat-free mass index, android-to-gynoid fat ratio, BMI and body fat percentage. This 

provides further evidence supporting the putative role of diet-induced inflammation 

in the development of adiposity, considering advanced glycation end-products can 

induce inflammation through interacting with their shared receptor.8

Methodological considerations

All of the studies contained in this thesis were, at least in part, performed within the 

framework of the Rotterdam Study, a population-based closed cohort study involving 

inhabitants from the Ommoord district in the city of Rotterdam, the Netherlands. 

The Rotterdam Study was initiated in 1990 with the aim of studying determinants 

of neurologic, cardiovascular, locomotor and ophthalmologic diseases among elderly 

individuals.9 In later years a wealth of information on other potential determinants of 

disease and mortality was collected among almost 15,000 individuals. Participants from 

the original cohort are still being followed up today.10 Several of the studies presented 

here were also performed using data from the UK Biobank, another population-based 
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cohort currently under investigation in 22 research centers across England, Scotland 

and Wales. The UK Biobank includes over half a million individuals from a diverse age 

range (37-73 years) who volunteered to participate. Follow-up of these participants 

started in 2006. Several considerations should be taken into account when interpret-

ing the findings from these studies. These relate to the observational nature of these 

studies and concomitant types of bias, potential issues regarding measurement error 

in the variables of interest and the representativeness of the study populations. I will 

address each of these factors in the following sections.

Temporality and causality in observational study design

Prospective cohort studies are generally well-suited for identifying determinants 

of relatively commonly occurring diseases or endpoints. Such studies also offer the 

advantage that they provide information on the temporal relation between exposure 

and outcome. In prospective cohort studies, assessment of exposure is performed 

before the outcome of interest occurs, and therefore systematic error stemming from 

selective recall or biased exposure ascertainment is largely avoided. Temporality is 

also one of Bradford Hill’s criteria for causality.11 While directly inferring causality 

from any epidemiological study is not possible, demonstrating a temporal relation 

between exposure and outcome (i.e. exposure preceding the outcome) still provides 

useful additional information in determining whether an observed association might 

be causal. The argument for causality becomes even stronger if it can be demonstrated 

that exposure not only affects risk of the outcome at one given point in time, but 

also throughout multiple measurements separated in time. The prospective design 

of the Rotterdam Study also allowed me to incorporate repeated measurements of 

the outcomes of interest, notably body composition, in some of the studies presented 

here. In this way, I was able to demonstrate that, for example, dietary consumption 

of antioxidants is associated with changes in body composition measured repeatedly 

across time rather than at a single time point (chapter 4.1). However, it should be 

emphasized that temporality alone does not prove causality. For instance, according 

to the aforementioned Bradford Hill criteria for causality, other factors should also 

be considered, including (but not limited to) whether there is evidence for a dose-

response relationship between exposure and outcome and whether the association 

is reproducible.11 Nevertheless, repeated outcome assessment provides a more robust 

argument to hypothesize that higher antioxidant consumption is causally associated 

with body composition, because the longitudinal design largely eliminates the pos-

sibility of reverse causation. Aside from this, a longitudinal design can also be used to 

investigate whether the strength of the association between exposure and outcome 

varies over time; in other words, whether interaction exists between follow-up time 

and levels of exposure on risk of the outcome under study. For example, I observed 
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this effect when investigating dietary antioxidant consumption in relation to hand 

grip strength, indicating that antioxidant consumption modifies the rate at which 

hand grip strength evolves over time (chapter 4.1). This corroborates the notion that 

a given association between an exposure and outcome which were both measured 

at a single point in time may provide incomplete information, and emphasizes the 

general importance of studies that consider repeated measurements. Ideally, repeated 

measurements of the outcome under study should also be paired with repeated assess-

ment of exposure. In this way, it would also be possible to capture the time-varying 

nature of a given exposure, which seems especially pertinent with regards to diet be-

cause diets may evolve over longer periods of time within individuals. Unfortunately, 

repeated assessment of exposure was generally not available for the purposes of the 

studies presented here.

Determinants of internal validity

Arguably, the most important determinant of the accuracy of any study is the degree 

to which its conclusions are valid. In epidemiology, a distinction is made between 

internal and external validity. A discussion on external validity will be provided fur-

ther below. In this section, I will focus on determinants of internal validity. A study 

is internally valid if the reported measures of association are free of systematic error. 

Such systematic error, or bias, could arise from different sources in observational 

studies such as the Rotterdam Study and the UK Biobank.

The first of these potential sources of systematic error is selection bias, defined as a 

type of bias that occurs when the relation between exposure and outcome is different 

for study participants compared to all those who should have been theoretically eli-

gible to participate.12 Selection bias should be distinguished from sampling bias, the 

phenomenon where participants who are enrolled into a study are in some way differ-

ent from all individuals in the source population these participants are being sampled 

from. This occurs when certain characteristics (for instance, overall level of health) 

affect likelihood of participation in the study, and thus affect the representativeness 

of the sample compared to the source population. Such selective participation at 

baseline will not threaten internal validity in and of itself: participants with differ-

ent levels of exposure can still be compared within those who opted to participate, 

even if the exposure distribution or the frequency distribution of common causes 

of exposure and outcome is different in the underlying source population. In this 

situation, the resulting effect estimates will not be biased to a large degree, as has also 

been demonstrated empirically for other cohorts.13–16 However, sampling bias may 

limit the generalizability of a study, as will be discussed further below. In contrast, 

selection bias occurs when exposure and outcome are both associated with propensity 
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to enter the study or remain under follow-up. For instance, in our studies which relate 

aspects of the diet to repeated measurements of body composition (chapters 4.1-4.2), 

severely obese individuals could not undergo DXA measurements because they exceed 

the surface area limitations of the device. In addition, it is conceivable that diet qual-

ity may affect willingness or ability to undergo future DXA measurements through 

pathways not directly related to obesity, for instance through affecting risk of certain 

comorbidities. In this situation, exposure and outcome share a common effect: pro-

pensity to undergo a body composition measurement. When this common effect, or a 

consequence of this common effect, is conditioned upon in data analysis (that is, only 

individuals for whom DXA measurements were available are analyzed), the resulting 

measures of association will be biased, as previously outlined in the framework pro-

posed by Hernán.17 A generalization of this concept is presented in Figure 5.1.1. From 

this perspective, the concept of selection bias can be regarded as a generalization of 

the classic Berksonian bias described many decades ago.18 This effect could also have 

occurred in our research relating to uric acid as a determinant of type 2 diabetes risk 

(chapters 3.1, 3.2). Very high serum uric acid levels may indicate a general level of 

suboptimal health. It could be hypothesized that individuals with higher serum uric 

acid have a higher propensity to experience mortality or withdraw from follow-up 

before developing any of the outcomes of interest through phenomena unrelated to 

the development of type 2 diabetes. Type 2 diabetes itself, or its prodromal stages, 

may also influence this propensity. Therefore, some degree of selection bias could 

have occurred in these studies.

Figure 5.1.1. An exposure and outcome which share a common effect will be conditionally as-
sociated within levels of this common effect or a consequence of this common effect. Arrows 
indicate causal effects. Dashed lines indicate possible conditioning (adapted from Hernán et al., 
A Structural Approach to Selection Bias, Epidemiology, 2004; 15: 615–625; figures 3 and 4).
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The second potential source of bias I will discuss here is confounding. Confounding 

occurs when the association between exposure and outcome is distorted by a factor 

which is associated with the exposure under study, is an extraneous risk factor for 

the outcome of interest, but is not itself affected by exposure or disease.12 This distor-

tion is of special concern in observational studies, where exposure assignment is not 

randomized. Fortunately, the wide range of covariates that were measured in both 

the Rotterdam Study and the UK Biobank allowed us to adjust for many confounding 

factors in our analyses. The relatively large number of participants in both population-

based studies also allowed us to perform stratified analyses in most cases, enabling us 

to not only adjust for confounders but also to explore effect modification. Adjusting 

for confounding factors is especially relevant when investigating (aspects of) diet as 

an exposure, which tends to be determined by an overall level of health consciousness 

which is impossible to measure directly and must be approximated with multiple 

variables. Thus, I commonly adjusted for factors such as physical activity, level of 

education, adherence to dietary guidelines, smoking habits and drinking behavior 

in the analyses; all of which may affect both diet and the outcomes under study. 

Nonetheless, many other unmeasured factors may be associated with both diet and 

the outcomes of interest. Therefore, residual confounding of the reported measures of 

association in the studies presented here can never fully be ruled out.

Thirdly, inaccuracy in the measurement of any information used in a study may 

result in information bias.19 Such error in measuring a variable is often referred to as 

misclassification, which may be further described as differential or non-differential 

based on whether the measurement error is dependent on the actual values of other 

variables.12 Misclassification of confounding variables may also occur, making prop-

erly controlling for confounding an even more challenging task. I will relate aspects of 

information bias to the techniques that were used to assess diet and body composition 

below.

Measurement of diet

Historically, several methods have been used to measure dietary intake in epidemio-

logical studies. Among these are the 24-hour recall and dietary record methods. Both 

have drawbacks; although the 24-hour recall method is easily applied, it is prone 

to recall and response bias.20 Dietary records usually provide more accurate intake 

data, but place a considerable burden on the participant.20 Another problem with 

this method is that participants tend to deviate from their normal dietary pattern 

knowing that their intake is being actively recorded, thus potentially introducing 

substantial measurement inaccuracy. In this thesis, dietary assessment was performed 

using food frequency questionnaires (FFQs), a refinement of the dietary history 
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method developed by Burke.12,21 FFQs measure habitual intake of foods over a longer 

period of time, can account for seasonal variation in consumption habits and are less 

burdensome to participants compared to dietary records. In addition, our FFQs were 

semiquantitative, meaning that portion sizes were recorded as well as consumption 

frequencies. Although exact consumption of foods cannot be accurately recorded us-

ing this method, for the purposes of examining the effects of dietary exposures FFQs 

are still able to rank participants according to intake satisfactorily.22 Furthermore, 

our FFQs were specifically developed for and validated among Dutch populations.23,24 

However, FFQs are not a perfect measurement instrument. The exact amount of mea-

surement error associated with the use of FFQs is difficult to quantify because there 

is no gold standard available for measuring diet in the preceding year with perfect or 

near-perfect accuracy. However, the FFQs that were used in the studies contained in 

this thesis have shown reasonable correlation with dietary records, circulating bio-

markers (such as fatty acids) and urea excretion samples, indicating that their overall 

level of measurement error is most likely moderate to low.23–25 More importantly, 

since most of our studies are longitudinal and assessment of dietary intake preceded 

measurements of the outcome, measurement error with regards to diet is likely to 

be non-differential: that is, unrelated to the outcome. In this situation, measures of 

association will generally be biased towards the null value.12 Although measurement 

of dietary intake also suffers from the phenomenon that individuals with high intake 

tend to underreport their true intake whereas individuals with low intake tend to 

overreport their intake, which would in general inflate measures of association, the ef-

fect of random measurement error usually predominates and measures of association 

tend to be underestimated.26–28 However, in a number of the studies I performed using 

body composition as an outcome, some degree of differential misclassification cannot 

be ruled out. This is because it has been demonstrated that obese individuals tend to 

underreport intake of specific foods compared to normal-weight individuals, which 

by extension may have impacted our estimation of measures such as antioxidant 

consumption or dietary AGE intake (chapters 2.1, 4.1-4.2).29 In addition, investigating 

aspects of the diet in relation to a given outcome often requires that the confound-

ing effect of total energy intake is taken into account. Several methods can be used 

to do this, among which are including total energy intake in a multivariable model 

together with the exposure of interest (chapter 2.1) and substituting the exposure for 

the residuals of a statistical model where the exposure was regressed on total energy 

intake (chapter 4.1-4.2).30 However, both the exposure and total energy intake may 

have been measured with a degree of error and the two variables may therefore adopt 

part of each other’s effect.28 This phenomenon has been shown to introduce a small 

but measurable level of additional residual confounding to measures of association, 

regardless of the exact method used for total energy adjustment.28 Finally, another 
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potential issue is that different FFQs were used between Rotterdam Study cohorts 

in many of our analyses (chapters 2.1-2.2, 4.1-4.2). This may have introduced some 

additional between-individual variation with regards to food intake resulting from 

measurement inaccuracy.

Measurement of body composition

In chapter 4 of this thesis, I have studied several dietary factors as potential determi-

nants of body composition. Traditional measures of anthropometry which are wholly 

or partially reliant on total body weight, notably BMI, are limited by the fact that 

they are unable to distinguish between different contributors to total body weight. 

For instance, changes in BMI over time could result from changes in either fat mass 

(adipose tissue), fat-free mass (musculoskeletal tissues) or both. Such changes in body 

composition occur especially frequently in older individuals, who comprise a large 

number of Rotterdam Study participants.31 The distinction between fat mass and fat-

free mass is important given that their relative quantities have differential health 

effects.32 In the studies presented here, body composition was assessed by means of 

dual X-ray absorptiometry (DXA) which is able to quantify fat mass and fat-free mass 

separately. This provides important additional insights compared to if only BMI would 

have been used as a measure of body composition. For instance, while I observed that 

higher dietary antioxidant consumption was associated with higher BMI, I was also 

able to demonstrate that this association was driven by higher fat-free mass rather 

than higher fat mass (chapter 4.1). Thus, I concluded that antioxidant consumption 

may have favorable effects on body composition by preserving muscle tissue in the el-

derly, rather than detrimental effects by increasing adiposity. This further highlights 

the notion that BMI alone is an inadequate measure of adiposity. Fat mass can also 

be further compartmentalized into subcutaneous adipose tissue (SAT) and visceral 

adipose tissue (VAT). VAT is hormonally active, and higher quantities of VAT are associ-

ated with increased risk of a wide range of health conditions.33 Although VAT quantity 

can also be approximated with anthropometric measures such as waist-to-hip ratio, 

these traditional measures generally provide inaccurate estimations of VAT.33 Unfor-

tunately, it is also not possible to directly distinguish between SAT and VAT using 

DXA, because DXA only provides two-dimensional images while subcutaneous and 

visceral fat tissue overlap each other in three-dimensional space.34 In theory, VAT can 

be approximated from DXA measurements algorithmically, but this technique was 

not available for the purposes of the studies presented in this thesis.35 However, I 

did incorporate information on the distribution of fat mass in the present studies 

in the form of android-to-gynoid fat ratio. Android fat is located around the trun-

cal region whereas gynoid fat is located around the hips, and these two types of fat 

have differing effects on metabolic parameters.36,37 It has also been demonstrated that 
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android fat mass as estimated by DXA is reasonably correlated with estimations of 

VAT obtained through computed tomography.38 I demonstrated that higher consump-

tion of antioxidants and lower dietary AGE consumption were associated with lower 

android-to-gynoid fat ratio (chapter 4.1, 4.3). This may provide some indication that 

these dietary parameters could affect visceral fat mass.

While DXA provides accurate assessment of body composition as has been demon-

strated in validation studies, it is not a perfect instrument.34 DXA measurements are 

inaccurate in individuals with very high BMI due to inherent surface area limitations 

of the device. In an attempt to mitigate the effects of this measurement error, I 

preemptively excluded morbidly obese individuals from analysis as discussed previ-

ously. Nevertheless, some systematic measurement inaccuracy will have persisted, 

especially among the more obese participants in our remaining study population, 

and could have introduced bias into the reported measures of association.39 However, 

it is unlikely that the accuracy of DXA as a measurement instrument is affected by 

the dietary exposures that were studied. Therefore, in the context of our studies, this 

systematic measurement error will likely have resulted in a relatively limited degree 

of differential misclassification.

On generalization

Having discussed potential threats to the internal validity of the studies in this the-

sis, I will here provide some considerations on external validity, also referred to as 

generalizability. It could be argued that since nearly all of the findings in this thesis 

stem from analyses in population-based cohorts consisting of individuals from a 

delineated geographical location who share certain sociodemographic characteristics, 

generalizing our findings to other populations is not straightforward. For example, 

the vast majority of the participants in the Rotterdam Study is ethnically Dutch and 

elderly, characteristics which may not accurately describe any given population an 

investigator might want to generalize their findings to. In particular, in our research 

relating to antioxidant consumption and risk of type 2 diabetes (chapter 2.1), I report 

that participants included in the statistical analysis were significantly different from 

those participating in the Rotterdam Study cohort but excluded from analysis: those 

analyzed were generally older, less healthy and lower educated. A similar concern 

has also been raised in objection to previous findings from the UK Biobank (chapter 

3.1-3.2), because individuals from this cohort self-selected into participation at a very 

low response rate (approximately 6%) and do therefore not represent an accurate 

probability sample of any particular source population.16,40,41 For instance, it has been 

demonstrated that UK Biobank participants are generally less socio-economically de-

prived and have fewer self-reported health conditions compared to non-participants.42
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As discussed previously, the most important prerequisite of the external validity of a 

study is its internal validity. In this regard, it must be acknowledged that the design 

of both the Rotterdam Study and the UK Biobank is prospective and that participant 

recruitment happened before the exposures and outcomes of interest were assessed. 

In this situation, selective non-participation at baseline will generally not threaten 

internal validity to a large extent. Moreover, especially with regards to the Rotterdam 

Study, the relative homogeneity of a population-based cohort should be regarded as a 

strength rather than a weakness. This is because the internal validity of the conclusions 

drawn from such samples is higher compared to when our study population would be 

a truly random sample of, for example, Dutch citizens. In such a less homogeneous 

sample, the degree of unmeasured confounding would generally be higher and at-

taining universally accurate measurements would be more challenging.12 Comparing 

the relative generalizability of the Rotterdam Study and the UK Biobank, it should 

be noted that the study population of the Rotterdam Study is far more narrowly 

defined, including only individuals from one suburb in the Netherlands whereas the 

UK Biobank includes participants with a diverse age range from all over the United 

Kingdom. This makes findings from the Rotterdam Study less generalizable to other 

populations at first glance, but the circumscribed nature of the study population and 

high participation rate (generally about 70% from those invited agreed to participate) 

do ensure that this population is highly similar to the source population it aims to 

represent. Thus, measures of association derived from the Rotterdam Study are likely 

close to the true population values. In contrast, the study population of the UK Bio-

bank is more diverse and thus arguably more representative of the general population 

of the entire United Kingdom, notwithstanding the issues with selective participation 

as described above. However, the higher amount of unmeasured confounding and 

between-individual variability in this study population, as previously mentioned, will 

make generalization of findings from the UK Biobank less straightforward.

While external validity of study results is clearly of great importance, rigorous inter-

nal comparisons should precede generalization, and concerns about sample repre-

sentativeness should take priority only after it has been established that the reported 

measures of association are valid. Indeed, the process of generalization should not 

principally be informed by the degree to which two populations are spatially, tempo-

rally or demographically comparable, but by how strongly, if at all, these differences 

are expected to affect the associations that were observed in the source population. 

The latter consideration also largely depends on prior knowledge about biological 

processes and is not solely dependent on previous findings from epidemiology.12 

Population-based studies with a large sample size, such as the Rotterdam Study and es-

pecially the UK Biobank, also enable investigators to perform well-powered stratified 
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analyses and allow for analyses in predefined subpopulations. While such secondary 

analyses do not directly improve generalizability, they can provide clues as to whether 

differences between subpopulations exist and may thus, at least partially, inform the 

process of generalization. Finally, in clinical epidemiology, decisions on treatment 

regimens are often informed by randomized controlled trials, which generally consist 

of highly selected populations; yet findings from such studies are often widely ap-

plied in populations that do not reflect the trial populations closely. Assuming high 

internal validity, compelling evidence for an association may be widely generalizable 

and does not require high representativeness of a given study population.43,44 How-

ever, no study is universally generalizable without any further consideration and thus 

multiple studies, themselves internally valid and ideally performed in different ho-

mogeneous populations, are generally needed to confirm whether a given association 

applies without exception. Still, for any individual study, it is imperative that efforts 

to reduce potential bias prevail over concerns regarding representativeness. Studies 

should strive to generalize highly internally valid estimates rather than potentially 

compromise internal validity for the sake of sample representativeness.

Implications and future directions

Despite the large amount of research that has been performed on the topic in the past 

decades, the prevalence of obesity and type 2 diabetes has continued to rise and is 

projected to increase even further in the coming years.45–48 This emphasizes the need 

for an even better understanding of the determinants of these metabolic disorders 

and how these could be acted upon from a public health perspective. In the following 

section, I will reflect on the potential implications of the findings from this thesis and 

provide directions for future research.

Oxidative stress, defined as an imbalance between the production of reactive oxygen 

species and the capacity of antioxidant systems, is an important mechanism contrib-

uting to the pathophysiology of insulin resistance as well as eventual type 2 diabetes 

and its complications. 49 Obesity, which is in itself a major contributing factor to 

insulin resistance, is also closely interwoven with oxidative stress and may, in fact, be 

a consequence of increased oxidative stress levels.50–52 Thus, from a disease prevention 

standpoint, lowering oxidative stress levels across populations may have favorable 

effects. This notion has led to the study of antioxidative compounds contained in 

the diet in relation to health.53 The results from this thesis indicate that higher anti-

oxidant consumption is associated with a more favorable body composition profile, 

lower insulin resistance and lower risk of type 2 diabetes (chapters 2.1, 4.1). Con-

versely, our results also indicate that consumption of AGEs, which may contribute to 

inflammation, is associated with a more unfavorable body composition profile and 
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higher probability of type 2 diabetes (chapter 4.2). The observed associations were 

independent of overall diet healthiness, indicating that the putative health effects of 

antioxidant and AGE consumption may occur regardless of established diet prudency. 

With regards to antioxidant consumption, our findings stand in apparent contrast a 

number of randomized trials that have investigated the health effects of antioxidant 

supplementation, and reported no clear benefits.54–56 It could be that the beneficial 

effects of antioxidant supplementation only occur in those who are already deficient, 

or that these effects only become apparent after prolonged periods of supplementa-

tion. Antioxidant supplements generally also contain only several antioxidants in 

high doses and may thus not accurately replicate the antioxidant composition of the 

diet as a whole, in which individual antioxidants may synergize or interact with each 

other.57 Future research into the potential benefits of antioxidant supplementation 

should attempt to address these methodological shortcomings. In this context, more 

research is also needed to increase our understanding of the effects of dietary anti-

oxidants in tissue and how they interact with each other as well as with the body’s 

innate antioxidant systems. With regards to dietary AGEs, our findings are in line with 

previous studies suggesting that lower dietary AGE consumption is associated with 

lower inflammation, lower insulin resistance and lower oxidative stress, suggesting 

that the potential health benefits of dietary AGE restriction might extend beyond the 

prevention of obesity alone.58 However, most of these studies had small sample sizes 

available for analysis and follow-up, if available, was generally limited to short periods 

of time.58 More high-quality research is needed into the health effects of dietary AGEs. 

Ideally, future studies should include direct measurements of food AGE contents as 

opposed to estimations based on database linkage, explicitly account for cooking 

methods in their analyses, investigate hard endpoints as opposed to biomarkers and 

allow for sufficient follow-up or duration of intervention. Nevertheless, the results 

presented here, coupled with those from previous studies, still provide an argument 

to place more emphasis on the role of dietary antioxidant and AGE consumption in 

health policy making. In line with the classic prevention paradigm devised by Rose in 

1985, if diet could be ameliorated even by a small amount across an entire population, 

this could make a significant contribution to the prevention of obesity and type 2 

diabetes on a population level even though the benefits on the individual level would 

be comparatively small.59 Increased attention for the role of foods rich in antioxidants 

and low in AGEs in the design of dietary guidelines could provide an important first 

step towards this goal.

The need to improve diet quality in the general population remains pressing consider-

ing that overall adherence to dietary guidelines in the general population is far from 

optimal. Indeed, in the Rotterdam Study, average adherence to dietary guidelines 
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was previously shown to be only around seven on a fourteen-point scale – a number 

very similar to the average adherence I report in the studies presented in this thesis 

(chapters 2.1, 4.1, 4.2).60 Especially striking with regards to these guidelines is the fact 

that only 12.8% of participants met the recommendation to consume less than 300 

grams of red and processed meat per week.60 Our research into plant versus animal 

based diets indicated that a relatively more plant-based and less animal-based diet 

has substantial health benefits with relation to insulin resistance and type 2 diabetes. 

These health benefits can occur not only by increasing consumption of plant-based 

foods, but also by decreasing consumption of meat and other animal-based foods. The 

low adherence to the Dutch meat consumption guideline indicates that there is still 

substantial room for improvement from a public health perspective in this regard. 

Substituting animal-based with plant-based foods will likely also contribute to higher 

antioxidant consumption, considering that fruits, vegetables and nuts are generally 

rich in antioxidants.1 Similarly, it is plausible that this substitution would also lead to 

lower AGE consumption, considering that animal-based products high in fat and pro-

tein (notably beef, cheese, poultry, pork, fish and eggs) are generally rich in AGEs and 

especially prone to additional AGE formation when broiled, fried or roasted.61,62 This 

provides additional rationale for modifying the diet to contain a higher proportion of 

plant-based foods. Substantial reductions in dietary AGE content can also be achieved 

by heating food for shorter periods of time, heating food at lower temperatures, using 

moist heat (boiling, poaching, steaming) instead of dry heat when preparing food and 

using margarine or oil as cooking fat as opposed to butter.62 This implies that inform-

ing the public not only about consuming a more healthy plant-based, antioxidant-rich 

diet, but also about the detrimental effects of dry heating foods and encouraging the 

use of alternative cooking procedures, may potentially contribute to improving diet 

quality and the prevention of obesity and type 2 diabetes in the general population.

Given that composition of the diet may affect the aforementioned health outcomes 

through modulating systemic inflammation, an important subsequent step is to iden-

tify which inflammatory compounds are involved in this process. This might not only 

increase our understanding of the link between diet and health outcomes, but could 

also aid risk stratification in clinical practice and potentially inform clinical man-

agement decisions with regards to cardiometabolic disease. In this thesis, one of the 

inflammatory biomarkers I focused on was serum uric acid. It has been demonstrated 

that elevated serum uric acid is associated with higher levels of a large number of 

inflammatory markers, notably CRP, interleukin 6 and tumor necrosis factor alpha.4–6 

In this thesis, I demonstrated that higher serum uric acid is associated with higher 

risk of a wide range of cardiovascular events, as well as increased risk of all-cause mor-

tality (chapter 3.3). These associations were particularly pronounced among women 
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and among those with established type 2 diabetes. This indicates that serum uric 

acid may have potential as a clinical biomarker which may inform cardiovascular risk 

assessment. I also demonstrated that higher serum acid is associated with prediabetes 

among healthy individuals, but not with risk of type 2 diabetes among those with pre-

diabetes (chapter 3.1). Especially striking in light of the previously discussed findings 

is that this association was also found to be strongest among women. Likewise, previ-

ous literature has also reported marked differences in the strength of the association 

between serum uric acid and cardiovascular outcomes as well as insulin resistance and 

type 2 diabetes.63–66 However, the biological etiology of these sex differences remains 

unclear. This highlights the need for future studies to investigate what causes the 

excess cardiometabolic disease risk imposed by hyperuricemia, or by the metabolic 

state that hyperuricemia represents, among women specifically. No consensus has 

been reached on whether high serum uric acid merely reflects an inflammatory state 

or acts as a causative agent for inflammation.4 However, increasing evidence supports 

the hypothesis that uric acid may play a role in inducing inflammation by activating 

pro-inflammatory pathways, and that uric acid itself exhibits pro-oxidative proper-

ties under certain circumstances.5,67,68 This notion is supported by previous studies 

which have suggested that administration of xanthine oxidase inhibitors, a class 

of pharmacologic agents that lower uric acid levels, could potentially play a role in 

lowering cardiovascular risk.69–71 A recent study also provided evidence that low-dose 

colchicine, traditionally used to mitigate inflammation resulting from deposition of 

uric acid crystals, may have a place in the prevention of cardiovascular events because 

of its anti-inflammatory properties.72 However, these previous studies generally did 

not focus on sex differences and did not examine type 2 diabetes patients, specifically. 

Considering our findings, further studies are warranted to investigate whether women 

and individuals with type 2 diabetes would indeed benefit particularly strongly from 

such pharmacologic prevention approaches.

Aside from serum uric acid, a marker which may promote inflammation, I have also 

investigated other biomarkers more directly involved in the inflammatory response, 

for example CRP, in relation to diet and health outcomes. This work expand upon 

previous studies which have reported associations between higher coffee consump-

tion and lower risk of type 2 diabetes by demonstrating that this association is partly 

mediated by coffee-induced changes in biomarkers related to inflammation, notably 

C-reactive protein and adiponectin (chapter 3.2).73–75 However, it remains unclear 

whether this mediation occurs due to a direct effect of these biomarkers or second-

arily to more complex underlying pathways that are only partially reflected by the 

studied biomarkers. The latter appears more plausible, given the large amount of 

metabolic and inflammatory factors coffee is known to be associated with.76 More-
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over, the fraction of the effect that was mediated by the biomarkers, although sta-

tistically significant, was relatively small. This indicates that the beneficial effects of 

coffee consumption on the pathophysiology of type 2 diabetes are likely to be highly 

multifactorial, and that coffee-induced changes in the comparatively few markers of 

inflammation that I investigated might only represent part of a putative causal effect 

of coffee consumption on risk of type 2 diabetes. Further research is needed to unravel 

what other factors play a role in this association.

In summary, the findings from this thesis provide further insights into the complex 

relationship between diet, inflammation, body composition and type 2 diabetes. I 

provide evidence that consumption of antioxidants, preferably in the context of a diet 

relatively rich in plant-based foods, may have beneficial effects on risk of obesity and 

type 2 diabetes. I also explored the role of inflammation in the context of diet and 

adverse health outcomes, and suggest that serum levels of uric acid are associated 

with cardiovascular disease and type 2 diabetes. Future research may provide further 

grounds to adapt these findings to dietary guidelines and recommendations for clini-

cal practice.
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Summary

Summary

Type 2 diabetes remains a growing public health concern. This emphasizes the need 

for a better understanding of its determinants and how these are related to each other. 

One of the primary determinants of type 2 diabetes is composition of the diet. The 

biological pathways through which diet exerts is effects on health are numerous and 

complex. For instance, diet may affect body composition, in other words the absolute 

and relative quantities as well as the distribution of fat mass and fat-free mass, and 

thereby modulate disease risk. Previous research has also put forward the notion that 

composition of the diet may induce or mitigate a state of chronic low-grade inflam-

mation. This inflammation is in itself closely associated with the pathophysiology of 

adiposity and, through multiple pathways related or unrelated to obesity, with risk of 

type 2 diabetes. Considering the high prevalence of type 2 diabetes and the severity 

of its complications, further insight into how these factors affect type 2 diabetes risk 

is of great importance.

In chapter 1, I offer a general introduction to the topics at hand as well a brief over-

view of the studies that form the basis of this thesis. In chapter 2, studies on dietary 

determinants of type 2 diabetes are described. Specifically, in chapter 2.1, I present 

our research on total dietary antioxidant capacity in relation to insulin resistance 

over time, risk of prediabetes and risk of type 2 diabetes. In this study, I found that 

higher dietary antioxidant consumption is associated with lower insulin resistance 

and lower risk of developing type 2 diabetes, underlining the presumed beneficial 

effects of antioxidant consumption. In chapter 2.2, I report how a relatively more 

plant-based diet, compared to a more animal-based diet, is related to these same end-

points. In this study, a plant-based diet index was constructed where a higher score 

indicates a higher consumption of plant-based products and a lower consumption of 

animal-based products. I report that a more plant-based diet is associated with lower 

insulin resistance and lower risk of prediabetes and type 2 diabetes. These findings 

strengthen dietary guidelines that recommend preferential intake of plant-based 

foods, and indicate that plant-based diets may exert health-promoting effects even if 

they are not strictly vegan or vegetarian.

The studies in chapter 3 are centered around markers of inflammation and their rela-

tion to risk of type 2 diabetes and cardiovascular disease. In chapter 3.1, I report that 

a higher serum level of uric acid, a marker associated with inflammatory processes, 

is associated with higher risk of prediabetes, specifically among women, but not with 

risk of type 2 diabetes. This underlines the potential role of uric acid as a determinant 

of the preliminary stages of type 2 diabetes. In chapter 3.2, I demonstrate that uric acid 



Chapter 6

228

may also serve a role as potential risk marker for cardiovascular disease. Specifically, I 

found that higher serum uric acid is associated with higher risk of fatal and non-fatal 

cardiovascular events. These associations were also especially pronounced among 

women, mainly among those with established type 2 diabetes. Further research is 

warranted to investigate whether serum uric acid is causally associated with these 

outcomes, and whether serum uric acid could inform clinical management decisions 

in this regard. Finally, in the research described in chapter 3.3, I confirm previous 

studies that have found a protective effect of coffee consumption on risk of type 2 

diabetes. I also report, for the first time, that this association appears to be medi-

ated by changes in serum levels of C-reactive protein, a marker of inflammation. This 

indicates that the beneficial effects of coffee consumption on risk of type 2 diabetes 

may occur in part due to mitigation of systemic inflammation by coffee consumption.

In the studies contained in chapter 4, I aimed to investigate determinants of body 

composition. In chapter 4.1, I report that dietary consumption of antioxidants is as-

sociated with favorable changes in body composition over time, providing further 

evidence for the putative beneficial health effects of antioxidant consumption. In 

chapter 4.2, I describe our research on dietary advanced glycation end-products, com-

pounds with inflammatory potential that are formed when food is processed with 

high temperatures under low-moisture circumstances, in relation to body composi-

tion. Higher consumption of one of these compounds, carboxyethyl-lysine, was associ-

ated with detrimental changes in body composition over time. This places emphasis 

on the influence that cooking methods may have on the health effects of the diet, and 

further corroborates the notion raised by previous literature that inflammation may 

have adverse effects on body composition.

Finally, in chapter 5, I provide a general overview of the findings presented in this 

thesis paired with a discussion on methodological considerations and the potential 

implications of these findings. Overall, I found that several components of the diet 

may affect risk of obesity and type 2 diabetes through modulating inflammation. 

Among these are consumption of dietary antioxidants and coffee consumption, which 

may mitigate inflammation, as well as advanced glycation end-products, which may 

promote inflammation. The findings from this thesis also strengthen the notion that 

a more plant-based diet may have substantial beneficial health effects. In addition, I 

provide further evidence for the role of uric acid, a marker of inflammation, as a risk 

marker for type 2 diabetes and cardiovascular events in both early and late stages 

of disease. Future research may lead to the adaptation of these findings into dietary 

recommendations and clinical practice guidelines.
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Type 2 diabetes is een nog altijd in frequentie toenemend probleem voor de volksge-

zondheid. Dit benadrukt de noodzaak om de determinanten van deze ziekte beter te 

leren begrijpen, alsmede hoe deze determinanten met elkaar in verband staan. De 

samenstelling van het voedingspatroon is één van de belangrijkste determinanten 

van type 2 diabetes. Echter zijn de biologische mechanismen waarlangs voedings-

componenten hun gezondheidseffecten uitoefenen gecompliceerd en talrijk. Voeding 

heeft bijvoorbeeld invloed op lichaamssamenstelling, met andere woorden de ver-

houding en verdeling van vetmassa en vetvrije massa in het menselijk lichaam, en 

kan via deze weg het risico op ziekten vergroten of verkleinen. Eerder onderzoek 

heeft ook aangetoond dat de samenstelling van het voedingspatroon een bepaalde 

mate van chronische laaggradige ontsteking in het lichaam kan bewerkstelligen of 

deze ontsteking juist kan verminderen. Dergelijke chronische onsteking is op zich-

zelf weer geassocieerd met het ontstaan van overgewicht en, via mechanismen niet 

noodzakelijkerwijs direct gerelateerd aan overgewicht, met een hoger risico op type 2 

diabetes. Gezien de hoge prevalentie van type 2 diabetes en de ernst van de potentiële 

complicaties van deze aandoening is beter inzicht in hoe deze factoren het risico op 

type 2 diabetes beïnvloeden van groot belang.

Hoofdstuk 1 van dit proefschrift bevat een algemene inleiding van het onderwerp in 

kwestie en een overzicht van de studies die samen dit proefschrift vormen. In hoofd-

stuk 2 beschrijf ik de studies waarin wij voedingscomponenten hebben onderzocht in 

relatie tot type 2 diabetes. In het bijzonder bevat hoofdstuk 2.1 mijn onderzoek naar 

het verband tussen de consumptie van antioxidanten en insulineresistentie, risico 

op prediabetes en risico op type 2 diabetes. Aan de hand van de resultaten van deze 

studie concludeer ik dat een hogere consumptie van antioxidanten geassocieerd is 

met lagere insulineresistentie en een lager risico op type 2 diabetes. Verder beschrijf 

ik in hoofdstuk 2.2 hoe wij de invloed van een voedingspatroon rijk aan plantaardige 

producten en arm aan dierlijke producten hebben onderzocht in relatie tot de eerder 

genoemde eindpunten. In dit onderzoek concludeer ik dat een meer plantaardig dieet 

verband houdt met lagere insulineresistentie en een lager risico op zowel prediabetes 

als type 2 diabetes. Deze bevindingen bieden verdere ondersteuning aan voedings-

richtlijnen die de consumptie van plantaardige producten aanbevelen. Tevens 

benadrukken deze resultaten dat een hogere consumptie van plantaardige producten 

gunstige effecten heeft op de gezondheid, ook indien het voedingspatroon als geheel 

niet volledig vegetarisch of veganistisch is.
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De studies in hoofdstuk 3 zijn gericht op biologische markers van ontsteking en 

hun verhouding tot risico op type 2 diabetes en cardiovasculaire aandoeningen. In 

hoofdstuk 3.1 beschrijf ik dat een hoog serum urinezuur, een marker geasocieerd 

met onstekingsprocessen, in verband staat met een hoger risico op prediabetes, met 

name bij vrouwen. In deze studie werd echter geen verband gevonden tussen serum 

urinezuur en risico op type 2 diabetes binnen personen met reeds bestaande predia-

betes. Deze resultaten suggereren dat serum urinezuur een bruikbare marker zou 

kunnen zijn voor de vroege stadia in de ontwikkeling van type 2 diabetes. Daarnaast 

heb ik in de studie beschreven in hoofdstuk 3.2 aangetoond dat hoog serum urinezuur 

geasocieerd is met zowel cardiovasculaire ziekte als cardiovasculaire sterfte, in het 

bijzonder bij vrouwen en bij personen met type 2 diabetes. Verder onderzoek is nood-

zakelijk om vast te stellen of het hier een causaal verband betreft en om te bepalen 

of serum urinezuur met dit oogmerk een rol zou kunnen hebben in de klinische 

praktijk. Daarnaast bevestig ik in het onderzoek beschreven in hoofdstuk 3.3 eerdere 

studies die hebben aangetoond dat de consumptie van koffie mogelijk een bescher-

mend effect heeft op het ontstaan van type 2 diabetes. Tevens is dit de eerste studie 

die aantoont dat deze associatie mogelijk gemediëerd wordt door koffie-geïnduceerde 

veranderingen in serum C-reactief proteïne, een biologische marker van ontsteking. 

Dit betekent dat het beschermende effect van koffieconsumptie op het risico van type 

2 diabetes mogelijk tot stand komt door ontstekingsremmende effecten van koffie.

In de studies beschreven in hoofdstuk 4 heb ik mij gericht op determinanten 

van lichaamssamenstelling. In het onderzoek in hoofdstuk 4.1 concludeer ik dat 

consumptie van antioxidanten gunstige effecten heeft op herhaadelijk gemeten 

lichaamssamenstelling, hetgeen de vermeende gezondheidsbevorderende effecten 

van antioxidanten verder ondersteunt. Hoofdstuk 4.2 bevat mijn onderzoek naar het 

verband tussen geavanceerde glycatie-eindproducten, ofwel eiwitten en lipiden die 

ontsteking kunnen bewerkstelligen en gevormd worden wanneer voedsel op hoge 

temperatuur onder droge omstandigheden wordt bereid, en lichaamssamenstelling. 

In deze studie constateer ik dat hogere consumptie van één van deze eindproducten, 

carboxy-ethyl-lysine, geassocieerd is met ongunstige verandering van lichaamssamen-

stelling door de tijd heen. Deze bevinding benadrukt de potentiële invloed van berei-

dingsmethoden op de gezondheidseffecten van voedsel en onderstreept de hypothese 

dat ontsteking veranderingen in lichaamssamenstelling kan bewerkstelligen.

Tot slot bied ik in hoofdstuk 5 een overzicht van de bevindingen van dit proefschrift. 

In dit hoofdstuk behandel ik ook methodologische overwegingen bij het uitgevoerde 

onderzoek en beschrijf ik enkele implicaties van de gerapporteerde bevindingen. 

Over het geheel genomen suggereren de resultaten van dit proefschrift dat meerdere 
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voedingscomponenten het risico op overgewicht en type 2 diabetes kunnen beïnvloe-

den door effecten op onsteking. Het betreft onder andere antioxidanten en koffie, die 

ontsteking kunnen verminderen, maar ook geavanceerde glycatie-eindproducten, die 

ontsteking juist kunnen bevorderen. Deze bevindingen benadrukken ook het gegeven 

dat een voedingspatroon gebaseerd op plantaardige producten aanzienlijke gezond-

heidsbevorderende effecten zou kunnen hebben. Daarnaast bieden deze resultaten 

verder inzicht in de mogelijke rol van serum urinezuur als een biologische marker 

voor type 2 diabetes en cardiovasculaire ziekten. Tezamen met toekomstig onderzoek 

zouden deze bevindingen vertaald kunnen worden naar voedingsrichtlijnen en de 

klinische praktijk.
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Propositions

1.	 Diet may affect metabolic health through modulation of the inflammatory re-

sponse (this thesis).

2.	 Composition of the diet may affect body composition in ways not adequately 

captured by traditional anthropometrics, emphasizing the importance of using 

advanced body composition measurement techniques (this thesis).

3.	 Serum uric acid has potential as a stage-specific risk marker for type 2 diabetes 

and cardiovascular disease (this thesis).

4.	 Consumption of antioxidants in the context of a healthy diet has favorable ef-

fects on body composition and risk of type 2 diabetes (this thesis).

5.	 Better adherence to a more plant-based diet may provide significant benefits to 

population health (this thesis).

6.	 The close relationship between nutrition and health deserves a more prominent 

role in clinical practice.

7.	 Preventive medicine is a key area of responsibility for any physician.

8.	 The mathematical sciences wield their particular language made of digits and 

signs, no less subtle than any other. (Jorge Luis Borges, Palabrería para versos, 1926)

9.	 Science demands that facts not be subordinated to opinions, but that opinion 

be subordinated to facts. (Bertolt Brecht, unpublished version of Leben des Galilei, 

1939)

10.	 The history of science is crosshatched with lines of additive and corrective 

thought. This is how we try to arrive at truth. Truth accumulates. It can be bor-

rowed and paid back. (Don DeLillo, Ratner’s Star, 1976)

11.	 La idea es un jaque a la verdad. (José Ortega y Gasset, La Rebelión de las Masas, 1929)





If I tell you that the city toward which my journey tends is 

discontinuous in space and time, now scattered, now more 

condensed, you must not believe the search for it can stop.

- Italo Calvino, Le Città Invisibili, 1972.




