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Abstract 

Background:  Type 2 diabetes (T2D) is a heterogeneous disease with well-known genetic and environmental risk fac‑
tors contributing to its prevalence. Epigenetic mechanisms related to changes in DNA methylation (DNAm), may also 
contribute to T2D risk, but larger studies are required to discover novel markers, and to confirm existing ones.

Results:  We performed a large meta-analysis of individual epigenome-wide association studies (EWAS) of prevalent 
T2D conducted in four European studies using peripheral blood DNAm. Analysis of differentially methylated regions 
(DMR) was also undertaken, based on the meta-analysis results. We found three novel CpGs associated with prevalent 
T2D in Europeans at cg00144180 (HDAC4), cg16765088 (near SYNM) and cg24704287 (near MIR23A) and confirmed 
three CpGs previously identified (mapping to TXNIP, ABCG1 and CPT1A). We also identified 77 T2D associated DMRs, 
most of them hypomethylated in T2D cases versus controls. In adjusted regressions among diabetic-free participants 
in ALSPAC, we found that all six CpGs identified in the meta-EWAS were associated with white cell-types. We esti‑
mated that these six CpGs captured 11% of the variation in T2D, which was similar to the variation explained by the 
model including only the common risk factors of BMI, sex, age and smoking (R2 = 10.6%).

Conclusions:  This study identifies novel loci associated with T2D in Europeans. We also demonstrate associations 
of the same loci with other traits. Future studies should investigate if our findings are generalizable in non-European 
populations, and potential roles of these epigenetic markers in T2D etiology or in determining long term conse‑
quences of T2D.
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Background
Type 2 diabetes (T2D) is a heterogeneous disease with 
both environmental and genetic factors implicated in 
disease onset and progression [1, 2]. The contribution 
of environmental factors (e.g. diet, physical inactivity, 

smoking and ethnicity) in T2D etiology is well-known 
[3–8]. Recent large Genome Wide Association Studies 
(GWAS) have identified > 400 genetic variants associated 
with T2D that together explain around 15–18% of T2D 
estimated heritability [9, 10]. However, the pathophysi-
ology linking many of these environmental and genetic 
factors with disease onset and progression is less well 
understood. Consequently, there is growing interest in 
understanding the role of epigenetic mechanisms sur-
rounding T2D [7].
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In epidemiological studies, DNA methylation (DNAm) 
is the most widely studied epigenetic mechanism, partly 
due to the fact that it can be measured at scale [11–13]. 
DNAm is a heritable mark associated with regulation 
of gene expression and high-order DNA structure [14]. 
Because DNAm can be modified in response to lifestyle 
and environmental factors [15] and is associated with 
genetic variants [16–18], the study of disease-related 
dysregulation in DNAm could ultimately reveal novel 
mechanisms in the pathophysiology of T2D, provide new 
drug targets, and facilitate the discovery of prognostic 
biomarkers in non-invasive tissues such as peripheral 
blood [15, 19]. Existing evidence demonstrates the asso-
ciation between T2D and DNAm in metabolically rel-
evant tissues [20], and in blood [1, 2, 14, 15, 21]. So far, 
prospective longitudinal studies have discovered up to 
18 blood-based CpG sites associated with future liabil-
ity for T2D [19, 22, 23]. Many of these CpG sites are also 
associated with prevalent T2D [1, 2, 14, 21, 23, 24]. How-
ever, most of the latter studies have been conducted in 
relatively modest sample sizes, rarely using meta-analysis 
to increase sample size and power to detect differential 
methylation. To reveal new loci (which could be informa-
tive of disease onset or progression) and to confirm 
previously reported associations, we conducted a large 
meta-analysis of prevalent T2D using epigenome-wide 
DNAm from blood samples in four European cohorts. 
We then implemented functional analyses to investigate 
possible mechanisms explaining the association between 
identified markers and prevalent T2D.

Results
Study characteristics
Four cohorts carried out independent EWAS and pro-
vided summary statistics for meta-analysis. These were: 
The Avon Longitudinal Study of Parents and Children 
(ALSPAC), The Lothian Birth Cohort of 1936 (LBC1936), 

and two sub-cohorts of the Rotterdam Study (RSIII-1 and 
RS-Bios) (Table 1). Of 3,428 total participants, 340 (10%) 
had diabetes. Individuals with diabetes had on aver-
age higher BMI, fasting glucose (or the hemoglobin A1c 
(HbA1c) in LBC1936), systolic blood-pressure, LDL and 
triglyceride levels compared with controls (Additional 
file 1: Table S2). In most cohorts there was little evidence 
of difference in age, sex and smoking between cases and 
controls. We identified < 5 (< 0.9%), 37 (11.2%), 41 (6.4%) 
and 24 (3.9%) new cases of T2D among 558, 329, 643 and 
612 controls with available follow-up data in ALSPAC, 
LBC1936, RSIII-1, and RS-Bios, respectively. New cases 
were detected after a follow-up period ranging from 
5-years (ALSPAC) to 12-years (LBC1936).

T2D is strongly associated with peripheral blood DNA 
methylation at six CpGs
In the meta-EWAS (model 1, lambda = 1.33), we identi-
fied 58 CpGs associated with T2D at p < 1.0 × 10–5. Six 
associations were at p < 1.3 × 10–7 (Table  2). Associa-
tions between T2D and CpGs cg11024682 (SREBF1) and 
cg18181703 (SOCS3) have been reported previously [22, 
23, 25]. The median absolute difference in effect size 
amongst the top 58 CpGs from the meta-analysis was 
0.8% (range 0.1% to 1.9%) (Fig.  1b), or an absolute dif-
ference in 0.2 SDs of DNAm (range 0.0002 SDs to 0.14 
SDs) between T2D cases and controls (only in ALSPAC). 
Adjustment for BMI (model 2) attenuated associa-
tions detected in the top six CpG sites identified by p 
value (i.e., 67% less significant signals). Only the asso-
ciations at cg19693031 (TXNIP) and cg16765088 (near 
SYNM) remained significant (p < 1.3 × 10–7) in the BMI 
model. We observed that among the CpGs attenuated, 
one was associated with BMI (cg06500161 in ABCG1) 
and another with waist-circumference (cg00574958 in 
CPT1A) in minimally adjusted regressions conducted 
in ALSPAC (see below). Distribution of DNAm by T2D 

Table 1  Baseline characteristics of  participants in  four European cohorts included in  the  meta-analysis of  EWAS 
of prevalent T2D

Continuous variables were described using the mean and SD, and the frequency and percent for categorical variables

SD, standard deviation; BMI, body mass index
a  Mean values of fasting glucose (FG) were not available in LBC1936. Instead, mean levels of the hemoglobin A1c or HbA1c (%) was reported for these participants: 
5.92% (SD = 0.71)

Cohort N N T2D cases (%) Mean age 
in years (SD)

N males (%) Mean FG 
in mmol/L (SD)

Mean BMI in kg/
m2 (SD)

N current 
smokers 
(%)

ALSPAC 1050 48 (4.6) 49.9 (5.4) 405 (38.6) 5.4 (1.1) 26.8 (4.7) 97 (9.2)

LBC1936 915 110 (12.0) 69.6 (0.8) 462 (50.5) NAa 27.8 (4.4) 103 (11.3)

RSIII-1 728 74 (10.2) 59.7 (8.1) 335 (46.0) 5.5 (1.1) 27.5 (4.7) 196 (26.9)

RS-Bios 735 108 (14.7) 67.6 (6.0) 312 (42.4) 5.7 (1.1) 27.7 (4.1) 77 (10.5)

Total 3428 340 61.7 1514 5.5 27.5 473
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status for top six CpGs identified in the meta-analysis is 
presented in the Additional file 1: Figure S1.

We assessed robustness of our findings to interstudy 
heterogeneity using different strategies. First, we looked 
at the I2 statistic, which showed weak heterogeneity with 
I2 < 40% in 4/6 T2D-associated CpG sites in the meta-
analysis. Heterogeneity was high for CpGs in CPT1A and 
ABCG1 (I2 > 70%, p < 0.05) (Table  2). Second, we used a 
random-effect meta-analysis adjusted for same covariates 
as in model 1, finding small changes in the effect esti-
mate compared to the fixed-effect analysis at the T2D-
associated CpGs (absolute change in effect range: 0% to 
21%) (Additional file  1: Table  S4). In total, 4/6 differen-
tially methylated CpGs remained associated with T2D at 
p < 1.3 × 10–7 in the random-effect analysis: cg19693031 
(TXNIP), cg00144180 (HDAC4), cg16765088 (near 
SYNM) and cg24704287 (near MIR23A). Finally, forest-
plots showed consistency in the direction of association 
between studies at our six differentially methylated CpGs 
(see Fig. 2), and the leave-one-out analysis revealed that 
no single study was consistently having a disproportion-
ately large influence in the combined effect at these sites 
(Additional file 1: Figure S2).

DMR analyses
We identified 77 regions associated with T2D based on 
the main meta-analysis (Additional file  1: Table  S5). 
Among these regions, we found an overrepresentation 

for hypomethylated DMRs (n = 55/77 DMRs) in asso-
ciation with T2D. The DMR with the smallest Sidak-
corrected p value overlapping a meta-EWAS signal was 
identified in an intron of CPT1A (estimate = − 0.01, 
Sidak p = 1.11 × 10–9). This DMR showed lower meth-
ylation values in T2D cases compared with controls. In 
addition, several DMRs mapped to loci or included CpGs 
that have been previously associated with prevalent or 
incident T2D: cg21766592 in SLC1A5 [2], cg14476101 in 
PHGDH [23] and PFKB3 [23]. Our findings are direction-
ally consistent with these studies.

Association between DNAm and phenotypic traits 
in ALSPAC at key CpGs identified in EWAS meta‑analysis
T2D-associated CpG sites were also associated (at 
α = 0.05/23 traits analyzed or p < 2.0 × 10–3) with age 
(HDAC4 & SYNM), sex (TXNIP, HDAC4, CPT1A, 
SYNM & ABCG1), categories of glucose tolerance 
(TXNIP, HDAC4, CPT1A & ABCG1), fasting insulin 
and the homeostasis model assessment (HOMA) scores 
(ABCG1), waist-circumference (CPT1A & ABCG1), BMI 
(ABCG1), C-reactive protein (CRP) (ABCG1 & HDAC4), 
triglyceride levels (CPT1A & ABCG1) and HDL levels 
(ABCG1) based on minimally adjusted regressions con-
ducted among diabetes-free participants in ALSPAC 
(Additional file 1: Table S6). All six CpGs from the meta-
analysis were also associated with white cell-types, and 
the CpG in MIR23A was exclusively associated with 

Fig. 1  Manhattan (a) and volcano plot (b) illustrating the association of DNAm in peripheral blood of middle-age and older adults, with prevalent 
T2D from a meta-analysis with four cohorts: ALSPAC, LBC1936, RSIII-1 and RS-Bios (n = 3,428 total; N = 340 T2D cases). Results were adjusted for 
age, sex, SVs, cell counts and smoking. Associations at p < 1.33 × 10–7 are above the horizontal red line in the Manhattan plot. The horizontal blue 
line indicates p < 1.0 × 10–5. The volcano plot shows the distribution of effect sizes against the − log10(p value) for all CpG sites. Associations at 
p < 1.33 × 10–7 are shown in red and those with p < 1.0 × 10–5 are highlighted in blue
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cell-types and not with clinical phenotypes. Associations 
with the traits remained directionally consistent in the 
analysis using DNAm stratified by quartiles (Additional 
file 1: Table S7–Table S12). Overall, we observed that the 
six T2D-associated CpGs from the meta-analysis showed 
directionally concordant associations with fasting glu-
cose, fasting insulin, 2-h glucose and HOMA scores 
among non-diabetic control participants in ALSPAC 
(Table 2, Additional file 1: Table S6).

Odds of T2D in the ALSPAC cohort were calculated for 
the six CpG sites and one DMR identified in the meta-
analysis (Table 3). We observed consistency in the direc-
tion and strength of associations in ALSPAC compared 
to results of the meta-analysis. Using the Nagelkerke’s R2 
statistic, we identified small variation in T2D captured 
by the individual CpG sites (R2 range 1.3% to 5.7%) or by 
CpG sites within the DMR. Combining the six differen-
tially methylated CpG sites, we explained 11% of the total 

Fig. 2  Forest-plots showing results of the meta-EWAS of T2D across four European cohorts for six differentially methylated CpGs identified at 
p < 1.33 × 10–7. For each CpG site we show association estimates (effect-size and 95% confidence interval) of the EWAS conducted by each cohort, 
and the combined estimate using a fixed-effect inverse-variance weighted meta-analysis (diamond at the bottom). Results were adjusted for age, 
sex, SVs, cellular heterogeneity and smoking

Table 3  Odds of T2D for six CpG sites and one DMR identified in the meta-EWAS of T2D

Highlighted in bold are associations with p < 0.05. Associations were conducted in a subsample of ALSPAC (n = 1050, N = 48 T2D cases). Main model was adjusted for 
age, sex, SVs, 6-Houseman cells and smoking, and a second model was additionally adjusted for BMI
a  Variation calculated using the Nagelkerke’s R2 statistic derived from an unadjusted logistic regression

CpG Chr Gene Genomic Feature Main model BMI-adjusted model Variation 
in T2D (%)a

OR 95% CI P OR 95% CI P

cg19693031 1 TXNIP 3′UTR​ 0.93 (0.89,0.98) 1.10E−02 0.94 (0.89,0.99) 3.00E−02 2.0

cg00144180 2 HDAC4 5′UTR​ 1.08 (1.01,1.16) 2.40E−02 1.08 (1.00,1.17) 4.00E−02 2.9

cg00574958 11 CPT1A 5′UTR​ 0.79 (0.62,1.00) 5.13E−02 0.83 (0.65,1.04) 1.10E−01 1.3

cg16765088 15 SYNM Intergenic 0.93 (0.88,0.99) 1.64E−02 0.93 (0.88,0.99) 2.00E−02 3.3

cg24704287 19 MIR23A Intergenic 0.95 (0.89,1.02) 1.57E−01 0.96 (0.89,1.03) 2.20E−01 1.3

cg06500161 21 ABCG1 Body 1.13 (1.06,1.21) 3.77E−04 1.1 (1.03,1.18) 1.00E−02 5.7

DMR 11 CPT1A Intron 0.65 (0.45,0.92) 1.42E−02 0.7 (0.48,1.00) 5.00E−02 1.1
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variation in T2D using ALSPAC data. This was similar in 
LBC1936, where combining the six differentially methyl-
ated CpG sites explained 13.6% of the total variation in 
T2D. For comparison, variation attributed to the com-
bined common risk factors of age, sex, BMI and smoking 
was R2 = 10.6% in ALSPAC and 12.2% in LBC1936. Varia-
tion attributed to these common risk factors and methyl-
ation at six differentially methylated CpG sites combined 
was R2 = 22% in ALSPAC and 21.3% in LBC1936. Adding 
fasting glucose to the predictive model with clinical risk 
factors and CpG sites captured 68% of the variation in 
T2D in ALSPAC. We could not perform the same estima-
tion in LBC1936 due to lack of fasting glucose measures 
and high collinearity between HbA1c, the available glu-
cose trait in this cohort, and T2D.

Pathway enrichment and cross‑tissue comparison of DNAm 
at CpG sites and DMRs associated with T2D
We ran pathway analyses using a total of 80 unique 
CpG sites, including the six T2D-associated CpGs from 
the meta-analysis, and 77 index CpGs with the small-
est p value identified within each DMR identified. After 
applying correction for multiple testing, none of the GO 
terms or KEGG pathways [26] were enriched (Additional 
file 1: Table S13). For the in-silico comparison of DNAm 
across tissues, we observed positive correlations between 
DNAm levels in blood cells and five tissues (r range 0.81 
to 0.97, p < 0.05) at the six identified CpGs in the meta-
analysis (Additional file 1: Table S14), and at the 80 CpG 
sites identified across analyses (Additional file  1: Figure 
S3). In the enrichment analysis using LOLA [27], we did 
not identify regulatory elements overlapping with the 
genomic position of hyper- (n = 23 out of 80) or hypo-
methylated sets (n = 57 out of 80) associated with T2D.

Information from publicly available resources revealed 
different molecular markers associated with some of our 
six differentially methylated CpGs from the meta-anal-
ysis. Using the BIOS QTL browser [28], we identified 
expression quantitative trait methylation sites (eQTMs) 
(at FDR < 0.05) for CpG sites in cg19693031 (TXNIP), 
cg06500161 (ABCG1) and cg00574958 (CPT1A), where 
peripheral blood DNAm was inversely associated with 
gene expression in blood of specific transcripts within 
the same genes (Additional file 1: Table S15). Using data 
from the Genetics of DNAm consortium (GoDMC) 
[29], we found six methylation quantitative trait loci 
(meQTL) in blood (five in cis and one in trans) associated 
with five of our six T2D-associated CpGs in cg19693031 
(TXNIP), cg06500161 (ABCG1), cg00144180 (HDAC4) 
(n = 2 meQTL), cg16765088 (SYNM) and cg24704287 
(MIR23A) (Additional file  1: Table  S16). Using GWAS 
data, we found weak evidence that the trans meQTL 
rs6657798 for TXNIP (p = 3.5 × 10–202) was associated 

with 2-h glucose [30], and that the cis meQTL rs220182 
for ABCG1 (p = 3.5 × 10–202) was associated with the 
homeostasis model assessments for β-cell function 
(HOMA-B) [31] (Fig. 3, Additional file 1: Table S17). For 
the SNP identified in common, the same effect allele had 
opposite effects on DNAm and on the glycemic trait. In 
both cases, associations between SNPs and traits were 
observed with unadjusted association p < 0.05. Addition-
ally, no formal causal analysis or colocalization method 
was applied to establish if an association was present 
between DNAm at the CpGs and the glucose trait due to 
a shared causal variant. While of interest, these findings 
therefore need to be interpreted with caution.

Discussion
Our meta-EWAS of prevalent T2D achieves a sample 
size of more than double that of previous studies [1, 14]. 
Even though the proportion of cases in our study was 
relatively low (10%), it was consistent with the percent 
prevalence of T2D reported in other population-based 
European studies (i.e., 4.6–16% prevalence) [1, 14]. In 
this study, we found that prevalent T2D was associated 
with blood DNAm at six individual CpGs in the EWAS 
and at 77 genomic regions in the DMR analysis, some 
of them mapping to loci or including CpGs identified in 

Fig. 3  Overlap of a cis-meQTL for cg06500161 (ABCG1, SNP 
rs220182) and a trans-meQTL for cg19693031 (TXNIP, SNP rs6657798), 
with a a GWAS SNP for HOMA-B and b a GWAS SNP for 2-h glucose, 
respectively. meQTL were retrieved from the Genetics of DNAm 
consortium (GoDMC, www.godmc​.org.uk/) [29] at p < 10–8 for 
cis-meQTL (SNPs within 1 Mb from CpG position) and at p < 10–14 for 
trans-meQTL (SNPs > 1 Mb or in different chromosomes from CpG 
position). GWAS SNPs for the glycemic traits were retrieved from 
the MAGIC consortium (https​://www.magic​inves​tigat​ors.org/) [30, 
31]. Associations of peripheral blood DNAm with HOMA-B and 2-h 
glucose were estimated using linear regressions adjusted for age and 
sex, when appropriate, in two subsamples of diabetes-free individuals 
in ALSPAC (n = 622 for HOMA-B (only females) and n = 1002 for 2-h 
glucose)

http://www.godmc.org.uk/
https://www.magicinvestigators.org/
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previous studies of prevalent or incident T2D. For CpGs 
that have been reported in other studies that were not 
replicated in our meta-analysis, we found that hyper-
methylation in cg11024682 (SREBF1) and hypometh-
ylation in cg11376147 (SLC43A1), cg18181703 (SOCS3) 
and cg14476101 (PHGDH), were nominally associated 
with T2D cases versus controls, in agreement with the 
original studies [22, 23, 25]. Additional analyses in the 
ALSPAC cohort revealed that most of our top six sites 
from the meta-analysis were also associated with cat-
egories of glucose tolerance, age, sex, white cell-types 
and other clinical phenotypes. Finally, we interrogated 
publicly available databases to investigate the potential 
functional role of the CpG sites identified. We observed 
strong correlation between DNAm levels in blood and in 
other tissues of relevance for T2D. In addition, we found 
meQTL, eQTMs and GWAS SNPs for HOMA-B and 
2-h glucose related to some of the CpGs detected in the 
meta-analysis.

For the strongest meta-EWAs association at TXNIP, 
T2D cases had on average 1.6% lower DNAm levels com-
pared with controls, which represents approximately 
3.2% of the overall variance in methylation observed 
at this site (TXNIP DNAm β-values range: 50–100%). 
Direction of the association at TXNIP was consist-
ent with previous findings [2, 14, 22–25], but the effect 
size we identified was slightly smaller than previously 
reported (effect range between − 3 and − 5%) [14, 23–
25]. In follow-up analyses in ALSPAC, we demonstrated 
that per 1% increase in methylation at TXNIP was associ-
ated with 6% lower risk of prevalent T2D. This effect was 
similar to that reported by Chambers et al.[22] for inci-
dent T2D. Furthermore, we observed that with respect to 
controls, participants with diabetes in ALSPAC had 1.2% 
lower DNAm at TXNIP compared to those with predia-
betes. Overall, our results at TXNIP are consistent with 
previous studies suggesting that hypomethylation of this 
CpG could be a good prognostic marker for T2D as well 
as indicating prevalent disease [1, 14].

DNAm at cg06500161 annotated at ABCG1 was associ-
ated with T2D but not independently of BMI. DNAm at 
ABCG1 was higher in T2D cases compared with controls, 
which is consistent with previous evidence at this locus 
in blood [2, 19, 22], and in adipose tissue of monozygotic 
twins discordant for T2D [19, 23]. Among diabetes-free 
participants in ALSPAC, ABCG1 was positively asso-
ciated with BMI, waist-circumference, fasting insulin, 
HOMA scores, CRP and triglyceride levels, but negatively 
associated with HDL levels. Direction of association of 
ABCG1 methylation with anthropometric [32], glycemic 
traits [19, 33–36], HDL [34] and triglyceride levels [19, 
34, 35] was consistent with previous findings in blood. 
Thus, differences in ABCG1 methylation may appear 

before T2D, but due to our cross-sectional study design 
we can’t confirm true direction of this association. The 
lookup in the BIOS QTL browser revealed that DNAm 
at ABCG1 was inversely correlated with gene expres-
sion of the same gene, and this finding agrees with pre-
vious observations in blood [22, 34–36] and in primary 
target tissues for T2D [22], suggesting that expression 
of ABCG1 may be under epigenetic control. No genetic 
variants predisposing for T2D have been previously 
reported at ABCG1 in GWAS studies [37]. However, 
Hidalgo et  al.[33] previously identified an association 
between a cis meQTL for ABCG1 and fasting insulin and 
the homeostasis model assessment for insulin resistance 
(HOMA-IR). In our study, we reported a nominal asso-
ciation between a cis meQTL for ABCG1 retrieved from 
GoDMC, and HOMA-B at GWAS p value < 0.05 (unad-
justed p value).

Lower DNAm at cg00574958 in CPT1A was associ-
ated with T2D, and this association also appeared to be 
dependent on BMI. Analyses in ALSPAC showed that 
per 1% increase in methylation at CPT1A was weakly 
associated with 21% lower risk of T2D. Direction of the 
association at CPT1A methylation was consistent with 
previous findings at this locus [23, 24]. We also showed 
that CPT1A methylation was inversely associated with 
waist-circumference and triglycerides levels in the con-
tinuous analysis, and with BMI, fasting insulin, HOMA 
scores and CRP in the stratified analysis by quartiles of 
DNAm using control samples in ALSPAC. Associa-
tions of CPT1A with anthropometric traits [32, 38] and 
triglyceride levels [39] were directionally consistent 
with previous studies in blood. Other associations with 
cg00574958 in CPT1A have been identified in EWAS of 
fasting blood lipids [39–41], adiponectin [42], the meta-
bolic syndrome[43], and cardiovascular disease (CVD) 
risk [44]. Using the BIOS QTL browser, we identified an 
eQTM in blood associated with cg00574958 in CPT1A, 
indicating that DNAm at this site was inversely associ-
ated with expression of a transcript in the same gene, in 
line with findings by Irvin et al.[39]. CPT1A encodes for 
the carnitine palmitoyl-transferase 1A enzyme, a pro-
tein essential in the oxidative metabolism of fatty acids 
in the mitochondrion, and in the secretion of glucagon 
in pancreatic islets [45]. Some evidence of a causal effect 
of DNAm at CPT1A on T2D was recently demonstrated 
by Cardona et  al.[23] using a Mendelian randomization 
analysis. However, further evidence is required to vali-
date this result.

We reported three novel CpG sites associated with 
T2D: cg00144180 (HDAC4), and two intergenic CpGs 
in cg16765088 (near SYNM) and cg24704287 (near the 
micro RNA MIR23A). However, the role of these CpG 
sites in T2D is yet unknown. In disease-free individuals 
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in ALSPAC, these CpGs were also associated with CRP 
(HDAC4), and with cell-types (HDAC4, MIR23A and 
SYNM), suggesting a potential role of DNAm at these 
sites in T2D through inflammatory pathways. The CpG 
cg24704287 near MIR23A was exclusively associated 
with cell-types, indicating that this site may be spe-
cifically tagging differences in cell composition between 
T2D cases and controls. In addition, other EWAS have 
identified an association between HDAC4 and BMI [38], 
and between cg24704287 (MIR23A) and levels of the sol-
uble Tumor Necrosis Factor Receptor-2 [46] and smok-
ing [47]. Histone deacetylases (HDACs) are enzymes that 
catalyze the removal of acetyl groups from lysine residues 
of non-histone and histone proteins, facilitating gene 
transcription [48]. Animal models have shown that over-
expression of HDAC4 causes reduction of β-cell mass, 
and ongoing clinical trials are evaluating the utility of 
inhibitors and activators of HDACs in T2D therapy [48]. 
We also observed weaker associations between T2D and 
cg11024682 (SREBF1), cg18181703 (SOCS3), cg14476101 
(PHGDH) and cg11376147 (SLC43A1) at p values in the 
order of 10–5, helping to confirm previous reports of 
these CpG sites in studies of incident and prevalent T2D 
[22, 23].

The enrichment analysis did not uncover any poten-
tial novel pathways or gene regulatory elements related 
with T2D-associated hypo- or hypermethylated sets. An 
in-silico analysis demonstrated high correlation between 
methylation in blood and five internal target tissues 
based on CpGs identified in the meta-EWAS (n = 6 sites) 
and the DMR analysis (n = 77 index CpGs). Therefore, it 
is unclear whether differences in DNA methylation iden-
tified from blood cells are biologically relevant to T2D 
disease processes, but patterns in blood do appear to 
represent those seen in disease relevant tissues. Overall, 
CpG sites identified offer utility in improving our under-
standing of underlying disease mechanisms. Further 
validation of these sites in prospective studies will exam-
ine them as predictive markers of incident disease, or of 
adverse complications of T2D.

Results of the model with additional adjustment for 
BMI revealed a decrease in the effect size and increase in 
model p value for most of the associations identified in 
the meta-analysis, but not for associations at cg19693031 
(TXNIP) and cg16765088 (near SYNM). Thus, for the 
remaining CpGs, the association with T2D may have 
been influenced by underlying differences in BMI 
between T2D cases and controls. By using a reverse anal-
ysis, we were able to estimate the proportion of variation 
in T2D explained by CpGs in the meta-analysis, which 
was similar in magnitude to the variation attributed to 
the common risk factor of age, sex, BMI & smoking, but 
much lower than that considering fasting glucose as a 

predictor. In combination, CpGs and clinical risk factors 
explained up to 68% of the variation in T2D. However, 
these results should be cautiously interpreted as variation 
in T2D attributed to the discovered CpG sites was esti-
mated in two cohorts included within the meta-analysis.

Strengths and limitations
Our study benefits from the large sample-size included 
in the meta-analysis, which allowed us to confirm previ-
ous associations with T2D and to report novel findings. 
By establishing an analysis plan shared across cohorts, 
we were able to minimize potential sources of techni-
cal noise in the data. In addition, we conducted differ-
ent exploratory methods to test for robustness of our 
findings to inter-study heterogeneity and reported the 
association of our top signals with metabolic and anthro-
pometric traits of relevance in T2D. Furthermore, the use 
of blood as the source of DNAm markers allowed us to 
identify novel non-invasive signatures of prevalent dis-
ease. Future research should explore the application of 
these signals in T2D incidence, prognosis and monitoring 
of complications, irrespective of their role in T2D etiol-
ogy [49]. One of the limitations of this study was the use 
of a cross-sectional study design, meaning that we cannot 
establish if observed variation in methylation occurred as 
a cause or a consequence of T2D. Thus, further studies 
using a longitudinal approach to assess incident T2D, or 
implementing causal inference methods such as Mende-
lian randomization [50–52], are required to establish true 
direction of causality in the association between DNAm 
and T2D. Another limitation was the use of samples 
included in the main analysis to estimate proportion of 
variation in T2D explained by the identified CpGs, which 
could give biased results. Ideally, T2D variation should 
be estimated in an independent sample using a weighted 
methylation score to assess in combination, the predic-
tive ability of the identified markers. Finally, because our 
sample was restricted to participants of European origin, 
the generalizability of our novel markers to other popula-
tions is still unknown.

Conclusions
We detected cross-sectional associations between blood 
DNAm and T2D that were consistent with results in 
previous studies of incident and prevalent T2D in par-
ticipants of European and non-European ancestry. Novel 
markers were also identified. Assessment of the etiologi-
cal role of markers reported in this study may benefit 
from the use of causal inference methods such as Mende-
lian randomization, and from the incorporation of tissue-
specific analyses. CpG sites and regions identified in this 
study could potentially be used as prognostic biomarkers 
for disease onset or complications.
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Materials and methods
Study population
Four European cohorts were included: the Avon Lon-
gitudinal Study of Parents and Children (ALSPAC) 
(N = 1,050, nT2D = 48) [53, 54]; the Lothian Birth Cohort 
of 1936 (LBC1936) (N = 915, nT2D = 110) [55–57]; and 
two independent samples from the Rotterdam Study: 
RSIII-1 (N = 728, nT2D = 74) and RS-Bios (N = 735, 
nT2D = 108) [58, 59]. In all cohorts, participants provided 
written informed consent at enrollment, and ethical 
approval was granted by the relevant ethics and law com-
mittees [53, 56, 58, 60]. Further description of the partici-
pating cohorts in our meta-analysis can be found in the 
Additional file 1: section I.

Phenotypic measurement
Prevalent T2D was defined based on medical diagnosis, 
use of medication to lower blood glucose, fasting blood 
glucose levels > 7.0  mmol/l or hemoglobin A1c (HbA1c) 
levels > 6.5%. Further detail of case ascertainment in each 
study is described in the Additional file 1: section I. Con-
trols were participants without medical diagnosis of T2D, 
fasting blood glucose < 7.0 mmol/L, HbA1c < 6.5% (when 
available), and no reported use of glucose-lowering 
drugs. Age, sex and smoking were extracted from ques-
tionnaire data. Missing values for smoking in one of the 
cohorts were predicted using a methylation score (Addi-
tional file 1: section II). Body mass index (BMI) was cal-
culated from study clinic assessed weight and height (kg/
m2).

DNA methylation measurement
As far as possible, cohorts followed a uniform proce-
dure to generate data. Briefly, purified DNA from whole 
blood samples was bisulfite converted using the Zymo 
EZ DNA Methylation™ kit (Zymo Research Corporation, 
Irvine, USA) and hybridized to the Illumina Infinium 
HumanMethylation 450 BeadChip (HM450) (Illumina, 
CA, USA). Samples were excluded if signal detection rate 
across probes was < 95%. Further detail of quality control 
steps applied to the methylation data at the probe and 
sample level, are described in the Additional file  1: sec-
tion III, Table  S1. To control for differences in DNAm 
arising from cellular heterogeneity, cell proportions for 
six leucocyte subtypes were calculated from DNAm 
data [61]. In RS-Bios, direct counts for lymphocytes, 
monocytes and granulocytes were initially available 
for all participants. Using directly measured cell counts 
instead of Houseman cell count estimates in RS-Bios did 
not impact on the results observed. Cohorts corrected 
for batch effects using surrogate variable (SV) analysis 
[62]. Ten SVs were included as covariates in the EWAS 

provided they were individually independent of T2D sta-
tus (p > 0.05). Lastly, samples with extreme measures of 
DNAm were identified using the Tukey method [63] and 
set to missing values before conducting the EWAS. This 
latter step involved trimming DNA methylation beta val-
ues for each CpG site by removing observations that were 
more than three times the interquartile range below or 
above the 25th and 75th percentiles, respectively [64]. This 
method allows to exclude outliers of DNA methylation 
caused by technical artefacts or rare genetic variants that 
can bias the analysis [65]. This method has been widely 
implemented in other studies [65–67].

Statistical analyses
Epigenome‑wide association study of prevalent T2D
Each cohort conducted independent EWAS using the 
meffil R package [68], where DNAm was modeled as the 
outcome and T2D as the exposure in multivariable lin-
ear regression models. The basic model (model 1) was 
adjusted for age, sex, SVs, cell counts and smoking status, 
in model 2 we additionally included BMI. The genomic-
inflation factor (λ) was used to report systematic bias in 
EWAS results. Before meta-analysis, EWAS estimates 
were inspected for potential sources of bias using the 
QCEWAS R package [69] (Additional file 1: section IV). 
High quality probes obtained in the standardized QC 
process were included in a fixed-effect inverse variance 
weighted meta-analysis in METAL (version 2011-03-25) 
[70]. On average, 368,208 autosomal probes (probe range 
349,413 to 376,820) were meta-analyzed. We applied cor-
rection for multiple testing using the Bonferroni method, 
considering associations at p value < 1.33 × 10–7. Hetero-
geneity was evaluated using the I2 statistic (substantial 
heterogeneity was defined as I2 > 40% and heterogeneity 
p < 0.05), and by visualizing results in forest plots and 
conducting “leave-one-out” analyses using the metafor R 
package [71]. To further assess robustness of our findings 
to inter-study heterogeneity, we conducted a random-
effect meta-analysis using a modified version of METAL 
[70].

CpGs with p values below an arbitrary p-thresh-
old < 1.0 × 10–5 were reported. For these CpGs, effect 
estimates were described using the median absolute dif-
ference in methylation β-values between T2D cases and 
controls. Furthermore, we re-ran analyses for these CpGs 
using z-values of methylation (mean = 0 and SD = 1) 
based on data from the ALSPAC study to provide effect 
estimates standardized by baseline differences in DNAm. 
Standardized effects were described as the median abso-
lute difference in standard deviations (SDs) of DNAm 
between groups. We investigated DMR associations with 
prevalent T2D using comb-p [72] based on summary sta-
tistics from the meta-analysis, and using default analysis 
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parameters. All analyses were conducted in R (version 
3.3.3) [73].

Association of DNAm with phenotypic traits in ALSPAC
Additional analyses in ALSPAC investigated whether the 
individual CpG sites identified in the meta-analysis (at 
p < 1.33 × 10–7) were associated with various clinical phe-
notypes (Additional file 1: section V). We tested associa-
tions using multivariable linear and logistic regressions 
adjusted for age and sex, where DNAm at the identified 
CpGs was modelled as the exposure (continuous) against 
the traits. Analyses were restricted to diabetes-free par-
ticipants to avoid bias by T2D treatment. We repeated 
analyses stratifying methylation at each CpG into quar-
tiles to assess robustness of associations. We applied 
Bonferroni adjustment for multiple testing assuming 23 
independent tests (i.e. number of different traits) and 
α = 0.05. Furthermore, we investigated the proportion 
of variation in T2D explained by CpG sites discovered in 
the meta-analysis (p < 1.33 × 10–7), and by CpGs within 
the single DMR with the smallest corrected p value, using 
the Nagelkerke’s R2 statistic. This statistic was derived 
from adjusted logistic regressions between DNAm at the 
individual CpGs in the meta-EWAS or the average meth-
ylation at CpGs within the top DMR as the exposure, and 
T2D as the outcome (reverse model from the EWAS, 
Additional file 1: section V).

Pathway enrichment and cross‑tissue comparison of DNAm 
at CpGs identified in the meta‑analysis
We conducted pathway analyses using CpGs identified 
in the meta-analysis (p < 1.33 × 10–7), and the CpG with 
the smallest p value identified in each DMR (Sidak p 
value < 0.05). We performed an enrichment analysis for 
biological pathways using gene ontology (GO) terms and 
KEGG pathways implemented in the missMethyl R pack-
age [26]. p values of enrichment were adjusted for mul-
tiple testing using the Bonferroni method (i.e. p < 0.05/# 
genes in a pathway). For the same list of CpGs, we com-
pared the level of DNAm between blood and five inter-
nal tissues relevant to diabetes (liver, skeletal muscle, 
pancreas, visceral fat or omentum and subcutaneous fat) 
using a publicly available dataset [74]. We performed an 
enrichment analysis for regulatory elements using LOLA 
[27] and identified expression quantitative trait methyla-
tion sites (eQTMs) and methylation quantitative trait loci 
(meQTL) associated with our CpGs from public data-
bases (BIOS QTL browser [28], GoDMC [29]). In addi-
tion, we looked up blood-based meQTL associated with 
our CpGs in expression quantitative trait loci (eQTL) 
data [75], and in GWAS for T2D [76] and glycemic traits 
[30, 31, 77, 78] (Additional file  1: section VI) to under-
stand the possible function of the identified CpGs.
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