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In this thesis, I develop approaches to explain individual outcomes. 
These approaches focus on accurately estimating and predicting individual 
responses: how do individuals react (e.g. with their purchase behavior) 
to changes in explanatory variables (e.g. price)? When the responses of 
individuals are known, public and private organizations can use the 
information to develop effective policies. For example, health care providers 
can personalize their health treatments, or supermarkets can create 
personalized recommendations.

The approaches developed in this thesis contribute to the literature by 
allowing for more realistic individual behavior, especially when the dataset 
contains little information per individual. The approaches allow for individuals 
to have widely different responses, and for some individuals to be unaffected 
by certain variables (chapter 2). Also, the approaches allow for the responses 
of individuals to change over time (chapters 3 and 4). In the applications in 
this thesis, I find that the proposed approaches lead to improved predictions 
of individual outcomes. These improvements can lead to the design of 
more effective policies. The approaches are generally applicable to many 
real-life problems, including problems in health and consumer choice-making.
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Chapter 1

Introduction

We make numerous choices in our lives. From buying a house or choosing an occu-
pation, to choosing which groceries to buy in the supermarket. Public and private
organizations increasingly collect and store information on these choices. They use
the collected data to help design effective policies. For example, health care pro-
viders use information on individual health outcomes to increase the effectiveness of
their health treatments. Supermarkets use information on individual purchases to
optimize their pricing and promotion strategies.

Going from data to the design of an effective policy is not straightforward. A first
insightful step is to examine the average response in a population to a certain policy or
policy change. How does a change in price affect the quantity sold? What percentage
of patients is cured using a certain health treatment? Knowledge of the average
response can lead to accurate predictions of aggregate outcomes of interest that aid
the design of effective policies.

To further increase the effectiveness of policies, it is often useful to acknowledge
and account for differences across individuals (heterogeneity). For example, indi-
viduals may respond differently to price changes, or their health may respond dif-
ferently to certain health treatments. Using an individual-level approach instead
of a population-level approach has two key advantages: (i) it helps to gain insight
into how different individuals respond and thus gives insight into the complete dis-
tribution of policy effects, and (ii) predictions of individual responses can be used
for policies that allow for personalization, such as personalized health treatments,
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2 Chapter 1

education, or marketing.

In this thesis, I develop approaches to accurately infer individual responses from
data. A response refers to the effect of a change in a certain factor (e.g. price) on
an individual’s choice (e.g. a purchase decision). The developed approaches improve
upon existing approaches by allowing for more realistic individual behavior. These
improvements can lead to better predictions of individual responses and can therefore
be used to gain a better understanding of individual behavior and to design more
effective policies. The approaches in this thesis are aimed to be generally applicable
to many real-life problems, including problems in health, education, labor, operations
research, and consumer choice-making.

1.1 Inferring individual responses

To infer the responses of individuals from data, researchers often make use of a
model. A model describes a relationship between the outcome of interest (e.g. heals
or not, buys a product or not) and the observed explanatory variables/factors (e.g.
type of health treatment, price of a product). This relationship depends on unknown
parameters, which include the individual responses, that are to be estimated using the
observed data. The parameters represent numerical values indicating the signs and
strengths with which an individual’s outcome responds to changes in the explanatory
variables. When the parameters have been accurately estimated, one can examine
what the impact is of a change in an explanatory variable on the outcome of interest.

To allow for individual differences in the responses, the unknown parameters in the
model should be made individual-specific. One approach to do so is by consider-
ing a separate model for each individual, and estimating the (individual-specific)
model parameters using data from that individual alone. In practice, this approach
works poorly, especially in settings with a relatively small number of observations
per individual and/or with many explanatory variables that may affect the outcome
of interest. In these cases, using a separate model for each individual can lead to
inaccurate and highly uncertain estimates of an individual’s responses.

Instead of using a separate model for each individual, it is often more useful to
use a model that shares information across individuals. That is, the model still
contains individual-specific parameters, but for inference on those parameters, one
uses information on the underlying population distribution of the parameters (or the
individual responses). This is an approach often used by researchers, and it is also
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the approach that I focus on in this thesis.

The underlying population distribution of individual responses describes how the
responses across individuals differ. For example, a specific medicine may have a
positive effect on a certain health measurement for 50% of individuals, a negative
effect for 20% of individuals, and no effect for 30% of individuals. Moreover, the
effect may be more positive (or negative) for some individuals than for others.

Hence, the researcher tries to most accurately estimate the underlying distribution of
responses. For this purpose, the researcher uses the data from all individuals in the
dataset. Using the information on the response distribution, a researcher can more
accurately infer per individual where s/he most likely is in the distribution based on
the observed data of that specific individual.

The underlying population distribution is usually of a high dimensionality, as in
many settings there are quite a number of explanatory variables that may affect the
outcome of interest. The response distribution has to jointly consider the responses
to all (combinations of) variables. Estimating the shape of the resulting multivariate
distribution is therefore not straightforward.

Thus, in many settings, the main challenge when inferring individual responses is to
accurately estimate the underlying population distribution of responses. This is the
challenge I propose solutions to in this thesis.

1.2 Illustrative example: car preferences

To illustrate how a model can be used to infer individual responses, consider the
following example on data from a specific kind of questionnaire: a discrete choice
experiment. During a discrete choice experiment, individuals are repeatedly asked
to make a (hypothetical) choice amongst a set of alternatives. Each alternative is
described by a number of attributes. Data from a discrete choice experiment are also
used in this thesis to illustrate several approaches, although the developed approaches
are more generally applicable to other types of data.

Suppose we are interested in the preferences of individuals for different types of
cars, in particular in the tradeoffs an individual makes when choosing between a
gasoline-powered and an electric private lease car. These preferences can be used
by governmental institutions to design policies that promote the private lease of an
electric car, by car manufacturers to design a desirable electric car and predict the
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car’s demand, and by car sellers to gain insight into which (types of) individuals
would be interested in a specific car as to enable personalized marketing.

A discrete choice experiment can be conducted to elicit the preferences of individuals
in the private lease market. During this experiment, individuals can be asked to
complete 10 to 15 choice tasks where at each task an individual is asked to choose
between two cars, one electric car and one gasoline-powered car: “If you were in
the market to private lease a car, and these were the only alternatives, which would
you choose?”. The cars are described by attributes such as price, average range, and
size/luxury. The levels of the attributes vary over the tasks. An example of a choice
task is given in Table 1.1.

Table 1.1: Example of a choice task during the discrete choice experiment.

If you were in the market to private lease a car, and these
were the only two alternatives, which would you choose?

Car 1 Car 2
Attributes Gasoline Electric
Monthly price (in Euros) 250 300
Average fuel price per 100 km (in Euros) 10 5
Average range full battery - 300 km
CO2 emissions 119 gr/km -
Segment∗ D B
Option I: cruise control X X
Option II: leather seats X -
∗Each car belongs to one of fourteen segments. A segment
indicates the size and class of a car.

Note that in this thesis, I focus on inferring the preferences of individuals given
the answers to the discrete choice experiment. I do not focus on the design of an
(optimal) experiment.

To infer the preferences of the individuals based on the choices made during the
experiment, a model is used. This model describes how the combination of attributes
of the two cars affects an individual’s choice. Given the functional form of the
model (that is, the manner in which the attributes may affect the choice), the only
challenge remains to estimate the unknown individual-specific model parameters.
These parameters correspond to the preferences of individuals for the attributes.

Because of the small number of choice tasks completed by each individual (10 to
15) and the relatively large number of car attributes, using a model that shares
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information over individuals is useful. Hence, the interest becomes in estimating the
underlying (multivariate) distribution of preferences for the different car attributes.

To illustrate the preference distribution for a single attribute, consider the preferences
for individuals for choosing between an electric and gasoline-powered car, for given
levels of the price, range, CO2 emissions, segment, and options. For any specific set-
up, some individuals may prefer an electric car, some may prefer a gasoline-powered
car, and some may have no clear preference of one type of car over the other. These
differences could be for a number of reasons, e.g. due to environmental reasons or
the availability of charging stations close to home. Suppose that, for certain given
levels of the other attributes, 30% of individuals prefers gasoline-powered cars, 50%
prefers electric cars, and 20% has no preference of one type of car over the other.
Then, the corresponding preference distribution is given on the left in Figure 1.1a.

Figure 1.1: Examples of underlying population distributions for preferences for
gasoline-powered versus electric cars.

Gasoline No pref. Electric
0%

10%

20%

30%

40%

50%

60%

(a) Distribution about sign of preferences

Gasoline ← No pref. → Electric
0%

5%

10%

15%

20%

25%

30%

(b) Distribution about strength of preferences

Of course, the distribution on the left in Figure 1.1a is not useful for inference as it
only says something about the “sign” of the preferences for fixed levels of the other
attributes: gasoline, neutral or electric. For inference, one also needs information
on how strong this preference is: there may be individuals who really prefer an
electric car, and those who only prefer it a bit as compared to a gasoline-powered
car. These so-called ‘weights’ assigned to attributes are important when examining
the relative importance of the different attributes. For example, individuals that
assign just a small positive weight to an electric car can easily be persuaded to opt
for a gasoline-powered car when the price becomes a bit lower or more options are
added. Individuals with a strong preference for an electric car will not as quickly opt
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for a gasoline-powered car.

When considering the weights assigned to an attribute, the true distribution of prefer-
ences for given levels of the other attributes may be more dispersed and more similar
to the distribution on the right in Figure 1.1b. In this distribution, individuals that
are in the right tail really prefer electric cars over gasoline-powered cars. Individuals
that are closer to the zero weight (no preference), are more indifferent between the
two cars.

Next to the preference for the fuel type, a researcher has to simultaneously infer the
preferences for the other car attributes. Hence, instead of a distribution as in Figure
1.1b, one obtains a multivariate distribution of much higher dimensionality.

In this thesis, I develop approaches that can accurately estimate the underlying
(multivariate) preference distribution. More specifically, I develop an approach that
allows for distributions as on the right in Figure 1.1b: individuals may have widely
ranging preferences and subsets of individuals may be indifferent between certain
attribute levels. Moreover, I develop an approach that can accurately infer responses
of individuals when (some) individuals become fatigued during the experiment and
answer more randomly as the experiment proceeds.

1.3 Contributions of thesis

In this thesis, I develop approaches to accurately estimate the underlying popula-
tion distribution of individual responses. In the existing literature, a number of
approaches have already been developed. These approaches can be quite restrict-
ive in the shape they allow for the underlying distribution. In this thesis, I aim to
alleviate a number of important restrictions and provide approaches that allow for
more realistic individual behavior. The proposed approaches can lead to improved
estimates of individual responses which can be used to gain insight into individual
behavior and to design more effective policies.

This thesis reports the developed approaches in three different chapters. The chapters
can be read separately from each other. In Chapter 2, an approach is developed that
allows for many forms of the underlying (multivariate) distribution of individual re-
sponses. In particular, the approach allows for groups of individuals to be unaffected
by certain variables and for the individuals that are affected by the variables to have
widely ranging responses. The proposed approach is generally applicable to problems
in a wide range of research fields.
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In Chapter 3, an approach is developed to accurately infer individuals’ preferences by
correcting for possible biases that may arise due to dynamics in the randomness in the
choice-making of individuals. In the context of the earlier example on car preferences,
this approach can correct for learning and fatigue behavior: at the beginning of
the questionnaire some individuals may answer more randomly as they still need to
learn about the choice task at hand or about their preferences (learning) or as the
questionnaire proceeds some individuals may start answering more randomly as they
become bored, tired, or irritated (fatigue).

In Chapter 4, an approach is developed that allows for individual responses to change
over time, for example due to changing preferences or changing environments. This
approach is tailored to one specific application: that of accurately estimating and
predicting clickthrough and conversion probabilities of paid search advertisements at
search engines.

1.4 Overview of thesis

A more detailed summary of the three chapters in this thesis is provided below. The
work in Chapters 2 and 3 has been done mostly independently, under close supervision
of mentioned co-authors. The original ideas were my own, and further developed in
discussion with the co-authors. The implementation and reporting of the research was
mostly done independently, a number of improvements were made through feedback
on earlier versions of the chapters and discussions with the co-authors. The work in
Chapter 4 has been done in close collaboration with the mentioned co-authors.

Chapter 2: A. Castelein, D. Fok and R. Paap: Heterogeneous variable selection in
nonlinear panel data models: A semiparametric Bayesian approach.

In Chapter 2, we develop a general method for heterogeneous variable selection in
Bayesian nonlinear panel data models. Heterogeneous variable selection refers to
the possibility that subsets of units are unaffected by certain variables. It may be
present in applications as diverse as health treatments, consumer choice-making,
macroeconomics, and operations research. Our method additionally allows for other
forms of cross-sectional heterogeneity. We consider a two-group approach for the
model’s unit-specific parameters: each unit-specific parameter is either equal to zero
(heterogeneous variable selection) or comes from a Dirichlet process (DP) mixture of
multivariate normals (other cross-sectional heterogeneity). We develop our approach
for general nonlinear panel data models, encompassing multinomial logit and probit
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models, poisson and negative binomial count models, exponential models, among
many others. For inference, we develop an efficient Bayesian MCMC sampler.

In a Monte Carlo study, we find that our approach is able to capture heterogeneous
variable selection whereas a “standard” DP mixture is not. In an empirical applica-
tion, we find that accounting for heterogeneous variable selection and non-normality
of the continuous heterogeneity leads to an improved in-sample and out-of-sample
performance and interesting insights. These findings illustrate the usefulness of our
approach.

Chapter 3: A. Castelein, D. Fok and R. Paap: A multinomial and rank-ordered logit
model with inter- and intra-individual heteroscedasticity.

The heteroscedastic logit model is useful to describe choices of individuals when the
randomness in the choice-making varies over time. For example, during surveys in-
dividuals may become fatigued and start responding more randomly to questions as
the survey proceeds. Or when completing a ranking amongst multiple alternatives,
individuals may be unable to accurately assign middle and bottom ranks. The stand-
ard heteroscedastic logit model accommodates such behavior by allowing for changes
in the signal-to-noise ratio via a time-varying scale parameter. In the current literat-
ure, this time-variation is assumed equal across individuals. Hence, each individual
is assumed to become fatigued at the same time, or assumed to be able to accurately
assign exactly the same ranks. In most cases, this assumption is too stringent.

In Chapter 3, we generalize the heteroscedastic logit model by allowing for differences
across individuals. We develop a multinomial and a rank-ordered logit model in
which the time-variation in an individual-specific scale parameter follows a Markov
process. In case individual differences exist, our models alleviate biases and make
more efficient use of data. We validate the models using a Monte Carlo study and
illustrate them using data on discrete choice experiments and political preferences.
These examples document that inter- and intra-individual heteroscedasticity both
exist.

Chapter 4: A. Castelein, D. Fok and R. Paap: A dynamic model of clickthrough and
conversion probabilities of paid search advertisements.

In Chapter 4, we develop a dynamic Bayesian model for clickthrough and conver-
sion probabilities of paid search advertisements. These probabilities are subject to
changes over time, due to e.g. changing consumer tastes or new product launches.
Yet, there is little empirical research on these dynamics. Gaining insight into the dy-
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namics is crucial for advertisers to develop effective search engine advertising (SEA)
strategies. Our model deals with dynamic SEA environments for a large number of
keywords: it allows for time-varying parameters, seasonality, data sparsity and pos-
ition endogeneity. The model also discriminates between transitory and permanent
dynamics. Especially for the latter case, dynamic SEA strategies are required for
long-term profitability.

We illustrate our model using a 2 year dataset of a Dutch laptop selling retailer.
We find persistent time variation in clickthrough and conversion probabilities. The
implications of our approach are threefold. First, advertisers can use it to obtain
accurate daily estimates of clickthrough and conversion probabilities of individual
ads to set bids and adjust text ads and landing pages. Second, advertisers can
examine the extent of dynamics in their SEA environment, to determine how often
their SEA strategy should be revised. Finally, advertisers can track ad performances
to timely identify when keywords’ performances change.

1.5 Outlook

The approaches developed in this thesis can prove useful to practitioners in a wide
range of research fields. In particular, they can be used to gain insight into the
differences in policy effects across individuals, and to obtain accurate individual-
level predictions that enable personalizing certain policies. For future methodological
research, it would be interesting to examine approaches that allow for more flexible
forms of changing behavior of individuals over time, in particular in settings with
relatively little information per individual.
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Heterogeneous variable
selection in nonlinear panel
data models: A
semiparametric Bayesian
approach

2.1 Introduction

Many panel datasets contain information on a large number of cross-sectional units
with relatively little information per unit. Such datasets contain too little information
to accurately estimate a separate model per unit: estimation inefficiency and over-
fitting would become problematic. Performing variable selection at the unit-level
is therefore not straightforward. Instead, models are used that share information
across units. To this end, unit-specific parameters in the model are often shrunk
using an underlying population distribution shared across units. Many such distri-
butions have been proposed: continuous distributions such as the multivariate normal
or log-normal, finite mixtures of discrete or continuous distributions, and ‘infinite’
mixtures using a Dirichlet process.

11
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In practice, these distributions cannot sufficiently accommodate heterogeneous vari-
able selection on top of other cross-sectional heterogeneity. Heterogeneous variable
selection refers to the possibility that subsets of units may be unaffected by certain
variables. This is relevant for many applications. For example, in choice situations,
groups of individuals may have no preference for or may ignore a certain product
attribute when making their decisions. In macroeconomics, unemployment rates in
different countries may be differentially affected or unaffected by certain macroeco-
nomic variables. In operations research, the interarrival times of buses or the amount
of garbage in bins could differentially depend or not depend on variables as temper-
ature, holidays, or traffic conditions.

We use the term variable selection to denote that some units assign no weight to
certain variables. Hence, variable selection is part of the data generating process.
This is different from the context where variable selection refers to a researcher
determining which variables should be selected in a model, also known as model
selection. Instead of using variable selection, other appropriate terms are variable
importance or variable relevance to indicate that for some units, certain variables
may be unimportant or irrelevant.

While the literature on modeling heterogeneous responses is extensive, very few ap-
proaches have been proposed that accommodate heterogeneous variable selection.
That is, the underlying population distribution to which the unit-specific parameters
are shrunk, generally does not allow for groups of units to assign no weight to certain
variables. Theoretically, heterogeneous variable selection can be captured when the
underlying distribution is discrete, such as with a latent class approach. A discrete
distribution allows the unit-specific parameters to be equal to one of multiple mul-
tivariate discrete outcomes, of which some outcomes may have certain parameters
equal to zero. Practically, such a model is infeasible as the discrete distribution
would need 2K possible outcomes to capture all combinations of variable selection,
where K is the number of explanatory variables. If, additionally, richer forms of
heterogeneity should be allowed for, a multitude of these 2K outcomes is needed.1 In
models with continuous heterogeneity it is even more problematic to accommodate
heterogeneous variable selection, as the continuous heterogeneity distribution cannot
have substantial mass at zero unless the variance of the distribution is very close to
zero.

1Alternatively, one could allow for the responses to the different variables to be independent, to
avoid needing at least 2K outcomes. However, this assumption of independence can be too strict.
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A number of papers have proposed approaches to accommodate heterogeneous vari-
able selection. They have done so for multivariate linear models (S. Kim et al., 2009,
Tang et al., 2020), multivariate binary probit models (S. Kim et al., 2018), and mul-
tinomial logit models (Gilbride et al., 2006, Scarpa et al., 2009, Hensher and Greene,
2010 Hole, 2011, Campbell et al., 2011, Hess et al., 2013, Hole et al., 2013, Collins
et al., 2013, Hensher et al., 2013). Few of these papers use a Bayesian approach
(Gilbride et al., 2006, S. Kim et al., 2009, S. Kim et al., 2018). The papers that use
a frequentist approach have strong limitations: when allowing for flexible forms of
cross-sectional heterogeneity next to heterogeneous variable selection, the developed
models are susceptible to overfitting as the number of parameters quickly grows large
relative to the number of observations. Furthermore, the computation time for estim-
ation grows rapidly when the number of variables gets larger, due to the likelihood
function containing 2K terms and, in case of a continuous heterogeneity distribution,
the needed use of simulated maximum likelihood due to intractable integrals. Already
when there are more than four variables, these approaches can run into problems.2

To avoid overfitting, Tang et al. (2020) use a penalization framework. They propose
a linear model where each unit-specific parameter comes from a univariate discrete
distribution with multiple possible outcomes of which one outcome is set to zero.
The parameters of the discrete distributions are estimated by optimizing a penalized
objective function. The idea of their approach can also be used for nonlinear models,
but, in practice, the use of multiple univariate discrete distributions is too limited to
capture the possible rich forms of heterogeneous responses, for example correlations
across the responses to different variables.

The few papers that use a Bayesian approach also have their limitations. They are
limited in terms of the underlying parametric model: only techniques for heterogen-
eous variable selection in the context of a multivariate linear, a multinomial logit, and
a binary probit model have been proposed. Furthermore, the form of cross-sectional
heterogeneity including heterogeneous variable selection is limited in these papers.
S. Kim et al. (2018) let the unit-specific parameters come from a categorical distri-
bution that simultaneously incorporates variable selection and other heterogeneity.
S. Kim et al. (2009) follow a similar approach but instead consider a categorical dis-
tribution with an ‘infinite’ number of outcomes using a Dirichlet process prior. As
with standard heterogeneous response models with discrete heterogeneity, the main

2In Hensher et al. (2013) the problem of estimation time is explicitly stated in footnote 5: it
took over 100 hours to estimate the parameters based on a dataset with 588 units, 16 observations
per unit and 4 variables that were allowed to be ignored.
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drawback of the approaches of S. Kim et al. (2018) and S. Kim et al. (2009) is that
the number of outcomes of the categorical distribution that is necessary to capture
all combinations of variable selection is exponential in the number of explanatory
variables. In practice, it is hard to find that many components.

A more parsimonious approach is developed in Gilbride et al. (2006), who let each
unit-specific parameter be either equal to zero or come from an underlying multivari-
ate normal distribution. However, this single multivariate normal distribution can
be insufficient to describe the complex forms of unit-specific responses. Furthermore,
the Markov chain Monte Carlo (MCMC) sampler that Gilbride et al. (2006) propose
for posterior results can be computationally heavy when there are many variables,
as in each MCMC iteration a likelihood function with 2K terms has to be computed.
Moreover, the MCMC sampler uses the prior distribution as candidate for drawing
the unit-specific parameters. In case the data is quite informative, this candidate
will have low acceptance rates and the sampler will have poor mixing.

In this paper, we generalize and improve the approach of Gilbride et al. (2006),
thereby contributing to the literature in three important ways: by (i) generalizing
to nonlinear models, (ii) substantially increasing the flexibility in the cross-sectional
heterogeneity, and (iii) developing an efficient Bayesian MCMC sampler that also
works well for up to 50 or 100 explanatory variables. The increased flexibility is
obtained by augmenting the heterogeneous variable selection with an infinite mixture
of multivariate normals using a Dirichlet process (DP) prior.

To be more precise, we develop a general method for heterogeneous variable selection
in Bayesian nonlinear panel data models. For the model’s unit-specific parameters
we take a two-group approach: each unit-specific parameter is either zero or comes
from a DP mixture of multivariate normals. In case of a single unit-specific para-
meter, such a two-group approach is referred to as a spike-and-slab prior (Mitchell
& Beauchamp, 1988) or as stochastic search variable selection (SSVS) (George and
McCulloch, 1993, George and McCulloch, 1997). We develop our approach for gen-
eral nonlinear panel data models, encompassing multinomial logit and probit models,
poisson and negative binomial count models, exponential models, among many oth-
ers. The model is particularly useful in large N , small T settings, but can also be
incorporated in large T settings because of the flexibility of the DP mixture.

We illustrate our approach with a Monte Carlo study and an empirical application.
For illustration, we consider a multinomial logit model (MNL) as this model is the
focus of most of the literature on heterogeneous variable selection. In the Monte
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Carlo study, we find that with our approach we can capture both complex forms of
continuous cross-sectional heterogeneity — such as skewness and multimodality — as
well as heterogeneous variable selection. When using only a ‘standard’ DP mixture
for the unit-specific parameters, we find that heterogeneous variable selection cannot
be accommodated. Instead of a spike at zero, this approach generally allocates
substantial probability mass to parameter values in a relatively large interval around
zero, depending on the shape of the true continuous heterogeneity distribution.

In the empirical application, we consider responses to a discrete choice experiment
on food choices. We find substantial evidence of variable non-attendance and non-
normality of the continuous heterogeneity. In particular, the continuous heterogen-
eity distribution seems skewed. Hence, there seem to be quite some individuals that
have strong preferences for certain attributes, and quite some individuals that ignore
certain attributes. These findings indicate the usefulness of our approach in practice.

The setup of this paper is as follows. In Section 2.2, we discuss the related literature.
In Section 2.3, we develop our approach for general nonlinear panel data models. We
also provide the Bayesian MCMC sampler. In Sections 2.4 and 2.5, we discuss the
results of our model for a small Monte Carlo study and an empirical application,
respectively. In Section 2.6, we conclude.

2.2 Related literature

An overview of papers that develop approaches to accommodate heterogeneous vari-
able selection in panel data models is given in Table 2.1. These papers mainly differ
in (i) the type of model they develop (logit, probit, linear, et cetera), (ii) how they
incorporate heterogeneous variable selection, (iii) how they deal with cross-sectional
heterogeneity other than heterogeneous variable selection, and (iv) if and how they
incorporate correlated variable selection.

Heterogeneous variable selection is mostly incorporated using a two-group approach
(SSVS, spike-and-slab, latent class). The frequentist approaches rely on latent class
techniques (or a categorical distribution) for the unit-specific parameters. That is,
these approaches specify 2K classes where in each class a different combination of
variables is selected, i.e. a different combination of parameters are set to zero. Each
unit belongs to one of the 2K classes. For the unit-specific parameters that are not
zero, the approaches either restrict them to be equal over units (constant), allow
them to differ depending on the class the unit is in (categorical), or let them be
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independent of the class a unit is in and let them come from an underlying mul-
tivariate normal distribution. Exceptions are Campbell et al. (2011) who use a single
multivariate normal and additionally allow for a different scale parameter per class,
and Hensher et al. (2013) who allow for a different multivariate normal per class.
The Bayesian approaches rely on a spike-and-slab prior or stochastic search variable
selection (SSVS). That is, when a variable is ignored/unselected, the corresponding
unit-specific parameter is either zero (spike-and-slab prior) or comes from a distribu-
tion closely centered around zero (SSVS). Within the Bayesian approaches, S. Kim
et al. (2009) and S. Kim et al. (2018) incorporate heterogeneous variable selection
within the categorical distribution that describes other cross-sectional heterogeneity.
In contrast, Gilbride et al. (2006) let these two types of heterogeneous responses
be independent: a unit-specific parameter is either zero or comes from a separate
multivariate normal distribution. Our approach is most similar to Gilbride et al.
(2006). We extend upon their approach by generalizing to nonlinear models and
using a Dirichlet process mixture of multivariate normals for the other heterogeneity
to realistically capture differences across units. Moreover, we improve upon their
MCMC sampler to allow the approach to be used for up to 50 or 100 explanatory
variables.

Alternatively to the two-group approach, Tang et al. (2020) use a penalization frame-
work to shrink the unit-specific parameters towards zero or towards a specific value
out of a set of outcomes to be estimated. Similar penalization frameworks for hetero-
geneous variable selection are employed in image and video classification problems,
see e.g. Wu et al. (2012) and Zhao et al. (2015), where the used term is often het-
erogeneous feature selection or sparsification. In contrast to the approach developed
in Tang et al. (2020), these latter approaches shrink the corresponding unit-specific
parameter to zero in case a variable is selected, and not to some underlying popula-
tion distribution shared across units.

Another main difference between the available approaches for heterogeneous variable
selection is if and how they deal with correlated variable selection. Correlated vari-
able selection refers to the phenomenon that some variables may be more likely to be
selected/ignored together. This correlation can be divided into explained correlation
(using observed unit-specific variables) and unexplained correlation. Most of the pa-
pers on heterogeneous variable selection do not allow for correlated variable selection.
The ones that do can be divided into three groups: (i) letting each class/component
have its own membership probability causing the number of membership probability
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parameters to be exponential in the number of explanatory variables (Hensher et al.,
2013), (ii) allowing for variable selection and correlation only across predefined sub-
sets of variables (Scarpa et al., 2009, Hensher and Greene, 2010, Campbell et al.,
2011 and Collins et al., 2013), or (iii) letting the class membership probabilities be a
function of unit-specific variables (Hole, 2011, Hole et al., 2013). In this paper, we do
not explicitly allow for correlated variable selection. However, our approach can be
extended to allow for both explained and unexplained correlated variable selection.

Approaches have also been developed that use a DP mixture for cross-sectional het-
erogeneity, and aggregate variable selection to analyze which variables should not
be in the model for all units (see e.g. Cai and Dunson, 2005 and M. Yang, 2012).
Furthermore, related approaches have been developed for models that do not include
unit-specific parameters: the combination of a DP mixture and variable selection are
used for a set of pooled parameters. These approaches are often used in settings with
many explanatory variables to shrink coefficients towards zero (variable selection) or
each other (DP mixture), both in supervised problems (see e.g. Dunson et al., 2008,
MacLehose et al., 2007, and Korobilis, 2013) and unsupervised clustering problems
(see e.g. S. Kim et al., 2006, Wang and Blei, 2009, Yu et al., 2010, Fan and Bouguila,
2013).

2.3 Methodology

In this section, we develop our approach to simultaneously allow for heterogeneous
variable selection and other flexible forms of cross-sectional heterogeneity in nonlinear
panel data models. We provide the model specification and the details of the MCMC
sampler to obtain posterior samples.

We consider a dataset with N cross-sectional units and Ti observations for unit
i = 1, ..., N . The interest is in modeling a scalar dependent random variable Yit
in terms of observed explanatory variables in xit and zit for unit i at time t. The
responses to the variables in the (Kx × 1) vector xit are assumed unit-specific and
captured in the (Kx × 1) parameter vector βi. For identification, xit may contain
time-varying variables only, other than an intercept.3 The responses to the variables
in the (Kz×1) vector zit are assumed equal across units and captured in the (Kz×1)
parameter vector γ. The variables in xit and zit cannot overlap.

3We recommend to mean center any continuous variable in xit. Furthermore, for multinomial
models, instead of a single intercept, xit may contain an intercept per possible outcome for Yit,
minus one, or other time-invariant alternative-specific variables.
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We consider a nonlinear model for Yit as given by

Yit|βi, γ ∼ f(g(xit, βi, zit, γ)), (2.1)

where f is a known continuous or discrete probability distribution, g is a known
(possibly multivariate) deterministic link function that maps xit, βi, zit and γ to the
parameters of the probability distribution, and we assume the observations Yit to be
conditionally independent over units and time periods.

For example, for multinomial data such as discrete choices, f could represent a mul-
tinomial distribution with size 1 and probability vector pit = g(xit, βi, zit, γ) based
on e.g. the softmax link function to obtain a multinomial logit model. For count
data, f could represent a Poisson or negative binomial distribution with parameters
g(xit, βi, zit, γ). Continuous distributions may also be used, such as the normal or
the exponential distribution. We take the distribution f() and the link function g()
as given.

The parameters in βi capture the responses of unit i to the variables in xit. To allow
for flexible forms of cross-sectional heterogeneity, we take

βik = τikλik, (2.2)

for k = 1, ...,Kx. Heterogeneous variable selection is captured in the latent indicator
τik which indicates whether variable k is selected by unit i and, if selected, lets βik
be equal to λik which follows an infinite mixture of multivariate normals distribution
using a Dirichlet process prior. We take τik ∈ {κ, 1}, where κ is zero or close to
zero and is set by the researcher. In case κ = 0, we obtain a spike-and-slab prior, in
case κ 6= 0 but close to zero our approach becomes an example of stochastic search
variable selection. For estimation efficiency, it is not necessary to set κ 6= 0. Hence,
for interpretation it may be most suitable to set κ = 0.

We assume the variable selection indicator (τik) to be independent of λik. The
probability that unit i selects variable k is denoted by

Pr[τik = 1|θk] = θk, (2.3)

with 0 ≤ θk ≤ 1, for k = 1, ...,Kx.4

4One can allow for explained correlated variable selection using unit-specific probabilities θik
that are a deterministic function of unit-specific variables.
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For flexible continuous heterogeneity, we let λi = (λi1, ..., λiKx)′ come from an infinite
mixture of multivariate normals using the DP prior (Ferguson et al., 1974, Antoniak,
1974, Rossi, 2014). The mixture for λi is given by

λi|{πq}q, {µq}q, {Σq}q ∼
∞∑
q=1

πqMVN(µq,Σq), (2.4)

where πq indicates the component membership probability of component q, µq de-
notes component’s q mean, and Σq denotes component’s q covariance matrix. The
DP prior puts a prior on the mixture parameters πq, µq and Σq. The DP prior
has two hyperparameters: a tightness parameter α and a base distribution G0 that
invoke the following priors on πq, µq and Σq

πq = ηq

q−1∏
r=1

(1− ηr), ηq ∼ Beta(1, α), (2.5)

µq,Σq ∼ G0 ≡ p(µq,Σq), (2.6)

for q = 1, 2, ..., where the base distribution G0 of the DP is the prior distribution
p(µq,Σq). This representation of the DP mixture is known as the stick-breaking
representation (Rossi, 2014).

The component membership probabilities πq are completely governed by the tightness
parameter α. The specification implies that πq declines as the component indicator q
increases. The larger α, the more mass the Beta distribution has at zero. Hence, the
larger α, the smaller we expect the ηq’s for the first components to be, and the more
components we expect to have reasonably large membership probabilities. Given
that there are N units, at most N unique components can be identified from the
data.

For the base distribution, we take the conjugate prior p(µq,Σq) = p(µq|Σq)p(Σq) as
given by

p(µq|Σq) = MVN(µ0, d
−1Σq), (2.7)

p(Σq) = IW (ν, νυI). (2.8)

This conjugate prior allows for efficient estimation. The hyperparameter υ affects the
variances of the components: a large υ puts substantial prior mass on components
with ‘large’ variance, whereas a small υ puts substantial prior mass on components
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with ‘small’ variance (Rossi, 2014).

Finally, for γ and θk we take the following priors

p(γ) = MVN(γ0,Σγ), (2.9)

p(θk) = Beta(a, b), for k = 1, ...,Kx. (2.10)

The hyperparameters α, µ0, d, υ, ν, γ0, Σγ , a and b should either be set by the
researcher or should have a prior itself. The proposed approach for heterogeneous
responses is particularly useful in large N , small T settings, but can also be incor-
porated in large T settings because of the flexibility of the DP mixture.

As a final remark, we note that one may wish to restrict the variable selection to
hold for multiple variables simultaneously. For example, in case one includes different
levels of the same categorical variable through multiple dummy variables, one may
want the variable selection to hold for all levels of that categorical variable. More
formally, some of the elements in τi = (τi1, ..., τiKx)′ should be allowed to be restricted
to be equal to one another. Such restrictions can be incorporated by introducing the
unknown (K∗x × 1) vector τ∗i with elements that can all differ from each other, and a
known (Kx×K∗x) selection matrix D∗ to correctly map τ∗i to τi via τi = D∗τ∗i , where
K∗x ≤ Kx. The selection matrix D∗ should be set by the researcher, its elements are
either zero or one, and it can have only a single one per row. In case D∗ = IKx we
obtain the original formulation. Details of the prior specification and inference can
be easily adapted.

2.3.1 Inference

For inference, we develop an efficient Bayesian MCMC sampler. The details of the
MCMC sampler are outlined in Appendix 2.A. Specialized code was written in R and
C++ to obtain the posterior samples.5 In this section, we present the main ideas.

5The code for the MCMC sampler was tested using the identity (Geweke, 2004 and Cook et al.,
2006)

p(ω) =
∫

p(ω|ỹ)p(ỹ|ω̃)p(ω̃)dỹdω̃

where ω are the model parameters, ω̃ is a draw from the prior density p(ω), ỹ is a draw from the
DGP with likelihood function p(y|ω̃) given ω̃, and p(ω|ỹ) is the posterior density of ω given ỹ.
During testing, we used many replications to approximate the integral on the right-hand side and
checked whether the approximated marginal densities of ω matched the prior marginal densities.
That is, for each replication, we drew ω̃ from its prior and used this draw to generate data ỹ from
the DGP. Next, we used the MCMC sampler to obtain posterior draws for ω given the generated
data ỹ. Finally, for each parameter in ω, we considered the posterior draws over all replications,



22 Chapter 2

To draw the DP mixture parameters, we use algorithm 2 in Neal (2000). That
is, we augment the parameter space with the latent membership indicator ci that
indicates which mixture component unit i belongs to. This procedure is similar to
that for a finite mixture, except that for the DP mixture, components may appear
or disappear in subsequent MCMC iterations. Due to the conjugacy of the base
distribution p(µq,Σq), we can use a computationally efficient Gibbs step to draw ci.
Moreover, in this Gibbs step we draw ci unconditional on the component membership
probabilities π. Hence, there is no need to draw π.

Per MCMC iteration, we draw (i) the DP mixture parameters {λi}Ni=1, {ci}Ni=1,
{µq}q and {Σq}q, (ii) the variable selection parameters {τi}Ni=1 and θ, and (iii) γ.
Conditional on {ci}Ni=1, drawing {λi}Ni=1, {µq}q and {Σq}q becomes straightforward:
λi can be drawn using a random walk Metropolis-Hastings (M-H) step (Metropolis
et al., 1953, Hastings, 1970), µq can be drawn from a multivariate normal using only
the λi from the units for which ci = q, and similarly Σq can be drawn from an inverse
Wishart distribution. Furthermore, we draw γ using a random walk M-H step, τik
using a Bernoulli distribution, and θk from a Beta distribution.

For some models, including the linear model, the M-H steps to draw λi and γ can be
directly replaced by Gibbs steps. For models in which this is not the case, we do not
recommend to perform any further data augmentation to enable a Gibbs step for λi
and γ. For example, we would not recommend to augment the latent utilities in the
multinomial logit model (using e.g. the augmentation schemes in Polson et al., 2013
or Frühwirth-Schnatter and Frühwirth, 2010). Such types of data augmentation can
lead to poor mixing in the MCMC sampler. The main reason for poor mixing is
that, for the example of the multinomial logit model, the latent utilities are drawn
conditional on the variable selection indicators τi. In case in a MCMC iteration,
one obtains a draw τik = 0, the draw for the latent utility will assign no weight to
the kth variable. In the next MCMC iteration, this may cause a high probability to
again draw τik = 0 conditional on the latent utility. That is, the correlation between
posterior draws of τi and the latent utilities can be quite high.

To improve mixing of the sampler, we jointly draw λik and τik for each variable k,
and we randomize the order over k across the MCMC iterations. Alternatively, one
may jointly draw λi and τi over all variables. In that case, the computation of the
likelihood function requires the evaluation of 2Kx terms of likelihood contributions
of unit i due to all possible combinations of variables selected. These evaluations

and checked whether the posterior marginal densities coincided with the prior marginal densities.
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can generally not be simplified. Hence, this should only be done when Kx is small,
say smaller than five. By drawing separately per variable, the likelihood function
contains only 2 terms to compute (one for τik = 1 and one for τik = κ) and this has
to be repeated Kx times.

Our model and Bayesian MCMC sampler can be used for any nonlinear model of the
form in Equation (2.1). The sampler does rely on the computation of the likelihood
function conditional on λi and γ, for performing the M-H steps for λik and γ and
for drawing τik. For many models, this likelihood function can be analytically com-
puted, e.g. for the multinomial logit model, poisson model, and negative binomial
model. For other models, the likelihood function has to be approximated, e.g. for
the multinomial probit model (MNP) when the number of possible outcomes for Yit
exceeds two. For these later cases, our MCMC sampler can become slow due to the
computations necessary for approximating the likelihood function, and more efficient
approaches could entail further data augmentation, for example the latent utilities
for the MNP. Again, care must be taken, because conditioning on the augmented
parameters can lead to high correlation in the chains due to the conditioning on the
variable selection indicators τi.

2.4 Monte Carlo study

In this section, we perform a small Monte Carlo study to examine the performance of
our proposed approach for accommodating heterogeneous variable selection. For this
purpose, we consider a multinomial logit model (McFadden, 1973, Manski, 1977).
At each observation t, a unit i selects one of J alternatives. Each alternative j is
described by Kx variables in the vector xitj . The multinomial logit model is given
by

Yit ∼ Multinomial(1, pit), (2.11)

pitj ≡ Pr[Yit = j|βi] =
exp(x′itjβi)∑J
l=1 exp(x′itlβi)

, j = 1, ..., J, (2.12)

where pit = (pit1, ..., pitJ)′.

We consider four data generating processes (DGPs) and perform 100 Monte Carlo
replications per DGP. In each DGP, we consider 1, 000 units, 20 observations per
unit, 3 alternatives per observation, and 3 variables: x1itj from a standard normal
distribution and x2itj , x3itj from a Bernoulli distribution with probability of outcome
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1 equal to 0.5. For all DGPs, we let βik = τikλik, where τik ∈ {0, 1} is the variable
selection indicator, for k = 1, 2, 3.

For DGPs 1 to 3, we let λi come from a mixture of multivariate normals with five
components. The components’ means, covariance matrices and weights are equal
across the three DGPs, whereas the amount of variable selection differs across the
DGPs. In the mixture, the marginal density of λi1 mostly has mass on the negative
domain, is skewed and a has an extra mode in the tail, that of λi2 is skewed with
mass mostly on the positive domain, and that of λi3 is multimodal with a mode at
zero and substantial mass on both the positive and negative domain, see Figures 2.1
(a)-(c).6 Hence, the first variable could represent price, the second variable a quality
indicator, and the third variable a brand indicator. For the heterogeneous variable
selection part, we take the following probabilities that a variable is relevant for a unit,
i.e., that the unit assigns weight to the variable. In DGP 1, the variables are relevant
for the majority of units: θ = (0.90, 0.85, 0.95). In other words, 90% of units assign
weight to the first variable, 85% to the second variable, and 95% to the third variable.
In DGP 2, the variables are relevant for all units: θ = (1, 1, 1). In DGP 3, there are
quite some units for which the variables are irrelevant: θ = (0.80, 0.70, 0.75).

Figure 2.1: True marginal densities of λi1, λi2 and λi3 for DGPs 1 to 3 (top) and
DGP 4 (bottom).

DGPs 1-3
(5 components)

(a) λi1 (b) λi2 (c) λi3

DGP 4
(1 component)

(d) λi1 (e) λi2 (f) λi3

6For DGPs 1-3 with five mixture components we use the following setting. We set the
membership probabilities to π = (0.25, 0.1, 0.15, 0.1, 0.4), the components’ means to µ1 =
(−1.2,−0.45,−2,−0.2,−0.7), µ2 = (1.6, 0.6, 2, 0.25, 0.9) and µ3 = (0.1, 1,−0.9,−0.9, 1), and the
components’ covariance matrices with standard deviations, σ1 = (0.2, 0.1, 0.5, 0.2, 0.2), σ2 =
(0.4, 0.15, 0.75, 0.3, 0.25), and σ3 = (0.3, 0.2, 0.2, 0.2, 0.2), and correlations (equal across compon-
ents) ρ12 = 0.2, ρ13 = 0.1 and ρ23 = 0.2.
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For DGP 4, we use one mixture component for λi, see Figures 2.1 (d)-(f).7 We use
the same amount of variable selection as in DGP 1, that is, θ = (0.90, 0.85, 0.95).

We estimate a MNL using three different approaches for the heterogeneous responses:
(1) our proposed DP mixture with heterogeneous variable selection (HVS-DPM), (2)
a “standard” DP mixture without heterogeneous variable selection (DPM), and (3) a
single multivariate normal distribution with heterogeneous variable selection (HVS-
M). We set the priors’ hyperparameters to α = 1, µ0 = 0, d = 0.5, ν = Kx + 5,
υ = 0.2, and a = b = 1. Hence, the prior distribution for θk is uniform over the
unit interval. Appendix 2.B gives the histograms of the prior number of components
based on α and N , the marginal prior on µ and the marginal prior on the standard
deviations on the diagonal of Σ. Furthermore, we set κ = 0 in estimation.

For the posterior results per replication, we use 15,000 simulations after 5,000 burn-in
draws and keep every 4th draw. We visualize the results per DGP using the pos-
terior marginal densities of βi1, βi2, and βi3. For this purpose, we first construct
the posterior marginal densities for each of the 100 replications. That is, for each
replication, we take the equally weighted mixture of the 15,000/4 posterior draws of
marginal densities, where each draw of the density directly results from the draws of
the parameters of the mixture of multivariate normals (π, µ, Σ) and of the hetero-
geneous variable selection (θ). For each DGP, we plot the equally weighted mixture
of these 100 marginal densities.

2.4.1 Results

The posterior results for DGP 1, with substantial variable relevance and non-normal
continuous heterogeneity, are shown in Figure 2.2.8 In this figure, we plot the mar-
ginal posterior densities of βi1, βi2, and βi3, by plotting the underlying continu-
ous heterogeneity distribution (the mixture of multivariate normals) as a continuous
density. Moreover, we represent the heterogeneous variable selection, i.e. the relative
number of units that assign no weight to the variable, by a vertical line through zero.
The probability mass at zero is equal to one minus the mean across replications of
the posterior mean of θ, displayed in the top left corner.

7For DGP 4 with one mixture component we set the mean to µ = (−0.5, 1.0, 0.3) and the covari-
ance matrix to Σ with standard deviations σ = (0.35, 0.40, 0.50) for the three variables, respectively,
and correlations ρ12 = 0.2, ρ13 = 0.1 and ρ23 = 0.4.

8To obtain 1.000 draws from the posterior for a Monte Carlo replication generated from DGP
1, it takes about 50 seconds for the HVS-DPM, 10 seconds for the DPM and 45 seconds for the
HVS-M. Simulations were done using 1 core on an Intel Core i7 processor with 2.6GHz frequency.
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Figure 2.2: (Posterior) marginal densities of βi1, βi2 and βi3 for DGP 1.

(a) βi1 (b) βi2 (c) βi3

Baseline levels are price 6 euro, cooking time 30 minutes, taste good, and health neutral.True HVS-DPM DPM HVS-M

Our proposed model is well able to capture the skewness and multimodality in the
continuous heterogeneity. The fit is not perfect, mainly because we find compon-
ents that are less peaked than they are in reality, that is, we find components with
larger variances. Due to this smoothing, primarily caused by the prior on the cov-
ariance matrices, the mass close to zero of the continuous heterogeneity distribution
is slightly overestimated and therefore the probability that a variable is selected is
overestimated. In sum, for the skewed distribution for variables one and two, our
model is able to capture the modes and the heavy tails. For variable three, the mode
at zero of the continuous heterogeneity distribution is missed, and the modes at the
positive and negative side are less extreme than in reality.

Compared to the alternative approaches, our approach seems to best capture the un-
derlying distribution of heterogeneous responses. The standard DP mixture without
variable selection cannot capture the spike at zero. Instead, more mass is allocated
between -0.5 and 0.5. The single multivariate normal approach with variable selection
cannot capture the non-normality in the continuous heterogeneity, and compensates
by shifting the mode away from zero for the skewed distributions, and finding much
less heavy tails.

To further compare the performance of the three approaches for modeling hetero-
geneous responses, we consider the predictive performance. We generate five more
observations for each unit. For each Monte Carlo replication and each approach,
we compute the predictive log-likelihood contribution per unit based on these five
out-of-sample observations.9 For easy comparison, we take the sum of predictive
log-likelihood contributions across units and subtract the value obtained with one
of the alternative approaches (DPM or HVS-M) from the value obtained with our

9The predictive log-likelihood contribution of unit i can be approximated using the posterior
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approach (HVS-DPM). A positive number indicates our approach leads to a better
predictive performance, a negative number indicates the alternative approach leads
to a better predictive performance.

Table 2.2: Difference between the sum of predictive log-likelihood contributions for
our approach (HVS-DPM) against two alternative approaches (DPM and HVS-M)
per DGP. Based on 100 replications. Averages and percentages of replications for
which the difference is greater than zero.

HVS-DPM against DPM HVS-DPM against HVS-M
DGP Mean % > 0 Mean % > 0
DGP 1 2.3 84% 24.9 100%
DGP 2 -0.5 41% 37.0 100%
DGP 3 5.5 98% 11.4 98%
DGP 4 1.0 75% -0.2 36%

The results for the predictive log-likelihood contributions are in Table 2.2. We report
the means over the Monte Carlo replications and the fraction of Monte Carlo replic-
ations for which our approach has a better predictive performance. For DGP 1, we
find that the predictions obtained with our approach are substantially better than
those obtained with the alternative approaches. This holds in particular in compar-
ison with the single multivariate normal approach (HVS-M): none of the replications
of the HVS-M approach has a higher log-likelihood value.

For further evaluation, we consider the hit rates: how well are the MNLs based on
the three approaches able to accurately assign, at the unit-level, posterior mass to
βik. The results are in Table 2.9. In this table, we show the percentage of units for
which the posterior draw of βik lies in the interval [−ε, ε] for different values of ε,
averaged over draws, variables and replications. We do this for four groups: (1) all
units, (2) units for which the true βik lies within the interval, (3) units for which the
true βik does not lie within the interval, and (4) units for which the true βik = 0.
For DGP 1, we find that our approach slightly underestimates the mass between

samples:

log p(y∗i |y) ≈ log

 1
S

S∑
s=1

∏
t∈T ∗

i

Pr[Y ∗it = y∗it|β
(s)
i ]

 ,
where y∗i denotes the out-of-sample observations for individual i that predictions are made for, y
denotes the in-sample observations which were used to obtain the posterior draws, S is the number
of draws of the MCMC sampler after burn-in, T ∗i is the set of observations for unit i that was left
out of the training sample (i.e. observations 21 until 25), and β(s)

i is the sth posterior draw of βi
which can be computed directly using the sth posterior draws for δi and τi.
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[-0.3,0.3], but not as much as the standard DP mixture approach. In contrast, the
single multivariate normal approach leads to an overestimation of the mass close to
zero, and underestimation of the mass in the tails. Because of this, the HVS-M
approach is better able to assign posterior mass to units that assign weights close to
zero but does worse for units with weights further away from zero.

For DGP 2 where the variables are relevant for all units, we find that, as expected,
the results of our approach closely match those of the standard DP mixture approach,
see Figures 2.3 (a)-(c). With our approach, we do find evidence of a small amount
of units which do not assign weight to certain variables (1%-3%). The predictive
log-likelihoods indicate that our approach leads to a similar predictive performance
as the standard DP mixture, with the standard DPM being slightly better, see Table
2.2.

The results for DGP 3, where for quite some units the variables are irrelevant, are
in Figures 2.3 (d)-(f). Again, we find that our approach seems to be most accurate
in capturing the true density. Furthermore, the improvement in predictive perform-
ance of our approach as compared to the standard DP mixture approach is greater
than for DGP 1, see Table 2.2. Hence, the more units that assign no weight to cer-
tain variables, the more important it becomes to account for heterogeneous variable
selection.

When the continuous heterogeneity follows a normal distribution as in DGP 4, our ap-
proach and the HVS-M approach with a single multivariate normal for the continuous
heterogeneity find a similar shape for the underlying distribution of heterogeneous
responses, see Figures 2.3 (g)-(i). For the third variable, the amount of variable
selection is underestimated by both approaches: an estimated 82% of units assign
weight to the third variable, whereas in reality it is 95%. This affects the shape
of continuous heterogeneity found, which underestimates the mass between -0.5 and
0.5. The predictive log-likelihoods in Table 2.2 indicate that our approach leads to a
similar predictive performance as the HVS-M approach.

As a final note. In this Monte Carlo study, we use Kx = 3 variables. Already
with this small number of variables, we see that our approach with heterogeneous
variable selection performs better than the standard DP mixture approach. In case
there are more variables, we expect this difference in performance to be even greater,
as the standard DP mixture would need at least 2Kx components to capture all
combinations of variable selection.
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Figure 2.3: (Posterior) marginal densities of βi1, βi2 and βi3 for DGPs 2-4.

(a) DGP 2 - βi1 (b) DGP 2 - βi2 (c) DGP 2 - βi3

(d) DGP 3 - βi1 (e) DGP 3 - βi2 (f) DGP 3 - βi3

(g) DGP 4 - βi1 (h) DGP 4 - βi2 (i) DGP 4 - βi3

Baseline levels are price 6 euro, cooking time 30 minutes, taste good, and health neutral.True
HVS-DPM
DPM
HVS-M
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2.5 Case study: multinomial logit model

In this section, we illustrate our approach with an empirical application. We again
consider the multinomial logit model in Equations (2.11) and (2.12). We consider
responses obtained from a discrete choice experiment on food choices (Koç & van
Kippersluis, 2017).10 During the choice experiment, respondents had to complete
18 choice tasks. In each task, a respondent was asked which out of two meals s/he
would eat most regularly. The meals were described by attributes as price and taste,
and by attributes describing how healthy the meal is.

The respondents were divided into three groups. Each respondent group obtained
different types of choice tasks in terms of the attributes describing how healthy the
meal is and the amount of health information provided in the text. For group 1 (1,206
respondents), the meals were described by four attributes: price, cooking time, taste,
and health consequences. All health information was provided in the final attribute
health consequences. For groups 2 (1,154 respondents) and 3 (1,185 respondents), the
meals were described by six attributes: price, cooking time, taste, number of calories,
grams of saturated fat, and grams of sodium. Group 2 obtained health information
in the text regarding what amount of calories, saturated fat, and sodium constitutes
a healthy meal, whereas group 3 did not obtain health information. The ordering of
the tasks within each respondent group was randomized over the respondents.

Table 2.4: Attributes and attribute levels in the choice tasks for the discrete choice
experiment on healthy food choices. The final column indicates which respondents
groups (1,2 or 3) saw which attributes in the choice experiment.

Attribute Attribute levels Respondent groups

Price 2 Euro 6 Euro 10 Euro 1, 2, 3
Cooking time 10 min 30 min 50 min 1, 2, 3
Taste OK Good Very good 1, 2, 3
Health consequences Unhealthy Health neutral Healthy 1
Number of kilocalories 800 1,100 1,400 2, 3
Grams of saturated fat 10 20 30 2, 3
Milligrams of sodium 900 1,200 1,500 2, 3

Each of the attributes took on one of three values. The attribute levels had a clear
ordering, see Table 3.2. For example, the price of the meal could either be 2 Euros,
6 Euros, or 10 Euros. In the model, we include a separate dummy variable per
attribute level, with the exception of a baseline level per attribute (the middle level).
Furthermore, we restrict the variable selection to hold for all levels of the same

10We thank the LISS panel and the experiment designers for providing this dataset.
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attribute. That is, we consider whether an individual finds an attribute relevant
(such as price), and not just one of the attribute levels (such as price 2 Euros).
Heterogeneous variable selection in such an application is also known as attribute
non-attendance (Scarpa et al., 2009).

As in the Monte Carlo study, we use three approaches for modeling heterogeneous
responses in the MNL: (1) our proposed DP mixture with heterogeneous variable
selection (HVS-DPM), (2) a “standard” DP mixture without heterogeneous variable
selection (DPM), and (3) a single multivariate normal distribution with heterogen-
eous variable selection (HVS-M). For posterior results, we use 60,000 simulations
after 40,000 burn-in draws and we keep every 10th draw. We use the same priors as
in the Monte Carlo study and set κ = 0.

The MCMC sampler converges rather quickly and mixes well in general. For extreme
quantiles of the heterogeneity distribution, the mixing is less good. This is not
surprising as only very few observations are informative for such quantiles. Trace
plots are given in the Supplementary Materials, available upon request.

2.5.1 Results

The posterior marginal densities of βi for the first respondent group are displayed
in Figure 2.4.11 For this group, the meals were described by four attributes. Us-
ing our approach with a DP mixture and heterogeneous variable selection, we find
evidence of the existence of groups of respondents that ‘ignore’ attributes, for all
four attributes. Ignorance of attributes, or attribute non-attendance, can mean that
either a respondent did not consider the attribute or is indifferent between the at-
tribute levels. The health attribute is least ignored (4%), followed by price (13%),
taste (16%), and cooking time (33%). The marginal distributions seem skewed, most
mass is usually at either the positive or the negative side, and there is a heavy tail
away from zero. For the health attribute levels, the tail is especially thick, indicating
that there are groups of respondents that highly value this attribute.

The HVS-M approach with a single multivariate normal clearly cannot capture the
skewness in the marginal distributions. Instead, to somewhat capture the heavy tail
and that most mass is on one side of the distribution, the mode of the distribution is
shifted further away from zero, leading to selection probabilities that are substantially
lower than we find with our approach. Finally, the standard DP mixture without

11The posterior marginal densities are constructed from the posterior draws in the same way as
in the Monte Carlo study.
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Figure 2.4: Posterior marginal density of βik for respondent group 1.

(a) Price 2 euro (b) Price 10 euro (c) Time 10 min

(d) Time 50 min (e) Taste OK (f) Taste very good

(g) Unhealthy (h) Healthy

Baseline levels are price 6 euro, cooking time 30 minutes, taste good, and health neutral.
HVS-DPM
DPM
HVS-M
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variable selection finds roughly the same forms of the density as our approach with
variable selection, but as it cannot capture the peak at zero, it distributes more mass
between -1.0 and 1.0. This can be seen most clearly in Table 2.6, which shows the
percentage of draws for βik in the interval [−ε, ε]. In this table, we also see that the
DP mixture approaches assign more mass in the tails than the HVS-M approach.

The results for the second (health info) and third (no health info) respondent groups
are in Figures 2.5 and 2.6, respectively. For these groups, the meals were described
by six attributes. For both respondent groups we again find evidence of variable
ignorance and non-normality of the heterogeneity when using our approach.

To better show the difference in variable selection across the respondent groups, Table
2.5 concisely displays the posterior means and 95% highest posterior density intervals
(HPDIs) of θk — the probability that attribute k is selected — per respondent group
and attribute for the DP mixture approach with heterogeneous variable selection.
For the meals described by six attributes (groups 2 and 3), including the health
information seems to have the respondents made more aware of calories and saturated
fat, but the opposite seems to hold for sodium. Furthermore, compared to the first
group, the individuals in the second and third group seem to more often ignore the
standard attributes price, cooking time, and taste. The 95% HPDIs are quite wide,
indicating that there is quite some uncertainty in these values.

Table 2.5: Posterior means and 95% HPDIs of attribute selection probabilities θ per
respondent group and attribute (results of HVS-DPM).

Group 1 Group 2 Group 3
Attribute Mean 95% HPDI Mean 95% HPDI Mean 95% HPDI

Price 0.87 (0.79,0.96) 0.75 (0.65,0.84) 0.63 (0.52,0.76)
Cooking time 0.67 (0.57,0.77) 0.49 (0.39,0.58) 0.39 (0.31,0.48)
Taste 0.84 (0.72,0.97) 0.80 (0.67,0.97) 0.75 (0.65,0.85)
Health 0.96 (0.93,0.99) - -
Number of kilocalories - 0.89 (0.80,0.98) 0.81 (0.72,0.89)
Grams of saturated fat - 0.88 (0.78,1.00) 0.86 (0.73,0.97)
Milligrams of sodium - 0.64 (0.51,0.79) 0.74 (0.56,0.91)
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Figure 2.5: Posterior marginal density of βik for respondent group 2.

(a) Price 2 euro (b) Price 10 euro (c) Time 10 min

(d) Time 50 min (e) Taste OK (f) Taste very good

(g) Calories 800 (h) Calories 1400 (i) Sat fat 10 gram

(j) Sat fat 30 gram (k) Sodium 900mg (l) Sodium 1500mg

Baseline levels are price 6 euro, cooking time 30 minutes, taste good, calories 1100, saturated fat
20 gram, and sodium 1200 mg.

HVS-DPM
DPM
HVS-M
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Figure 2.6: Posterior marginal density of βik for respondent group 3.

(a) Price 2 euro (b) Price 10 euro (c) Time 10 min

(d) Time 50 min (e) Taste OK (f) Taste very good

(g) Calories 800 (h) Calories 1400 (i) Sat fat 10 gram

(j) Sat fat 30 gram (k) Sodium 900mg (l) Sodium 1500mg

Baseline levels are price 6 euro, cooking time 30 minutes, taste good, calories 1100, saturated fat
20 gram, and sodium 1200 mg.

HVS-DPM
DPM
HVS-M
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2.5.2 Out-of-sample performance

We next evaluate the forecasting performance of our approach for modeling het-
erogeneous responses for the empirical dataset on food choice. We compare the
performance across the three approaches (HVS-DPM, DPM, and HVS-M) using two
measures: (i) hit rates and (ii) predictive log-likelihood contributions.

To construct forecasts, we split the sample into two parts: (i) a forecasting sample
consisting of two randomly chosen observations per individual, and (ii) a training
sample with the remaining observations. We obtain posterior samples using again
60,000 simulations after 40,000 burn-in draws and we keep every 10th draw. We
repeat this exercise ten times per respondent group, using different randomly chosen
forecasting samples to increase the robustness of the results to the selection of the
forecasting sample.

First, we consider the hit rates. The hit rate is equal to the percentage of choices
that are correctly predicted, that is, the percentage of choices for which the predicted
choice probability is higher than 0.5.12 The results are in Table 2.7, where we show
the average hit rate over the ten forecasting samples for each approach and respondent
group.

Table 2.7: Hit rates for each approach to modeling heterogeneous responses (HVS-
DPM, DPM, HVS-M) and respondent group. Averaged across ten different forecast-
ing samples.

HVS-DPM DPM HVS-M
Group 1 79.9% 79.8% 79.4%
Group 2 77.9% 78.1% 77.5%
Group 3 78.0% 77.8% 77.7%

The approach with a single multivariate normal and heterogeneous variable selection
(HVS-M) gives the lowest hit rate for all three respondent groups. Hence, this ap-
proach seems to give the weakest forecasting performance. For respondent groups

12The choice probabilities are approximated using the posterior samples:

Pr[Y ∗it = y∗it|y] ≈
1
S

S∑
s=1

Pr[Y ∗it = y∗it|β
(s)
i ],

where y∗it denotes the out-of-sample observation for individual i that a prediction is made for, y
denotes the in-sample observations which were used to obtain the posterior draws, S is the number
of draws of the MCMC sampler after burn-in and β(s)

i is the sth posterior draw of βi.
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1 and 3, our HVS-DPM approach provides the best forecasts, and for group 2 the
DPM approach provides the best forecasts. The differences are, however, small.

Finally, we consider the predictive log-likelihood contribution per individual. We
subtract the sum of predictive log-likelihood contributions obtained with the two
alternative approaches from that obtained with our approach. These measures are
computed in the same manner as in the Monte Carlo study. The results for the
predictive log-likelihood contributions are given in Table 2.8. For each respondent
group, we report the averages across the ten replications, and the percentages of
replications for which the difference is positive.

Table 2.8: Difference between the sum of predictive log-likelihood contributions for
our approach (HVS-DPM) against two alternative approaches (DPM and HVS-M)
per DGP. Based on 10 forecasting samples. Averages and percentages of replications
for which the difference is greater than zero.

HVS-DPM against DPM HVS-DPM against HVS-M
DGP Mean % > 0 Mean % > 0
Group 1 1.13 70% 12.26 90%
Group 2 0.85 60% 8.16 70%
Group 3 6.39 80% 10.80 100%

The averages are all positive, indicating that our approach leads to a better fore-
casting performance than the alternative approaches. Our approach clearly stands
out as compared to the HVS-M approach with a single multivariate normal that was
proposed by Gilbride et al. (2006).13 The differences in predictive log-likelihood con-
tributions are much larger than zero for the majority of forecasting samples for all
three respondent groups. Hence, for this dataset on food choices, there is sufficient
evidence of non-normality in the distribution of preferences. These findings indicate
that allowing for flexible cross-sectional heterogeneity via a mixture of multivariate
normals is important for understanding and predicting choice behavior.

Our approach also compares favorably to the DPM approach without heterogeneous
variable selection, although the results are less overwhelming for respondent groups
1 and 2. A possible reason for the relative small difference in predictive performance
could be that quite some individuals have strong preferences (> 2) for one attribute
or another, as indicated by the heavy tails. In the multinomial logit model, such
attributes will dominate the choice predictions, making it less important to accurately

13For the HVS-M approach, we use the model specification provided in Gilbride et al. (2006) and
our computationally efficient Bayesian MCMC sampler.
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estimate the preferences close to zero. The final respondent group, for which the
predictive performance of our approach clearly stands out, was the group which had to
make decisions on the largest number of attributes (six) without obtaining objective
information on the health attributes. For this group, allowing for heterogeneous
variable selection substantially improves the predictive performance.

2.6 Conclusion

In this paper, we develop a general method for heterogeneous variable selection in
Bayesian nonlinear panel data models. We allow for flexible cross-sectional het-
erogeneity by letting the model’s unit-specific parameters follow a Dirichlet process
mixture of multivariate normals. Our main contribution is that we augment the
DP mixture with heterogeneous variable selection. This allows modeling the pos-
sibility that subsets of units are unaffected by certain variables, as may be present
in applications as diverse as health treatments, choice situations, macroeconomics,
and operations research. We develop our approach for nonlinear panel data models
including multinomial logit and probit models, count models, exponential models,
among many others. Finally, we develop an efficient Bayesian MCMC sampler to
allow for inference for datasets with up to 50 or 100 explanatory variables.

We illustrate the model with a Monte Carlo study and an empirical application. For
illustration, we consider a multinomial logit model as this model is the focus of most
literature on heterogeneous variable selection. In the Monte Carlo study we find that
our approach is able to capture both complex forms of continuous cross-sectional
heterogeneity — such as skewness and multimodality — as well as heterogeneous
variable selection. A ‘standard’ DP mixture cannot capture heterogeneous variable
selection. Instead of a spike at zero, this approach generally allocates probability mass
to a relatively large region around zero, depending on the shape of the continuous
heterogeneity. In the empirical application, we consider responses to a discrete choice
experiment on food choices. We find substantial evidence of attribute non-attendance
and non-normality of the continuous heterogeneity. In particular, the continuous
heterogeneity seems skewed. These findings indicate the usefulness of our approach
in practice.

A limitation of the proposed approach is the use of a conjugate prior for the com-
ponents’ means and covariance matrices. Although this prior is advantageous for
estimation, it may be unrealistic as the prior on the component’s mean directly de-



Chapter 2 41

pends on the component’s covariance matrix. This implies that the marginal prior on
the mean is tighter when the corresponding variance is small. If the conjugacy of the
prior would be relaxed, it is required to draw the component membership indicators
with a Metropolis-Hastings step instead of a Gibbs step. This could dramatically
increase computation time due to worse mixing properties of the resulting MCMC
sampler.

We note three interesting venues for future research. First, one can allow for correl-
ated variable selection. This could be incorporated, for example, by allowing for a
different membership probability per combination of variables selected and putting a
(Dirichlet) prior on these membership probabilities. Second, the model can be gener-
alized to allow for time-varying parameters, including time-varying variable selection.
In choice situations, this could model changing preferences of individuals, or learn-
ing and fatigue effects. Finally, the nonlinear (univariate) panel data model can be
extended to multivariate outcomes. This would require inference on the correlations
across outcomes.

Appendix

2.A MCMC sampler

In this section, we develop the MCMC sampler for our nonlinear panel data model
with heterogeneous variable selection in Equations (2.1)-(2.10). In summary, the
model is given by

Yit|βi, γ ∼ f(g(xit, βi, zit, γ)),

βik|τik, λik = τikλik,

with variable selection priors

τik ∈ {κ, 1},

Pr[τik = 1|θk] = θk,

θk ∼ Beta(a, b),
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DP mixture priors

λi|{πq}q, {µq}q, {Σq}q ∼
∞∑
q=1

πqMVN(µq,Σq)

πq = ηq

q−1∏
r=1

(1− ηr), ηq ∼ Beta(1, α),

µq|Σq ∼MVN(µ0, d
−1Σq),

Σq ∼ IW (ν, νυI),

and finally

γ ∼MVN(γ0,Σγ).

The hyperparameters α, µ0, d, ν, υ, γ0, Σγ , a and b, are assumed fixed. The sampler
can be easily extended to allow for priors on these hyperparameters.

The MCMC sampler is given by

(1) ci|c−i, λi, {µq}q , {Σq}q for i = 1, ..., N, (Gibbs, multinomial),

(2) µq ,Σq |{λi}Ni=1, {ci}
N
i=1 for every unique q in {c1, ..., cN}:

(2a) Σq |{λi}Ni=1, {ci}
N
i=1 (Gibbs, inverse Wishart),

(2b) µq |{λi}Ni=1, {ci}
N
i=1,Σq (Gibbs, multivariate normal),

(3) λik, τik|yi, λi,−k, τi,−k, ci, µci ,Σci , θk, γ for i = 1, ..., N , and k = 1, ...,Kx:

(3a) λik|yi, λi,−k, τi,−k, ci, µci ,Σci , θk, γ (M-H, random walk),

(3b) τik|yi, λi, τi,−k, θk, γ (Gibbs, Bernoulli),

(4) θk|{τik}Ni=1 for k = 1, ...,Kx, (Gibbs, Beta),

(5) γ|{yi}Ni=1, {ci}
N
i=1, {λi}

N
i=1, {τi}

N
i=1 (M-H, random walk),

In this sampler, we jointly draw µq and Σq, and we jointly draw λik and τik.

Two remarks on this sampler. First, in case some of the variables should be simul-
taneously selected, and thus K∗x < Kx (see Section 2.3, right before Section 2.3.1),
step 3 should be slightly altered to loop over all k = 1, ...,K∗x and, per k, to jointly
draw {λil, τil} over all l for which D∗l,k = 1. Second, in case Kx is really small, say
Kx < 5, the MCMC sampler could be more efficient when λi and τi are jointly drawn
over all variables instead of per variable k. In this case, step 3 can be replaced by
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step 3∗ below

(3∗) λi, τi |yi, ci, µci ,Σci , θ, γ for i = 1, ..., N :

(3a∗) λi|yi, ci, µci ,Σci , θ, γ (M-H, random walk),

(3b∗) τi|yi, λi, θ, γ (Gibbs, Multinomial).

The starting values are generated as follows. First, we set the number of components
to 10, and generate the component membership indicators ci from a multinomial
distribution with 10 outcomes, each with equal probability. Second, the components
means µq are set to a vector of zeroes, and the component covariance matrices Σq to
an identity matrix. Third, to draw λi and γ, we first compute the maximum likelihood
estimates of the parameters of the corresponding model with homogeneous responses
and no variable selection. Then, for each individual, we take the λi that optimizes a
weighted log-likelihood function.14 Fourth, we set θk = 0.95 for k = 1, ...,Kx. Finally,
we draw τik by first drawing a rik from a Bernoulli distribution with parameter θk
and then setting τik to 1 when rik = 1 and to κ otherwise.

2.A.1 Draw ci

We use algorithm 2 from Neal (2000) to sample ci from the full conditional posterior.
Let nc denote the number of units in component c, and nc,−i denote the number
of units in component c if we would not count unit i. Let Qi be the current set of
distinct components if we would not count unit i. That is, Qi consists of the distinct
components in {c1, ..., cN}\{ci}. Let Qi be the size of the set Qi. We draw ci from
a multinomial distribution with Qi + 1 outcomes. The first Qi possible outcomes
are the objects in Qi, the final component is a new component. The corresponding

14The weighted log-likelihood function that is optimized over λi is similar to the one used in Rossi
(2015) for the MNL and is given by

0.9 ∗ log f(yi|λi, γ) + 0.1 ∗
Ti∑
i
Ti

(−0.5 ∗ z′z),

where f(yi|λi, γ) is the likelihood function of observing yi conditional on βi = λi and γ, and
z = L(λi − λ̂) where λ̂ is the pooled maximum likelihood estimate of λ, and L is the Cholesky de-
composition of the negative Hessian of the pooled log-likelihood function at the maximum likelihood
estimates.
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probabilities are given by

Pr[ci=q|c−i,λi,{µq}q,{Σq}q ]=


nq,−if(λi|µq,Σq)∑

r∈Qi
nr,−if(λi|µr,Σr)+α

∫
f(λi|µ,Σ)f(µ,Σ)dµdΣ

, if q ∈ Qi,

α
∫
f(λi|µ,Σ)f(µ,Σ)dµdΣ∑

r∈Qi
nr,−if(λi|µr,Σr)+α

∫
f(λi|µ,Σ)f(µ,Σ)dµdΣ

, if q /∈ Qi,

where f(λi|µq,Σq) is the density of a multivariate normal distribution with mean µq
and covariance matrix Σq evaluated at λi, f(µ,Σ) is the prior density of a µ and Σ
based on the prior distribution in Equation (2.7)-(2.8) and the marginal density of
λi is given by

f(λi) =
∫
f(λi|µ,Σ)f(µ,Σ)dµdΣ =

(
d

π(d+ 1)

)Kx/2 ΓKx((ν + 1)/2)
ΓKx(ν/2)

|νυI|ν/2

|Ŝi|(ν+1)/2
,

where ΓK is the multivariate Gamma function, | · | denotes the determinant and Ŝi
is the scale matrix of the distribution of Σ conditional on λi as given by

Ŝi = νυI + (λi − µ̂i)(λi − µ̂i)′ + d(µ0 − µ̂i)(µ0 − µ̂i)′,

where µ̂i is the mean of the distribution of µ conditional on λi as given by

µ̂i = dµ0 + λi
d+ 1 .

For these derivations, we use the conjugacy of the normal-inverse Wishart prior on
µ and Σ.

When in the multinomial distribution we draw a new component ci /∈ Qi, we also
need to draw a new component mean µci and covariance matrix Σci . These are
drawn from their posterior. For this purpose, we first draw Σci conditional on λi,
and then µci conditional on Σci and λi. That is, we draw Σci from an inverse Wishart
distribution with ν+1 degrees of freedom and scale matrix Ŝi. Next, we draw µci from
a multivariate normal distribution with mean µ̂i and covariance matrix (d+1)−1Σci .

2.A.2 Draw Σq and µq

We can jointly draw Σq and µq conditional on {λi}Ni=1 and {ci}Ni=1 by first drawing Σq
conditional on {λi}Ni=1 and {ci}Ni=1 and then drawing µq conditional on Σq, {λi}Ni=1

and {ci}Ni=1, for q = 1, ...Q.



Chapter 2 45

We draw Σq from an inverse Wishart distribution with degrees of freedom ν + Nq

and scale matrix

Ŝq = νυI +
N∑
i=1

I[ci = q](λi − µ̂q)(λi − µ̂q)′ + d(µ0 − µ̂q)(µ0 − µ̂q)′

where Nq is the number of units in component q, and

µ̂q =
dµ0 +

∑N
i=1 I[ci = q]λi
d+Nq

.

Next, we draw µq from a multivariate normal distribution with mean µ̂q and covari-
ance matrix (d+Nq)−1Σq.

2.A.3 Draw λik

We use a random walk Metropolis-Hastings step to draw λik conditional on yi, λi,−k,
τi,−k, ci, µci , Σci , θk, and γ. Conditional on λi,−k and τi,−k, we know βi,−k.
Moreover, given λi,−k, µci and Σci , the prior for λik is a univariate normal dis-
tribution with mean µ̃λik and variance σ̃2

λik
given by

µ̃λik ≡ E[λik|λi,−k, µci ,Σci ] = µci,k + Σci,k,−kΣ−1
ci,−k,−k(λi,−k − µci,−k),

σ̃2
λik
≡ Var (λik|λi,−k,Σci) = Σci,kk − Σci,k,−kΣ−1

ci,−k,−kΣci,−kk,

where Σc,k,−k refers to the kth row of Σ and all columns except for the kth.

The candidate for λik is drawn from the normal distribution

λ∗ik ∼ N(λik, ρ2
λ,ikσ̃

2
λik

),

where ρλ,ik is a parameter to be tuned such the acceptance rate is about 0.44 (Roberts
et al., 1997, Roberts, Rosenthal et al., 2001). Tuning is performed during the burn-in
MCMC iterations. The candidate is accepted with probability

min
[
1, f(yi|λ∗ik, βi,−k, θk, γ)f(λ∗ik|µci ,Σci , λi,−k)
f(yi|λik, βi,−k, θk, γ)f(λik|µci ,Σci , λi,−k)

]
,
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where the likelihood contribution conditional on λik and βi,−k is given by

f(yi|λik, βi,−k, θk, γ) =
∑

τ̃ik∈{κ,1}

f(yi, τ̃ik|λik, βi,−k, θk, γ),

=
∑

τ̃ik∈{κ,1}

Pr[τik = τ̃ik|θk]f(yi|λik, τ̃ik, βi,−k, γ),

=
∑

τ̃ik∈{κ,1}

θ
I[τ̃ik=1]
k (1− θk)I[τ̃ik=κ]f(yi|β̃i, γ),

=
∑

τ̃ik∈{κ,1}

θ
I[τ̃ik=1]
k (1− θk)I[τ̃ik=κ]

(
Ti∏
t=1

f(yit|β̃i, γ)
)
,

where β̃i has kth element τ̃ikλik and f(yit|β̃i, γ) is the likelihood contribution of
observation t of unit i conditional on β̃i and γ given in Equation (2.1). For the prior
density of λik we have that

f(λik|µci ,Σci , λi,−k) ∝ exp
{
−1

2
(λik − µ̃λik)2

σ̃2
λik

}
.

In case λi should be drawn jointly over all variables k, the candidate should be a
multivariate normal distribution and the tuning parameter ρλ should be tuned such
to obtain an acceptance rate of about 0.234 (Roberts et al., 1997, Roberts, Rosenthal
et al., 2001).

2.A.4 Draw τik

We draw τik conditional on yi, λi, τi,−k, θk and γ using a Bernoulli distribution. The
conditional probability that τik is equal to 1 is given by

Pr[τik = 1|yi, λi, τi,−k, θk, γ] = Pr[τik = 1|θk]f(yi|λik, τik = 1, βi,−k, γ)∑
τ̃ik∈{κ,1} Pr[τik = τ̃ik|θk]f(yi|λik, τ̃ik, βi,−k, γ)

=
θk

(∏Ti
t=1 f(yit|βik = λik, βi,−k, γ)

)
(1− θk)

(∏Ti
t=1 f(yit|βik = κλik, βi,−k, γ)

)
+ θk

(∏Ti
t=1 f(yit|βik = λik, βi,−k, γ)

) ,
where the likelihood contribution of observation t of unit i conditional on βi and γ
is given in Equation (2.1). Hence, we can draw a rik from a Bernoulli distribution
with the probability above. Then, we obtain a draw of τik by setting τik equal to 1
when rik = 1 and equal to κ when rik = 0.
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2.A.5 Draw θk

We can directly draw θk conditional on {τik}Ni=1 from the Beta distribution

θk|{τik}Ni=1 ∼ Beta

(
a+

∑
i

I[τik = 1], b+
∑
i

I[τik = κ]
)
,

for k = 1, ...,Kx.

2.A.6 Draw γ

We use a random walk Metropolis-Hastings step to draw γ conditional on {yi}Ni=1,
{ci}Ni=1, {λi}Ni=1, and {τi}Ni=1. First notice that given {λi}Ni=1, and {τi}Ni=1, we know
{βi}Ni=1. At the sth draw, the candidate for γ, γ∗, is drawn from

γ∗ ∼MVN(γ(s−1), ρ2
γΣci),

where γ(s−1) is the current draw for γ, and ρλ,i is a parameter to be tuned such the
acceptance rate is about 0.234 (Roberts et al., 1997, Roberts, Rosenthal et al., 2001).
The acceptance probability is given by

min
[
1, f(yi|γ∗, βi)f(γ∗)
f(yi|γ(s−1), βi)f(γ(s−1))

]
,

where

f(yi|γ, βi) =
Ti∏
t=1

f(yit|βi, γ),

and f(γ) is the prior density of γ. In case γ∗ is not accepted, we set γ(s) = γ(s−1).
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2.B Histograms of priors

Figure 2.7: Priors µq and Σq

(a) Prior standard deviation
√
Diag(Σq) in

Monte Carlo study and empirical applica-
tions. This is the marginal density of the
square root of a variance from the diag-
onal of a covariance matrix based on an
IW (ν, νυI) distribution with K = 3, ν =
K + 5, and υ = 0.2.

(b) Prior mean for µq, marginalized over Σq,
in Monte Carlo study and empirical applica-
tions. This is the marginal density based on
aMVN(0, 0.5−1Σq) prior for µ, K = 3, and
the prior Σq ∼ IW (ν, νυI) with ν = K + 5,
and υ = 0.2.

Figure 2.8: Implied prior on number of components (N = 1, 000 and α = 1)
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Chapter 3

A multinomial and
rank-ordered logit model with
inter- and intra-individual
heteroscedasticity

3.1 Introduction

Understanding and predicting choices of individuals is important for numerous ap-
plications. These applications include predicting product demand, designing effective
policies, and constructing meaningful product recommendations. In many cases, in-
dividuals are observed while making repeated choices over time. For example when
responding to survey questions, choosing supermarket products across different vis-
its, or completing a ranking by consecutively choosing best, second best, et cetera.
To deduce an individual’s preferences based on observed discrete choices, the (mul-
tinomial) logit model is often employed.

The logit model is based on a utility framework: an individual obtains utility from
choosing a certain alternative/option and chooses the alternative which gives the
highest utility (Manski, 1977). The utility is comprised of an explained part (the
preferences/signal) and an unexplained part (the noise). The noise captures that the

51
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actual choice can differ from the choice that yields the highest signal. Hence, the
noise can capture that (i) the signal fails to capture all preferences of an individual,
and/or (ii) an individual can make ‘mistakes’ and choose an alternative that does
not accord with her underlying preferences. Logit models assume an extreme value
distribution for the noise.

The logit model has been extended in many ways to realistically capture certain
aspects of individual behavior. One such aspect of behavior is that the randomness
in the choice-making of individuals may vary over time. For example, during surveys,
individuals may become fatigued and start responding more randomly to questions as
the survey proceeds. Or when completing a ranking amongst multiple alternatives,
individuals may be unable to accurately assign middle and bottom ranks, due to
the required cognitive effort or lack of information. For supermarket purchases, an
individual that is new to a certain product category (e.g. diapers) may at first pick
alternatives quite randomly after which the preferences are learned and choices are
more and more based on the underlying preferences.

The heteroscedastic logit model is able to estimate individual preferences while ac-
counting for changes in the randomness in choices (Hausman and Ruud, 1987, Brad-
ley and Daly, 1994). For this purpose, the model explicitly allows for changes in
the relative importance of the explained and the unexplained part of utility (the
signal-to-noise ratio). When choices become more random, this can be captured in
the unexplained part becoming more dominant. Mathematically, the heteroscedastic
logit model allows for changes in the signal-to-noise ratio via a time-varying scale
parameter in the unexplained part of the utility specification.

The main drawback of the standard heteroscedastic logit model is that the scale
parameter is specified at the population-level. Hence, the model assumes that the
changes in the randomness in decision-making is equal across individuals, thereby
only allowing for within-individual (intra-individual) heteroscedasticity. In the con-
text of the earlier examples, this implies that each individual is assumed to become
fatigued at the same time, or assumed to be able to accurately assign exactly the
same ranks.

In this paper, we generalize the heteroscedastic logit model by allowing for differ-
ences across individuals in the changes in the scale parameter. That is, we allow for
intra- and inter-individual heteroscedasticity (or heterogeneous heteroscedasticity):
each individual has her own sequence of scale parameters over time, and the time-
variation in the scale parameters can differ across individuals. For example, for some
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individuals the scale parameters may stay constant, for others the scale parameters
may increase several times, and for again some others the scale parameters may first
decrease and then increase.

In case such individual differences exist, using an individual-level instead of a population-
level approach is beneficial for several reasons. First, existing population-level ap-
proaches generally lead to biased estimators for the preference parameters. That
is, there will be a bias towards zero, because at each time period a number of in-
dividuals could be answering more randomly.1 Second, population-level approaches
make inefficient use of data. This is because it is assumed that at each time period,
each individual provides the same amount of information in her choices. Finally,
population-level approaches only give insight into the average time-variation in the
scale parameter. In some cases, one might find a constant average scale parameter
while in reality there is heterogeneous heteroscedasticity. An individual-level ap-
proach also gives more insight into the behavior of different individuals. To allow for
individual differences, some structure is needed to model the heteroscedastic process.

We develop a multinomial logit model (MNL) and a rank-ordered logit model (ROL)
that allow for heterogeneous heteroscedasticity. For this purpose, we include individual-
and time/rank-specific scale parameters. We let the dynamics in the sequence of an
individual’s scale parameters be governed by a Markov process. We also allow for un-
observed preference heterogeneity. For inference, we develop a maximum simulated
likelihood estimation approach.

The Markov process assumes that, for subsequent choices to make or for consecutive
ranks to assign, an individual can go through a number of phases. Each phase
is marked by a different scale parameter. When an individual moves to a phase
with higher scale, the choices become more random. When an individual moves
to a phase with lower scale, the choices become more predictable and more in line
with the underlying preferences. For the example of fatigue during surveys, there
may exist phases with a rather high scale. Respondents who become fatigued, enter
these phases with high scale and answer more randomly as the survey proceeds.
Respondents that do not become fatigued, remain in a phase with low scale.

In the literature, a related individual-level ROL has been proposed in Fok et al.
(2012). They propose a latent class ROL where they allow for individuals to have

1Even when no individual differences exist, the existing estimators for the preference parameters
in the heteroscedastic logit model (Bradley & Daly, 1994) are often biased away from zero, because
the preference parameters are scaled such that the time period with lowest estimated signal-to-noise
ratio has a scale of one. The estimator for our proposed model does not suffer from this shortcoming.
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different ranking abilities: different individuals may be able to assign a different num-
ber of top ranks accurately. When applied to the ROL, our approach can be seen as
a generalization of Fok et al. (2012). First, we allow for unobserved preference het-
erogeneity and allow the model to be used for panel data. Especially in the context
of non-constant scale, allowing for heterogeneity is important to avoid spurious find-
ings. That is, when preference heterogeneity is unaccounted for, an individual who
has preferences that deviate from the “average” individual is likely falsely classified
as having a large scale parameter. Second, Fok et al. (2012) allow for individuals to
assign a specific rank either accurately or completely randomly. Instead, our model
allows for the decisions of individuals to be more in between, which is also possible
in the standard heteroscedastic ROL. As a consequence, our model is a generaliza-
tion of the heteroscedastic ROL, whereas the latent class ROL is not. Finally, our
model straightforwardly and parsimoniously allows for individuals that might rank
the middle ranks randomly, but both the top and bottom ranks accurately. This
possibility was already provided as an extension in Fok et al. (2012) but requires
work on top of the basic model specification.

We illustrate the usefulness of the newly proposed hidden Markov model specifica-
tions using a Monte Carlo study and two empirical applications. In the Monte Carlo
study, we find that our proposed model works well and that the estimator seems un-
biased in various settings. Furthermore, this study clearly illustrates the bias in the
estimator for the preference parameters for the standard heteroscedastic logit model.
Depending on the data generating process, the bias is either towards zero due to
neglecting individual differences, or away from zero due to scaling the preference
parameters based on the minimum of the estimated scale parameters. Furthermore,
the estimator for the standard MNL is biased towards zero in case heteroscedasticity
is present, because heteroscedasticity leads to more random-looking choice-making
of respondents. Our proposed estimator and model alleviate these biases.

In the first empirical application, we consider binomial choices during a discrete
choice experiment on healthy food choices. We allow for multiple phases to capture
possible learning and fatigue effects. We find that accounting for individual differ-
ences in learning and fatigue leads to a much better fit of the data, while needing less
free model parameters than the standard heteroscedastic logit model. In the second
empirical application, we consider rank-ordered data from a survey on political pref-
erences to capture possible differential capabilities in ranking. Again, allowing for
individual differences in the dynamics of the heteroscedasticity leads to a much better
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fit of the data.

This paper is set up as follows. In Section 4.2, we discuss the background and related
literature. In Section 3.3, we develop the hidden Markov MNL and ROL, and discuss
identification and estimation. In Section 3.4, we report the results of a Monte Carlo
study. In Sections 3.5 and 3.6, we report the results of the two empirical applications.
Finally, we provide a discussion and conclude.

3.2 Background

In this section, we discuss the additive random utility framework (ARUM) we employ
in our paper. This framework is central in deciding how to model individual-specific
dynamics in the signal-to-noise ratio. We illustrate the identification problem that
may arise, and discuss related papers that have proposed solutions to this. We also
indicate how our approach differs from current specifications dealing with individual-
specific dynamics in the signal-to-noise ratio.

The additive random utility framework of Manski (1977) is a useful and popular tool
to model choices of individuals. It relies on the assumption that an individual obtains
utility from a certain alternative and that an individual chooses the alternative that
gives the highest utility. The utility is assumed to be an additive function of the
signal (based on observed variables and unobserved parameters) and some noise

Utility = Signal + Noise.

Mathematically, we can write this utility specification in a general form as

Uitj = x′itjβit + σitεitj , (3.1)

where Uitj is the (unobserved) utility that individual i obtains from choosing altern-
ative j at time t, xitj is a vector of covariates representing the attributes of alternative
j, βit is a vector with preference parameters of individual i at time t, σit > 0 is a
scale parameter for individual i at time t, and εitj is an i.i.d. error term with fixed
variance.2 The individual chooses the alternative that gives the highest utility. The
multinomial logit and probit models are special cases of the ARUM.

Because only choices are observed and not utility, and the scale parameter does not
2A more general specification can be obtained by allowing for correlation across the error terms

εitj over individuals, time periods, and/or alternatives.
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vary over alternatives, we obtain an equivalent model for choices by rescaling the
utility

U∗itj = x′itj
βit
σit

+ εitj , (3.2)

where now the alternative is chosen with the highest scaled utility U∗itj = Uitj/σit.
The equivalence between the utility specifications in Equations (3.1) and (3.2) imply
that only the signal-to-noise ratio (βit/σit) is identified, and not the absolute values
of the signal and the noise. Hence, if we would allow for both βit = βi and σit = σi

to be individual-specific, separate identification of the two parameters can only come
from distributional assumptions on these two parameters (Hess & Rose, 2012). The
same holds when we allow both βit = βt and σit = σt to be time-dependent.

Therefore, for identification, the proposed models in the literature often allow for
heterogeneity and time-variation in either βit or σit. For example, the heteroscedastic
multinomial and rank-ordered logit models allow for a (possibly) individual-specific
βi and a time-dependent scale σt (Hausman and Ruud, 1987, Bradley and Daly,
1994, DeSarbo et al., 2004).

We generalize the heteroscedastic multinomial logit model by allowing for the time-
variation in the scale to be different across individuals (σit). We allow for individual-
specific preference parameters in βi, but exclude time-variation in this parameter.
We ensure identification by letting the sequence of scale parameters of an individual
{σi1, σi2, ...} be governed by a Markov process with the scale of one state normalized
at one, as will be shown later.3

Alternatively, one can allow for individual-specific heteroscedasticity by letting βit
be individual- and time-specific, and keeping σit = σ constant over individuals and
time. An advantage of this alternative approach is that it can model the change in
the signal-to-noise ratio to be different across attributes, and can thus capture choice
strategies where choices are made based on different subsets of attributes as time
progresses or where preferences change over time. The main disadvantage is that, in
small T settings, estimation uncertainty and overfitting become problematic.

There are three papers that propose discrete choice models with individual-specific
3Bhat and Castelar (2002) propose a multinomial logit model with individual-specific preference

parameters βi and individual- and time-specific scale parameters σit. However, their formulation
is highly restrictive. The scale parameter σit can take on only one of two values and which of the
two values it takes on is determined deterministically: σit = 1 in case observation t of individual
i corresponds to a revealed preference observation, and σit = λ in case it corresponds to a stated
preference observation, with λ a parameter to be estimated. Hence, the variation in scale parameters
only allows for the scale to be different across different types of data.
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time-variation in βit: Hess and Rose (2009), Bhat and Sidharthan (2011), and Danaf
et al. (2020). These three papers all propose a model with constant scale σ and
preference parameters of the form βi + βit. Both βi and βit are allowed to follow
arbitrary distributions, with the restriction that the unconditional mean of βit is zero.
The papers differ in the type of model (logit versus probit), estimation approach and
the distributional form used for βi and βit. These approaches are quite general,
but have the main disadvantage that they assume an additive specification βi + βit.
For individual-specific heteroscedasticity in discrete choice models, a multiplicative
specification via βiβit (or βi/σit) is more suitable, as choices becoming more random
directly affect the signal-to-noise ratio. That is, increased randomness in choice-
making leads to signal-to-noise ratios that become closer to zero. In a multiplicative
specification, this can be modeled by a low βit (or a high σit). Instead, with an
additive specification, a given βit could shrink the βi + βit of one individual to zero,
whereas for another individual it can make it more extreme or let it flip signs. Due to
the additive nature of these approaches, they are less suited to model heterogeneous
heteroscedasticity. Instead, we use a multiplicative specification.

A related strand of literature considers (time-invariant) scale heterogeneity: some
individuals may choose more randomly throughout the observed period than oth-
ers. Fiebig et al. (2010) propose a so-called generalized multinomial logit model
that includes both individual-specific preferences βi and an individual-specific scale
parameter σi. Separate identification of the two parameter is achieved by imposing
parametric population distributions on βi and σi (Hess & Rose, 2012). Our approach
differs crucially as we focus on the time-variation in the scale parameter, to allow for
changes in individual behavior over time.

3.3 Methodology

In this section, we develop the hidden Markov multinomial logit model and the hid-
den Markov rank-ordered logit model to capture inter- and intra-individual heteros-
cedasticity. The methods are highly similar, the main difference is that for the MNL
the heteroscedasticity refers to the change in the scale parameter as time progresses,
and for the ROL the heteroscedasticity refers to the change in the scale parameter
across consecutive ranks for the same ranking task.

Let us introduce some basic notation. We index the individuals by i = 1, ..., N , the
observations for individual i by t = 1, ..., T , and the alternatives that individual i can
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choose between, or need to rank, at time t by j = 1, ..., J .4 Furthermore, we denote
by xitj a (K × 1) vector of covariates representing the attributes of alternative j at
time t for alternative j, and by βi a (K×1) vector with individual-specific preference
parameters corresponding to xitj .

3.3.1 Hidden Markov multinomial logit model

For the multinomial logit model, we let the scalar yit ∈ {1, 2, ..., J} denote the altern-
ative that individual i chooses at time t, and let Yit denote the corresponding random
variable. The latent utility that individual i obtains from choosing alternative j at
time t is given by

Uitj = x′itjβi + σitεitj , (3.3)

where σit > 0 is an individual- and time-specific scale parameter and the error terms
εitj follow independent type I extreme value distributions with location 0 and scale
1. In case the scale parameter is equal across individuals (σit = σt), we obtain the
heteroscedastic multinomial logit model. In case the scale parameter is also equal
over time (σit = σ = 1), we obtain the standard (mixed) multinomial logit model.

At each time t, an individual chooses the alternative that yields the highest util-
ity. Given the utility specification in Equation (3.3), it follows that the conditional
probability that individual i chooses alternative j at time t is given by (McFadden,
1973)

Pr[Yit = j|βi, σit] =
exp

(
1
σit

(x′itjβi)
)

∑J
l=1 exp

(
1
σit

(x′itlβi)
) . (3.4)

The scale parameter σit captures heteroscedasticity. The higher σit, the lower the
signal-to-noise ratio and the more random the choice of individual i at time t be-
comes. For example, when an individual becomes tired during a survey and starts
to answer more randomly, this can be modeled by a sequence of scales {σit}Tt=1 that
increases over time. In the extreme case that σit tends to infinity, the choice becomes
completely random. In the other extreme case that σit is close to 0, the choice can
be perfectly explained by the signal x′itjβi.

We let the time variation in the sequence of an individual’s scale parameters {σit}Tt=1

be governed a Markov process. Such a process assumes that while an individual is

4In this notation, the number of observations T is equal across individuals and the number of
alternatives J is equal across observations and individuals. These assumptions can be easily relaxed.
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making choices, she can go through a number of phases. Each phase is marked by
a different scale parameter. When an individual moves to a phase with higher scale,
the choices become more random. When an individual moves to a phase with lower
scale, the choices become more predictable and more in line with the underlying
preferences. For the example of fatigue during surveys, there may exist phases with
a rather high scale. Respondents who become fatigued, enter these phases with high
scale as they answer more randomly as the survey proceeds. Respondents that do
not become fatigued, remain in a phase with low scale.

Let M denote the number of possible phases an individual can go through, with
M set by the researcher. The number of different scale parameters is equal to M :
σit ∈ {σ̃1, σ̃2, ..., σ̃M}. Let sit denote the phase that an individual i is in at time t.
Then we have

σit = σ̃sit . (3.5)

For parameter identification, the scale parameter of one of the phases needs to be
fixed. This fixed scale parameter can be set to 1, such that the preference parameters
βi can be interpreted with respect to the corresponding phase.

The phase indicators {sit}Tt=1 describe how individual i moves through theM phases.
These indicators are unobserved. We let the time variation in {sit}Tt=1 follow a first-
order Markov process (Goldfeld & Quandt, 1973). Such a process describes how
individuals move from one phase to another using transition probabilities. We denote
the transition probabilities by

qmnt ≡ Pr[Si,t+1 = n|Sit = m], (3.6)

which is the probability that individual i is in phase n at time t + 1 given that she
was in phase m at time t, and where Sit denotes the random variable associated with
outcome sit, for m,n = 1, ..,M and t = 1, .., T − 1. We have that 0 ≤ qmnt ≤ 1 and∑M
n=1 qmnt = 1. Finally, we denote the initial phase probabilities by

πm ≡ Pr[Si1 = m], (3.7)

with 0 ≤ πm ≤ 1 and
∑M
m=1 πm = 1.

Depending on the information in the data and the type of application, it may be
desired to impose restrictions on the parameters of the Markov process. For example,
one can restrict the transition probabilities such that an individual can either stay
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in the current phase or move one phase up, also known as a change-point model
(Chib, 1998). Furthermore, one may wish to restrict (some of) the values of the M
different scale parameters. In case the dataset contains relatively few observations
per individual, it is important to have only few phases M , e.g. M ≤ 4. This helps
to avoid overfitting, in particular finding a perfect fit phase in which the choices can
be seemingly perfectly explained by the signal.

Finally, the parameters in βi capture the preferences of individual i for the attributes
in xitj . We let βi follow some distribution with density f(βi|θ) where θ denotes the
set of population parameters to be estimated. The type of distribution for βi should
be set by the practitioner. Examples are the multivariate normal distribution (where
θ represents the mean and covariance matrix), lognormal distribution, a mixture
of discrete distributions, and a mixture of normal distributions. The parameters of
the distribution could also be allowed to depend on individual-specific characteristics.
Moreover, in case one has large T per individual, one can directly estimate βi without
imposing a population distribution.

For identification, with sufficient variation in the variables xitj , a sufficient condition
for θ to be identified is that the total number of observations in the phase with fixed
variance exceeds the number of parameters in θ. Additional observations in each
phase are needed to identify the parameters of the Markov process.

3.3.2 Hidden Markov rank-ordered logit model

Next, we generalize the hidden Markov multinomial logit model in Section 3.3.1 to
allow for rank-ordered choices. That is, we now model a partial or complete ranking
over the alternatives instead of only the most preferred alternative. As the ROL uses
more information than the MNL, the ROL allows for more efficient use of data. We
provide the model specification for panel data but the model can also be used for
cross-sectional data with T = 1.

Let the vector yit denote the complete ranking provided by individual i at time t
out of the J alternatives, and Yit the corresponding random variable.5 That is,
yit = (yit1, yit2, ..., yitJ)′, and yitj denotes the alternative that was ranked jth. For
example, in case alternative three was ranked first, we have that yit1 = 3. Note that
the MNL only models the first-ranked alternative yit1.

5The specification can be easily extended to problems in which only the top J∗ alternatives out
of J alternatives need to be ranked.
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In the rank-ordered logit model, jointly modeling the complete ranking of alternatives
(yit) is equivalent to modeling the sequential ranking from the highest rank (yit1) to
the lowest rank (yitJ) (Beggs et al., 1981, Chapman and Staelin, 1982). For each
rank h, the choice between the “remaining” alternatives {yitl}Jl=h can be modeled
with a multinomial logit model. That is, the probability of observing yit has the
form

Pr[Yit = yit|βi] =
J−1∏
h=1

Pr[Yith = yith|yit1, ..., yit,h−1, βi]

=
J−1∏
h=1

exp
(
x′ityithβi

)∑J
l=h exp

(
x′ityitlβi

) .
To allow for intra-individual heteroscedasticity — individuals may be more or less
capable to assign the top ranks as compared to the middle and bottom ranks —
Hausman and Ruud (1987) propose a heteroscedastic ROL. For this purpose, they
introduce a scale parameter σh that may differ over ranks h.6 More specifically, in
the heteroscedastic ROL the probability of observing yit is given by

Pr[Yit = yit|βi, σ1, σ2, ..., σJ−1] =
J−1∏
h=1

exp
(

1
σh

(x′ityithβi)
)

∑J
l=h exp

(
1
σh

(x′ityitlβi)
) .

The higher σh, the more random the assignment to rank h. Hence, a high σh indicates
that individuals find it relatively difficult to assign an alternative to rank h.

We extend the approach of Hausman and Ruud (1987) to additionally allow for inter-
individual heteroscedasticity: the ranking capabilities may differ across individuals.
More specifically, we let the probability of observing a complete ranking yit be given
by

Pr[Yit = yit|βi, σi1, σi2, ..., σi,J−1] =
J−1∏
h=1

exp
(

1
σih

(x′ityithβi)
)

∑J
l=h exp

(
1
σih

(x′ityitlβi)
) , (3.8)

where intra- and inter-individual heteroscedasticity is allowed for via the rank- and
individual-specific scale parameter σih.

As with the hidden Markov MNL in Section 3.3.1, we let the sequence of an indi-
6In their paper, Hausman and Ruud (1987) use the notation σh to denote the inverse of the scale

parameter.
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vidual’s scale parameter {σih}J−1
h=1 be governed by a Markov process. This implies

that we explicitly allow for “blocks” of consecutive ranks to be assigned based on
the same amount of randomness. The sizes and locations of these blocks may dif-
fer across individuals. For example, some individuals may assign the top three and
bottom three ranks accurately and the middle ranks more randomly. Others, may
assign the top two ranks and the lowest rank accurately, and the remainder more
randomly. Our model allows for all these individual differences.

We let βi follow a distribution with density f(βi|θ) and use a Markov process with
M phases to govern the dynamics in {σih}J−1

h=1 . That is, we have the latent phase
indicator sih denoting the phase that individual i is in when assigning rank h, and we
have that σih = σ̃sih . We let sih follow a first-order Markov process with transition
and initial phase probabilities

qmnh ≡ Pr[Si,h+1 = n|Sih = m], (3.9)

πm ≡ Pr[Si1 = m], (3.10)

with 0 ≤ qmnh ≤ 1,
∑M
n=1 qmnh = 1 for m = 1, ..,M and h = 1, .., J − 2, 0 ≤ πm ≤ 1

and
∑M
m=1 πm = 1.

Our hidden Markov ROL generalizes the latent class ROL of Fok et al. (2012). To see
the equivalence: the latent class ROL has a parameter pj denoting the proportion of
individuals that can rank exactly the first j alternatives correctly and the remaining
J − j alternatives randomly. Hence, the hidden Markov ROL is equivalent to the
latent class ROL in case we take two phases with σ̃1 = 1 and σ̃2 = ∞, and do not
allow individuals to move from phase two to phase one (q22h = 1 for all h). Then
p0 = π2, p1 = π1q121 and pj = π1q12j

∏j−1
h=1 q11h for j = 2, ..., J−1. Also, equivalently

to testing for an empty class in the latent class ROL (pj = 0) one can test π1 = 0
(class 0) or q11,j−1 = 1 (classes 1 up to J − 1). Moreover, with the hidden Markov
ROL one can test for equal transition probabilities across ranks (q11,j = q11,j+1).

3.3.3 Parameter estimation

To estimate the parameters of the hidden Markov MNL (HM-MNL) in Equations
(3.3)-(3.7) and of the hidden Markov ROL (HM-ROL) in Equations (3.8)-(3.10), we
rely on maximum simulated likelihood estimation. The likelihood functions of the
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models are given by

p(y|θ, q, π, σ̃) =
N∏
i=1

p(yi|θ, q, π, σ̃)

=
N∏
i=1

[∫
p(yi|βi, q, π, σ̃)f(βi|θ)dβi

]

=
N∏
i=1

∫ ∑
s∗
i
∈S

Pr[Si = s∗i |q, π]p(yi|βi, σ̃, s∗i )

 f(βi|θ)dβi

 , (3.11)

where yi = {yit}Tt=1, y = {yi}Ni=1, si = {sit}Tt=1 (HM-MNL), si = {sih}J−1
h=1 (HM-

ROL), S is a set of all possible sequences of phases si ∈ S, and

p(yi|βi, σ̃, si) =



∏T
t=1

exp
(

1
σ̃sit

(x′itjβi)
)

∑J

l=1
exp
(

1
σ̃sit

(x′
itl
βi)
) , (HM-MNL),

∏T
t=1
∏J−1
h=1

exp
(

1
σ̃sih

(x′ityithβi)
)

∑J

l=h
exp
(

1
σ̃sih

(x′
ityitl

βi)
) , (HM-ROL).

The expression to sum over all possible sequences s∗i ∈ S in Equation (3.11) seems
computationally intensive. However, it can be rewritten as a sequential filter which
is computationally efficient (Hamilton, 1989), see Equations (3.12) and (3.13) in Ap-
pendix 3.A. Moreover, the probability of observing a sequence s∗i is a straightforward
function of q and π.

For a general density f(βi|θ), the integral in the likelihood function in Equation
(3.11) cannot be solved analytically. To approximate the integral, we use Monte
Carlo integration. That is, we obtain R draws β(r)

i from a distribution with density
f(βi|θ) and approximate the integral by the average of p(yi|β(r)

i , q, π, σ̃) over these R
draws, see appendix 3.A for more details. We use scrambled Halton draws to ensure
good coverage of f(βi|θ) (Bhat, 2003, Bhat, 2001, Braaten and Weller, 1979). In case
the distribution over βi is taken to be discrete, the integral over βi can be written
as a sum and the log-likelihood function can be directly maximized without needing
Monte Carlo integration.

The use of the sequential filter allows us to directly maximize the (simulated) log-
likelihood function without needing to augment the likelihood function with sit (or
sih) to enable an Expectation Maximization (EM) type of algorithm (Dempster et
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al., 1977, Hamilton, 1990). This direct maximization requires less computations in a
single iteration of the optimization than an EM algorithm, and also does not depend
on a given draw of sit (or sih) which may possibly slow down convergence due to the
extra iterations needed.

Specialized code is written in C++ and R (R Core Team, 2013, Eddelbuettel and
François, 2011) to obtain the scrambled Halton draws and to evaluate the (simulated)
log-likelihood function and compute its analytic gradients. The details are given in
Appendix 3.A. We take the standard errors equal to the square root of the diagonal
elements of the inverse of the negative Hessian of the log-likelihood function. We
approximate the Hessian using the outer-product-of-gradients approximation.

The probability that an individual i is in a phase m at time t conditional on observed
choices yi, Pr[Sit = m|yi, θ, q, π, σ̃], can be computed after the maximum likelihood
estimates have been obtained. Details are in Appendix 3.B.

3.4 Monte Carlo study

In this section, we illustrate the performance of our hidden Markov multinomial
logit model with a Monte Carlo study. The study consists of two parts. We first
evaluate the small-sample performance of the model and estimator under correct
model specification. Next, we evaluate the performance of the model under model
misspecification.

For the first part of the study, we consider three data generating processes (DGPs).
We use 1,000 Monte Carlo replications per DGP. For each DGP, we consider 1,000
individuals, 15 observations per individual, and 2 alternatives per observation. We
consider three explanatory variables: x1itj , x2itj from a standard normal distribution
and x3itj from a Bernoulli distribution with probability 0.5 of outcome one. Fur-
thermore, in the DGPs we draw the individual-specific preference parameters from a
multivariate normal distribution

βi ∼MVN(b,Σβ),

where Σβ is a positive definite covariance matrix.

In the first DGP, the HM-MNL is the true model. In this DGP, we aim to mimic the
possible learning and fatigue behavior that individuals may experience when com-
pleting a survey. We use three phases σ̃ = (∞, 1,∞). Individuals in the first phase
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still need to learn (e.g. about their preferences) and answer randomly, individuals
in the second phase answer most accurately according to their true preferences (the
minimum variance phase), and individuals in the third phase answer randomly due
to fatigue. We consider initial phase probabilities π = (0.2, 0.7, 0.1), and transition
probabilities q11t = 0.50 and q22t = 0.99 for all t. Based on π and q, the percent-
age of observations in phases one to three are 2.7%, 81.6%, and 15.8%, respectively.
Furthermore, 21.5% of individuals reach phase three. At t = 5, the percentage of
individuals in the minimum variance phase (phase 2) is largest: 85.6%. Finally, we
take Σβ diagonal.

The second and third DGPs are altered versions of the first DGP. In DGP two,
the true model is the MNL: we set π2 = 1 and q22t = 1 for all t. In DGP three,
instead of a diagonal covariance matrix as in DGP one, we add correlation across
the preference parameters by letting Σβ be a full positive definite covariance matrix
with implied correlations ρβ . These correlations can capture time-invariant scale
heterogeneity: some individuals may choose more randomly throughout the survey
than others. Time-invariant scale-heterogeneity shows itself in preference parameters
of the same individual to either all tend to more extreme values than b or to all tend to
0. To incorporate time-invariant scale-heterogeneity in the DGP, we let the implied
correlations have an absolute level of 0.7. That is, when two b parameters are both
positive or both negative we set the correlation to 0.7, when one of them is positive
and the other negative we set the correlation to -0.7.

For each replication, we estimate the parameters of three models: (i) a MNL, (ii) a
heteroscedastic MNL (H-MNL)7, and (iii) our HM-MNL. For all three models, we
let βi ∼ MVN(b,Σβ) and use 250 scrambled Halton draws per individual. For the
H-MNL, we fix σ1 = 1 during estimation and, for each replication, after estimation
we scale b and Σβ such that the lowest scale parameter is equal to one. For the
HM-MNL, in estimation we use three phases with known scales σ̃ = (∞, 1,∞). We
restrict the transition probabilities such that individuals can only stay in the current
phase or move one phase up and let the transition probabilities be equal over time.

In the second part of the study, we check the robustness of our model to misspecific-
ation of the Markov process. We consider three extra DGPs (DGPs four to six) in
which there are more phases in the DGP’s Markov process to capture more complex
forms of heterogeneous heteroscedasticity. The details of the DGPs and the results

7The heteroscedastic MNL (Bradley & Daly, 1994) incorporates time-dependent scale parameters
{σt}Tt=1 that are freely estimated except for one. We set the first scale parameter equal to one:
σ1 = 1.
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are in Appendix 3.C.

3.4.1 Results

The results of the first part of the Monte Carlo study are given in Table 3.1. We
report the mean across replications of the parameter estimates and the corresponding
root mean squared error (RMSE) in parentheses. We do this for the three models
estimated: the standard (mixed) MNL, the heteroscedastic MNL and the hidden
Markov MNL.

In the first DGP, the HM-MNL is the true model with Σβ diagonal. For this DGP,
the standard MNL underestimates the mean of the preference parameters b. This
is as expected, as heteroscedasticity leads to more random-looking choice making
of individuals. The H-MNL also slightly underestimates the preference parameters.
Hence, the bias towards zero, due to 14.4% of individuals choosing randomly at the
minimum variance task 5, seems stronger than the bias away from zero, due to scaling
back to the minimum variance task. The parameter estimator for the HM-MNL seems
to have negligible small sample bias. Hence, the model seems well able to capture
and distinguish between the individual-specific preferences and heteroscedasticity.

Interestingly, the MNL and H-MNL spuriously find a positive correlation between
b1 and b2 (ρβ,12 > 0) and negative correlations ρβ,13 and ρβ,23. This implies that
individuals with an extremer value for b1 also tend to have extremer values for b2
and b3, and vice versa. These correlations thus try to capture part of the individual-
specific time-variation in the scale parameter via (spurious) individual-specific time-
invariant correlations.

In the second DGP, the standard MNL is the true model. The estimator for the
standard MNL seems to be unbiased. In contrast, the H-MNL clearly overestimates
the preference parameters b. This illustrates that the parameter estimator for the H-
MNL is biased away from zero due to estimation uncertainty in {σt}Tt=1 of which the
lowest is used to scale the preference parameters. The estimator for the HM-MNL
seems almost unbiased: there is a slight bias away from zero. This is because the
model assigns, on average, a small 2.2% fraction of individuals to start in phases one
and three. The mean of the estimated probability of staying in the minimum variance
phase (q22) is close to the true 1. The RMSEs indicate that the loss in efficiency in
estimating the HM-MNL instead of the correctly specified MNL is almost negligible.

Finally, in DGP 3, the HM-MNL is the true model and there is correlation across the
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preference parameters to allow for time-invariant scale heterogeneity. The estimator
for the HM-MNL seems to be unbiased for both the mean of the preference paramet-
ers (b) and the covariance matrix (Σβ), indicating that this model can distinguish
between time-invariant scale heterogeneity and time-varying scale heterogeneity.

To summarize, the parameter estimator for the preference parameters in the H-MNL
specification seems biased for all three DGPs. Depending on the DGP and whether
individual differences exist, the bias can be towards zero or away from zero. Also,
the estimator for the standard MNL specification is biased towards zero in case
heteroscedasticity is present. The HM-MNL alleviates these biases.

The results of the second part of the study, the performance of the HM-MNL under
misspecification of the Markov process, are in Appendix 3.C. In the three DGPs
considered, the true Markov process contains more phases than the three used in
estimation, and in many of the phases the scale parameter is between one and in-
finity. Such a Markov process could be more realistic than the process assumed
in estimation. We find that the estimators for the three models all underestimate
the preference parameters. The bias towards zero is largest for the standard MNL,
followed by the H-MNL. The estimator for the HM-MNL is most accurate in estim-
ating the preference parameters. This indicates that our proposed HM-MNL works
comparatively well when the true underlying Markov process is more complex than
assumed in the model.

3.5 Case study I: learning and fatigue during dis-
crete choice experiments

In this section, we illustrate our hidden Markov multinomial logit model with data
obtained from a discrete choice experiment (DCE). During DCEs, respondents are re-
peatedly asked to make a hypothetical choice among a set of alternatives, where each
alternative is described by a number of attributes (Green, 1974, Louviere and Wood-
worth, 1983). These experiments are used to elicit the preferences of respondents.
The results can be used in product design and in predicting product demand (Rao,
2014). During DCEs, respondents might still need to learn about their preferences or
the choice task at hand (Plott, 1993, Braga and Starmer, 2005), or may become tired,
bored, or irritated while completing the choice tasks (Lavrakas, 2008). This latter
process is known as fatigue. Due to learning and fatigue, a respondent may respond
more randomly at some tasks. This randomness will lead to unpopular products to
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be more often selected and, if unaccounted for in the model, overestimation of their
potential demand.

The papers that have examined the presence of learning and fatigue during discrete
choice experiments have so far only used population-level approaches for the learn-
ing and fatigue process.8 Using different datasets, they find mixed results: some
find evidence of learning (DeSarbo et al., 2004, T.P. Holmes and Boyle, 2005, Cza-
jkowski et al., 2014), some of fatigue (Bradley and Daly, 1994, Koppelman and Sethi,
2005, Savage and Waldman, 2008) and some of neither (Savage and Waldman, 2008,
Hess et al., 2012). Because of the population-level approaches, these papers only
provide insight into the aggregate scale per choice task, and thus cannot distinguish
between different respondents at the same choice task: those that answer accurately,
those that need to learn, and those that are fatigued. Hence, findings based on an
individual-level model may totally differ.

To examine learning and fatigue during DCEs, we use data obtained from a discrete
choice experiment on food choices conducted in the Netherlands (Koç & van Kip-
persluis, 2017).9 During the experiment, the respondents had to complete 18 choice
tasks. At each choice task, a respondent was asked to choose between two meals:
“Which of the two meals would you eat regularly (at least twice a week)?".

The meals were described by the attributes price, taste, cooking time, and health
consequences. Each attribute could take on three levels, with a clear ordering between
the levels. For example, the price of the meal was either 2 Euro, 6 Euro, or 10 Euro.
The respondents were divided into three groups. The groups differed in the attributes
and information they obtained during the DCE about the health consequences of the
meal. For the first respondent group, the health consequences of the meal were
described by one explicit attribute: a meal could either be healthy, health neutral, or

8The only exception is the individual-level model of Campbell et al. (2015), which is a rather
restrictive model. Campbell et al. (2015) a priori divide the choice tasks into early (E), middle
(M) and late (L) tasks. To model the choices for the three different types of tasks, they specify a
latent class model with seven classes. There are three different vectors of preference parameters βE ,
βM , βL and three scale parameters σE , σM and σL. The first class of the latent class model has
constant preferences βM and constant scale σM for early, middle and late tasks (hence, no learning
and fatigue). Classes 2 to 4 have a constant σM but different combination of β’s: class 2 has βE for
early tasks and βM for the remaining tasks (only learning), class 3 has βL for late tasks and βM for
the remaining tasks (only fatigue), and class 4 has βE for early tasks, βM for middle tasks and βL
for late tasks (learning and fatigue). Classes 5 to 7 have a constant βM and a similar combination
of σ as classes 2 to 4 have for β. This model does not allow for unobserved preference heterogeneity
and the timing of learning and fatigue is fixed across respondents by a priori dividing the tasks into
three sets.

9The dataset was obtained from the LISS (Longitudinal Internet Studies for the Social sciences)
panel administered by CentERdata (Tilburg University, The Netherlands).
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unhealthy. For the second and third group, the health consequences were described
by three implicit health attributes: number of calories, grams of saturated fat, and
grams of sodium. Furthermore, group 2 obtained health information describing what
levels of these attributes constitute a healthy meal. Group 3 did not obtain this
health information. For an overview of the attributes and corresponding levels per
respondent group, see Table 3.2. The ordering of the tasks within each respondent
group were randomized over the respondents and there was no overlap of respondents
across groups.

Table 3.2: Attributes and attribute levels for the three respondent groups. The final
column indicates which respondents groups (1,2 or 3) obtained which attributes in
the choice experiment.

Attribute Attribute levels Groups

Price 2 Euro 6 Euro 10 Euro 1, 2, 3
Cooking time 10 min 30 min 50 min 1, 2, 3
Taste OK Good Very good 1, 2, 3
Health consequence Unhealthy Health neutral Healthy 1
Number of kilocalories 800 1,100 1,400 2, 3
Grams of saturated fat 10 20 30 2, 3
Milligrams of sodium 900 1,200 1,500 2, 3

We retain all respondents who filled in at least two choice tasks, also when a respond-
ent dropped out. The three respondent groups contain the responses of 1,206, 1,154
and 1,185 respondents, respectively. In the model, we include the attribute levels as
different dummy variables. For each attribute, we take the baseline level to be the
first attribute level.

We consider three models: (1) a MNL, (2) a heteroscedastic MNL (H-MNL) (Bradley
& Daly, 1994), and (3) our HM-MNL. For all three models, we take a multivariate
normal distribution for βi as given by

βi ∼MVN(b,Σβ),

where Σβ is a full positive definite covariance matrix. In estimation, we use 250
scrambled Halton draws per respondent and 30 starting values per model.10

For the HM-MNL, we consider two specifications. Both specifications have three
phases σ̃ = (∞, 1,∞): respondents in the first phase still need to learn and answer
randomly, respondents in in the second phase (the minimum variance phase) answer

10The starting values for b and Σβ for the H-MNL and HM-MNL are set equal to the maximum
likelihood estimates of the MNL.
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most accurately, and respondents in the third phase answer randomly due to fatigue.
We restrict the transition probabilities such that a respondent can either stay in the
current phase or move one phase up. For the first specification, we let the transition
probabilities be equal over tasks: q11t = q11 and q22t = q22 for all t. For the second
specification, we allow for the transition probabilities from the minimum variance
phase to the fatigue phase to be different over tasks.

For the H-MNL, we fix σ1 = 1 during estimation. After estimation, we scale b,
Σβ and {σt}Tt=1 such that the minimum variance task has variance one, that is,
min{σt}Tt=1 = 1.

3.5.1 Results

The results for the first respondent group are shown in Table 3.3.11 For this group,
the meals were described by four attributes, explicit health information was given in
the final attribute ‘health consequences’. With the MNL, we find that individuals, on
average, positively value a low price and cooking time, a good taste, and a healthy
meal.

The H-MNL and HM-MNL find similar patterns as the MNL in the preference para-
meters, although they are estimated further away from zero. Hence, learning and
fatigue seem to both be present. For the population-level H-MNL, this is clearly in-
dicated in the time-variation in the scale parameters. The variance increases at task
2, then decreases, and in the final couple of tasks increases again. The minimum
variance task is estimated to be 14. Hence, in the first 14 tasks learning seems more
prevalent than fatigue, whereafter fatigue seems more prevalent. The standard errors
do imply that there is quite some estimation uncertainty and the minimum variance
task could be anywhere from task 7 to 16.

The first HM-MNL, with transition probabilities restricted over tasks, also finds
evidence of learning and fatigue. An estimated 17.4% of respondents start in the
learning phase in which they reside on average five tasks.12 Fatigue also occurs: 1.2%
of respondents are estimated to answer randomly throughout the survey, and at each
task an estimated 0.3% of respondents in the minimum variance phase gets fatigued.
Based on the estimated initial and transition probabilities, 5.2% of respondents is
fatigued at the final choice task.

11The detailed results for the covariance matrix Σβ are available upon request.
12The average number of tasks that someone who starts in the learning phase will remain in the

learning phase is equal to 1/(1− q11).
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Table 3.3: Parameter estimates and standard errors (in parentheses) for group 1 from
the food choice dataset. Baseline levels are price 2 euro, time 10 minutes, taste OK,
and health unhealthy.

MNL H-MNL HM-MNLa HM-MNLb

Price 6 euro -0.74 (0.04) -0.96 (0.07) -0.98 (0.06) -0.99 (0.06)
Price 10 euro -2.15 (0.08) -2.75 (0.18) -2.76 (0.12) -2.77 (0.13)
Time 30 min -0.35 (0.04) -0.44 (0.04) -0.46 (0.05) -0.46 (0.05)
Time 50 min -1.23 (0.06) -1.57 (0.11) -1.59 (0.08) -1.60 (0.08)
Taste good 0.66 (0.04) 0.83 (0.06) 0.85 (0.05) 0.85 (0.05)
Taste very good 1.18 (0.05) 1.51 (0.10) 1.50 (0.07) 1.51 (0.07)
Health neutral 3.50 (0.09) 4.49 (0.28) 4.55 (0.16) 4.58 (0.17)
Healthy 4.96 (0.13) 6.36 (0.39) 6.43 (0.23) 6.48 (0.24)

π1 0.174 (0.024) 0.170 (0.024)
π2 0.814 (0.033) 0.830 (0.039)
π3 0.012 (0.015) 0.000 (0.025)

q11 0.816 (0.043) 0.796 (0.046)
q22 0.997 (0.001)

σ1 1.59 (0.13)
σ2 or q22,1 1.76 (0.14) 0.990 (0.032)
σ3 or q22,2 1.59 (0.13) 0.968 (0.023)
σ4 or q22,3 1.64 (0.15) 1.000 (0.027)
σ5 or q22,4 1.33 (0.11) 1.000 (0.026)
σ6 or q22,5 1.51 (0.14) 1.000 (0.019)
σ7 or q22,6 1.16 (0.11) 1.000 (0.018)
σ8 or q22,7 1.21 (0.12) 1.000 (0.024)
σ9 or q22,8 1.14 (0.11) 1.000 (0.027)
σ10 or q22,9 1.01 (0.10) 1.000 (0.018)
σ22 or q22,10 1.21 (0.11) 0.990 (0.012)
σ12 or q22,11 1.13 (0.11) 1.000 (0.014)
σ13 or q22,12 1.22 (0.13) 1.000 (0.014)
σ14 or q22,13 1.00 - 1.000 (0.019)
σ15 or q22,14 1.10 (0.11) 1.000 (0.022)
σ16 or q22,15 1.20 (0.11) 0.985 (0.015)
σ17 or q22,16 1.25 (0.12) 1.000 (0.021)
σ18 or q22,17 1.24 (0.11) 0.987 (0.021)

average σβ 1.5 1.9 1.9 1.9

# free parameters 44 61 48 64
log-likelihood -10,560 -10,524 -10,483 -10,477
BIC 21,559 21,658 21,446 21,593
AIC3 21,252 21,232 21,111 21,146
AIC2 21,208 21,171 21,063 21,082

a HM-MNL with 3 phases σ̃ = (∞, 1,∞): equal transition probabilities over tasks.
b HM-MNL with 3 phases σ̃ = (∞, 1,∞): transition probability to fatigue different per task.
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The less restrictive second HM-MNL finds that an estimated 17.0% of respondents
start in the learning phase and none of the respondents start in the fatigue phase.
Furthermore, mainly after the first and second task, respondents seem to become
tired. For tasks 3 up to 15, most respondents in the minimum variance phase seem
to stay there, and at the final three tasks 16 to 18, more respondents seem to become
fatigued. At the final choice task, an estimated 7.2% of respondents is fatigued.

According to the information criteria, both HM-MNL models are preferred over the
standard MNL and the H-MNL. The first HM-MNL model seems the most preferred.
Even though this HM-MNL has 13 parameters less to estimate than the H-MNL, the
likelihood value indicates that it better fits the data. Thus, there seems to be quite
some heterogeneity in learning and fatigue across respondents.

The results for the HM-MNL models indicate that at each task, a number of respond-
ents answer randomly. This causes a bias towards zero in the preference parameters
b in the H-MNL next to the bias away from zero due to scaling back to the minimum
variance task. For this food choice dataset for the first respondent group, the biases
seem to almost cancel each other with the bias towards zero seeming just a bit more
dominant: the preference parameters b estimated by the H-MNL are slightly closer
to zero than those estimated by the HM-MNL.

The results for the second and third respondent groups are in Tables 3.4 and 3.5,
respectively. For these two groups, health consequences were described by three
attributes: (i) number of calories, (ii) amount of saturated fat, and (iii) amount of
sodium. For group two, health information on the attributes was provided in the
text, for group three no health information was provided.

The HM-MNL models find that as the amount of information decreases from group
one to three, the percentage of respondents that start in the learning phase increases
from 17% to 22% to 27%. Moreover, according to the first HM-MNL specification,
the probability to become fatigued once in the minimum variance phase increases
from group one to three, from 0.3% to 0.4% to 0.5% per choice task, although there
is some uncertainty in these estimates. Hence, summarizing health information in
one attribute or providing health information in the text seems to reduce the need
for learning and the risk of fatigue.

With the H-MNL we also find evidence of learning for respondent groups two and
three. Remarkably, for all three groups, we find an initial increase in the variance
from task 1 to 2, after which the variance decreases. This is not due to the order of
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Table 3.4: Parameter estimates and standard errors (in parentheses) for group 2 from
the food choice dataset. Baseline levels are price 2 euro, time 10 minutes, taste OK,
calories 800, saturated fat 10 gram, and sodium 900 mg.

MNL H-MNL HM-MNLa HM-MNLb

Price 6 euro -0.61 (0.04) -0.86 (0.06) -0.91 (0.06) -0.92 (0.06)
Price 10 euro -1.54 (0.08) -2.16 (0.13) -2.19 (0.13) -2.21 (0.13)
Time 30 min -0.08 (0.04) -0.13 (0.03) -0.15 (0.05) -0.16 (0.05)
Time 50 min -0.65 (0.06) -0.93 (0.07) -0.92 (0.09) -0.93 (0.09)
Taste good 0.69 (0.04) 0.99 (0.06) 0.98 (0.06) 0.98 (0.06)
Taste very good 1.19 (0.06) 1.69 (0.10) 1.64 (0.09) 1.65 (0.09)
Calories 1100 -0.81 (0.04) -1.10 (0.07) -1.11 (0.07) -1.11 (0.07)
Calories 1400 -1.59 (0.06) -2.20 (0.13) -2.19 (0.11) -2.20 (0.11)
Sat fat 20 gram -0.66 (0.04) -0.94 (0.06) -0.94 (0.07) -0.95 (0.07)
Sat fat 30 gram -1.28 (0.06) -1.78 (0.11) -1.79 (0.09) -1.81 (0.10)
Sodium 1200mg -0.37 (0.04) -0.52 (0.05) -0.55 (0.06) -0.55 (0.06)
Sodium 1500mg -0.87 (0.05) -1.21 (0.08) -1.22 (0.08) -1.23 (0.08)

π1 0.218 (0.030) 0.217 (0.030)
π2 0.765 (0.036) 0.782 (0.042)
π3 0.017 (0.021) 0.002 (0.030)

q11 0.816 (0.042) 0.802 (0.044)
q22 0.996 (0.001)

σ1 1.80 (0.14)
σ2 or q22,1 1.96 (0.16) 0.973 (0.040)
σ3 or q22,2 1.85 (0.15) 0.983 (0.035)
σ4 or q22,3 1.60 (0.15) 0.999 (0.037)
σ5 or q22,4 1.21 (0.10) 0.999 (0.035)
σ6 or q22,5 1.57 (0.13) 0.998 (0.034)
σ7 or q22,6 1.48 (0.12) 0.982 (0.024)
σ8 or q22,7 1.30 (0.11) 0.999 (0.028)
σ9 or q22,8 1.35 (0.11) 0.999 (0.026)
σ10 or q22,9 1.16 (0.10) 0.997 (0.025)
σ22 or q22,10 1.51 (0.13) 0.996 (0.026)
σ12 or q22,11 1.32 (0.12) 0.999 (0.021)
σ13 or q22,12 1.19 (0.11) 0.999 (0.026)
σ14 or q22,13 1.00 - 0.995 (0.023)
σ15 or q22,14 1.40 (0.12) 0.983 (0.022)
σ16 or q22,15 1.10 (0.11) 0.998 (0.025)
σ17 or q22,16 1.22 (0.11) 0.999 (0.025)
σ18 or q22,17 1.18 (0.12) 0.999 (0.039)

average σβ 1.1 1.5 1.4 1.4

# free parameters 90 107 94 110
log-likelihood -10,989 -10,946 -10,900 -10,897
BIC 22,872 22,955 22,734 22,887
AIC3 22,248 22,212 22,082 22,124
AIC2 22,158 22,105 21,988 22,014

a HM-MNL with 3 phases σ̃ = (∞, 1,∞): equal transition probabilities over tasks.
b HM-MNL with 3 phases σ̃ = (∞, 1,∞): transition probability to fatigue different per task.
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Table 3.5: Parameter estimates and standard errors (in parentheses) for group 3 from
the food choice dataset. Baseline levels are price 2 euro, time 10 minutes, taste OK,
calories 800, saturated fat 10 gram, and sodium 900 mg.

MNL H-MNL HM-MNLa HM-MNLb

Price 6 euro -0.71 (0.04) -1.03 (0.07) -1.03 (0.07) -1.06 (0.07)
Price 10 euro -1.82 (0.09) -2.64 (0.16) -2.68 (0.14) -2.61 (0.15)
Time 30 min -0.09 (0.04) -0.14 (0.03) -0.12 (0.05) -0.15 (0.06)
Time 50 min -0.73 (0.07) -1.08 (0.08) -1.09 (0.09) -1.04 (0.10)
Taste good 0.89 (0.05) 1.30 (0.08) 1.39 (0.08) 1.40 (0.08)
Taste very good 1.40 (0.07) 2.08 (0.12) 2.19 (0.12) 2.26 (0.12)
Calories 1100 -0.58 (0.04) -0.85 (0.06) -0.81 (0.06) -0.92 (0.07)
Calories 1400 -1.29 (0.06) -1.89 (0.11) -1.86 (0.10) -2.04 (0.11)
Sat fat 20 gram -0.43 (0.04) -0.61 (0.04) -0.60 (0.06) -0.68 (0.06)
Sat fat 30 gram -0.91 (0.05) -1.31 (0.08) -1.30 (0.08) -1.44 (0.09)
Sodium 1200mg -0.33 (0.04) -0.48 (0.04) -0.52 (0.06) -0.55 (0.07)
Sodium 1500mg -0.72 (0.05) -1.04 (0.07) -1.07 (0.07) -1.11 (0.08)

π1 0.273 (0.033) 0.269 (0.032)
π2 0.713 (0.035) 0.706 (0.047)
π3 0.014 (0.027) 0.025 (0.045)

q11 0.838 (0.036) 0.831 (0.037)
q22 0.995 (0.002)

σ1 1.90 (0.14)
σ2 or q22,1 2.13 (0.17) 0.993 (0.064)
σ3 or q22,2 1.85 (0.14) 0.990 (0.052)
σ4 or q22,3 1.88 (0.16) 0.998 (0.046)
σ5 or q22,4 1.40 (0.12) 0.992 (0.030)
σ6 or q22,5 1.17 (0.10) 0.995 (0.033)
σ7 or q22,6 1.70 (0.14) 0.996 (0.029)
σ8 or q22,7 1.63 (0.13) 0.997 (0.029)
σ9 or q22,8 1.44 (0.13) 0.999 (0.028)
σ10 or q22,9 1.29 (0.12) 0.987 (0.026)
σ22 or q22,10 1.30 (0.12) 0.990 (0.028)
σ12 or q22,11 1.17 (0.10) 0.990 (0.022)
σ13 or q22,12 1.25 (0.11) 1.000 (0.022)
σ14 or q22,13 1.26 (0.11) 0.999 (0.031)
σ15 or q22,14 1.13 (0.09) 0.982 (0.022)
σ16 or q22,15 1.50 (0.12) 0.993 (0.020)
σ17 or q22,16 1.33 (0.12) 0.999 (0.018)
σ18 or q22,17 1.00 - 1.000 (0.033)

average σβ 1.1 1.6 1.5 1.6

# free parameters 90 107 94 110
log-likelihood -11,474 -11,433 -11,360 -11,354
BIC 23,844 23,933 23,656 23,804
AIC3 23,217 23,188 23,001 23,037
AIC2 23,127 23,081 22,907 22,927

a HM-MNL with 3 phases σ̃ = (∞, 1,∞): equal transition probabilities over tasks.
b HM-MNL with 3 phases σ̃ = (∞, 1,∞): transition probability to fatigue different per task.
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the choice tasks as they are randomized over respondents. Hence, it seems that there
is a relatively large group of respondents who try to answer accurately at task 1, but
from task 2 onwards do not so anymore. This behavior can be seen more explicitly by
the second HM-MNL specification, where we find that there is relatively large group
of respondents that move to the fatigue phase after tasks one and two. Combined
with the reduction of respondents that need to learn in these two tasks, the variation
in the scale parameters in the H-MNL can be explained.

In summary, the hidden Markov MNLs provide the best fit of the data for all three
respondent groups. These models also provide interesting and plausible insights into
the presence of learning and fatigue during the discrete choice experiment. Fur-
thermore, the hidden Markov MNLs allow for an analysis per individual: given the
individual’s choices, what is the probability that she was affected by learning or fa-
tigue during the experiment? For this purpose, one can compute the conditional
probabilities that an individual is in a certain phase at a given choice task using the
formulas in Appendix 3.B. Such an individual-level analysis is not possible with the
heteroscedastic MNL.

3.6 Case study II: differential capabilities in rank-
ing

In this section, we illustrate our hidden Markov rank-ordered logit model with rank-
ings obtained from a survey on cultural opinions conducted in the Netherlands (So-
ciaal en Cultureel Planbureau, 2004, Fok et al., 2012). One of the questions in the
survey asked the respondents to rank 16 political goals from most to least desired.
In total, 2,261 individuals aged sixteen years and older completed the ranking. The
initial presented ordering of the political goals in the survey was randomized over
respondents.

We estimate and compare three models: (1) a ROL, (2) a heteroscedastic ROL (H-
ROL) (Hausman & Ruud, 1987) and (3) our HM-ROL. For all models, we take a
multivariate normal distribution for βi as given by

βi ∼MVN(b,Σβ),

with full positive definite covariance matrix Σβ .13 In estimation, we use 30 starting

13For the political preferences ranking data, we have only one observation per individual and quite
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values per model and 250 scrambled Halton draws per respondent. For the H-ROL,
we fix σ1 = 1.

For the HM-ROL, we consider three specifications. The first specification is equival-
ent to the latent class ROL in Fok et al. (2012), with the addition of allowing for
individual-specific preference parameters. That is, we use two phases σ̃ = (1,∞) and
restrict the transition probabilities such that, between consecutive ranks, a respond-
ent can only move from phase 1 to phase 2 and once in phase 2 stays there. In other
words, a respondent can assign all ranks accurately (all choices based on phase 1),
all ranks randomly (all choices based on phase 2), or the top j ranks accurately and
the bottom J− j randomly (in phase 1 for rank one until j, in phase 2 for ranks j+1
and higher) for any j.

For the second specification, we also allow for bottom ranks to be assigned accurately.
We use three phases σ̃ = (1,∞, 1) and restrict the transition probabilities such that,
between consecutive ranks, a respondent can only move from phase 1 to phase 2
or from phase 2 to phase 3, and once in phase 3 stays there. Also, a respondent
is restricted to start (assign the top rank) in either phase 1 or 2. In the third
specification, we include a middle phase with scale to be estimated: σ̃ = (1, σ̃2,∞, 1)
to allow for a decrease in the ability of respondents to assign lower ranks. We restrict
the transition and initial phase probabilities such that a respondent can only move
one phase up and can only start in the first and third phase. For further parsimony,
we restrict the transition probabilities to be equal to each other over ranks h, except
for moving from the first to the second phase in the first two tasks (assign top ranks
accurately) and from the third to the final phase in the last two tasks (assign bottom
ranks accurately).

3.6.1 Results

The results for the political preferences ranking data are given in Table 3.6. With the
standard ROL we find that individuals seem to attach most value to goals as ‘main-
tain order’, ‘stable economy’, ‘fight crime’, ‘freedom of speech’, and ‘social security’.
The estimated correlations across the individual-specific preference parameters in
Σβ indicate which goals are often ranked close by (results not shown).14 We find
that this holds most strongly for (i) ‘maintain order’ and ‘fight crime’, (ii) ‘more say
politics’ and ‘more say community’, (iii) ‘economic growth’ and ‘stable economy’,

a number of free parameters in the (15×15) matrix Σβ . Therefore, using a low-rank approximation
of Σβ or a Bayesian approach with informative priors might be useful to reduce the risk of overfitting.

14The detailed results for Σβ are available upon request.
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(iv) ‘defence forces’ and ‘cities and countryside’, and (v) ‘humane society’ and ‘ideas
> money’.

We next consider the H-ROL which accounts for the behavior that individuals cannot
rank all alternatives accurately in a homogeneous way across individuals. The estim-
ates for the mean preference parameters b are further away from zero than for the
ROL, and the scale parameters σh show a gradual increase as the rank h increases.
Hence, individuals seem to be unable to assign all ranks accurately, rendering the
estimator for the standard ROL biased. Moreover, individuals seem to most accur-
ately assign the top ranks, followed by the middle and then the bottom ranks. The
preference ordering of the political goals stays roughly the same.

The HM-ROL allows for individual differences in the ranking capabilities. The first
HM-ROL specification is equivalent to the latent class ROL in Fok et al. (2012), with
the addition of allowing for preference heterogeneity. We find that all individuals are
able to rank the first alternative accurately (π1 = 1.0). The probabilities of staying
in the minimum variance phase 1 for consecutive ranks (q11h) are mostly smaller than
one, indicating that quite some individuals find it rather difficult to assign the middle
and bottom ranks. Moreover, there seem to be individual differences in the number
of top ranks that can be assigned accurately. The probabilities of staying in the
minimum variance phase one are especially low for the final couple of ranks. This
indicates that a large proportion of respondent who are able to accurately assign
ranks 1 to 9, have more trouble assigning the lower ranks. These findings mostly
agree with the findings Fok et al. (2012), with the exception that they find that 4%
of individuals cannot rank the first alternative accurately. This difference suggests
that it is important to allow for preference heterogeneity when allowing for differential
capabilities in ranking.

The second HM-ROL specification also allows for bottom ranks to be assigned accur-
ately. The probability of staying in the first phase (q11h) are close to one for the first
six ranks, and quite a bit lower for the subsequent ranks. This indicates that quite
some individuals can accurately assign ranks one to six, but find it more difficult
to assign middle ranks from rank seven onwards. The probability of staying in the
second phase (q22h) differ quite a bit over ranks. These probabilities are often quite
low, indicating that indeed some individuals are able to assign the bottom ranks
accurately. Because of the uncertainty in these estimates, it might be sensible to add
restrictions to the transition probabilities. For example, one can impose them equal
across certain (middle) ranks.
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In the third HM-ROL specification, we allow for a decrease in accuracy for assigning
alternatives for consecutive ranks, as well as for bottom ranks to be assigned accur-
ately. The estimated scale parameter for the second phase is equal to 2.3. We find
that 10% of respondent in the minimum variance phase move to the second phase
after rank one, 0% after rank two, and 17% of respondents after each remaining rank.
Hence, the information content in the ranks assigned seems to highly differ across
respondents.

The main difference between the three HM-ROL specifications is that the final spe-
cification allows for a decrease in accuracy in the alternatives assigned to consecutive
ranks, whereas the first two specifications assume that an individual either completely
accurately assigns a rank or completely randomly. According to the three informa-
tion criteria, the third HM-ROL specification should be preferred. Hence, for this
ranking dataset, it seems more likely that individuals do not completely randomly
assign middle ranks, but that the choice is more random compared to top ranks.

When comparing all five models, the information criteria indicate that the third
HM-ROL specification should be most preferred. Even though this model has five
parameters less to estimate than the H-ROL, the likelihood value indicates that it
much better fits the data. The standard ROL should be the least preferred model,
followed by the first HM-ROL specification. The H-ROL and second HM-ROL spe-
cification are at a shared second place.

3.7 Conclusion

The heteroscedastic logit model is useful to describe repeated choices of individuals
when randomness in the choice-making varies over time. For example, due to fatigue,
individuals may respond more randomly to survey questions as the survey progresses.
Or when asked to give a complete ranking amongst multiple alternatives, individuals
may more accurately assign top ranks than middle and bottom ranks.

In this paper, we generalize the standard heteroscedastic logit model to allow for
individual differences in the dynamics in this randomness. In case individual differ-
ences exist, this individual-level approach has three main advantages: (i) it alleviates
biases in the preference parameters, (ii) makes more efficient use of data, and (iii)
allows for an analysis of individual behavior. The generalization amounts to adding
an individual- and time/rank-specific scale parameter to the multinomial and rank-
ordered logit model. We let the dynamics in the sequence of an individual’s scale
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parameters be governed by a Markov process. Additionally, we allow for unobserved
preference heterogeneity. For inference, we develop a simulated maximum likelihood
estimation approach.

In a Monte Carlo study, we find that our proposed model works well and the pro-
posed estimator seems unbiased in various settings. For the standard heteroscedastic
logit model, the biases in the estimator for the preference parameters are clearly illus-
trated: the bias towards zero due to neglecting individual differences in the dynamics
in the scale parameter, and the bias away from zero due to scaling the preference
parameters based on the minimum of the estimated scale parameters. Depending
on the data generating process, one of these biases may dominate the other. In
case of heteroscedasticity, the estimator for the preference parameters of the stand-
ard MNL is clearly biased towards zero, because heteroscedasticity leads to more
random-looking choice-making of respondents. Our proposed model and estimator
eliminate these biases. Furthermore, when allowing for preference heterogeneity via
a multivariate normal distribution, both the standard MNL and the heteroscedastic
MNL tend to spuriously capture individual differences in the dynamics in the scale
parameter in time-invariant correlations between preference parameters.

We also illustrate our model with two empirical applications: one using multinomial
choice data from a discrete choice experiment on food choices to model learning and
fatigue effects, and one on rank-ordered data from a survey to model differential
capabilities in ranking. For the multinomial choices, we find that accounting for
individual differences in learning and fatigue leads to a much better fit of the data,
while needing less model parameters. The same holds for the rank-ordered data.

Our approach has one main limitation: each variable gets scaled with the same factor.
Hence, the model cannot capture choice strategies where choices are made based on
different subsets of attributes as time progresses, or where preferences change over
time. The model could be extended to allow for a different scale parameter per
variable, for example, by letting each scale parameter be governed by its own Markov
process. However, for datasets with limited information per individual, such an
approach would be susceptible to overfitting and estimation uncertainty can become
problematic.

We provide three venues for future research. First, in case one wants to impose
restrictions on the minimum number of tasks an individual should be in a phase, one
can use a second- or higher-order Markov process. By using suitable restrictions on
the transition probabilities, no extra parameters need to be estimated. Of course, if



Chapter 3 83

desired, one can also allow the transition probabilities to depend on the duration in a
phase using such a higher-order Markov process. Second, for rank-ordered data, the
Markov process over time and over ranks can be combined, to simultaneously allow
for learning and fatigue and for differential capabilities in ranking.

Third, for the applications, we recommend to use more flexible forms of preference
heterogeneity then the used multivariate normal. This especially holds when one
wants to include scale parameters between one and infinity. A mixture of multivariate
normal distributions might be able to capture more realistically the differences in
preferences across individuals. One way in which individuals may differ is that some
individuals may answer more randomly throughout the observed period than others,
also known as time-invariant scale heterogeneity. In the multivariate normal, such
behavior is partly captured in the correlations in the covariance matrix. Using a more
flexible form than one multivariate normal could further reduce the way in which the
Markov process can capture part of the time-invariant scale heterogeneity in case one
of the scale parameters is allowed to be between one and infinity.

Appendix

3.A Maximum simulated likelihood estimation

We use maximum simulated likelihood estimation to estimate the parameters of the
hidden Markov multinomial and rank-ordered logit model. For this purpose, we
maximize the (approximated) likelihood function directly with respect to θ, q, π,
and σ̃ using a quasi Newton-Raphson algorithm. During optimization, we use ana-
lytic gradients of the simulated log-likelihood function and approximate the Hessian
with the BFGS algorithm. In this appendix, we provide more details for the estima-
tion approaches including the explicit likelihood functions for multinomial choices in
Section 3.A.1 and for rank-ordered choices in Section 3.A.2.
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3.A.1 Hidden Markov multinomial logit model

The likelihood function of the HM-MNL can be written as

p(y|θ, q, π, σ̃) =
N∏
i=1

∫ ∑
s∗
i
∈S

Pr[Si = s∗i |q, π]p(yi|βi, σ̃, s∗i )

 f(βi|θ)dβi


=

N∏
i=1

∫ ∑
s∗
i
∈S

Pr[Si = s∗i |q, π]
T∏
t=1

exp
(

1
σ̃sit

(x′itjβi)
)

∑J
l=1 exp

(
1
σ̃sit

(x′itlβi)
)
 f(βi|θ)dβi


=

N∏
i=1

[∫ {
π′fi1

(
T−1∏
t=2

Qt−1fit

)
QT−1f̃iT

}
f(βi|θ)dβi

]
, (3.12)

where Qt is a (M × M) transition probability matrix with element (m,n) equal
to qmnt, and f̃it is a (M × 1) vector with the likelihood contribution of task t of
respondent i given βi and sit, with element m equal to

f̃itm ≡ Pr[Yit = yit|βi, σ̃, sit = m] =
exp

(
1
σ̃m

(x′itjβi)
)

∑J
l=1 exp

(
1
σ̃m

(x′itlβi)
) .

Furthermore, fit is a diagonal (M ×M) matrix with the diagonal equal to f̃it.

We approximate the likelihood function using Monte Carlo integration:

p(y|θ, q, π, σ̃) ≈
N∏
i=1

[
1
R

R∑
r=1

p(yi|β(r)
i , q, π, σ̃)

]

=
N∏
i=1

[
1
R

R∑
r=1

(
π′f

(r)
i1

(
T−1∏
t=2

Qt−1f
(r)
it

)
QT−1f̃

(r)
iT

)]
,

where β
(r)
i is a draw from a distribution with density f(βi|θ) and f

(r)
it has mth

element Pr[Yit = yit|β(r)
i , σ̃, sit = m] for r = 1, ..., R. The corresponding simulated

log-likelihood function is given by

log p(y|θ, q, π, σ̃) ≈
N∑
i=1

log
[

1
R

R∑
r=1

(
π′f

(r)
i1

(
T−1∏
t=2

Qt−1f
(r)
it

)
QT−1f̃

(r)
iT

)]
.
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3.A.2 Hidden Markov rank-ordered logit model

For the HM-ROL, the likelihood function can be written as

p(y|θ, q, π, σ̃) =
N∏
i=1

∫ ∑
s∗
i
∈S

Pr[Si = s∗i |q, π]p(yi|βi, σ̃, s∗i )

 f(βi|θ)dβi


=

N∏
i=1

∫ ∑
s∗
i
∈S

Pr[Si = s∗i |q, π]
T∏
t=1

J−1∏
h=1

exp
(

1
σ̃sih

(x′ityithβi)
)

∑J
l=h exp

(
1

σ̃sih
(x′ityitlβi)

)
 f(βi|θ)dβi


=

N∏
i=1

∫ ∑
s∗
i
∈S

Pr[Si = s∗i |q, π]
J−1∏
h=1

T∏
t=1

exp
(

1
σ̃sih

(x′ityithβi)
)

∑J
l=h exp

(
1

σ̃sih
(x′ityitlβi)

)
 f(βi|θ)dβi


=

N∏
i=1

[∫ {
π′fi1

(
J−2∏
h=2

Qh−1fih

)
QJ−2f̃i,J−1

}
f(βi|θ)dβi

]
, (3.13)

where Qh is a (M ×M) transition probability matrix, and f̃ih is a (M × 1) vector
with the likelihood contribution of respondent i at rank h given βi and sih with mth

element equal to

f̃ihm =
T∏
t=1

exp
(

1
σ̃m

(x′ityithβi)
)

∑J
l=h exp

(
1
σ̃m

(x′ityitlβi)
) .

Furthermore, fih is a diagonal (M ×M) matrix with the diagonal equal to f̃ih.

We approximate the likelihood function using Monte Carlo integration:

p(y|θ, q, π, σ̃) ≈
N∏
i=1

[
1
R

R∑
r=1

p(yi|β(r)
i , q, π, σ̃)

]

=
N∏
i=1

[
1
R

R∑
r=1

(
π′f

(r)
i1

(
J−2∏
h=2

Qh−1f
(r)
ih

)
QJ−2f̃

(r)
i,J−1

)]
,

where β
(r)
i is a draw from a distribution with density f(βi|θ) and f

(r)
ih has mth

element
∏T
t=1 Pr[Yith = yith|yit1, ..., yit,h−1, β

(r)
i , σ̃, sit = m] for r = 1, ..., R. The

corresponding simulated log-likelihood function is given by

log p(y|θ, q, π, σ̃) ≈
N∑
i=1

log
[

1
R

R∑
r=1

(
π′f

(r)
i1

(
J−2∏
h=2

Qh−1f
(r)
ih

)
QJ−2f̃

(r)
i,J−1

)]
.
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3.A.3 Miscellaneous details

The parameters q, π, and σ̃ are constrained, as are possibly several parameters in
θ. To ensure unconstrained optimization of the simulated log-likelihood function,
we reparametrize the constrained parameters in terms of parameters that are uncon-
strained and optimize over these unconstrained parameters. Furthermore, to increase
the probability of finding a global maximum, we recommend using multiple starting
values and picking the solution with gives the highest log-likelihood value.

Finally, we compute standard errors using the square root of the diagonal elements
of the inverse of the negative Hessian of the log-likelihood function. We approximate
the Hessian using the outer-product-of-gradients approximation based on the analytic
gradient of the log-likelihood function. For this purpose, we consider the Hessian with
respect to the untransformed, (possibly) constrained parameters in θ, q, π, and σ̃.
Moreover, the log-likelihood function is again approximated using the same draws as
used for the optimization.

3.B Conditional distribution of Sit

For the hidden Markov multinomial logit model, the distribution of Sit conditional
on the choices yi of individual i is a multinomial distribution with outcomes 1, ...,M
with corresponding probabilities that can be computed as follows. It holds that

Pr[Sit =m|yi, θ, q, π, σ̃] =
∫

Pr[Sit = m,βi|yi, θ, q, π, σ̃]dβi

=
∫

Pr[Sit = m|yi, βi, θ, q, π, σ̃]f(βi|yi, θ, q, π, σ̃)dβi

=
∫

Pr[Sit = m|yi, βi, q, π, σ̃]p(yi|βi, q, π, σ̃)
p(yi|θ, q, π, σ̃) f(βi|θ)dβi

= 1
p(yi|θ, q, π, σ̃)

∫
Pr[Sit = m|yi, βi, q, π, σ̃]p(yi|βi, q, π, σ̃)f(βi|θ)dβi,

which can be approximated by

Pr[Sit = m|yi, θ, q, π, σ̃] ≈ 1
p(yi|θ, q, π, σ̃)

1
R

R∑
r=1

Pr[Sit = m|yi, β(r)
i , q, π, σ̃]p(yi|β(r)

i , q, π, σ̃)

=
∑R

r=1 Pr[Sit = m|yi, β(r)
i , q, π, σ̃]× p(yi|β(r)

i , q, π, σ̃)∑M

n=1

∑R

r=1 Pr[Sit = n|yi, β(r)
i , q, π, σ̃]× p(yi|β(r)

i , q, π, σ̃)
,
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where for the second equality we use that
∑
m Pr[Sit = m|yi, θ, q, π, σ̃] = 1, and we

let β(r)
i be a draw from a distribution with density f(βi|θ) for r = 1, ..., R. The

probability Pr[Sit = m|yi, β(r)
i , q, π, σ̃] can be computed with the Hamilton filter

(Hamilton, 1989) and a smoother (C.-J. Kim, 1994).

The Hamilton filter sequentially computes the filtered probabilities (ξitm|t ≡ Pr[Sit =
m|{yil}tl=1, βi, q, π, σ̃]) and predicted probabilities (ξi,t+1,m|t ≡ Pr[Si,t+1 = m|{yil}tl=1,

βi, q, π, σ̃]) using

ξitm|t =
ξitm|t−1Pr[Yit = yit|βi, σit = σ̃m]∑M
n=1 ξitn|t−1Pr[Yit = yit|βi, σit = σ̃n]

,

ξi,t+1,m|t =
M∑
n=1

Qnmξitn|t,

for m = 1, ...,M and t = 1, ..., T . The filter is initialised by ξi1m|0 = Pr[Si1 =
m|βi, q, π, σ̃] = πm. Given the filtered and predicted probabilities up to t = T , the
required smoothed estimates can be computed sequentially using (C.-J. Kim, 1994)

Pr[Sit = m|yi, βi, q, π, σ̃] =
M∑
n=1

ξi,t+1,n|T
Qm,nξitm|t

ξi,t+1,n|t
,

for t = T − 1, T − 2, ..., 1.

For the hidden Markov rank-ordered logit model, the conditional probabilities that
Sih is equal to a phase m can be computed in a similar fashion.
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Chapter 4

A dynamic model of
clickthrough and conversion
probabilities of paid search
advertisements

4.1 Introduction

Search engine advertising (SEA) has become an important marketing channel for
firms (Ryan, 2016). SEA is an advertising form that allows firms to place advertise-
ments on the search results pages of search engines such as Google, Yahoo! and Bing.
Search engines select the ads to be shown based on an individual’s search, enabling
advertisers to target individuals. Most search engines use an auction to select the
ads. In general, the advertiser who sets the highest (quality adjusted) bid obtains
the most prominent position. Usually, up to three ads are shown both on top and
on the bottom of the search results page for a given search query.

In designing a SEA strategy, an advertiser has to create text ads and landing pages,
determine the search phrases for which an ad is eligible to show up (the keywords),
and set a bid on each keyword. When the performances of ads change over time, a
SEA strategy requires regular revision to be effective. Dynamics in ad performance
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can result from e.g. the introduction of new products, changes in consumer tastes
or populations, the entering of new competitors, or seasonality. Yet, there is little
empirical research on dynamics in ad performance.

In this paper, we develop a dynamic Bayesian model for the performance of paid
search ads in Google. The proposed model is especially suited to deal with dynamic
SEA environments. It allows for dynamics through seasonal effects and time-varying
parameters, and discriminates between permanent and transitory dynamics. Espe-
cially when shocks are long lasting, dynamic SEA strategies are required for long-term
profitability. In our empirical application, we find evidence of substantial persistent
time variation in ad performance, emphasizing the importance of addressing dynam-
ics in ad performance models.

We model ad performance in terms of the clickthrough and conversion probabilities
of keywords. In the context of SEA, the term “keyword" refers to a string of words,
e.g. a keyword can be quite generic (“laptop") or more specific (“laptop acer vn7
571g"). An advertiser links each of her ads to a set of keywords, and sets a bid on
each keyword. When a consumer’s search query matches a keyword, the associated
ad will be eligible for the auction. The clickthrough probability is the probability
that a consumer who gets served an ad due to the keyword, clicks on the ad. The
conversion probability is the probability that a consumer who has already clicked on
the ad converts, that is, buys a product or service.

A number of studies have constructed models for clickthrough and conversion prob-
abilities of keywords (see Rutz and Bucklin, 2007, Ghose and Yang, 2009, Agarwal
et al., 2011, and Rutz et al., 2012). Our study differs from these papers by focusing
on the dynamics of keyword performance.

Despite the availability of advertiser-level ad performance data, a number of chal-
lenges arise when estimating clickthrough and conversion probabilities of keywords.
Next to the challenge of potential dynamics in ad performance, a second challenge
is data sparsity. The majority of keywords in an advertiser’s portfolio generate only
little traffic, that is, few users search for that keyword. For these so-called sparse
keywords, taking simple averages of realized clicks and conversions in the past is in-
sufficient to estimate the clickthrough and conversion probabilities as these estimates
can be highly inaccurate. We illustrate this in Figure 4.1, which shows the proportion
of clicks (conversions) we can expect to observe given a certain sample size (num-
ber of impressions1 or clicks) for two realistic probabilities: 1% and 5%. The figure

1The number of impressions is the number of times an ad is shown on the search results page.
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Figure 4.1: Conservative 95% bounds of the observed proportion of clicks/conversions
as a function of the sample size on a logarithmic scale (true probability equals 1%
(left) or 5% (right)).
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shows that one needs at least a couple of hundred impressions (clicks) for the sample
average to be a reliable estimator of the true clickthrough (conversion) probability.
If a keywords generates little traffic, it may take a long time before this number of
impressions and clicks are collected. Within this time frame the true probability may,
in practical situations, already have changed.

The third challenge is estimating the causal effect of ad position on ad performance,
as the position is endogenously related to clickthrough and conversion probabilities.
There are three sources of endogeneity:

i There is a potential reversed causality relationship due to strategic bidding beha-
vior: an advertiser might bid more for keywords with a high expected clickthrough
and conversion probability, to obtain a favorable position for these keywords.

ii There is a reversed causality relationship due to a quality adjustment in the
keyword auction (Google uses the so-called quality score): position might not
only affect clickthrough probabilities, but reversely, the previous clickthrough
rates affect the position through their impact on the quality adjustment.

iii There is a potential confounding factor: competition is likely to affect both
keyword performance and ad position, but is unobserved by the advertiser.

In this paper, we propose a dynamic model that addresses all above challenges by
allowing for explained and unexplained dynamics, data sparsity, missing data, posi-
tion endogeneity and unobserved heterogeneity across keywords. The model captures
unexplained dynamics through time-varying parameters that follow either stationary
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or nonstationary AR(1) processes to distinguish between transitory and permanent
dynamics. The model addresses the sparsity problem by linking keywords to each
other based on common factors such as semantic keyword characteristics. Finally,
the model accounts for position endogeneity in the manner proposed by Ghose and
Yang (2009). That is, we simultaneously model the consumers’ clickthrough and
conversion behavior, the search engine’s position allocating behavior, and the firm’s
bidding behavior, and correlate the error terms of the equations with each other.

The resulting model is estimated using a Bayesian approach. We develop an efficient
Gibbs sampler with Polya-Gamma data augmentation for the logit part of the model
(Geman and Geman, 1987, Tanner and Wong, 1987, Polson et al., 2013) in which
we draw the time-varying parameters using the forward-filtering backward-sampling
algorithm of Durbin and Koopman (2002). This efficient approach is crucial to be
able to use the methodology at a daily frequency for a realistically large number of
keywords. It also deals naturally with missing data.

We illustrate the model using a unique dataset from a Dutch online retailer that sells
laptops and advertises on Google. The data consists of the historical performance
of 14,710 keywords measured at a daily frequency over the period January 2014
until March 2016. We find substantial time variation in clickthrough and conversion
probabilities, indicating that a dynamic SEA strategy is required. Furthermore, we
find that shocks mostly have a permanent or highly persistent effect on clickthrough
probabilities; this holds for market-level shocks and most brand-level shocks. For
conversion probabilities the shocks have different effects on different type of ads.
Whereas market shocks permanently affect conversion probabilities, most brand-level
shocks have a more transitory effect. Finally, Bayes factors indicate that the dynamic
model is substantially better in forecasting ad performance than the static model.

We also find evidence of position and bidding endogeneity, indicating that purely
predictive models are unable to capture causal relationships between ad position and
clickthrough and conversion probabilities.

The managerial implications of this paper are threefold. First, advertisers can use the
model to obtain accurate daily estimates of clickthrough and conversion probabilities
of individual keywords. These estimates can be used to set bids, adjust text ads and
landing pages, and to identify keywords whose performance is divergent from similar
keywords. Second, advertisers can examine the extent of dynamics in their SEA
environment, to determine how often their bidding strategy should be revised. In
doing so, advertisers can discriminate between keywords by using the persistence and
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influence of shocks on different types of keywords. Finally, advertisers can use the
model to track the performance of keywords to timely identify when this performance
changes.

The remainder of this paper is organized as follows. In Section 4.2 we discuss the
background for this research. We explain how the mechanism underlying SEA works
and discuss related work on modeling clickthrough and conversion probabilities. In
Section 4.3 we briefly discuss the data generally made available by search engines to
further discuss the context of SEA. Section 4.4 is devoted to a detailed discussion of
the methodology. We show empirical results in Section 4.5 including an analysis of
the model’s predictive performance against a static model. Section 4.6 discusses the
managerial implications of this research. We conclude with a summary and a critical
discussion. Finally, Appendix 4.A documents our efficient Gibbs sampler in detail.2

4.2 Background

4.2.1 The mechanism underlying search engine advertising

From the search engine’s perspective, much literature has focused on the mechanism
design of the keyword auction (see e.g. Borgs et al., 2007, Cary et al., 2007, Edelman
et al., 2007, and Yao and Mela, 2011). The design Google and Yahoo! use is formally
known as a generalized, second-price, sealed-bid auction (Edelman et al., 2007).

This real-time keyword auction works as follows. Advertisers link their ads to
keywords and place a bid on each keyword. The bid indicates the maximum amount
the advertiser is willing to pay for a click. Some search engines such as Google also
assign a quality score to an ad, to adjust the bids for relevance of the advertised
website. Next, when a consumer enters the search query at a search engine, the
engine considers all advertisers’ ads for which the associated keywords match the
consumer’s search. The available ad slots are allocated according to the advertisers’
quality adjusted bids. The search engine only charges the advertiser a fee when a
consumer clicks on the ad; this fee is known as the cost-per-click (CPC). The CPC
is based on the bid of the ad that is ranked just below (the second price), corrected
for the quality scores of these two ads. The CPC is thus not necessarily equal to the
bid, but it is never higher.

The distinct feature of the generalized, second-price auction is that bidders pay a price
2The Supplementary Materials, containing all results of the empirical application as well as trace

plots and effective sample sizes of the MCMC output, are available upon request.
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based on the bid of the advertiser ranked below. Hereby, search engines avoid that
advertisers use cycling bidding strategies to optimize profits, that is, that advertisers
continuously decrease their bids until they obtain a less prominent ad position after
which they increase their bids again (Borgs et al., 2007).

4.2.2 Modeling clickthrough and conversion probabilities of
keywords

From the advertisers’ perspective, some literature has focused on modeling click-
through and conversion probabilities of keywords (see e.g. Ghose and Yang, 2009,
Agarwal et al., 2011, and Rutz et al., 2012). The key focus of these studies is ad-
dressing position endogeneity.

To better understand the sources of position endogeneity, we conceptualize the mech-
anism underlying the keyword auction in Figure 4.2. Based on the inputs of the
keyword auction (the advertiser’s bid and quality score and the competitors’ bids
and quality scores) the search engine determines the ad position and the cost-per-
click. The ad position then potentially affects consumers’ clickthrough and conversion
behavior.

There are three potential sources of endogeneity. First, competition can be a con-
founding factor as it is unobserved and both enters the keyword auction to determine
the ad position as well as potentially affects clickthrough and conversion probabilities
through consumer behavior. Second, there is a potential reversed causality problem
as some search engines, including Google, use the past clickthrough rates to assign
quality scores to keywords to determine the ad position. Finally, there is a second
potential reversed causality problem due to strategic bidding behavior. An advert-
iser might set bids based on expected clickthrough and conversion probabilities for
different ad positions (we refer to this as bidding endogeneity).

To correct for all these sources of endogeneity, the earlier mentioned studies use
parametric simultaneous equations models of the clickthrough and conversion prob-
abilities and the ad’s position plus a specific strategy to solve for bidding endogeneity.
Agarwal et al. (2011) use data on randomized bids to explain the position. Altern-
atively, Rutz et al. (2012) use latent instrumental variables (LIVs) to explain the
position. In the LIV approach, the endogenous variable (ad position) is split into
a part that is uncorrelated with the error terms of the clickthrough and conversion
equations, the latent instruments, and a part that is potentially correlated. Finally,
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Figure 4.2: Conceptual model of keyword performance. Solid lines represent contem-
porary causal effects, dashed lines represent future causal effects.

QS Bid
Competitor
bids & QS

PositionCPC

CTR

CON

Baseline levels are price 6 euro, cooking time 30 minutes, taste good, and health neutral.QS: quality score,
CPC: cost-per-click,
CTR: clickthrough rate,
CON: conversion rate.

Ghose and Yang (2009) simultaneously model the firm’s bid with the clickthrough
and conversion probabilities and the ad’s position.

In this paper we opt for the approach by Ghose and Yang (2009). Although ran-
domized bids as used by Agarwal et al. (2011) yield a better source of variation to
identify the causal impact of position, it is rare to find firms who actually practice
randomized bidding. A drawback of the LIV approach of Rutz et al. (2012) is that it
relies on the existence of latent “groups” that are correlated with position and uncor-
related with the unexplained parts of the clickthrough and conversion probabilities.
In general it is unknown whether such groups exist.

The above mentioned studies find mixed results regarding the drivers of keyword
performance. Generally, they agree that the more prominent the position, the higher
the clickthrough probability (Ghose and Yang, 2009, Agarwal et al., 2011, and Rutz et
al., 2012). Furthermore, Agarwal et al. (2011) and Ghose and Yang (2009) find that
profits are usually not highest in the top positions. Instead, profits increase until
some position when going down the search results page after which they decrease
again. These studies ignore dynamics other than day-of-the-week effects.
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From the search engine’s perspective there is also literature on modeling clickthrough
probabilities. These models are used to estimate quality scores of ads to help allocate
ads on the search results pages. The models proposed in this literature are predictive
models, no steps are taken to account for position or bidding endogeneity. One such
model that allows for dynamic performance is proposed in Graepel et al. (2010),
who develop a Bayesian model for clickthrough probabilities. This model allows for
dynamics by adjusting the parameters as new data comes in through a Bayesian
learning algorithm that gives higher weight to more recent observations.

4.3 General structure of data

Google provides advertisers with a number of ad performance metrics. These metrics
are aggregated on the level of the keyword and some time period, such as the hour of
the day or day of the week. The performance metrics include the number of obtained
impressions, clicks, and conversions, the average position over the impressions, and
the average cost-per-click (CPC). Google also provides four metrics related to the
quality score: quality score (ranging from 1 to 10), landing page experience, ad
relevance, and expected clickthrough rate. The quality score metric is, however, not
the actual measure used by Google in real-time to assign positions to ads.3

Based on the words in the keyword, an advertiser can construct semantic charac-
teristics of keywords. These characteristics might be useful in estimating keyword
performance. They can include the number of words in the keyword, or the specificity
of the keyword (e.g. generic, branded or retailer-specific search like in Ghose and
Yang, 2009). In addition, the advertiser knows the match type of each keyword. The
match type of a keyword refers to how “well" the keyword must match the consumers
search in order to be eligible to show, and is one of ‘exact’, ‘broad’, or ‘phrase’. The
broader the match type, the more divergent the search phrase and the keyword may
be.

4.4 Methods

In this section, we discuss the statistical model we propose for keyword performance.
We consider model specification, parameter identification, and model inference.

3For more information on the quality score, see https://support.google.com/google-
ads/answer/7050591?hl=en.
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The model we propose is a dynamic Bayesian model of the consumers’ clickthrough
and conversion behavior, the search engine’s position allocating behavior, and the
firm’s bid behavior. The model is a time-varying parameters model, also known as a
model in state-space representation (e.g. Hamilton, 1994, Chapter 13).

4.4.1 Model specification

We index the keywords by i = 1, ..., N and time periods by t = 1, ..., T . We denote by
Iit, Nit, and Mit the number of impressions, clicks, and conversions of keyword i at
time t, respectively. By definition, Iit ≥ Nit ≥Mit. Furthermore, we denote by pCTRit

the unobserved clickthrough probability on keyword i at time t (the probability of a
click given an impression) and by pCONit the conversion probability (the probability
of a conversion given a click). Let POSit denote the average ad position over the
impressions on keyword i at time t, BIDit the bid, CPCit the cost-per-click, and QSit
the quality score. Finally, let xi denote a (K×1) vector of (semantic) characteristics
of keyword i, and st a vector of seasonal dummies.

We assume that, conditional on {pCTRit }Tt=1 and {pCONit }Tt=1, the impressions and
clicks on keyword i at time t are independent across ads served, and that the impres-
sions and clicks on keyword i are independent across time and independent of other
keywords j 6= i. Then, the number of clicks on keyword i at time t and the number
of conversions are conditionally binomially distributed. That is,

Nit|Iit, pCTRit ∼ BIN(Iit, pCTRit ),

Mit|Nit, pCONit ∼ BIN(Nit, pCONit ),

for i = 1, ..., N and t = 1, ..., T .

Next, we propose a dynamic simultaneous equations model of the clickthrough and
conversion probabilities, the ad’s position, and the firm’s bid. The model is given by

pCTRit = Λ
(
αCTRi + x′iβ

CTR
t + λCTRi ln(POSit) + s′tγ

CTR + ηCTRit

)
, (4.1)

pCONit = Λ
(
αCONi + x′iβ

CON
t + λCONi ln(POSit) + s′tγ

CON + ηCONit

)
, (4.2)

ln(POSit) = αPOSi + x′iβ
POS
t + λPOSi ln(BIDit) + ψPOS ln(QSit) + s′tγ

POS + ηPOSit , (4.3)

ln(BIDit) = αBIDi + x′iβ
BID
t + q′itδ

BID
i + s′tγ

BID + ηBIDit , (4.4)

for keywords i = 1, ..., N and time periods t = 1, ..., T , where Λ(θ) ≡ 1/(1+exp(−θ))
is the standard logistic link function.

The key parts of the model are the clickthrough and conversion equations (4.1) and
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(4.2). These two equations have an equivalent functional form with different para-
meters. The logistic link function is used to map real-valued numbers to probabilities
between 0 and 1. The baseline levels of the clickthrough and conversion probabilit-
ies are captured in the keyword-specific intercepts αi, discussed in detail in Section
4.4.1.2. Stochastic dynamics are captured in the term x′iβt, which captures the time
variation in clickthrough and conversion probabilities for different types of keywords.
The process for βt captures the carryover effects of shocks to subsequent periods,
and is discussed in Section 4.4.1.1. Deterministic seasonal effects are captured in the
term s′tγ. The effect of ad position is captured in the keyword-specific parameters λi
and is discussed in Section 4.4.1.2.

The position equation (4.3) is included to correct for position endogeneity and the
bid equation (4.4) to correct for bidding endogeneity. For both equations we use
a linear specification for the log transformed variables. They also deviate from the
clickthrough and conversion equations in that we let the position depend on the bid
and quality score, and let the bid depend on qit, a vector of instrumental variables
not included in the other equations. We discuss these instruments in Section 4.4.1.3.
Note that the position equation (4.3) can be rewritten as

POSit = gPOSit QSψ
POS

it BIDλ
POS
i
it ,

where the multiplication factor gPOSit depends on xi, st and ηit in a potentially
time-varying way. Hence, we assume that the position depends on the bid and the
quality score in a multiplicative way. The parameters ψPOS and λPOS are elasticity
parameters; if the bid increases by 1%, then the position increases by λPOS%.

The key elements in correcting for position endogeneity are the keyword- and time-
specific error terms in ηit = (ηCTRit , ηCONit , ηPOSit , ηBIDit )′. We assume that ηit is
multivariate normally distributed for keyword i and time t and independent across
keywords and time. That is,

ηit ∼MVN(0,Ση), (4.5)

where all elements of the positive definite matrix Ση are allowed to be non-zero.

Even when no position endogeneity is present, it is important to include ηit into
the clickthrough and conversion equations. The model is based on the aggregation
of choices on the keyword- and time-level. The parameter ηit captures keyword-
and time-specific deviations that are not captured by other model parameters. In
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case a keyword i receives many observations and clicks in a given time period t,
the likelihood of pCTRit and pCONit given the observed data is highly peaked at the
observed fractions of clicks/conversions. Hence, the estimation procedure will model
the clickthrough and conversion probabilities to be (almost) equal to the realized
proportions in the data. In case ηCTRit and ηCONit are included, they can capture
potential deviations between expected and realized proportions. In case they are not
included, the estimates of the parameters will become such that they mainly fit these
few observations with many impressions, instead of representing general patterns
across the whole set of keywords.

4.4.1.1 Time-varying parameters: the dynamic impact of shocks

The impact of changes in the environment on ad performance is captured in the
time-varying parameters βt = (βCTR′t , βCON ′t , βPOS′t , βBID′t )′. Changes in the
environment can result from changes in macroeconomic conditions, in the firm (e.g.
changing reputation), in the market competitiveness (e.g. new competitor or the
launch of a new product), in the search engine’s position-allocating mechanism, or
in consumers (e.g. changing tastes and attitudes). The effect of changes on ad
performance can be transitory or permanent.

To capture the dynamics in SEA environments, we take independent AR(1) processes
for the time-varying parameters. That is,

βt+1 = Φβt + νt, νt ∼MVN(0,Σβ), β1 ∼MVN(0, 5Σβ), (4.6)

for t = 1, ..., T , where Φ and Σβ are (4K × 4K) diagonal matrices. These AR(1)
processes can capture a wide variety of paths for the time-varying parameters (Van
Heerde et al., 2004).

The autoregressive parameters {φk}4Kk=1 on the diagonal of Φ measure the persistence
of the impact of shocks on future values of βkt. In case φk = 1, shocks are permanent.
In case φk = 0, shocks do not impact future clickthrough and conversion probabilities,
and a static model would do. In case 0 < φk < 1, the effects of shocks carry over
to next periods but the process is mean-reverting: shocks die out geometrically with
decay rate φk.

The AR(1) processes in Equation (4.6) have no intercept. If the βt series is sta-
tionary, an intercept captures the unconditional mean of the series. If the series is
nonstationary, the intercept would either capture the level at time t = 1 (in deviation-
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from-mean form), or a drift parameter (in regular form). We move this intercept to
the mean of the αi parameter as will be explained next. This ensures that we can
interpret the intercept as in the deviations-from-mean form and thus have equal in-
terpretation of the parameter in case of stationarity and nonstationarity of the βt
series. Moreover, it helps improve the mixing rates of the sampler.

4.4.1.2 Unobserved heterogeneity across keywords

The model captures unobserved heterogeneity across keywords through the keyword-
specific parameters αi = (αCTRi , αCONi , αPOSi , αBIDi )′ and λi = (λCTRi , λCONi ,
λPOSi )′. We shrink αi and λi to common means across similar keywords.

The parameters in αi capture common baseline levels of ad performance as well as
keyword-specific deviations. We take αi to be independently normally distributed
across keywords,

αCTRi

αCONi

αPOSi

αBIDi

∼MVN



x′iα̃

CTR

x′iα̃
CON

x′iα̃
POS

x′iα̃
BID

,


σ2
α,CTR 0 0 0

0 σ2
α,CON 0 0

0 0 σ2
α,POS 0

0 0 0 σ2
α,BID


, (4.7)

for i = 1, ..., N , where α̃ = (α̃CTR,α̃CON ,α̃POS ,α̃BID) captures the common baseline
levels.

The parameters in λi capture the impact of ad position on clickthrough and conver-
sion probabilities (λCTRi , λCONi ), and the effect of bid on ad position (λPOSi ). We
take λi to be independently normally distributed across keywords. That is,λ

CTR
i

λCONi

λPOSi

∼MVN


x
′
iλ̃
CTR

x′iλ̃
CON

x′iλ̃
POS

,

σ
2
λ,CTR 0 0

0 σ2
λ,CON 0

0 0 σ2
λ,POS


, (4.8)

for i = 1, ..., N .

4.4.1.3 Instrumental variables

The instruments qit in the bid equation (4.4) are necessary for identification of the
dynamic simultaneous equations model. They must be excluded from the other equa-
tions (4.1)-(4.3). A researcher can take any set of valid instruments: the instruments
should be correlated with the bid, but uncorrelated with ad position and clickthrough
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and conversion probabilities after correcting for bid/position.

We propose to use previous performance indicators as instruments, as these indicators
capture the potential strategic bidding behavior of advertisers that causes the bidding
endogeneity. We consider the previous clickthrough rate and the previous number of
impressions obtained.4 For the previous clickthrough rate to be a valid instrument,
we assume that the quality score measure we include in the position equation is a
sufficient statistic for the previous clickthrough rate in explaining ad position.

To allow for heterogeneity in the effect of the instruments we consider keyword-
specific parameters

δBIDi ∼MVN(x′iδ̃BID,ΣBIDδ ), (4.9)

where ΣBIDδ is a positive definite diagonal matrix.

4.4.2 Parameter identification

To ensure that the parameters in the model in (4.1)-(4.9) are identified, we have to
consider two issues. First, for the stochastic dynamics part x′iβt, a researcher may
wish to include many characteristics such that the matrix X = (x1, x2, x3, ..., xN )′ is
not of full column rank. For example, a researcher may want to include an intercept
and all dummies for a categorical variable, to distinguish between market-level shocks
and the lower level shocks for different categories. In this case, where X is not of
full column rank, identification restrictions need to be imposed. More specifically, a
set of variables k∗ has to be selected, such that the matrix X without the columns
corresponding to these variables in k∗ is of full column rank. For these variables in
k∗, the following restrictions are sufficient for identification: (i) β1 = 0, (ii) α̃ = 0,
and (iii) λ̃ = 0. Note that these variables will still have a non-zero effect for t > 1.

Second, the simultaneous equations model in (4.1)-(4.4) is identified as the model
is a triangular system (Greene, 2012, Ghose and Yang, 2009): the bid equation
depends only on exogenous variables, the position equation depends only on the
endogenous variable bid, and the clickthrough and conversion equations depend only
on the endogenous variable ad position. Identification in this triangular system is
ensured through the exclusion restrictions that the instrumental variables in the bid
equation are excluded in the clickthrough, conversion, and position equations, and the

4Ghose and Yang (2009) use the lagged ad position as instrument in the bid equation. Exogeneity
of this instrument depends on the assumption that the error terms in the position equation are
serially uncorrelated. This assumption might very well be unrealistic, rendering lagged ad position
invalid as instrument.
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bid variable in the position equation is excluded in the clickthrough and conversion
equations. Hence, the model is identified and we do not need to impose restrictions
on the covariance matrix Ση.

4.4.3 Bayesian inference

We perform Bayesian inference for the dynamic simultaneous equations model in
(4.1)-(4.9). We use Markov Chain Monte Carlo (MCMC) techniques and rely on a
Gibbs sampler with Polya-Gamma data augmentation (Geman and Geman, 1987,
Tanner and Wong, 1987, Polson et al., 2013). The advantage of using a Bayesian
estimation approach is that we can use informative priors for keyword characteristics
that are very rare. The Gibbs sampler also deals naturally with missing values.

The Polya-Gamma data augmentation scheme is suitable for binomial logistic re-
gression models (Polson et al., 2013). It allows for exact inference by introducing
one layer of Polya-Gamma distributed latent variables, where the latent variables
are drawn at the level of the keyword and time period. Alternative MCMC ap-
proaches for Bayesian inference for logistic regression models are (i) data augmenta-
tion schemes where the logistic distributed error terms are approximated by mixtures
of normals (C.C. Holmes and Held, 2006, Frühwirth-Schnatter and Frühwirth, 2010)
or (ii) an independence or random walk Metropolis-Hastings (MH) algorithm without
data augmentation (Rossi et al., 2005). The disadvantages of the alternative data
augmentation schemes are that they are not exact, require two layers of auxiliary
variables, and require much more memory storage as augmentation is performed on
the level of an impression or click and not on the total number of impressions and
clicks (this is especially relevant for the SEA application). The disadvantage of the
MH algorithms is that they often have poor mixing rates and that tuning may be re-
quired (Frühwirth-Schnatter & Frühwirth, 2010). This is especially important when
dynamic states are involved.

The Gibbs sampler we use is outlined in Appendix 4.A. In this Gibbs sampler, we
subsequently draw the auxiliary variables from the Polya-Gamma distribution, the
time-varying parameters from a multivariate normal distribution using the forward-
filtering backward-sampling (FFBS) algorithm (Carter and Kohn, 1994, Frühwirth-
Schnatter, 1994) of Durbin and Koopman (2002) and collapsed filtering (Durbin and
Koopman, 2012, Jungbacker and Koopman, 2015), the time-invariant parameters
from multivariate normal distributions, and the covariance matrices from inverse
Wishart distributions. Specialized code is written in R (R Core Team, 2013) and
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C++ (Eddelbuettel & François, 2011).

4.5 Empirical application

In this section, we apply the proposed dynamic Bayesian model to data of a Dutch
online retailer. We present the data in Section 4.5.1 and discuss the in-sample results
in Section 4.5.2. Finally, in Section 4.5.3, we compare the performance of our dynamic
model to a static model without time-varying parameters.

4.5.1 Data

The data contains the historical performance of 14,710 keywords related to laptops
measured at the daily frequency over the period January 1, 2014 until March 31,
2016.5 The data contains information on the daily number of impressions, clicks, and
conversions6, and the daily average cost-per-click, ad position, and quality score7. We
consider all data for model inference. In total, the keywords obtained 47.0 million im-
pressions, 1.6 million clicks and 33.0 thousand conversions. The average clickthrough
rate was 3.4% and the average conversion rate was 2.0%. Moreover, the top 5% of
keywords based on impressions accounted for 92.5% of total impressions, whereas the
bottom 50% accounted for 0.2% of total impressions.

We also use semantic characteristics of keywords. Each keyword is assigned to one of
four categories indicating the specificity of the keyword: (i) ‘generic’, (ii) ‘brand only’,
(iii) ‘brand and series’, or (iv) ‘retailer’. The ‘brand only’ keywords are keywords that
include the brand name of a laptop but not the name of a specific series or model
(e.g. ‘asus laptop’), whereas the ‘brand and series’ keywords include at least a brand’s
series name (e.g. ‘asus vivobook’). We divide the keywords in the ‘brand only’ and
‘brand and series’ categories into the eight brands available at the retailer: Acer,
Apple, Asus, HP, Lenovo, Microsoft, MSI, and Toshiba.

5Google provides data aggregated on the device used by the consumer (computer, tablet, or
mobile device). We only include data on searches made via the computer, as consumer behavior
might differ for the three electronic devices and the comparative usage of the three devices might
have changed over time.

6Conversions are measured based on the keyword associated with the last clicked ad by the
consumer as tracked by Google. Conversions are counted when the consumers makes a purchase
within 30 days of clicking on the last clicked ad.

7We do not have data on the landing page experience, ad relevance, and expected click-
through rate. Furthermore, we impute missing quality scores with a 6. Quality scores are
missing when there were insufficient previous impressions and clicks for Google to determine
the quality score. In these cases, Google uses a quality score of 6 in the keyword auction, see
https://searchengineland.com/google-adwords-keyword-quality-score-reporting-update-226355.
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Furthermore, we know the match type of the keyword, which is either broad or exact,
and the number of words in the keyword. For these two variables we consider time-
invariant parameters, that is, βt = 0. We include seasonal dummies for the day of
the week.

As instruments, we use the previous clickthrough rate and the natural logarithm
of the previously obtained number of impressions. We compute the previous click-
through rate by taking the realized clickthrough rate over the previous month.8 Once
the advertiser has implemented the model to set the bid, the previous clickthrough
rate can be estimated using Equation (4.1) instead. Furthermore, for the previ-
ous impressions we consider the average daily number of impressions obtained on a
keyword in the previous month.

Finally, we use the CPC as a proxy for the bid as done in Ghose and Yang (2009)
and Skiera and Abou Nabout (2013). Data on historical bids are not provided by
Google, and have not been stored by the retailer. Using the CPC instead of the bid
is justified for competitive keywords, where the difference between the CPC and the
bid is small (Abou Nabout et al., 2012). A disadvantage is that we do not always
observe the CPC when we observe the position. We therefore impute the missing
CPCs for explaining position, using a stochastic local level model.9

4.5.2 Baseline results

In this section, we discuss the in-sample results for the proposed dynamic Bayesian
model. Posterior results are obtained using 35.000 simulations after 5.000 burn-in
draws. We keep every 4th draw to deal with the correlation in the chain. Here, we
show the most important results.

We find that clickthrough and conversion probabilities have substantially changed
over time. Figure 4.3 shows illustrative examples of the smoothed estimates and
95% pointwise highest posterior density intervals (HPDIs) of the time-varying para-
meters. For the brand only keywords, we find that clickthrough probabilities have
substantially decreased over time, whereas conversion probabilities have increased.

8In case a keyword obtained at least 5,000 impressions in the previous month, we take the
clickthrough rate (CTR) of that specific keyword. Otherwise, we take the CTR over the campaign
group the keyword was assigned to or, if that campaign group received less than 5,000 impressions
in the previous month, the specificity category the keyword was assigned to.

9The local level model is given by CPCi,t+1 = µit with µi,t+1 = µit + εit, µi1 ∼ N(CPC, 0.5),
and εit ∼ N(0, σ2

ε), where CPC is the mean of all CPCs in the dataset and we estimate σ2
ε with

maximum likelihood (σ̂2
ε = 0.007 based on a set of popular keywords). We use the smoothed

estimates of CPCit.
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The conversion performance of Apple keywords was stable, whereas the clickthrough
performance was volatile. For Microsoft laptops, introduced at the retailer in August
2014, we see quite some time variation in ad performance with alternating periods
of high and low clickthrough and conversion probabilities.

Figure 4.3: Posterior means and 95% highest posterior density intervals of {βt}Tt=1+α̃
for the brand only keywords, retailer-specific keywords, and Microsoft keywords. For
both the clickthrough (CTR) and conversion (CON) probabilities.

(a) CTR - Brand only (b) CTR - Apple (c) CTR - Microsoft

(d) CON - Brand only (e) CON - Apple (f) CON - Microsoft

The 95% point-wise HPDIs in Figure 4.3 are quite wide. This is not so much caused
by uncertainty in the dynamics in the time-varying parameter series (as the different
smoothed draws follow similar dynamics), but is mainly caused by uncertainty in
how the absolute levels should be attributed to the higher-level brand only effect and
the lower-level brand effects (e.g. Apple, Microsoft). Adding the brand only effect
to any of the brand effects, we find much smaller 95% HPDIs.

To assess the persistence of shocks — how long shocks carryover to next periods
— we consider the posterior results for the autoregressive parameters in Φ in Table
4.1. We also compute the half-life of shocks. The half-life is the number of weeks
before the effect of the shock is below 50% from its original value.10 For both the
clickthrough and conversion probabilities, we find that shocks at the specificity level
are permanent or highly persistent. The brand-level shocks on clickthrough perform-

10The half-life of shocks (in days) d can be computed by equating φd = 0.5, that is, d =
ln(0.5)/ ln(φ) where φ is the posterior mean of the autoregressive parameter.
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ance are generally also persistent, with permanent shocks for HP ads and a half-life
ranging from 0.3 weeks for Asus ads to 14.8 weeks for Lenovo ads. The effects of
brand-level shocks on the conversion performance are more transitory; the half-life
ranges from 0.1 weeks to 4.6 weeks.

To compare the relative performance of keywords, in Figure 4.4 we plot the time-
varying parameter series including baseline levels for the different specificity groups
(left) and brands (right). Clickthrough probabilities are highest for retailer-specific
keywords, followed by generic, brand only, and brand & series keywords. Conversion
probabilities are also highest for retailer-specific keywords followed by brand & series,
generic and brand only keywords. The clickthrough probabilities of different brands
are volatile, whereas the conversion probabilities are relatively stable. Conversion
probabilities are lowest for Apple keywords, followed by Microsoft, MSI, and Toshiba
keywords. All graphs again show quite some time variation.

Figure 4.4: Plots of the series {βt}Tt=1 + α̃ for the specificity and brand series, for the
clickthrough (CTR) and conversion (CON) probabilities.

Retailer →
Generic →

Brand only →

Brand & series →

(a) CTR - Specificity groups (b) CTR - Brands

Microsoft

Retailer →

Brand & series →
Generic →

Brand only →

(c) CON - Specificity groups (d) CON - Brands

← Acer
← Toshiba
← MSI

← Microsoft

← Apple

Table 4.2 displays day-of-the-week effects and the effects of keyword length and match
type. Clickthrough probabilities are highest on Mondays to Wednesdays and for
shorter and exact keywords. Conversion probabilities are lowest on Saturdays, and



108 Chapter 4

highest for longer and exact keywords. The posterior estimates for the standard
deviations σα show that there is substantial variation across keywords in the baseline
level of clickthrough and conversion probabilities.

Table 4.2: Posterior means and standard deviations (in parentheses) for the seasonal
effects (γ), the time-invariant parameters in α̃ and σα (the square root of the diagonal
of Σα).

CTR CON
Tuesday 0.00 (0.01) 0.01 (0.03)
Wednesday -0.01 (0.01) -0.03 (0.03)
Thursday -0.02 (0.01) -0.03 (0.03)
Friday -0.03 (0.01) -0.01 (0.04)
Saturday -0.06 (0.01) -0.05 (0.03)
Sunday -0.06 (0.01) -0.03 (0.03)
ln (# words) -0.04 (0.02) 0.16 (0.04)
Exact match 0.48 (0.02) 0.25 (0.04)
σα 0.65 (0.01) 0.43 (0.02)

Next, we consider the effect of ad position. Table 4.3 displays the estimated effect of
ad position (columns 2 and 3) and of bid/CPC (column 4). We find that the more
prominent the ad — the lower the position number — the higher the clickthrough
probability. This holds in general for all types of keywords, although the relationship
is strongest for retailer-specific and exact keywords, and weakest for Apple, HP, and
MSI keywords. For the conversion probabilities we do not find strong evidence that
ad position affects conversion probabilities in general. Furthermore, high bids/CPCs
are mostly associated with more prominent ads. This holds strongest for long and
Microsoft keywords. The estimates for the standard deviations σλ show that the
effect of position on clickthrough and conversion probabilities varies substantially
over similar keywords.

Table 4.3, columns 5 and 6, show the posterior results for the instruments in the bid
equation. The results indicate that the bid/CPC is associated with past performance.
The instruments seem strong enough to identify the other parameters. In general,
the advertiser sets higher bids on keywords that previously obtained a high number
of impressions and a high clickthrough rate. Given the size of the variance across
keywords (σδ), the reverse relationship also seems to hold for a number of keywords.
This implies that the advertiser may not always bid strategically based on previous
clickthrough rates and impressions obtained.
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Table 4.4 shows the posterior mean of the covariance matrix of the error terms, Ση:
the variances are displayed on the diagonal, the covariances on the upper diagonal,
and the correlations on the lower diagonal. Position endogeneity seems present, as
the unexplained parts of the clickthrough probabilities are positively correlated with
the unexplained parts of ad position. For conversion probabilities we find no strong
evidence of position endogeneity.

Table 4.4: Posterior means and standard deviations (in parentheses) for the variances
(diagonal), covariances (upper diagonal) and correlations (lower diagonal) of ηit

.

CTR CON POS BID/CPC
CTR 0.137 -0.003 0.027 0.003

0.002 0.004 0.002 0.001
CON -0.045 0.026 0.005 -0.003

0.067 0.005 0.005 0.003
POS 0.222 0.099 0.106 -0.030

0.016 0.103 0.000 0.001
BID 0.018 -0.048 -0.240 0.144

0.008 0.049 0.010 0.001

Finally, bidding endogeneity also seems present, as there is a negative correlation
of -0.240 between the position and bid error terms. Part of this correlation can be
explained because we use the CPC to proxy the bid; the ad position and CPC are
both influenced by unobserved competitive behavior. These findings reinforce that
it is important to account for these forms of endogeneity.

4.5.3 Model comparison

In this section, we compare the performance of the dynamic model to a static model
with seasonality, that is, setting all βt = 0. We compute log Bayes factors to evaluate
the models’ in-sample and out-of-sample performance. In case the log Bayes factor
is greater than log(3) we have sufficient evidence to favor the null model (the static
model), in case it is smaller than log(1/3) we have evidence to favor the alternative
model (the dynamic model) (Kass & Raftery, 1995).

We compute the in-sample log Bayes factors with the Savage-Dickey density ratio,
using the estimates obtained from the dynamic model only (Dickey, 1971).11 We

11The in-sample log Bayes factor of the static model against the dynamic model can be computed
by the Savage-Dickey density ratio

lnBF = ln p(Φ|y)|Φ=O − ln p(Φ)|Φ=O, (4.10)
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compute the predictive Bayes factors using predictions from both the dynamic and
the static model for a full year. For these predictions we use a moving window of
26 weeks; after each window we make predictions for each day in the next week and
then we move the window one week further. This also allows the parameters of the
static model to change. We make predictions for each day in the period March 30,
2015 until March 27, 2016. For each model, we use 8.000 simulations after 2.000
burn-in draws and we keep each 4th draw.

Table 4.5: Log Bayes factors for the dynamic model (alternative model) against a
static model with βt = 0 (null model).

CTR CON
In-sample log Bayes factor -474 364 -39 710
Predictive log Bayes factor -6 790 -87

Table 4.5 shows the log Bayes factors separately for the clickthrough and conver-
sion equation. The log Bayes factors are all highly negative and much smaller than
log(1/3) (= −0.48). Hence, the dynamic model is superior to a static model in terms
of both in- and out-of-sample performance. There is thus substantial evidence of
dynamics in the clickthrough and conversion probabilities in the dataset, indicating
that a dynamic SEA strategy is to be preferred over a static strategy.

Illustrative examples of the dynamic and static models’ predictions are given in Figure
4.5. The clickthrough predictions are given in the top three figures, the conversion
predictions in the bottom three figures. Overall, the predictions of the dynamic
model (solid lines) are more volatile than those of the static model (dashed lines).
For retailer-specific keywords we find that the dynamic model’s clickthrough forecasts
fluctuate around the static model’s forecasts. Hence, where the dynamic model is able
to capture short-term fluctuations, the static model with a moving window is not. For
the conversion predictions we find that, in the period April 2015 until July 2015, the
dynamic predictions are substantially higher than the static predictions. The reason

where p(Φ|y) denotes the posterior marginal pdf of Φ from the dynamic model, and p(Φ) denotes
the prior pdf of Φ. We approximate the first term on the right hand side in Equation (4.10) using
Rao-Blackwellization based on the full conditional posterior distribution of Φ (Gelfand & Smith,
1990). That is,

ln p(Φ|y)|Φ=O ≈ ln

(
1
S

S∑
s=1

p(Φ|β(s),Σ(s)
β

)|Φ=O

)
, (4.11)

where S is the number of Monte Carlo simulations, and β(s) and Σ(s)
β

are the parameter draws at
the sth simulation.
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is reflected in Figure 4.4, where we see a substantial increase in the conversion rates
of all specificity groups in the period October 2014 until April 2015. The dynamic
model timely captures this increase whereas the static model lags behind.

Figure 4.5: Posterior mean of predictions for clickthrough (a)-(c) and conversion (d)-
(f) probabilities for three keywords for dynamic model (solid lines) and static model
(dashed lines) using a moving window of 26 weeks. Ad position is set to 1.

(a) CTR - Generic, broad, 1 word
————– —–

(b) CTR - Retailer, broad, 1 word
————– —–

(c) CTR - Apple, brand & series,
exact, —— -3 words

(d) CON - Generic, broad, 1 word
————– —–

(e) CON - Retailer, broad, 1 word
————– —–

(f) CON - Apple, brand & series,
exact, —— -3 words

4.6 Managerial implications

The managerial implications of this paper are threefold. First, advertisers can use the
model to obtain accurate daily estimates of clickthrough and conversion probabilities
of individual ads. These estimates can be used to set bids and test the performance
of text ads and landing pages. These estimates can also be used to identify keywords
of which the performance is divergent from similar keywords.

Second, advertisers can use the model to examine the extent of dynamics in their SEA
environment. The more dynamic the environment and the higher the persistence of
shocks, the more often the SEA strategy should be revised. Moreover, advertisers
that manage large ad portfolios can prioritize their focus on keywords based on the
expected influence and persistence of shocks on the keywords’ performance.

Finally, advertisers can use the model to track the performance of ads to timely
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identify when the performance of keywords changes. An advertiser can then analyze
the causes of these changes and adjust, for example, the text ad, landing page,
product pricing, or bid accordingly.

As a final remark, the model’s predictions of clickthrough and conversion probabilities
are insufficient to determine the optimal bid per keyword. To set the optimal bid, an
advertiser has to know the value of each obtained impression, click and conversion,
using additional information on spillover effects to future searches (see Rutz and
Bucklin, 2011, Rutz et al., 2011, Agarwal et al., 2011), substitution effects across
marketing channels (see S. Yang and Ghose, 2010, Dinner et al., 2014, and Blake et
al., 2015), and branding profits of keywords (see Ghose and Yang, 2008). Combining
the information from these sources requires the formation of an attribution strategy
like in Li and Kannan (2014). An alternative is to use a bidding heuristic as given
in Skiera and Abou Nabout (2013). We therefore consider the determination of the
optimal bid to be outside the scope of this paper.

4.7 Summary and conclusions

In this article, we propose a dynamic Bayesian model for clickthrough and conversion
probabilities of paid search advertisements. Clickthrough and conversion probabilit-
ies can be subject to changes over time, due to, for example, changes in the tastes
and attitudes of consumers or the launch of a new product. Gaining insight into
the dynamics of ad performance is crucial for advertisers to develop effective search
engine advertising strategies.

Our main contribution is the development of a model that is especially suited to deal
with dynamic SEA environments: the model allows for time-varying parameters,
seasonal effects, data sparsity, missing data, position endogeneity and unobserved
cross-sectional heterogeneity. Moreover, we propose AR(1) processes for the time-
varying parameters, thereby allowing for shocks on different types of ads (e.g. brand-
specific versus generic ads) to have different dynamic effects on ad performance (e.g.
permanent versus transitory).

In the empirical application, we find evidence of substantial persistent time variation
in ad performance, emphasizing the importance of addressing dynamics in SEA ad
performance models. We also find evidence of position and bidding endogeneity,
indicating that purely predictive models are unable to capture causal relationships
between ad position and clickthrough and conversion probabilities.
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We note several limitations of this study. First, a drawback of the proposed method is
the large computation time involved. Especially drawing the auxiliary Polya-Gamma
variables is time-consuming, due to the large number of impressions and clicks in the
dataset. Second, in the empirical application we use the cost-per-click (CPC) to
proxy the bid. The actual bid may contain more information on the resulting ad
position than the CPC. Finally, data could be missing not at random. For example,
an advertiser might not bid on keywords that are expected to perform poorly. In this
case, the results of the model might not hold for the non-selected keywords.

We note two interesting ways in which this study can be extended. First, one can
add correlation across the time-varying parameters of the clickthrough and conver-
sion equations. Such correlations can capture the idea that some shocks affect both
clickthrough and conversion probabilities. On the downside, allowing for these cor-
relations will substantially increase computation time as the time-varying parameter
series for the two equations then need to be drawn jointly. Finally, one can use
latent factors to explain ad performance instead of pre-specified keyword character-
istics. Such an analysis will aid understanding of which factors drive the difference
in ad performance across keywords and will help advertisers in designing effective ad
campaigns. Again, this will substantially increase computation time.

Appendix

4.A Gibbs sampler

To obtain posterior results of the dynamic Bayesian model, we use a Gibbs sampler
with Polya-Gamma data augmentation (Geman and Geman, 1987, Tanner andWong,
1987, Polson et al., 2013). The Polya-Gamma data augmentation scheme is suitable
for binomial likelihoods (Polson et al., 2013). This scheme involves introducing one
layer of auxiliary latent variables that follows a Polya-Gamma distribution. Con-
ditional on these latent variables, the posterior distribution of the parameters of
interest has the same functional form as the posterior distribution of parameters
from a linear regression model with normally distributed error terms. This approach
is similar to the data augmentation scheme for probit models of Albert and Chib
(1993), but requires less memory storage as latent variables are drawn for each ob-
servation (keyword times day) instead of for each impression or click. In a SEA
application this is crucial as the number of daily impressions and clicks can be very
large.
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The Polya-Gamma data augmentation scheme works as follows. Suppose that we
have a binomially distributed variable y ∼ BIN(N, 1/(1 + exp(−θ))). Introduce an
auxiliary random variable ω that follows the Polya-Gamma distribution PG(N, 0).
The likelihood function p(y|θ) can be written as

p(y|θ) =
(

1
1 + exp(−θ)

)y ( 1
1 + exp(θ)

)N−y
=
∫
p(y|θ, ω)p(ω)dω,

where Polson et al. (2013) have showed that the conditional distribution p(y|θ, ω) is
proportional to the likelihood kernel of a linear regression model

p(y|θ, ω) ∝ exp
{
−ω2 (z − θ)2

}
,

with pseudo-observations z ≡ (y − N/2)/ω, signal θ, and independently distrib-
uted error terms with variances 1/ω. Thus, the full conditional distribution of θ,
p(θ|ω, y) ∝ p(y|θ, ω)p(θ), becomes standard. That is, the full conditional distribu-
tion of θ is the same as if we have the linear regression model z = θ+ν, ν ∼ N(0, 1/ω)
with prior p(θ). Moreover, the full conditional distribution p(ω|θ, y) is also a Polya-
Gamma distribution, and ω can thus be easily sampled along in the Gibbs sampler
(Polson et al., 2013).

For our dynamic model in Equations (4.1)-(4.4), we have that conditional on the
auxiliary latent Polya-Gamma distributed variables for the clickthrough and conver-
sion equations (denoted by ωCTRit and ωCONit , respectively) we have the multivariate
linear regression model

zCTRit = αCTRi + x′iβ
CTR
t + λCTRi ln(POSit) + s′tγ

CTR + ηCTRit + ξCTRit , (4.12)

zCONit = αCONi + x′iβ
CON
t + λCONi ln(POSit) + s′tγ

CON + ηCONit + ξCONit , (4.13)

ln(POSit) = αPOSi + x′iβ
POS
t + λPOSi ln(BIDit) + ψPOS ln(QSit) + s′tγ

POS + ηPOSit , (4.14)

ln(BIDit) = αBIDi + x′iβ
BID
t + q′itδ

BID
i + s′tγ

BID + ηBIDit , (4.15)

with zCTRit ≡ (Nit−Iit/2)/ωCTRit , zCONit ≡ (Mit−Nit/2)/ωCONit , ξCTRit ∼ N(0, 1/ωCTRit ),
and ξCONit ∼ N(0, 1/ωCONit ). The equations are related through ηit ∼MVN(0,Ση).

For ease of representation, we replace the names CTR, CON, POS and BID by the
numbers 1 to 4, respectively, and rename the variables and parameters to obtain the
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specific blocks for the Gibbs sampler. That is, we rewrite Equations (4.12)-(4.15) as

z1it = w′1itπ1i + x′iβ1t + s′1itγ1 + η1it + ξ1it, (4.16)

z2it = w′2itπ2i + x′iβ2t + s′2itγ2 + η2it + ξ2it, (4.17)

z3it = w′3itπ3i + x′iβ3t + s′3itγ3 + η3it, (4.18)

z4it = w′4itπ4i + x′iβ4t + s′4itγ4 + η4it, (4.19)

wherez1it

z2it

z3it

z4it

 =

 zCTRit

zCONit

ln(POSit)
ln(BIDit)

 ,
w
′
1it

w′2it
w′3it
w′4it

 =

1 ln(POSit)
1 ln(POSit)
1 ln(BIDit)
1 q′it

 ,
π
′
1i
π′2i
π′3i
π′4i

 =

α
CTR
i λCTRi

αCONi λCONi

αPOSi λPOSi

αBIDi δ′BIDi

 ,
β1t

β2t

β3t

β4t

 =

β
CTR
t

βCONt

βPOSt

βBIDt

 ,
s
′
1it
s′2it
s′3it
s′4it

 =

s
′
t

s′t
s′t ln(QSit)
s′t

 ,
γ
′
1
γ′2
γ′3
γ′4

 =

γ
′CTR

γ′CON

γ′POS ψPOS

γ′BID

 ,
η1it

η2it

η3it

η4it

 =

η
CTR
it

ηCONit

ηPOSit

ηBIDit

 ,
and (ξ1it, ξ2it)′ = (ξCTRit , ξCONit )′. We also rewrite Equations (4.6)-(4.9) in terms of
j:

βj,t+1 = Φjβjt + νjt, νjt ∼MVN(0,Σβ,j), βj1 ∼MVN(0, 5Σβ,j), for j = 1, ..., 4,

αji ∼ N(x′iα̃j , σ
2
α,j), for j = 1, ..., 4,

λji ∼ N(x′iλ̃j , σ
2
λ,j), for j = 1, ..., 3,

δji ∼MVN(x′iδ̃j ,Σδ,j), for j = 4.

For computational efficiency, in the Gibbs sampler we draw the parameters of each of
the four model equations separately by conditioning on the ηit of the other equations.
This also helps deal with missing values. For this, we compute

η̄jit ≡ E[ηjit|η−j,it] = Ση(j,−j)Σ−1
η(−j,−j)η−j,it,

σ̄2
η,j ≡ Var(ηjit|η−j,it) = Ση(j,j) − Ση(j,−j)Σ−1

η(−j,−j)Ση(−j,j),

for j = 1, ..., 4. Here we denote by η−j,it all elements in ηit except for the jth element
and any missing elements, and by Ση(j,−j) all elements of Ση related to row j and all
columns except for the jth. Then, we can rewrite each of the Equations (4.16)-(4.19)
as a univariate regression model conditional on η−j,it, as given by

zjit = w′jitπji + x′iβjt + s′jitγj + η̄jit + ζjit, (4.20)
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for j = 1, ..., 4, where the introduction of η̄jit ensures that the error terms ζjit are
independent of each otherζ1it

ζ2it

ζ3it

ζ4it

 ∼

0

0
0
0

 ,
σ

2
ζ,1it ≡ 1/ω1it + σ̄2

η,1 0 0 0
0 σ2

ζ,2it ≡ 1/ω2it + σ̄2
η,2 0 0

0 0 σ2
ζ,3it ≡ σ̄

2
η,3 0

0 0 0 σ2
ζ,4it ≡ σ̄

2
η,4


 .

Hence, after drawing the parameters of a single equation j, we update the ηj of
that equation, and condition on the new ηj in drawing the parameters of the next
equations.

4.A.1 Overview Gibbs sampler

We use the rewritten model in Equation (4.20) to construct the Gibbs sampler. To
improve the mixing rates of the sampler, we (i) jointly sample ηjit and the parameters
in (αji, βjt, λji, δji, γj), and (ii) jointly sample η and Ση. Because of sampling jointly,
we need to draw η twice within a single Gibbs step.

The Gibbs steps are given by

1. For j = 1, ..., 4 do

i. Sample ωjit| Iit, Nit, Mit, πji, βjt, γj , ηjit (if j ∈ {1, 2}, for i = 1, ..., N ,
t = 1, ..., T ).

ii. Compute zjit| ωjit, Iit, Nit, Mit (if j ∈ {1, 2}, for i = 1, ..., N , t = 1, ..., T ).

iii. Compute η̄jit, σ̄2
η,j | η−j,it, Ση (for i = 1, ..., N and t = 1, ..., T ).

iv. Sample πji = (αji, λji, δji)| zji, ωji, βj , γj , α̃j , λ̃j , δ̃j , η̄ji, σ2
α,j , σ2

λ,j , Σδ,j ,
σ̄2
η,j (for i = 1, ..., N).

v. Sample {βjt}Tt=1| zj , ωj , πj , γj , η̄j , Σβ,j , Φj , σ̄2
η,j .

vi. Sample γj | zj , ωj , πj , βj , η̄j , σ̄2
η,j .

vii. Sample ηjit (for i = 1, ..., N and t = 1, ..., T ):

a. If j ∈ {1, 2}, sample ηjit| zjit, ωjit, πji, βjt, γj , η−j,it, Ση.

b. If j ∈ {3, 4}, compute ηjit| zjit, πji, βjt, γj .

2. Sample α̃| α, Σα, sample λ̃| λ, Σλ, and sample δ̃| δ, Σδ .

3. Sample Σα| α, α̃, sample Σλ| λ, λ̃, and sample Σδ| δ, δ̃.
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4. Sample Φ| β, Σβ .

5. Sample Σβ | β, Φ.

6. Sample Ση| z, ω, π, β, γ.

7. Compute η̄jit, σ̄2
η,j | η−j,it, Ση (for j = 1, ..., 4, i = 1, ..., N and t = 1, ..., T ).

8. Sample ηjit| zjit, ωjit, πji, βjt, γj , η−j,it, Ση (for j = 1, 2, i = 1, ..., N and
t = 1, ..., T ).

4.A.2 Priors

We choose conjugate priors to ensure that the model parameters can be drawn using
Gibbs steps. For the logit equations (clickthrough and conversion) we take slightly
informative priors, for the normal equations (position and bid) we take rather un-
informative priors. First, for the means of the keyword-specific parameters (α̃, λ̃,
and δ̃) we take multivariate normal prior distributions with mean 0 and covariance
matrix I (for clickthrough and conversion equations) or 100I (for position and bid
equations). Second, for the variances of the keyword-specific parameters (diagonal
elements of Σα, Σλ, and Σδ) we take inverse Gamma-2 prior distributions with shape
parameter κ0 = 5 and scale parameter κ1 = 5× 0.1.

Third, for the time-varying parameters we take a multivariate normal prior for Φ with
mean Φ̂0 = 0.5ι and covariance matrix ΣΦ0 = 0.5I, where ι represents a vector of
ones. For the diagonal elements of Σβ we take inverse Gamma-2 prior distributions
with shape parameter κβ,0 = 5 and scale parameter κβ,1 = 5 × 0.001. Fourth,
for the time-invariant parameters in (γ, ψPOS) we take a multivariate normal prior
distribution with mean 0 and covariance matrix I (for clickthrough and conversion
equations) or 100I (for position and bid equations).

Finally, for the covariance matrix Ση we take an inverse Wishart prior with 8 degrees
of freedom and scale matrix 8× 0.1I.

4.A.3 Initialization

We take the following initialization. For the baseline level, we set Σα = 0.1I and
α̃ = 0 except for the intercept in α̃ which we set to −3 for the clickthrough and
conversion equations, to 1 for the position equation, and to −1 for the bid equation.
For the time-varying parameters, we set {βt}Tt=1 = 0, Φ = 0.5I, and Σβ = 0.001I.
Furthermore, we initialize γ = 0, ψPOS = 0, λ̃ = 0, and Σλ = 0.1I. For the
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instruments, we set δ̃ = 0 and Σδ = 0.1I. Finally, for the keyword- and time-specific
shocks, we initialize Ση = 0.1I, ηCTRit and ηCONit to 0 for all i and t and compute
ηPOSit and ηCPCit based on the other initializations.

4.A.4 Steps Gibbs sampler

4.A.4.1 Sampling Polya-Gamma variables ω

The full conditional posterior distribution of the auxiliary latent Polya-Gamma vari-
ables ω1it (ω2it) are independent Polya-Gamma distributions with parameters Iit
(Nit) and θ1it (θ2it) for i = 1, ..., N and t = 1, ..., T where Iit (Nit) denotes the
number impressions (clicks), and

θjit = w′jitπji + x′iβjt + s′tγj + ηjit,

for j = 1, 2. We draw the Polya-Gamma variables using the R package BayesLogit
(Windle, Polson et al., 2014). For computational efficiency, we approximate the
Polya-Gamma variable ω1it (ω2it) by normal variables in case Iit > 170 (Nit > 170)
(Windle, Polson et al., 2014). In this approximation, we set the first and second
moment of the normal distribution equal to the first and second moment of the
associated Polya-Gamma distribution.

After drawing the Polya-Gamma variables, we compute the pseudo data points for
the clickthrough and conversion equations

z1it = (Nit − Iit/2) /ω1it,

z2it = (Mit −Nit/2) /ω2it.

4.A.4.2 Sampling αi, λi, and δi

To sample αji, λji, and δji (collected in πji) for i = 1, ..., N , note that we can write
Equation (4.20) as the univariate normal regression model

yπ,jit ≡ zjit − x′iβjt − s′jitγj − η̄jit = w′jitπji + ζjit, ζjit ∼ N(0, σ2
ζ,jit),

for t = 1, ..., T , with a normal prior for πji ∼MVN(π̄j0,Σπj0) where

π̄j0 =
[
x′iα̃j

x′iλ̃j

]
, Σπj0 =

[
σ2
α,j 0
0 σ2

λ,j ,

]
.
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When j = 4, the elements λ̃j and σ2
λ,j are replaced by δ̃j and Σδ,j .

We draw πji from MVN(π̂ji, Σ̂πji)

Σ̂πji =
(∑T

t=1
wjitw

′
jit/σ

2
ζ,jit + Σ−1

πj0

)−1
,

π̂ji = Σ̂πji
(∑T

t=1
wjityπ,jit/σ

2
ζ,jit + Σ−1

πj0
π̄0

)
,

for i = 1, ..., N .

4.A.4.3 Sampling βt

To sample {βjt}Tt=1, note that we can write Equation (4.20) as the univariate normal
regression model

yβ,jit ≡ zjit − w′jitπji − s′jitγj − η̄jit = x′iβjt + ζjit, ζjit ∼ N(0, σ2
ζ,jit),

with

βj,t+1 = Φjβjt + νjt, νjt ∼MVN(0,Σβ,j), βj1 ∼MVN(0, 5Σβ,j).

We sample {βjt}Tt=1 using the simulation smoother of Durbin and Koopman (2002)
(as explained in Durbin and Koopman (2012), section 4.9.2). To speed up com-
putations, we perform collapsed filtering (Durbin and Koopman 2012, Chapter 6.5,
Jungbacker and Koopman 2015).

Collapsed filtering works as follows. We have the (N×1) vector yβ,jt and the (N×K)
matrix X, with K >> N . We can compute a (K ×N) matrix A∗jt such that we can
obtain the correct smoothed estimates by using the observation equation with (K×1)
observation vector

A∗jtyβ,jt = A∗jtX +A∗jtζjt,

where the covariance matrix of ζjt is a diagonal matrix with elements σ2
ζ,jit. Hence,

this procedure allows for much lower computation times because the altered observa-
tion vector is of much smaller dimension than the original observation vector, while
the covariance matrix remains diagonal. We take the ith column of A∗jt equal to

A∗jit =


(∑N

n:Int≥1
1

σ2
ζ,jnt

xnx
′
n

)−1/2
xi/σ

2
ζ,jit, if j = 1, 3,(∑N

n:Nnt≥1
1

σ2
ζ,jnt

xnx
′
n

)−1/2
xi/σ

2
ζ,jit, if j = 2, 4,



Chapter 4 121

where for the matrix in the first terms on the right hand sides we first take the
Cholesky decomposition (upper triangular) and then the inverse. This A∗ is chosen
because then A∗jtζjt ∼MVN(0, I).

In case X is not of full column rank (see Section 4.4.2) the above procedure needs
to be slightly altered. That is, let X̃ be the (N × K2) matrix with columns of X
such that X̃ is of full column rank and has the same columnn space as X. Then, we
compute A∗jt using the rows of X̃ instead of X.

Finally, we have to deal with missing values, which in the collapsed case refers to
time periods in which there is a variable k∗ in xi which has the same value over all i.
In other words, that time period has no keywords with impressions/clicks that have a
specific characteristic in xi. When such missings occur, we set element k∗ in A∗jtyβ,jt
to zero, and the elements in the k∗(th) row and column of A∗jtX equal to zero.

4.A.4.4 Sampling γ

To sample γj note that we can write Equation (4.20) as the univariate normal re-
gression model

yγ,jit ≡ zjit − w′jitπji − x′iβjt − η̄jit = s′jitγj + ζjit, ζjit ∼ N(0, σ2
ζ,jit).

We draw γj from MVN(γ̂j , Σ̂γj ) where

Σ̂γj =
(∑N

i=1

∑T

t=1
sjits

′
jit/σ

2
ζ,it + Σ−1

γj0

)−1
,

γ̂j = Σ̂γj
(∑N

i=1

∑T

t=1
sjityγ,jit/σ

2
ζ,it

)
,

where Σγj0 is the diagonal covariance matrix of the normal prior for γ.

4.A.4.5 Sampling η

Next we sample {{ηjit}Ni=1}Tt=1. In case j ∈ {3, 4} (position and bid equations), we
see from Equations (4.18) and (4.19) that we can directly compute ηjit:

ηjit = zjit − w′jitπji − x′iβjt − s′jitγj . (4.21)

In case j ∈ {1, 2} (clickthrough and conversion equations), we sample ηjit. Note that
we can write both Equations (4.16) and (4.17) as the univariate normal regression
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model

yη,jit ≡ zjit − w′jitπji − x′iβjt − s′jitγj = ηjit + ξjit, ξjit ∼ N(0, 1/ωjit),

with a normal prior ηjit ∼ N(η̄jit, σ̄2
η,j). We draw ηjit for i = 1, ..., N and t = 1, ..., T

from N(η̂jit, Σ̂ηjit) where

Σ̂ηjit =
(
ωjit + 1/σ̄2

η,j

)−1
, η̂jit = Σ̂ηjit

(
ωjityη,jit + η̄jit/σ̄

2
η,j

)
.

4.A.4.6 Sampling α̃, λ̃, and δ̃

To sample α̃, note that Equation (4.7) is a multivariate regression model given
{αi}Ni=1 and Σα. We draw α̃ from MVN( ˆ̃α, Σ̂α̃) where

Σ̂α̃ =
(∑N

i=1
(I4 ⊗ x′i)′Σ−1

α (I4 ⊗ x′i) + Σ−1
α̃0

)−1
,

ˆ̃α = Σ̂α̃
(∑N

i=1
(I4 ⊗ x′i)′Σ−1

α αi

)
,

where Σα̃0 is the covariance matrix of the normal prior for α̃, and ⊗ denotes the
Kronecker product.

To sample λ̃, note that Equation (4.8) is a multivariate regression model given {λi}Ni=1

and Σλ. We draw λ̃ from MVN(ˆ̃λ, Σ̂λ̃) where

Σ̂λ̃ =
(∑N

i=1
(I3 ⊗ x′i)′Σ−1

λ (I3 ⊗ x′i) + Σ−1
λ̃0

)−1
,

ˆ̃λ = Σ̂λ̃
(∑N

i=1
(I3 ⊗ x′i)′Σ−1

λ λi

)
,

where Σλ̃0
is the covariance matrix of the normal prior for λ̃.

To sample δ̃, note that Equation (4.9) is a multivariate regression model given {δi}Ni=1

and Σδ. We draw δ̃ from MVN(ˆ̃δ, Σ̂δ̃) where

Σ̂δ̃ =
(∑N

i=1
Σ−1
δ + Σ−1

δ̃0

)−1
,

ˆ̃δ = Σ̂δ̃
(∑N

i=1
Σ−1
δ δi

)
,

where Σδ̃0
is the covariance matrix of the normal prior for δ̃.
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4.A.4.7 Sampling Σα, Σλ, and Σδ

To sample Σα, Σλ, and Σδ,j , note that these covariance matrices are diagonal. There-
fore, we separately draw each diagonal element.

To sample σ2
α,j , note we have a univariate regression model for αji ∼ N(x′iα̃j , σ2

α,j)
for i = 1, ..., N . We therefore draw σ2

α,j from the inverse Gamma distribution

σ2
α,j ∼ IG

(∑N
i=1(αji − x′iα̃j)2 + κ1

2 ,
N + κ0

2

)
,

for j = 1, ..., 4, with prior parameters κ0 and κ1.

To sample σ2
λ,j , note we have a univariate regression model for λji ∼ N(x′iλ̃j , σ2

λ,j)
for i = 1, ..., N . We therefore draw σ2

λ,j from the inverse Gamma distribution

σ2
λ,j ∼ IG

(∑N
i=1(λji − x′iλ̃j)2 + κ1

2 ,
N + κ0

2

)
,

for j = 1, ..., 3, with prior parameters κ0 and κ1.

To sample Σδ,j,kk, for j = 4, note we have a univariate regression model for δki ∼
N(x′iδ̃jk,Σδ,j,kk) for i = 1, ..., N . We therefore draw Σδ,kk from the inverse Gamma
distribution

Σδ,j,kk ∼ IG
(∑N

i=1(δjki − δ̃jk)2 + κ1

2 ,
N + κ0

2

)
,

for k = 1, 2, with prior parameters κ0 and κ1.

4.A.4.8 Sampling Φ

To sample Φ, note that Equation (4.6) is a multivariate regression model given β and
Σβ . We draw Φ from MVN(Φ̂, Σ̂Φ) where

Σ̂Φ =
(∑T

t=2
βt−1Σ−1

β βt−1 + Σ−1
Φ0

)−1
,

Φ̂ = Σ̂Φ

(∑T

t=2
βt−1Σ−1

β βt + Σ−1
Φ0

Φ̂0

)
,

where Φ̂0 is the mean vector and ΣΦ0 is the covariance matrix of the normal prior
for Φ.
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4.A.4.9 Sampling Σβ

To sample Σβ , note that Φ is a diagonal matrix and we can therefore draw each kth

diagonal elements separately. For the kth element, we have the univariate regression
model

βk,t+1 = Φkkβkt + νkt, νkt ∼ N(0,Σβ,kk), βk1 ∼ N(0, 5Σβ,kk).

We therefore draw Σβ,kk from the inverse Gamma distribution

Σβ,kk ∼ IG
(∑T

t=2 (βkt − Φkkβk,t−1)2 + β2
k1/5 + κβ,1

2 ,
T + κβ,0

2

)
,

with prior parameters κβ,0 and κβ,1.

4.A.4.10 Sampling Ση

To sample Ση in a computationally efficiently manner, we use an independence
Metropolis-Hastings (MH) step (Metropolis et al., 1953, Hastings, 1970). For this
purpose, we first reparameterize Ση into elements that are unconstrained, using a
Cholesky decomposition. Next, we draw a candidate for the unconstrained paramet-
ers from a multivariate normal distribution with as mean the posterior mode, and as
covariance matrix the negative of the inverse of the Hessian of the log posterior at the
posterior mode. To find the posterior mode and Hessian, we perform an optimization
using the analytic gradient and an approximated Hessian from the outer-product-of-
gradients (BHHH) method. Details are in the Supplementary Materials, available
upon request.
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Conclusions

People differ. We have different preferences, we respond differently to health treat-
ments, different educational formats work best for us, and so forth. To develop
effective policies, it is often useful to acknowledge and account for these individual
differences. That is, when one knows how individuals can differentially respond, one
can gain understanding into the different effects of a policy across individuals and
one can develop personalized policies, e.g. personalized health treatments, marketing
or education.

To infer individual responses from a given set of data, models are a useful tool. Un-
fortunately, the amount of data available on a given individual is often too limited
to accurately infer her responses based on her data alone. In these cases, models can
be used that consider the underlying population distribution of individual responses.
These models share information across all individuals in the dataset. Once the pop-
ulation distribution of responses has been estimated, one can infer per individual
where s/he most likely is in the distribution based on the individual’s data.

In this thesis, I develop approaches to accurately estimate the population distribu-
tion of responses. The proposed approaches overcome important limitations of the
existing approaches by allowing for more realistic behavior. That is, they allow for
many different forms of response distributions, including those were some individuals
may have no response to certain variables (Chapter 2). Also, the proposed methods
allow for the responses of individuals to change over time (Chapters 3 and 4). In
the applications in this thesis, I find that our proposed approaches lead to improved
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predictions of individual outcomes. Also, the approaches lead to interesting insights
into how individuals respond. These improvements can lead to the design of more
effective policies.
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Nederlandse samenvatting
(Summary in Dutch)

In dit proefschrift ontwikkel ik methodes om individuele uitkomsten te verklaren.
Deze methodes richten zich op het accuraat schatten en voorspellen van reacties
van individuen: hoe reageren individuen (bijvoorbeeld met hun aankoopgedrag) op
een verandering in verklarende variabelen (bijvoorbeeld prijs)? Wanneer de reacties
van individuen bekend zijn, kunnen publieke en private organisaties deze inform-
atie gebruiken om effectief beleid te maken. Zo kunnen bijvoorbeeld zorgverleners
hun gezondheidsbehandelingen afstemmen op een individu of kunnen supermarkten
persoonlijke aanbiedingen en aanbevelingen doen.

De methodes ontwikkelt in dit proefschrift dragen bij aan de literatuur door het
toestaan van meer realistisch individueel gedrag, met name wanneer datasets weinig
informatie per individu bevatten. Zo staan de methodes toe dat individuen sterk
van elkaar kunnen verschillen, en dat sommige factoren geen invloed hebben op
bepaalde individuen (hoofdstuk 2). Daarnaast staan de methodes toe dat het gedrag
van individuen over tijd kan veranderen (hoofdstukken 3 en 4). In de toepassingen
in dit proefschrift zien we dat de methodes leiden tot betere voorspellingen van
individuele reacties. Deze verbeterde voorspellingen kunnen worden gebruikt om
beter beleid te ontwerpen. De methodes zijn algemeen toepasbaar op verschillende
soorten problemen, zoals binnen de gezondheidszorg en marketing.
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Models for Individual Responses
Explaining and predicting individual behavior

In this thesis, I develop approaches to explain individual outcomes. 
These approaches focus on accurately estimating and predicting individual 
responses: how do individuals react (e.g. with their purchase behavior) 
to changes in explanatory variables (e.g. price)? When the responses of 
individuals are known, public and private organizations can use the 
information to develop effective policies. For example, health care providers 
can personalize their health treatments, or supermarkets can create 
personalized recommendations.

The approaches developed in this thesis contribute to the literature by 
allowing for more realistic individual behavior, especially when the dataset 
contains little information per individual. The approaches allow for individuals 
to have widely different responses, and for some individuals to be unaffected 
by certain variables (chapter 2). Also, the approaches allow for the responses 
of individuals to change over time (chapters 3 and 4). In the applications in 
this thesis, I find that the proposed approaches lead to improved predictions 
of individual outcomes. These improvements can lead to the design of 
more effective policies. The approaches are generally applicable to many 
real-life problems, including problems in health and consumer choice-making.


